Powered by Deep Web Technologies
Note: This page contains sample records for the topic "thin film deposited" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Hybrid Thin Film Deposition System | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid Thin Film Deposition System Hybrid Thin Film Deposition System Only available at EMSL, the Discovery Deposition System has been customized to be a fully automated...

2

Apparatus for laser assisted thin film deposition  

DOE Patents [OSTI]

A pulsed laser deposition apparatus uses fiber optics to deliver visible output beams. One or more optical fibers are coupled to one or more laser sources, and delivers visible output beams to a single chamber, to multiple targets in the chamber or to multiple chambers. The laser can run uninterrupted if one of the deposition chambers ceases to operate because other chambers can continue their laser deposition processes. The laser source can be positioned at a remote location relative to the deposition chamber. The use of fiber optics permits multi-plexing. A pulsed visible laser beam is directed at a generally non-perpendicular angle upon the target in the chamber, generating a plume of ions and energetic neutral species. A portion of the plume is deposited on a substrate as a thin film. A pulsed visible output beam with a high pulse repetition frequency is used. The high pulse repetition frequency is greater than 500 Hz, and more preferably, greater than about 1000 Hz. Diamond-like-carbon (DLC) is one of the thin films produced using the apparatus. 9 figs.

Warner, B.E.; McLean, W. II

1996-02-13T23:59:59.000Z

3

Glow discharge plasma deposition of thin films  

DOE Patents [OSTI]

A glow discharge plasma reactor for deposition of thin films from a reactive RF glow discharge is provided with a screen positioned between the walls of the chamber and the cathode to confine the glow discharge region to within the region defined by the screen and the cathode. A substrate for receiving deposition material from a reactive gas is positioned outside the screened region. The screen is electrically connected to the system ground to thereby serve as the anode of the system. The energy of the reactive gas species is reduced as they diffuse through the screen to the substrate. Reactive gas is conducted directly into the glow discharge region through a centrally positioned distribution head to reduce contamination effects otherwise caused by secondary reaction products and impurities deposited on the reactor walls.

Weakliem, Herbert A. (Pennington, NJ); Vossen, Jr., John L. (Bridgewater, NJ)

1984-05-29T23:59:59.000Z

4

Initiated chemical vapor deposition of functional polyacrylic thin films  

E-Print Network [OSTI]

Initiated chemical vapor deposition (iCVD) was explored as a novel method for synthesis of functional polyacrylic thin films. The process introduces a peroxide initiator, which can be decomposed at low temperatures (<200?C) ...

Mao, Yu, 1975-

2005-01-01T23:59:59.000Z

5

Enabling integration of vapor-deposited polymer thin films  

E-Print Network [OSTI]

Initiated Chemical Vapor Deposition (iCVD) is a versatile, one-step process for synthesizing conformal and functional polymer thin films on a variety of substrates. This thesis emphasizes the development of tools to further ...

Petruczok, Christy D. (Christy Danielle)

2014-01-01T23:59:59.000Z

6

Initiated chemical vapor deposition of polymeric thin films : mechanism and applications  

E-Print Network [OSTI]

Initiated chemical vapor deposition (iCVD) is a novel technique for depositing polymeric thin films. It is able to deposit thin films of application-specific polymers in one step without using any solvents. Its uniqueness ...

Chan, Kelvin, Ph. D. Massachusetts Institute of Technology

2005-01-01T23:59:59.000Z

7

Sputter deposition for multi-component thin films  

DOE Patents [OSTI]

Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams.

Krauss, Alan R. (Plainfield, IL); Auciello, Orlando (Cary, NC)

1990-01-01T23:59:59.000Z

8

Sputter deposition for multi-component thin films  

DOE Patents [OSTI]

Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams. 10 figs.

Krauss, A.R.; Auciello, O.

1990-05-08T23:59:59.000Z

9

Electrical characteristics of Ta2O5 thin films deposited by electron beam gun evaporation  

E-Print Network [OSTI]

Electrical characteristics of Ta2O5 thin films deposited by electron beam gun evaporation V films deposited by a simple electron beam gun evaporator. We describe thicknessO5 thin films deposited by a simple electron beam gun evaporator which enables versatility

Eisenstein, Gadi

10

LIQUID PHASE DEPOSITION OF ELECTROCHROMIC THIN FILMS T. J. Richardson and M. D. Rubin  

E-Print Network [OSTI]

1 LIQUID PHASE DEPOSITION OF ELECTROCHROMIC THIN FILMS T. J. Richardson and M. D. Rubin electrochromism with high coloration efficiencies. These nickel oxide films were particularly stable compared, and readily scalable to larger substrates. Keywords: liquid phase deposition; electrochromic films; thin film

11

Study of plasma enhanced chemical vapor deposition of boron-doped hydrogenated amorphous silicon thin films and the application to p-channel thin film transistor  

E-Print Network [OSTI]

The material and process characteristics of boron doped hydrogenated amorphous silicon (a-Si:H) thin film deposited by plasma enhanced chemical vapor deposition technique (PECVD) have been studied. The goal is to apply the high quality films...

Nominanda, Helinda

2012-06-07T23:59:59.000Z

12

ThinFilms  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thin Films Thin Films Manufacturing Technologies The Thin Film laboratory provides a variety of vapor deposition processes and facilities for cooperative research and development. Available capabilities include electron beam evaporation, sputter deposition, reactive deposi- tion processes, atomic layer deposition (ALD) and specialized techniques such as focused ion beam induced chemical vapor deposition. Equipment can be reconfigured for prototyping, or it can be dedicated to long-term research, development and manufacturing. Most sputter and evaporative deposition systems are capable of depositing multiple materials. Deposition capabilities and expertise * Deposition of a large variety of thin film mate- rials * Multiple sputter deposition systems - Capable of depositing four materials in a

13

Bi-Sr-Ca-Cu-O thin films grown by flash evaporation and pulsed laser deposition  

E-Print Network [OSTI]

. Thin films were grown by flash evaporation at Texas A&M University, and by pulsed laser deposition (PLD) at the University of Wollongong, Australia. The latter of these techniques is widely used for growing thin films of various compounds. Single...

Ganapathy Subramanian, Santhana

2004-09-30T23:59:59.000Z

14

The growth characteristics of microcrystalline Si thin film deposited by atmospheric pressure plasma-enhanced chemical vapor deposition  

Science Journals Connector (OSTI)

Microcrystalline silicon thin film was grown by atmospheric pressure plasma-enhanced chemical vapor deposition (AP-PECVD) ... with a cylindrical rotary electrode supplied with 150 MHz very-high-frequency power. T...

Jung-Dae Kwon

2013-11-01T23:59:59.000Z

15

Metallic to insulating transition in disordered pulsed laser deposited silicide thin films.  

E-Print Network [OSTI]

??A metal-to-insulating transition has been observed in iron, iron oxide, iron silicide and cobalt silicide thin films when deposited on Si substrate with a native… (more)

Abou Mourad, Houssam

2005-01-01T23:59:59.000Z

16

Titanium nitride thin films deposited by reactive pulsed-laser ablation in RF plasma  

Science Journals Connector (OSTI)

Titanium nitride thin films were deposited on Si (100) substrates by pulsed laser ablation of a titanium target in a N2 atmosphere (gas pressure approx. 10 Pa) using a doubled frequency Nd:YAG laser (532 nm) also assisted by a 13.56-MHz radio frequency (RF) plasma. Deposition was carried out at various substrate temperatures ranging from 373 up to 873 K and films were analyzed by X-ray diffractometry, scanning electron microscopy and optical emission spectroscopy. A comparison between the ‘normal’ pulsed laser deposition (PLD) and the RF plasma-assisted PLD showed the influence of the plasma on the structural characteristics of the thin films.

A. Giardini; V. Marotta; S. Orlando; G.P. Parisi

2002-01-01T23:59:59.000Z

17

Process for thin film deposition of cadmium sulfide  

DOE Patents [OSTI]

The present invention teaches a process for depositing layers of cadmium sulfide. The process includes depositing a layer of cadmium oxide by spray pyrolysis of a cadmium salt in an aqueous or organic solvent. The oxide film is then converted into cadmium sulfide by thermal ion exchange of the O.sup.-2 for S.sup.-2 by annealing the oxide layer in gaseous sulfur at elevated temperatures.

Muruska, H. Paul (East Windsor, NJ); Sansregret, Joseph L. (Scotch Plains, NJ); Young, Archie R. (Montclair, NJ)

1982-01-01T23:59:59.000Z

18

Nanostructured silicon thin films deposited by PECVD in the presence of silicon nanoparticles  

SciTech Connect (OSTI)

Nanostructured silicon thin films have been deposited by plasma enhanced chemical vapor deposition at low substrate temperature (100 C) in the presence of silicon nanoparticles. The nanostructure of the films was revealed by transmission electron microscopy, Raman spectroscopy and X-ray diffraction, which showed ordered silicon domains (1--2 nm) embedded in an amorphous silicon matrix. These ordered domains are due to the particles created in the discharge that contribute to the film growth. One consequence of the incorporation of nanoparticles is the accelerated crystallization of the nanostructured silicon thin films when compared to standard a-Si:H, as shown by the electrical characterization during the annealing.

Viera, G.; Cabarrocas, P.R.; Hamma, S.; Sharma, S.N.; Costa, J.; Bertran, E.

1997-07-01T23:59:59.000Z

19

Nitrogen doping in pulsed laser deposited ZnO thin films using dense plasma focus  

Science Journals Connector (OSTI)

Pulsed laser deposition synthesized ZnO thin films, grown at 400 °C substrate temperature in different oxygen gas pressures, were irradiated with 6 shots of pulsed nitrogen ions obtained from 2.94 kJ dense plasma focus to achieve the nitrogen doping in ZnO. Structural, compositional and optical properties of as-deposited and nitrogen ion irradiated ZnO thin films were investigated to confirm the successful doping of nitrogen in irradiated samples. Spectral changes have been seen in the nitrogen irradiated ZnO thin film samples from the low temperature PL measurements. Free electron to acceptor emissions can be observed from the irradiated samples, which hints towards the successful nitrogen doping in films. Compositional analysis by X-ray photoelectron spectroscopy and corresponding shifts in binding energy core peaks of oxygen and nitrogen confirmed the successful use of plasma focus device as a novel source for nitrogen ion doping in ZnO thin films.

S. Karamat; R.S. Rawat; T.L. Tan; P. Lee; S.V. Springham; E. Ghareshabani; R. Chen; H.D. Sun

2011-01-01T23:59:59.000Z

20

Direct-current substrate bias effects on amorphous silicon sputter-deposited films for thin film transistor fabrication  

SciTech Connect (OSTI)

The effect that direct current (dc) substrate bias has on radio frequency-sputter-deposited amorphous silicon (a-Si) films has been investigated. The substrate bias produces a denser a-Si film with fewer defects compared to unbiased films. The reduced number of defects results in a higher resistivity because defect-mediated conduction paths are reduced. Thin film transistors (TFTs) that were completely sputter deposited were fabricated and characterized. The TFT with the biased a-Si film showed lower leakage (off-state) current, higher on/off current ratio, and higher transconductance (field effect mobility) than the TFT with the unbiased a-Si film.

Jun, Seung-Ik; Rack, Philip D.; McKnight, Timothy E.; Melechko, Anatoli V.; Simpson, Michael L. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996-2200 (United States); Molecular Scale Engineering and Nanoscale Technologies Research Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

2005-09-26T23:59:59.000Z

Note: This page contains sample records for the topic "thin film deposited" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Cobalt cluster-assembled thin films deposited by low energy cluster beam deposition: Structural and magnetic investigations of deposited layers  

SciTech Connect (OSTI)

Cobalt cluster-assembled thin films were deposited on amorphous-carbon-coated copper grids and on silicon substrates at room temperature by low energy cluster beam deposition. Characterizations using high-resolution transmission electronic microscopy and atomic force microscopy reveal randomly stacked agglomerates of 9-11 nm diameter, which are themselves composed of small 3.6 nm diameter fcc cobalt clusters. The films are ferromagnetic up to room temperature and above, which implies that the clusters are exchange coupled. The approach to saturation is analyzed within the random anisotropy model. The values of the exchange coefficient A and the anisotropy constant K then derived are discussed. The temperature dependence of the coercivity below 100 K is discussed in terms of thermal activation effects. All results indicate that the fundamental entity governing the magnetic behaviors is constituted by the 9-11 nm diameter agglomerates rather than by the clusters themselves.

Dumas-Bouchiat, F.; Nagaraja, H. S.; Rossignol, F.; Champeaux, C.; Trolliard, G.; Catherinot, A.; Givord, D. [Centre de Projet Films Minces et Microdispositifs pour Telecommunications, SPCTS, UMR CNRS 6638, 123 Avenue Albert Thomas, 87060 Limoges Cedex (France); SPCTS, UMR CNRS 6638, ENSCI, 47 Avenue Albert Thomas, 87065 Limoges Cedex (France); Centre de Projet Films Minces et Microdispositifs pour Telecommunications, SPCTS, UMR CNRS 6638, 123 Avenue Albert Thomas, 87060 Limoges Cedex (France); SPCTS, UMR CNRS 6638, 123 Avenue Albert Thomas, 87060 Limoges Cedex (France); Centre de Projet Films Minces et Microdispositifs pour Telecommunications, SPCTS, UMR CNRS 6638, 123 Avenue Albert Thomas, 87060 Limoges Cedex (France); Laboratoire Louis Neel, UPR CNRS 5051, BP 166, F-38042 Grenoble Cedex (France)

2006-09-15T23:59:59.000Z

22

Electrochromic properties of iron oxide thin films prepared by chemical vapor deposition  

SciTech Connect (OSTI)

Iron oxide thin films were prepared by chemical vapor deposition. The source material was iron (III) acetylacetonate. The Fe{sub 2}O{sub 3} films were produced at a substrate temperature above 200 C. The films deposited at a substrate temperature above 300 C were polycrystalline {beta}-Fe{sub 2}O{sub 3}. Reduction and oxidation of the amorphous films in a 0.3 M LiClO{sub 4} propylene carbonate solution caused desirable changes in optical absorption. Coulometry indicated that the coloration efficiency was 6.0 to 6.5 cm{sup 2}/C.

Maruyama, Toshiro; Kanagawa, Tetsuya [Kyoto Univ. (Japan). Dept. of Chemical Engineering

1996-05-01T23:59:59.000Z

23

Ion beam assisted sputter deposition of ZnO for silicon thin-film solar cells  

Science Journals Connector (OSTI)

Ion beam assisted deposition (IBAD) is a promising technique for improving the material quality of ZnO-based thin films. The operation of an auxiliary Ar+ ion source during deposition of ZnO?:?Ga thin films by dc magnetron sputtering led to an improvement in crystalline texture, especially at low temperatures due to momentum transfer from the ions to the growing film. Etching of IBAD-ZnO?:?Ga films in diluted HCl revealed crater-like surface structures with crater diameters of up to 600 nm. These structures are usually achieved after deposition at high substrate temperatures. This is an indication that the grain structure was remarkably changed by bombarding these films during deposition in terms of increasing the compactness of the ZnO?:?Ga films. Subsequent annealing procedures led to an improvement in the electrical and optical properties. Hydrogenated microcrystalline silicon (µc-Si?:?H) solar cells exhibited enhanced efficiency as compared to cells on other low-temperature sputtered reference ZnO films. This improvement was ascribed to light trapping by the modified etching behaviour of the IBAD-ZnO?:?Ga films as well as improved transparency after the vacuum annealing step.

M Warzecha; D Köhl; M Wuttig; J Hüpkes

2014-01-01T23:59:59.000Z

24

Deposition of tungsten nitride thin films by plasma focus device at different axial and angular positions  

Science Journals Connector (OSTI)

Tungsten nitride thin films were deposited on stainless steel–304 substrates by using a low energy (2 kJ) Mather type plasma focus device. X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and microhardness are used to study the surface of treated samples. The XRD analysis shows that the degree of crystallinity of deposited thin films strongly depends on axial and angular positions of samples. The SEM micrographs of the deposited films at different angular positions (0°, 10° and 30°) and axial position of 8 cm show that the content of WN sub-micro crystalline structures on the surface of deposited films decreased with increasing the angle with respect to anode axis. From AFM results we observe that for the sample deposited at 8 cm and 0° axial and angular positions, respectively, the most uniform surface and the most homogenous distribution of grains are obtained. Also the hardness results show that the highest mechanical hardness is obtained when the film is deposited at 8 cm and 0° axial and angular positions, respectively.

M.T. Hosseinnejad; M. Ghoranneviss; G.R. Etaati; M. Shirazi; Z. Ghorannevis

2011-01-01T23:59:59.000Z

25

PULSED PLASMA DEPOSITED MALEIC ANHYDRIDE THIN FILMS AS FUNCTIONALISED SURFACES IN COMPOSITE  

E-Print Network [OSTI]

PULSED PLASMA DEPOSITED MALEIC ANHYDRIDE THIN FILMS AS FUNCTIONALISED SURFACES IN COMPOSITE substrate models carbon fibres in composite materials. The substrates are treated with different plasma properties of composite materials are strongly dependent on the integrity of the fibre-matrix interface

26

Epitaxial graphene prepared by chemical vapor deposition on single crystal thin iridium films on sapphire  

E-Print Network [OSTI]

Epitaxial graphene prepared by chemical vapor deposition on single crystal thin iridium films Cedex 9, France (Dated: 15 March 2011) Uniform single layer graphene was grown on single-crystal Ir. These graphene layers have a single crystallographic orientation and a very low density of defects, as shown

Boyer, Edmond

27

Chemical bath deposition of CdS thin films doped with Zn and Cu  

Science Journals Connector (OSTI)

Zn- and Cu-doped CdS thin films were deposited onto glass substrates...2 and CuCl2...were incorporated as dopant agents into the conventional CdS chemical bath in order to promote the CdS doping process. The effe...

A I OLIVA; J E CORONA; R PATIÑO; A I OLIVA-AVILÉS

2014-04-01T23:59:59.000Z

28

Homogeneous, dual layer, solid state, thin film deposition for structural and/or electrochemical characteristics  

DOE Patents [OSTI]

Solid state, thin film, electrochemical devices (10) and methods of making the same are disclosed. An exemplary device 10 includes at least one electrode (14) and an electrolyte (16) deposited on the electrode (14). The electrolyte (16) includes at least two homogenous layers of discrete physical properties. The two homogenous layers comprise a first dense layer (15) and a second porous layer (16).

Pitts, J. Roland; Lee, Se-Hee; Tracy, C. Edwin; Li, Wenming

2014-04-08T23:59:59.000Z

29

Modeling the Early Stages of Thin Film Formation by Energetic Atom Deposition  

E-Print Network [OSTI]

used for surface modification and thin film production purposes. These processes use a high vacuum-beam deposition, in which a cluster of atoms is ionized and accelerated to- ward a substrate. Upon impact, Aerospace and Nuclear En- gineering Department, University of California-Los Angeles, Los An- geles, CA

Ghoniem, Nasr M.

30

Comprehensive study of the metal-insulator transition in pulsed laser deposited epitaxial VO2 thin films  

E-Print Network [OSTI]

Comprehensive study of the metal-insulator transition in pulsed laser deposited epitaxial VO2 thin properties of high-quality VO2 thin films across its metal-insulator phase transition. Detailed x-ray deposition,9 sol-gel deriving,10 sputtering,11 and pulsed laser deposition,12 the study of VO2 is reviving

Wu, Junqiao

31

In situ mass spectrometric study of pyrite (FeS{sub 2}) thin film deposition with metallorganic chemical vapor deposition  

SciTech Connect (OSTI)

Pyrite, FeS{sub 2}, thin films have been prepared by metallorganic chemical vapor deposition using tert-butyl disulfide (TBDS) and iron(III) acetylacetonate [Fe(acac){sub 3}] as the precursors and H{sub 2} as co-reactant. The reaction mechanism is studied with in situ mass spectrometry. The thermal decomposition of TBDS and Fe(acac){sub 3} has been investigated, as well as the synthesis of FeS{sub 2}. A complicated gas-phase reaction chain occurs in the deposition reaction. In the first 1--2 cm of the deposition zone, thick rough films are formed, but further downstream in the reactor a smooth FeS{sub 2} film is deposited. This remarkable change in morphology is accounted for in the proposed reaction mechanism.

Reijnen, L.; Meester, B.; Goossens, A.; Schoonman, J.

2000-05-01T23:59:59.000Z

32

Low-temperature solid-phase crystallization of amorphous silicon thin films deposited by rf magnetron sputtering with substrate bias  

SciTech Connect (OSTI)

The crystallization properties of amorphous silicon (a-Si) thin film deposited by rf magnetron sputter deposition with substrate bias have been thoroughly characterized. The crystallization kinetics for films deposited with substrate bias is enhanced relative to unbiased a-Si by films. The enhanced crystallization for substrate biased a-Si films are attributed to ion enhanced nucleation of crystallites during sputter deposition which subsequently grow during the postdeposition anneal. Conversely films sputter deposited without substrate bias have more intrinsic defects and residual oxygen which enhance nucleation and retard growth, respectively, and lead to a large number of small crystallites.

Jun, Seung-Ik; Rack, Philip D.; McKnight, Timothy E.; Melechko, Anatoli V.; Simpson, Michael L. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996-2200 (United States); Molecular Scale Engineering and Nanoscale Technologies Research Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

2006-07-10T23:59:59.000Z

33

Thin film deposition of barium strontium oxide by rf magnetron sputtering  

SciTech Connect (OSTI)

Barium strontium oxide [(BaSr)O] thin films approximately 1 {mu}m in thickness were deposited on tungsten substrates using rf magnetron sputter deposition for thermionic cathode applications. Three substrate temperatures ranging from 25 to 700 deg. C were used in the deposition processes to create oxide films with different surface morphologies and crystalline structures. The films were characterized with scanning electron microscopy and their surface morphologies were correlated to their thermionic emission properties. The results showed that the surface morphology and crystalline structure of the oxide films strongly affected the emission properties. The oxide film deposited at the lowest substrate temperature of 25 deg. C showed a rough surface and a crystalline structure consisting of nanograins. At higher substrate temperatures, the oxide films exhibited smooth surfaces and close-packed crystalline structures with larger grains. The work function of the oxide films was reduced and the emission current density increased as a result of the increase in the growth temperature. The (BaSr)O film made at 700 deg. C exhibited the lowest work function of 1.57 eV and the largest emission current density of 1.60 A/cm{sup 2} at 1198 K under an electrical field of 0.88 V/{mu}m. The emission current density and the work function of the (BaSr)O thin film cathodes were stable over the testing period of 8 h. Compared to the traditional cathode fabrication process, which involves the coating of carbonates followed by an activation process, rf magnetron sputtering has a greater ability to control the deposition parameters, which makes it a valuable alternative technique to fabricate oxide cathodes.

Liu Yan; Day, Christopher M.; Little, Scott A.; Jin, Feng [Department of Physics and Astronomy, Ball State University, Muncie, Indiana 47306 (United States)

2006-11-15T23:59:59.000Z

34

Channel cracks in atomic-layer and molecular-layer deposited multilayer thin film coatings  

SciTech Connect (OSTI)

Metal oxide thin film coatings produced by atomic layer deposition have been shown to be an effective permeation barrier. The primary failure mode of such coatings under tensile loads is the propagation of channel cracks that penetrate vertically into the coating films. Recently, multi-layer structures that combine the metal oxide material with relatively soft polymeric layers produced by molecular layer deposition have been proposed to create composite thin films with desired properties, including potentially enhanced resistance to fracture. In this paper, we study the effects of layer geometry and material properties on the critical strain for channel crack propagation in the multi-layer composite films. Using finite element simulations and a thin-film fracture mechanics formalism, we show that if the fracture energy of the polymeric layer is lower than that of the metal oxide layer, the channel crack tends to penetrate through the entire composite film, and dividing the metal oxide and polymeric materials into thinner layers leads to a smaller critical strain. However, if the fracture energy of the polymeric material is high so that cracks only run through the metal oxide layers, more layers can result in a larger critical strain. For intermediate fracture energy of the polymer material, we developed a design map that identifies the optimal structure for given fracture energies and thicknesses of the metal oxide and polymeric layers. These results can facilitate the design of mechanically robust permeation barriers, an important component for the development of flexible electronics.

Long, Rong, E-mail: rlongmech@gmail.com [Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 2G8 (Canada); Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States); Dunn, Martin L. [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States); Singapore University of Technology and Design, Singapore 138682 (Singapore)

2014-06-21T23:59:59.000Z

35

Characterization of sputter deposited thin film scandate cathodes for miniaturized thermionic converter applications  

SciTech Connect (OSTI)

We have successfully developed a method for fabricating scandate-based thermionic emitters in thin film form. The primary goal of our effort is to develop thin film emitters that exhibit low work function, high intrinsic electron emissivity, minimum thermal activation properties and that can be readily incorporated into a microgap converter. Our approach has been to incorporate BaSrO into a Sc{sub 2}O{sub 3} matrix using rf sputtering to produce thin films. Diode testing has shown the resulting films to be electron emissive at temperatures as low as 900 K with current densities of 0.1 mA{center_dot}cm{sup {minus}2} at 1100 K and saturation voltages. We calculate an approximate maximum work function of 1.8 eV and an apparent emission constant (Richardson{close_quote}s constant, A{sup {asterisk}}) of 36 mA{center_dot}cm{sup {minus}2}{center_dot}K{sup {minus}2}. Film compositional and structural analysis shows that a significant surface and subsurface alkaline earth hydroxide phase can form and probably explains the limited utilization and stability of Ba and its surface complexes. The flexibility inherent in sputter deposition suggests alternate strategies for eliminating undesirable phases and optimizing thin film emitter properties. {copyright} {ital 1999 American Institute of Physics.}

Zavadil, K.R.; Ruffner, J.H.; King, D.B. [Sandia National Laboratories, Materials Processing Sciences Center, Albuquerque, New Mexico 87185-0340 (United States)

1999-01-01T23:59:59.000Z

36

Characterization of Sputter Deposited Thin Film Scandate Cathodes for Miniaturized Thermionic Converter Applications  

SciTech Connect (OSTI)

We have successfully developed a method for fabricating scandate-based thermionic emitters in thin film form. The primary goal of our effort is to develop thin film emitters that exhibit low work fimction, high intrinsic electron emissivity, minimum thermal activation properties and that can be readily incorporated into a microgap converter. Our approach has been to incorporate BaSrO into a SqOq matrix using rf sputtering to produce thin films. Diode testing has shown the resulting films to be electron emissive at temperatures as low as 900 K with current densities of 0.1 mA.cm-2 at 1100 K and saturation voltages. We calculate an approximate maximum work function of 1.8 eV and an apparent emission constant (Richardson's constant, A*) of 36 mA.cm-2.K-2. Film compositional and structural analysis shows that a significant surface and subsurface alkaline earth hydroxide phase can form and probably explains the limited utilization and stability of Ba and its surface complexes. The flexibility inherent in sputter deposition suggests alternate strategies for eliminating undesirable phases and optimizing thin film emitter properties.

King, D.B.; Ruffner, J.H.; Zavadil, K.R.

1998-12-14T23:59:59.000Z

37

Deposition of TiO2 thin films by atmospheric plasma post-discharge assisted injection MOCVD  

E-Print Network [OSTI]

Deposition of TiO2 thin films by atmospheric plasma post-discharge assisted injection MOCVD C Keywords : Injection MOCVD, Atmospheric Plasma, titanium oxide, anatase, PECVD Abstract TiO2 thin films combines remote Atmospheric Pressure (AP) Plasma with Pulsed Injection Metallorganic Chemical Vapour

Boyer, Edmond

38

Nanoindentation study of niobium nitride thin films on niobium fabricated by reactive pulsed laser deposition  

SciTech Connect (OSTI)

Nanomechanical and structural properties of NbNX films deposited on single crystal Nb using pulsed laser deposition for different substrate temperature were previously investigated as a function of film/substrate crystal structure [Mamun et al., 2012]. In this study we focus on the effect of laser fluences and background nitrogen pressure on the nanomechanical and structural properties of NbNX films. The crystal structure and surface morphology of the thin films were tested by X-ray diffraction, scanning electron microscopy, and atomic force microscopy. Using nanoindentation, the investigation of the nanomechanical properties revealed that the hardness of the NbNX films was directly influenced by the laser fluence for low background nitrogen pressure, whereas the nanomechanical hardness showed no apparent correlation with laser fluence at high background nitrogen pressure. The NbNX film hardness measured at 30% film thickness increased from 14.0 ± 1.3 to 18.9 ± 2.4 GPa when the laser fluence was increased from 15 to 25 J/cm2 at 10.7 Pa N2 pressure. X-ray diffraction showed NbNX films with peaks that correspond to ?-NbN cubic and ?-Nb2N hexagonal phases in addition to the ??-NbN hexagonal phase. Increasing the laser fluence resulted in NbNX films with larger grain sizes.

Mamun, Md Abdullah; Farha, Ashraf Hassan; Ufuktepe, Y??ksel; Elsayed-Ali, Hani E.; Elmustafa, Abdelmageed A.

2015-01-01T23:59:59.000Z

39

Cathodic Arc Deposition of Copper Oxide Thin Films  

E-Print Network [OSTI]

in the range 1-1.25 GHz, UHV compatible, and very adhesivefulfill the requirements for UHV compatibility. A cathodic85 MPa) and fulfill all UHV requirements. The deposition

MacGill, R.A.

2011-01-01T23:59:59.000Z

40

Characterization of chemical bath deposited CdS thin films doped with methylene blue and Er3+  

Science Journals Connector (OSTI)

The optical, electrical, and structural properties of CdS thin films grown by chemical bath deposition and simultaneously doped with methylene blue (MB) and Er3+ were studied. Doping was achieved by adding a c...

S. A. Tomás; R. Lozada-Morales; O. Portillo…

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thin film deposited" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Biocompatibility of atomic layer-deposited alumina thin films  

E-Print Network [OSTI]

. These results sug- gest that patterning a substrate with hydrophilic and hydro- phobic groups can control cell and excellent dielectric properties for bio- micro electro mechanical systems (Bio-MEMS) in sensors, actuators of atomic layer-deposited (ALD) alumina (Al2O3) and hydro- phobic coatings. While these coatings

George, Steven M.

42

Chemical deposition of thin films of lead selenide  

E-Print Network [OSTI]

formed after a period of three minutes. When concentrated ammonium hydroxide wss added to such a reaction mixture, gross precipitation of lead selenide took place immediately. A thin and spotty mirror also formed on the glass wall of the test tube.... Attempts were made to obtain a more even and ccsnplete mirroring by varying the concentration of the ammonium hydroxide in the solution, but all such attempts met with little success. The addition of four drops of 3N assaonium hydroxide resulted in a...

Skovlin, Dean Oliver

1956-01-01T23:59:59.000Z

43

Amorphous-Silicon Thin-Film Transistors Using Chemical Vapor Deposition of Disilane  

Science Journals Connector (OSTI)

Amorphous silicon layers have been deposited by low pressure chemical vapour deposition at 450°C using disilane as the only source gas. Simple inverted staggered thin-film transistors were made with thermal silicon dioxide as the gate insulator. Field-effect mobilities for electrons and holes were 1.4 cm2/V s and 0.1 cm2/V s, respectively. In order to obtain these high mobilities the transistor structures were carefully annealed in a hydrogen-radical rich ambient.

Paul A. Breddels; Hiroshi Kanoh; Osamu Sugiura; Masakiyo Matsumura

1990-01-01T23:59:59.000Z

44

Unexpected behaviour of one Pb monolayer deposited on aluminum oxide thin film grown on Ag(111)  

SciTech Connect (OSTI)

Using scanning tunneling microscopy (STM), Auger electron spectroscopy, and low energy electron diffraction, we have observed a surprising complete dissolution at room temperature of one lead monolayer deposited by evaporation on an aluminum oxide thin film (?0.8?nm thick) previously grown on Ag (111). We have observed the quasi-instantaneous diffusion of the lead deposit through the oxide layer to the silver/oxide interface. After the diffusion process, lead atoms form a Moiré superstructure, which is characterized by STM through the oxide layer. This unexpected behavior puts in light the very weak interaction between the aluminum oxide and the silver substrate.

Vizzini, Sébastien, E-mail: sebastien.vizzini@im2np.fr; Bertoglio, M. [IM2NP CNRS, Aix Marseille Université, F-13397 Marseille (France)] [IM2NP CNRS, Aix Marseille Université, F-13397 Marseille (France); Oughaddou, Hamid [Institut des Sciences Moléculaires d'Orsay, ISMO CNRS, Université de Paris, F-91405 Orsay, France and Deptartamento de Physique, Université de Cergy-Pontoise, F-95031 Cergy-Pontoise (France)] [Institut des Sciences Moléculaires d'Orsay, ISMO CNRS, Université de Paris, F-91405 Orsay, France and Deptartamento de Physique, Université de Cergy-Pontoise, F-95031 Cergy-Pontoise (France); Hoarau, J. Y.; Biberian, J. P.; Aufray, B. [CINaM CNRS, Aix Marseille Université, F-13288 Marseille (France)] [CINaM CNRS, Aix Marseille Université, F-13288 Marseille (France)

2013-12-23T23:59:59.000Z

45

Niobium thin film coating on a 500-MHz copper cavity by plasma deposition  

SciTech Connect (OSTI)

A system using an Electron Cyclotron Resonance (ECR) plasma source for the deposition of a thin niobium film inside a copper cavity for superconducting accelerator applications has been designed and is being constructed. The system uses a 500-MHz copper cavity as both substrate and vacuum chamber. The ECR plasma will be created to produce direct niobium ion deposition. The central cylindrical grid is DC biased to control the deposition energy. This paper describes the design of several subcomponents including the vacuum chamber, RF supply, biasing grid and magnet coils. Operational parameters are compared between an operating sample deposition system and this system. Engineering work progress toward the first plasma creation will be reported here.

Haipeng Wang; Genfa Wu; H. Phillips; Robert Rimmer; Anne-Marie Valente; Andy Wu

2005-05-16T23:59:59.000Z

46

Niobium Thin Film Coating on a 500-MHz Copper Cavity by Plasma Deposition  

SciTech Connect (OSTI)

A system using an Electron Cyclotron Resonance (ECR) plasma source for the deposition of a thin niobium film inside a copper cavity for superconducting accelerator applications has been designed and is being constructed. The system uses a 500-MHz copper cavity as both substrate and vacuum chamber. The ECR plasma will be created to produce direct niobium ion deposition. The central cylindrical grid is DC biased to control the deposition energy. This paper describes the design of several subcomponents including the vacuum chamber, RF supply, biasing grid and magnet coils. Operational parameters are compared between an operating sample deposition system and this system. Engineering work progress toward the first plasma creation will be reported here.

Haipeng Wang; Genfa Wu; H. Phillips; Robert Rimmer; Anne-Marie Valente; Andy Wu

2005-05-16T23:59:59.000Z

47

Hybrid deposition of thin film solid oxide fuel cells and electrolyzers  

DOE Patents [OSTI]

The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated. 8 figs.

Jankowski, A.F.; Makowiecki, D.M.; Rambach, G.D.; Randich, E.

1998-05-19T23:59:59.000Z

48

Hybrid deposition of thin film solid oxide fuel cells and electrolyzers  

DOE Patents [OSTI]

The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.

Jankowski, Alan F. (Livermore, CA); Makowiecki, Daniel M. (Livermore, CA); Rambach, Glenn D. (Livermore, CA); Randich, Erik (Endinboro, PA)

1998-01-01T23:59:59.000Z

49

Hybrid deposition of thin film solid oxide fuel cells and electrolyzers  

DOE Patents [OSTI]

The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.

Jankowski, Alan F. (Livermore, CA); Makowiecki, Daniel M. (Livermore, CA); Rambach, Glenn D. (Livermore, CA); Randich, Erik (Endinboro, PA)

1999-01-01T23:59:59.000Z

50

Nanoscale compositional banding in binary thin films produced by ion-assisted deposition  

SciTech Connect (OSTI)

During the ion-assisted deposition of a binary material, the ion beam can induce the formation of nanoscale ripples on the surface of the growing thin film and compositional banding within its bulk. We demonstrate that this remains true even if the curvature dependence of the sputter yields and ballistic mass redistribution are negligible, and the two atomic species are completely miscible. The concentration of the species with the lower of the two sputter yields is higher at the crests of the ripples than at their troughs. Depending on the angles of incidence of the two atomic species, the incident flux of atoms with the higher sputter yield can either stabilize or destabilize the initially flat surface of the thin film.

Mark Bradley, R. [Department of Physics, Colorado State University, Fort Collins, Colorado 80523 (United States)] [Department of Physics, Colorado State University, Fort Collins, Colorado 80523 (United States)

2013-12-14T23:59:59.000Z

51

Optical characteristics of pulsed laser deposited Ge-Sb-Te thin films studied by spectroscopic ellipsometry  

SciTech Connect (OSTI)

Pulsed laser deposition technique was used for the fabrication of (GeTe){sub 1-x}(Sb{sub 2}Te{sub 3}){sub x} (x = 0, 0.33, 0.50, 0.66, and 1) amorphous thin films. Scanning electron microscopy with energy-dispersive x-ray analysis, x-ray diffraction, optical reflectivity, and sheet resistance temperature dependences as well as variable angle spectroscopic ellipsometry measurements were used to characterize as-deposited (amorphous) and annealed (rocksaltlike) layers. In order to extract optical functions of the films, the Cody-Lorentz model was applied for the analysis of ellipsometric data. Fitted sets of Cody-Lorentz model parameters are discussed in relation with chemical composition and the structure of the layers. The GeTe component content was found to be responsible for the huge optical functions and thickness changes upon amorphous-to-fcc phase transition.

Nemec, P. [Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice (Czech Republic); Prikryl, J.; Frumar, M. [Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice (Czech Republic); Nazabal, V. [Equipe Verres et Ceramiques, UMR-CNRS 6226, Sciences Chimiques de Rennes (SCR), Universite de Rennes 1, 35042 Rennes Cedex (France)

2011-04-01T23:59:59.000Z

52

Nanoporosity induced by ion implantation in deposited amorphous Ge thin films  

SciTech Connect (OSTI)

The formation of a nano-porous structure in amorphous Ge thin film (sputter-deposited on SiO{sub 2}) during ion irradiation at room temperature with 300 keV Ge{sup +} has been observed. The porous film showed a sponge-like structure substantially different from the columnar structure reported for ion implanted bulk Ge. The voids size and structure resulted to be strongly affected by the material preparation, while the volume expansion turned out to be determined only by the nuclear deposition energy. In SiGe alloys, the swelling occurs only if the Ge concentration is above 90%. These findings rely on peculiar characteristics related to the mechanism of voids nucleation and growth, but they are crucial for future applications of active nanostructured layers such as low cost chemical and biochemical sensing devices or electrodes in batteries.

Romano, L.; Impellizzeri, G.; Ruffino, F.; Miritello, M.; Grimaldi, M. G. [IMM-CNR MATIS and Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Bosco, L. [Scuola Superiore di Catania, Via Valdisavoia 9, I-95123 Catania (Italy)

2012-06-01T23:59:59.000Z

53

Surface smoothing effect of an amorphous thin film deposited by atomic layer deposition on a surface with nano-sized roughness  

SciTech Connect (OSTI)

Previously, Lau (one of the authors) pointed out that the deposition of an amorphous thin film by atomic layer deposition (ALD) on a substrate with nano-sized roughness probably has a surface smoothing effect. In this letter, polycrystalline zinc oxide deposited by ALD onto a smooth substrate was used as a substrate with nano-sized roughness. Atomic force microscopy (AFM) and cross-sectional transmission electron microscopy (XTEM) were used to demonstrate that an amorphous aluminum oxide thin film deposited by ALD can reduce the surface roughness of a polycrystalline zinc oxide coated substrate.

Lau, W. S., E-mail: liuweicheng@zju.edu.cn; Wan, X.; Xu, Y.; Wong, H. [Zhejiang University, Department of Information Science and Electronic Engineering, No. 38 Zheda Road, Hangzhou 310027 (China)] [Zhejiang University, Department of Information Science and Electronic Engineering, No. 38 Zheda Road, Hangzhou 310027 (China); Zhang, J. [Zhejiang University, Department of Materials Science and Engineering, No. 38 Zheda Road, Hangzhou 310027 (China)] [Zhejiang University, Department of Materials Science and Engineering, No. 38 Zheda Road, Hangzhou 310027 (China); Luo, J. K. [Zhejiang University, Department of Information Science and Electronic Engineering, No. 38 Zheda Road, Hangzhou 310027 (China) [Zhejiang University, Department of Information Science and Electronic Engineering, No. 38 Zheda Road, Hangzhou 310027 (China); Institute of Renewable Energy and Environment Technology, Bolton University, Deane Road, Bolton BL3 5 AB (United Kingdom)

2014-02-15T23:59:59.000Z

54

The deposition of nanocrystalline TiO2 thin film on silicon using Sol-Gel technique and its characterization  

Science Journals Connector (OSTI)

TiO"2 thin films were deposited using Sol-Gel spin coating technique using titanium isoperoxide as the Titania precursor. The films were characterized using X-ray diffraction, capacitance voltage measurement and Raman characterization technique. The ... Keywords: Sol-Gel, Spin coating, Titanium dioxide, X-ray diffraction

Mukesh Kumar; Mukesh Kumar; Dinesh Kumar

2010-03-01T23:59:59.000Z

55

Deposition and characterization of polycrystalline silicon films on glass for thin film solar cells  

SciTech Connect (OSTI)

The authors deposit phosphorus-doped, amorphous Si by low pressure chemical vapor deposition and subsequently crystallize the films by furnace annealing at a temperature of 600 C. Optical in-situ monitoring allows one to control the crystallization process. Phosphorus doping leads to faster crystallization and a grain size enhancement with a maximum grain size of 15 {micro}m. Using transmission electron microscopy they find a log-normal grain size distribution in their films. They demonstrate that this distribution not only arises from solid phase crystallization of amorphous Si but also from other crystallization processes based on random nucleation and growth. The log-normal grain size distribution seems to be a general feature of polycrystalline semiconductors.

Bergmann, R.B.; Krinke, J.; Strunk, H.P.; Werner, J.H.

1997-07-01T23:59:59.000Z

56

CRYSTALLINE SILICON THIN-FILM SOLAR CELLS FROM THE POROUS SILICON PROCESS APPLYING CONVECTION ASSISTED CHEMICAL VAPOR DEPOSITION  

E-Print Network [OSTI]

CRYSTALLINE SILICON THIN-FILM SOLAR CELLS FROM THE POROUS SILICON PROCESS APPLYING CONVECTION ASSISTED CHEMICAL VAPOR DEPOSITION Barbara Terheiden,1* Thomas Kunz,2 Ingo Burkert2 , Renate Horbelt,1, D-91058 Erlangen, Germany ABSTRACT: Convection assisted chemical vapor deposition (CoCVD) is applied

57

Thermally deposited Ag-doped CdS thin film transistors with high-k rare-earth oxide Nd2O3 as gate dielectric  

Science Journals Connector (OSTI)

The performance of thermally deposited CdS thin film transistors doped with Ag has been reported. Ag-doped CdS thin films have been prepared using chemical...2O3 has been used as gate insulator. The thin film tra...

P. Gogoi

2013-03-01T23:59:59.000Z

58

Effect of deposition temperature on electron-beam evaporated polycrystalline silicon thin-film and crystallized by diode laser  

SciTech Connect (OSTI)

The effects of the deposition temperature on the microstructure, crystallographic orientation, and electrical properties of a 10-?m thick evaporated Si thin-film deposited on glass and crystallized using a diode laser, are investigated. The crystallization of the Si thin-film is initiated at a deposition temperature between 450 and 550?°C, and the predominant (110) orientation in the normal direction is found. Pole figure maps confirm that all films have a fiber texture and that it becomes stronger with increasing deposition temperature. Diode laser crystallization is performed, resulting in the formation of lateral grains along the laser scan direction. The laser power required to form lateral grains is higher in case of films deposited below 450?°C for all scan speeds. Pole figure maps show 75% occupancies of the (110) orientation in the normal direction when the laser crystallized film is deposited above 550?°C. A higher density of grain boundaries is obtained when the laser crystallized film is deposited below 450?°C, which limits the solar cell performance by n?=?2 recombination, and a performance degradation is expected due to severe shunting.

Yun, J., E-mail: j.yun@unsw.edu.au; Varalmov, S.; Huang, J.; Green, M. A. [School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, New South Wales 2052 (Australia); Kim, K. [School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, New South Wales 2052 (Australia); Suntech R and D Australia, Botany, New South Wales 2019 (Australia)

2014-06-16T23:59:59.000Z

59

Study of GaN:Eu3+ Thin Films Deposited by Metallorganic  

E-Print Network [OSTI]

as an advantageous architecture for transparent electrodes in optoelectronic devices due primarily to high characteristics of electrodes in optoelectronic devices and in supercapactiors, we introduced oxide thin films

McKittrick, Joanna

60

Effects of nitrogen on the growth and optical properties of ZnO thin films grown by pulsed laser deposition  

Science Journals Connector (OSTI)

ZnO thin films were grown using pulsed laser deposition by ablating a Zn target in various mixtures of O2 and N2. The presence of N2 during deposition was found to affect the growth of the ZnO thin films and their optical properties. Small N2 concentrations during growth led to strong acceptor-related photoluminescence (PL), while larger concentrations affected both the intensity and temperature dependence of the emission peaks. In addition, the PL properties of the annealed ZnO thin films are associated with the N2 concentration during their growth. The possible role of nitrogen in ZnO growth and annealing is discussed.

J B Cui; M A Thomas; Y C Soo; H Kandel; T P Chen

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thin film deposited" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Remote plasma enhanced atomic layer deposition of ZnO for thin film electronic applications  

Science Journals Connector (OSTI)

This paper describes a systematic approach to analyze the simultaneous impact of various reactant plasma parameters of remote plasma enhanced ALD (PEALD) on the ZnO thin film properties. Particular emphasis is placed on the film stoichiometry which affects the electrical properties of the thin film. Design of Experiment (DOE) is used to study the impact of the oxygen plasma parameters such as the RF power, pressure and plasma time to realize semiconductor quality of ZnO thin film. Based on the optimized plasma condition, staggered bottom-gate \\{TFTs\\} were fabricated and its electrical characteristics were measured.

S.M. Sultan; O.D. Clark; T.B. Masaud; Q. Fang; R. Gunn; M.M.A. Hakim; K. Sun; P. Ashburn; H.M.H. Chong

2012-01-01T23:59:59.000Z

62

In situ growth of p and n-type graphene thin films and diodes by pulsed laser deposition  

SciTech Connect (OSTI)

We report the in situ growth of p and n-type graphene thin films by ultraviolet pulsed laser deposition in the presence of argon and nitrogen, respectively. Electron microscopy and Raman studies confirmed the growth, while temperature dependent electrical conductivity and Seebeck coefficient studies confirmed the polarity type of graphene films. Nitrogen doping at different sites of the honeycomb structure, responsible for n-type conduction, is identified using X-ray photoelectron spectroscopy, for films grown in nitrogen. A diode-like rectifying behavior is exhibited by p-n junction diodes fabricated using the graphene films.

Sarath Kumar, S. R.; Nayak, Pradipta K.; Hedhili, M. N.; Khan, M. A.; Alshareef, H. N., E-mail: husam.alshareef@kaust.edu.sa [Materials Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia)

2013-11-04T23:59:59.000Z

63

Properties of Ta{sub 2}O{sub 5} thin films prepared by ion-assisted deposition  

SciTech Connect (OSTI)

Graphical abstract: - Highlights: • Investigating the effect of ion-beam parameters on optical properties. • Exploring the effect of ion-beam parameters on structural properties. • Studying XRD patterns of Ta{sub 2}O{sub 5} films deposited at different ion energies. - Abstract: Tantalum penta-oxide (Ta{sub 2}O{sub 5}) thin films were deposited onto highly polished and clean, fused silica glass substrates via ion beam-assisted deposition at room temperature using a high-vacuum coater equipped with an electron beam gun. The effects of ion beam parameters, oxygen flow rate, and deposition rate on the optical and structural properties as well as the stress of Ta{sub 2}O{sub 5} films were studied. It has been revealed that Ta{sub 2}O{sub 5} thin films deposited at 300 eV ion beam energy, 60 ?A/cm{sup 2} ion current density, 20 sccm oxygen flow rate and 0.6 nm/s deposition rate demonstrated excellent optical, structural and compressive stress.

Farhan, Mansour S. [College of Engineering, Wasit University (Iraq); Zalnezhad, E., E-mail: erfan_zalnezhad@yahoo.com [Center of Advanced Manufacturing and Material Processing, Department of Engineering Design and Manufacture, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Bushroa, A.R. [Center of Advanced Manufacturing and Material Processing, Department of Engineering Design and Manufacture, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia)

2013-10-15T23:59:59.000Z

64

Apparatus and method for selective area deposition of thin films on electrically biased substrates  

DOE Patents [OSTI]

An ion beam deposition process for selective area deposition on a polarized substrate uses a potential applied to the substrate which allows the ionized particles to reach into selected areas for film deposition. Areas of the substrate to be left uncoated are held at a potential that repels the ionized particles. 3 figs.

Zuhr, R.A.; Haynes, T.E.; Golanski, A.

1999-06-08T23:59:59.000Z

65

Chemical vapor deposition of conjugated polymeric thin films for photonic and electronic applications  

E-Print Network [OSTI]

(cont.) Conjugated polymers have delocalized electrons along the backbone, facilitating electrical conductivity. As thin films, they are integral to organic semiconductor devices emerging in the marketplace, such as flexible ...

Lock, John P

2005-01-01T23:59:59.000Z

66

Polycrystalline silicon thin-film solar cells on glass by ion-assisted deposition.  

E-Print Network [OSTI]

??Polycrystalline silicon (pc-Si, grain size > 1??m, no amorphous tissue) on glass is an interesting material for thin-film solar cells due to the low costs,… (more)

Straub, Axel

2005-01-01T23:59:59.000Z

67

Process and Hardware for Deposition of Complex Thin-film Alloys...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

For example, a ternary alloy of Cd1-xMgxTe can be made by feeding Mg vapor to a CdTe CSS deposition source. Many other material combinations are possible for growth of thin...

68

Influence of pulse width and target density on pulsed laser deposition of thin YBaCuO film.  

SciTech Connect (OSTI)

We have studied the effects of temporal pulse width and target density on the deposition of thin films of YBaCuO. A 248nm excimer laser and an 825nm Ti-sapphire laser were used to conduct the experiments with pulse widths of 27 ns, 16 ns, and 150 fs, and target densities of 80% and 90%. Scanning electron microscope photomicrographs and profilometer traces show a striking difference between nanosecond and femtosecond laser irradiation. Shortening the pulse width reduced particulate formation, provided stoichiometry, and improved the film properties. Decreasing the target density raised the ablation rate, produced thicker but nonuniform films, and reduced particulate formation.

Vikram, S.

1999-01-20T23:59:59.000Z

69

Formation and post-deposition compression of smooth and processable silicon thin films from nanoparticle suspensions  

E-Print Network [OSTI]

nanoparticle suspensions Noah T. Jafferisa) and James C. Sturm Department of Electrical Engineering, Princeton and processable silicon thin-films from single-crystal silicon-nanoparticle suspensions. Single-crystal Si-nanoparticles on printing silicon from nanoparticles has shown much promise.3,4 Ha¨rting et al.4 report screen-printed films

70

Effect of ion assisted deposition on optical scatter and surface microstructure of thin films  

Science Journals Connector (OSTI)

Ion bombardment of a film during deposition has pronounced effects on the electrical mechanical and optical properties of the film. One important optical property is the optical scattercharacteristic of the film. This is determined by the filmsurface and volume microstructure and thus can be used as a convenient diagnostic technique to examine film morphology. We have examined these effects for metal (Cu and Mo) and dielectric (SiO2 and TiO2) films. We observe for example a significant reduction in optical scatter due to surface structure of period <3 ?m in the case of films deposited with simultaneous ion bombardment. Other experimental data and a simple model to explain this possible smoothing effect are presented.

G. A. Al?Jumaily; J. J. McNally; J. R. McNeil; W. C. Herrmann Jr.

1985-01-01T23:59:59.000Z

71

Structural properties of amorphous carbon thin films deposited by LF (100 kHz), RF (13.56 MHz), and pulsed RF (13.56 MHz) plasma CVD  

Science Journals Connector (OSTI)

Amorphous carbon thin films were deposited by LF (100 kHz), RF (13.56 MHz), and pulsed RF (13.56 MHz) plasma CVD with DC self-bias voltage of? ... properties of the deposited films in an asymmetric plasma reactor...

Dong-Sun Kim

2005-07-01T23:59:59.000Z

72

Sputter deposition of thin film MIM capacitors on LTCC substrates for RF bypass and filtering applications  

SciTech Connect (OSTI)

Thin film capacitors for RF bypass and filtering applications were sputter deposited onto low temperature co-fired ceramic (LTCC) substrates. The capacitors were configured in a metal-insulator-metal (MIM) design featuring 200 nm thick Al electrodes and a 300 nm thick Al{sub 2}O{sub 3} dielectric layer, with dimensions varied between ~150x150 ?m and ~750x750 ?m. DC current-voltage measurements (E ? 5 MV/cm) coupled with impedance analysis (?15 MHz) was used to characterize the resulting devices. More than 90% of the devices functioned as capacitors with high DC resistance (>20 M?) and low loss (tan ? <0.1). A second set of capacitors were made under the same experimental conditions with device geometries optimized for high frequency (?200 MHz) applications. These capacitors featured temperature coefficient of capacitance (TCC) values between 500 and 1000 ppm/°C as well as low loss and high self-resonant frequency performance (ESR <0.6 Ohms at self-resonance of 5.7 GHz for 82 pF). Capacitance and loss values were comparable between the capacitor structures of similar areas at the different frequency regimes.

Murray, Jack [Missouri University of Science and Technology; O'Keefe, Matthew J. [Missouri University of Science and Technology; Wilder, Kristina [Missouri University of Science and Technology; Eatinger, Ryan [Kansas State University; Kuhn, William [Kansas State University; Krueger, Daniel S. [Honeywell Federal Manufacturing & Technologies; Wolf, J. Ambrose [Honeywell Federal Manufacturing & Technologies

2011-08-31T23:59:59.000Z

73

Inclined-substrate deposition of biaxially textured magnesium oxide thin films for YBCO coated conductors.  

SciTech Connect (OSTI)

Highly textured MgO films were grown by the inclined-substrate deposition (ISD) technique at a high deposition rate. A columnar grain with a roofing-tile-shaped surface was observed in these MgO films. X-ray pole figure, and {phi}- and {omega}-scan were used to characterize in-plane and out-of-plane textures. MgO films deposited when the incline angle {alpha} was 55 and 30 degrees exhibited the best in-plane and out-of-plane texture, respectively. High-quality YBCO films were epitaxially grown on ISD-MgO-buffered Hastelloy C substrates by pulsed laser deposition. {Tc}=88 K, with sharp transition, and j{sub c} values of {approx}2x10{sup 5} A/cm{sup 2} at 77 K in zero field were observed on films 5 mm wide and 1 cm long. This work has demonstrated that biaxially textured ISD MgO buffer layers deposited on metal substrates are excellent candidates for fabrication of high-quality YBCO coated conductors.

Ma, B.; Li, M.; Jee, Y. A.; Koritala, R. E.; Fisher, B. L.; Balachandran, U.; Energy Technology

2002-02-01T23:59:59.000Z

74

Preparation of iron oxide thin film by metal organic deposition from Fe(III)-acetylacetonate: a study of photocatalytic properties  

Science Journals Connector (OSTI)

Iron oxide thin films have been deposited over fused quartz substrate by simple metal organic deposition from Fe-(III) acetylacetonate as the organic precursor. The decomposition of Fe-acetylacetonate is characterised by its distinct transition temperatures and thermogravimetric loss rates, which have been measured by thermal gravimetric analysis. As-deposited films were sintered in the temperature range 365–800°C and the structural changes of the iron oxide thin films as they transform into different crystalline phases have been studied by X-ray diffraction, Fourier transform infrared spectroscopy, ultraviolet-visible absorption spectroscopy and scanning electron microscopy techniques. Mainly amorphous ?-Fe2O3 is formed at an annealing temperature of approximately 365–400°C, which transforms to ?-Fe2O3 phase with a further increase (600–800°C) in sintering temperature. The film sintered at 800°C consists of mainly crystalline ?-Fe2O3 phase, which shows photocatalytic degradation of an oxygenated aqueous solution of phenol upon visible light illumination.

Bonamali Pal; Maheshwar Sharon

2000-01-01T23:59:59.000Z

75

Growth direction of oblique angle electron beam deposited silicon monoxide thin films identified by optical second-harmonic generation  

SciTech Connect (OSTI)

Oblique angle deposited (OAD) silicon monoxide (SiO) thin films forming tilted columnar structures have been characterized by second-harmonic generation. It was found that OAD SiO leads to a rotationally anisotropic second-harmonic response, depending on the optical angle of incidence. A model for the observed dependence of the second-harmonic signal on optical angle of incidence allows extraction of the growth direction of OAD films. The optically determined growth directions show convincing agreement with cross-sectional scanning electron microscopy images. In addition to a powerful characterization tool, these results demonstrate the possibilities for designing nonlinear optical devices through SiO OAD.

Vejling Andersen, Søren; Lund Trolle, Mads; Pedersen, Kjeld [Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, DK-9220 Aalborg Øst (Denmark)] [Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, DK-9220 Aalborg Øst (Denmark)

2013-12-02T23:59:59.000Z

76

Hall-Petch hardening in pulsed laser deposited nickel and copper thin films  

SciTech Connect (OSTI)

Very fine-grained Ni and Cu films were formed using pulsed laser deposition on fused silica substrates. The grain sizes in the films were characterized by electron microscopy, and the mechanical properties were determined by ultra-low load indentation, with finite-element modeling used to separate the properties of the layers from those of the substrate. Some Ni films were also examined after annealing to 350 and 450 C to enlarge the grain sizes. These preliminary results show that the observed hardnesses are consistent with a simple extension of the Hall-Petch relationship to grain sizes as small as 11 nm for Ni and 32 nm for Cu.

Knapp, J.A.; Follstaedt, D.M.; Banks, J.C.; Myers, S.M. Jr.

2000-01-03T23:59:59.000Z

77

Chemical composition and temperature dependent performance of ZnO-thin film transistors deposited by pulsed and continuous spray pyrolysis  

SciTech Connect (OSTI)

Zinc oxide thin film transistors (TFTs) deposited by continuous and pulsed spray pyrolysis were investigated to analyze process kinetics which make reduction of process temperature possible. Thus, fluid mechanics, chemical composition, electrical performance, and deposition and annealing temperature were systematically analyzed. It was found that ZnO layers continuously deposited at 360?°C contained zinc oxynitrides, CO{sub 3}, and hydro carbonate groups from pyrolysis of basic zinc acetate. Statistically, every second wurtzite ZnO unit cell contained an impurity atom. The purity and performance of the ZnO-TFTs increased systematically with increasing deposition temperature due to an improved oxidation processes. At 500?°C the zinc to oxygen ratio exceeded a high value of 0.96. Additionally, the ZnO film was not found to be in a stabilized state after deposition even at high temperatures. Introducing additional subsequent annealing steps stabilizes the film and allows the reduction of the overall thermal stress to the substrate. Further improvement of device characteristics was obtained by pulsed deposition which allowed a more effective transport of the by-products and oxygen. A significant reduction of the deposition temperature by 140?°C was achieved compared to the same performance as in continuous deposition mode. The trap density close to the Fermi energy could be reduced by a factor of two to 4?×?10{sup 17}?eV{sup ?1}?cm{sup ?3} due to the optimized combustion process on the surface. The optimization of the deposition processes made the fabrication of TFTs with excellent performance possible. The mobility was high and exceeded 12 cm{sup 2}/V s, the subthreshold slope was 0.3 V dec{sup ?1}, and an on-set close to the ideal value of 0?V was achieved.

Ortel, Marlis; Balster, Torsten; Wagner, Veit [School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen (Germany)

2013-12-21T23:59:59.000Z

78

Highly Conformal Thin Films of Tungsten Nitride Prepared by Atomic Layer Deposition from a Novel  

E-Print Network [OSTI]

) deposition temperatures under 350 °C (due to the thermal instability of low-k materials); (8) good growth, and electrically conducting. All of the films showed good adhesion to the substrates, were acid-resistant, and did resistivity than aluminum, 1.7 versus 2.7 µ-cm, respectively (bulk values). This property of copper enables

79

Z .Thin Solid Films 392 2001 231 235 Atmospheric pressure chemical vapor deposition of  

E-Print Network [OSTI]

of electrochromic tungsten oxide films Roy G. Gordona,U , Sean Barryb , Jeffrey T. Bartona , Randy N.R. Broomhall oxide, WO , is a coloring layer commonly used in electrochromic windows and displays. Successful: Chemical vapor deposition; Tungsten; Oxides; Electrochromism 1. Introduction Tungsten oxide is a key

80

Comparative studies of optical and elastic properties of ZrO{sub 2} thin films prepared under normal and oblique incidence deposition geometries  

SciTech Connect (OSTI)

Oblique angle deposited optical thin films have attracted recent researcher’s interest because of their attractive optical, micro-structural, mechanical properties and more importantly because of their great potential in achieving tunability in refractive index. These properties in turn make it important in case of designing different optical devices. In the present work, ZrO{sub 2} thin films have been deposited on fused silica substrate by electron beam evaporation technique in normal as well as oblique angle deposition configurations. Optical properties, especially refractive index of the films have been estimated by fitting the measured transmission spectra with suitable theoretical dispersion models. Atomic force microscopy has been employed to characterize morphological properties of samples. The elastic properties of both the films are estimated by Atomic Force Acoustic Microscopy, a new and highly sensitive technique for thin films.

Sarkar, P., E-mail: piyali.sarkar4@gmail.com; Tokas, R. B., E-mail: piyali.sarkar4@gmail.com; Jena, S., E-mail: piyali.sarkar4@gmail.com; Thakur, S., E-mail: piyali.sarkar4@gmail.com; Sahoo, N. K., E-mail: piyali.sarkar4@gmail.com [Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

2014-04-24T23:59:59.000Z

Note: This page contains sample records for the topic "thin film deposited" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Plasma enhanced chemical vapor deposition (PECVD) method of forming vanadium oxide films and vanadium oxide thin-films prepared thereby  

DOE Patents [OSTI]

A method is disclosed of forming a vanadium oxide film on a substrate utilizing plasma enhanced chemical vapor deposition. The method includes positioning a substrate within a plasma reaction chamber and then forming a precursor gas comprised of a vanadium-containing chloride gas in an inert carrier gas. This precursor gas is then mixed with selected amounts of hydrogen and oxygen and directed into the reaction chamber. The amounts of precursor gas, oxygen and hydrogen are selected to optimize the final properties of the vanadium oxide film An rf plasma is generated within the reaction chamber to chemically react the precursor gas with the hydrogen and the oxygen to cause deposition of a vanadium oxide film on the substrate while the chamber deposition pressure is maintained at about one torr or less. Finally, the byproduct gases are removed from the plasma reaction chamber.

Zhang, Ji-Guang (Golden, CO); Tracy, C. Edwin (Golden, CO); Benson, David K. (Golden, CO); Turner, John A. (Littleton, CO); Liu, Ping (Lakewood, CO)

2000-01-01T23:59:59.000Z

82

Phase Transitions and High-Voltage Electrochemical Behavior of LiCoO2 Thin Films Grown by Pulsed Laser Deposition  

E-Print Network [OSTI]

Laser Deposition H. Xia,a L. Lu,b,z Y. S. Meng,c and G. Cederc, * a Advanced Materials for Micro behavior of LiCoO2 thin-film cathodes prepared by pulsed laser deposition are studied for charging voltages- discharge curves. Ex situ X-ray diffraction measurements confirm structural changes and a phase transition

Ceder, Gerbrand

83

High-Mobility Thin-Film Transistor Fabricated Using Hydrogenated Amorphous Silicon Deposited by Discharge of Disilane  

Science Journals Connector (OSTI)

Plasma-enhanced chemical vapor deposition of hydrogenated amorphous silicon (a-Si:H) film was investigated with emphasis on the effect of disilane flow rate. A coplanar thin-film transistor (TFT) was fabricated using this a-Si:H film. Silicon-hydrogen bond content in the a-Si:H film was measured by infrared absorption spectroscopy. With decrease in the disilane flow rate from 3.0 cm3/min to 1.5 cm3/min, the maximum field-effect electron mobility (µ FE) of the TFT which depends on the gate voltage increased from 3.3 cm2/( Vs) to 4.9 cm2/( Vs), accompanied by a reduction in the silicon-hydrogen bond content. There was a negative correlation between µ FE and the silicon-hydrogen bond content in the a-Si:H film. The improvement mechanism of µ FE was discussed in terms of the chemical structure of the a-Si:H film.

Shigeichi Yamamoto; Junji Nakamura; Masatoshi Migitaka

1996-01-01T23:59:59.000Z

84

Thermodynamic properties and interfacial layer characteristics of HfO{sub 2} thin films deposited by plasma-enhanced atomic layer deposition  

SciTech Connect (OSTI)

The thermodynamic properties and interfacial characteristics of HfO{sub 2} thin films that were deposited by the direct plasma atomic layer deposition (DPALD) method are investigated. The as-deposited HfO{sub 2} films that were deposited by the DPALD method show crystallization of the HfO{sub 2} layers, which initiates at approximately the 35th cycle (about 2.8 nm) of the DPALD process. Medium-energy ion scattering analysis reveals that the direct O{sub 2} plasma causes a compositional change in the interfacial layer as the process progresses. With an increase in the number of process cycles, the Si content decreases and the O content increases at that position, so that the HfO{sub 2}-like Hf-silicate layer is formed on top of the interfacial layer. The enhanced physical reactivity of the oxygen ions in the direct plasma and the Hf-silicate layer may be the driving forces that accelerate the early crystallization of the HfO{sub 2} layer in the DPALD process in the as-deposited state.

Kim, Inhoe; Kuk, Seoungwoo; Kim, Seokhoon; Kim, Jinwoo; Jeon, Hyeongtag; Cho, M.-H.; Chung, K.-B. [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Korea Research Institute of Standard and Science, Daejeon 305-600 (Korea, Republic of)

2007-05-28T23:59:59.000Z

85

Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD  

SciTech Connect (OSTI)

An optical study based on spectroscopic ellipsometry, performed on ultrathin hydrogenated amorphous silicon (a-Si:H) layers, is presented in this work. Ultrathin layers of intrinsic amorphous silicon have been deposited on n-type mono-crystalline silicon (c-Si) wafers by plasma enhanced chemical vapor deposition (PECVD). The layer thicknesses along with their optical properties –including their refractive index and optical loss- were characterized by spectroscopic ellipsometry (SE) in a wavelength range from 250 nm to 850 nm. The data was fitted to a Tauc-Lorentz optical model and the fitting parameters were extracted and used to compute the refractive index, extinction coefficient and optical bandgap. Furthermore, the a-Si:H film grown on silicon was etched at a controlled rate using a TMAH solution prepared at room temperature. The optical properties along with the Tauc-Lorentz fitting parameters were extracted from the model as the film thickness was reduced. The etch rate for ultrathin a-Si:H layers in TMAH at room temperature was found to slow down drastically as the c-Si interface is approached. From the Tauc-Lorentz parameters obtained from SE, it was found that the a-Si film exhibited properties that evolved with thickness suggesting that the deposited film is non-homogeneous across its depth. It was also found that the degree of crystallinity and optical (Tauc) bandgap increased as the layers were reduced in thickness and coming closer to the c-Si substrate interface, suggesting the presence of nano-structured clusters mixed into the amorphous phase for the region close to the crystalline silicon substrate. Further results from Atomic Force Microscopy and Transmission Electron Microscopy confirmed the presence of an interfacial transitional layer between the amorphous film and the underlying substrate showing silicon nano-crystalline enclosures that can lead to quantum confinement effects. Quantum confinement is suggested to be the cause of the observed increase in the optical bandgap of a-Si:H films close to the a-Si:H/cSi interface.

Abdulraheem, Yaser, E-mail: yaser.abdulraheem@kuniv.edu.kw [Electrical Engineering Department, College of Engineering and Petroleum, Kuwait University. P.O. Box 5969, 13060 Safat (Kuwait); Gordon, Ivan; Bearda, Twan; Meddeb, Hosny; Poortmans, Jozef [IMEC, Kapeldreef 75, 3001, Leuven (Belgium)

2014-05-15T23:59:59.000Z

86

Schottky barrier source-gated ZnO thin film transistors by low temperature atomic layer deposition  

SciTech Connect (OSTI)

We have fabricated ZnO source-gated thin film transistors (SGTFTs) with a buried TiW source Schottky barrier and a top gate contact. The ZnO active channel and thin high-? HfO{sub 2} dielectric utilized are both grown by atomic layer deposition at temperatures less than 130?°C, and their material and electronic properties are characterized. These SGTFTs demonstrate enhancement-mode operation with a threshold voltage of 0.91?V, electron mobility of 3.9 cm{sup 2} V{sup ?1} s{sup ?1}, and low subthreshold swing of 192?mV/decade. The devices also exhibit a unique combination of high breakdown voltages (>20?V) with low output conductances.

Ma, Alex M.; Gupta, Manisha; Shoute, Gem; Tsui, Ying Y.; Barlage, Douglas W., E-mail: barlage@ualberta.ca [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada); Afshar, Amir; Cadien, Kenneth C. [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada)] [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada)

2013-12-16T23:59:59.000Z

87

Epitaxial growth of CdTe thin film on cube-textured Ni by metal-organic chemical vapor deposition  

SciTech Connect (OSTI)

CdTe thin film has been grown by metalorganic chemical vapor deposition (MOCVD) on Ni(100) substrate. Using x-ray pole figure measurements we observed the epitaxial relationship of {111}CdTe// {001}Ni with [110]CdTe//[010]Ni and [112] CdTe//[100]Ni. The 12 diffraction peaks in the (111) pole figure of CdTe film and their relative positions with respect to the four peak positions in the (111) pole figure of Ni substrate are consistent with four equivalent orientational domains of CdTe with three to four superlattice match of about 0.7% in the [110] direction of CdTe and the [010] direction of Ni. The electron backscattered diffraction (EBSD) images show that the CdTe domains are 30 degrees orientated from each other.

GIARE, C [Rensselaer Polytechnic Institute (RPI); RAO, S [Rensselaer Polytechnic Institute (RPI); RILEY, M [Rensselaer Polytechnic Institute (RPI); CHEN, L [Rensselaer Polytechnic Institute (RPI); Goyal, Amit [ORNL; BHAT, I [Rensselaer Polytechnic Institute (RPI); LU, T [Rensselaer Polytechnic Institute (RPI); WANG, G [Rensselaer Polytechnic Institute (RPI)

2012-01-01T23:59:59.000Z

88

Infrared laser-based monitoring of the silane dissociation during deposition of silicon thin films  

SciTech Connect (OSTI)

The silane dissociation efficiency, or depletion fraction, is an important plasma parameter by means of which the film growth rate and the amorphous-to-microcrystalline silicon transition regime can be monitored in situ. In this letter we implement a homebuilt quantum cascade laser-based absorption spectrometer to measure the silane dissociation efficiency in an industrial plasma-enhanced chemical vapor deposition system. This infrared laser-based diagnostic technique is compact, sensitive, and nonintrusive. Its resolution is good enough to resolve Doppler-broadened rotovibrational absorption lines of silane. The latter feature various absorption strengths, thereby enabling depletion measurements over a wide range of process conditions.

Bartlome, R.; Feltrin, A.; Ballif, C. [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Rue A.-L. Breguet 2, 2000 Neuchatel (Switzerland)

2009-05-18T23:59:59.000Z

89

Low work function, stable thin films  

DOE Patents [OSTI]

Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

Dinh, Long N. (Concord, CA); McLean, II, William (Oakland, CA); Balooch, Mehdi (Berkeley, CA); Fehring, Jr., Edward J. (Dublin, CA); Schildbach, Marcus A. (Livermore, CA)

2000-01-01T23:59:59.000Z

90

Interactions between radical growth precursors on plasma-deposited silicon thin-film surfaces  

SciTech Connect (OSTI)

We present a detailed analysis of the interactions between growth precursors, SiH{sub 3} radicals, on surfaces of silicon thin films. The analysis is based on a synergistic combination of density functional theory calculations on the hydrogen-terminated Si(001)-(2x1) surface and molecular-dynamics (MD) simulations of film growth on surfaces of MD-generated hydrogenated amorphous silicon (a-Si:H) thin films. In particular, the authors find that two interacting growth precursors may either form disilane (Si{sub 2}H{sub 6}) and desorb from the surface, or disproportionate, resulting in the formation of a surface dihydride (adsorbed SiH{sub 2} species) and gas-phase silane (SiH{sub 4}). The reaction barrier for disilane formation is found to be strongly dependent on the local chemical environment on the silicon surface and reduces (or vanishes) if one/both of the interacting precursors is/are in a ''fast diffusing state,'' i.e., attached to fivefold coordinated surface Si atoms. Finally, activation energy barriers in excess of 1 eV are obtained for two chemisorbed (i.e., bonded to a fourfold coordinated surface Si atom) SiH{sub 3} radicals. Activation energy barriers for disproportionation follow the same tendency, though, in most cases, higher barriers are obtained compared to disilane formation reactions starting from the same initial configuration. MD simulations confirm that disilane formation and disproportionation reactions also occur on a-Si:H growth surfaces, preferentially in configurations where at least one of the SiH{sub 3} radicals is in a ''diffusive state.'' Our results are in agreement with experimental observations and results of plasma process simulators showing that the primary source for disilane in low-power plasmas may be the substrate surface.

Bakos, Tamas; Valipa, Mayur S.; Maroudas, Dimitrios [Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003-3110 (United States)

2007-03-21T23:59:59.000Z

91

Thin film hydrogen sensor  

DOE Patents [OSTI]

A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

Lauf, Robert J. (Oak Ridge, TN); Hoffheins, Barbara S. (Knoxville, TN); Fleming, Pamela H. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

92

Optimized deposition and characterization of nanocrystalline magnesium indium oxide thin films for opto-electronic applications  

Science Journals Connector (OSTI)

Transparent conducting magnesium indium oxide films (MgIn2O4) were deposited on to quartz substrates without a buffer layer at an optimized deposition temperature of 450 °C to achieve high transmittance in the visible spectral range and electrical conductivity in the low temperature region. Magnesium ions are distributed over the tetrahedral and octahedral sites of the inverted spinel structure with preferential orientation along (3 1 1) Miller plane. The possible mechanism that promotes conductivity in this system is the charge transfer between the resident divalent (Mg2+) and trivalent (In3+) cations in addition to the available oxygen vacancies in the lattice. A room temperature electrical conductivity of 1.5 × 10?5 S cm?1 and an average transmittance >75% have been achieved. Hall measurements showed n-type conductivity with electron mobility value 0.95 × 10?2 cm2 V?1 s?1 and carrier concentration 2.7 × 1019 cm?3. Smoothness of the film surface observed through atomic force microscope measurements favors this material for gas sensing and opto-electronic device development.

A. Moses Ezhil Raj; C. Ravidhas; R. Ravishankar; A. Rathish Kumar; G. Selvan; M. Jayachandran; C. Sanjeeviraja

2009-01-01T23:59:59.000Z

93

Epitaxial Ba{sub 2}IrO{sub 4} thin-films grown on SrTiO{sub 3} substrates by pulsed laser deposition  

SciTech Connect (OSTI)

We have synthesized epitaxial Ba{sub 2}IrO{sub 4} (BIO) thin-films on SrTiO{sub 3} (001) substrates by pulsed laser deposition and studied their electronic structure by dc-transport and optical spectroscopic experiments. We have observed that BIO thin-films are insulating but close to the metal-insulator transition boundary with significantly smaller transport and optical gap energies than its sister compound, Sr{sub 2}IrO{sub 4}. Moreover, BIO thin-films have both an enhanced electronic bandwidth and electronic-correlation energy. Our results suggest that BIO thin-films have great potential for realizing the interesting physical properties predicted in layered iridates.

Nichols, J., E-mail: john.nichols@uky.edu; Korneta, O. B.; Terzic, J.; Cao, G.; Brill, J. W.; Seo, S. S. A. [Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506 (United States)

2014-03-24T23:59:59.000Z

94

Thin film deposition by electric and magnetic crossed-field diode sputtering  

DOE Patents [OSTI]

Applying a thin film coating to the surface of a workpiece, in particular, applying a coating of titanium nitride to a klystron window by means of a crossed-field diode sputtering array. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thicknesses. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multipactoring under operating conditions of the components.

Welch, Kimo M. (Mountain View, CA)

1980-01-01T23:59:59.000Z

95

Rapid Deposition Technology Holds the Key for the World's Largest Manufacturer of Thin-Film Solar Modules (Fact Sheet)  

SciTech Connect (OSTI)

First Solar, Inc. has been collaborating with NREL since 1991, advancing its thin-film cadmium telluride solar technology to grow from a startup company to become one of the world's largest manufacturers of solar modules, and the world's largest manufacturer of thin-film solar modules.

Not Available

2013-08-01T23:59:59.000Z

96

Development of electron reflection suppression materials for improved thermionic energy converter performance using thin film deposition techniques  

SciTech Connect (OSTI)

Nonideal electrode surfaces cause significant degree of electron reflection from collector during thermionic converter operation. The effect of the collector surface structure on the converter performance was assessed through the development of several electron reflection suppression materials using various thin film deposition techniques. The double-diode probe method was used to compare the J-V characteristics of converters with polished and modified collector surfaces for emitter temperature and cesium vapor pressure in the ranges of 900-2000 K and 0.02-1.5 torr, respectively. The coadsorption of cesium and oxygen with respective partial vapor pressures of {approx}1.27 torr and a few microtorrs reduced the emitter work function to a minimum value of 0.99 eV. It was found that the collector surfaces with matte black appearance such as platinum black, voided nickel from radio-frequency plasma sputtering, and etched electroless Ni-P with craterlike pore morphology exhibited much better performance compared with polished collector surface. For these thin films, the increase in the maximum output voltage was up to 2.0 eV. For optimum performance with minimum work function and maximum saturation emission current density, the emitter temperature was in the range of 1100-1500 K, depending on the collector surface structure. The use of these materials in cylindrical converter design and/or in combination with hybrid mode triode configuration holds great potential in low and medium scale power generators for commercial use.

Islam, Mohammad; Inal, Osman T.; Luke, James R. [Department of Materials and Metallurgical Engineering, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801 (United States); New Mexico Institute of Mining and Technology, Institute for Engineering Research and Applications (IERA) , 901 University Blvd. SE, Albuquerque, New Mexico 87106-4339 (United States)

2006-10-15T23:59:59.000Z

97

Non-equilibrium deposition of phase pure Cu{sub 2}O thin films at reduced growth temperature  

SciTech Connect (OSTI)

Cuprous oxide (Cu{sub 2}O) is actively studied as a prototypical material for energy conversion and electronic applications. Here we reduce the growth temperature of phase pure Cu{sub 2}O thin films to 300?°C by intentionally controlling solely the kinetic parameter (total chamber pressure, P{sub tot}) at fixed thermodynamic condition (0.25 mTorr pO{sub 2}). A strong non-monotonic effect of P{sub tot} on Cu-O phase formation is found using high-throughput combinatorial-pulsed laser deposition. This discovery creates new opportunities for the growth of Cu{sub 2}O devices with low thermal budget and illustrates the importance of kinetic effects for the synthesis of metastable materials with useful properties.

Subramaniyan, Archana, E-mail: asubrama@mymail.mines.edu [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, Colorado 80401 (United States); Perkins, John D.; Lany, Stephan; Stevanovic, Vladan; Ginley, David S.; Zakutayev, Andriy [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); O’Hayre, Ryan P. [Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, Colorado 80401 (United States)

2014-02-01T23:59:59.000Z

98

In-situ plume diagnosis during pulsed laser deposition of epitaxial-oxide thin films  

SciTech Connect (OSTI)

The visible plume, induced during pulsed-laser deposition (PLD) of epitaxial La{sub 0.5}Sr{sub 0.5}CoO{sub 3}/Ba{sub 0.4}Sr{sub 0.6}TiO{sub 3}/La{sub 0.5}Sr{sub 0.5}CoO{sub 3}/YBa{sub 2}Cu{sub 3}O{sub 7}/YSZ heterostructures on silicon (100) wafers, was studied by optical-emission spectroscopy (OES). These films are suitable for the fabrication of ferroelectric capacitors and pyroelectric-sensor devices. A YAG laser, at 266 nm, is used for ablation. A collection lens transfers the PLD-plume emission into an optical fiber and onto a diffraction grating and a CCD array, for time-averaged spectroscopy from 410 to 640 nm. Plume emissions from ablated targets in the presence of an oxygen ambient, due to various atomic (Ba, Co, Cu, Sr, Ti, Y, Zr), ionic (Ba{sup +}, La{sup +}, Sr{sup +}, Y{sup +}), and a diatomic oxide (YO) species were identified. Emission intensity and evolution of ablated species are reported for distance away from the target surface, oxygen pressures, and laser fluences (1 to 4 J/cm{sup 2}). The behavior of reactive-product species, especially YO for plumes from yttria-stabilized zirconia (YSZ) and YBCO targets, is discussed. This simple and inexpensive OES system is suitable for use as a plume-quality monitor on routine PLD film synthesis.

Fenner, D.B.; Kung, P.J.; Goeres, J.; Li, Q. [AFR Inc., East Hartford, CT (United States)

1996-12-31T23:59:59.000Z

99

Influence of film thickness, substrate temperature and nano-structural changes on the optical properties of UHV deposited Ti thin films  

Science Journals Connector (OSTI)

Titanium films of different thicknesses ranging from 18 to 210?nm were deposited on glass substrates, at different substrate temperatures (313 to 600?K) under UHV conditions. Their optical properties were measured by spectrophotometry in the spectral range of 200–2500?nm. The optical functions were obtained from the Kramers–Kronig analysis of the reflectivity curves. The effective medium approximation (EMA) analysis was employed to establish the relationship between the structure zone model (SZM) and EMA predictions. There was good agreement between SZM as a function of substrate temperature and film thickness and the values of volume fraction of voids was obtained from EMA analysis. The gettering property of Ti can play an important role in the nano-structure of the film and causes variations in the optical behaviour of thin Ti films, though films were produced under UHV condition and the XRD analysis did not show a detectable amount of oxidation. The over-layer thickness was calculated to be less than 2.0?nm, using the transfer matrix method.

Hadi Savaloni; Haleh Kangarloo

2007-01-01T23:59:59.000Z

100

Advanced polycrystalline silicon thin film solar cells using high rate plasma enhanced chemical vapour deposited amorphous silicon on textured glass.  

E-Print Network [OSTI]

??Solid phase crystallized polycrystalline silicon (poly-Si) thin-film solar cell on glass is an emerging Photovoltaics (PV) technology combining the robustness of crystalline Si material with… (more)

Jin, Guangyao

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thin film deposited" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Synthesis of reactive and stimuli-responsive polymer thin films by initiated chemical vapor deposition and their sensor applications  

E-Print Network [OSTI]

Stimuli-responsive polymer thin films provide the ability to control the interaction of a surface with its environment. Synthetic techniques with fine compositional control are required to engineer specific responses to ...

Tenhaeff, Wyatt E

2009-01-01T23:59:59.000Z

102

Nucleation and growth of the first phase in sputter-deposited Nb/Al multilayer thin films  

SciTech Connect (OSTI)

The formation of the first phase in the reaction of sputter-deposited Nb/Al multilayer thin films has been studied by power-compensated and heat-flux differential scanning calorimetry, x-ray diffraction and transmission electron microscopy. The modulation periods of the films are in the range of 10--500 nm. Both types of calorimetric measurements, performed at a constant heating rate, show the presence of two peaks (A and B) for the formation of the single product phase, NbAl{sub 3}. Isothermal calorimetric scans show that peak A is associated with a nucleation and growth type transformation. The formation of NbAl{sub 3} is thus interpreted as a two-stage process of nucleation and lateral growth to coalescence (peak A) followed by normal growth until the consumption of one or both reactants (peak B). Transmission electron microscopy investigations of samples annealed into the first stage of NbAl{sub 3} formation show the presence of this phase at the Nb/Al interface and its preferential growth along the grain boundaries of the Al layer. The latter highlights the role of reactant phase grain structure in product phase formation.

Barmak, K.; Vivekanand, S.; Ma, F. [Lehigh Univ., Bethlehem, PA (United States). Dept. of Materials and Engineering; Michaelsen, C. [GKSS Research Center, Geesthacht (Germany). Inst. of Materials Research

1996-12-31T23:59:59.000Z

103

Thin film buried anode battery  

DOE Patents [OSTI]

A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

Lee, Se-Hee (Lakewood, CO); Tracy, C. Edwin (Golden, CO); Liu, Ping (Denver, CO)

2009-12-15T23:59:59.000Z

104

Fluorination of amorphous thin-film materials with xenon fluoride  

DOE Patents [OSTI]

A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

Weil, R.B.

1987-05-01T23:59:59.000Z

105

Thin film hydrogen sensor  

DOE Patents [OSTI]

A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.

Cheng, Y.T.; Poli, A.A.; Meltser, M.A.

1999-03-23T23:59:59.000Z

106

Thin film hydrogen sensor  

DOE Patents [OSTI]

A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

Cheng, Yang-Tse (Rochester Hills, MI); Poli, Andrea A. (Livonia, MI); Meltser, Mark Alexander (Pittsford, NY)

1999-01-01T23:59:59.000Z

107

Zinc oxide thin film acoustic sensor  

SciTech Connect (OSTI)

This paper reports the implementation of (750 nm) thickness of Zinc Oxide (ZnO) thin film for the piezoelectric pressure sensors. The film was prepared and deposited employing the spray pyrolysis technique. XRD results show that the growth preferred orientation is the (002) plane. A polycrystalline thin film (close to mono crystallite like) was obtained. Depending on the Scanning Electron Microscopy photogram, the film homogeneity and thickness were shown. The resonance frequency measured (about 19 kHz) and the damping coefficient was calculated and its value was found to be about (2.5538), the thin film be haves as homogeneous for under and over damped. The thin film pressure sensing was approximately exponentially related with frequency, the thin film was observed to has a good response for mechanical stresses also it is a good material for the piezoelectric properties.

Mohammed, Ali Jasim; Salih, Wafaa Mahdi; Hassan, Marwa Abdul Muhsien; Nusseif, Asmaa Deiaa; Kadhum, Haider Abdullah [Department of Physics , College of Science, Al-Mustansiriyah University, Baghdad (Iraq); Mansour, Hazim Louis [Department of Physics , College of Education, Al-Mustansiriyah University, Baghdad (Iraq)

2013-12-16T23:59:59.000Z

108

Plasma deposition of wide gap, highly photoconductive a-Si:H thin films from disilane-helium mixtures  

SciTech Connect (OSTI)

Wide gap (>1.9 eV), photoconductive, intrinsic amorphous silicon films were made in a uhv system from Si/sub 2/H/sub 6/-He mixtures. The hydrogen concentrations, optical gaps and photoconductivities were measured. Unlike films made from SiH/sub 4/, Si/sub 2/H/sub 6/-produced films exhibit excellent electronic properties even at low deposition temperatures. The ratio of AM1 photoconductivity to dark conductivity was as high as 10/sup 7/.

Rajeswaran, G.; Vanier, P.E.; Corderman, R.R.; Kampas, F.J.

1984-01-01T23:59:59.000Z

109

Chemistry, phase formation, and catalytic activity of thin palladium-containing oxide films synthesized by plasma-assisted physical vapor deposition  

SciTech Connect (OSTI)

The chemistry, microstructure, and catalytic activity of thin films incorporating palladium were studied using scanning and transmission electron microscopies, X-ray diffraction, spectrophotometry, 4-point probe and catalytic tests. The films were synthesized using pulsed filtered cathodic arc and magnetron sputter deposition, i.e. techniques far from thermodynamic equilibrium. Catalytic particles were formed by thermally cycling thin films of the Pd-Pt-O system. The evolution and phase formation in such films as a function of temperature were discussed in terms of the stability of PdO and PtO2 in air. The catalytic efficiency was found to be strongly affected by the chemical composition, with oxidized palladium definitely playing a major role in the combustion of methane. Reactive sputter deposition of thin films in the Pd-Zr-Y-O system allowed us forming microstructures ranging from nanocrystalline zirconia to palladium nanoparticles embedded in a (Zr,Y)4Pd2O matrix. The sequence of phase formation is put in relation to simple thermodynamic considerations.

Anders, Andre

2010-11-26T23:59:59.000Z

110

Fully Solution-Processed Copper Chalcopyrite Thin Film Solar Cells: Materials Chemistry, Processing, and Device Physics  

E-Print Network [OSTI]

nanowire networks as window layers in thin film solar cells.window layer for fully solution-deposited thin filmITO) thin films by silver nanowire composite window layers

Chung, Choong-Heui

2012-01-01T23:59:59.000Z

111

Thin Film Photovoltaics Research  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) supports research and development of four thin-film technologies on the path to achieving cost-competitive solar energy, including:

112

Chemical spray pyrolysis deposition and characterization of p-type CuCr1?xMgxO2 transparent oxide semiconductor thin films  

Science Journals Connector (OSTI)

A chemical spray pyrolysis technique for deposition of p-type Mg-doped CuCrO2 transparent oxide semiconductor thin films using metaloorganic precursors is described. As-deposited films contain mixed spinel CuCr2O4 and delafossite CuCrO2 structural phases. Reduction in spinel CuCr2O4 fraction and formation of highly crystalline films with single phase delafossite CuCrO2 structure is realized by annealing at temperatures ?700 °C in argon. A mechanism of synthesis of CuCrO2 films involving precursor decomposition, oxidation and reaction between constituent oxides in the spray deposition process is presented. Post-annealed CuCr0.93Mg0.07O2 thin films show high (?80%) visible transmittance and sharp absorption at band gap energy with direct and indirect optical band gaps 3.11 and 2.58 eV, respectively. Lower (?450 °C) substrate temperature formed films are amorphous and yield lower direct (2.96 eV) and indirect (2.23 eV) band gaps after crystallization. Electrical conductivity of CuCr0.93 Mg0.07O2 thin films ranged 0.6–1 S cm?1 and hole concentration ?2×1019 cm?3 determined from Seebeck analysis. Temperature dependence of conductivity exhibit activation energies ?0.11 eV in 300–470 K and ?0.23 eV in ?470 K region ascribed to activated conduction and grain boundary trap assisted conduction, respectively. Heterojunction diodes of the structure Au/n-(ZnO)/p-(CuCr0.93Mg0.07O2)/SnO2 (TCO) were fabricated which show potential for transparent wide band gap junction device.

S.H. Lim; Suma Desu; A.C. Rastogi

2008-01-01T23:59:59.000Z

113

Deposition and characterization of Cd{sub 1?x}Mg{sub x}Te thin films grown by a novel cosublimation method  

SciTech Connect (OSTI)

Photovoltaic cells utilizing the CdS/CdTe structure have improved substantially in the past few years. Despite the recent advances, the efficiency of CdS/CdTe cells is still significantly below their Shockley–Queisser limit. CdTe based ternary alloy thin films, such as Cd{sub 1?x}Mg{sub x}Te (CMT), could be used to improve efficiency of CdS/CdTe photovoltaic cells. Higher band gap Cd{sub 1?x}Mg{sub x}Te films can be the absorber in top cells of a tandem structure or an electron reflector layer in CdS/CdTe cells. A novel cosublimation method to deposit CMT thin films has been developed. This method can deposit CMT films of band gaps ranging from 1.5 to 2.3?eV. The cosublimation method is fast, repeatable, and scalable for large areas, making it suitable for implementing into large-scale manufacturing. Characterization of as-deposited CMT films, with x varying from 0 to 0.35, reveals a linear relationship between Mg content measured by energy dispersive x-ray spectroscopy and the optical band gap. Glancing angle x-ray diffraction (GAXRD) measurements of Cd{sub 1?x}Mg{sub x}Te films show a zinc-blende structure similar to CdTe. Furthermore, increasing Mg content decreases the lattice parameter and the grain size. GAXRD shows the films are under mild tension after deposition.

Kobyakov, Pavel S., E-mail: pskobyak@rams.colostate.edu; Swanson, Drew E.; Sampath, Walajabad S. [Department of Mechanical Engineering, Colorado State University, 1374 Campus Delivery, Fort Collins, Colorado 80523 (United States); Moore, Andrew; Raguse, John M. [Department of Physics, Colorado State University, 1875 Campus Delivery, Fort Collins, Colorado 80523 (United States)

2014-03-15T23:59:59.000Z

114

Indium-Vanadium Oxides Deposited by Radio Frequency Sputtering: New Thin Film Transparent  

E-Print Network [OSTI]

in order to determine their possible applications in electrochromic devices as optically passive ion-vis-NIR transmittance and reflectance modes, have demonstrated that films are electrochromic, but the presence in electrochromic devices (ECD) with variable light transmission ("smart windows").2,3 As has been demonstrated

Artuso, Florinda

115

Photovoltaic Polycrystalline Thin-Film Cell Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Polycrystalline Thin-Film Cell Basics Polycrystalline Thin-Film Cell Basics Photovoltaic Polycrystalline Thin-Film Cell Basics August 20, 2013 - 2:36pm Addthis Polycrystalline thin-film cells are made of many tiny crystalline grains of semiconductor materials. The materials used in these cells have properties that are different from those of silicon. Thin-film cells have many advantages over their thick-film counterparts. For example, they use much less material. The cell's active area is usually only 1 to 10 micrometers thick, whereas thick films typically are 100 to 300 micrometers thick. Also, thin-film cells can usually be manufactured in a large-area process, which can be an automated, continuous production process. Finally, they can be deposited on flexible substrate materials. The term thin film comes from the method used to deposit the film, not from

116

Deposition of WNxCy thin films for diffusion barrier application using the dimethylhydrazido (2-  

E-Print Network [OSTI]

thickness to the barrier scheme as well as an additional processing step. Binary transition metal compounds 13 April 2009 Available online xxxx Keywords: Chemical vapor deposition Metallization Tungsten nitride carbide Diffusion barrier X-ray diffraction Auger electron spectroscopy Tungsten nitride carbide

Anderson, Timothy J.

117

Ion-assisted deposition of optical thin films: low energy vs high energy bombardment  

Science Journals Connector (OSTI)

Oxygen ion-assisted deposition of SiO2 and TiO2 has been investigated as a function of ion energy (30–500 eV) and current density (0–300 ?A/cm2) at the...

McNeil, John R; Barron, Alan C; Wilson, S R; Herrmann, W C

1984-01-01T23:59:59.000Z

118

Characteristics of high-purity Cu thin films deposited on polyimide by radio-frequency Ar/H2 atmospheric-pressure plasma jet  

Science Journals Connector (OSTI)

With a view to fabricating future flexible electronic devices an atmospheric-pressure plasma jet driven by 13.56?MHz radio-frequency power is developed for depositing Cu thin films on polyimide where a Cu wire inserted inside the quartz tube was used as the evaporation source. A polyimide substrate is placed on a water-cooled copper heat sink to prevent it from being thermally damaged. With the aim of preventing oxidation of the deposited Cu film we investigated the effect of adding H2 to Ar plasma on film characteristics. Theoretical fitting of the OH emission line in OES spectrum revealed that adding H2 gas significantly increased the rotational temperature roughly from 800 to 1500?K. The LMM Auger spectroscopy analysis revealed that higher-purity Cu films were synthesized on polyimide by adding hydrogen gas. A possible explanation for the enhancement in the Cu film deposition rate and improvement of purity of Cu films by H2 gas addition is that atomic hydrogen produced by the plasma plays important roles in heating the gas to promote the evaporation of Cu atoms from the Cu wire and removing oxygen from copper oxide components via reduction reaction.

P. Zhao; W. Zheng; Y. D. Meng; M. Nagatsu

2013-01-01T23:59:59.000Z

119

TOF SIMS induced artificial topographical effects on the Y2(Al,Ga)5O12:Tb3+ thin films deposited on Si substrates by the pulsed laser deposition technique  

Science Journals Connector (OSTI)

Abstract The presence of various types of particles on the surface of the pulsed laser deposited (PLD) thin films as well as the differences in the film structure, played an important role to induce artificial topographical effects on Y3(Al,Ga)5O12:Tb3+ PLD thin films deposited on Si substrates measured by time-of-flight secondary ion mass spectroscopy (TOF-SIMS). The two and three-dimensional (2D and 3D) images have been recorded in the positive ion mode. Analysis of the 3D images shows big agglomerated particles on the surface of the Si substrate that appears to be embedded in the substrate and the substrate appears to be on the same level as the particles. This phenomenon is due to the artificial topographic effects which are attributed to the experimental setup of the TOF-SIMS system.

A. Yousif; R.M. Jafer; J.J. Terblans; O.M. Ntwaeaborwa; M.M. Duvenhage; Vinod Kumar; H.C. Swart

2014-01-01T23:59:59.000Z

120

Ambient condition laser writing of graphene structures on polycrystalline SiC thin film deposited on Si wafer  

SciTech Connect (OSTI)

We report laser induced local conversion of polycrystalline SiC thin-films grown on Si wafers into multi-layer graphene, a process compatible with the Si based microelectronic technologies. The conversion can be achieved using a 532 nm CW laser with as little as 10 mW power, yielding {approx}1 {mu}m graphene discs without any mask. The conversion conditions are found to vary with the crystallinity of the film. More interestingly, the internal structure of the graphene disc, probed by Raman imaging, can be tuned with varying the film and illumination parameters, resembling either the fundamental or doughnut mode of a laser beam.

Yue, Naili; Zhang, Yong; Tsu, Raphael [Department of Electrical and Computer Engineering and The Center for Optoelectronics and Optical Communications, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223 (United States)] [Department of Electrical and Computer Engineering and The Center for Optoelectronics and Optical Communications, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223 (United States)

2013-02-18T23:59:59.000Z

Note: This page contains sample records for the topic "thin film deposited" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Creating CZTS Thin Films Via Stacked Metallic CVD and Sulfurization  

E-Print Network [OSTI]

Research, Thin-Film Photovoltaic (PV) Cells Market Analysiscost of photovoltaic systems (such as solar cells) due tosolar cells are created by depositing layers of photovoltaic

Bielecki, Anthony

2013-01-01T23:59:59.000Z

122

Nanocauliflower like structure of CdS thin film for solar cell photovoltaic applications: In situ tin doping by chemical bath deposition technique  

Science Journals Connector (OSTI)

Abstract We report on surface morphology changes of in situ tin (Sn) doped cadmium sulphide (CdS) thin film nanostructures prepared on a glass substrate using the chemical bath deposition (CBD) technique. Sn-doping in the presence of triethanolammine (TEOA) as complexing agent resulted in the formation of nanocauliflower like structure of CdS thin film. X-ray diffraction (XRD) results indicated that Sn-doped CdS thin films show a hexagonal structure with a preferential orientation growth along the c-axis (0 0 2). The Sn4+ doping markedly influenced on the evolution of the CdS nanostructures, resulting in the formation of nanocracks due to the substitution of Cd2+ ions by larger-than-host Sn4+ ions as well as a drastic increase in electrical conductivity. An improved optical transmittance property was also achieved by the Sn-doping with no considerable change in the energy band gap. Moreover, a large improvement in both electrical conductivity and photosensitivity observed in the Sn-doped CdS thin films suggests that Sn-doping is highly effective for applications as window/buffer layers in future solar cell applications. Structural evolution of cauliflower like nanostructures are also discussed in this paper.

K.C. Wilson; E. Manikandan; M. Basheer Ahamed; B.W. Mwakikunga

2014-01-01T23:59:59.000Z

123

An ultrahigh vacuum facility for the co-deposition of amorphous transition metal alloy thin films  

E-Print Network [OSTI]

Temescal) consists of an emitter assembly, I" diam- eter crucible in a water-cooled hearth, and both permanent and electromagnets . The emitter assembly generates a stream of elec- trons by thermionic emiss1on, then forms and accelerates (V a 8-10 k... the particle flux from the other two sources. Signal intensity is again converted to a 28 digital read-out of both the deposition rate ()(/sec) and thick- ness (k)() by the evaporation monitor which also provides an analog signal which can be adapted...

Nicoli, Victor Michael

1984-01-01T23:59:59.000Z

124

On the sub-band gap optical absorption in heat treated cadmium sulphide thin film deposited on glass by chemical bath deposition technique  

SciTech Connect (OSTI)

The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material.

Chattopadhyay, P.; Karim, B.; Guha Roy, S. [Department of Electronic Science, University of Calcutta, 92, A.P.C. Road, Kolkata 700009 (India)

2013-12-28T23:59:59.000Z

125

Plasma deposition of wide gap, highly photoconductive a-Si:H thin films from disilane-helium mixtures  

SciTech Connect (OSTI)

Wide gap (> 1.9 eV), photoconductive, intrinsic amorphous silicon films were made in a UHV system from Si/sub 2/H/sub 6/-He mixtures. The hydrogen concentrations, optical gaps and photoconductivities were measured. Unlike films made from SiH/sub 4/, Si/sub 2/H/sub 6/-produced films exhibit excellent electronic properties even at low deposition temperatures. The ratio of AM1 photoconductivity to dark conductivity was as high as 10/sup 7/. 17 references, 5 figures, 1 table.

Rajeswaran, G.; Vanier, P.E.; Corderman, R.R.; Kampas, F.J.

1985-01-01T23:59:59.000Z

126

Low pressure and atmospheric pressure plasma-jet systems and their application for deposition of thin films  

E-Print Network [OSTI]

1 Low pressure and atmospheric pressure plasma-jet systems and their application for deposition atmospheric discharge plasma jet. This system works at open air without any vacuum system. This system on polymer substrates. Under certain condition in the atmospheric plasma jet, these films have crystalline

Paris-Sud XI, Université de

127

Z .Surface and Coatings Technology 127 2000 260 265 Characterization of carbon nitride thin films deposited by  

E-Print Network [OSTI]

-screw adapter and monitored by measuring the back reflection power at the end of a water load. A mixture polycrystalline car- bon nitride films, and the resulting mechanical proper- ties are not as good as predicted a valve between the deposition chamber and the vacuum pumps. The microwave power was adjusted by a four

Gao, Hongjun

128

Thin film photovoltaic device  

DOE Patents [OSTI]

A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids. 5 figs.

Catalano, A.W.; Bhushan, M.

1982-08-03T23:59:59.000Z

129

Thin film photovoltaic device  

DOE Patents [OSTI]

A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

Catalano, Anthony W. (Wilmington, DE); Bhushan, Manjul (Wilmington, DE)

1982-01-01T23:59:59.000Z

130

Growth, microstructure and electrical properties of sputter-deposited hafnium oxide (HfO2) thin films grown using HfO2 ceramic target  

SciTech Connect (OSTI)

Hafnium oxide (HfO?) thin films have been made by radio-frequency (rf) magnetron-sputtering onto Si(100) substrates under varying growth temperature (Ts). HfO? ceramic target has been employed for sputtering while varying the Ts from room temperature to 500?C during deposition. The effect of Ts on the growth and microstructure of deposited HfO? films has been studied using grazing incidence x-ray diffraction (GIXRD), X-ray photoelectron spectroscopy (XPS), and high-resolution scanning electron microscopy (HR-SEM) coupled with energy dispersive x-ray spectrometry (EDS). The results indicate that the effect of Ts is significant on the growth, surface and interface structure, morphology and chemical composition of the HfO? films. Structural characterization indicates that the HfO? films grown at Ts<200 ?C are amorphous while films grown at Ts>200 ?C are nanocrystalline. An amorphous-to-crystalline transition occurs at Ts=200 ?C. Nanocrystalline HfO? films crystallized in a monoclinic structure with a (-111) orientation. XPS measurements indicated the high surface-chemical quality and stoichiometric nature of the grown HfO? films. An interface layer (IL) formation occurs due to reaction at the HfO?-Si interface for HfO? films deposited at Ts>200 ?C. The thickness of IL increases with increasing Ts. XPS and EDS at the HfO?-Si cross-section indicate the IL is a (Hf, Si)-O compound. The electrical characterization using capacitance-voltage measurements indicate that the dielectric constant decreases from 25 to 16 with increasing Ts.

Aguirre, B.; Vemuri, R. S.; Zubia, David; Engelhard, Mark H.; Shutthanandan, V.; Kamala Bharathi, K.; Ramana, Chintalapalle V.

2011-01-01T23:59:59.000Z

131

Bipolar resistive switching characteristics of low temperature grown ZnO thin films by plasma-enhanced atomic layer deposition  

SciTech Connect (OSTI)

ZnO films deposited by plasma-enhanced atomic layer deposition (PEALD) have been used to investigate resistive memory behavior. The bipolar resistance switching properties were observed in the Al/PEALD-ZnO/Pt devices. The resistance ratio for the high and low resistance states (HRS/LRS) is more than 10{sup 3}, better than ZnO devices deposited by other methods. The dominant conduction mechanisms of HRS and LRS are trap-controlled space charge limited current and Ohmic behavior, respectively. The resistive switching behavior is induced upon the formation/disruption of conducting filaments. This study demonstrated that the PEALD-ZnO films have better properties for the application in 3D resistance random access memory.

Zhang Jian; Yang Hui; Zhang Qilong [Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)] [Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Dong Shurong [Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027 (China)] [Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027 (China); Luo, J. K. [Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027 (China) [Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027 (China); Institute of Material Research and Innovation, Bolton University, Deane Road, Bolton BL3 5AB (United Kingdom)

2013-01-07T23:59:59.000Z

132

NMR characterization of thin films  

DOE Patents [OSTI]

A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

Gerald, II, Rex E. (Brookfield, IL); Klingler, Robert J. (Glenview, IL); Rathke, Jerome W. (Homer Glen, IL); Diaz, Rocio (Chicago, IL); Vukovic, Lela (Westchester, IL)

2008-11-25T23:59:59.000Z

133

Annealed CVD molybdenum thin film surface  

DOE Patents [OSTI]

Molybdenum thin films deposited by pyrolytic decomposition of Mo(CO).sub.6 attain, after anneal in a reducing atmosphere at temperatures greater than 700.degree. C., infrared reflectance values greater than reflectance of supersmooth bulk molybdenum. Black molybdenum films deposited under oxidizing conditions and annealed, when covered with an anti-reflecting coating, approach the ideal solar collector characteristic of visible light absorber and infrared energy reflector.

Carver, Gary E. (Tucson, AZ); Seraphin, Bernhard O. (Tucson, AZ)

1984-01-01T23:59:59.000Z

134

Thin film photovoltaic cell  

DOE Patents [OSTI]

A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

Meakin, John D. (Newark, DE); Bragagnolo, Julio (Newark, DE)

1982-01-01T23:59:59.000Z

135

Metal Nanoparticles Enhanced Optical Absorption in Thin Film Solar Cells  

Science Journals Connector (OSTI)

The plasmonic enhanced absorption for thin film solar cells with silver nanoparticles (NPs) deposited on top of the amorphous silicon film (a-Si:H) solar cells and embedded inside the...

Xie, Wanlu; Liu, Fang; Qu, Di; Xu, Qi; Huang, Yidong

136

A thin film transistor driven microchannel device  

E-Print Network [OSTI]

= [8] 25 where n = 4 for the ideal case. However, based on experimental results, typical values for n are between 1 and 2.22 In any case, the larger potential drop appears at the smaller electrode. 2.4. PECVD Thin Film Silicon nitride film... can be deposited by a low-pressure chemical vapor deposition (LPCVD) and plasma enhanced chemical vapor deposition (PECVD). Table II shows a comparison of silicon nitride?s physical properties between two deposition methods. The PECVD silicon...

Lee, Hyun Ho

2005-02-17T23:59:59.000Z

137

Growth of epitaxial PrO sub 2 thin films on hydrogen terminated Si (111) by pulsed laser deposition  

SciTech Connect (OSTI)

A new epitaxial oxide, PrO{sub 2}, has been grown on Si (111) by pulsed laser deposition. X-ray diffraction shows that films are oriented with the PrO{sub 2}(111) direction parallel to the substrate (111). The full width at half maximum for the omega rocking curve on the PrO{sub 2} (222) peak is as low as 0.75{degree}, while phi scans indicate {ital in}-{ital plane} epitaxial alignment to better than one degree. In the best quality films, epitaxy is almost pure type-{ital b} epitaxy which is characteristic of epitaxial CaF{sub 2} on Si. To achieve epitaxy, it is essential to remove the native silicon oxide from the substrate prior to film growth. This is done at room temperature using a wet-chemical hydrogen-termination procedure.

Fork, D.K. (Xerox Palo Alto Research Center, Palo Alto, CA (USA) Department of Applied Physics, Stanford University, Stanford, CA (USA)); Fenner, D.B. (Xerox Palo Alto Research Center, Palo Alto, CA (USA) Santa Clara University, Physics Department, Santa Clara, CA (USA)); Geballe, T.H. (Department of Applied Physics, Stanford University, Stanford, CA (USA))

1990-10-15T23:59:59.000Z

138

A high performance thin film thermoelectric cooler  

SciTech Connect (OSTI)

Thin film thermoelectric devices with small dimensions have been fabricated using microelectronics technology and operated successfully in the Seebeck mode as sensors or generators. However, they do not operate successfully in the Peltier mode as coolers, because of the thermal bypass provided by the relatively thick substrate upon which the thermoelectric device is fabricated. In this paper a processing sequence is described which dramatically reduces this thermal bypass and facilitates the fabrication of high performance integrated thin film thermoelectric coolers. In the processing sequence a very thin amorphous SiC (or SiO{sub 2}SiN{sub 4}) film is deposited on a silicon substrate using conventional thin film deposition and a membrane formed by removing the silicon substrate over a desired region using chemical etching or micro-machining. Thermoelements are deposited on the membrane using conventional thin film deposition and patterning techniques and configured so that the region which is to be cooled is abutted to the cold junctions of the Peltier thermoelements while the hot junctions are located at the outer peripheral area which rests on the silicon substrate rim. Heat is pumped laterally from the cooled region to the silicon substrate rim and then dissipated vertically through it to an external heat sink. Theoretical calculations of the performance of a cooler described above indicate that a maximum temperature difference of about 40--50K can be achieved with a maximum heat pumping capacity of around 10 milliwatts.

Rowe, D.M.; Min, G.; Volklein, F.

1998-07-01T23:59:59.000Z

139

Nanostructured europium oxide thin films deposited by pulsed laser ablation of a metallic target in a He buffer atmosphere  

SciTech Connect (OSTI)

Nanostrucured europium oxide and hydroxide films were obtained by pulsed Nd:YAG (532 nm) laser ablation of a europium metallic target, in the presence of a 1 mbar helium buffer atmosphere. Both the produced film and the ambient plasma were characterized. The plasma was monitored by an electrostatic probe, for plume expansion in vacuum or in the presence of the buffer atmosphere. The time evolution of the ion saturation current was obtained for several probe to substrate distances. The results show the splitting of the plume into two velocity groups, being the lower velocity profile associated with metal cluster formation within the plume. The films were obtained in the presence of helium atmosphere, for several target-to-substrate distances. They were analyzed by Rutherford backscattering spectrometry, x-ray diffraction, and atomic force microscopy, for as-deposited and 600 deg. C treated-in-air samples. The results show that the as-deposited samples are amorphous and have chemical composition compatible with europium hydroxide. The thermally treated samples show x-ray diffraction peaks of Eu{sub 2}O{sub 3}, with chemical composition showing excess oxygen. Film nanostructuring was shown to be strongly correlated with cluster formation, as shown by velocity splitting in probe current versus time plots.

Luna, H.; Franceschini, D. F.; Prioli, R.; Guimaraes, R. B.; Sanchez, C. M.; Canal, G. P.; Barbosa, M. D. L.; Galvao, R. M. O. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Cx. Postal 68528, Rio de Janeiro, RJ 21941-972 (Brazil); Instituto de Fisica, Universidade Federal Fluminense, Niteroi, RJ 24210-346 (Brazil); Departamento de Fisica, Pontificia Universidade Catolica do Rio de Janeiro, Rua Marques de Sao Vicente 225, 22453-970, Rio de Janeiro, RJ (Brazil); Instituto de Fisica, Universidade Federal Fluminense, Niteroi, RJ 24210-346 (Brazil); Centro Brasileiro de Pesquisas Fisicas, Laboratorio de Plasmas Aplicados, Rua Xavier Sigaud 150, 22290-180, Rio de Janeiro, RJ (Brazil); Instituto de Fisica, Departamento de Fisica Nuclear, Universidade de Sao Paulo, Caixa Postal 66328, 05315-970, Sao Paulo, SP (Brazil); Centro Brasileiro de Pesquisas Fisicas, Laboratorio de Plasmas Aplicados, Rua Xavier Sigaud 150, 22290-180, Rio de Janeiro, RJ (Brazil)

2010-09-15T23:59:59.000Z

140

Electrical transport and structural study of CuCr1 ? xMgxO2 delafossite thin films grown by pulsed laser deposition  

Science Journals Connector (OSTI)

The growth and properties of delafossites CuCr1 ? xMgxO2 thin films are examined. These films are grown by pulsed laser deposition. As a class of materials delafossites have received recent interest since some members show p-type behavior. While not considered true wide-bandgap materials due to a narrow indirect bandgap that fails to adsorb light due to a forbidden same parity transition, optical transparencies greater than 40% in the visible can be observed. In order to be useful for transparent device applications, CuCr1 ? xMgxO2 films are needed with low resistivity and high optical transparency. Epitaxial films of CuCr1 ? xMgxO2 were grown on c-sapphire, examining the effects of oxygen pressure and growth temperature on film properties. Films were realized with resistivity of ~ 0.02 ?-cm and optical transparency of 40% in the visible. The formation of a problematic secondary minority spinel phase of (Cu,Mg)Cr2O4 is discussed. While conductivity increases substantially with Mg doping, the incidence of the spinel phase increases as well.

P.W. Sadik; M. Ivill; V. Craciun; D.P. Norton

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thin film deposited" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Electrical and structural properties of p-type ZnO:N thin films prepared by plasma enhanced chemical vapour deposition  

Science Journals Connector (OSTI)

Thin films of p-type ZnO:N have been obtained by thermally oxidizing zinc oxynitride films prepared by plasma enhanced chemical vapour deposition (PECVD). The p-type ZnO:N thin film with a hole concentration of 2.7 ? 1016 cm?3 was obtained after an annealing process was conducted at 600 °C. A conductivity transition from n-type to p-type was observed, which was systematically researched via structural and compositional analyses. In terms of these analyses, it helped to better understand the properties and behaviour of nitrogen in ZnO. First, nitrogen was incorporated into ZnO films during the growth process to occupy oxygen positions, and also partly compensated some donors induced from non-stoichiometric (ZnO1–x) composition. Second, the amount of activated nitrogen gradually increased in an oxidizing atmosphere and exceeded those donor states to realize an effective compensation, yielding p-type conductivity during the course of thermal oxidation.

Zhiyan Xiao; Yichun Liu; Jiying Zhang; Dongxu Zhao; Youming Lu; Dezhen Shen; Xiwu Fan

2005-01-01T23:59:59.000Z

142

Innovative Thin Films LLC | Open Energy Information  

Open Energy Info (EERE)

Thin Films LLC Thin Films LLC Jump to: navigation, search Name Innovative Thin Films LLC Place Toledo, Ohio Zip 43607 Product Provider of altnernative energy thin film deposition technology. Coordinates 46.440613°, -122.847838° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.440613,"lon":-122.847838,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

143

Thin-film Rechargeable Lithium Batteries  

DOE R&D Accomplishments [OSTI]

Thin film rechargeable lithium batteries using ceramic electrolyte and cathode materials have been fabricated by physical deposition techniques. The lithium phosphorous oxynitride electrolyte has exceptional electrochemical stability and a good lithium conductivity. The lithium insertion reaction of several different intercalation materials, amorphous V{sub 2}O{sub 5}, amorphous LiMn{sub 2}O{sub 4}, and crystalline LiMn{sub 2}O{sub 4} films, have been investigated using the completed cathode/electrolyte/lithium thin film battery.

Dudney, N. J.; Bates, J. B.; Lubben, D.

1995-06-00T23:59:59.000Z

144

Effective phase control of silicon films during high-rate deposition in atmospheric-pressure very high-frequency plasma: Impacts of gas residence time on the performance of bottom-gate thin film transistors  

Science Journals Connector (OSTI)

Abstract Hydrogenated amorphous silicon (a-Si) and microcrystalline silicon (?c-Si) films were grown in atmospheric-pressure (AP) He/H2/SiH4 plasma excited by a 150-MHz very high-frequency (VHF) power at a temperature of 220 °C. The variations in thickness and crystallinity of the deposited Si films along the gas flow direction were studied as functions of gas residence time in the plasma, VHF power density and H2 flow rate. Furthermore, the electrical characteristics of bottom-gate thin film transistors (TFTs) were investigated to evaluate the film quality. The results revealed that the chemical reactions both in gas phase and on the growing film surface were significantly enhanced in AP-VHF plasma, promoting phase transition from amorphous to microcrystalline in a time of the order of 0.1 ms. The performance of the \\{TFTs\\} showed that a-Si layers formed in the upstream portion of the plasma zone had reasonably good electrical property (field-effect mobility of approximately 2 cm2/V s) despite very high deposition rates around 20 nm/s. While ?c-Si layers deposited in the downstream portion were very defective, which might come from the insufficient passivation of grain boundaries with a-Si tissues due to a too long gas residence time in the plasma. The precise control of gas residence time by adjusting the length of plasma will be effective for the phase control of Si films with desired quality.

H. Kakiuchi; H. Ohmi; T. Yamada; A. Hirano; T. Tsushima; W. Lin; K. Yasutake

2013-01-01T23:59:59.000Z

145

Studies of solution deposited cerium oxide thin films on textured Ni-alloy substrates for YBCO superconductor  

SciTech Connect (OSTI)

Cerium oxide (CeO{sub 2}) buffer layers play an important role for the development of YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) based superconducting tapes using the rolling assisted biaxially textured substrates (RABiTS) approach. The chemical solution deposition (CSD) approach has been used to grow epitaxial CeO{sub 2} films on textured Ni-3 at.% W alloy substrates with various starting precursors of ceria. Precursors such as cerium acetate, cerium acetylacetonate, cerium 2-ethylhexanoate, cerium nitrate, and cerium trifluoroacetate were prepared in suitable solvents. The optimum growth conditions for these cerium precursors were Ar-4% H{sub 2} gas processing atmosphere, solution concentration levels of 0.2-0.5 M, a dwell time of 15 min, and a process temperature range of 1050-1150 deg. C. X-ray diffraction, AFM, SEM, and optical microscopy were used to characterize the CeO{sub 2} films. Highly textured CeO{sub 2} layers were obtained on Ni-W substrates with both cerium acetate and cerium acetylacetonate as starting precursors. YBCO films with a J {sub c} of 1.5 MA/cm{sup 2} were obtained on cerium acetylacetonate-based CeO{sub 2} films with sputtered YSZ and CeO{sub 2} cap layers.

Stewart, E. [Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6100 (United States); Bhuiyan, M.S. [Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6100 (United States); Sathyamurthy, S. [Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6100 (United States); Paranthaman, M. [Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6100 (United States)]. E-mail: paranthamanm@ornl.gov

2006-06-15T23:59:59.000Z

146

Modeling and control of thin film surface morphology: application to thin film solar cells  

E-Print Network [OSTI]

materials, thin film solar cell technology stands to benefitThin-film solar cells: Review of materials, technologies and

Huang, Jianqiao

2012-01-01T23:59:59.000Z

147

Effect of deposition temperature on the structural and optical properties of CdSe thin films synthesised by chemical bath deposition  

SciTech Connect (OSTI)

Cadmium selenide thin films were synthesized on glass substrates using chemical bath technique (CBD) at temperatures 320K, 330K, 340K,and 350K. The polycrystalline nature of the material was confirmed by X-ray diffraction technique and various structural parameters such as lattice parameters, grain size, dislocation density, and micro strain. The root mean square (RMS) roughness was obtained by using atomic force microscopy(AFM), which indicated a decreasing average roughness with the decrease of the bath temperature. Optical properties were carried out by UV-Visible transmittance spectra, and the band gap energy was determined.

Mohammed, Mudhafer Ali [Department of Applied Sciences, University of Technology / Baghdad (Iraq); Jamil, Shatha Shammon Batros [Ministry of Science and Technology / Baghdad (Iraq)

2013-12-16T23:59:59.000Z

148

Thin films for solar control applications  

Science Journals Connector (OSTI)

...properly cited. Thin films for solar control applications Sapna Shrestha...performance of vacuum glazing. Solar Energy 81, 8. ( doi:10...mirrors produced by plasma ion assisted deposition. J. Non-Cryst...and cost of vacuum glazing. Solar Energy 55, 151. ( doi:10...

2010-01-01T23:59:59.000Z

149

Reduction in anti-ferromagnetic interactions in ion-beam deposited Fe{sub 3}O{sub 4} thin films  

SciTech Connect (OSTI)

Phase pure Fe{sub 3}O{sub 4} thin films of thickness {approx}42 nm have been prepared on the Si(100) substrate by reactive ion beam sputtering in the growth temperature range of 150-250 deg. C. A high degree of phase purity in the 175 deg. C sample has been confirmed by the XRD, Raman shift, and R-T measurements. The polycrystalline films show a sharp Verway transition as supported by temperature dependent resistivity, AC susceptibility, and coercivity behavior. The significant feature of these films is the early saturation of their room temperature magnetization at {approx}400 mT, indicating the presence of low anti-ferromagnetic competitions in sharp contrast to most of the previous reports. The noticeable reduction of anti-phase boundaries and its dependence on growth temperature has been correlated with the energetic ion-beam deposition process, and explained in terms of the of ionic vacancy migration approach of Eerenstein et al.[Phys. Rev. B 68, 014428 (2003)]. The electronic conduction of these films is governed by near-neighbor hopping above 240 K and Shklovskii-Efros variable range hopping below this transition temperature.

Kumar, Ankit; Pandya, Dinesh K.; Chaudhary, Sujeet [Thin Film Laboratory, Indian Institute of Technology Delhi, New Delhi 110016 (India)

2012-04-01T23:59:59.000Z

150

Structures for dense, crack free thin films  

DOE Patents [OSTI]

The process described herein provides a simple and cost effective method for making crack free, high density thin ceramic film. The steps involve depositing a layer of a ceramic material on a porous or dense substrate. The deposited layer is compacted and then the resultant laminate is sintered to achieve a higher density than would have been possible without the pre-firing compaction step.

Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); De Jonghe, Lutgard C. (Lafayette, CA)

2011-03-08T23:59:59.000Z

151

Low temperature deposition and characterization of n- and p-type silicon carbide thin films and associated ohmic and Schottky contacts. Annual report, 1 January-31 December 1992  

SciTech Connect (OSTI)

Single-crystal epitaxial films of cubic Beta(3C)-SiC(111) and AlN(0001) have been deposited on alpha(6H)-SiC(OOO1) substrates oriented 3-4 deg towards 1120 at 1050 deg C via gas-source molecular beam epitaxy using disilane (Si2H6), ethylene (C2H4), thermal evaporation of Al and activated N species derived from an ECR plasma. High resolution transmission electron microscopy revealed that the nucleation and growth of the Beta(3C)-SiC regions occurred primarily on terraces between closely spaced steps. Pseudomorphic bilayer structures containing Beta(3C)-SiC and 2H-AlN have been grown under the same conditions for the first time. HREED and cross-sectional HRTEM showed all layers to be monocrystalline. Initial high temperature chemical interdiffusion studies between SiC and AIN show that all components diffuse very slowly across the interface. AHRTEM and SAS are being used to determine the concentration profiles. Thin film solid solutions of AIN and SiC have been deposited using similar techniques and conditions as the individual compounds. Metal contacts of Ti, Pt and Hf deposited at RT on n-type alpha(6H)-SiC(OOO1) exhibit rectifying behavior with ideality factors between 1.01 and 1.09. The Pt and Hf contacts had leakage currents of 5xl0-8 A/cm2 at -10V. Values of barrier heights for all contacts were within a few tenths of 1.0eV which is indicative that the Fermi level is pinned at the SiC surface.... Films, SiC, AlN, Gas source molecular beam epitaxy, Transmission electron microscopy, Chemical interdiffusion, Metal contacts, Ti, Pt, Hf, Ideality factors, Fermi level pinning.

Davis, R.F.; Nemanich, R.J.; Kern, R.S.; Patterson, R.; Rowland, L.B.

1992-01-01T23:59:59.000Z

152

Thin Film Solar Technologies | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name: Thin Film Solar Technologies Place: South Africa Product: Producers of thin-film copper, indium, gallium, sulphur, selenium modules....

153

Microstructure and properties of copper thin films on silicon substrates  

E-Print Network [OSTI]

copper thin films but on an expense of conductivity. This study proposes a technique to deposit high strength and high conductivity copper thin films on different silicon substrates at room temperature. Single crystal Cu (100) and Cu (111) have been grown...

Jain, Vibhor Vinodkumar

2009-05-15T23:59:59.000Z

154

BDS thin film damage competition  

SciTech Connect (OSTI)

A laser damage competition was held at the 2008 Boulder Damage Symposium in order to determine the current status of thin film laser resistance within the private, academic, and government sectors. This damage competition allows a direct comparison of the current state-of-the-art of high laser resistance coatings since they are all tested using the same damage test setup and the same protocol. A normal incidence high reflector multilayer coating was selected at a wavelength of 1064 nm. The substrates were provided by the submitters. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials, and layer count will also be shared.

Stolz, C J; Thomas, M D; Griffin, A J

2008-10-24T23:59:59.000Z

155

Chemical vapor deposition of amorphous semiconductor films. Final subcontract report  

SciTech Connect (OSTI)

Chemical vapor deposition (CVD) from higher order silanes has been studied for fabricating amorphous hydrogenated silicon thin-film solar cells. Intrinsic and doped a-Si:H films were deposited in a reduced-pressure, tubular-flow reactor, using disilane feed-gas. Conditions for depositing intrinsic films at growth rates up to 10 A/s were identified. Electrical and optical properties, including dark conductivity, photoconductivity, activation energy, optical absorption, band-gap and sub-band-gap absorption properties of CVD intrinsic material were characterized. Parameter space for depositing intrinsic and doped films, suitable for device analysis, was identified.

Rocheleau, R.E.

1984-12-01T23:59:59.000Z

156

Variable temperature semiconductor film deposition  

DOE Patents [OSTI]

A method of depositing a semiconductor material on a substrate is disclosed. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

Li, X.; Sheldon, P.

1998-01-27T23:59:59.000Z

157

Lithium intercalation in sputter deposited antimony-doped tin oxide thin films: Evidence from electrochemical and optical measurements  

SciTech Connect (OSTI)

Transparent conducting oxides are used as transparent electrical contacts in a variety of applications, including in electrochromic smart windows. In the present work, we performed a study of transparent conducting antimony-doped tin oxide (ATO) thin films by chronopotentiometry in a Li{sup +}-containing electrolyte. The open circuit potential vs. Li was used to investigate ATO band lineups, such as those of the Fermi level and the ionization potential, as well as the dependence of these lineups on the preparation conditions for ATO. Evidence was found for Li{sup +} intercalation when a current pulse was set in a way so as to drive ions from the electrolyte into the ATO lattice. Galvanostatic intermittent titration was then applied to determine the lithium diffusion coefficient within the ATO lattice. The electrochemical density of states of the conducting oxide was studied by means of the transient voltage recorded during the chronopotentiometry experiments. These measurements were possible because, as Li{sup +} intercalation took place, charge compensating electrons filled the lowest part of the conduction band in ATO. Furthermore, the charge insertion modified the optical properties of ATO according to the Drude model.

Montero, J., E-mail: jose.montero@angstrom.uu.se; Granqvist, C. G.; Niklasson, G. A. [Department of Engineering Sciences, The A°ngström Laboratory, Uppsala University, P.O. Box 534, SE-751 21 Uppsala (Sweden); Guillén, C.; Herrero, J. [Department of Energy, Ciemat, Avda. Complutense 40, Ed. 42, E-28040 Madrid (Spain)

2014-04-21T23:59:59.000Z

158

CFN | Thin Films Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Synthesis and Characterization Facility Materials Synthesis and Characterization Facility Thin-Film Processing Facility Online Manager (FOM) website FOM manual ESR for lab 1L32 (High-Resolution SEM and x-ray microanalysis) CFN Operations Safety Awareness (COSA) form for 1L32 (ESR #1) Technical article on LABE detector (Analytical SEM) Request form for off-hours access (.doc, First time only, renewals done via email) Lab Tool capabilities Primary contact Training schedule Backup contact Booking calendar Booking rules SOP 1L32 Analytical SEM Camino Thurs 10-12 PM Stein FOM yes yes Hitachi S-4800 SEM Stein Tues 1-3 PM Black FOM no yes booking calendar: yes = need to reserve tool time in calendar before using tool booking rules: yes = specific rules exist for reserving tool time SOP = standard operating procedure (basic instructions)

159

Ferromagnetic thin films  

DOE Patents [OSTI]

A ferromagnetic [delta]-Mn[sub 1[minus]x]Ga[sub x] thin film having perpendicular anisotropy is described which comprises: (a) a GaAs substrate, (b) a layer of undoped GaAs overlying said substrate and bonded thereto having a thickness ranging from about 50 to about 100 nanometers, (c) a layer of [delta]-Mn[sub 1[minus]x]Ga[sub x] overlying said layer of undoped GaAs and bonded thereto having a thickness ranging from about 20 to about 30 nanometers, and (d) a layer of GaAs overlying said layer of [delta]-Mn[sub 1[minus]x]Ga[sub x] and bonded thereto having a thickness ranging from about 2 to about 5 nanometers, wherein x is 0.4[+-]0.05. 7 figures.

Krishnan, K.M.

1994-12-20T23:59:59.000Z

160

A Review of Thin Film Silicon for Solar Cell Applications  

E-Print Network [OSTI]

A Review of Thin Film Silicon for Solar Cell Applications May 99 Contents 1 Introduction 3 2 Low 2.2.3 Deposition onto foreign substrates with the intention of improving crystallographic nature Field Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 11

Note: This page contains sample records for the topic "thin film deposited" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Nanostructured thin films for solid oxide fuel cells  

E-Print Network [OSTI]

The goals of this work were to synthesize high performance perovskite based thin film solid oxide fuel cell (TF-SOFC) cathodes by pulsed laser deposition (PLD), to study the structural, electrical and electrochemical properties of these cathodes...

Yoon, Jongsik

2009-05-15T23:59:59.000Z

162

Wrinkle-Based Measurement of Elastic Modulus of Nano-Scale Thin Pt Film Deposited on Polymeric Substrate: Verification and Uncertainty Analysis  

Science Journals Connector (OSTI)

Nano-scale thin films are extensively utilized in semiconductor, micro-electro-mechanical systems (MEMS), and nano-electro-mechanical systems (NEMS) [1–3]. As feature sizes of the devices decrease, the critical d...

H-J. Choi; J-H. Kim; H-J. Lee; S-A. Song; H-J. Lee; J-H. Han…

2010-06-01T23:59:59.000Z

163

Anomalous Chemical Expansion Behavior of Pr[subscript 0.2]Ce[subscript 0.8]O[subscript 2-?] Thin Films Grown by Pulsed Laser Deposition  

E-Print Network [OSTI]

The chemomechanical and electrical properties of (Pr,Ce)O[subscript 2-?] thin films were studied between 30 and 875°C in air by in situ X-ray diffraction and complex impedance spectroscopy measurements. Reduction/oxidation ...

Kuru, Y.

164

Method of improving field emission characteristics of diamond thin films  

DOE Patents [OSTI]

A method of preparing diamond thin films with improved field emission properties. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display.

Krauss, Alan R. (Naperville, IL); Gruen, Dieter M. (Downer Grove, IL)

1999-01-01T23:59:59.000Z

165

Method of improving field emission characteristics of diamond thin films  

DOE Patents [OSTI]

A method of preparing diamond thin films with improved field emission properties is disclosed. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display. 3 figs.

Krauss, A.R.; Gruen, D.M.

1999-05-11T23:59:59.000Z

166

TiOx Films Deposited by Plasma Enhanced Chemical Vapour Deposition Method in Atmospheric Dielectric Barrier Discharge Plasma  

Science Journals Connector (OSTI)

The plasma enhanced chemical vapour deposition method applying atmospheric dielectric barrier discharge (ADBD) plasma was used for TiOx thin films deposition employing titanium (IV) isopropoxide and oxygen as rea...

Y. Klenko; J. Pichal

2012-12-01T23:59:59.000Z

167

High rate deposition of microcrystalline silicon films by high-pressure radio frequency plasma enhanced chemical vapor deposition (PECVD)  

Science Journals Connector (OSTI)

Hydrogenated microcrystalline silicon (?c-Si:H) thin films were prepared by high-pressure radio-frequency (13.56 MHz) plasma enhanced chemical vapor deposition (rf-PECVD) with a screened plasma. The deposition ra...

BingQing Zhou; MeiFang Zhu; FengZhen Liu…

2008-04-01T23:59:59.000Z

168

Metal-black scattering centers to enhance light harvesting by thin-film solar cells  

E-Print Network [OSTI]

Metal-black scattering centers to enhance light harvesting by thin-film solar cells Deep Panjwania as scattering centers to increase the effective optical thickness of thin-film solar cells. The particular type. Gold-black was deposited on commercial thin-film solar cells using a thermal evaporator in nitrogen

Peale, Robert E.

169

Characterization of photoluminescent (Y{sub 1{minus}x}Eu{sub x}){sub 2}O{sub 3} thin-films prepared by metallorganic chemical vapor deposition  

SciTech Connect (OSTI)

Europium doped yttrium oxide, (Y{sub 1{minus}x}Eu{sub x}){sub 2}O{sub 3}, thin-films were deposited on silicon and sapphire substrates by metallorganic chemical vapor deposition (MOCVD). The films were grown in a MOCVD chamber reacting yttrium and europium tris(2,2,6,6-tetramethyl-3,5,-heptanedionates) precursors in an oxygen atmosphere at low pressures (5 Torr) and low substrate temperatures (500--700 C). The films deposited at 500 C were flat and composed of nanocrystalline regions of cubic Y{sub 2}O{sub 3}, grown in a textured [100] or [110] orientation to the substrate surface. Films deposited at 600 C developed from the flat, nanocrystalline morphology into a plate-like growth morphology oriented in the [111] with increasing deposition time. Monoclinic Y{sub 2}O{sub 3}:Eu{sup 3+} was observed in x-ray diffraction for deposition temperatures {ge}600 C on both (111) Si and (001) sapphire substrates. This was also confirmed by the photoluminescent emission spectra.

McKittrick, J.; Bacalski, C.F.; Hirata, G.A. [Univ. of California, San Diego, La Jolla, CA (United States); Hubbard, K.M.; Pattillo, S.G.; Salazar, K.V.; Trkula, M. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.

1998-12-01T23:59:59.000Z

170

Thin-film Lithium Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thin-Film Battery with Lithium Anode Courtesy of Oak Ridge National Laboratory, Materials Science and Technology Division Thin-Film Lithium Batteries Resources with Additional Information The Department of Energy's 'Oak Ridge National Laboratory (ORNL) has developed high-performance thin-film lithium batteries for a variety of technological applications. These batteries have high energy densities, can be recharged thousands of times, and are only 10 microns thick. They can be made in essentially any size and shape. Recently, Teledyne licensed this technology from ORNL to make batteries for medical devices including electrocardiographs. In addition, new "textured" cathodes have been developed which have greatly increased the peak current capability of the batteries. This greatly expands the potential medical uses of the batteries, including transdermal applications for heart regulation.'

171

TI--CR--AL--O thin film resistors  

DOE Patents [OSTI]

Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

Jankowski, Alan F. (Livermore, CA); Schmid, Anthony P. (Solana Beach, CA)

2000-01-01T23:59:59.000Z

172

Plasma Processing for Crystallization and Densification of Atomic Layer Deposition BaTiO3 Thin Films  

Science Journals Connector (OSTI)

We adopted an ultrathin blocking layer of PEALD Al2O3 (10 cycles, 1 nm in thickness) for the leakage current suppression between BTO (5 nm) and Si substrate (Figure S2). ... For Al2O3 deposition, we used the plasma-enhanced ALD reactor (FlexAl) by Oxford Instruments. ...

Jihwan An; Takane Usui; Manca Logar; Joonsuk Park; Dickson Thian; Sam Kim; Kihyun Kim; Fritz B. Prinz

2014-06-19T23:59:59.000Z

173

Author's personal copy Magnetotransport properties of thin CFe films  

E-Print Network [OSTI]

Author's personal copy Magnetotransport properties of thin C­Fe films J.C. Prestigiacomo a , K The magnetotransport properties of C­Fe films formed by e-beam vapor deposition onto glass substrates are presented, and metastable iron carbide CFe3 [1]. In practice, varying compositions of metastable phases can be trapped via

Adams, Philip W.

174

Infrared sensor for CVD deposition of dielectric films  

SciTech Connect (OSTI)

Infrared emission (IRE) spectra were obtained from two borophosphosilicate glass (BPSG) thin-film sample sets. The first set consisted of 21 films deposited on undoped silicon wafers, and the second set consisted of 9 films deposited on patterned and doped (product) wafers. The IRE data were empirically modeled using partial least-squares calibration to simultaneously quantify four BPSG thin-film properties. The standard errors of the determinations when modeling the 21 monitor wafers were film thickness, and 1.9{degree}C for temperature. The standard errors of the determinations based on the product wafers were 0.13 wt % each for B and P content, 120 {angstrom} for film thickness, and 5.9 C for temperature.

Niemczyk, T.M.; Franke, J.E.; Zhang, S. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemistry; Haaland, D.M. [Sandia National Labs., Albuquerque, NM (United States)

1994-06-01T23:59:59.000Z

175

Dielectric properties of Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} thin films deposited by mist plasma evaporation using aqueous solution precursor  

SciTech Connect (OSTI)

Mist plasma evaporation (MPE) technique has been developed to deposit Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} (BST) thin films on SiO{sub 2}/Si and Pt/Ti/SiO{sub 2}/Si substrates at atmospheric pressure using metal nitrate aqueous solution as precursor. MPE is characterized by the injection of liquid reactants into thermal plasma where the source materials in the droplets are evaporated by the high temperature of the thermal plasma. Nanometer-scale clusters are formed in the tail flame of the plasma, and then deposited and rearranged on the substrate at a lower temperature. Due to the high temperature annealing process of the thermal plasma before deposition, well-crystallized BST films were deposited at substrate temperature of 630 deg. C. The dielectric constant and dielectric loss of the film at 100 kHz are 715 and 0.24, respectively. Due to the good crystallinity of the BST films deposited by MPE, high dielectric tunability up to 39.3% is achieved at low applied electric field of 100 kV cm{sup -1}.

Huang Hui; Shi Peng; Wang Minqiang; Yao Xi; Tan, O.K. [Electronic Materials Research Laboratory, Xi'an Jiaotong University, Xi'an 710049 (China); Microelectronics Center, School of EEE, Nanyang Technological University, 639798 Singapore (Singapore)

2006-06-01T23:59:59.000Z

176

Deposition of Plasma Polymer Films by an Atmospheric Pressure Glow Discharge  

Science Journals Connector (OSTI)

Plasma assisted chemical vapor deposition is a proven ... . The application of non-thermal low pressure plasmas containing organic compounds for thin film deposition by plasma polymerization is well known1.... Th...

Rüdiger Foest; Florian Sigeneger; Martin Schmidt

2001-01-01T23:59:59.000Z

177

Preparation of Highly Transparent TiO2-based Thin Film Photocatalysts by an Ion Engineering Method: Ionized Cluster Beam Deposition  

Science Journals Connector (OSTI)

Highly transparent TiO2 and TiO2-based binary oxide (TiO2/SiO2 and TiO2/B2O3) thin films of different TiO2 contents were successfully prepared by using an ion engineering technique as a dry process. These transpa...

Masato Takeuchi; Masakazu Anpo

2010-01-01T23:59:59.000Z

178

Highly conductive p-type microcrystalline silicon thin films  

SciTech Connect (OSTI)

In the development of thin film solar cells there is presently an increasing interest in microcrystalline silicon, deposited at low temperatures (200--400 C). The plasma deposition of boron doped microcrystalline films was optimized with respect to crystallinity and doping efficiency. High room temperature conductivities up to 39 Scm{sup {minus}1} were achieved under condition when the energy of positive ions impinging on the growth surface is minimized.

Heintze, M.; Schmitt, M. [Univ. Stuttgart (Germany). Inst. fuer Physikalische Elektronik

1996-12-31T23:59:59.000Z

179

Effects of H2 ambient annealing in fully 0 0 2-textured ZnO:Ga thin films grown on glass substrates using RF magnetron co-sputter deposition  

Science Journals Connector (OSTI)

Gallium doped zinc oxide (ZnO:Ga) thin films were grown on glass substrates using RF magnetron co-sputtering, followed by H2 ambient annealing at 623 K to explore a possibility of steady and low-cost process for fabricating transparent electrodes. While it was observed that the ZnO:Ga thin films were densely packed c-axis oriented self-textured structures, in the as-deposited state, the films contained Ga2O3 and ZnGa2O4 which had adverse effect on the electrical properties. On the other hand, post-annealing in H2 ambient improved the electrical properties significantly via reduction of Ga2O3 and ZnGa2O4 to release elemental Ga which subsequently acted as substitutional dopant increasing the carrier concentration by two orders of magnitude. Transmittance of the ZnO:Ga thin films were all over 90% that of glass while the optical band gap varied in accordance with the carrier concentrations due to changes in Fermi level. Experimental observation in this study suggests that transparent conductive oxide (TCO) films based on Ga doped ZnO with good electrical and optical properties can be realized via simple low-cost process.

Sungyeon Kim; Jungmok Seo; Hyeon Woo Jang; Jungsik Bang; Woong Lee; Taeyoon Lee; Jae-Min Myoung

2009-01-01T23:59:59.000Z

180

Vertically Aligned Nanocomposite Thin Films  

E-Print Network [OSTI]

nanocomposite oxides have attracted extensive research interest. Nanocomposites consist of nanosized particles embedded in different materials matrix.8 In recent years, high quality nanocrystalline materials have shown novel physical, chemical, magnetic....................................... 9 1.2.3 Physical properties of oxide thin films........................ 12 1.2.3.1 Electrical and optical properties................. 13 1.2.3.2 Magnetism and magnetotransport properties...

Bi, Zhenxing

2012-07-16T23:59:59.000Z

Note: This page contains sample records for the topic "thin film deposited" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Electrical and optical properties of polycrystalline Ag-doped CdS thin films  

Science Journals Connector (OSTI)

CdS and CdS:Ag thin films were prepared using the spray pyrolysis technique. The prepared films were deposited on glass substrate kept at a temperature of (420±10) °C. The optical and electrical properties hav...

M. A. Khalid; H. A. Jassem

1993-03-01T23:59:59.000Z

182

Chemical analysis of thin films at Sandia National Laboratories  

SciTech Connect (OSTI)

The characterization of thin films produced by chemical and physical vapor deposition requires special analytical techniques. When the average compositions of the films are required, dissolution of the thin films and measurement of the concentrations of the solubilized species is the appropriate analytical approach. In this report techniques for the wet chemical analysis of thin films of Si:Al, P/sub 2/O/sub 5/:SiO/sub 2/, B/sub 2/O/sub 3/:SiO/sub 2/, TiB/sub x/ and TaB/sub x/ are described. The analyses are complicated by the small total quantities of these analytes present in the films, the refractory characters of these analytes, and the possibility of interferences from the substrates on which the films are deposited. Etching conditions are described which dissolve the thin films without introducing interferences from the substrates. A chemical amplification technique and inductively coupled plasma atomic emission spectrometry are shown to provide the sensitivity required to measure the small total quantities (micrograms to milligrams) of analytes present. Also the chemical analysis data has been used to calibrate normal infrared absorption spectroscopy to give fast estimates of the phosphorus and/or boron dopant levels in thin SiO/sub 2/ films.

Tallant, D.R.; Taylor, E.L.

1980-05-01T23:59:59.000Z

183

Generation of low work function, stable compound thin films by laser ablation  

DOE Patents [OSTI]

Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

Dinh, Long N. (Concord, CA); McLean, II, William (Oakland, CA); Balooch, Mehdi (Berkeley, CA); Fehring, Jr., Edward J. (Dublin, CA); Schildbach, Marcus A. (Livermore, CA)

2001-01-01T23:59:59.000Z

184

High-throughput analysis of thin-film stresses using arrays of micromachined cantilever beams  

E-Print Network [OSTI]

High-throughput analysis of thin-film stresses using arrays of micromachined cantilever beams Hyun-throughput residual stress measurements on thin films by means of micromachined cantilever beams and an array of parallel laser beams. In this technique, the film of interest is deposited onto a silicon substrate

185

Thin-film tin oxideâ??ethanol sensor  

Science Journals Connector (OSTI)

Tin Oxide (SnO2) thin films grown on glass substrate at 648 K using direct evaporation method with two gold pads deposited on the top for electrical contacts were exposed to ethanol vapours (200-1000 ppm). The operating temperature of the sensor was optimised. The sensitivity variation of films having different thicknesses was studied. To improve the sensitivity and selectivity further, a thin layer of metal oxide was deposited on the sensor surface to work as a catalytic layer and its effect on the performance of the sensor was studied. The response and recovery times of the sensor were determined.

H.J. Pandya

2009-01-01T23:59:59.000Z

186

High-rate deposition of hydrogenated amorphous silicon films and devices  

SciTech Connect (OSTI)

This report summarizes the status of high-rate deposition technologies associated with amorphous silicon thin films for photovoltaic applications. The report lists (1) deposition rates for a-Si:H films according to source and method and (2) efficiencies and other parameters of a-Si:H solar cells. Two main deposition source materials, silane and disilane, are discussed, as well as effects of boron doping. The effects of various deposition parameters on film characteristics and on deposition rate are presented, as well as the effects of annealing on high-deposition-rate films. Light-induced effects are also discussed. Finally, progress and problems in this field of study are summarized.

Luft, W.

1987-04-01T23:59:59.000Z

187

Photovoltaic effect and enhanced magnetization in 0.9(BiFeO3)–0.1(YCrO3) composite thin film fabricated using sequential pulsed laser deposition  

Science Journals Connector (OSTI)

We report on the photovoltaic effect and multiferroic properties of a 0.9(BiFeO3)–0.1(YCrO3) composite thin film deposited on a Pt/TiO2/SiO2/Si substrate by sequential ablation of BiFeO3 and YCrO3 ceramic targets using pulsed laser deposition. The desired composition of the composite was achieved by controlling the ablation time of respective targets. As confirmed by the x-ray diffraction pattern the resultant film was found to be polycrystalline in nature and composed of a mixture of both rhombohedral BiFeO3 and orthorhombic YCrO3 phases. Interesting multiferroic properties in terms of an enhanced saturation magnetization of ~14 emu cm?3 and the remnant polarization of ~4.5 µC cm?2 were observed where the enhancement in magnetization as compared to pristine BiFeO3 could be attributed to the super-exchange interaction between Fe and Cr-ions. The photovoltaic properties of the composite thin film were studied under white light illumination in both top–bottom and lateral electrode configurations. Short circuit current densities (JSC) = 1.48 µA cm?2 and 0.44 µA cm?2, and open circuit voltages (VOC) = 0.51 V and 0.32 V were observed in top–bottom and lateral electrode configurations, respectively.

Yogesh Sharma; Pankaj Misra; Rajesh K Katiyar; Ram S Katiyar

2014-01-01T23:59:59.000Z

188

Surface modeling of thin film growth: A study of silicon oxide deposition from tetraethoxysilane and silicon deposition from disilane on the Si(100) surface  

SciTech Connect (OSTI)

In this thesis, surface reactions brought about by the pyrolysis of adsorbed TEOS, the modeling of this reaction with ethanol, and the photolysis of adsorbed disilane have been investigated under ultrahigh vacuum conditions, using mainly temperature programmed desorption (TPD). TEOS molecularly desorbs at about 195K when adsorbed on clean Si(100) at low temperatures. When adsorbed at 300K, the primary surface species produced is a mixture of ethoxysiloxanes. Upon heating the surface in vacuum, the adsorbed ethoxysiloxanes decompose the evolve ethylene and hydrogen, with trace production of acetylene and acetaldehyde. In a parallel study, the adsorption and subsequent deposition of ethanol (C[sub 2]H[sub 5]OH, C[sub 2]D[sub 5]OD, and CH[sub 3]CD[sub 2]OH) on Si(100) has been shown to model the TEOS system. The molecular desorption temperature is ca. 150K. When adsorbed at 200K, ethanol dissociatively chemisorbs as an ethoxide and the monohydride species. The adlayer decomposes at higher temperature to evolve ethylene, hydrogen, acetaldehyde, and acetylene. The adsorption and decomposition of ethanol on Si(100)-2x1:H has also been studied in gathering additional information about the competition between distinct decomposition mechanisms, and the nature of the reaction site. In the Si[sub 2]H[sub 6]/Si(100) system, with no UV irradiation, disilane adsorption at 120K produces a chemisorbed SiH[sub x] (x = 1 - 3) layer and, for high exposures, a disilane multilayer. Upon heating the surface in vacuum, molecular desorption is observed at ca. 150K, while hydrogen and silane are evolved at much higher temperatures. For Si[sub 2]H[sub 6] exposure during photo-irradiation, the desorption yields of hydrogen and silane are enhanced. Model studies using the partially and fully deuterated Si(100)-2x1:D surface reveals that the photo-induced surface reaction is dominated by an insertion reaction by the photo-generated silylene species.

Cho, Hee-Chuen.

1993-01-01T23:59:59.000Z

189

Control of magnetization reversal in oriented strontium ferrite thin films  

SciTech Connect (OSTI)

Oriented Strontium Ferrite films with the c axis orientation were deposited with varying oxygen partial pressure on Al{sub 2}O{sub 3}(0001) substrate using Pulsed Laser Deposition technique. The angle dependent magnetic hysteresis, remanent coercivity, and temperature dependent coercivity had been employed to understand the magnetization reversal of these films. It was found that the Strontium Ferrite thin film grown at lower (higher) oxygen partial pressure shows Stoner-Wohlfarth type (Kondorsky like) reversal. The relative importance of pinning and nucleation processes during magnetization reversal is used to explain the type of the magnetization reversal with different oxygen partial pressure during growth.

Roy, Debangsu, E-mail: debangsu@physics.iisc.ernet.in; Anil Kumar, P. S. [Department of Physics, Indian Institute of Science, Bangalore 560012 (India)

2014-02-21T23:59:59.000Z

190

Thin-film transistors based on p-type Cu{sub 2}O thin films produced at room temperature  

SciTech Connect (OSTI)

Copper oxide (Cu{sub 2}O) thin films were used to produce bottom gate p-type transparent thin-film transistors (TFTs). Cu{sub 2}O was deposited by reactive rf magnetron sputtering at room temperature and the films exhibit a polycrystalline structure with a strongest orientation along (111) plane. The TFTs exhibit improved electrical performance such as a field-effect mobility of 3.9 cm{sup 2}/V s and an on/off ratio of 2x10{sup 2}.

Fortunato, Elvira; Figueiredo, Vitor; Barquinha, Pedro; Elamurugu, Elangovan; Goncalves, Goncalo; Martins, Rodrigo [Departamento de Ciencia dos Materiais, CENIMAT/I3N, Faculdade de Ciencias e Tecnologia, FCT, Universidade Nova de Lisboa and CEMOP-UNINOVA, 2829-516 Caparica (Portugal); Barros, Raquel [Departamento de Ciencia dos Materiais, CENIMAT/I3N, Faculdade de Ciencias e Tecnologia, FCT, Universidade Nova de Lisboa and CEMOP-UNINOVA, 2829-516 Caparica (Portugal); Materiais Avancados, INNOVNANO, SA, 7600-095 Aljustrel (Portugal); Park, Sang-Hee Ko; Hwang, Chi-Sun [Electronic and Telecommunications Research Institute, 138 Gajeongro, Yuseong-gu, Daejeon, 305-700 (Korea, Republic of)

2010-05-10T23:59:59.000Z

191

Ceramic Thin Films: Fabrication and Applications  

Science Journals Connector (OSTI)

...SPRAYED CERAMIC COATING, JOURNAL...PB1-XCAXTIO3 THIN-FILM GROWN BY...ELECTRICAL, OPTICAL, AND ELECTRO-OPTIC...fabrication and applications. | Ceramics...controlled optical switches...Ceramic coatings ofalumina...modified by the application of mechanical...material as a thin film cannot only...successive coatings. Although...respect to CVD that the...purposes. Applications of Thin Film Ceramics...

M. Sayer; K. Sreenivas

1990-03-02T23:59:59.000Z

192

Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property  

E-Print Network [OSTI]

Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High-conductor-free organic lead iodide thin film solar cells have been fabricated with a sequential deposition method are comparable to that of the high-efficiency thin-film solar cells. VC 2014 AIP Publishing LLC. [http

Wang, Wei Hua

193

Plasmonic Thin-Film Solar Cells  

Science Journals Connector (OSTI)

A combined computational-experimental study optimizing plasmon-enhanced absorption in thin film solar cells presented. We investigate the effect of different geometries where...

Pala, Ragip; White, Justin; Brongersma, Mark

194

Preparation and characterization of TL-based superconducting thin films  

E-Print Network [OSTI]

A simple method for growth of Tl-based superconducting thin films is described. In this method, the precursor was prepared in a vacuum chamber by deposition of Ba, Ca and Cu metals or a Ba-Ca alloy and Cu metal. The precursor was then oxidized...

Wang, Pingshu

2012-06-07T23:59:59.000Z

195

Thin film solar energy collector  

DOE Patents [OSTI]

A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.

Aykan, Kamran (Monmouth Beach, NJ); Farrauto, Robert J. (Westfield, NJ); Jefferson, Clinton F. (Millburn, NJ); Lanam, Richard D. (Westfield, NJ)

1983-11-22T23:59:59.000Z

196

Geometric shape control of thin film ferroelectrics and resulting structures  

DOE Patents [OSTI]

A monolithic crystalline structure and a method of making involves a semiconductor substrate, such as silicon, and a ferroelectric film, such as BaTiO.sub.3, overlying the surface of the substrate wherein the atomic layers of the ferroelectric film directly overlie the surface of the substrate. By controlling the geometry of the ferroelectric thin film, either during build-up of the thin film or through appropriate treatment of the thin film adjacent the boundary thereof, the in-plane tensile strain within the ferroelectric film is relieved to the extent necessary to permit the ferroelectric film to be poled out-of-plane, thereby effecting in-plane switching of the polarization of the underlying substrate material. The method of the invention includes the steps involved in effecting a discontinuity of the mechanical restraint at the boundary of the ferroelectric film atop the semiconductor substrate by, for example, either removing material from a ferroelectric film which has already been built upon the substrate, building up a ferroelectric film upon the substrate in a mesa-shaped geometry or inducing the discontinuity at the boundary by ion beam deposition techniques.

McKee, Rodney A. (Kingston, TN); Walker, Frederick J. (Oak Ridge, TN)

2000-01-01T23:59:59.000Z

197

Polycrystalline?thin?film thermophotovoltaic cells  

Science Journals Connector (OSTI)

Thermophotovoltaic (TPV) cells convert thermal energy to electricity. Modularity portability silent operation absence of moving parts reduced air pollution rapid start?up high power densities potentially high conversion efficiencies choice of a wide range of heat sources employing fossil fuels biomass and even solar radiation are key advantages of TPV cells in comparison with fuel cells thermionic and thermoelectric convertors and heat engines. The potential applications of TPV systems include: remote electricity supplies transportation co?generation electric?grid independent appliances and space aerospace and military power applications. The range of bandgaps for achieving high conversion efficiencies using low temperature (1000–2000 K) black?body or selective radiators is in the 0.5–0.75 eV range. Present high efficiency convertors are based on single crystalline materials such as In1?x Ga x As GaSb and Ga1?x In x Sb. Several polycrystalline thin films such as Hg1?x Cd x Te Sn1?x Cd2x Te2 and Pb1?x Cd x Te etc. have great potential for economic large?scale applications. A small fraction of the high concentration of charge carriers generated at high fluences effectively saturates the large density of defects in polycrystalline thin films. Photovoltaic conversion efficiencies of polycrystalline thin films and PV solar cells are comparable to single crystalline Si solar cells e.g. 17.1% for CuIn1?x Ga x Se2 and 15.8% for CdTe. The best recombination?state density N t is in the range of 10?15–10?16 cm?3 acceptable for TPV applications. Higher efficiencies may be achieved because of the higher fluences possibility of bandgap tailoring and use of selective emitters such as rare earth oxides (erbia holmia yttria) and rare earth?yttrium aluminium garnets. As compared to higher bandgap semiconductors such as CdTe it is easier to dope the lower bandgap semiconductors. TPV cell development can benefit from the more mature PV solar cell and opto?electronic (infrared detectors lasers and optical communications) technologies. Low bandgaps and larger fluences employed in TPV cells result in very high current densities which make it difficult to collect the current effectively. Techniques for laser and mechanical scribing integral interconnection and multi?junction tandem structures which have been fairly well developed for thin?film PV solar cells could be further refined for enhancing the voltages from TPV modules. Thin?film TPV cells may be deposited on metals or back?surface reflectors. Spectral control elements such as indium?tin oxide or tin oxide may be deposited directly on the TPV convertor. It would be possible to reduce the cost of TPV technologies based on single?crystal materials being developed at present to the range of US$ 2–5 per watt so as to be competitive in small to medium size commercial applications. However a further cost reduction to the range of US ¢ 35–$ 1 per watt to reach the more competitive large?scale residential consumer and hybrid?electric car markets would be possible only with the polycrystalline?thin film TPV cells.

Neelkanth G. Dhere

1996-01-01T23:59:59.000Z

198

Method for making dense crack free thin films  

DOE Patents [OSTI]

The process described herein provides a simple and cost effective method for making crack free, high density thin ceramic film. The steps involve depositing a layer of a ceramic material on a porous or dense substrate. The deposited layer is compacted and then the resultant laminate is sintered to achieve a higher density than would have been possible without the pre-firing compaction step.

Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); De Jonghe, Lutgard C. (Lafayette, CA)

2007-01-16T23:59:59.000Z

199

Formation of thin-film resistors on silicon substrates  

DOE Patents [OSTI]

The formation of thin-film resistors by the ion implantation of a metallic conductive layer in the surface of a layer of phosphosilicate glass or borophosphosilicate glass which is deposited on a silicon substrate. The metallic conductive layer materials comprise one of the group consisting of tantalum, ruthenium, rhodium, platinum and chromium silicide. The resistor is formed and annealed prior to deposition of metal, e.g. aluminum, on the substrate.

Schnable, George L. (Montgomery County, PA); Wu, Chung P. (Hamilton Township, Mercer County, NJ)

1988-11-01T23:59:59.000Z

200

B{sub 4}C thin films for neutron detection  

SciTech Connect (OSTI)

Due to the very limited availability of {sup 3}He, new kinds of neutron detectors, not based on {sup 3}He, are urgently needed. Here, we present a method to produce thin films of {sup 10}B{sub 4}C, with maximized detection efficiency, intended to be part of a new generation of large area neutron detectors. B{sub 4}C thin films have been deposited onto Al-blade and Si wafer substrates by dc magnetron sputtering from {sup nat}B{sub 4}C and {sup 10}B{sub 4}C targets in an Ar discharge, using an industrial deposition system. The films were characterized with scanning electron microscopy, elastic recoil detection analysis, x-ray reflectivity, and neutron radiography. We show that the film-substrate adhesion and film purity are improved by increased substrate temperature and deposition rate. A deposition rate of 3.8 A/s and substrate temperature of 400 deg. C result in films with a density close to bulk values and good adhesion to film thickness above 3 {mu}m. Boron-10 contents of almost 80 at. % are obtained in 6.3 m{sup 2} of 1 {mu}m thick {sup 10}B{sub 4}C thin films coated on Al-blades. Initial neutron absorption measurements agree with Monte Carlo simulations and show that the layer thickness, number of layers, neutron wavelength, and amount of impurities are determining factors. The study also shows the importance of having uniform layer thicknesses over large areas, which for a full-scale detector could be in total {approx}1000 m{sup 2} of two-side coated Al-blades with {approx}1 {mu}m thick {sup 10}B{sub 4}C films.

Hoeglund, Carina [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); Department of Physics, Chemistry and Biology (IFM), Thin Film Physics Division, Linkoeping University, SE-581 83 Linkoeping (Sweden); Birch, Jens; Jensen, Jens; Hultman, Lars [Department of Physics, Chemistry and Biology (IFM), Thin Film Physics Division, Linkoeping University, SE-581 83 Linkoeping (Sweden); Andersen, Ken; Hall-Wilton, Richard [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); Bigault, Thierry; Buffet, Jean-Claude; Correa, Jonathan; Esch, Patrick van; Guerard, Bruno; Piscitelli, Francesco [Institute Laue Langevin, Rue Jules Horowitz, FR-380 00 Grenoble (France); Khaplanov, Anton [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); Institute Laue Langevin, Rue Jules Horowitz, FR-380 00 Grenoble (France); Vettier, Christian [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); European Synchrotron Radiation Facility, BP 220, FR-380 43 Grenoble Cedex 9 (France); Vollenberg, Wilhelmus [Vacuum, Surfaces and Coatings Group (TE/VSC), CERN, CH-1211 Geneva 23 (Switzerland)

2012-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "thin film deposited" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

B4C thin films for neutron detection  

Science Journals Connector (OSTI)

Due to the very limited availability of 3He new kinds of neutron detectors not based on 3He are urgently needed. Here we present a method to produce thin films of 10B4C with maximized detection efficiency intended to be part of a new generation of large area neutron detectors. B4C thin films have been deposited onto Al-blade and Si wafer substrates by dc magnetron sputtering from natB4C and 10B4C targets in an Ar discharge using an industrial deposition system. The films were characterized with scanning electron microscopy elastic recoil detection analysis x-ray reflectivity and neutron radiography. We show that the film-substrate adhesion and film purity are improved by increased substrate temperature and deposition rate. A deposition rate of 3.8?Å/s and substrate temperature of 400?°C result in films with a density close to bulk values and good adhesion to film thickness above 3 ?m. Boron-10 contents of almost 80 at. % are obtained in 6.3 m2 of 1 ?m thick 10B4C thin films coated on Al-blades. Initial neutron absorption measurements agree with Monte Carlo simulations and show that the layer thickness number of layers neutron wavelength and amount of impurities are determining factors. The study also shows the importance of having uniform layer thicknesses over large areas which for a full-scale detector could be in total ?1000 m2 of two-side coated Al-blades with ?1 ?m thick 10B4C films.

Carina Höglund; Jens Birch; Ken Andersen; Thierry Bigault; Jean-Claude Buffet; Jonathan Correa; Patrick van Esch; Bruno Guerard; Richard Hall-Wilton; Jens Jensen; Anton Khaplanov; Francesco Piscitelli; Christian Vettier; Wilhelmus Vollenberg; Lars Hultman

2012-01-01T23:59:59.000Z

202

Institute of Photo Electronic Thin Film Devices and Technology...  

Open Energy Info (EERE)

Institute of Photo Electronic Thin Film Devices and Technology of Nankai University Jump to: navigation, search Name: Institute of Photo-Electronic Thin Film Devices and Technology...

203

Thickness Dependency of Thin Film Samaria Doped Ceria for Oxygen...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dependency of Thin Film Samaria Doped Ceria for Oxygen Sensing . Thickness Dependency of Thin Film Samaria Doped Ceria for Oxygen Sensing . Abstract: High temperature oxygen...

204

Direct Measurement of Oxygen Incorporation into Thin Film Oxides...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measurement of Oxygen Incorporation into Thin Film Oxides at Room Temperature Upon Ultraviolet Phton Irradiation. Direct Measurement of Oxygen Incorporation into Thin Film Oxides...

205

Organic Thin Film Magnet of Nickel-Tetracyanoethylene  

SciTech Connect (OSTI)

Hybrid organic-inorganic materials consisting of a transition metal and an organic compound, TCNE form a unique class of organic magnets denoted by M(TCNE){sub x}(where M = transition metals, and TCNE = tetracyanoethylene). The organic thin film magnet of nickel-tetracyanoethylene, Ni(TCNE){sub x} is deposited on sputtered clean gold substrate using the physical vapor deposition (PVD) technique under ultra high vacuum (UHV) conditions at room temperature. X-ray photoelectron spectroscopy (XPS) has been used to investigate chemical and electronic properties of Ni(TCNE){sub x} film. XPS derived film thickness and stoichiometry are found to be 6 nm and 1:2 ratio between Ni and TCNE resulting Ni(TCNE){sub 2} film, respectively. In addition, XPS results do not show any signature of the presence of pure metallic Ni or Ni-clustering in the Ni(TCNE){sub x} film.

Bhatt, Pramod; Yusuf, S. M. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

2011-07-15T23:59:59.000Z

206

Structure disorder degree of polysilicon thin films grown by different processing: Constant C from Raman spectroscopy  

SciTech Connect (OSTI)

Flat, low-stress, boron-doped polysilicon thin films were prepared on single crystalline silicon substrates by low pressure chemical vapor deposition. It was found that the polysilicon films with different deposition processing have different microstructure properties. The confinement effect, tensile stresses, defects, and the Fano effect all have a great influence on the line shape of Raman scattering peak. But the effect results are different. The microstructure and the surface layer are two important mechanisms dominating the internal stress in three types of polysilicon thin films. For low-stress polysilicon thin film, the tensile stresses are mainly due to the change of microstructure after thermal annealing. But the tensile stresses in flat polysilicon thin film are induced by the silicon carbide layer at surface. After the thin film doped with boron atoms, the phenomenon of the tensile stresses increasing can be explained by the change of microstructure and the increase in the content of silicon carbide. We also investigated the disorder degree states for three polysilicon thin films by analyzing a constant C. It was found that the disorder degree of low-stress polysilicon thin film larger than that of flat and boron-doped polysilicon thin films due to the phase transformation after annealing. After the flat polysilicon thin film doped with boron atoms, there is no obvious change in the disorder degree and the disorder degree in some regions even decreases.

Wang, Quan, E-mail: wangq@mail.ujs.edu.cn [School of mechanical engineering, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhang, Yanmin; Hu, Ran; Ren, Naifei [School of mechanical engineering, Jiangsu University, Zhenjiang 212013 (China); Ge, Daohan [School of mechanical engineering, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

2013-11-14T23:59:59.000Z

207

Thin-film aerogel thermal conductivity measurements via 3?  

Science Journals Connector (OSTI)

The limiting constraint in a growing number of nano systems is the inability to thermally tune devices. Silica aerogel is widely accepted as the best solid thermal insulator in existence and offers a promising solution for microelectronic systems needing superior thermal isolation. In this study, thin-film silica aerogel films varying in thickness from 250 to 1280 nm were deposited on SiO2 substrates under a variety of deposition conditions. These samples were then thermally characterized using the 3? technique. Deposition processes for depositing the 3? testing mask to the sample were optimized and it was demonstrated that thin-film aerogel can maintain its structure in common fabrication processes for microelectromechanical systems. Results indicate that thin-film silica aerogel can maintain the unique, ultra-low thermal conductivity commonly observed in bulk aerogel, with a directly measured thermal conductivity as low as 0.024 W/m-K at temperature of 295 K and pressure between 0.1 and 1 Pa.

M.L. Bauer; C.M. Bauer; M.C. Fish; R.E. Matthews; G.T. Garner; A.W. Litchenberger; P.M. Norris

2011-01-01T23:59:59.000Z

208

Exergy Analysis of Atomic Layer Deposition for Al2O3 Nano-film Preparation  

Science Journals Connector (OSTI)

In this paper exergy analysis is applied on Atomic Layer Deposition...2O3...thin film to analyze the utilization and losses of exergy in ALD system. The exergies associated with ... work flow are calculated. Base...

Fenfen Wang; Tao Li; Hong-Chao Zhang…

2013-01-01T23:59:59.000Z

209

Thin Film Femtosecond Laser Damage Competition  

SciTech Connect (OSTI)

In order to determine the current status of thin film laser resistance within the private, academic, and government sectors, a damage competition was started at the 2008 Boulder Damage Symposium. This damage competition allows a direct comparison of the current state of the art of high laser resistance coatings since they are tested using the same damage test setup and the same protocol. In 2009 a high reflector coating was selected at a wavelength of 786 nm at normal incidence at a pulse length of 180 femtoseconds. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials and layer count, and spectral results will also be shared.

Stolz, C J; Ristau, D; Turowski, M; Blaschke, H

2009-11-14T23:59:59.000Z

210

High-rate chemical vapor deposition of nanocrystalline silicon carbide films by radio frequency thermal plasma  

E-Print Network [OSTI]

High-rate chemical vapor deposition of nanocrystalline silicon carbide films by radio frequency Semiconductor, Eden Prairie, MN, USA Received 10 July 2002; accepted 14 July 2002 Abstract Silicon carbide films; Nanomaterials; Silicon carbide; Thermal plasmas; Thin films; Si tetrachlorine precursor Silicon carbide has

Zachariah, Michael R.

211

Enhanced quantum efficiency of amorphous silicon thin film solar cells with the inclusion of a rear-reflector thin film  

SciTech Connect (OSTI)

We investigated the growth mechanism of amorphous silicon thin films by implementing hot-wire chemical vapor deposition and fabricated thin film solar cell devices. The fabricated cells showed efficiencies of 7.5 and 8.6% for the samples without and with the rear-reflector decomposed by sputtering, respectively. The rear-reflector enhances the quantum efficiency in the infrared spectral region from 550 to 750?nm. The more stable quantum efficiency of the sample with the inclusion of a rear-reflector than the sample without the rear-reflector due to the bias effect is related to the enhancement of the short circuit current.

Park, Seungil [Department of Mechanical Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Energy Conversions Technology Center, Korea Institute of Industrial Technology, Cheonan 331-825 (Korea, Republic of); Yong Ji, Hyung; Jun Kim, Myeong; Hyeon Peck, Jong [Energy Conversions Technology Center, Korea Institute of Industrial Technology, Cheonan 331-825 (Korea, Republic of); Kim, Keunjoo, E-mail: kimk@chonbuk.ac.kr [Department of Mechanical Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

2014-02-17T23:59:59.000Z

212

Pulsed Laser Deposition | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pulsed Laser Deposition Pulsed Laser Deposition EMSL's pulsed laser deposition (PLD) system is designed for epitaxial growth of oxide, ceramic, or synthetic mineral thin films and...

213

Biocompatibility of Pristine Graphene Monolayers, Nanosheets and Thin Films  

E-Print Network [OSTI]

There is an increasing interest to develop nanoscale biocompatible graphene structures due to their desirable physicochemical properties, unlimited application opportunities and scalable production. Here we report the preparation, characterization and biocompatibility assessment of novel graphene flakes and their enabled thin films suitable for a wide range of biomedical and electronic applications. Graphene flakes were synthesized by a chemical vapour deposition method or a liquid-phase exfoliation procedure and then thin films were prepared by transferring graphene onto glass coverslips. Raman spectroscopy and transmission electron microscopy confirmed a predominantly monolayer and a high crystalline quality formation of graphene. The biocompatibility assessment of graphene thin films and graphene flakes was performed using cultured human lung epithelial cell line A549 employing a multimodal approach incorporating automated imaging, high content screening, real-time impedance sensing in combination with bio...

Conroy, Jennifer; Smith, Ronan J; Rezvani, Ehsan; Duesberg, Georg S; Coleman, Jonathan N; Volkov, Yuri

2014-01-01T23:59:59.000Z

214

Preparation of a semiconductor thin film  

DOE Patents [OSTI]

A process for the preparation of a semiconductor film. The process comprises depositing nanoparticles of a semiconductor material onto a substrate whose surface temperature during nanoparticle deposition thereon is sufficient to cause substantially simultaneous fusion of the nanoparticles to thereby coalesce with each other and effectuate film growth.

Pehnt, Martin (TuBingen, DE); Schulz, Douglas L. (Denver, CO); Curtis, Calvin J. (Lakewood, CO); Ginley, David S. (Evergreen, CO)

1998-01-01T23:59:59.000Z

215

Preparation of a semiconductor thin film  

DOE Patents [OSTI]

A process is disclosed for the preparation of a semiconductor film. The process comprises depositing nanoparticles of a semiconductor material onto a substrate whose surface temperature during nanoparticle deposition thereon is sufficient to cause substantially simultaneous fusion of the nanoparticles to thereby coalesce with each other and effectuate film growth.

Pehnt, M.; Schulz, D.L.; Curtis, C.J.; Ginley, D.S.

1998-01-27T23:59:59.000Z

216

Oriented niobate ferroelectric thin films for electrical and optical devices  

DOE Patents [OSTI]

Sr.sub.x Ba.sub.1-x Nb.sub.2 O.sub.6, where x is greater than 0.25 and less than 0.75, and KNbO.sub.3 ferroelectric thin films metalorganic chemical vapor deposited on amorphous or cyrstalline substrate surfaces to provide a crystal axis of the film exhibiting a high dielectric susceptibility, electro-optic coefficient, and/or nonlinear optic coefficient oriented preferentially in a direction relative to a crystalline or amorphous substrate surface. Such films can be used in electronic, electro-optic, and frequency doubling components.

Wessels, Bruce W. (Wilmette, IL); Nystrom, Michael J. (Chicago, IL)

2001-01-01T23:59:59.000Z

217

Designing Randomness - The Impact of Textured Surfaces on the Efficiency of Thin-Film Solar Cells  

Science Journals Connector (OSTI)

We analyze experimentally and theoretically light localization at randomly textured ZnO surfaces and light absorption in thin-film amorphous Si deposited conformal on it. Guidance is...

Beckers, Thomas; Bittkau, Karsten; Carius, Reinhard; Fahr, Stephan; Rockstuhl, Carsten; Lederer, Falk

218

Polyelectrolyte multilayer thin films with antimicrobial, antifouling and drug releasing properties  

E-Print Network [OSTI]

This thesis work focuses on designing thin polyelectrolyte multilayer (PEM) films via layer-bylayer (LbL) deposition technique with the ability to kill pathogenic bacteria and inactivate human viruses, especially the ...

Wong, Sze Yinn (Sze Yinn Jessie)

2011-01-01T23:59:59.000Z

219

Single Source Electron Beam Evaporation of Bi-Sr-Ca-Cu-O Thin Films  

Science Journals Connector (OSTI)

A modified electron beam evaporation technique for the deposition of BiSrCaCuO thin films has been developed. In contrast to the conventional hearthed electron beam crucible the design in the present study use...

M. Ghanashyam Krishna; G. K. Muralidhar…

1990-01-01T23:59:59.000Z

220

Effect of Pt loading on the photocatalytic reactivity of titanium oxide thin films prepared by ion engineering techniques  

Science Journals Connector (OSTI)

Platinum-loaded titanium oxide thin-film photocatalysts were prepared by using an ionized cluster beam (ICB) deposition method and a RF magnetron sputtering (RF-MS) deposition method as dry processes. From the...

Masato Takeuchi; Kouichirou Tsujimaru; Kenji Sakamoto…

Note: This page contains sample records for the topic "thin film deposited" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Polymer-assisted deposition of films  

DOE Patents [OSTI]

A polymer assisted deposition process for deposition of metal nitride films and the like is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures under a suitable atmosphere to yield metal nitride films and the like. Such films can be conformal on a variety of substrates including non-planar substrates. In some instances, the films can be epitaxial in structure and can be of optical quality. The process can be organic solvent-free.

McCleskey,Thomas M. (Los Alamos, NM); Burrell,Anthony K. (Los Alamos, NM); Jia,Quanxi (Los Alamos, NM); Lin,Yuan (Chandler, AZ)

2012-02-28T23:59:59.000Z

222

Indium doped zinc oxide nanowire thin films for antireflection and solar absorber coating applications  

SciTech Connect (OSTI)

Indium doped ZnO nanowire thin films were prepared by thermal oxidation of Zn-In metal bilayer films at 500°C. The ZnO:In nanowires are 20-100 nm in diameter and several tens of microns long. X-ray diffraction patterns confirm the formation of oxide and indicate that the films are polycrystalline, both in the as deposited and annealed states. The transmission which is <2% for the as deposited Zn-In films increases to >90% for the ZnO:In nanowire films. Significantly, the reflectance for the as deposited films is < 10% in the region between 200 to 1500 nm and < 2% for the nanowire films. Thus, the as deposited films can be used solar absorber coatings while the nanowire films are useful for antireflection applications. The growth of nanowires by this technique is attractive since it does not involve very high temperatures and the use of catalysts.

Shaik, Ummar Pasha [ACRHEM, University of Hyderabad, Hyderabad-500046 (India); Krishna, M. Ghanashyam, E-mail: mgksp@uohyd.ac.in [ACRHEM and School of Physics, University of Hyderabad, Hyderabad-500046 (India)

2014-04-24T23:59:59.000Z

223

Layer-by-layer assembly of electrically conductive polymer thin films  

E-Print Network [OSTI]

) to deposit layers of carbon black that are pre-stabilized with polyethylenimine (PEI) and poly(acrylic acid) (PAA) (see chemical structures in Fig. 3). The resulting films are thin, flexible, and relatively dense, with a high concentration of carbon black... within the deposition mixtures is described in Chapter III. Materials and Methods Materials Two types of polymers were used to stabilize carbon black for layer-by-layer (LbL) assembly of composite thin films. Poly(acrylic acid) (PAA...

Jan, Chien Sy Jason

2007-09-17T23:59:59.000Z

224

SunShot Initiative: Thin Film Photovoltaics Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thin Film Photovoltaics Research Thin Film Photovoltaics Research to someone by E-mail Share SunShot Initiative: Thin Film Photovoltaics Research on Facebook Tweet about SunShot Initiative: Thin Film Photovoltaics Research on Twitter Bookmark SunShot Initiative: Thin Film Photovoltaics Research on Google Bookmark SunShot Initiative: Thin Film Photovoltaics Research on Delicious Rank SunShot Initiative: Thin Film Photovoltaics Research on Digg Find More places to share SunShot Initiative: Thin Film Photovoltaics Research on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Crystalline Silicon Thin Films Multijunctions Organic Photovoltaics Dye-Sensitized Solar Cells Competitive Awards Systems Integration Balance of Systems Thin Film Photovoltaics Research The U.S. Department of Energy (DOE) supports research and development of

225

Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof  

DOE Patents [OSTI]

Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

Perkins, John (Boulder, CO); Van Hest, Marinus Franciscus Antonius Maria (Lakewood, CO); Ginley, David (Evergreen, CO); Taylor, Matthew (Golden, CO); Neuman, George A. (Holland, MI); Luten, Henry A. (Holland, MI); Forgette, Jeffrey A. (Hudsonville, MI); Anderson, John S. (Holland, MI)

2010-07-13T23:59:59.000Z

226

Spatial Frequency Filtering Using Nondelineated Thin Films  

Science Journals Connector (OSTI)

We present a new approach for achieving spatial frequency filtering in the analog domain. Our device, the Thin Film Spatial Filter, is a hybrid structure which combines the strengths of analog VLSI technology with the simplicity of a continuous sheet ...

J. Mcelvain; J. Langan; A. J. Heeger

1997-10-01T23:59:59.000Z

227

Visible spectrometer utilizing organic thin film absorption  

E-Print Network [OSTI]

In this thesis, I modeled and developed a spectrometer for the visible wavelength spectrum, based on absorption characteristics of organic thin films. The device uses fundamental principles of linear algebra to reconstruct ...

Tiefenbruck, Laura C. (Laura Christine)

2004-01-01T23:59:59.000Z

228

Electroless Nanoparticle Film Deposition Compatible with Photolithography,  

E-Print Network [OSTI]

Electroless Nanoparticle Film Deposition Compatible with Photolithography, Microcontact Printing; Revised Manuscript Received October 14, 2002 ABSTRACT Nanoparticles of Au, Pd, and Pt form spontaneously In this paper, we demonstrate that Au, Pd, and Pt nanoparticle films, produced through a spontaneous electroless

Porter Jr., Lon A.

229

Method of preparing high-temperature-stable thin-film resistors  

DOE Patents [OSTI]

A chemical vapor deposition method for manufacturing tungsten-silicide thin-film resistors of predetermined bulk resistivity and temperature coefficient of resistance (TCR) is disclosed. Gaseous compounds of tungsten and silicon are decomposed on a hot substrate to deposit a thin-film of tungsten-silicide. The TCR of the film is determined by the crystallinity of the grain structure, which is controlled by the temperature of deposition and the tungsten to silicon ratio. The bulk resistivity is determined by the tungsten to silicon ratio. Manipulation of the fabrication parameters allows for sensitive control of the properties of the resistor.

Raymond, L.S.

1980-11-12T23:59:59.000Z

230

Method of preparing high-temperature-stable thin-film resistors  

DOE Patents [OSTI]

A chemical vapor deposition method for manufacturing tungsten-silicide thin-film resistors of predetermined bulk resistivity and temperature coefficient of resistance (TCR). Gaseous compounds of tungsten and silicon are decomposed on a hot substrate to deposit a thin-film of tungsten-silicide. The TCR of the film is determined by the crystallinity of the grain structure, which is controlled by the temperature of deposition and the tungsten to silicon ratio. The bulk resistivity is determined by the tungsten to silicon ratio. Manipulation of the fabrication parameters allows for sensitive control of the properties of the resistor.

Raymond, Leonard S. (Tucson, AZ)

1983-01-01T23:59:59.000Z

231

Amorphous silicon thin film transistor as nonvolatile device.  

E-Print Network [OSTI]

particles before loaded into the deposition chamber. 2.2.2. Equipment for Plasma Processes Plasma-Enhanced Chemical Vapor...: Dr. Yue Kuo n-channel and p-channel amorphous-silicon thin-film transistors (a-Si:H TFTs) with copper electrodes prepared by a novel plasma etching process have been fabricated and studied. Their characteristics are similar to those of TFTs...

Nominanda, Helinda

2008-10-10T23:59:59.000Z

232

Influence of film thickness and In-doping on physical properties of CdS thin films  

Science Journals Connector (OSTI)

Abstract Polycrystalline CdS thin films were deposited on glass substrates by close spaced sublimation technique. Samples of various thicknesses, ranging from 250 to 940 nm were obtained. The optical and electrical properties of pure CdS thin films were studied as a function of film thickness. The resistivity of as-deposited CdS films was in the order of 106–108 ? cm, depending upon the film thickness. In the high temperature region, carriers are transported over the grain boundaries by thermionic emission. Resistivity was reduced to the order of 10?2–101 ? cm by the thermally diffusion of indium into CdS films, without changing the type of carriers. The annealing temperature dependence of structural, optical and electrical properties of In-doped CdS films showed that the samples annealed at 350 °C and 400 °C exhibited better results.

Sajid Butt; Nazar Abbas Shah; Adnan Nazir; Zulfiqar Ali; Asghri Maqsood

2014-01-01T23:59:59.000Z

233

Thin film absorber for a solar collector  

DOE Patents [OSTI]

This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

Wilhelm, William G. (Cutchogue, NY)

1985-01-01T23:59:59.000Z

234

Peeling from a patterned thin elastic film  

E-Print Network [OSTI]

Inspired by the observation that many naturally occurring adhesives arise as textured thin films, we consider the displacement controlled peeling of a flexible plate from an incision-patterned thin adhesive elastic layer. We find that crack initiation from an incision on the film occurs at a load much higher than that required to propagate it on a smooth adhesive surface; multiple incisions thus cause the crack to propagate intermittently. Microscopically, this mode of crack initiation and propagation in geometrically confined thin adhesive films is related to the nucleation of cavitation bubbles behind the incision which must grow and coalesce before a viable crack propagates. Our theoretical analysis allows us to rationalize these experimental observations qualitatively and quantitatively and suggests a simple design criterion for increasing the interfacial fracture toughness of adhesive films.

A. Ghatak; L. Mahadevan; J. Y. Chung; M. K. Chaudhury; V. Shenoy

2004-04-29T23:59:59.000Z

235

Method for making thin polypropylene film  

DOE Patents [OSTI]

An economical method is provided for making uniform thickness polypropylene film as thin as 100 Angstroms. A solution of polypropylene dissolved in xylene is formed by mixing granular polypropylene and xylene together in a flask at an elevated temperature. A substrate, such as a glass plate or microscope slide is immersed in the solution. When the glass plate is withdrawn from the solution at a uniform rate, a thin polypropylene film forms on a flat surface area of the glass plate as the result of xylene evaporation. The actual thickness of the polypropylene film is functional of the polypropylene in xylene solution concentration, and the particular withdrawal rate of the glass plate from the solution. After formation, the thin polypropylene film is floated from the glass plate onto the surface of water, from which it is picked up with a wire hoop.

Behymer, R.D.; Scholten, J.A.

1985-11-21T23:59:59.000Z

236

Oriented niobate ferroelectric thin films for electrical and optical devices and method of making such films  

DOE Patents [OSTI]

Sr{sub x}Ba{sub 1{minus}x}Nb{sub 2}O{sub 6}, where x is greater than 0.25 and less than 0.75, and KNbO{sub 3} ferroelectric thin films metalorganic chemical vapor deposited on amorphous or crystalline substrate surfaces to provide a crystal axis of the film exhibiting a high dielectric susceptibility, electro-optic coefficient, and/or nonlinear optic coefficient oriented preferentially in a direction relative to a crystalline or amorphous substrate surface are disclosed. Such films can be used in electronic, electro-optic, and frequency doubling components. 8 figs.

Wessels, B.W.; Nystrom, M.J.

1998-05-19T23:59:59.000Z

237

Oriented niobate ferroelectric thin films for electrical and optical devices and method of making such films  

DOE Patents [OSTI]

Sr.sub.x Ba.sub.1-x Nb.sub.2 O.sub.6, where x is greater than 0.25 and less than 0.75, and KNbO.sub.3 ferroelectric thin films metalorganic chemical vapor deposited on amorphous or crystalline substrate surfaces to provide a crystal axis of the film exhibiting a high dielectric susceptibility, electro-optic coefficient, and/or nonlinear optic coefficient oriented preferentially in a direction relative to a crystalline or amorphous substrate surface. Such films can be used in electronic, electro-optic, and frequency doubling components.

Wessels, Bruce W. (Wilmette, IL); Nystrom, Michael J. (Germantown, MD)

1998-01-01T23:59:59.000Z

238

E-Print Network 3.0 - atomic vapor deposited Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Articles Surfactant-Catalyzed Chemical Vapor Deposition of Copper Thin Films Eui Seong Hwang... and demonstrated for deposition of copper thin films from ... Source:...

239

SINGLE AND DUAL LAYER THIN FILM BULGE TESTING  

E-Print Network [OSTI]

film windows that are used in Next Generation Lithography masks and certain MEMS devices. The bulge testing method measures the mechanical properties of a thin film by isolating it in a thin film window of the system. Figure 6 Dual Layer Thin Film Membrane Window For a dual layer membrane the effective total

Huston, Dryver R.

240

NANO-INDENTATION OF COPPER THIN FILMS ON SILICON SUBSTRATES  

E-Print Network [OSTI]

NANO-INDENTATION OF COPPER THIN FILMS ON SILICON SUBSTRATES S. Suresh1 , T.-G. Nieh2 and B.W. Choi2: Mechanical properties; Nano-indentation; Thin films; Copper; Dislocations Introduction Indentation methods films on substrates (e.g., [2,3]) using instrumented indentation. Nano-indentation studies of thin films

Suresh, Subra

Note: This page contains sample records for the topic "thin film deposited" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Structural and chemical investigations of CBD-and PVD-CdS buffer layers and interfaces in Cu(In,Ga)Se2-based thin film solar cells  

E-Print Network [OSTI]

(In,Ga)Se2-based thin film solar cells D. Abou-Rasa,b,*, G. Kostorza , A. Romeob,1 , D. Rudmannb , A Available online 8 December 2004 Abstract It is known that high-efficiency thin film solar cells based on Cu; Chemical bath deposition; CdS buffer 1. Introduction The highest efficiencies for thin film solar cells

Romeo, Alessandro

242

Superhydrophobic Thin Film Symposium | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Superhydrophobic Thin Film Symposium Superhydrophobic Thin Film Symposium Sep 05 2012 12:00 AM - 05:00 PM Hosted by Oak Ridge Laboratory's Partnerships Directorate and focusing on the recent LDRD Launch project work completed by Dr. Tolga Aytug and Dr. John T. Simpson (ORNL research PI's). Oak Ridge, TN Oak Ridge National Laboratory CONTACT : Email: Cassie Lopez Phone:(865) 576-9294 Add to Calendar SHARE Hosted by Oak Ridge Laboratory's Partnerships Directorate and focusing on the recent LDRD Launch project work completed by Dr. Tolga Aytug and Dr. John T. Simpson (ORNL research PI's). Purpose To share the ORNL Superhydrophonbic Thin Film technology to prospective commercial partners. Date and Time The conference will be held on the morning of Wednesday September 5th at Oak Ridge National Laboratory (ORNL) by Partnerships and Technology

243

Thin Film Transistors On Plastic Substrates  

DOE Patents [OSTI]

A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250.degree. C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.

Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Sigmon, Thomas W. (Portola Valley, CA); Aceves, Randy C. (Livermore, CA)

2004-01-20T23:59:59.000Z

244

Vibration welding system with thin film sensor  

DOE Patents [OSTI]

A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

2014-03-18T23:59:59.000Z

245

Flat panel display using Ti-Cr-Al-O thin film  

DOE Patents [OSTI]

Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

Jankowski, Alan F. (Livermore, CA); Schmid, Anthony P. (Solan Beach, CA)

2002-01-01T23:59:59.000Z

246

Mechanical properties of surface modified silica low-k thin films  

Science Journals Connector (OSTI)

The surface modification of sol-gel deposited low-k thin films has been carried out successfully by trimethylchlorosilane (TMCS) using wet chemical treatment method. Ellipsometer is used to determine the thickness of films. The changes in chemical structure ... Keywords: Contact angle, Hydrophobic, Nano-indentation, Sol-gel, Surface modification

Yogesh S. Mhaisagar; Bhavana N. Joshi; Ashok M. Mahajan

2014-02-01T23:59:59.000Z

247

Longitudinal-optical-vibration-induced high transparency of nominally opaque thin films  

Science Journals Connector (OSTI)

It has been theoretically demonstrated that a presence of a very thin cubic crystal film deposited on a substrate can substantially modify infrared optical properties of the structure. The effect is due to excitation of longitudinal-optical vibrations within the film.

R. Dragila and S. Vukovic

1990-02-15T23:59:59.000Z

248

Electrochemical properties of magnetron sputtered WO{sub 3} thin films  

SciTech Connect (OSTI)

Thin films of tungsten oxide (WO{sub 3}) were deposited on ITO substrates by using RF magnetron sputtering at oxygen and argon atmospheres of 6 Multiplication-Sign 10{sup -2}Pa and 4 Pa respectively. The chemical composition and surface morphology of the WO{sub 3} thin films have been studied by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) respectively. The results indicate that the deposited WO{sub 3} thin films are nearly stoichiometric. The electrochemical performances of the WO{sub 3} thin films have been evaluated by galvonostatic charging/discharging method. The discharge capacity was 15{mu}Ah/cm{sup 2}{mu}m at the initial cycle and faded rapidly in the first few cycles and stabilized at a lesser stage.

Madhavi, V.; Kondaiah, P.; Hussain, O. M.; Uthanna, S. [Department of Physics, Sri Venkateswara University, Tirupati - 517 502 (India)

2013-02-05T23:59:59.000Z

249

SAW determination of surface area of thin films  

DOE Patents [OSTI]

N.sub.2 adsorption isotherms are measured from thin films on SAW devices. The isotherms may be used to determine the surface area and pore size distribution of thin films.

Frye, Gregory C. (Albuquerque, NM); Martin, Stephen J. (Albuquerque, NM); Ricco, Antonio J. (Albuquerque, NM)

1990-01-01T23:59:59.000Z

250

Conductivity of Oriented Samaria-Doped Ceria Thin Films Grown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conductivity of Oriented Samaria-Doped Ceria Thin Films Grown by Oxygen-plasma-assisted Molecular Beam Epitaxy. Conductivity of Oriented Samaria-Doped Ceria Thin Films Grown by...

251

Organic thin film prehistory: looking towards solution phase aggregation |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Organic thin film prehistory: looking towards solution phase aggregation Organic thin film prehistory: looking towards solution phase aggregation Wednesday, November 6, 2013 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Christopher Tassone, SSRL Polymer bulk heterojunction (BHJ) solar cells have attracted significant attention in industry and academia because of their potential for achieving large-area, light-weight, and flexible photovoltaic devices through cost-effective solution deposition techniques. These devices consist of a blend of an absorbing polymer and an electron accepting fullerene, the molecular packing and phase segregation of which heavily influence power conversion efficiency by effecting important processes such as exciton splitting, charge transport, and recombination. Understanding and utilization of molecular interactions to predicatively control the

252

Method for formation of thin film transistors on plastic substrates  

DOE Patents [OSTI]

A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics.

Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Sigmon, Thomas W. (Portola Valley, CA); Aceves, Randy C. (Livermore, CA)

1998-10-06T23:59:59.000Z

253

Method for formation of thin film transistors on plastic substrates  

DOE Patents [OSTI]

A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics. 5 figs.

Carey, P.G.; Smith, P.M.; Sigmon, T.W.; Aceves, R.C.

1998-10-06T23:59:59.000Z

254

Abstract --A physical-vapour-deposition (PVD) of AlN thin films is presented in this paper. For AlN layers that are  

E-Print Network [OSTI]

high quality layers with as high as possible thermal conductivity kTH, different materials have been are developed. The deposition parameters are tuned to guarantee low stress, high thermal conductivity , the dielectric constant about 8, and the thermal conductivity around -1 -1 11 Wm K . The deposition conditions

Technische Universiteit Delft

255

Scanning electrochemical microscope characterization of thin film combinatorial libraries for fuel cell electrode applications  

Science Journals Connector (OSTI)

Pt–Ru combinatorial libraries of potential fuel cell anode catalysts are formed by sequential sputter deposition through masks onto Si wafers. Scanning electrochemical microscopy (SECM) is employed for characterization of electrocatalytic activity. Aspects of using a scanning electrochemical microscope for characterization of an array of thin film fuel cell electrode materials are discussed. It is shown that in applying SECM to library characterization, careful attention must be paid to thin film annealing, specimen topography and tip degradation in order to realize meaningful results. Results from a Pt–Ru thin film library reveal the most active members near the 50 Pt/50 Ru composition.

M Black; J Cooper; P McGinn

2005-01-01T23:59:59.000Z

256

Highly Transparent, Flexible, and Thermally Stable Superhydrophobic ORMOSIL Aerogel Thin Films  

Science Journals Connector (OSTI)

(9, 22) On the other hand, ORMOSIL aerogel thin films produced in this work are highly transparent, do not need any pre or post surface treatments and can be applied on a variety of substrates including glass, wood, and plastics at ambient conditions with common thin-film deposition methods such as spin, dip, and spray coating. ... (b) Photographs of ORMOSIL aerogel thin films coated on glass substrates. ... This makes it possible to coat superhydrophobic aerogels on many different surfaces other than glass, including wood, wall tile, aluminum slab, cotton cloth, and plastics, which enables fast and easy production of large-scale superhydrophobic coatings. ...

Hulya Budunoglu; Adem Yildirim; Mustafa O. Guler; Mehmet Bayindir

2011-01-12T23:59:59.000Z

257

Growth and ferromagnetic resonance of yttrium iron garnet thin films on Yiyan Sun, Young-Yeal Song, and Mingzhong Wu  

E-Print Network [OSTI]

doped TbMnO3 thin films grown by pulsed laser deposition J. Appl. Phys. 112, 033914 (2012) Structural. Phys. Lett. 101, 033910 (2012) Ge2Sb2Te5 phase-change films on polyimide substrates by pulsed laser and two thin cladding layers. The cladding layers were high entropy alloy nitrides (HEAN) and served

258

Photoconductivity in reactively evaporated copper indium selenide thin films  

SciTech Connect (OSTI)

Copper indium selenide thin films of composition CuInSe{sub 2} with thickness of the order of 130 nm are deposited on glass substrate at a temperature of 423 ±5 K and pressure of 10{sup ?5} mbar using reactive evaporation, a variant of Gunther's three temperature method with high purity Copper (99.999%), Indium (99.999%) and Selenium (99.99%) as the elemental starting materials. X-ray diffraction (XRD) studies shows that the films are polycrystalline in nature having preferred orientation of grains along the (112) plane. The structural type of the film is found to be tetragonal with particle size of the order of 32 nm. The structural parameters such as lattice constant, particle size, dislocation density, number of crystallites per unit area and strain in the film are also evaluated. The surface morphology of CuInSe{sub 2} films are studied using 2D and 3D atomic force microscopy to estimate the grain size and surface roughness respectively. Analysis of the absorption spectrum of the film recorded using UV-Vis-NIR Spectrophotometer in the wavelength range from 2500 nm to cutoff revealed that the film possess a direct allowed transition with a band gap of 1.05 eV and a high value of absorption coefficient (?) of 10{sup 6} cm{sup ?1} at 570 nm. Photoconductivity at room temperature is measured after illuminating the film with an FSH lamp (82 V, 300 W). Optical absorption studies in conjunction with the good photoconductivity of the prepared p-type CuInSe{sub 2} thin films indicate its suitability in photovoltaic applications.

Urmila, K. S., E-mail: urmilaks7@gmail.com; Asokan, T. Namitha, E-mail: urmilaks7@gmail.com; Pradeep, B., E-mail: urmilaks7@gmail.com [Solid State Physics Laboratory, Cochin University of Science and Technology, Kochi, Kerala (India); Jacob, Rajani; Philip, Rachel Reena [Thin Film Research Laboratory, Union Christian College, Aluva, Kerala (India)

2014-01-28T23:59:59.000Z

259

THIN FILM MECHANICS BULGING AND Ph.D Dissertation  

E-Print Network [OSTI]

for the intensive effort in research in materials and processing techniques. Thin film windows are window underneath. The thin film window has such a small thickness to span ratio that it can usually be considered and precision-stretching of thin film windows are examined. Bulge Testing is a method used to evaluate

Huston, Dryver R.

260

Hydrogenated amorphous silicon films produced by chemical vapor deposition: Final report  

SciTech Connect (OSTI)

Hydrogenated amorphous silicon (a-Si:H) is a technologically important semiconductor, well-suited for solar photovoltaic energy conversion and thin film device applications. While the glow discharge technique is widely used for the deposition of a-Si:H films, this work is focused on the use of the chemical vapor deposition (CVD) technique, i.e., the thermal decomposition of disilane and higher silanes, for the deposition of a-Si:H films. A simple technique for the preparation of disilane and higher silanes by using an electric discharge in monosilane under atmospheric pressure has been developed, and the discharge product can be used directly for the deposition process. The important parameters of the CVD process including the substrate temperature, the composition and flow rate of the reaction mixture, and the nature of the diluent gas for disilane, have also been investigated. The deposition rate of a-Si:H films in a helium atmosphere is considerably higher than that in a hydrogen atmosphere, and the CVD process in a helium atmosphere is well-suited for the deposition of thick a-Si:H films. The a-Si:H films deposited under various conditions have been characterized by the photoconductivity, dissolution rate, optical absorption, mechanical stress, gap state density, minority carrier diffusion length, and stability measurements. On the basis of these measurements, a-Si:H films deposited by the thermal decomposition of disilane in a helium atmosphere exhibit better structural and electronic properties than those deposited in a hydrogen atmosphere.

Not Available

1987-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "thin film deposited" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Vibrational spectra of CO adsorbed on oxide thin films: A tool to probe the surface defects and phase changes of oxide thin films  

SciTech Connect (OSTI)

Thin films of iron oxide were grown on Pt(111) single crystals using cycles of physical vapor deposition of iron followed by oxidative annealing in an ultrahigh vacuum apparatus. Two procedures were utilized for film growth of ?15–30 ML thick films, where both procedures involved sequential deposition+oxidation cycles. In procedure 1, the iron oxide film was fully grown via sequential deposition+oxidation cycles, and then the fully grown film was exposed to a CO flux equivalent to 8 × 10{sup ?7} millibars, and a vibrational spectrum of adsorbed CO was obtained using infrared reflection-absorption spectroscopy. The vibrational spectra of adsorbed CO from multiple preparations using procedure 1 show changes in the film termination structure and/or chemical nature of the surface defects—some of which are correlated with another phase that forms (“phase B”), even before enough of phase B has formed to be easily detected using low energy electron diffraction (LEED). During procedure 2, CO vibrational spectra were obtained between deposition+oxidation cycles, and these spectra show that the film termination structure and/or chemical nature of the surface defects changed as a function of sequential deposition+oxidation cycles. The authors conclude that measurement of vibrational spectra of adsorbed CO on oxide thin films provides a sensitive tool to probe chemical changes of defects on the surface and can thus complement LEED techniques by probing changes not visible by LEED. Increased use of vibrational spectra of adsorbed CO on thin films would enable better comparisons between films grown with different procedures and by different groups.

Savara, Aditya, E-mail: savaraa@ornl.gov [Chemical Sciences Division, Oak Ridge National Lab, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831 (United States)

2014-03-15T23:59:59.000Z

262

Thin film heterojunction photovoltaic cells and methods of making the same  

DOE Patents [OSTI]

A method of fabricating a thin film heterojunction photovoltaic cell which comprises depositing a film of a near intrinsic or n-type semiconductor compound formed of at least one of the metal elements of Class II B of the Periodic Table of Elements and at least tellurium and then heating said film at a temperature between about 250.degree. C. and 500.degree. C. for a time sufficient to convert said film to a suitably low resistivity p-type semiconductor compound. Such film may be deposited initially on the surface of an n-type semiconductor substrate. Alternatively, there may be deposited on the converted film a layer of n-type semiconductor compound different from the film semiconductor compound. The resulting photovoltaic cell exhibits a substantially increased power output over similar cells not subjected to the method of the present invention.

Basol, Bulent M. (Los Angeles, CA); Tseng, Eric S. (Los Angeles, CA); Rod, Robert L. (Los Angeles, CA)

1983-06-14T23:59:59.000Z

263

Crystal coherence length effects on the infrared optical response of MgO thin films.  

SciTech Connect (OSTI)

The role of crystal coherence length on the infrared optical response of MgO thin films was investigated with regard to Reststrahlen band photon-phonon coupling. Preferentially (001)-oriented sputtered and evaporated ion-beam assisted deposited thin films were prepared on silicon and annealed to vary film microstructure. Film crystalline coherence was characterized by x-ray diffraction line broadening and transmission electron microscopy. The infrared dielectric response revealed a strong dependence of dielectric resonance magnitude on crystalline coherence. Shifts to lower transverse optical phonon frequencies were observed with increased crystalline coherence. Increased optical phonon damping is attributed to increasing granularity and intergrain misorientation.

Boreman, Glenn D. (University of Central Florida, Orlando, FL); Kotula, Paul Gabriel; Rodriguez, Mark Andrew; Shelton, David J. (University of Central Florida, Orlando, FL); Carroll, James F., III; Sinclair, Michael B.; Ihlefeld, Jon F.; Ginn, James Cleveland, III; Clem, Paul Gilbert; Matias, Vladimir (Los Alamos National Laboratory, Los Alamos, NM)

2010-07-01T23:59:59.000Z

264

Crystal coherence length effects on the infrared optical response of MgO thin films  

SciTech Connect (OSTI)

The role of crystal coherence length on the infrared optical response of MgO thin films was investigated with regard to Reststrahlen band photon-phonon coupling. Preferentially (001)-oriented sputtered and evaporated ion-beam assisted deposited thin films were prepared on silicon and annealed to vary film microstructure. Film crystalline coherence was characterized by x-ray diffraction line broadening and transmission electron microscopy. The infrared dielectric response revealed a strong dependence of dielectric resonance magnitude on crystalline coherence. Shifts to lower transverse optical phonon frequencies were observed with increased crystalline coherence. Increased optical phonon damping is attributed to increasing granularity and intergrain misorientation.

Ihlefeld, J. F.; Ginn, J. C.; Rodriguez, M. A.; Kotula, P. G.; Carroll, J. F. III; Clem, P. G.; Sinclair, M. B. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Shelton, D. J.; Boreman, G. D. [College of Optics and Photonics/CREOL, University of Central Florida, Orlando, Florida 32816 (United States); Matias, V. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2010-11-08T23:59:59.000Z

265

Effects of low temperature annealing on the adhesion of electroless plated copper thin films in TiN deposited silicon integrated circuit substrates  

E-Print Network [OSTI]

The semiconductor manufacturing industry is increasingly using copper to design and fabricate faster and smaller integrated circuits. Despite copper's electrical advantages, few ways exist to deposit it uniformly into the steep vias and trenches...

Tate, Adam Timothy

2013-02-22T23:59:59.000Z

266

Enhanced Thin Film Organic Photovoltaic Devices  

Energy Innovation Portal (Marketing Summaries) [EERE]

A novel structure design for thin film organic photovoltaic (OPV) devices provides a system for increasing the optical absorption in the active layer. The waveguided structure permits reduction of the active layer thickness, resulting in enhanced charge collection and extraction, leading to improved power conversion efficiency compared to standard OPV devices....

2014-01-10T23:59:59.000Z

267

Spectroscopic ellipsometry characterization of thin-film silicon nitride  

SciTech Connect (OSTI)

We have measured and analyzed the optical characteristics of a series of silicon nitride thin films prepared by plasma-enhanced chemical vapor deposition on silicon substrates for photovoltaic applications. Spectroscopic ellipsometry measurements were made by using a two-channel spectroscopic polarization modulator ellipsometer that measures N, S, and C data simultaneously. The data were fit to a model consisting of air / roughness / SiN / crystalline silicon. The roughness was modeled using the Bruggeman effective medium approximation, assuming 50% SiN, 50% voids. The optical functions of the SiN film were parameterized using a model by Jellison and Modine. All the {Chi}{sup 2} are near 1, demonstrating that this model works extremely well for all SiN films. The measured dielectric functions were used to make optimized SiN antireflection coatings for crystalline silicon solar cells.

Jellison, G.E. Jr.; Modine, F.A. [Oak Ridge National Lab., TN (United States); Doshi, P.; Rohatgi, A. [Georiga Inst. of Technology, Atlanta, GA (United States)

1997-05-01T23:59:59.000Z

268

Long-laser-pulse method of producing thin films  

DOE Patents [OSTI]

A method of depositing thin films by means of laser vaporization employs a long-pulse laser (Nd-glass of about one millisecond duration) with a peak power density typically in the range 10.sup.5 -10.sup.6 W/cm.sup.2. The method may be used to produce high T.sub.c superconducting films of perovskite material. In one embodiment, a few hundred nanometers thick film of YBa.sub.2 Cu.sub.3 O.sub.7-x is produced on a SrTiO.sub.3 crystal substrate in one or two pulses. In situ-recrystallization and post-annealing, both at elevated temperature and in the presence of an oxidizing agen The invention described herein arose in the course of, or under, Contract No. DE-C03-76SF0098 between the United States Department of Energy and the University of California.

Balooch, Mehdi (Berkeley, CA); Olander, Donald K. (Berkeley, CA); Russo, Richard E. (Walnut Creek, CA)

1991-01-01T23:59:59.000Z

269

Fuel Cells Catalyst for Start-up and Shutdown Conditions: Electrochemical, XPS, and TEM Evaluation of Sputter-Deposited Ru, Ir, and Ti on Pt-Nano-Structured Thin Film (NSTF) Support  

SciTech Connect (OSTI)

Minute amounts of Ru, Ir and Ti (2 and 10 g/cm2) sputter-deposited over 3M Pt-coated nano-structured thin film (NSTF) substrate were evaluated as oxygen evolution reaction (OER) catalysts in a polymer electrolyte membrane (PEM) environment. The purpose of the study was to explore the suitability of these elements for modifying both the anode and the cathode catalysts in order to lower the overpotential for the oxidation of water during transient conditions. By keeping the electrode potential as close as possible to the thermodynamic potential for OER, other components in the fuel cell, such as platinum, the gas diffusion layer and the bipolar plates, will be less prone to degradation. While Ru and Ir were chosen due to their high OER activity in aqueous environment, Ti was also included due to its ability to stabilize the OER catalysts. The 3M Pt-NSTF was selected as a stable, carbon-free substrate. The surface chemistry and the morphology of OER catalysts on Pt-NSTF were examined by x-ray photoelectron spectroscopy (XPS) and scanning transmission electron microscopy (STEM). The OER catalytic activity of Ru and Ir in PEMs compares well with their behavior in aqueous environment. It was found that Ru is more active than Ir, that Ir is considerably more stable, while the mass activity of both is higher in comparison with similar OER catalyst.

Atanasoski, Radoslav [3M Industrial Mineral Products; Atanasoska, Liliana [3M Industrial Mineral Products; Cullen, David A [ORNL; Vernstrom, George [3M Industrial Mineral Products; More, Karren Leslie [ORNL; Haugen, Gregory [3M Industrial Mineral Products

2012-01-01T23:59:59.000Z

270

Design consideration of micro thin film solid-oxide fuel cells  

Science Journals Connector (OSTI)

Miniaturized planar solid-oxide fuel cells (SOFCs) and stacks can be fabricated by thin film deposition and micromachining. Serious thermal stresses, originating in fabrication and during operation, cause thermal–mechanical instability of the constituent thin films. In this paper, the effect of thin film geometry on thermal stress and mechanical stability is evaluated to optimize the structure of a thin film. A novel design of thin circular electrolyte films for SOFCs is presented by using corrugated structures, with which small thermal stresses and a broad design range of structure parameters can be obtained. Thermal transfer analysis shows that heat loss by solid conduction is serious in thin films with a small radius. But thermal convection and radiation dominate heat loss in large thin films with a radius of several millimetres. Scale-dependent thermal characteristics show the importance of film size and packaging in optimization of thermal isolation for micro SOFCs. A novel flip-flop stack configuration for micro SOFCs is presented. This configuration allows multiple cells to share one reaction chamber, helps to obtain uniform flow fields, and simplifies the flow field network for micro fuel cell stacks.

Yanghua Tang; Kevin Stanley; Jonathan Wu; Dave Ghosh; Jiujun Zhang

2005-01-01T23:59:59.000Z

271

Manufacture of Thin-Film Solar Cells:? Modeling and Control of Cu(InGa)Se2 Physical Vapor Deposition onto a Moving Substrate  

Science Journals Connector (OSTI)

It was developed at ITN Energy Systems in Littleton, CO, and Global Solar Energy in Tucson, AZ;3 the experimental deposition system described in this paper does not have an XRF sensor installed. ... The main advantage of the finite difference approach is that it is a continuous technique and, therefore, is better suited for including mass transfer or reaction kinetics. ... Because the decoupled deposition process is only single-input?single-output with simple constraints (flow rates cannot be negative), internal model control can potentially combine the advantages of unconstrained MPC, but avoid its disadvantages. ...

S. Tobias Junker; Robert W. Birkmire; Francis J. Doyle; III

2003-12-17T23:59:59.000Z

272

Characterization of Solidified Gas Thin Film Targets via Alpha Particle Energy Loss  

E-Print Network [OSTI]

A method is reported for measuring the thickness and uniformity of thin films of solidified gas targets. The energy of alpha particles traversing the film is measured and the energy loss is converted to thickness using the stopping power. The uniformity is determined by measuring the thickness at different positions with an array of sources. Monte Carlo simulations have been performed to study the film deposition mechanism. Thickness calibrations for a TRIUMF solid hydrogen target system are presented.

MUH collaboration; M. C. Fujiwara; G. A. Beer; J. L. Beveridge; J. L. Douglas; T. M. Huber; R. Jacot-Guillarmod; S. K. Kim; P. E. Knowles; A. R. Kunselman; M. Maier; G. M. Marshall; G. R. Mason; F. Mulhauser; A. Olin; C. Petitjean; T. A. Porcelli; J. Zmeskal

1996-10-06T23:59:59.000Z

273

Modeling of film growth by cluster deposition: The effect of size and energy  

Science Journals Connector (OSTI)

The density of cluster-assembled thin films depends heavily on the size of the deposited clusters as well as the energy with which they impact the substrate. Using molecular-dynamics simulations we have quantitatively studied variations in the density of thin films grown by deposition of clusters, with diameters between 1 and 9 nm, and at energies ranging from 2 meV to 10 eV per cluster atom. A model explaining the behavior of smaller clusters is presented, and a threshold limit in cluster size, where deviation from this model occurs, is determined. The deviation is shown to be due to a lessened sintering between clusters.

K. Meinander and K. Nordlund

2009-06-26T23:59:59.000Z

274

The influence of lithium excess in the target on the properties and compositions of Li1+x Mn2O4?? thin films prepared by PLD  

Science Journals Connector (OSTI)

Li–Mn–O thin films were deposited by pulsed laser deposition (PLD) onto stainless steel substrates using targets containing different concentrations of added Li2O. The influence of the target composition on the s...

F. Simmen; T. Lippert; P. Novák; B. Neuenschwander; M. Döbeli…

2008-11-01T23:59:59.000Z

275

System and Method for Sealing a Vapor Deposition Source - Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

costs and minimizes system downtime for cleaning Applications and Industries Thin film solar Deposition of any thin film Patents and Patent Applications ID Number Title and...

276

Studies on optoelectronic properties of DC reactive magnetron sputtered CdTe thin films  

SciTech Connect (OSTI)

Cadmium telluride continues to be a leading candidate for the development of cost effective photovoltaics for terrestrial applications. In the present work two individual metallic targets of Cd and Te were used for the deposition of CdTe thin films on mica substrates from room temperature to 300 °C by DC reactive magnetron sputtering method. XRD patterns of CdTe thin films deposited on mica substrates exhibit peaks at 2? = 27.7°, 46.1° and 54.6°, which corresponds to reflection on (1 1 1), (2 2 0) and (3 1 1) planes of CdTe cubic structure. The intensities of XRD patterns increases with the increase of substrate temperature upto 150 °C and then it decreases at higher substrate temperatures. The conductivity of CdTe thin films measured from four probe method increases with the increase of substrate temperature. The activation energies (?E) are found to be decrease with the increase of substrate temperature. The optical transmittance spectra of CdTe thin films deposited on mica have a clear interference pattern in the longer wavelength region. The films have good transparency (T > 85 %) exhibiting interference pattern in the spectral region between 1200 – 2500 nm. The optical band gap of CdTe thin films are found to be in the range of 1.48 – 1.57. The refractive index, n decreases with the increase of wavelength, ?. The value of n and k increases with the increase of substrate temperature.

Kumar, B. Rajesh, E-mail: rajphyind@gmail.com [Department of Physics, Sri Venkateswara University, Tirupati - 517 502, A.P, India and Department of Physics, Sri Krishnadevaraya University, Anantapur - 515 003, A.P (India); Hymavathi, B.; Rao, T. Subba [Department of Physics, Sri Krishnadevaraya University, Anantapur - 515 003, A.P (India)

2014-01-28T23:59:59.000Z

277

Formation of Cobalt Silicide Films by Ion Beam Deposition  

SciTech Connect (OSTI)

Thin films of cobalt silicide are widely used as metallization in very large-scale integrated electronic circuits. In this study, Co ions were deposited on Si (111) wafers by a high beam current filter metal vacuum arc deposition (FMEVAD) system. Surface silicide films were formed after annealing from 500 to 700 C for 30 minutes. Cobalt depth profiles and contaminations were determined using Rutherford backscattering spectrometry (RBS) and time-of-flight energy elastic recoil detection analysis (ToF-E ERDA). The polycrystalline cobalt silicide phases formed were characterized by grazing-incidence x-ray diffraction (GIXRD). The surface topography development and interfaces have been investigated by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The results show that a thin CoSi2 surface layer with both a smooth surface topography and sharp interface can be achieved by annealing at 700 C. The CoSi phase and O contamination were observed in the samples that were annealed at lower temperatures.

Zhang, Yanwen; McCready, David E.; Wang, Chong M.; Young, James S.; Mckinley, Mathew I.; Whitlow, Harry J.; Razpet, Alenka; Possnert, Göran; Zhang, Tonghe; Wu, Yuguang

2006-01-01T23:59:59.000Z

278

Nitrogen doped zinc oxide thin film  

SciTech Connect (OSTI)

To summarize, polycrystalline ZnO thin films were grown by reactive sputtering. Nitrogen was introduced into the films by reactive sputtering in an NO{sub 2} plasma or by N{sup +} implantation. All ZnO films grown show n-type conductivity. In unintentionally doped ZnO films, the n-type conductivities are attributed to Zn{sub i}, a native shallow donor. In NO{sub 2}-grown ZnO films, the n-type conductivity is attributed to (N{sub 2}){sub O}, a shallow double donor. In NO{sub 2}-grown ZnO films, 0.3 atomic % nitrogen was found to exist in the form of N{sub 2}O and N{sub 2}. Upon annealing, N{sub 2}O decomposes into N{sub 2} and O{sub 2}. In furnace-annealed samples N{sub 2} redistributes diffusively and forms gaseous N{sub 2} bubbles in the films. Unintentionally doped ZnO films were grown at different oxygen partial pressures. Zni was found to form even at oxygen-rich condition and led to n-type conductivity. N{sup +} implantation into unintentionally doped ZnO film deteriorates the crystallinity and optical properties and leads to higher electron concentration. The free electrons in the implanted films are attributed to the defects introduced by implantation and formation of (N{sub 2}){sub O} and Zni. Although today there is still no reliable means to produce good quality, stable p-type ZnO material, ZnO remains an attractive material with potential for high performance short wavelength optoelectronic devices. One may argue that gallium nitride was in a similar situation a decade ago. Although we did not obtain any p-type conductivity, we hope our research will provide a valuable reference to the literature.

Li, Sonny X.

2003-12-15T23:59:59.000Z

279

Room temperature ferromagnetism in Co defused CdTe nanocrystalline thin films  

SciTech Connect (OSTI)

Nanocrystalline Co defused CdTe thin films were prepared using electron beam evaporation technique by depositing CdTe/Co/CdTe stacked layers with different Co thickness onto glass substrate at 373 K followed by annealing at 573K for 2 hrs. Structural, morphological and magnetic properties of of all the Co defused CdTe thin films has been investigated. XRD pattern of all the films exhibited zinc blende structure with <111> preferential orientation without changing the crystal structure of the films. The grain size of the films increased from 31.5 nm to 48.1 nm with the increase of Co layer thickness from 25nm to 100nm. The morphological studies showed that uniform texture of the films and the presence of Co was confirmed by EDAX. Room temperature magnetization curves indicated an improved ferromagnetic behavior in the films with increase of the Co thickness.

Rao, N. Madhusudhana; Kaleemulla, S.; Begam, M. Rigana [Materials Physics Division, School of Advanced Sciences, VIT University, Vellore - 632 014 (India)

2014-04-24T23:59:59.000Z

280

Blue photoluminescence in ZnGa{sub 2}O{sub 4} thin-film phosphors  

SciTech Connect (OSTI)

The growth and properties of luminescent ZnGa{sub 2}O{sub 4} thin films using pulsed laser ablation has been investigated. As-deposited films on glass and (100) MgO substrates exhibit blue-white photoluminescence with a broad emission band under ultraviolet excitation. In situ epitaxial films obtained on single crystal (100) MgO substrates possess enhanced luminescent intensity as compared to polycrystalline films on glass substrates. The enhanced luminescence in epitaxial films presumably reflects lower defect densities due to growth on low energy surfaces.

Lee, Yong Eui; Norton, David P.; Park, Chan; Rouleau, Christopher M.

2001-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "thin film deposited" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Synthesis and characterization of titanium-alloyed hematite thin films for photoelectrochemical water splitting  

SciTech Connect (OSTI)

We have synthesized pure and Ti-alloyed hematite thin films on F doped SnO{sub 2} coated glass substrates by radio frequency magnetron co-sputtering of iron oxide and titanium targets in mixed Ar/O{sub 2} and mixed N{sub 2}/O{sub 2} ambient. We found that the hematite films deposited in the N{sub 2}/O{sub 2} ambient exhibit much poorer crystallinity than the films deposited in the Ar/O{sub 2} ambient. We determined that Ti alloying leads to increased electron carrier concentration and crystallinity, and reduced bandgaps. Moreover, Ti-alloyed hematite thin films exhibited improved photoelectrochemical performance as compared with the pure hematite films: The photocurrents were enhanced and the photocurrent onset shifted to less positive potentials.

Tang Houwen [National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401 (United States); University of Denver, Electrical Engineering Department, 2390 S. York Street, Denver, Colorado 80210 (United States); Matin, M. A. [University of Denver, Electrical Engineering Department, 2390 S. York Street, Denver, Colorado 80210 (United States); Wang, Heli; Deutsch, Todd; Al-Jassim, Mowafak; Turner, John; Yan, Yanfa [National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401 (United States)

2011-12-15T23:59:59.000Z

282

Synthesis and Characterization of Titanium-Alloyed Hematite Thin Films for Photoelectrochemical Water Splitting  

SciTech Connect (OSTI)

We have synthesized pure and Ti-alloyed hematite thin films on F doped SnO{sub 2} coated glass substrates by radio frequency magnetron co-sputtering of iron oxide and titanium targets in mixed Ar/O{sub 2} and mixed N{sub 2}/O{sub 2} ambient. We found that the hematite films deposited in the N{sub 2}/O{sub 2} ambient exhibit much poorer crystallinity than the films deposited in the Ar/O{sub 2} ambient. We determined that Ti alloying leads to increased electron carrier concentration and crystallinity, and reduced bandgaps. Moreover, Ti-alloyed hematite thin films exhibited improved photoelectrochemical performance as compared with the pure hematite films: The photocurrents were enhanced and the photocurrent onset shifted to less positive potentials.

Tang, H.; Matin, M. A.; Wang, H.; Deutsch, T.; Al-Jassim, M.; Turner, J.; Yan, Y.

2011-12-15T23:59:59.000Z

283

Thin film photovoltaic panel and method  

DOE Patents [OSTI]

A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

Ackerman, Bruce (El Paso, TX); Albright, Scot P. (El Paso, TX); Jordan, John F. (El Paso, TX)

1991-06-11T23:59:59.000Z

284

Method for continuous control of composition and doping of pulsed laser deposited films  

DOE Patents [OSTI]

A method for growing a deposit upon a substrate of semiconductor material involves the utilization of pulsed laser deposition techniques within a low-pressure gas environment. The substrate and a target of a first material are positioned within a deposition chamber and a low-pressure gas atmosphere is developed within the chamber. The substrate is then heated, and the target is irradiated, so that atoms of the target material are ablated from the remainder of the target, while atoms of the gas simultaneously are adsorbed on the substrate/film surface. The ablated atoms build up upon the substrate, together with the adsorbed gas atoms to form the thin-film deposit on the substrate. By controlling the pressure of the gas of the chamber atmosphere, the composition of the formed deposit can be controlled, and films of continuously variable composition or doping can be grown from a single target of fixed composition.

Lowndes, Douglas H. (Knoxville, TN); McCamy, James W. (Knoxville, TN)

1995-01-01T23:59:59.000Z

285

Method for continuous control of composition and doping of pulsed laser deposited films by pressure control  

DOE Patents [OSTI]

A method for growing a deposit upon a substrate of semiconductor material involves the utilization of pulsed laser deposition techniques within a low-pressure gas environment. The substrate and a target of a first material are positioned within a deposition chamber and a low-pressure gas atmosphere is developed within the chamber. The substrate is then heated, and the target is irradiated, so that atoms of the target material are ablated from the remainder of the target, while atoms of the gas simultaneously are adsorbed on the substrate/film surface. The ablated atoms build up upon the substrate, together with the adsorbed gas atoms to form the thin-film deposit on the substrate. By controlling the pressure of the gas of the chamber atmosphere, the composition of the formed deposit can be controlled, and films of continuously variable composition or doping can be grown from a single target of fixed composition.

Lowndes, Douglas H. (Knoxville, TN); McCamy, James W. (Knoxville, TN)

1996-01-01T23:59:59.000Z

286

Fracture patterns in thin films and multilayers Alex A. Volinsky  

E-Print Network [OSTI]

Fracture patterns in thin films and multilayers Alex A. Volinsky University of South Florida, excessive residual and externally applied stresses cause film fracture. In the case of tensile stress is the key for causing thin film fracture, either in tension, or compression, it is the influence

Volinsky, Alex A.

287

Investigation of hexadecanethiol self-assembled monolayers on cadmium tin oxide thin films  

Science Journals Connector (OSTI)

This study reports the use of variable angle reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy to investigate the formation of a 1-hexadecanethiol adlayer on cadmium tin oxide (CTO) thin film surfaces. These adlayers appear to be robust, ordered monolayers. The optical and electronic properties of CTO thin films chemically vapor deposited onto glass substrates were also investigated. The reflectance of the CTO films was dependent upon the incident angle of the impinging radiation and revealed a reflectance decrease indicative of a plasma frequency in the mid-IR using p-polarized radiation.

Crissy L. Rhodes; Scott H. Brewer; Jaap Folmer; Stefan Franzen

2008-01-01T23:59:59.000Z

288

The Electrical Behavior of Thin Metallic Films Condensed at Low Temperatures  

Science Journals Connector (OSTI)

The change of resistance of thin films of zinc and cadmium condensed at low temperature has been studied. The resistance of a zinc film decreases irreversibly with rising temperature, but it also decreases slowly at a constant temperature above the temperature of deposition. If the surface upon which the film is deposited is of a metal similar to zinc, it influences the temperature resistance relation, but if of a metal not similar to zinc, it does not. The experiments favor the assumption that agglomeration and crystallization are responsible for the changes in resistance.

H. Rees Mitchell

1938-02-01T23:59:59.000Z

289

Electronic and optical properties of ScN and (Sc,Mn)N thin films deposited by reactive DC-magnetron sputtering  

SciTech Connect (OSTI)

Scandium nitride (ScN) is a rocksalt semiconductor that has attracted significant attention from various researchers for a diverse range of applications. Motivated by the prospect of using its interesting electronic structure for optoelectronic and dilute magnetic semiconductor applications, we present detailed studies of the electronic transport and optical properties of ScN and its alloys with manganese nitride (MnN). Our results suggest (a) dilute manganese doping in ScN compensates for the high n-type carrier concentrations arising due to oxygen impurities and (b) an n-type to p-type carrier type transition occurs at a composition between 5.8% and 11% Mn on Sc sites. In terms of its optical properties, our analysis clearly indicates direct and indirect bandgap absorption edges of ScN located at 2.04 eV and 1.18 eV, respectively. In addition to the direct gap absorption edge, (Sc,Mn)N samples also show Mn-defect induced electronic absorption. Photoluminescence measurements at room temperature from ScN films exhibit a yellowish-green emission corresponding to direct gap radiative recombination. Direct gap recombination is not expected given the smaller indirect gap. A possible role of high excitation intensities in suppressing relaxation and recombination across the indirect bandgap is suspected. Raman spectroscopic and ellipsometric characterization of the dielectric permittivities of ScN and (Sc,Mn)N are also presented to assist in understanding the potential of ScN for optoelectronic applications.

Saha, Bivas [School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States) [School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Naik, Gururaj; Boltasseva, Alexandra [Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States) [Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Drachev, Vladimir P. [Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States) [Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Department of Physics, University of North Texas, Denton, Texas 76203 (United States); Marinero, Ernesto E. [School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)] [School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Sands, Timothy D. [School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States) [School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

2013-08-14T23:59:59.000Z

290

Growth and characterization of Pt-protected Gd5Si4 thin films  

SciTech Connect (OSTI)

Successful growth and characterization of thin films of giant magnetocaloric Gd5(SixGe1?x)4 were reported in the literature with limited success. The inherent difficulty in producing this complex material makes it difficult to characterize all the phases present in the thin films of this material. Therefore, thin film of binary compound of Gd5Si4 was deposited by pulsed laser deposition. It was then covered with platinum on the top of the film to protect against any oxidation when the film was exposed to ambient conditions. The average film thickness was measured to be approximately 350?nm using a scanning electron microscopy, and the composition of the film was analyzed using energy dispersive spectroscopy. X-ray diffraction analysis indicates the presence of Gd5Si4 orthorhombic structure along with Gd5Si3 secondary phase. The transition temperature of the film was determined from magnetic moment vs. temperature measurement. The transition temperature was between 320 and 345?K which is close to the transition temperature of the bulk material. Magnetic moment vs. magnetic field measurement confirmed that the film was ferromagnetic below 342?K.

Hadimani, R. L.; Mudryk, Y.; Prost, T. E.; Pecharsky, V. K.; Gschneidner, K. A.; Jiles, D. C.

2014-05-07T23:59:59.000Z

291

Fabrication Of Multilayered Thin Films Via Spin-Assembly  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fabrication Of Multilayered Thin Films Via Spin-Assembly Fabrication Of Multilayered Thin Films Via Spin-Assembly Fabrication Of Multilayered Thin Films Via Spin-Assembly A process of forming multilayer thin film heterostructures. Available for thumbnail of Feynman Center (505) 665-9090 Email Fabrication Of Multilayered Thin Films Via Spin-Assembly A process of forming multilayer thin film heterostructures is disclosed and includes applying a solution including a first water-soluble polymer from the group of polyanionic species, polycationic species and uncharged polymer species onto a substrate to form a first coating layer on the substrate, drying the first coating layer on the substrate, applying a solution including a second water-soluble polymer from the group of polyanionic species, polycationic species and uncharged polymer species

292

NREL: Photovoltaics Research - Thin Film Photovoltaic Partnership Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thin Film Photovoltaic Partnership Project Thin Film Photovoltaic Partnership Project NREL's Thin Film Photovoltaic (PV) Partnership Project led R&D on emerging thin-film solar technologies in the United States from 1994 to 2009. The project made many advances in thin-film PV technologies that allowed the United States to attain world leadership in this area of solar technology. Three national R&D teams focused on thin-film semiconductor materials: amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium diselenide (CIGS) and its alloys. The Module Reliability Team and Environmental Health and Safety Team were crosscutting. The teams comprised researchers from the solar industry, academia, and NREL who focused their efforts on improving materials, devices, and manufacturing processes-all

293

Surface characterization and electronic structure of HgTe nanocrystalline thin films  

Science Journals Connector (OSTI)

Mercury telluride (HgTe) nanocrystalline thin films were synthesized using an electrochemical deposition technique. The surface morphology of the thin films were investigated by atomic force microscopy (AFM) as a function of the film thickness which shows that an increase in film thickness increases the surface roughness. The scaling exponents such as roughness exponent, ? and growth exponent, ? associated with the film growth, determined from surface and power spectral analysis using AFM are found to be 0.88±0.05 and 0.21±0.04 respectively. The shifting of the valence and core levels to higher binding energy as evidenced from x-ray photoelectron spectroscopy, suggest the change in electronic structure of the nano-HgTe films possibly due to the surface roughness.

S. Rath, D. Paramanik, S. N. Sarangi, S. Varma, and S. N. Sahu

2005-11-08T23:59:59.000Z

294

Oxidation of In2S3 films to synthetize In2S3(1-x)O3x thin films as a buffer layer in solar cells  

E-Print Network [OSTI]

Oxidation of In2S3 films to synthetize In2S3(1-x)O3x thin films as a buffer layer in solar cells S layers for solar cells. PACS : 68.55.ag Semiconductors, 68.55.J Morphology of films , 68.55.Nq the oxidation occurs is strongly dependent on the texture of deposited films. As-grown films deposited

Boyer, Edmond

295

Nanoarrays for Light Management in Thin Film Solar Cells  

Science Journals Connector (OSTI)

We report the use of plasmonic and photonic nanoarray to achieve light management in thin film solar cells. Theoretical and experimental data will be presented.

Ji, Jin; Nasr, Magued B; McCutcheon, Murray W; Herring, Cy

296

Apparatus and Method for Fabricating Thin Film Devices using...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

method for manufacturing thin-films was developed specifically for fabrication of CdSCdTe photovoltaic modules. However, this innovation should perform excellently for any...

297

Partial Shading in Monolithic Thin Film PV Modules: Analysis...  

Broader source: Energy.gov (indexed) [DOE]

A. Alam, "Identification, Characterization and Implications of Shadow Degradation in Thin Film Solar Cells," in Reliability Physics Symposium (IRPS), 2011 IEEE International, 2011,...

298

Low-Cost Light Weigh Thin Film Solar Concentrators  

Broader source: Energy.gov (indexed) [DOE]

Light Weight Thin Film Solar Concentrators PI: Gani B. Ganapathi (JPLCaltech) Other Contributors: L'Garde: Art Palisoc, Gyula Greschik, Koorosh Gidanian JPL: Bill Nesmith,...

299

Thermochromic Properties of Nanocrystal-based Thin Films | The...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanocrystal-based Thin Films Functional coatings that can selectively reflect or transmit near-infrared solar radiation while maintiaining high transmittance for visible light can...

300

Photovoltaic effect in transition metal modified polycrystalline BiFeO3 thin films  

Science Journals Connector (OSTI)

We report photovoltaic (PV) effect in multiferroic Bi0.9Sm0.1Fe0.95Co0.05O3 (BSFCO) thin films. Transition metal modified polycrystalline BiFeO3 (BFO) thin films have been deposited on Pt/TiO2/SiO2/Si substrate successfully through pulsed laser deposition (PLD). PV response is observed under illumination both in sandwich and lateral electrode configurations. The open-circuit voltage (Voc) and the short-circuit current density (Jsc) of the films in sandwich electrode configuration under illumination are measured to be 0.9 V and ?0.051 µA cm?2. Additionally, we report piezoresponse for BSFCO films, which confirms ferroelectric piezoelectric behaviour.

Venkata Sreenivas Puli; Dhiren Kumar Pradhan; Rajesh Kumar Katiyar; Indrani Coondoo; Neeraj Panwar; Pankaj Misra; Douglas B Chrisey; J F Scott; Ram S Katiyar

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thin film deposited" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Development of Thin Film Membrane Assemblies with Novel Nanostructured Electrocatalyst for Next Generation Fuel Cells  

E-Print Network [OSTI]

Development of Thin Film Membrane Assemblies with Novel Nanostructured Electrocatalyst for Next of the efficiency loss (80%) in a fuel cell arises due to the cathode. Oxygen reduction at the cathode requires is to synthesize nanosized Pt-X electrocatalysts for oxygen reduction through pulse and electroless deposition

Popov, Branko N.

302

Thin film photovoltaic device with multilayer substrate  

DOE Patents [OSTI]

A thin film photovoltaic device which utilizes at least one compound semiconductor layer chosen from Groups IIB and VA of the Periodic Table is formed on a multilayer substrate The substrate includes a lowermost support layer on which all of the other layers of the device are formed. Additionally, an uppermost carbide or silicon layer is adjacent to the semiconductor layer. Below the carbide or silicon layer is a metal layer of high conductivity and expansion coefficient equal to or slightly greater than that of the semiconductor layer.

Catalano, Anthony W. (Rushland, PA); Bhushan, Manjul (Wilmington, DE)

1984-01-01T23:59:59.000Z

303

99.996 %{sup 12}C films isotopically enriched and deposited in situ  

SciTech Connect (OSTI)

Ionizing natural abundance carbon dioxide gas, we extract and mass select the ions, depositing thin films isotopically enriched to 99.9961(4) %{sup 12}C as measured by secondary ion mass spectrometry (SIMS). In solid state quantum information, coherence times of nitrogen-vacancy (NV) centers in {sup 12}C enriched diamond exceeding milliseconds demonstrate the viability of NV centers as qubits, motivating improved isotopic enrichment. NV centers in diamond are particularly attractive qubit candidates due to the optical accessibility of the spin states. We present SIMS analysis and cross-sectional scanning electron microscopy of {sup 12}C enriched thin film samples grown with this method.

Dwyer, K. J. [Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20740 (United States) [Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20740 (United States); National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8423 (United States); Pomeroy, J. M.; Simons, D. S. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8423 (United States)] [National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8423 (United States)

2013-06-24T23:59:59.000Z

304

Rechargeable thin-film lithium batteries  

SciTech Connect (OSTI)

Rechargeable thin-film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. These include Li-TiS{sub 2}, Li-V{sub 2}O{sub 5}, and Li-Li{sub x}Mn{sub 2}O{sub 4} cells with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The realization of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46}and a conductivity at 25 C of 2 {mu}S/cm. The thin-film cells have been cycled at 100% depth of discharge using current densities of 5 to 100 {mu}A/cm{sup 2}. Over most of the charge-discharge range, the internal resistance appears to be dominated by the cathode, and the major source of the resistance is the diffusion of Li{sup +} ions from the electrolyte into the cathode. Chemical diffusion coefficients were determined from ac impedance measurements.

Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, X.

1993-09-01T23:59:59.000Z

305

Thin-film Rechargeable Lithium Batteries  

DOE R&D Accomplishments [OSTI]

Rechargeable thin films batteries with lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. The cathodes include TiS{sub 2}, the {omega} phase of V{sub 2}O{sub 5}, and the cubic spinel Li{sub x}Mn{sub 2}O{sub 4} with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The development of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25 C of 2 {mu}S/cm. Thin film cells have been cycled at 100% depth of discharge using current densities of 2 to 100 {mu}A/cm{sup 2}. The polarization resistance of the cells is due to the slow insertion rate of Li{sup +} ions into the cathode. Chemical diffusion coefficients for Li{sup +} ions in the three types of cathodes have been estimated from the analysis of ac impedance measurements.

Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, X.

1993-11-00T23:59:59.000Z

306

TEM and x-ray investigation of single crystal-like zirconia films fabricated by dual ion beam deposition  

SciTech Connect (OSTI)

Single crystal-like yttria-stabilized zirconia (YSZ) thin films have been deposited on amorphous quartz, polycrystalline zirconia, single crystal Si, and Hastelloy substrates using dual ion beam deposition (IBAD). These films are highly crystallographically aligned both normal to and within the film plane. The films are deposited at low substrate temperatures (< 200 C), and the film orientation is substrate independent. 0--20 X-ray diffraction, X-ray rocking curves, X-ray pole figures and X-ray phi scans are used to evaluate the film structure. High resolution cross-sectional TEM is used to examine the evolution of crystallographic film alignment on an amorphous quartz substrate. The data suggest that the evolution of biaxial alignment is nucleation controlled under these conditions.

Ressler, K.G.; Sonnenberg, N.; Cima, M.J. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Ceramics Processing Research Lab.

1996-12-31T23:59:59.000Z

307

Experimental characterisations of thin film transmission line losses  

E-Print Network [OSTI]

Experimental characterisations of thin film transmission line losses D. Kim, H. Kim and Y. Eo New frequency-variant losses of planar thin film transmission lines are experimentally investigated in a broad frequency range. The fre- quency-variant transmission line parameters are accurately determined

308

Avalanches through windows: Multiscale visualization in magnetic thin films  

E-Print Network [OSTI]

Avalanches through windows: Multiscale visualization in magnetic thin films Alessandro Magni, Cornell University, Ithaca, NY 14853-2501 Abstract--The dynamics of domain walls motion in thin films dynamics, but are strongly dependent on the size of the windows chosen. Here we investigate how to properly

Sethna, James P.

309

Amorphous hafnium-indium-zinc oxide semiconductor thin film transistors  

Science Journals Connector (OSTI)

We reported on the performance and electrical properties of co-sputtering-processed amorphous hafnium-indium-zinc oxide (?-HfIZO) thin film transistors (TFTs). Co-sputtering-processed ?-HfIZO thin films have shown an amorphous phase in nature. ...

Sheng-Po Chang; San-Syong Shih

2012-01-01T23:59:59.000Z

310

APPLIED PHYSICS REVIEWS Erbium implanted thin film photonic materials  

E-Print Network [OSTI]

, phosphosilicate, borosilicate, and soda-lime glasses , ceramic thin films Al2O3, Y2O3, LiNbO3 , and amorphous. Phosphosilicate glass. . . . . . . . . . . . . . . . . . . . . . 7 C. Soda-lime silicate glass Er-doped thin film photonic materials is described. It focuses on oxide glasses pure SiO2

Polman, Albert

311

Real-time curvature and optical spectroscopy monitoring of magnetron-sputtered \\{WTi\\} alloy thin films  

Science Journals Connector (OSTI)

Abstract \\{WTi\\} thin films are known as potential adhesion promoters and diffusion barriers. \\{WTi\\} thin films were deposited by magnetron sputtering from an alloyed target (W:Ti ~ 70:30 at.%). Real-time surface differential reflectance (SDR) spectroscopy and wafer-curvature measurements were performed during deposition to study the growth and the film continuity threshold. SDR measurements during \\{WTi\\} deposition allow the determination of the change in reflectivity of p-polarized light (at Si substrate Brewster's angle) between \\{WTi\\} film and Si substrate in order to monitor layer growth. The comparison between experimental and simulated \\{WTi\\} SDR signals assuming a homogeneous and continuous layer growth shows that film continuity is ensured beyond a thickness of 4.5 ± 0.2 nm. Real-time wafer-curvature measurements allow the determination of the intrinsic stress development in the film. Two regimes are noticed during the growth up to the development of a compressive steady state stress. The early stages of growth are rather complicated and divided into sub-regimes with similar boundaries revealed by both in situ techniques. Deposition of an interfacial continuous layer different from \\{WTi\\} bulk is suggested by both in situ techniques below a thickness of 4.5 nm.

A. Le Priol; L. Simonot; G. Abadias; P. Guérin; P.-O. Renault; E. Le Bourhis

2013-01-01T23:59:59.000Z

312

Advanced Thin Film Thermoelectric Systems forEfficient Air-Conditioner...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thin Film Thermoelectric Systems forEfficient Air-Conditioners Advanced Thin Film Thermoelectric Systems forEfficient Air-Conditioners Presents recent advances in thermoelectric...

313

Influence of Boron doping on the structural, optical and electrical properties of CdO thin films by spray pyrolysis technique  

SciTech Connect (OSTI)

Cadmium oxide and Boron (B) doped Cadmium oxide thin films were deposited using spray pyrolysis technique. The structural, morphological, electrical and optical properties of undoped and B doped CdO films are analyzed by varying the dopant concentration in the solution. The structural study shows the polycrystalline nature and cubic structure of undoped and B doped CdO thin films. Surface morphological study reveals that the grains are spherical in shape. Optical and electrical studies showed n-type semiconducting nature and optical band gap of 2.44 eV of deposited thin films.

Velusamy, P., E-mail: rampap2k@yahoo.co.in; Babu, R. Ramesh, E-mail: rampap2k@yahoo.co.in [Crystal Growth and Thin Films Laboratory, Department of Physics, Bharathidasan University, Tiruchirappalli- 620024, Tamil Nadu (India); Ramamurthi, K. [Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM University, Kattankulathur - 603203, Tamil Nadu (India)

2014-04-24T23:59:59.000Z

314

Synthesis and characterization of CdIn2O4 thin films by spray pyrolysis technique  

Science Journals Connector (OSTI)

Transparent conducting cadmium indium oxide (CIO) thin films were deposited onto preheated glass substrates by using spray pyrolysis technique with cadmium acetate and indium acetate as precursors for Cd and In ions, respectively. The films have been deposited at various substrate temperatures within 250–325 °C. As-deposited films were annealed at optimized temperature of 400 °C for 2 h in order to enhance the film properties under ambient air atmosphere. These films were characterized by X-ray diffraction (XRD), SEM, optical absorption and Hall effect techniques. The XRD studies reveal that films are of polycrystalline CdIn2O4 with cubic spinel structure and crystallinity increases appreciably after annealing. Optical absorption study shows the presence of direct optical transition and the band gap energy, estimated for as-deposited and annealed films were observed to be 3.1 and 3.0 eV, respectively. The decrease of electrical resistivity from 91.2 × 10?3 to 1.92 × 10?3 ? cm have been observed after annealing, due to improvement in the crystallinity of the films. The highest figure of merit observed in the present study is 4.51 × 10?3 cm2 ??1.

R.J. Deokate; C.H. Bhosale; K.Y. Rajpure

2009-01-01T23:59:59.000Z

315

Methods of making copper selenium precursor compositions with a targeted copper selenide content and precursor compositions and thin films resulting therefrom  

DOE Patents [OSTI]

Precursor compositions containing copper and selenium suitable for deposition on a substrate to form thin films suitable for semi-conductor applications. Methods of forming the precursor compositions using primary amine solvents and methods of forming the thin films wherein the selection of temperature and duration of heating controls the formation of a targeted species of copper selenide.

Curtis, Calvin J. (Lakewood, CO); Miedaner, Alexander (Boulder, CO); van Hest, Marinus Franciscus Antonius Maria (Lakewood, CO); Ginley, David S. (Evergreen, CO); Leisch, Jennifer (Denver, CO); Taylor, Matthew (West Simsbury, CT); Stanbery, Billy J. (Austin, TX)

2011-09-20T23:59:59.000Z

316

Thin-film silicon triple-junction solar cell with 12.5% stable efficiency on innovative flat light-scattering substrate  

E-Print Network [OSTI]

Thin-film silicon triple-junction solar cell with 12.5% stable efficiency on innovative flat light://jap.aip.org/about/rights_and_permissions #12;Thin-film silicon triple-junction solar cell with 12.5% stable efficiency on innovative flat light require light-trapping schemes that are predominantly based on depositing the solar cells on rough

Psaltis, Demetri

317

Thin film adhesion by nanoindentation-induced superlayers. Final report  

SciTech Connect (OSTI)

This work has analyzed the key variables of indentation tip radius, contact radius, delamination radius, residual stress and superlayer/film/interlayer properties on nanoindentation measurements of adhesion. The goal to connect practical works of adhesion for very thin films to true works of adhesion has been achieved. A review of this work titled ''Interfacial toughness measurements of thin metal films,'' which has been submitted to Acta Materialia, is included.

Gerberich, William W.; Volinsky, A.A.

2001-06-01T23:59:59.000Z

318

An (ultra) high-vacuum compatible sputter source for oxide thin film growth  

SciTech Connect (OSTI)

A miniaturised CF-38 mountable sputter source for oxide and metal thin film preparation with enhanced high-vacuum and ultra-high-vacuum compatibility is described. The all home-built sputtering deposition device allows a high flexibility also in oxidic sputter materials, suitable deposition rates for preparation of films in the nm- and the sub-monolayer regime and excellent reliability and enhanced cleanliness for usage in UHV chambers. For a number of technologically important – yet hardly volatile – materials, the described source represents a significant improvement over thermal deposition techniques like electron-beam- or thermal evaporation, as especially the latter are no adequate tool to prepare atomically clean layers of refractory oxide materials. Furthermore, it is superior to commercially available magnetron sputter devices, especially for applications, where highly reproducible sub-monolayer thin film preparation under very clean UHV conditions is required (e.g., for studying phase boundary effects in catalysis). The device in turn offers the usage of a wide selection of evaporation materials and special target preparation procedures also allow the usage of pressed oxide powder targets. To prove the performance of the sputter-source, test preparations with technologically relevant oxide components, comprising ZrO{sub 2} and yttrium-stabilized ZrO{sub 2}, have been carried out. A wide range of characterization methods (electron microscopy, X-ray photoelectron spectroscopy, low-energy ion scattering, atomic force microscopy, and catalytic testing) were applied to demonstrate the properties of the sputter-deposited thin film systems.

Mayr, Lukas; Köpfle, Norbert; Auer, Andrea; Klötzer, Bernhard; Penner, Simon [Institute for Physical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck (Austria)] [Institute for Physical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck (Austria)

2013-09-15T23:59:59.000Z

319

Photovoltages Larger than the Band Gap in Thin Films of Germanium  

Science Journals Connector (OSTI)

Photovoltages much larger than the band gap were investigated in thin films of germanium deposited obliquely onto Pyrex substrates. The voltages were studied as functions of angle of deposit film thickness intensity of illumination temperature and ambient atmosphere. A model is presented which explains the following observations. Positive and negative photovoltages exist simultaneously in a single sample; which of these predominates changes with time. Dark resistance and photovoltage exhibit the same temperature dependence with identical activation energies indicating that both dark resistance and photovoltage arise from the same elementary processes.

H. Kallmann; G. Marmor Spruch; S. Trester

1972-01-01T23:59:59.000Z

320

Quantitative Determination of Dielectric Thin-Film Properties Using Infrared Emission Spectroscopy  

SciTech Connect (OSTI)

We have completed an experimental study to investigate the use of infrared emission spectroscopy (IRES) for the quantitative analysis of borophosphosilicate glass (BPSG) thin films on silicon monitor wafers. Experimental parameters investigated included temperatures within the range used in the microelectronics industry to produce these films; hence the potential for using the IRES technique for real-time monitoring of the film deposition process has been evaluated. The film properties that were investigated included boron content, phosphorus content, film thickness, and film temperature. The studies were conducted over two temperature ranges, 125 to 225 *C and 300 to 400 *C. The later temperature range includes realistic processing temperatures for the chemical vapor deposition (CVD) of the BPSG films. Partial least squares (PLS) multivariate calibration methods were applied to spectral and film property calibration data. The cross-validated standard errors of prediction (CVSEP) fi-om the PLS analysis of the IRES spectraof21 calibration samples each measured at 6 temperatures in the 300 to 400 "C range were found to be 0.09 wt. `?40 for B, 0.08 wt. `%0 for P, 3.6 ~m for film thickness, and 1.9 *C for temperature. By lowering the spectral resolution fi-om 4 to 32 cm-l and decreasing the number of spectral scans fi-om 128 to 1, we were able to determine that all the film properties could be measured in less than one second to the precision required for the manufacture and quality control of integrated circuits. Thus, real-time in-situ monitoring of BPSG thin films formed by CVD deposition on Si monitor wafers is possible with the methods reported here.

Franke, J.E.; Haaland, D.M.; Niemczyk, T.M.; Zhang, S.

1998-10-14T23:59:59.000Z

Note: This page contains sample records for the topic "thin film deposited" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Classical limit of the Casimir interaction for thin films with applications to graphene  

E-Print Network [OSTI]

The Casimir interaction between two thin material films, between a film and a thick plate and between two films deposited on substrates is considered at large separations (high temperatures) which correspond to the classical limit. It is shown that the free energy of the classical Casimir interaction between two insulating films with no free charge carriers and between an insulating film and a material plate depends on film thicknesses and decreases with separation more rapidly than the classical limit for two thick plates. The free energy of thin films characterized by the metallic-type dielectric permittivity decreases as the second power of separation, i.e., demonstrates the standard classical limit. The obtained results shed light on the possibility to describe dispersion interaction between two graphene sheets and between a graphene sheet and a material plate by modeling graphene as a thin film possessing some dielectric permittivity. It is argued that the most reliable results are obtained by describing the reflection properties on graphene by means of the polarization tensor in (2+1)-dimensional space-time.

G. L. Klimchitskaya; V. M. Mostepanenko

2013-12-23T23:59:59.000Z

322

Method for making surfactant-templated thin films  

DOE Patents [OSTI]

An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

Brinker, C. Jeffrey (Albuquerque, NM); Lu, Yunfeng (New Orleans, LA); Fan, Hong You (Albuquerque, NM)

2010-08-31T23:59:59.000Z

323

Method for making surfactant-templated thin films  

DOE Patents [OSTI]

An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

Brinker, C. Jeffrey (Albuquerque, NM); Lu, Yunfeng (San Jose, CA); Fan, Hongyou (Albuquerque, NM)

2002-01-01T23:59:59.000Z

324

Structure and dielectric properties of La{sub x}Hf{sub (1?x)}O{sub y} thin films: The dependence of components  

SciTech Connect (OSTI)

Graphical abstract: - Highlights: • La{sub x}Hf{sub (1?x)}O{sub y} thin films were grown by pulse laser deposition method. • The thin film with 10% La/(La + Hf) atom ratio forms a cubic HfO{sub 2} phase. • The amorphous thin films due to more La introduced have almost same local structure. • The main infrared phonon modes move to lower frequency for the amorphous thin films. • The static dielectric constants of the amorphous thin films increase with La content. - Abstract: La{sub x}Hf{sub (1?x)}O{sub y} (x = 0, 0.1, 0.3, 0.5, 0.7, y=2?(1/2)x) thin films were grown by pulsed laser deposition (PLD) method. The component dependence of the structure and vibration properties of these thin films is studied by combining X-ray diffraction, X-ray absorption fine structure (XAFS) and infrared spectroscopy. The thin film with 10% La/(La + Hf) atom ratio forms a cubic HfO{sub 2} phase and it has the largest static dielectric constant. More La atoms introduced cause amorphous phase formed and the static dielectric constants increase with the La content. Although XAFS indicates that these amorphous thin films have almost same local structures, the infrared phonon modes with most contribution to the static dielectric constant move to lower frequency, which results in the component dependence of the dielectric constant.

Qi, Zeming, E-mail: zmqi@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029 (China); Cheng, Xuerui [Department of Technology and Physics, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002 (China); Zhang, Guobin [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029 (China); Li, Tingting [Institute of Microelectronics of Chinese Academy of Science, Beijing 100029 (China); Wang, Yuyin; Shao, Tao; Li, Chengxiang; He, Bo [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029 (China)

2013-07-15T23:59:59.000Z

325

Josephson junction in a thin film  

SciTech Connect (OSTI)

The phase difference {phi}(y) for a vortex at a line Josephson junction in a thin film attenuates at large distances as a power law, unlike the case of a bulk junction where it approaches exponentially the constant values at infinities. The field of a Josephson vortex is a superposition of fields of standard Pearl vortices distributed along the junction with the line density {phi}'(y)/2{pi}. We study the integral equation for {phi}(y) and show that the phase is sensitive to the ratio l/{Lambda}, where l={lambda}{sub J}{sup 2}/{lambda}{sub L}, {Lambda}=2{lambda}{sub L}{sup 2}/d, {lambda}{sub L}, and {lambda}{sub J} are the London and Josephson penetration depths, and d is the film thickness. For l<<{Lambda}, the vortex ''core'' of the size l is nearly temperature independent, while the phase ''tail'' scales as l{Lambda}/y{sup 2}={lambda}{sub J}2{lambda}{sub L}/d/y{sup 2}; i.e., it diverges as T{yields}T{sub c}. For l>>{Lambda}, both the core and the tail have nearly the same characteristic length l{Lambda}.

Kogan, V. G.; Dobrovitski, V. V.; Clem, J. R.; Mawatari, Yasunori; Mints, R. G.

2001-04-01T23:59:59.000Z

326

Highly photosensitive properties of CdS thin films doped with boron in high doping levels  

Science Journals Connector (OSTI)

We report the photosensitive properties of CdS thin films doped with boron at high doping levels. Boron-doped CdS thin films were successfully prepared through the chemical bath deposition (CBD) method. The photosensitive properties of the boron-doped CdS thin films were significantly affected by the molar ratio of boric acid (H3BO3) to cadmium acetate (CdAc2) (0.001, 0.1, 0.15, and 0.25) and by NH3 concentration (7 and 14 M). As the H3BO3/CdAc2 molar ratio increased, dark sheet resistance rapidly increased, and the boron-doped CdS thin film exhibited the highest room temperature photosensitivity (?1×106 at 0.15–0.25 H3BO3/CdAc2 molar ratio). The photosensitive properties of the boron-doped CdS thin films were much higher than those previously reported in boron-doped CdS systems.

Kiran Kumar Challa; Edoardo Magnone; Eui-Tae Kim

2012-01-01T23:59:59.000Z

327

Electrical properties of thin-film structures formed by pulsed laser deposition of Au, Ag, Cu, Pd, Pt, W, Zr metals on n-6H-SiC crystal  

SciTech Connect (OSTI)

Diode structures with ideality factors of 1.28-2.14 and potential barriers from 0.58 to 0.62 eV on the semiconductor side were formed by pulsed laser deposition of Au, Ag, Cu, Pd, Pt, W, and Zr metal films on n-6H-SiC crystal without epitaxial layer preparation. A high density of surface acceptor and donor states was formed at the metal-semiconductor interface during deposition of the laser-induced atomic flux, which violated the correlation between the potential barrier height and metal work function. The barrier heights determined from characteristic currents and capacitance measurements were in quite good agreement. For the used low-resistance semiconductor and contact elements, the sizes of majority carrier (electron) depletion regions were determined as 26-60 nm.

Romanov, R. I.; Zuev, V. V.; Fominskii, V. Yu., E-mail: vyfominskij@mephi.ru; Demin, M. V.; Grigoriev, V. V. [MEPhI National Research Nuclear University (Russian Federation)

2010-09-15T23:59:59.000Z

328

Highly oriented polycrystalline Cu{sub 2}O film formation using RF magnetron sputtering deposition for solar cells  

SciTech Connect (OSTI)

Room temperature sputtering deposition and re-crystallization of the deposited thin films by rapid thermal annealing have been evaluating in detail as a formation method of Cu{sub 2}O active layer for solar cells, which minimize thermal budget in fabrication processes. Single phase polycrystalline Cu{sub 2}O films were obtained by a magnetron rf sputtering deposition and its crystallinity and electrical characteristics were controlled by the annealing. Hall mobility was improved up to 17 cm{sup 2}V{sup ?1}s{sup ?1} by the annealing at 600°C for 30s. Since this value was smaller than 47 cm{sup 2}V{sup ?1}s{sup ?1} of the film deposited under thermal equilibrium state using pulsed laser deposition at 600°C, some contrivances were necessary to compensate the deficiency. It was understood that the sputter-deposited Cu{sub 2}O films on (111)-oriented Pt films were strongly oriented to (111) face also by the self-assembly and the crystallinity was improved by the annealing preserving its orientation. The sputter-deposited film quality was expected to become equivalent to the pulsed laser deposition film from the results of X-ray diffractometry and photoluminescence.

Noda, S.; Shima, H.; Akinaga, H. [Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Central 2, Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

2014-02-20T23:59:59.000Z

329

Structural and morphological properties of sputtered NiO thin films at various sputtering pressures  

SciTech Connect (OSTI)

Nickel oxide thin films were successfully deposited on glass substrates at different sputtering pressures in the range of 3 x 10{sup -2} to 5 x 10{sup -2} mbar. It was observed that sputtering pressure influenced the structural and morphological properties. Structural properties were studied with X-ray diffractometer. All the deposited films were polycrystalline and exhibited cubic structure with preferential growth along (220) plane. From morphological studies it was observed that fine and uniform grains with RMS roughness of 9.4 nm were obtained when the films deposited at a sputtering pressure of 4 x 10{sup -2} mbar,. The grain size and the surface roughness decreased at higher sputtering pressures. The surface mobility of the adatoms decreased after series of collisions resulting in the decrease of grain size at high sputtering pressures.

Reddy, A. Mallikarjuna; Reddy, Y. Ashok Kumar; Reddy, A. Sivasankar; Reddy, P. Sreedhara [Department of Physics, Sri Venkateswara University, Tirupathi-517502, Andhra Pradesh (India); Division of Advanced Materials Engineering, Kongju National University, Budaedong, Cheonan City (Korea, Republic of); Department of Physics, Sri Venkateswara University, Tirupathi-517502, Andhra Pradesh (India)

2012-06-05T23:59:59.000Z

330

Bismuth(III) dialkyldithiophosphates: Facile single source precursors for the preparation of bismuth sulfide nanorods and bismuth phosphate thin films  

SciTech Connect (OSTI)

Two different phase pure materials (Bi{sub 2}S{sub 3} and Bi{sub 2}P{sub 4}O{sub 13}) have been prepared under different conditions using the same single source precursors. Solvothermal decomposition of the complexes, Bi(S{sub 2}P(OR){sub 2}){sub 3} [where, R=Methyl (Me) (1), Ethyl (Et) (2), n-Propyl (Pr{sup n}) (3) and iso-Propyl (Pr{sup i}) (4)] in ethylene glycol gave orthorhombic bismuth sulfide nanorods, whereas aerosol assisted chemical vapor deposition (AACVD) of the same precursors deposited monoclinic bismuth tetraphosphate (Bi{sub 2}P{sub 4}O{sub 13}) thin films on glass substrates. Surface study of the thin films using SEM illustrated the formation of variety of nanoscale morphologies (spherical-, wire-, pendent-, doughnut- and flower-like) at different temperatures. AFM studies were carried out to evaluate quality of the films in terms of uniformity and roughness. Thin films of average roughness as low as 1.4 nm were deposited using these precursors. Photoluminescence studies of Bi{sub 2}P{sub 4}O{sub 13} thin films were also carried out. - Graphical abstract: Solvothermal decomposition of bismuth(III) dialkyldithiophosphates in ethylene glycol gave Bi{sub 2}S{sub 3} nanoparticles, whereas aerosol assisted chemical vapor deposition of these single source precursors deposited Bi{sub 2}P{sub 4}O{sub 13} thin films. Display Omitted - Highlights: • Preparation of phase pure orthorhombic Bi{sub 2}S{sub 3} nanorods and monoclinic Bi{sub 2}P{sub 4}O{sub 13} thin films. • Use of single source precursors for deposition of bismuth phosphate thin films. • Use of solvothermal decomposition and AACVD methods. • Morphology controlled synthesis of Bi{sub 2}P{sub 4}O{sub 13} thin films. • Bi{sub 2}S{sub 3} nanorods and Bi{sub 2}P{sub 4}O{sub 13} thin films using same single source precursors.

Biswal, Jasmine B. [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098 (India); Garje, Shivram S., E-mail: ssgarje@chem.mu.ac.in [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098 (India); Nuwad, Jitendra; Pillai, C.G.S. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

2013-08-15T23:59:59.000Z

331

Bulge testing of single and dual layer thin films Dryver R. Huston*ab  

E-Print Network [OSTI]

to a thin film window. By comparing the pressure- displacement relation with a mechanical model, the elastic structures, such as the thin film windows that are used in Next Generation Lithography masks and certain MEMS it in a thin film window. Thin film windows are fabricated by removing the thick substrate out from underneath

Huston, Dryver R.

332

Focused ion beam specimen preparation for electron holography of electrically biased thin film solar cells  

E-Print Network [OSTI]

, biased TEM specimen, thin film solar cell, FIB Thin films of hydrogenated Si (Si:H) can be used as active for electron holography of a thin film solar cell using conventional lift-out specimen preparation and a homeFocused ion beam specimen preparation for electron holography of electrically biased thin film

Dunin-Borkowski, Rafal E.

333

DISSERTATION DEVICE PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS  

E-Print Network [OSTI]

DISSERTATION DEVICE PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS Submitted by Markus Gloeckler PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS Thin-film solar cells have the potential to be an important

Sites, James R.

334

Composition–Structure–Function Diagrams of Ti–Ni–Au Thin Film Shape Memory Alloys  

Science Journals Connector (OSTI)

thin films; annealing; high temperature shape memory alloys; combinatorial materials science; phase transformation ...

Pio John S. Buenconsejo; Alfred Ludwig

2014-11-04T23:59:59.000Z

335

Substrate Effect on the Melting Temperature of Thin Polyethylene Films M. Rafailovich,1,* J. Sokolov,1  

E-Print Network [OSTI]

Substrate Effect on the Melting Temperature of Thin Polyethylene Films Y. Wang,1 M. Rafailovich,1 polyethylene thin films. The Tm decreases with the film thickness decrease when the film is thinner than that the degree of crystal- linity of polyethylene (PE) remained high even in films as thin as 15 nm [5]. A novel

336

Casimir effect for thin films from imperfect materials  

E-Print Network [OSTI]

We propose an approach for investigation of interaction of thin material films with quantum electrodynamic fields. Using main principles of quantum electrodynamics (locality, gauge invariance, renormalizability) we construct a single model for Casimir-like phenomena arising near the film boundary on distances much larger then Compton wavelength of the electron where fluctuations of Dirac fields are not essential. In this model the thin film is presented by a singular background field concentrated on a 2-dimensional surface. All properties of the film material are described by one dimensionless parameter. For two parallel plane films we calculate the photon propagator and the Casimir force, which appears to be dependent on film material and can be both attractive and repulsive. We consider also an interaction of plane film with point charge and straight line current. Here, besides usual results of classical electrodynamics the model predicts appearance of anomalous electric and magnetic fields.

V. N. Markov; Yu. M. Pis'mak

2006-06-04T23:59:59.000Z

337

Functionalized multilayer thin films for protection against acutely toxic agents  

E-Print Network [OSTI]

The recently developed practice of spraying polyelectrolyte solutions onto a substrate in order to construct thin films via the Layer-by-Layer (LbL) technique has been further investigated and extended. In this process a ...

Krogman, Kevin Christopher

2009-01-01T23:59:59.000Z

338

Laser scribing of CIGS based thin films solar cells  

Science Journals Connector (OSTI)

Laser scribing tests on CIGS based thin films solar cells have been performed. The obtained high quality incisions show that laser scribing is a valuable tool for producing low-cost...

Sozzi, Michele; Menossi, Daniele; Bosio, Alessio; Cucinotta, Annamaria; Romeo, Nicola; Selleri, Stefano

339

Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)  

SciTech Connect (OSTI)

This National Center for Photovoltaics sheet describes the capabilities of its polycrystalline thin-film research in the area of cadmium telluride. The scope and core competencies and capabilities are discussed.

Not Available

2013-06-01T23:59:59.000Z

340

National High Magnetic Field Laboratory: Magnetic Thin Films  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

recorded work with magnetic thin films took place in the 1880s and was carried out by German physicist August Kundt. Well known for his research on sound and optics, Kundts...

Note: This page contains sample records for the topic "thin film deposited" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Picosecond laser ablation of nano-sized WTi thin film  

Science Journals Connector (OSTI)

Interaction of an Nd:YAG laser, operating at 532 nm wavelength and pulse duration of 40 ps, with tungsten-titanium (WTi) thin film (thickness, 190 nm)...2...were found to be sufficient for modification of the WTi

S. Petrovi?; B. Gakovi?; D. Peruško; T. Desai; D. Batani; M. ?ekada…

2009-08-01T23:59:59.000Z

342

Quasi-Reversible Oxygen Exchange of Amorphous IGZO Thin Films  

E-Print Network [OSTI]

Center In situ electrical properties of a-IGZO thin films were carried out at 200ºC as a function of carrier content vs. pO2) analysis should be applicable for studying the underlying carrier generation

Shahriar, Selim

343

Flexible, transparent thin film transistors raise hopes for flexible...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

screens and displays. Virtually all flat-screen TVs and smartphones are made up of thin film transistors today; they form the basis of both LEDs and LCDs (liquid crystal...

344

Role of Microstructural Phenomena in Magnetic Thin Films. Final Report  

SciTech Connect (OSTI)

Over the period of the program we systematically varied microstructural features of magnetic thin films in an attempt to better identify the role which each feature plays in determining selected extrinsic magnetic properties. This report summarizes the results.

Laughlin, D. E.; Lambeth, D. N.

2001-04-30T23:59:59.000Z

345

Self-Assembling Process for Fabricating Tailored Thin Films  

ScienceCinema (OSTI)

A simple, economical nanotechnology coating process that enables the development of nanoparticle thin films with architectures and properties unattainable by any other processing method. 2007 R&D 100 winner (SAND2007-1878P)

Sandia

2009-09-01T23:59:59.000Z

346

Self-Assembling Process for Fabricating Tailored Thin Films  

ScienceCinema (OSTI)

A simple, economical nanotechnology coating process that enables the development of nanoparticle thin films with architectures and properties unattainable by any other processing method. 2007 R&D 100 winner (SAND2007-1878P)

None

2010-01-08T23:59:59.000Z

347

Direct printing of lead zirconate titanate thin films  

E-Print Network [OSTI]

Thus far, use of lead zirconate titanate (PZT) in MEMS has been limited due to the lack of process compatibility with existing MEMS manufacturing techniques. Direct printing of thin films eliminates the need for photolithographic ...

Bathurst, Stephen, 1980-

2008-01-01T23:59:59.000Z

348

Peeling Back the Layers of Thin Film Structure and Chemistry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

July 10, 2014 Bookmark and Share The layer-by-layer analysis of the concentration of strontium within a 40-angstrom thick (La, Sr)CoO thin film applied to a SiTiO3 substrate....

349

Thin diamond films provide new material for micro-machines |...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thin diamond films provide new material for micro-machines By Jared Sagoff * July 31, 2014 Tweet EmailPrint ARGONNE, Ill. - Airbags, inkjet printers and video projectors may not...

350

Modeling of thin-film solar thermoelectric generators  

E-Print Network [OSTI]

Recent advances in solar thermoelectric generator (STEG) performance have raised their prospect as a potential technology to convert solar energy into electricity. This paper presents an analysis of thin-film STEGs. ...

Weinstein, Lee Adragon

351

Monolithic integration of thin-film coolers with optoelectronic devices  

E-Print Network [OSTI]

Monolithic integration of thin-film coolers with optoelectronic devices Christopher La Barbara, California 93106-9560 Abstract. Active refrigeration of optoelectronic components through the use manuscript received June 30, 2000; accepted for publication June 30, 2000. 1 Introduction Optoelectronic

352

Properties and sensor performance of zinc oxide thin films  

E-Print Network [OSTI]

Reactively sputtered ZnO thin film gas sensors were fabricated onto Si wafers. The atmosphere dependent electrical response of the ZnO micro arrays was examined. The effects of processing conditions on the properties and ...

Min, Yongki, 1965-

2003-01-01T23:59:59.000Z

353

Efficient light trapping structure in thin film silicon solar cells  

E-Print Network [OSTI]

Thin film silicon solar cells are believed to be promising candidates for continuing cost reduction in photovoltaic panels because silicon usage could be greatly reduced. Since silicon is an indirect bandgap semiconductor, ...

Sheng, Xing

354

Thin, Free-Standing Films For High Resolution Neutron Imaging.  

E-Print Network [OSTI]

??Thin, free-standing boro-phosphosilicate glass (BPSG) films were fabricated at PSU Nanofab to serve as prototype neutron converters for a proposed high resolution neutron imaging system… (more)

Trivelpiece, Cory

2010-01-01T23:59:59.000Z

355

Magnetic Skyrmion Phase in MnSi Thin Films.  

E-Print Network [OSTI]

??Detailed magnetometry and polarized neutron reflectometry studies were conducted on MnSi thin films grown epitaxially on Si(111) substrates. It is demonstrated that with an in-plane… (more)

Wilson, Murray

2013-01-01T23:59:59.000Z

356

Templated dewetting of thin solid films  

E-Print Network [OSTI]

The dewetting of solid metal polycrystalline films to form metal nanoparticles occurs by the nucleation and growth of holes in the film. For typical films on flat substrates, this process is not well-controlled and results ...

Giermann, Amanda L. (Amanda Leah)

2009-01-01T23:59:59.000Z

357

DEVELOPMENT OF A NOVEL PRECURSOR FOR THE PREPARATION BY SELENIZATION OF HIGH EFFICIENCY CuInGaSe2/CdS THIN FILM SOLAR CELLS  

E-Print Network [OSTI]

/CdS THIN FILM SOLAR CELLS N. Romeo1 , A. Bosio1 , V. Canevari2 , R. Tedeschi1 , S. Sivelli1 , A. Solar cells prepared by depositing in sequence on top of the CuInGaSe2 film 60 nm of CdS, 100 nm of pure(InGa)Se2, Thin Films, Selenization 1 INTRODUCTION CuInGaSe2 based solar cells exhibit the highest

Romeo, Alessandro

358

Photo-Alignment Behavior of Mesoporous Silica Thin Films Synthesized on a Photo-Cross-Linkable Polymer Film  

Science Journals Connector (OSTI)

Photo-Alignment Behavior of Mesoporous Silica Thin Films Synthesized on a Photo-Cross-Linkable Polymer Film ... Photo-aligning and micropatterning techniques for mesochannels of a silica thin film using a photo-cross-linkable polymer film with a cinnamoyl group are proposed. ... We propose herein a new photo-aligning and micropatterning technique for mesochannels of a silica thin film using a photo-cross-linkable polymer film with a cinnamoyl group. ...

Haruhiko Fukumoto; Shusaku Nagano; Nobuhiro Kawatsuki; Takahiro Seki

2006-02-11T23:59:59.000Z

359

Oxide Heterogrowth on Ion-exfoliated Thin-film Complex Oxide Substrates  

SciTech Connect (OSTI)

Fabrication of a bilayer HfO{sub 2}/single-crystal LiNbO{sub 3} film is demonstrated using deep high-energy He{sup +} implantation in a LiNbO{sub 3} wafer, followed by HfO{sub 2} atomic layer deposition, and, then, selective etching exfoliation from the bulk LiNbO{sub 3} crystal. The properties and morphology of these exfoliated bilayer films are characterized using a set of thin-film probes. Pre-exfoliation film patterning and one model application, in surface-refractive-index tuning of guided waves in a free-standing LiNbO{sub 3} film, are also demonstrated.

Gang, O.; Chen, T.-L.; Kou, A.; Ofan, A.; Gaathon, O.; Osgood Jr., R.M.; Vanamurthy, L.; Bakhru, S.; Bakhru, H.

2009-11-02T23:59:59.000Z

360

Understanding Thin Film Structure for the Rational Design of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Understanding Thin Film Structure for the Rational Design of Understanding Thin Film Structure for the Rational Design of High-performance Organic Semiconductors for Plastic Electronics Organic semiconductors are attracting considerable research interest due to their potential applications in low-cost electronics such as organic light emitting diode (OLED) displays, RF identification tags (RFID), smart cards and electronic paper. The development of p-conjugated materials, which are composed of alternating single and double chemical bonds, are the foundation of these applications. In the past decade research in this field has progressed to the extent that desirable charge transport in the organic semiconductor film in organic thin film transistors (OTFT) can be achieved through molecular design by selective placement of electron-rich, electron-withdrawing, and aromatic groups in different parts of the molecule. Although the electronic properties are easily tuned by molecular design, the molecular packing within the thin film and the film microstructure have a significant influence on the OTFT performance. Despite this importance, this interrelationship between molecular structure, thin film molecular packing and charge transport are only poorly understood.

Note: This page contains sample records for the topic "thin film deposited" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Characteristics of polyacrylic acid-complexed zinc phosphate conversion films deposited on metal surfaces  

SciTech Connect (OSTI)

When water-soluble polyacrylic acid (PAA) macromolecules having MW 90,000 to 250,000 are introduced into zinc phosphating liquids, significant improvements in the properties of conventional crystalline zinc phosphate conversion films deposited on carbon steel surfaces can be obtained. The improvements include the controllability of the crystal dimensions, the degree of crystallinity, and the coating weight. The conversion complex formation plays an essential role in increasing the ductility of the normally brittle conventional crystal films. Furthermore, the thickness (20 to 40 A) and surface roughness of the thin PAA overlayer significantly acts to enhance the adhesive force at the interface between organic polymer topcoats and the complex coating.

Sugama, T.; Kukacka, L.E.; Carciello, N.

1984-01-01T23:59:59.000Z

362

Nanoassembly control and optical absorption in CdTe-ZnO nanocomposite thin films  

SciTech Connect (OSTI)

The spatial distribution of CdTe nanoparticles within a ZnO thin-film matrix was manipulated using a dual-source, sequential radio-frequency (RF)-sputter deposition technique to produce nanocomposite materials with tuned spectral absorption characteristics. The relative substrate exposure time to each sputtering source was used to control the semiconductor phase connectivity, both within the film plane and along the film growth direction, to influence the degree of photocarrier confinement and the resulting optical transition energies exhibited by the CdTe phase. Significant changes (up to {Delta}E {approx_equal} 0.3 eV) in the absorption onset energy for the CdTe nanoparticle ensemble were produced through modification in the extended structure of the semiconductor phase. Raman spectroscopy, cross-sectional transmission electron microscopy, and x-ray diffraction were used to confirm the phase identity of the CdTe and ZnO and to characterize the nanostructures produced in these composite films. Isochronal annealing for 5 min at temperatures up to 800 deg. C further indicated the potential to improve film crystallinity as well as to establish the post-deposition thermal processing limits of stability for the semiconductor phase. The study highlights the significance of ensemble behavior as a means to influence quantum-scale semiconductor optical characteristics of import to the use of such materials as the basis for a variety of optoelectronic devices, including photosensitized heterojunction components in thin film photovoltaics.

Potter, B. G. Jr. [Materials Science and Engineering Department, University of Arizona, Tucson, Arizona 85721 (United States); College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Beal, R. J.; Allen, C. G. [Materials Science and Engineering Department, University of Arizona, Tucson, Arizona 85721 (United States)

2012-02-01T23:59:59.000Z

363

Tungsten oxide (WO{sub 3}) thin films for application in advanced energy systems  

SciTech Connect (OSTI)

Inherent processes in coal gasification plants produce hazardous hydrogen sulfide (H{sub 2}S), which must be continuously and efficiently detected and removed before the fuel is used for power generation. An attempt has been made in this work to fabricate tungsten oxide (WO{sub 3}) thin films by radio-frequency reactive magnetron-sputter deposition. The impetus being the use of WO{sub 3} films for H{sub 2}S sensors in coal gasification plants. The effect of growth temperature, which is varied in the range of 30-500 deg. C, on the growth and microstructure of WO{sub 3} thin films is investigated. Characterizations made using scanning electron microscopy (SEM) and x-ray diffraction (XRD) indicate that the effect of temperature is significant on the microstructure of WO{sub 3} films. XRD and SEM results indicate that the WO{sub 3} films grown at room temperature are amorphous, whereas films grown at higher temperatures are nanocrystalline. The average grain-size increases with increasing temperature. WO{sub 3} films exhibit smooth morphology at growth temperatures {<=}300 deg. C while relatively rough at >300 deg. C. The analyses indicate that the nanocrystalline WO{sub 3} films grown at 100-300 deg. C could be the potential candidates for H{sub 2}S sensor development for application in coal gasification systems.

Gullapalli, S. K.; Vemuri, R. S.; Manciu, F. S.; Enriquez, J. L.; Ramana, C. V. [Department of Mechanical Engineering, University of Texas at El Paso, El Paso, Texas 79968 (United States); Department of Physics, University of Texas at El Paso, El Paso, Texas 79968 (United States); Department of Mechanical Engineering, University of Texas at El Paso, El Paso, Texas 79968 (United States)

2010-07-15T23:59:59.000Z

364

Laser Method for Synthesis and Processing of Continuous Diamond Films on Nondiamond Substrates  

Science Journals Connector (OSTI)

...GRAIN-BOUNDARIES IN CVD DIAMOND THIN-FILMS...continuous diamond thin film. Carbon ions were...continuous diamond thin film. Carbon ions were...vapor deposition (CVD) methods such as...while usefilf for coating applications, are not suitable...

J. NARAYAN; V. P. GODBOLE; C. W. WHITE

1991-04-19T23:59:59.000Z

365

Appropriate materials and preparation techniques for polycrystalline-thin-film thermophotovoltaic cells  

Science Journals Connector (OSTI)

Polycrystalline-thin-film thermophotovoltaic (TPV) cells have excellent potential for reducing the cost of TPV generators so as to address the hitherto inaccessible and highly competitive markets such as self-powered gas-fired residential warm air furnaces and energy-efficient electric cars etc. Recent progress in polycrystalline-thin-film solar cells have made it possible to satisfy the diffusion length and intrinsic junction rectification criteria for TPV cells operating at high fluences. Continuous ranges of direct bandgaps of the ternary and pseudoternary compounds such as Hg 1?x Cd x Te Pb 1?x Cd x Te Hg 1?x Zn x Te and Pb 1?x Zn x S cover the region of interest of 0.50–0.75 eV for efficient TPV conversion. Other ternary and pseudoternary compounds which show direct bandgaps in most of or all of the 0.50–0.75 eV range are Pb 1?x Zn x Te Sn 1?x Cd 2x Te 2 Pb 1?x Cd x Se Pb 1?x Zn x Se and Pb 1?x Cd x S . Hg 1?x Cd x Te (with x?0.21 ) has been studied extensively for infrared detectors. PbTe and Pb 1?x Sn x Te have also been studied for infrared detectors. Not much work has been carried out on Hg 1?x Zn x Te thin films. Hg 1?x Cd x Te and Pb 1?x Cd x Te alloys cover a wide range of cut-off wavelengths from the far infrared to the near visible. Acceptors and donors are introduced in these materials by excess non-metal (Te) and excess metal (Hg and Pb) respectively. Extrinsic acceptor impurities are Cu Au and As while and In and Al are donor impurities. Hg 1?x Cd x Te thin films have been deposited by isothermal vapor-phase epitaxy (VPE) liquid phase epitaxy (LPE) hot-wall metalorganic chemical vapor deposition (MOCVD) electrodeposition sputtering molecular beam epitaxy (MBE) laser-assisted evaporation and vacuum evaporation with or without hot-wall enclosure. The challenge in the preparation of Hg 1?x Cd x Te is to provide excess mercury incidence rate to optimize the deposition parameters for enhanced mercury incorporation and to achieve the requisite stoichiometry grain size and doping. MBE and MOCVD techniques have paved the way for obtaining epitaxial Hg 1?x Cd x Te thin films at substrate temperatures of ?180?° C with the desired crystalline perfection stoichiometry and doping without the necessity of further annealing for improving either the crystalline quality or dopant activity. Retaining larger mercury proportions during annealing would require heated enclosures as in isothermal VPE hot-wall technique vacuum evaporation hot-wall MOCVD or close-space sublimation. Pb 1?x Cd x Te thin films can be prepared by magnetron sputtering from cooled Pb 1?x Cd x Te targets on heated substrates. Hot-wall technique is suitable for the deposition of Pb 1?x Cd x Te thin films. Hg 1?x Cd x Te and Pb 1?x Cd x Te TPV cells will benefit from the substantial work on CdTe thin film solar cells. The paper reviews work on thin films of ternary and pseudoternary compounds of interest for TPV conversion and methods of their preparation with a view to choosing the appropriate materials and fabrication techniques for polycrystalline-thin-film TPV cells.

Neelkanth G. Dhere

1997-01-01T23:59:59.000Z

366

Reactions at the interfaces of thin films of Y-Ba-Cu- and Zr-oxides with Si substrates  

SciTech Connect (OSTI)

Thin films were deposited by pulsed uv-laser (ablation) deposition of Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7{minus}{ital x}} (YBCO), and composite zirconia and yttria targets onto silicon wafers. These films were analyzed to ascertain the chemical and physical structure of the film interfaces and further the development of Si substrates for superconducting YBCO films. Substrates were Si(100) with either a high-quality, thermal oxide (SiO{sub 2}) film, or a spin-etch processed, oxide-free, hydrogen-terminated surface (Si:H). X-ray photoelectron spectroscopy (XPS) of Y, Ba, Cu, and Si core levels revealed adverse reactions for thin (nominally 2 nm) YBCO films deposited directly onto either substrate surface. The surfaces of thicker YBCO films (50--100 nm) and various oxide powders were compared with XPS results from these thin films. The thicker-film surfaces are similar to those of fractured bulk YBCO, while the thin YBCO films decomposed, as evidenced by changes in the Ba and Cu XPS. The Si XPS on these films showed the formation of metal-silicate compounds, even at deposition substrate temperatures of 550 {degree}C, and silica (SiO{sub 2}), especially for 670 {degree}C deposition. A direct consequence of these reactions is that growth of high-quality epitaxial YBCO on Si will require the use of a buffer film. Yttria-stabilized zirconia (YSZ) shows considerable promise for use as a buffer, and XPS of thin films (4 and 8 nm thick) of ZrO{sub 2} on SiO{sub 2}/Si and YSZ on Si:H substrates did not show any indication of decomposition, even at deposition temperatures near 800 {degree}C. Transmission electron microscopy of cross-sectioned samples of YBCO/YSZ/Si showed that the lower YSZ interface is rough on the preoxidized (SiO{sub 2}/Si) substrates but atomically sharp on the spin-etched Si wafers (Si:H).

Fenner, D.B.; Viano, A.M. (Xerox Palo Alto Research Center, Palo Alto, California 94304 and Physics Department, Santa Clara University, Santa Clara, California 95053 (USA)); Fork, D.K. (Xerox Palo Alto Research Center, Palo Alto, California 94304 (USA) Applied Physics Department, Stanford University, Stanford, California 94305 (USA)); Connell, G.A.N.; Boyce, J.B.; Ponce, F.A.; Tramontana, J.C. (Xerox Palo Alto Research Center, Palo Alto, California 94304 (USA))

1991-02-15T23:59:59.000Z

367

Excitation mechanism and thermal emission quenching of Tb ions in silicon rich silicon oxide thin films grown by plasma-enhanced chemical vapour deposition—Do we need silicon nanoclusters?  

SciTech Connect (OSTI)

In this work, we will discuss the excitation and emission properties of Tb ions in a Silicon Rich Silicon Oxide (SRSO) matrix obtained at different technological conditions. By means of electron cyclotron resonance plasma-enhanced chemical vapour deposition, undoped and doped SRSO films have been obtained with different Si content (33, 35, 39, 50 at. %) and were annealed at different temperatures (600, 900, 1100?°C). The samples were characterized optically and structurally using photoluminescence (PL), PL excitation, time resolved PL, absorption, cathodoluminescence, temperature dependent PL, Rutherford backscattering spectrometry, Fourier transform infrared spectroscopy and positron annihilation lifetime spectroscopy. Based on the obtained results, we discuss how the matrix modifications influence excitation and emission properties of Tb ions.

Podhorodecki, A., E-mail: artur.p.podhorodecki@pwr.wroc.pl; Golacki, L. W.; Zatryb, G.; Misiewicz, J. [Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Wang, J.; Jadwisienczak, W. [School of EECS, Ohio University, Stocker Center 363, Athens, Ohio 45701 (United States); Fedus, K. [Institute of Physics, Nicholas Copernicus University, Grudziadzka 5/7, 87-100 Torun (Poland); Wojcik, J.; Wilson, P. R. J.; Mascher, P. [Department of Engineering Physics and Centre for Emerging Device Technologies, McMaster University, 1280 Main St. W, Hamilton, Ontario L8S4L7 (Canada)

2014-04-14T23:59:59.000Z

368

Effects of air annealing on CdS quantum dots thin film grown at room temperature by CBD technique intended for photosensor applications  

SciTech Connect (OSTI)

Graphical abstract: The effect of different intensities (40, 60 100 and 200 W) of light on CdS quantum dots thin film annealed at 350 °C indicating enhancement in (a) photo-current and (b) photosensitivity. Highlights: ? The preparation of CdS nanodot thin film at room temperature by M-CBD technique. ? Study of air annealing on prepared CdS nanodots thin film. ? The optimized annealing temperature for CdS nanodot thin film is 350 °C. ? Modified CdS thin films can be used in photosensor application. -- Abstract: CdS quantum dots thin-films have been deposited onto the glass substrate at room temperature using modified chemical bath deposition technique. The prepared thin films were further annealed in air atmosphere at 150, 250 and 350 °C for 1 h and subsequently characterized by scanning electron microscopy, ultraviolet–visible spectroscopy, electrical resistivity and I–V system. The modifications observed in morphology and opto-electrical properties of the thin films are presented.

Shaikh, Shaheed U.; Desale, Dipalee J.; Siddiqui, Farha Y.; Ghosh, Arindam; Birajadar, Ravikiran B. [Thin film and Nanotechnology Laboratory, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, M.S. (India)] [Thin film and Nanotechnology Laboratory, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, M.S. (India); Ghule, Anil V. [Department of Nanotechnology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, M.S. (India)] [Department of Nanotechnology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, M.S. (India); Sharma, Ramphal, E-mail: ramphalsharma@yahoo.com [Thin film and Nanotechnology Laboratory, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, M.S. (India)] [Thin film and Nanotechnology Laboratory, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, M.S. (India)

2012-11-15T23:59:59.000Z

369

Mode Splitting for Efficient Plasmoinc Thin-film Solar Cell  

E-Print Network [OSTI]

We propose an efficient plasmonic structure consisting of metal strips and thin-film silicon for solar energy absorption. We numerically demonstrate the absorption enhancement in symmetrical structure based on the mode coupling between the localized plasmonic mode in Ag strip pair and the excited waveguide mode in silicon slab. Then we explore the method of symmetry-breaking to excite the dark modes that can further enhance the absorption ability. We compare our structure with bare thin-film Si solar cell, and results show that the integrated quantum efficiency is improved by nearly 90% in such thin geometry. It is a promising way for the solar cell.

Li, Tong; Jiang, Chun

2010-01-01T23:59:59.000Z

370

Growth and characterization of Pt-protected Gd{sub 5}Si{sub 4} thin films  

SciTech Connect (OSTI)

Successful growth and characterization of thin films of giant magnetocaloric Gd{sub 5}(Si{sub x}Ge{sub 1?x}){sub 4} were reported in the literature with limited success. The inherent difficulty in producing this complex material makes it difficult to characterize all the phases present in the thin films of this material. Therefore, thin film of binary compound of Gd{sub 5}Si{sub 4} was deposited by pulsed laser deposition. It was then covered with platinum on the top of the film to protect against any oxidation when the film was exposed to ambient conditions. The average film thickness was measured to be approximately 350?nm using a scanning electron microscopy, and the composition of the film was analyzed using energy dispersive spectroscopy. X-ray diffraction analysis indicates the presence of Gd{sub 5}Si{sub 4} orthorhombic structure along with Gd{sub 5}Si{sub 3} secondary phase. The transition temperature of the film was determined from magnetic moment vs. temperature measurement. The transition temperature was between 320 and 345?K which is close to the transition temperature of the bulk material. Magnetic moment vs. magnetic field measurement confirmed that the film was ferromagnetic below 342?K.

Hadimani, R. L., E-mail: hadimani@iastate.edu; Jiles, D. C. [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); Mudryk, Y.; Prost, T. E. [Materials and Engineering Physics Program, Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011 (United States); Pecharsky, V. K.; Gschneidner, K. A. [Materials and Engineering Physics Program, Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011 (United States); Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011 (United States)

2014-05-07T23:59:59.000Z

371

Processing and Gas Barrier Behavior of Multilayer Thin Nanocomposite Films  

E-Print Network [OSTI]

barrier for goods requiring long shelf life. Current gas barrier technologies like plasma-enhanced vapor deposition (PECVD) often create high barrier metal oxide films, which are prone to cracking when flexed. Bulk composites composed of polymer...

Yang, You-Hao

2012-10-19T23:59:59.000Z

372

Formation and ferromagnetic properties of FeSi thin films  

SciTech Connect (OSTI)

In this work, the growth and ferromagnetic properties of {epsilon}-FeSi thin film on Si(100) substrate prepared by molecular beam epitaxy are reported. The inter-diffusion of Fe layer on Si(100) substrate at 600 Degree-Sign C results in polycrystalline {epsilon}-FeSi layer. The determined activation energy was 0.044 eV. The modified magnetism from paramagnetic in bulk to ferromagnetic states in {epsilon}-FeSi thin films was observed. The saturated magnetization and coercive field of {epsilon}-FeSi film are 4.6 emu/cm{sup 3} and 29 Oe at 300 K, respectively.

Shin, Yooleemi; Anh Tuan, Duong; Hwang, Younghun; Viet Cuong, Tran; Cho, Sunglae [Department of Physics, University of Ulsan, Ulsan 680-749 (Korea, Republic of)

2013-05-07T23:59:59.000Z

373

HiPIMS: a New Generation of Film Deposition Techniques for SRF Applications  

SciTech Connect (OSTI)

Over the years, Nb/Cu technology, despite its shortcomings due to the commonly used magnetron sputtering, has positioned itself as an alternative route for the future of accelerator superconducting structures. Avenues for the production of thin films tailored for Superconducting RF (SRF) applications are showing promise with recent developments in ionized PVD coating techniques, i.e. vacuum deposition techniques using energetic ions. Among these techniques, High power impulse magnetron sputtering (HiPIMS) is a promising emerging technique which combines magnetron sputtering with a pulsed power approach. This contribution describes the benefits of energetic condensation for SRF films and the characteristics of the HiPIMS technology. It describes the on-going efforts pursued in different institutions to exploit the potential of this technology to produce bulk-like Nb films and go beyond Nb performance with the development of film systems, based on other superconducting materials and multilayer structures.

Valente-Feliciano, Anne-Marie [JLAB

2013-09-01T23:59:59.000Z

374

The active dopant concentration in ion implanted indium tin oxide thin films  

Science Journals Connector (OSTI)

The effect of oxygen ion implantation on the electrical and optical properties of Sn?doped In2O3 (ITO) thin films sputter deposited from a planar magnetron source on glass substrates is described. The films were characterized as a function of the implanted dose (3×1013–1×1016 O+ cm?2) by Hall effect resistivity and optical transmission measurements. The dependencies observed are explained in terms of the deactivation of the Sn dopant and the removal of oxygen vacancies. In this way an estimate of the amount of electrically active Sn contributing to the carrier density in as?deposited films was obtained. Furthermore the accompanying changes in the band gap with decreasing free?carrier density could be explained quantitatively in terms of the Burstein–Moss effect.

T. J. Vink; M. H. F. Overwijk; W. Walrave

1996-01-01T23:59:59.000Z

375

Thin?film temperature sensors for gas turbine engines: Problems and prospects  

Science Journals Connector (OSTI)

The increasing trend towards high?temperature fuel efficient jet engines has led to the development of complex cooling schemes for the turbine blades. The measurement of temperature of the blade during operation which is accomplished in conventional blade design by embedding wire thermocouples in the blade wall causes serious structural and aerodynamic problems in the case of cooled turbines. In order to meet the requirement of temperature measurement in cooled turbines it is desirable to develop surface?mounted thin?film thermocouples or a resistance thermometer. In the current state of the art of thin?film thermocouples the sensing element consists of 2??m?thick Pt and Pt 10% Rh thin?film elements deposited on the insulating surface of the blades and vanes. The insulator is developed by thermal oxidation of a MCrAlY coating which is deposited on the blade and vane surface in the current state of turbine technology. The understanding of the structural and thermoelectric stability of the sensor elements and of the insulating layer of Al2O3 in the hostile environment of a gas turbine requires an in?depth study of the metallurgical reactions occurring at the thin?film Al2O3 and Al2O3–MCrAlY interfaces and of the corrosive reactions on the surface of the metal film. The work presented in this review addresses the problems associated with obtaining highly adherent and insulating Al2O3 on the MCrAlY surfaces adhesion of the sensor elements thermoelectric stability of the sensors on contamination and finally the development of a corrosion protectioncoating. The desired quality Al2O3 has been grown on NiCoCrAlY?coated nickel?based superalloy substrates by a combination of oxidation treatments. The interface?modified Pt and Pt/Rh films are deposited on the oxide by a dc magnetron sputtering technique. The corrosion protection requirements involve deposition of Si–O–N and Si3N4 graded structures on the sensors by the plasma?assisted chemical vapor deposition process. Details of the electrical and metallurgical characteristics of the device at each stage of the coating/film growth have been analyzed by a number of surface sensitive and bulk analytical techniques.

R. C. Budhani; S. Prakash; R. F. Bunshah

1986-01-01T23:59:59.000Z

376

Applied Films Corporation | Open Energy Information  

Open Energy Info (EERE)

Name: Applied Films Corporation Place: Longmont, Colorado Zip: 80504 Sector: Services, Solar Product: Provider of thin film deposition equipment and services, particularly to...

377

Shape variation of micelles in polymer thin films  

SciTech Connect (OSTI)

The equilibrium properties of block copolymer micelles confined in polymer thin films are investigated using self-consistent field theory. The theory is based on a model system consisting of AB diblock copolymers and A homopolymers. Two different methods, based on the radius of gyration tensor and the spherical harmonics expansion, are used to characterize the micellar shape. The results reveal that the morphology of micelles in thin films depends on the thickness of the thin films and the selectivity of the confining surfaces. For spherical (cylindrical) micelles, the spherical (cylindrical) symmetry is broken by the presence of the one-dimensional confinement, whereas the top-down symmetry is broken by the selectivity of the confining surfaces. Morphological transitions from spherical or cylindrical micelles to cylinders or lamella are predicted when the film thickness approaches the micellar size.

Zhou, Jiajia, E-mail: zhou@uni-mainz.de; Shi, An-Chang, E-mail: shi@mcmaste.ca [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada)] [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada)

2014-01-14T23:59:59.000Z

378

Modeling and control of thin film surface morphology: application to thin film solar cells  

E-Print Network [OSTI]

Deposition. Industrial & Engineering Chemistry Research, 50,deposition. Industrial & Engineering Chemistry Research, 48:deposition. Industrial & Engineering Chemistry Research, 50:

Huang, Jianqiao

2012-01-01T23:59:59.000Z

379

Recrystallization of amorphous silicon deposited on ultra thin microcrystalline silicon layers  

SciTech Connect (OSTI)

This study reports on a method to reduce the thermal crystallization time and temperature of amorphous silicon films by initially depositing an ultra thin {micro}c-Si:H seed layer. After rapid thermal annealing (RTA), films were characterized by means of Raman spectroscopy, x-ray diffraction, reflection high energy electron diffraction, atomic force microscopy, and dark and photocurrent. The results show that the microcrystalline particles in the seed layer act as nucleation centers, promoting crystallization of a-Si:H at lower temperatures and at shorter times, compared to a-Si:H films deposited without any seed layer. Additionally, it was found that the seed layer affects the orientation of the crystallized films. The dark current increases abruptly over 4 orders of magnitude in the first 15 second anneal, then decreases as the time increases, and tends to saturate. The photocurrent has an opposite behavior. These transport results can be understood in terms of a change in defect density and band gap shrinkage.

Wang, F.; Wolfe, D.; Lucovsky, G.

1997-07-01T23:59:59.000Z

380

Research on the electronic and optical properties of polymer and other organic molecular thin films  

SciTech Connect (OSTI)

The main goal of the work is to find materials and methods of optimization of organic layered electroluminescent cells and to study such properties of polymers and other organic materials that can be used in various opto-electronic devices. The summary of results obtained during the first year of work is presented. They are: (1) the possibility to produce electroluminescent cells using a vacuum deposition photoresist technology for commercial photoresists has been demonstrated; (2) the idea to replace the polyaryl polymers by other polymers with weaker hole conductivity for optimization of electroluminescent cells with ITO-Al electrodes has been suggested. The goal is to obtain amorphous processable thin films of radiative recombination layers in electroluminescent devices; (3) procedures of preparation of high-quality vacuum-deposited poly (p-phenylene) (PPP) films on various substrates have been developed; (4) it was found for the first time that the fluorescence intensity of PPP films depends on the degree of polymerization; (5) the role of interfaces between organic compounds, on one side, and metals or semiconductors, on the other side, has been studied and quenching of the fluorescence caused by semiconductor layer in thin sandwiches has been observed; (6) studies of the dynamics of photoexcitations revealed the exciton self-trapping in quasi-one-dimensional aggregates; and (7) conditions for preparation of highly crystalline fullerene C{sub 60} films by vacuum deposition have been found. Composites of C{sub 60} with conjugated polymers have been prepared.

NONE

1997-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "thin film deposited" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Nanomechanical and nanotribological properties of Nb substituted TiN thin films  

SciTech Connect (OSTI)

Nanomechanical and nanotribological properties of Ti{sub 1-x}Nb{sub x}N (0{<=}x{<=}1) thin films were investigated as a function x. The films were deposited onto polycrystalline nuclear grade 316LN stainless steel (SS) substrate by radio frequency magnetron sputtering in 100% N{sub 2} plasma. The hardness and Young's modulus increased while the friction coefficient and wear volume decreased with increasing Nb substitution. The highest hardness achieved was 31GPa for x=0.77. At the same Nb concentration, the friction coefficient was 0.15 and the elastic recovery was 60%.

Krishna, M. Ghanashyam; Vasu, K.; Padmanabhan, K. A. [School of Physics, Centre for Nanotechnology, University of Hyderabad, Hyderabad-500 046 (India); Centre for Nanotechnology, School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad-500 046 (India)

2012-06-25T23:59:59.000Z

382

CO2 gas sensing properties of DC reactive magnetron sputtered ZnO thin film  

Science Journals Connector (OSTI)

Abstract Nanostructured ZnO thin films were deposited on glass substrates using a DC reactive magnetron sputtering technique. Thin films of three different thicknesses viz 40, 100 and 300 nm were prepared and subsequently annealed at 450 °C. The structural, topographical, and optical characteristics of all the three annealed films were studied using X-ray diffractometer (XRD), Atomic Force Microscope (AFM) UV–visible and photoluminescence spectrophotometers. The carbon dioxide (CO2) gas sensing behavior of these films was investigated in detail in the concentration range of 500–10,000 ppm. The sensing performance was optimized with respect to the ZnO film thickness as well as the operating temperature. ZnO film with 40 nm thickness showed better response characteristics at the operating temperature of 300 °C than that of thicker ZnO films. A maximum sensitivity (%) of 1.13 with a response and recovery time of 20 s was observed towards 1000 ppm of CO2.

Padmanathan Karthick Kannan; Ramiah Saraswathi; John Bosco Balaguru Rayappan

2014-01-01T23:59:59.000Z

383

Thin film seeds for melt processing textured superconductors for practical applications  

DOE Patents [OSTI]

A method of fabricating bulk superconducting material such as RBa.sub.2 Cu.sub.3 O.sub.7-.delta. where R is La or Y comprising depositing a thin epitaxially oriented film of Nd or Sm (123) on an oxide substrate. The powder oxides of RBa.sub.2 Cu.sub.3 O.sub.7-.delta. or oxides and/or carbonates of R and Ba and Cu present in mole ratios to form RBa.sub.2 Cu.sub.3 O.sub.7-.delta., where R is Y or La are heated, in physical contact with the thin film of Nd or Sm (123) on the oxide substrate to a temperature sufficient to form a liquid phase in the oxide or carbonate mixture while maintaining the thin film solid to grow a large single domain 123 superconducting material. Then the material is cooled. The thin film is between 200 .ANG. and 2000 .ANG.. A construction prepared by the method is also disclosed.

Veal, Boyd W. (Downers Grove, IL); Paulikas, Arvydas (Downers Grove, IL); Balachandran, Uthamalingam (Hinsdale, IL); Zhong, Wei (West Lafayette, IN)

1999-01-01T23:59:59.000Z

384

Critical confinement and elastic instability in thin solid films  

E-Print Network [OSTI]

When a flexible plate is peeled off a thin and soft elastic film bonded to a rigid support, uniformly spaced fingering patterns develop along their line of contact. While, the wavelength of these patterns depends only on the thickness of the film, their amplitude varies with all material and geometric properties of the film and that of the adhering plate. Here we have analyzed this instability by the regular perturbation technique to obtain the excess deformations of the film over and above the base quantities. Furthermore, by calculating the excess energy of the system we have shown that these excess deformations, associated with the instability, occur for films which are critically confined. We have presented two different experiments for controlling the degree of confinement: by pre-stretching the film and by adjusting the contact width between the film and the plate.

Animangsu Ghatak; Manoj K. Chaudhury

2007-01-11T23:59:59.000Z

385

Low-Temperature Chemical-Vapor-Deposition of Silicon-Nitride Film from Hexachloro-Disilane and Hydrazine  

Science Journals Connector (OSTI)

We have successfully deposited SiNx:H films at temperatures as low as 350°C by the chemical-vapor-deposition (CVD) method using hexachloro-disilane (Si2Cl6) and hydrazine (N2H4). The atomic ratio (N/Si) of the film deposited at 400°C was 1.26 with a total hydrogen content of about 30 at.%. The breakdown-field strength was 5.3 MV/cm at a leakage-current density of 1 µA/cm2, and the low-field resistivity was more than 1015 ?cm. Amorphous-silicon thin-film transistors equipped with this film as the gate dielectric showed clear transfer characteristics.

Wen-Chang Yeh; Ryoichi Ishihara; Shunsuke Morishita; Masakiyo Matsumura

1996-01-01T23:59:59.000Z

386

Scanning electron and cathodoluminescence imaging of thin film Lu{sub 2}SiO{sub 5}:Ce scintillating materials  

SciTech Connect (OSTI)

Cerium doped lutetium orthosilicate thin films were sputter deposited onto rough and smooth alumina substrates to compare their extrinsic photoluminescence efficiency. To understand the photoluminescence results, scanning electron and cathodoluminescence imaging were performed. The plane view and cross-section images revealed that dark cathodoluminescence regions were correlated with topology in both films, though the mechanisms for the degraded luminescence were different. For the rough films, substrate topology causes localized shadowing of the sputtered species which creates compositional inhomogeneities. The smooth films have protrusions caused by thermally induced stress and the reduced cathodoluminescence intensity is attributed to electron-hole surface recombination.

Rack, P. D.; Peak, J. D.; Melcher, C. L.; Fitz-Gerald, J. M. [Department of Materials Science and Engineering, Scintillation Materials Research Center, University of Tennessee, Knoxville, Tennessee 37996-2200 (United States); Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904-4745 (United States)

2007-12-10T23:59:59.000Z

387

Characterization of gallium-doped CdS thin films grown by chemical bath Hani Khallaf a  

E-Print Network [OSTI]

Characterization of gallium-doped CdS thin films grown by chemical bath deposition Hani Khallaf In-situ doping with group III elements has been widely used to decrease the dark resistivity of CdS technique for aluminum in-situ doping of CdS. We have also shown that due to extremely low solubility

Chow, Lee

388

CRYOGENIC CATHODOLUMINESCENCE FROM CuxAg1-xInSe2 THIN FILMS Angel R. Aquino  

E-Print Network [OSTI]

CRYOGENIC CATHODOLUMINESCENCE FROM CuxAg1-xInSe2 THIN FILMS Angel R. Aquino 1 , Angus A. Rockett 1 deposited by a hybrid magnetron sputtering/evaporation process over a range of x values. Cryogenic for solar cell applications. Here we present results of the first cryogenic CL experiments with spectral

Rockett, Angus

389

Photoresponse of Tb{sup 3+} doped phosphosilicate thin films  

SciTech Connect (OSTI)

Phosphosilicate ceramic was doped with Tb{sup 3+} using sol-gel technique to prepare thin films. The films were prepared by spin coating the phosphosilicate sols on SiO{sub x}/indium-tin-oxide/glass substrates. The photocurrent of the films at 355 nm laser excitation was observed. The photoresponse as a function of applied field and laser energy was linear and showed no sign of saturation. The films exhibited very stable photoresponse under a very high number of laser shots.

Lee, B.L.; Cao, Z. [Clemson Univ., SC (United States). Gilbert C. Robinson Dept. of Ceramic and Materials Engineering] [Clemson Univ., SC (United States). Gilbert C. Robinson Dept. of Ceramic and Materials Engineering; Sisk, W.N.; Hudak, J. [Univ. of North Carolina, Charlotte, NC (United States)] [Univ. of North Carolina, Charlotte, NC (United States); Samuels, W.D.; Exarhos, G.J. [Pacific Northwest National Lab., Richland, WA (United States). Materials and Chemical Science] [Pacific Northwest National Lab., Richland, WA (United States). Materials and Chemical Science

1997-09-01T23:59:59.000Z

390

Sharp semiconductor-to-metal transition of VO{sub 2} thin films on glass substrates  

SciTech Connect (OSTI)

Outstanding phase transition properties of vanadium dioxide (VO{sub 2}) thin films on amorphous glass were achieved and compared with the ones grown on c-cut sapphire and Si (111) substrates, all by pulsed laser deposition. The films on glass substrate exhibit a sharp semiconductor-to-metal transition (?4.3?°C) at a near bulk transition temperature of ?68.4?°C with an electrical resistance change as high as 3.2?×?10{sup 3} times. The excellent phase transition properties of the films on glass substrate are correlated with the large grain size and low defects density achieved. The phase transition properties of VO{sub 2} films on c-cut sapphire and Si (111) substrates were found to be limited by the high defect density.

Jian, Jie; Chen, Aiping [Department of Electrical and Computer Engineering, Texas A and M University, College Station, Texas 77843-3128 (United States); Zhang, Wenrui [Material Science and Engineering Program, Texas A and M University, College Station, Texas 77843-3128 (United States); Wang, Haiyan, E-mail: wangh@ece.tamu.edu [Department of Electrical and Computer Engineering, Texas A and M University, College Station, Texas 77843-3128 (United States); Material Science and Engineering Program, Texas A and M University, College Station, Texas 77843-3128 (United States)

2013-12-28T23:59:59.000Z

391

Pyroelectric response of lead zirconate titanate thin films on silicon: Effect of thermal stresses  

SciTech Connect (OSTI)

Ferroelectric lead zirconate titanate [Pb(Zr{sub x}Ti{sub 1-x}O){sub 3}, (PZT x:1-x)] has received considerable interest for applications related to uncooled infrared devices due to its large pyroelectric figures of merit near room temperature, and the fact that such devices are inherently ac coupled, allowing for simplified image post processing. For ferroelectric films made by industry-standard deposition techniques, stresses develop in the PZT layer upon cooling from the processing/growth temperature due to thermal mismatch between the film and the substrate. In this study, we use a non-linear thermodynamic model to investigate the pyroelectric properties of polycrystalline PZT thin films for five different compositions (PZT 40:60, PZT 30:70, PZT 20:80, PZT 10:90, PZT 0:100) on silicon as a function of processing temperature (25–800?°C). It is shown that the in-plane thermal stresses in PZT thin films alter the out-of-plane polarization and the ferroelectric phase transformation temperature, with profound effect on the pyroelectric properties. PZT 30:70 is found to have the largest pyroelectric coefficient (0.042??C cm{sup ?2}?°C{sup ?1}, comparable to bulk values) at a growth temperature of 550?°C; typical to what is currently used for many deposition processes. Our results indicate that it is possible to optimize the pyroelectric response of PZT thin films by adjusting the Ti composition and the processing temperature, thereby, enabling the tailoring of material properties for optimization relative to a specific deposition process.

Kesim, M. T.; Zhang, J.; Alpay, S. P. [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Trolier-McKinstry, S. [Department of Materials Science and Engineering and Materials Research Institute, Pennsylvania State University, Pennsylvania 16802 (United States); Mantese, J. V. [United Technologies Research Center, East Hartford, Connecticut 06118 (United States); Whatmore, R. W. [Tyndall National Institute, Lee Maltings, Dyke Parade, Cork City, County Cork (Ireland)

2013-11-28T23:59:59.000Z

392

Supercritical Fluid Immersion Deposition: A New Process for Selective Deposition of Metal Films on Silicon Substrates  

SciTech Connect (OSTI)

Supercritical CO2 is used as a new solvent for immersion deposition, a galvanic displacement process traditionally carried out in aqueous HF solutions containing metal ions, to selectively develop metal films on featured or non-featured silicon substrates. Components of supercritical fluid immersion deposition (SFID) solutions for fabricating Cu and Pd films on silicon substrates are described along with the corresponding experimental setup and procedure. Only silicon substrates exposed and reactive to SFID solutions can be coated. The highly pressurized and gas-like supercritical CO2, combined with the galvanic displacement property of immersion deposition, enables the SFID technique to selectively deposit metal films in small features. SFID may also provide a new method to fabricate palladium silicide in small features or to metallize porous silicon.

Ye, Xiangrong; Wai, Chien M.; Lin, Yuehe; Young, James S.; Engelhard, Mark H.

2005-01-01T23:59:59.000Z

393

Chemical vapor deposition of functionalized isobenzofuran polymers  

E-Print Network [OSTI]

This thesis develops a platform for deposition of polymer thin films that can be further tailored by chemical surface modification. First, we explore chemical vapor deposition of functionalized isobenzofuran films using ...

Olsson, Ylva Kristina

2007-01-01T23:59:59.000Z

394

Thin-film fiber optic hydrogen and temperature sensor system  

DOE Patents [OSTI]

The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiber optic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences. 3 figs.

Nave, S.E.

1998-07-21T23:59:59.000Z

395

Guided Self-Assembly of Gold Thin Films  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Guided Self-Assembly of Gold Thin Films Print Guided Self-Assembly of Gold Thin Films Print Nanoparticles-man-made atoms with unique optical, electrical, and mechanical properties-have become key components in many fields of science. If nanoparticles could be coaxed into routinely assembling themselves into predictable complex structures and hierarchical patterns, devices could be mass-produced that are one thousand times smaller than today's microtechnologies. Berkeley Lab and UC Berkeley scientists have made progress toward this goal, successfully directing the self--assembly of nanoparticles into device-ready thin films, which have potential applications in fields ranging from computer memory storage to energy harvesting and storage, from catalysis to light management, and into the emerging new field of plasmonics.

396

Guided Self-Assembly of Gold Thin Films  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Guided Self-Assembly of Gold Thin Films Print Guided Self-Assembly of Gold Thin Films Print Nanoparticles-man-made atoms with unique optical, electrical, and mechanical properties-have become key components in many fields of science. If nanoparticles could be coaxed into routinely assembling themselves into predictable complex structures and hierarchical patterns, devices could be mass-produced that are one thousand times smaller than today's microtechnologies. Berkeley Lab and UC Berkeley scientists have made progress toward this goal, successfully directing the self--assembly of nanoparticles into device-ready thin films, which have potential applications in fields ranging from computer memory storage to energy harvesting and storage, from catalysis to light management, and into the emerging new field of plasmonics.

397

Guided Self-Assembly of Gold Thin Films  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Guided Self-Assembly of Gold Thin Films Print Guided Self-Assembly of Gold Thin Films Print Nanoparticles-man-made atoms with unique optical, electrical, and mechanical properties-have become key components in many fields of science. If nanoparticles could be coaxed into routinely assembling themselves into predictable complex structures and hierarchical patterns, devices could be mass-produced that are one thousand times smaller than today's microtechnologies. Berkeley Lab and UC Berkeley scientists have made progress toward this goal, successfully directing the self--assembly of nanoparticles into device-ready thin films, which have potential applications in fields ranging from computer memory storage to energy harvesting and storage, from catalysis to light management, and into the emerging new field of plasmonics.

398

Guided Self-Assembly of Gold Thin Films  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Guided Self-Assembly of Gold Thin Films Print Guided Self-Assembly of Gold Thin Films Print Nanoparticles-man-made atoms with unique optical, electrical, and mechanical properties-have become key components in many fields of science. If nanoparticles could be coaxed into routinely assembling themselves into predictable complex structures and hierarchical patterns, devices could be mass-produced that are one thousand times smaller than today's microtechnologies. Berkeley Lab and UC Berkeley scientists have made progress toward this goal, successfully directing the self--assembly of nanoparticles into device-ready thin films, which have potential applications in fields ranging from computer memory storage to energy harvesting and storage, from catalysis to light management, and into the emerging new field of plasmonics.

399

The origin of white luminescence from silicon oxycarbide thin films  

SciTech Connect (OSTI)

Silicon oxycarbide (SiC{sub x}O{sub y}) is a promising material for achieving strong room-temperature white luminescence. The present work investigated the mechanisms for light emission in the visible/ultraviolet range (1.5–4.0?eV) from chemical vapor deposited amorphous SiC{sub x}O{sub y} thin films, using a combination of optical characterizations and electron paramagnetic resonance (EPR) measurements. Photoluminescence (PL) and EPR studies of samples, with and without post-deposition passivation in an oxygen and forming gas (H{sub 2} 5 at.?% and N{sub 2} 95 at.?%) ambient, ruled out typical structural defects in oxides, e.g., Si-related neutral oxygen vacancies or non-bridging oxygen hole centers, as the dominant mechanism for white luminescence from SiC{sub x}O{sub y}. The observed intense white luminescence (red, green, and blue emission) is believed to arise from the generation of photo-carriers by optical absorption through C-Si-O related electronic transitions, and the recombination of such carriers between bands and/or at band tail states. This assertion is based on the realization that the PL intensity dramatically increased at an excitation energy coinciding with the E{sub 04} band gaps of the material, as well as by the observed correlation between the Si-O-C bond density and the PL intensity. An additional mechanism for the existence of a blue component of the white emission is also discussed.

Nikas, V.; Gallis, S., E-mail: sgalis@us.ibm.com; Huang, M.; Kaloyeros, A. E. [College of Nanoscale Sciences and Engineering, State University of New York, Albany, New York 12203 (United States); Nguyen, A. P. D.; Stesmans, A.; Afanas'ev, V. V. [Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium)

2014-02-10T23:59:59.000Z

400

Substrate effects on the growth of MGCL2 thin films  

SciTech Connect (OSTI)

The dependence of the overlayer growth on the underlying substrate is illustrated in this study of MgCl{sub 2} thin films on the following substrates: Pd(111), Pt(111), Pd(100) and Rh(111). On Pd(111) and Pt(111), the TPD of the deposited MgCl{sub 2} showed a significant substrate-adsorbate interaction as evidenced by a monolayer desorption feature. The interaction was further attested by the formation of two monolayers LEED patterns -- Pd(111)-(4x4)-MgCl{sub 2} and Pd(111)-({radical}13 x {radical}13)-R 13.9{degrees}-MgCl{sub 2}. Also, on Pd(111) and Pt(111), a multilayer coverage pattern was grown, MgCl{sub 2} (1 x 1). When Pd(100) was used as the substrate, the monolayer desorption feature disappeared from the TPD as well as the two monolayer patterns seen on Pd(111), but a MgCl{sub 2} (1 x 1) pattern with multiple rotated domains was created as the multilayer coverage. This difference resulted from the fact that the Pd(100) does not possess the correct angle for the (0001) face of the MgCl{sub 2}. To preserve this angle, the deposition of MgCl{sub 2} was performed on Rh(111) and the reconstructed face of Pt(100). Again, evidence of the strong substrate-adsorbate interaction was gone. The buckling of Pt(100)`s surface layer caused this result. For the Rh(111), the lattice match was not preserved with the angle.

Roberts, J.G.; Fairbrother, D.H.; Somorjai, G.A. [Univ. of California, Berkeley, CA (United States); [Lawrence Berkeley National Lab., CA (United States)

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "thin film deposited" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Electrochromism in copper oxide thin films  

E-Print Network [OSTI]

by a variety of routes, and electrochromic behavior has beenof Cu x O films, electrochromic devices based onbeen investigated. Unlike electrochromic devices based on

Richardson, Thomas J.; Slack, Jonathan L.; Rubin, Michael D.

2000-01-01T23:59:59.000Z

402

Novel wide band gap materials for highly efficient thin film tandem solar cells  

SciTech Connect (OSTI)

Tandem solar cells (TSCs), which use two or more materials to absorb sunlight, have achieved power conversion efficiencies of >25% versus 11-20% for commercialized single junction solar cell modules. The key to widespread commercialization of TSCs is to develop the wide-band, top solar cell that is both cheap to fabricate and has a high open-circuit voltage (i.e. >1V). Previous work in TSCs has generally focused on using expensive processing techniques with slow growth rates resulting in costs that are two orders of magnitude too expensive to be used in conventional solar cell modules. The objective of the PLANT PV proposal was to investigate the feasibility of using Ag(In,Ga)Se2 (AIGS) as the wide-bandgap absorber in the top cell of a thin film tandem solar cell (TSC). Despite being studied by very few in the solar community, AIGS solar cells have achieved one of the highest open-circuit voltages within the chalcogenide material family with a Voc of 949mV when grown with an expensive processing technique (i.e. Molecular Beam Epitaxy). PLANT PV�s goal in Phase I of the DOE SBIR was to 1) develop the chemistry to grow AIGS thin films via solution processing techniques to reduce costs and 2) fabricate new device architectures with high open-circuit voltage to produce full tandem solar cells in Phase II. PLANT PV attempted to translate solution processing chemistries that were successful in producing >12% efficient Cu(In,Ga)Se2 solar cells by replacing copper compounds with silver. The main thrust of the research was to determine if it was possible to make high quality AIGS thin films using solution processing and to fully characterize the materials properties. PLANT PV developed several different types of silver compounds in an attempt to fabricate high quality thin films from solution. We found that silver compounds that were similar to the copper based system did not result in high quality thin films. PLANT PV was able to deposit AIGS thin films using a mixture of solution and physical vapor deposition processing, but these films lacked the p-type doping levels that are required to make decent solar cells. Over the course of the project PLANT PV was able to fabricate efficient CIGS solar cells (8.7%) but could not achieve equivalent performance using AIGS. During the nine-month grant PLANT PV set up a variety of thin film characterization tools (e.g. drive-level capacitance profiling) at the Molecular Foundry, a Department of Energy User Facility, that are now available to both industrial and academic researchers via the grant process. PLANT PV was also able to develop the back end processing of thin film solar cells at Lawrence Berkeley National Labs to achieve 8.7% efficient CIGS solar cells. This processing development will be applied to other types of thin film PV cells at the Lawrence Berkeley National Labs. While PLANT PV was able to study AIGS film growth and optoelectronic properties we concluded that AIGS produced using these methods would have a limited efficiency and would not be commercially feasible. PLANT PV did not apply for the Phase II of this grant.

Brian E. Hardin, Stephen T. Connor, Craig H. Peters

2012-06-11T23:59:59.000Z

403

Crystal Phase Transition of HfO2 Films Evaporated by Plasma Ion-Assisted Deposition  

Science Journals Connector (OSTI)

HfO2 films were evaluated by spectroscopic ellipsometry, indicating crystal phase transition due to plasma ion momentum transfer during deposition. The film inhomogeneity,...

Wang, Jue; Maier, Robert L; Schreiber, Horst

404

Influence of the process parameters on the spray pyrolysis technique, on the synthesis of gadolinium doped-ceria thin film  

SciTech Connect (OSTI)

Graphical abstract: Gas-tight CGO made by spray pyrolysis suitable to be used as SOFC electrolyte. Display Omitted Highlights: ? Dense and crystalline CGO films deposited by spray pyrolysis on various substrates. ? Solvent did not have a strong influence on the film microstructure, defect concentration or thickness. ? The substrate did not have a strong influence on the film microstructure, defect concentration or thickness. ? Films with at least 2.5 ?m of thickness presented high impermeability. ? The films obtained are suitable to use as a SOFC electrolyte. -- Abstract: This work presents the results of a process of optimization applied to gadolinia-doped ceria (Ce{sub 0.8}Gd{sub 0.2}O{sub 1.9?x}, or CGO) thin films, deposited by spray pyrolysis (SP). Spray pyrolysis is a high thermal deposition method that combines material deposition and heat treatment. This combination is advantageous since the post-deposition heat treatment step is not necessary. However, stresses are solidified in the coating during the deposition, which may lead to the initiation of a crack in the coating. The aim of this work was to achieve thin, dense, and continuous CGO coatings, which may be used as gas separation membranes and as a solid state electrochemical interfaces. Dense, flat, low-defect substrates such as silica slides, silicon mono crystal wafers, and porous substrates were used as substrates in this work. Cerium ammonium nitrate and gadolinium acetylacetonate were dissolved in ethanol and butyl carbitol to form a precursor solution that was sprayed on the heated substrates. Process parameters such as solvent composition, deposition rate and different heating regimes were analyzed. The microstructure was analyzed by secondary electron microscopy (SEM) and was found that thin, dense, and defect-free films could be produced on dense and porous substrates. The results obtained show that it is possible to obtain a CGO dense film deposited by spray pyrolysis. X-ray diffraction (XRD) analysis showed that the films were crystalline after the deposition without requiring post-deposition heat treatment. The crystallite size does not vary significantly as a function of the annealing temperature.

Halmenschlager, C.M., E-mail: cibelemh@yahoo.com.br [Laboratory of Materials Ceramic LACER/PPGEM, Federal University of Rio Grande do Sul, Av. Osvaldo Aranha, 99/705C, CEP: 90035-190, Porto Alegre, RS (Brazil); National Research Council, Institute for Fuel Cell Innovation NRC-IFCI, 4250 Wesbrook Mall, V6T 1W5 Vancouver, BC (Canada); Neagu, R. [National Research Council, Institute for Fuel Cell Innovation NRC-IFCI, 4250 Wesbrook Mall, V6T 1W5 Vancouver, BC (Canada)] [National Research Council, Institute for Fuel Cell Innovation NRC-IFCI, 4250 Wesbrook Mall, V6T 1W5 Vancouver, BC (Canada); Rose, L. [National Research Council, Institute for Fuel Cell Innovation NRC-IFCI, 4250 Wesbrook Mall, V6T 1W5 Vancouver, BC (Canada) [National Research Council, Institute for Fuel Cell Innovation NRC-IFCI, 4250 Wesbrook Mall, V6T 1W5 Vancouver, BC (Canada); Department of Materials Engineering, V6T 1Z1 Vancouver, BC (Canada); Malfatti, C.F. [Laboratory of Research in Corrosion LAPEC/PPGEM, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, Setor 4, Prédio 75/2° Andar, CEP: 91501-970, Campus do Vale, Porto Alegre, RS (Brazil)] [Laboratory of Research in Corrosion LAPEC/PPGEM, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, Setor 4, Prédio 75/2° Andar, CEP: 91501-970, Campus do Vale, Porto Alegre, RS (Brazil); Bergmann, C.P. [Laboratory of Materials Ceramic LACER/PPGEM, Federal University of Rio Grande do Sul, Av. Osvaldo Aranha, 99/705C, CEP: 90035-190, Porto Alegre, RS (Brazil)] [Laboratory of Materials Ceramic LACER/PPGEM, Federal University of Rio Grande do Sul, Av. Osvaldo Aranha, 99/705C, CEP: 90035-190, Porto Alegre, RS (Brazil)

2013-02-15T23:59:59.000Z

405

Surface acoustic wave interaction with thin magnetic films  

Science Journals Connector (OSTI)

It has been found that surface acoustic waves(SAW) exhibit a very large interaction with appropriately prepared thin magnetic films through the magnetoelasticeffect. For a 600 Å 90Ni 10Fe thin film the interaction can produce changes in attenuation of 30 dB/cm at 700 MHz by changing from 2 to 12 G a magnetic field applied parallel to the film plane and perpendicular to the SAW.Measurements of the frequency dependence of this large effect yield values for the Gilbert damping constant and the anisotropy field. This interaction has been studied in the series of xNi (1 ? x)Fe alloy films. For x > 80 wt % the magnetoelastic constant ? is negative. It is positive for x Science Foundation under Grant No. ESC 8519695.

Moises Levy; Roy Wiegert

1986-01-01T23:59:59.000Z

406

Fabrication of polycrystalline thin films by pulsed laser processing  

DOE Patents [OSTI]

A method is disclosed for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells. 1 fig.

Mitlitsky, F.; Truher, J.B.; Kaschmitter, J.L.; Colella, N.J.

1998-02-03T23:59:59.000Z

407

Fabrication of polycrystalline thin films by pulsed laser processing  

DOE Patents [OSTI]

A method for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells.

Mitlitsky, Fred (Livermore, CA); Truher, Joel B. (San Rafael, CA); Kaschmitter, James L. (Pleasanton, CA); Colella, Nicholas J. (Livermore, CA)

1998-02-03T23:59:59.000Z

408

Perovskite phase thin films and method of making  

DOE Patents [OSTI]

The present invention comprises perovskite-phase thin films, of the general formula A.sub.x B.sub.y O.sub.3 on a substrate, wherein A is selected from beryllium, magnesium, calcium, strontium, and barium or a combination thereof; B is selected from niobium and tantalum or a combination thereof; and x and y are mole fractions between approximately 0.8 and 1.2. More particularly, A is strontium or barium or a combination thereof and B is niobium or tantalum or a combination thereof. Also provided is a method of making a perovskite-phase thin film, comprising combining at least one element-A-containing compound, wherein A is selected from beryllium, magnesium, calcium, strontium or barium, with at least one element-B-containing compound, wherein B niobium or tantalum, to form a solution; adding a solvent to said solution to form another solution; spin-coating the solution onto a substrate to form a thin film; and heating the film to form the perovskite-phase thin film.

Boyle, Timothy J. (Albuquerque, NM); Rodriguez, Mark A. (Albuquerque, NM)

2000-01-01T23:59:59.000Z

409

Two-color Laser Desorption of Nanostructured MgO Thin Films....  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Two-color Laser Desorption of Nanostructured MgO Thin Films. Two-color Laser Desorption of Nanostructured MgO Thin Films. Abstract: Neutral magnesium atom emission from...

410

Anisotropic dewetting in ultra-thin single-crystal silicon-on-insulator films  

E-Print Network [OSTI]

The single crystal silicon-on-insulator thin film materials system represents both an ideal model system for the study of anisotropic thin film dewetting as well as a technologically important system for the development ...

Danielson, David T. (David Thomas)

2008-01-01T23:59:59.000Z

411

Trend Detection on Thin-Film Solar Cell Technology Using Cluster Analysis and Modified Data Crystallization  

Science Journals Connector (OSTI)

Thin-film solar cell, one of green energies, is growing ... . To detect the potential trends of this technology is essential for companies and relevant industries ... patterns, the potential trends of thin-film solar

Tzu-Fu Chiu; Chao-Fu Hong; Yu-Ting Chiu

2010-01-01T23:59:59.000Z

412

Thin-film solar cells: review of materials, technologies and commercial status  

Science Journals Connector (OSTI)

As apparent from Table 1..., showing the production volume for different manufacturers of these thin-film technologies over the past 3 years, rapidly-growing ... are also increasing rapidly, the thin-film technologies

Martin A. Green

2007-10-01T23:59:59.000Z

413

Quench Properties and Fault Current Limiters of YBCO Thin-Film Superconductors  

Science Journals Connector (OSTI)

We measured the current dependence of quench propagation velocities in strip-shaped YBCO thin films and the current-limiting properties of fault current limiters consisting of a YBCO thin film and ... -300 cm/sec...

Hiroshi Kubota; Yuki Kudo; Mutsuki Yamazaki…

1998-01-01T23:59:59.000Z

414

E-Print Network 3.0 - advanced thin film Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

half of all glass... cells by absorbing light within a specific wavelength. Today's thin-film solar cells could not function... , but static, layer of a thin-film pho- tovoltaic...

415

High efficiency thin film silicon solar cells with novel light trapping : principle, design and processing  

E-Print Network [OSTI]

One major efficiency limiting factor in thin film solar cells is weak absorption of long wavelength photons due to the limited optical path length imposed by the thin film thickness. This is especially severe in Si because ...

Zeng, Lirong, Ph. D. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

416

Influence of samaria doping on the resistance of ceria thin films...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

doping on the resistance of ceria thin films and its implications to the planar oxygen sensing devices. Influence of samaria doping on the resistance of ceria thin films and...

417

Growth of Epitaxial Thin Pd(111) Films on Pt(111) and Oxygen...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Growth of Epitaxial Thin Pd(111) Films on Pt(111) and Oxygen-Terminated FeO(111) Surfaces . Growth of Epitaxial Thin Pd(111) Films on Pt(111) and Oxygen-Terminated FeO(111)...

418

Junction Evolution During Fabrication of CdS/CdTe Thin-film PV Solar Cells (Presentation)  

SciTech Connect (OSTI)

Discussion of the formation of CdTe thin-film PV junctions and optimization of CdTe thin-film PV solar cells.

Gessert, T. A.

2010-09-01T23:59:59.000Z

419

hcp-to-fcc stacking switch in thin cobalt films induced by Cu capping  

Science Journals Connector (OSTI)

We report on surface structure analyses by quantitative low-energy electron diffraction for ultrathin films of 1.5 and 5 ML Co on Cu(111) and on the structural changes they undergo when additionally covered by 2–3 ML copper. The thin cobalt film is dominated by continuation of the fcc stacking dictated by the substrate whereby a large part of the domains is capped by copper dissolved from the substrate and possibly substituted by cobalt. Yet, some stacking faults near the interface appear already at this low coverage in domains uncapped by copper. The 5 ML Co film, on the other hand, is almost fully hexagonally close packed. While the stacking of the thinnest film is practically stable upon further copper deposition, the sandwiching of the thicker film induces a structural switch from hcp to fcc stacking, whereby twinned fcc domains develop. At least one of the cobalt layers undergoes a full registry shift upon the sandwiching process. This shows that copper deposited on top of cobalt not only stabilizes the initial fcc stacking of cobalt but also can induce a switch from an existing hcp stacking of a thicker cobalt film back to fcc.

Ch. Rath, J. E. Prieto, S. Müller, R. Miranda, and K. Heinz

1997-04-15T23:59:59.000Z

420

Method for producing high quality thin layer films on substrates  

DOE Patents [OSTI]

A method for producing high quality, thin layer films of inorganic compounds upon the surface of a substrate is disclosed. The method involves condensing a mixture of preselected molecular precursors on the surface of a substrate and subsequently inducing the formation of reactive species using high energy photon or charged particle irradiation. The reactive species react with one another to produce a film of the desired compound upon the surface of the substrate.

Strongin, Myron (Center Moriches, NY); Ruckman, Mark (Middle Island, NY); Strongin, Daniel (Port Jefferson, NY)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thin film deposited" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Method for producing high quality thin layer films on substrates  

DOE Patents [OSTI]

A method for producing high quality, thin layer films of inorganic compounds upon the surface of a substrate is disclosed. The method involves condensing a mixture of preselected molecular precursors on the surface of a substrate and subsequently inducing the formation of reactive species using high energy photon or charged particle irradiation. The reactive species react with one another to produce a film of the desired compound upon the surface of the substrate. 4 figures.

Strongin, M.; Ruckman, M.; Strongin, D.

1994-04-26T23:59:59.000Z

422

Fabrication and testing of thermoelectric thin film devices  

SciTech Connect (OSTI)

Two thin-film thermoelectric devices are experimentally demonstrated. The relevant thermal loads on the cold junction of these devices are determined. The analytical form of the equation that describes the thermal loading of the device enables one to model the performance based on the independently measured electronic properties of the films forming the devices. This model elucidates which parameters determine device performance, and how they can be used to maximize performance.

Wagner, A.V.; Foreman, R.J.; Summers, L.J.; Barbee, T.W. Jr.; Farmer, J.C. [Lawrence Livermore National Lab., CA (United States). Chemistry and Materials Science Dept.

1996-03-01T23:59:59.000Z

423

Dynamics of tear film deposition and draining  

Science Journals Connector (OSTI)

......approximation' (see, e.g. Probstein, 1994) conservation of mass indicates h t = Q x-E, (2...1983) Tear evaporimeter for measuring water evaporation rate from the tear film under...withdrawn vertically and at right angle from a pool of fluid. The analysis is based on the......

M. B. Jones; C. P. Please; D. L. S. McElwain; G. R. Fulford; A. P. Roberts; M. J. Collins

2005-09-01T23:59:59.000Z

424

Surface modification of a \\{WTi\\} thin film on Si substrate by nanosecond laser pulses  

Science Journals Connector (OSTI)

Interaction of a nanosecond transversely excited atmospheric (TEA) CO2 laser, operating at 10.6 ?m, with tungsten–titanium thin film (190 nm) deposited on silicon of n-type (1 0 0) orientation, was studied. Multi-pulse irradiation was performed in air atmosphere with laser energy densities in the range 24–49 J/cm2. The energy absorbed from the laser beam was mainly converted to thermal energy, which generated a series of effects. The following morphological changes were observed: (i) partial ablation/exfoliation of the \\{WTi\\} thin film, (ii) partial modification of the silicon substrate with formation of polygonal grains, (iii) appearance of hydrodynamic features including nano-globules. Torch-like plumes started appearing in front of the target after several laser pulses.

S. Petrovi?; B. Gakovi?; D. Peruško; M. Trtica; B. Radak; P. Panjan; Š. Miljani?

2008-01-01T23:59:59.000Z

425

Nonequilibrium behavior of thin polymer films  

Science Journals Connector (OSTI)

The rheological behavior of 100-nm-thick polystyrene films cast from various solvents was examined using an electric field to weakly perturb the free surface of the polymer melt. The effective viscosity and residual stresses of the as-spun films are seen to strongly depend on the properties of the casting solvent and the solvent quality. Both effects are explained in terms of the coil dimension at the solvent-polymer composition at which the film vitrifies. The more compact chains in a near-?-solvent are less entangled and less deformed when quenched to the dry melt compared to the more swollen chains in an athermal solution. Despite chain conformations that are further from equilibrium for the ?-solvent cast chains, these films have reduced stored stresses compared to the chains cast in films from athermal solvents. A more detailed analysis of the data suggests that the formation of a surface-near region with more strongly deformed chains during spin coating. Since thermal equilibration of spin-cast high-molecular-weight films is unpractical, solvent vapor annealing was used to equilibrate films on timescale of a few hours.

Katherine R. Thomas; Alexis Chenneviere; Günter Reiter; Ullrich Steiner

2011-02-28T23:59:59.000Z

426

Induced polarized state in intentionally grown oxygen deficient KTaO{sub 3} thin films  

SciTech Connect (OSTI)

Deliberately oxygen deficient potassium tantalate thin films were grown by RF magnetron sputtering on Si/SiO{sub 2}/Ti/Pt substrates. Once they were structurally characterized, the effect of oxygen vacancies on their electric properties was addressed by measuring leakage currents, dielectric constant, electric polarization, and thermally stimulated depolarization currents. By using K{sub 2}O rich KTaO{sub 3} targets and specific deposition conditions, KTaO{sub 3-{delta}} oxygen deficient thin films with a K/Ta = 1 ratio were obtained. Room temperature X-ray diffraction patterns show that KTaO{sub 3-{delta}} thin films are under a compressive strain of 2.3% relative to KTaO{sub 3} crystals. Leakage current results reveal the presence of a conductive mechanism, following the Poole-Frenkel formalism. Furthermore, dielectric, polarization, and depolarization current measurements yield the existence of a polarized state below T{sub pol} {approx} 367 Degree-Sign C. A Cole-Cole dipolar relaxation was also ascertained apparently due to oxygen vacancies induced dipoles. After thermal annealing the films in an oxygen atmosphere at a temperature above T{sub pol}, the aforementioned polarized state is suppressed, associated with a drastic oxygen vacancies reduction emerging from annealing process.

Mota, D. A.; Romaguera-Barcelay, Y.; Tkach, A.; Agostinho Moreira, J.; Almeida, A. [IFIMUP and IN-Institute of Nanoscience and Nanotechnology, Department of Physics and Astronomy, Faculty of Science of University of Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Perez de la Cruz, J. [INESC TEC, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Vilarinho, P. M. [Department of Ceramics and Glass Engineering, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Tavares, P. B. [Centro de Quimica, Universidade de Tras-os-Montes e Alto Douro, Apartado 1013, 5001-801 Vila Real (Portugal)

2013-07-21T23:59:59.000Z

427

Boron arsenide thin film solar cell development. Final report  

SciTech Connect (OSTI)

Pyrolytic decomposition of diborane and arsine has been used in attempts to grow polycrystalline BAs films. This method, however, produced only amorphous films for deposition temperatures below 920/sup 0/C and polycrystalline boron subarsenide (B/sub 12/As/sub 2/) flms for deposition temperatures above this value. The amorphous films have been determined to have a significant arsenic content but the actual stoichiometry was not obtained. The films were adherent on single crystal sapphire (0001), (111) silicon, (0001) SiC, and polycrystalline SiC but were found not to be adherent to substrates of fused quartz, tungsten, and molybdenum. It was also found that all films deposited above 650/sup 0/C were p-type while those deposited below 600/sup 0/C were usually n-type. Polycrystalline BAs and B/sub 12/As/sub 2/ was produced by reaction of the elements in a closed tube. The amorphous films showed an indirect or non-direct optical bandgap from 1.0 to 1.7 eV with the most probable values between 1.2 to 1.4 eV. The crystalline BAs powder shows a bandgap near 1.0 eV. Photoconductance time constants have been measured for films deposited on (0001) sapphire and (0001) SiC. Attempts at doping the amorphous films were generally unsuccessful. A polycrystalline powder sample was successfully doped with sulfur. Attempts were made to produce a Schottky barrier diode by evaporating Al dots onto an amorphous film on graphite without a post-evaporation anneal. An MIS structure was also attempted by baking an amorphous film in air at 280/sup 0/C before evaporation of aluminum. Although nonlinear characteristics were obtained, none of the devices showed any photovoltaic response. A p-type amorphous film was deposited on an n-type silicon substrate to form a p-n heterojunction. This device did exhibit a photovoltaic response but it is believed that the photogeneration was occurring primarily in the silicon substrate.

Boone, J.L.; Van Doren, T.P.

1980-09-01T23:59:59.000Z

428

An integrated thin-film thermo-optic waveguide beam deflector Suning Tang,a)  

E-Print Network [OSTI]

An integrated thin-film thermo-optic waveguide beam deflector Suning Tang,a) Bulang Li, and Xinghua for publication 16 February 2000 We have demonstrated the operation of a thin-film thermo-optical beam deflector in a three-layer optical planar waveguide. The fabricated waveguide beam deflector consists of a thin-film Si

Chen, Ray

429

Design and fabrication of photonic crystal thin film photovoltaic cells Guillaume Gomarda,b  

E-Print Network [OSTI]

Design and fabrication of photonic crystal thin film photovoltaic cells Guillaume Gomarda,b , Ounsi of an absorbing planar photonic crystal within a thin film photovoltaic cell. The devices are based on a stack with large areas. Keywords: Photonic crystal, Photovoltaic solar cell, Thin film solar cell, Hydrogenated

Paris-Sud XI, Université de

430

Thin crystalline silicon solar cells based on epitaxial films grown at 165C by RF PECVD  

E-Print Network [OSTI]

1 Thin crystalline silicon solar cells based on epitaxial films grown at 165°C by RF PECVD Romain temperatures. Keywords : Low temperature, epitaxy, PECVD, Si thin film, Solar cell hal-00749873,version1-25Nov shortage until 2010. Research on epitaxial growth for thin film crystalline silicon solar cells has gained

431

Mechanics of thin-film transistors and solar cells on flexible substrates Helena Gleskova*  

E-Print Network [OSTI]

1 Mechanics of thin-film transistors and solar cells on flexible substrates Helena Gleskova* , I be minimized throughout the fabrication process. Amorphous silicon thin-film transistors and solar cells, thin-film transistor, solar cell, flexible electronics Phone: (609) 258-4626, Fax: (609) 258-3585, E

432

EARTH ABUNDANT MATERIALS FOR HIGH EFFICIENCY HETEROJUNCTION THIN FILM SOLAR CELLS  

E-Print Network [OSTI]

EARTH ABUNDANT MATERIALS FOR HIGH EFFICIENCY HETEROJUNCTION THIN FILM SOLAR CELLS Yun Seog Lee 1; * Corresponding author: buonassisi@mit.edu; ABSTRACT We investigate earth abundant materials for thin- film solar cuprous oxide (Cu2O) as a prototype candidate for investigation as an absorber layer in thin film solar

Ceder, Gerbrand

433

LBIC ANALYSIS OF THIN-FILM POLYCRYSTALLINE SOLAR CELLS James R. Sites and Timothy J. Nagle  

E-Print Network [OSTI]

LBIC ANALYSIS OF THIN-FILM POLYCRYSTALLINE SOLAR CELLS James R. Sites and Timothy J. Nagle Physics response map, was developed and used to map defects in thin-film solar cells [4]. Improvements to the two) measurements are providing a direct link between the spatial non-uniformities inherent in thin-film

Sites, James R.

434

DISSERTATION ELECTRON-REFLECTOR STRATEGY FOR CdTe THIN-FILM SOLAR CELLS  

E-Print Network [OSTI]

DISSERTATION ELECTRON-REFLECTOR STRATEGY FOR CdTe THIN-FILM SOLAR CELLS Submitted by Kuo-Jui Hsiao ELECTRON- REFLECTOR STRATEGY FOR CdTe THIN-FILM SOLAR CELLS BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS SOLAR CELLS The CdTe thin-film solar cell has a large absorption coefficient and high theoretical

Sites, James R.

435

Plasmonic enhancement of thin-film solar cells using gold-black C.J. Fredricksena  

E-Print Network [OSTI]

Plasmonic enhancement of thin-film solar cells using gold-black coatings C.J. Fredricksena , D. R thin-film amorphous-silicon solar cells enhance the short-circuit current by 20% over a broad spectrum and locally enhance the field strength. Keywords: plasmonics, thin-film, solar cell, metallic nanoparticles

Peale, Robert E.

436

Optimization of the absorption efficiency of an amorphous-silicon thin-film tandem solar cell  

E-Print Network [OSTI]

Optimization of the absorption efficiency of an amorphous-silicon thin-film tandem solar cell-wave approach was used to compute the plane-wave absorptance of a thin-film tandem solar cell with a metallic­4]. In this context, a basic idea is to periodically texture the metallic back reflector of a thin-film solar cell

437

Extended light scattering model incorporating coherence for thin-film silicon solar cells  

E-Print Network [OSTI]

Extended light scattering model incorporating coherence for thin-film silicon solar cells Thomas film solar cells. The model integrates coherent light propagation in thin layers with a direct, non potential for light trapping in textured thin film silicon solar cells. VC 2011 American Institute

Lenstra, Arjen K.

438

Silicon Thin-Film Formation by Direct Photochemical Decomposition of Disilane  

Science Journals Connector (OSTI)

Silicon thin-films have been deposited by the direct photolysis of disilane at a substrate temperature below 300°C. The growth rate depends on irradiation intensity of a low pressure mercury-lamp, and a typical rate of 15 Å/min has been obtained under ~0.08 watts/cm2 illumination, regardless of substrate temperature. The deposited films are composed of an amorphous network containing bonded-hydrogen in the range 6–9 at.%. The bonding configurations of SiH groups varied from silicon dihydride to monohydride with increasing substrate temperature, and correspondingly the dark conductivity decreased from 10-7 to 10-11 ?-1cm-1. A broad photoluminescence peak at 1.4 eV was observed for a specimen grown at 200°C.

Yasuyoshi Mishima; Masataka Hirose; Yukio Osaka; Kunihiro Nagamine; Yoshinori Ashida; Nobuhisa Kitagawa; Kazuyoshi Isogaya

1983-01-01T23:59:59.000Z

439

On the feasibility of colored glazed thermal solar collectors based on thin film interference filters  

Science Journals Connector (OSTI)

Glazed thermal solar collectors, typically equipped with black, optical selective absorber sheets, exhibit good energy conversion efficiency. However, the black color, and sometimes the visibility of tubes and corrugations of the metal sheets, limit the architectural integration into buildings. In order to overcome this drawback, interference filters are considered as a promising approach. Multilayered thin film stacks deposited on the cover glass can produce a colored reflection hiding the black absorber without a great loss of energy. These interference filters are designed and optimized by numerical simulation. Such coatings are deposited by vacuum processes (e.g. magnetron sputtering) and also via the SolGel method. Optical measurements, such as real-time laser-reflectometry and spectrophotometry, are suitable to determine film thicknesses and optical constants of individual layers, and to measure color coordinates and solar transmittance for the multilayer stacks. Advantages and disadvantages of the different coating processes are discussed.

A. Schüler; C. Roecker; J.-L. Scartezzini; J. Boudaden; I.R. Videnovic; R.S.-C. Ho; P. Oelhafen

2004-01-01T23:59:59.000Z

440

Ge doped HfO{sub 2} thin films investigated by x-ray absorption spectroscopy  

SciTech Connect (OSTI)

The stability of the tetragonal phase of Ge doped HfO{sub 2} thin films on Si(100) was investigated. Hf(Ge)O{sub 2} films with Ge atomic concentrations varying from 0% to 15% were deposited by remote plasma chemical vapor deposition. The atomic structure on the oxide after rapid thermal annealing was investigated by x-ray absorption spectroscopy of the O and Ge K edges and by Rutherford backscattering spectrometry. The authors found that Ge concentrations as low as 5 at. % effectively stabilize the tetragonal phase of 5 nm thick Hf(Ge)O{sub 2} on Si and that higher concentrations are not stable to rapid thermal annealing at temperatures above 750 deg. C.

Miotti, Leonardo; Bastos, Karen P.; Lucovsky, Gerald; Radtke, Claudio; Nordlund, Dennis [Department of Physics, North Carolina State University, Box 8202, Raleigh, North Carolina 27695-8202 (United States); Instituto de Quimica, Universidade Federal do Rio Grande do Sul, 91509-900 Porto Alegre (Brazil); Stanford Synchrotron Radiation Lightsource, Menlo Park, California 94025 (United States)

2010-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "thin film deposited" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Deposition of device quality low H content, amorphous silicon films  

DOE Patents [OSTI]

A high quality, low hydrogen content, hydrogenated amorphous silicon (a-Si:H) film is deposited by passing a stream of silane gas (SiH{sub 4}) over a high temperature, 2,000 C, tungsten (W) filament in the proximity of a high temperature, 400 C, substrate within a low pressure, 8 mTorr, deposition chamber. The silane gas is decomposed into atomic hydrogen and silicon, which in turn collides preferably not more than 20--30 times before being deposited on the hot substrate. The hydrogenated amorphous silicon films thus produced have only about one atomic percent hydrogen, yet have device quality electrical, chemical, and structural properties, despite this lowered hydrogen content. 7 figs.

Mahan, A.H.; Carapella, J.C.; Gallagher, A.C.

1995-03-14T23:59:59.000Z

442

Thin-film heterostructure solid oxide fuel cells  

Science Journals Connector (OSTI)

A micro thin-filmsolid oxide fuel cell (TFSOFC) has been designed based on thin-filmdeposition and microlithographic processes. The TFSOFC is composed of a thin-filmelectrolyte grown on a nickel foil substrate and a thin-filmcathodedeposited on the electrolyte. The Ni foil substrate is then processed into a porous anode by photolithographic patterning and etching to develop pores for gas transport into the fuel cell. A La 0.5 Sr 0.5 CoO 3 (LSCO) thin-filmcathode is then deposited on the electrolyte and a porous NiO–YSZ cermet layer is added to the anode to improve the electrode performance. The TFSOFC has stably operated in a temperature ranges as low as 480–570?°C significantly lower than bulk SOFC’s and has yielded a maximum output power density of ?110? mW/cm 2 in that temperature range.

X. Chen; N. J. Wu; L. Smith; A. Ignatiev

2004-01-01T23:59:59.000Z

443

Stripe Domain-Structures in a Thin Ferromagnetic Film  

E-Print Network [OSTI]

We present a theory of the stripe domain structure in a thin ferromagnetic film with single-ion easy-axis magnetic anisotropy and long-range dipole interactions, for a wide range of temperatures and applied magnetic field. The domains exist...

KASHUBA, AB; Pokrovsky, Valery L.

1993-01-01T23:59:59.000Z

444

Method of preparing thin film polymeric gel electrolytes  

DOE Patents [OSTI]

Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

Derzon, Dora K. (Albuquerque, NM); Arnold, Jr., Charles (Albuquerque, NM)

1997-01-01T23:59:59.000Z

445

Synthesis and Characterization of Functional Nanostructured Zinc Oxide Thin Films  

E-Print Network [OSTI]

.1149/1.2357098, copyright The Electrochemical Society 65 #12;66 reduced environmental impact and a minimum undesirable inter-temperature thin film growth technique has been developed to fabricate a new generation of smart and functional and structural requirements of their applications in gas sensors and solar cells. The rapid photothermal

Chow, Lee

446

Co-sputtering yttrium into hafnium oxide thin films to produce ferroelectric properties  

SciTech Connect (OSTI)

Thin film capacitors were fabricated by sputtering TiN-Y doped HfO{sub 2}-TiN stacks on silicon substrates. Yttrium was incorporated into the HfO{sub 2} layers by simultaneously sputtering from Y{sub 2}O{sub 3} and HfO{sub 2} sources. Electric polarization and relative permittivity measurements yield distinct ferroelectric properties as a result of low yttrium dopant concentrations in the range of 0.9-1.9 mol. %. Grazing incidence x-ray diffraction measurements show the formation of an orthorhombic phase in this range. Compared to atomic layer deposition films, the highest remanent polarization and the highest relative permittivity were obtained at significantly lower doping concentrations in these sputtered films.

Olsen, T. [NaMLab gGmbH, 01187 Dresden (Germany); Department of Electrical and Computer Engineering, University of Alberta, Edmonton T6G 2V4 (Canada); Schroeder, U.; Mueller, S.; Krause, A.; Martin, D.; Singh, A. [NaMLab gGmbH, 01187 Dresden (Germany); Mueller, J. [Fraunhofer CNT, 01099 Dresden (Germany); Geidel, M. [Institute of Semiconductors and Microsystems, Technische Universitaet Dresden, 01062 Dresden (Germany); Mikolajick, T. [NaMLab gGmbH, 01187 Dresden (Germany); Institute of Semiconductors and Microsystems, Technische Universitaet Dresden, 01062 Dresden (Germany)

2012-08-20T23:59:59.000Z

447

Dry etching properties of TiO2 thin films in O2/CF4/Ar plasma  

Science Journals Connector (OSTI)

In this work, the etching properties of titanium dioxide (TiO2) thin film in additions of O2 at CF4/Ar plasma were investigated. The maximum etch rate of 179.4 nm/min and selectivity of TiO2 of 0.6 were obtained at an O2/CF4/Ar (=3:16:4 sccm) gas mixing ratio. In addition, the etch rate and selectivity were measured as a function of the etching parameters, such as the RF power, DC-bias voltage, and process pressure. The efficient destruction of the oxide bonds by ion bombardment, which was produced from the chemical reaction of the etched TiO2 thin film, was investigated by X-ray photoelectron spectroscopy. To determine the re-deposition of sputter products and reorganization of such residues on the surface, the surface roughness of TiO2 thin film were examined using atomic force microscopy.

Kyung-Rok Choi; Jong-Chang Woo; Young-Hee Joo; Yoon-Soo Chun; Chang-Il Kim

2013-01-01T23:59:59.000Z

448

Local elastic modulus of RF sputtered HfO{sub 2} thin film by atomic force acoustic microscopy  

SciTech Connect (OSTI)

Atomic force acoustic microscopy (AFAM) is a useful nondestructive technique for measurement of local elastic modulus of materials at nano-scale spatial resolution by measuring the contact resonance spectra for higher order modes of the AFM cantilever. The elastic modulus of RF sputtered HfO{sub 2} thin film has been measured quantitatively, using reference approach in which measurements are performed on the test and reference samples. Using AFAM, the measured elastic modulus of the HfO{sub 2} thin film is 223±27 GPa, which is in agreement with the literature value of 220±40 GPa for atomic layer deposited HfO{sub 2} thin film using nanoindentation technique.

Jena, S., E-mail: shuvendujena9@gmail.com; Tokas, R. B., E-mail: shuvendujena9@gmail.com; Sarkar, P., E-mail: shuvendujena9@gmail.com; Thakur, S.; Sahoo, N. K. [Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085 (India); Misal, J. S.; Rao, K. D. [Optics and Thin Film Laboratory, Autonagar, BARC-Vizag, Visakhapatnam-530 012 (India)

2014-04-24T23:59:59.000Z

449

Fe thin-film growth on Au(100): A self-surfactant effect and its limitations  

Science Journals Connector (OSTI)

The combination of low-energy electron diffraction intensity analyses and scanning tunneling microscopy was used to investigate the morphology and atomic structure of thin Fe films grown on Au(100) at 400 K. Deposition of only about 0.2 monolayers (ML) Fe is sufficient to lift the reconstruction of the clean substrate. In the initial growth process (<~1 ML) place exchanges between Fe and Au lead to almost two-dimensional subsurface Fe film growth with one layer of Au covering the entire film. This way, gold acts as a “self-surfactant.” Yet, there are deviations from two-dimensional growth, with a second Fe layer beginning to grow before the first one is fully completed and some substitutional disorder developing in the film because of incomplete place exchange. The amount of gold floating on the surface only gradually decreases with further increasing film thickness. At about 2 ML the surface undergoes a complete restructuring during which short “wormlike” chains of atoms form and long-range order is destroyed. Nevertheless, the existence of large terraces of little roughness proves that some surface activity of gold remains. At coverages of several ML, long-range order is reestablished with the Fe film growing in an undistorted bcc arrangement. Although parts of the film are still covered by gold, the surface morphology is not very different from that known for homoepitaxial growth of Fe on Fe(100), i.e., gold has stopped to serve as a “self-surfactant.”

V. Blum, Ch. Rath, S. Müller, L. Hammer, K. Heinz, J. M. García, J. E. Ortega, J. E. Prieto, O. S. Hernán, J. M. Gallego, A. L. Vázquez de Parga, and R. Miranda

1999-06-15T23:59:59.000Z

450

Method for fabricating thin films of pyrolytic carbon  

DOE Patents [OSTI]

The present invention relates to a method for fabricating ultrathin films of pyrolytic carbon. Pyrolytic carbon is vapor deposited onto a concave surface of a heated substrate to a total uniform thickness in the range of about 0.1 to 1.0 micrometer. The carbon film on the substrate is provided with a layer of adherent polymeric resin. The resulting composite film of pyrolytic carbon and polymeric resin is then easily separated from the substrate by shrinking the 10 polymeric resin coating with thermally induced forces.

Brassell, G.W.; Lewis, J. Jr.; Weber, G.W.

1980-03-13T23:59:59.000Z

451

Synthesis of nanostructured multiphase (Ti,Al)N/a-Si3N4 thin films using dense plasma focus device  

Science Journals Connector (OSTI)

A 2.3 kJ pulsed plasma focus device was used to prepare thin films of nc-(Ti,Al)N/a-Si3N4 at room temperature. The plasma focus device, fitted with copper anode encapsulated with Ti0.5Al0.5 anode, was operated with nitrogen as the filling gas. Films were deposited with various number of focus shots, at 90 mm from top of the anode and at zero angular position with respect to anode axis. XRD patterns show the growth of polycrystalline (Ti,Al)N thin films with orientations in the (1 1 1), (2 0 0), (2 2 0) and (3 1 1) crystallographic planes. Behavior of lattice constant, grain size and film roughness of deposited film as a function of variation in number of focus shots is discussed. SEM micrographs of film deposited with 15 number of focus shots exhibit well-developed net like structure of nc-(Ti,Al)N/a-Si3N4 and possibly nc-(Ti,Al)N/a-Si3N4/a-AlN or nc-TiN/a-Si3N4/a-AlN. Surface Roughness ranging 64 nm to 89 nm was also observed.

Tousif Hussain; R. Ahmad; Nida Khalid; Z.A. Umar; A. Hussnain

2011-01-01T23:59:59.000Z

452

Method of fabricating high-efficiency Cu(In,Ga)(SeS).sub.2 thin films for solar cells  

DOE Patents [OSTI]

A process for producing a slightly Cu-poor thin film of Cu(In,Ga)(Se,S).sub.2 comprises depositing a first layer of (In,Ga).sub.x (Se,S).sub.y followed by depositing just enough Cu+(Se,S) or Cu.sub.x (Se,S) to produce the desired slightly Cu-poor material. In a variation, most, but not all, (about 90 to 99%) of the (In,Ga).sub.x (Se,S).sub.y is deposited first, followed by deposition of all the Cu+(Se,S) or Cu.sub.x (Se,S) to go near stoichiometric, possibly or even preferably slightly Cu-rich, and then in turn followed by deposition of the remainder (about 1 to 10%) of the (In,Ga).sub.x (Se,S).sub.y to end with a slightly Cu-poor composition. In yet another variation, a small portion (about 1 to 10%) of the (In,Ga).sub.x (Se,S).sub.y is first deposited as a seed layer, followed by deposition of all of the Cu+(Se,S) or Cu.sub.x (Se,S) to make a very Cu-rich mixture, and then followed deposition of the remainder of the (In,Ga).sub.x (Se,S).sub.y to go slightly Cu-poor in the final Cu(In,Ga)(Se,S).sub.2 thin film.

Noufi, Rommel (Golden, CO); Gabor, Andrew M. (Boulder, CO); Tuttle, John R. (Denver, CO); Tennant, Andrew L. (Denver, CO); Contreras, Miguel A. (Golden, CO); Albin, David S. (Denver, CO); Carapella, Jeffrey J. (Evergreen, CO)

1995-01-01T23:59:59.000Z

453

Chemical vapor deposition of amorphous semiconductor films. Semiannual report, 1 May 1983-31 October 1984  

SciTech Connect (OSTI)

This report presents an analysis of intrinsic and phosphorus-doped n-type amorphous silicon films deposited by LPCVD from disilane in a laminar flow tubular reactor. These films were analyzed using SIMs, ESR measurements, optical absorption, and conductivity in light and dark. CVD deposited i layers were used to make platinum Schottky barrier devices and hybrid cells utilizing glow discharge deposited layers in both the ITO/nip/Mo and ITO/pin/Mo configurations. The highest efficiency of hybrid cells with the ITO/ni(CVD)/p(GD)/Mo structure was approximately 1.5%. The highest efficiencies were obtained with thin i layers. The highest efficiency for the ITO/p(GD)/in(CVD)/Mo configuration was 4.0%. A chemical model was developed describing the gas phase reactions and film growth; the model quantitatively describes the effluent composition when the measured growth rate is input. Kinetic rate expressions and constants for growth from higher silanes are being determined for a wide range of reaction conditions.

Not Available

1984-03-01T23:59:59.000Z

454

A combinatorial investigation of sputtered Ta–Al–C thin films  

Science Journals Connector (OSTI)

Abstract We describe a combinatorial experiment investigating the Ta–Al–C material system, conducted with the aim of determining why the tantalum-containing Mn + 1AXn phases have so far proved to be not amenable to thin-film synthesis. Samples were deposited onto (0001) Al2O3 wafers at 850 °C and characterized by X-ray diffraction wafer maps, scanning electron microscopy, and surface optical scattering. Elemental Ta, the binary phases TaC, Ta2C, and TaAl3, and the ternary phases Ta3Al2C and Ta5Al3C were identified. The morphology, phase composition and preferred orientation of the films deposited were found to be highly sensitive to the Ta fraction of the incident flux during deposition. No MAX phase material was observed, indicating that the Ta-containing MAX phases do not form under the deposition conditions investigated. Explanations associated with inadequate coverage of stochiometries, preferential sputtering, and thermodynamic instability have been ruled out. An explanation based on reduced surface diffusion of Ta during growth is proposed. A substantially higher substrate temperature during deposition is likely to be required to synthesize Ta-containing MAX phases.

Mark D. Tucker; Marcela M.M. Bilek; David R. McKenzie

2014-01-01T23:59:59.000Z

455

Structure-stress-resistivity relationship in WTi alloy ultra-thin and thin films prepared by magnetron sputtering  

Science Journals Connector (OSTI)

WTi thin films were prepared from an alloyed target (W:Ti ? 70:30?at. %) by magnetron sputtering. Body-centered cubic W x T i 1 ? x solid solutions with a { 110 } fiber texture and columnar grains have been produced with 0.75 WTi thin films is about 60 ? 200 ? ? ? ? cm depending on the film thickness and microstructure (sputtering conditions). For both ultra-thin (9.5?nm) and thin (180?nm) films a stress transition from compressive to tensile is observed as the working pressure increases. The process-structure-property relations of the WTi ultra-thin and thin films are discussed in relation with the state of the art.

P.-O. Renault

2013-01-01T23:59:59.000Z

456

Chemical vapor deposition of amorphous silicon films from disilane  

SciTech Connect (OSTI)

Amorphous silicon films for fabrication of solar cells have been deposited by thermal chemical vapor deposition (CVD) from disilane (Si/sub 2/H/sub 6/) using a tubular flow reactor. A mathematical description for the CVD reactor was developed and solved by a numerical procedure. The proposed chemical reaction network for the model is based on silylene (SiH/sub 2/) insertion in the gas phase and film growth from SiH/sub 2/ and silicon polymers (Si/sub n/N/sub 2n/, n approx. 10). Estimates of the rate constants have been obtained for trisilane decomposition, silicon polymer formation, and polymer dehydrogenation. The silane unimolecular decomposition rate constants were corrected for pressure effects. The model behavior is compared to the experimental results over the range of conditions: reactor temperature (360 to 485/sup 0/C), pressures (2 to 48 torr), and gas holding time (1 to 70 s). Within the above range of conditions, film growth rate varies from 0.01 to 30 A/s. Results indicate that silicon polymers are the main film precursors for gas holding times greater than 3 s. Film growth by silylene only becomes important at short holding times, large inert gas dilution, and positions near the beginning of the reactor hot zone.

Bogaert, R.J.

1986-01-01T23:59:59.000Z

457

Institute of Photo Electronic Thin Film Devices and Technology of Nankai  

Open Energy Info (EERE)

Electronic Thin Film Devices and Technology of Nankai Electronic Thin Film Devices and Technology of Nankai University Jump to: navigation, search Name Institute of Photo-Electronic Thin Film Devices and Technology of Nankai University Place Tianjin Municipality, China Zip 300071 Sector Solar Product A thin-film solar cell research institute in China. References Institute of Photo-Electronic Thin Film Devices and Technology of Nankai University[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Institute of Photo-Electronic Thin Film Devices and Technology of Nankai University is a company located in Tianjin Municipality, China . References ↑ "Institute of Photo-Electronic Thin Film Devices and Technology of Nankai University"

458

Abstract--In this paper, the propagation characteristics of an enhanced-thickness magnetic nanoparticle thin film are  

E-Print Network [OSTI]

nanoparticle thin film are investigated on high resistivity silicon substrate (10,000 ohm-cm) for the first time up to 60 GHz. Contrary to other thin films, this nanoparticle thin film can achieve a thickness up. Index Terms-- Magnetic thin film, Nanoparticle, Coplanar waveguide, high-permeability materials, FGC I

Tentzeris, Manos

459

Properties of boron-doped thin films of polycrystalline silicon  

SciTech Connect (OSTI)

The properties of polycrystalline-silicon films deposited by low pressure chemical vapor deposition and doped heavily in situ boron-doped with concentration level of around 2×10{sup 20}cm{sup ?3} has been studied. Their properties are analyzed using electrical and structural characterization means by four points probe resistivity measurements and X-ray diffraction spectra. The thermal-oxidation process are performed on sub-micron layers of 200nm/c-Si and 200nm/SiO{sub 2} deposited at temperatures T{sub d} ranged between 520°C and 605°C and thermally-oxidized in dry oxygen ambient at 945°C. Compared to the as-grown resistivity with silicon wafers is known to be in the following sequence < and < . The measure X-ray spectra is shown, that the Bragg peaks are marked according to the crystal orientation in the film deposited on bare substrates (poly/c-Si), for the second series of films deposited on bare oxidized substrates (poly/SiO{sub 2}) are clearly different.

Merabet, Souad [Electronic Department, Faculty of Science and Technology, University of Jijel, Cité Ouled-Aissa B. P. 98 Jijel, 18 000 Jijel (Algeria)

2013-12-16T23:59:59.000Z

460

Electron scattering mechanisms in fluorine-doped SnO{sub 2} thin films  

SciTech Connect (OSTI)

Polycrystalline fluorine-doped SnO{sub 2} (FTO) thin films have been grown by ultrasonic spray pyrolysis on glass substrate. By varying growth conditions, several FTO specimens have been deposited and the study of their structural, electrical, and optical properties has been carried out. By systematically investigating the mobility as a function of carrier density, grain size, and crystallite size, the contribution of each physical mechanism involved in the electron scattering has been derived. A thorough comparison of experimental data and calculations allows to disentangle these different mechanisms and to deduce their relative importance. In particular, the roles of extended structural defects such as grain or twin boundaries as revealed by electron microscopy or x-ray diffraction along with ionized impurities are discussed. As a consequence, based on the quantitative analysis presented here, an experimental methodology leading to the improvement of the electro-optical properties of FTO thin films is reported. FTO thin films assuming an electrical resistivity as low as 3.7?·?10{sup ?4}???cm (square sheet resistance of 8??/?) while retaining good transmittance up to 86% (including substrate effect) in the visible range have been obtained.

Rey, G., E-mail: germrey@gmail.com; Consonni, V.; Bellet, D. [Laboratoire des Matériaux et du Génie Physique, CNRS—Grenoble INP, 3 parvis Louis Néel, 38016 Grenoble (France); Ternon, C. [Laboratoire des Matériaux et du Génie Physique, CNRS—Grenoble INP, 3 parvis Louis Néel, 38016 Grenoble (France); Laboratoire des Technologies de la Microélectronique, CNRS/UJF-Grenoble 1/CEA, 17 rue des Martyrs, 38054 Grenoble (France); Modreanu, M. [Micro-Nanoelectronics Centre, Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork (Ireland); Mescot, X. [Institut de Microélectronique Electromagnétisme et Photonique-Laboratoire d'Hyperfréquences et de Caractérisation, Grenoble INP, 3 Parvis Louis Néel, 38016 Grenoble (France)

2013-11-14T23:59:59.000Z