Sample records for thin film based

  1. High Temperature Thin Film Polymer Dielectric Based Capacitors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Thin Film Polymer Dielectric Based Capacitors for HEV Power Electronic Systems High Temperature Thin Film Polymer Dielectric Based Capacitors for HEV Power...

  2. Thin Metal Oxide Films to Modify a Window Layer in CdTe-Based...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thin Metal Oxide Films to Modify a Window Layer in CdTe-Based Solar Cells for Improved Performance. Thin Metal Oxide Films to Modify a Window Layer in CdTe-Based Solar Cells for...

  3. MEMS-based thin-film fuel cells

    DOE Patents [OSTI]

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2003-10-28T23:59:59.000Z

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  4. Naphthacene Based Organic Thin Film Transistor With Rare Earth Oxide

    SciTech Connect (OSTI)

    Konwar, K. [Department of Physics, Digboi College, Digboi-786171, Assam (India); Baishya, B. [Department of Physics, Dibrugarh University, Dibrugarh-786004, Assam (India)

    2010-12-01T23:59:59.000Z

    Naphthacene based organic thin film transistors (OTFTs) have been fabricated using La{sub 2}O{sub 3}, as the gate insulator. All the OTFTs have been fabricated by the process of thermal evaporation in vacuum on perfectly cleaned glass substrates with aluminium as source-drain and gate electrodes. The naphthacene film morphology on the glass substrate has been studied by XRD and found to be polycrystalline in nature. The field effect mobility, output resistance, amplification factor, transconductance and gain bandwidth product of the OTFTs have been calculated by using theoretical TFT model. The highest value of field effect mobility is found to be 0.07x10{sup -3} cm{sup 2}V{sup -1}s{sup -1} for the devices annealed in vacuum at 90 deg. C for 5 hours.

  5. Homogenization studies for optical sensors based on sculptured thin films 

    E-Print Network [OSTI]

    Jamaian, Siti Suhana

    2013-07-01T23:59:59.000Z

    In this thesis we investigate theoretically various types of sculptured thin film (STF) envisioned as platforms for optical sensing. A STF consists of an array of parallel nanowires which can be grown on a substrate using ...

  6. TiNi-based thin films for MEMS applications

    E-Print Network [OSTI]

    Fu, Yongqing

    In this paper, some critical issues and problems in the development of TiNi thin films were discussed, including preparation and characterization considerations, residual stress and adhesion, frequency improvement, fatigue ...

  7. High Efficiency Thin Film CdTe and a-Si Based Solar Cells Final Technical Report for the Period

    E-Print Network [OSTI]

    Deng, Xunming

    High Efficiency Thin Film CdTe and a-Si Based Solar Cells Final Technical Report for the Period This is the final report covering approximately 42 months of this subcontract for research on high efficiency CdTe-based thin-film solar cells and on high efficiency a-Si-based thin-film solar cells. Phases I and II have

  8. Hot-Wire Deposition of Hydrogenated Nanocrystalline SiGe Films for Thin-Film Si Based Solar Cells

    E-Print Network [OSTI]

    Deng, Xunming

    Hot-Wire Deposition of Hydrogenated Nanocrystalline SiGe Films for Thin-Film Si Based Solar Cells bandgap absorber in an a-Si/a-SiGe/nc-SiGe(nc- Si) triple-junction solar cell due to its higher optical in an a-Si based multiple- junction solar cell. 1. INTRODUCTION Narrow bandgap amorphous SiGe (a

  9. Thin film lithium-based batteries and electrochromic devices fabricated with nanocomposite electrode materials

    DOE Patents [OSTI]

    Gillaspie, Dane T; Lee, Se-Hee; Tracy, C. Edwin; Pitts, John Roland

    2014-02-04T23:59:59.000Z

    Thin-film lithium-based batteries and electrochromic devices (10) are fabricated with positive electrodes (12) comprising a nanocomposite material composed of lithiated metal oxide nanoparticles (40) dispersed in a matrix composed of lithium tungsten oxide.

  10. Design and modeling of a PZT thin film based piezoelectric micromachined ultrasonic transducer (PMUT)

    E-Print Network [OSTI]

    Smyth, Katherine Marie

    2012-01-01T23:59:59.000Z

    The design and modelling framework for a piezoelectric micromachined ultrasonic transducer (PMUT) based on the piezoelectric thin film deposition of lead zirconate titanate (PZT) is defined. Through high frequency vibration ...

  11. Formation of thin film Tl-based high-Tc? superconducting oxides from amorphous alloy precursors

    E-Print Network [OSTI]

    Williams, John Charles

    1991-01-01T23:59:59.000Z

    and satisfying. John Charles Williams TABLE OF CONTENTS ABSTRACT. ACKNOWLEDGMENTS. TABLE OF CONTENTS. LIST OF TABLES. LIST OF FIGURES. I. INTRODUCTION. 1v v vu1 A. Properties of Perovskites and Copper-Oxide Superconductors. . . . . . . . . 2 1.... Fundamental Properties. 2. Perovskite Crystal Structure. 3. Perovskite Crystal Structure Modifications 4, Structure of Thallate Superconductors . . B. Thallium-based Thin Film Superconductors. . . . 1. Tl-based Thin Film Production Methods. . . . 2...

  12. Heterojunction thin films based on multifunctional metal oxides for photovoltaic application

    SciTech Connect (OSTI)

    Prabhu, M.; Soundararajan, N.; Ramachandran, K. [School of Physics, Madurai Kamaraj University, Madurai - 625021 (India); Marikkannan, M.; Mayandi, J. [School of Chemistry, Madurai Kamaraj University, Madurai - 625021 (India)

    2014-04-24T23:59:59.000Z

    Metal oxides based multifunctional heterojunction thin films of ZnO/SnO{sub 2} and ZnO/SnO{sub 2}/CuO QDs were prepared by spin-coating technique. The crystallographic properties and the surface morphologies of the films were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The optical absorption studies revealed that the film thickness has considerable effect on the band gap values and is found to be in the range of 3.73–3.48 eV. The photoluminescence spectra showed several weak visible emission peaks related to the deep level defects (450-575 nm). Finally, the current density-voltage (J-V) characteristic of ZnO/SnO{sub 2}/CuO QDs (ZSCI) based heterojunction thin film coated on ITO is also reported.

  13. Hierarchical Assemblies of Block-Copolymer-Based Supramolecules in Thin Films

    SciTech Connect (OSTI)

    Tung, Shih-Huang; Kalarickal, Nisha C.; Mays, Jimmy W.; Xu, Ting (UCB); (ORNL)

    2009-09-08T23:59:59.000Z

    The hierarchical assemblies of supramolecules, which consisted of polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) with 3-pentadecylphenol (PDP) hydrogen-bonded to the 4VP, were investigated in thin films after solvent annealing in a chloroform atmosphere. The synergistic coassembly of PS-b-P4VP and PDP was utilized to generate oriented hierarchical structures in thin films. Hierarchical assemblies, including lamellae-within-lamellae and cylinders-within-lamellae, were simultaneously ordered and oriented from a few to several tens of nanometers over macroscopic length scales. The macroscopic orientation of supramolecular assembly depends on the P4VP(PDP) fraction and can be tailored by varying the PDP to P4VP ratio without interfering with the supramolecular morphologies. The lamellar and cylindrical microdomains, with a periodicity of {approx}40 nm, could be oriented normal to the surface, while the assembly of comb blocks, P4VP(PDP), with a periodicity of {approx}4 nm, were oriented parallel to the surface. Furthermore, using one PS-b-P4VP copolymer, thin films with different hierarchical structures, i.e., lamellae-within-lamellae and cylinders-within-lamellae, were obtained by varying the ratio of PDP to 4VP units. The concepts described in these studies can be potentially applied to other BCP-based supramolecular thin films, thus creating an avenue to functional, hierarchically ordered thin films.

  14. Sensors and Actuators B 49 (1998) 258267 Pd/PVDF thin film hydrogen sensor based on

    E-Print Network [OSTI]

    Mandelis, Andreas

    1998-01-01T23:59:59.000Z

    hydrogen detection, such as the process of lead- acid battery charging. As the hydrogen infrastructureSensors and Actuators B 49 (1998) 258­267 Pd/PVDF thin film hydrogen sensor based on laser Laboratories and Centre for Hydrogen and Electrochemical Studies, Uni6ersity of Toronto, 5 Kings College Road

  15. Reduced Order Based Compensator Control of Thin Film Growth in a CVD Reactor

    E-Print Network [OSTI]

    Reduced Order Based Compensator Control of Thin Film Growth in a CVD Reactor H.T. Banks and H chemical vapor deposition (CVD) reactors. An in­ tegral component of this research program is the design of the reactor so that control and sensing are a basic component of the optimal design e#orts for the reactor. We

  16. Reduced Order Based Compensator Control of Thin Film Growth in a CVD Reactor

    E-Print Network [OSTI]

    Reduced Order Based Compensator Control of Thin Film Growth in a CVD Reactor H.T. Banks and H chemical vapor deposition (CVD) reactors. An in- tegral component of this research program is the design of the reactor so that control and sensing are a basic component of the optimal design efforts for the reactor

  17. Characterization of thin film properties of melamine based dendrimer nanoparticles 

    E-Print Network [OSTI]

    Boo, Woong Jae

    2005-02-17T23:59:59.000Z

    tests, both powder and cast film samples of a dendrimer show similar melting behaviors with different areas under the melting peaks. The results of these tests show that dendrimers, when they are in a descent environment that provides dendrimers...

  18. CFN | Thin Films Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Synthesis and Characterization Facility Thin-Film Processing Facility Online Manager (FOM) website FOM manual ESR for lab 1L32 (High-Resolution SEM and x-ray...

  19. Thin Film Photovoltaics Research

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) supports research and development of four thin-film technologies on the path to achieving cost-competitive solar energy, including:

  20. amorphous-silicon-based thin-film photovoltaic: Topics by E-print...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    devices have been obtained by a direct polymerization of undoped (or p-type doped) thin film (CH)x layer onto a polycrystalline cadmium sulfide film Paris-Sud XI, Universit...

  1. Oxygen evolution mediated by co-based thin film electrocatalysts

    E-Print Network [OSTI]

    Surendranath, Yogesh

    2011-01-01T23:59:59.000Z

    The electrocatalytic conversion of water to O? is the key efficiency-determining reaction for the storage of electrical energy in the form of liquid fuels. In this thesis, the simple preparation of a cobalt-based catalyst ...

  2. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, Anthony W. (Wilmington, DE); Bhushan, Manjul (Wilmington, DE)

    1982-01-01T23:59:59.000Z

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

  3. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, A.W.; Bhushan, M.

    1982-08-03T23:59:59.000Z

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids. 5 figs.

  4. Epitaxial thin films

    DOE Patents [OSTI]

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25T23:59:59.000Z

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  5. Thin-film optical initiator

    DOE Patents [OSTI]

    Erickson, Kenneth L. (Albuquerque, NM)

    2001-01-01T23:59:59.000Z

    A thin-film optical initiator having an inert, transparent substrate, a reactive thin film, which can be either an explosive or a pyrotechnic, and a reflective thin film. The resultant thin-film optical initiator system also comprises a fiber-optic cable connected to a low-energy laser source, an output charge, and an initiator housing. The reactive thin film, which may contain very thin embedded layers or be a co-deposit of a light-absorbing material such as carbon, absorbs the incident laser light, is volumetrically heated, and explodes against the output charge, imparting about 5 to 20 times more energy than in the incident laser pulse.

  6. The development of potassium tantalate niobate thin films for satellite-based pyroelectric detectors

    SciTech Connect (OSTI)

    Cherry, H B.B. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering

    1997-05-01T23:59:59.000Z

    Potassium tantalate niobate (KTN) pyroelectric detectors are expected to provide detectivities, of 3.7 x 10{sup 11} cmHz {sup {1/2}}W{sup {minus}1} for satellite-based infrared detection at 90 K. The background limited detectivity for a room-temperature thermal detector is 1.8 x 10{sup 10} cmHz{sup {1/2}}W{sup {minus}1}. KTN is a unique ferroelectric for this application because of the ability to tailor the temperature of its pyroelectric response by adjusting its ratio of tantalum to niobium. The ability to fabricate high quality KTN thin films on Si-based substrates is crucial to the development of KTN pyroelectric detectors. Si{sub x}N{sub y} membranes created on the Si substrate will provide the weak thermal link necessary to reach background limited detectivities. The device dimensions obtainable by thin film processing are expected to increase the ferroelectric response by 20 times over bulk fabricated KTN detectors. In addition, microfabrication techniques allow for easier array development. This is the first reported attempt at growth of KTN films on Si-based substrates. Pure phase perovskite films were grown by pulsed laser deposition on SrRuO{sub 3}/Pt/Ti/Si{sub x}N{sub y}/Si and SrRuO{sub 3}/Si{sub x}N{sub y}/Si structures; room temperature dielectric permittivities for the KTN films were 290 and 2.5, respectively. The dielectric permittivity for bulk grown, single crystal KTN is {approximately}380. In addition to depressed dielectric permittivities, no ferroelectric hysteresis was found between 80 and 300 K for either structure. RBS, AES, TEM and multi-frequency dielectric measurements were used to investigate the origin of this apparent lack of ferroelectricity. Other issues addressed by this dissertation include: the role of oxygen and target density during pulsed laser deposition of KTN thin films; the use of YBCO, LSC and Pt as direct contact bottom electrodes to the KTN films, and the adhesion of the bottom electrode layers to Si{sub x}N{sub y}/Si.

  7. NMR characterization of thin films

    DOE Patents [OSTI]

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15T23:59:59.000Z

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  8. NMR characterization of thin films

    DOE Patents [OSTI]

    Gerald, II, Rex E. (Brookfield, IL); Klingler, Robert J. (Glenview, IL); Rathke, Jerome W. (Homer Glen, IL); Diaz, Rocio (Chicago, IL); Vukovic, Lela (Westchester, IL)

    2008-11-25T23:59:59.000Z

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  9. Thin film polymeric gel electrolytes

    DOE Patents [OSTI]

    Derzon, Dora K. (1554 Rosalba St. NE., Albuquerque, Bernalillo County, NM 87112); Arnold, Jr., Charles (3436 Tahoe, NE., Albuquerque, Bernalillo County, NM 87111); Delnick, Frank M. (9700 Fleming Rd., Dexter, MI 48130)

    1996-01-01T23:59:59.000Z

    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  10. Thin film polymeric gel electrolytes

    DOE Patents [OSTI]

    Derzon, D.K.; Arnold, C. Jr.; Delnick, F.M.

    1996-12-31T23:59:59.000Z

    Novel hybrid thin film electrolytes, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1} cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

  11. INTERFERENCE Interference from Thin Films

    E-Print Network [OSTI]

    La Rosa, Andres H.

    INTERFERENCE Interference from Thin Films Lecture notes La Rosa Portland State University PH-213 through, a sheet of glass #12;Out of phase #12;In phase #12;#12;Interference from thin films Key reasoning for analyzing interference in a thin film: Waves undergo phase shift due to i) reflections at a interface

  12. Nanostructured ceria based thin films ({<=}1 {mu}m) As cathode/electrolyte interfaces

    SciTech Connect (OSTI)

    Hierso, J. [Laboratoire de Chimie de la Matiere Condensee de Paris, Universite Paris 6-UMR 7574-College de France, 11 Place Marcelin Berthelot, 75005 Paris (France); Boy, P.; Valle, K. [CEA-Le Ripault, LSCG, BP 15, 37000 Monts (France); Vulliet, J.; Blein, F. [CEA-Le Ripault, LCCA, BP 15, 37000 Monts (France); Laberty-Robert, Ch., E-mail: christel.laberty@upmc.fr [Laboratoire de Chimie de la Matiere Condensee de Paris, Universite Paris 6-UMR 7574-College de France, 11 Place Marcelin Berthelot, 75005 Paris (France); Sanchez, C. [Laboratoire de Chimie de la Matiere Condensee de Paris, Universite Paris 6-UMR 7574-College de France, 11 Place Marcelin Berthelot, 75005 Paris (France)

    2013-01-15T23:59:59.000Z

    Gadolinium doped cerium oxide (CGO: Ce{sub 0,9}Gd{sub 0,1}O{sub 2-{delta}}) films were used as an oxygen anion diffusion layer at the cathode/electrolyte interface of Solid Oxide Fuel Cells (SOFCs), between LSCF (lanthanum strontium cobalt ferrite) and YSZ (yttria-stabilized zirconia). Thin ({approx}100 nm) and thick ({approx}700 nm) mesoporous CGO layers were synthesized through a sol-gel process including organic template coupled with the dip-coating method. Structural and microstructural characterizations were performed, highlighting a well-bonded crystalline CGO nanoparticles network which delineates a 3-D inter-connected mesoporous network. Their electrical behaviors were investigated by impedance spectroscopy analysis of YSZ/mesoporous-CGO/LSCF half-cell. Anode-supported SOFCs, operating at 800 Degree-Sign C, with either dense or mesoporous CGO dip-coated interlayers were also fabricated [NiO-YSZ anode/YSZ/CGO/LSCF cathode]. The impact of the mesoporous CGO interlayers on SOFCs performances was investigated by galvanostatic analysis and compared to the behavior of a dense CGO interlayer. The polarization curves revealed an enhancement in the electrical performance of the cell, which is assigned to a decrease of the polarization resistance at the cathode/electrolyte interface. The integrity and connectivity of the CGO nanoparticles bonded network facilitates O{sup 2-} transport across the interface. - Graphical abstract: Thin and thick CGO films have been prepared through a sol-gel process and their potential application as SOFC cathode/electrolyte interlayer in SOFC has been investigated. Highlights: Black-Right-Pointing-Pointer Mesoporous ceria based thin films exhibit interesting performances for Solid Oxide Fuel Cell. Black-Right-Pointing-Pointer Mesoporous films were synthesized through the sol-gel process combined with the dip-coating. Black-Right-Pointing-Pointer Integrity and connectivity of the nanoparticles facilitates O{sup 2-} transport across the interface.

  13. Thin film photovoltaic cell

    DOE Patents [OSTI]

    Meakin, John D. (Newark, DE); Bragagnolo, Julio (Newark, DE)

    1982-01-01T23:59:59.000Z

    A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

  14. Thin film superconductor magnetic bearings

    DOE Patents [OSTI]

    Weinberger, Bernard R. (Avon, CT)

    1995-12-26T23:59:59.000Z

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  15. Evaluation on the thin-film phase change material-based technologies

    E-Print Network [OSTI]

    Guo, Qiang, M. Eng. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    Two potential applications of thin film phase-change materials are considered, non-volatile electronic memories and MEMS (Micro-Electro-Mechanical Systems) actuators. The markets for those two applications are fast growing ...

  16. Organic-inorganic nanocomposite membranes from highly ordered mesoporous thin films for solubility-based separations

    E-Print Network [OSTI]

    Yoo, Suk Joon

    2009-05-15T23:59:59.000Z

    properties. In this study, we synthesized the organic-inorganic nanocomposite membranes by decorating the surfaces of commercially available mesoporous alumina substrates, and surfactant-templated highly ordered mesoporous silicate thin films placed...

  17. Integration of pentacene-based thin film transistors via photolithography for low and high voltage applications

    E-Print Network [OSTI]

    Smith, Melissa Alyson

    2012-01-01T23:59:59.000Z

    An organic thin film transistor (OTFT) technology platform has been developed for flexible integrated circuits applications. OTFT performance is tuned by engineering the dielectric constant of the gate insulator and the ...

  18. Optimization-based design of surface textures for thin-film Si solar cells

    E-Print Network [OSTI]

    Sheng, Xing

    We numerically investigate the light-absorption behavior of thin-film silicon for normal-incident light, using surface textures to enhance absorption. We consider a variety of texture designs, such as simple periodic ...

  19. Electrostatic thin film chemical and biological sensor

    DOE Patents [OSTI]

    Prelas, Mark A. (Columbia, MO); Ghosh, Tushar K. (Columbia, MO); Tompson, Jr., Robert V. (Columbia, MO); Viswanath, Dabir (Columbia, MO); Loyalka, Sudarshan K. (Columbia, MO)

    2010-01-19T23:59:59.000Z

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  20. Thin film composite electrolyte

    DOE Patents [OSTI]

    Schucker, Robert C. (The Woodlands, TX)

    2007-08-14T23:59:59.000Z

    The invention is a thin film composite solid (and a means for making such) suitable for use as an electrolyte, having a first layer of a dense, non-porous conductive material; a second layer of a porous ionic conductive material; and a third layer of a dense non-porous conductive material, wherein the second layer has a Coefficient of thermal expansion within 5% of the coefficient of thermal expansion of the first and third layers.

  1. Characterization of the pentacene thin-film transistors with an epoxy resin-based polymeric gate insulator

    E-Print Network [OSTI]

    Boyer, Edmond

    Characterization of the pentacene thin-film transistors with an epoxy resin-based polymeric gate seeking desirable semi- conductor/insulator combinations [3]. In this study, we adopted an epoxy resin fabricated and characterized. SU-8, a reliable epoxy-based pho- toresist, is tested as a potential highly

  2. Low temperature thin film transistors with hollow cathode plasma-assisted atomic layer deposition based GaN channels

    SciTech Connect (OSTI)

    Bolat, S., E-mail: bolat@ee.bilkent.edu.tr, E-mail: aokyay@ee.bilkent.edu.tr; Tekcan, B. [Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800 (Turkey); UNAM, National Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey); Ozgit-Akgun, C.; Biyikli, N. [UNAM, National Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey); Okyay, A. K., E-mail: bolat@ee.bilkent.edu.tr, E-mail: aokyay@ee.bilkent.edu.tr [Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800 (Turkey); UNAM, National Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey)

    2014-06-16T23:59:59.000Z

    We report GaN thin film transistors (TFT) with a thermal budget below 250?°C. GaN thin films are grown at 200?°C by hollow cathode plasma-assisted atomic layer deposition (HCPA-ALD). HCPA-ALD-based GaN thin films are found to have a polycrystalline wurtzite structure with an average crystallite size of 9.3?nm. TFTs with bottom gate configuration are fabricated with HCPA-ALD grown GaN channel layers. Fabricated TFTs exhibit n-type field effect characteristics. N-channel GaN TFTs demonstrated on-to-off ratios (I{sub ON}/I{sub OFF}) of 10{sup 3} and sub-threshold swing of 3.3?V/decade. The entire TFT device fabrication process temperature is below 250?°C, which is the lowest process temperature reported for GaN based transistors, so far.

  3. Structural and chemical investigations of CBD-and PVD-CdS buffer layers and interfaces in Cu(In,Ga)Se2-based thin film solar cells

    E-Print Network [OSTI]

    Romeo, Alessandro

    (In,Ga)Se2-based thin film solar cells D. Abou-Rasa,b,*, G. Kostorza , A. Romeob,1 , D. Rudmannb , A Available online 8 December 2004 Abstract It is known that high-efficiency thin film solar cells based on Cu in efficiencies of solar cells with CBD- and PVD-CdS buffer layers can partly be explained by referring

  4. Vertically Aligned Nanocomposite Thin Films 

    E-Print Network [OSTI]

    Bi, Zhenxing

    2012-07-16T23:59:59.000Z

    microstructure is a brand new architecture in thin films and an exciting approach that promises tunable material functionalities as well as novel nanostructures....

  5. Process Development for CIGS Based Thin Film Photovoltaics Modules, Phase II Technical Report

    SciTech Connect (OSTI)

    Britt, J.; Wiedeman, S.; Albright, S.

    2000-11-09T23:59:59.000Z

    As a technology partner with NREL, Global Solar Energy (GSE) has initiated an extensive and systematic plan to accelerate the commercialization of thin-film photovoltaics (PV) based on copper indium gallium diselenide (CIGS). The distinguishing feature of the GSE manufacturing process is the exclusive use of lightweight, flexible substrates. GSE has developed the technology to fabricate CIGS photovoltaics on both stainless-steel and polymer substrates. CIGS deposited on flexible substrates can be fabricated into either flexible or rigid modules. Low-cost, rigid PV panels for remote power, bulk/utility, telecommunication, and rooftop applications have been produced by affixing the flexible substrate to an inexpensive rigid panel by lamination or adhesive. Stainless-steel-based PV modules are fabricated by a novel interconnect method that avoids the use of wires or foils and soldered connections. In the case of polymer-based PV modules, the continuous roll is not sectioned into individual panels until the module buss and power leads are attached. Roll-to-roll vacuum deposition has several advantages that translate directly to reduced capital costs, greater productivity, improved yield, greater reliability, lower maintenance, and a larger volume of PV material. In combination with roll-to-roll processing, GSE has developed evaporation deposition operations that enable low-cost and high-efficiency CIGS modules. The CIGS deposition process relies heavily on effusion source technology developed at GSE, and solving numerous problems was an integral part of the source development effort. Cell interconnection for thin-film CIGS modules on a polyimide substrate presents a considerable challenge.

  6. Visible spectrometer utilizing organic thin film absorption

    E-Print Network [OSTI]

    Tiefenbruck, Laura C. (Laura Christine)

    2004-01-01T23:59:59.000Z

    In this thesis, I modeled and developed a spectrometer for the visible wavelength spectrum, based on absorption characteristics of organic thin films. The device uses fundamental principles of linear algebra to reconstruct ...

  7. Metallophthalocyanine thin films : structure and physical properties

    E-Print Network [OSTI]

    Colesniuc, Corneliu Nicolai

    2011-01-01T23:59:59.000Z

    in copper phthalocyanine thin film transistors”, J. Park, J.free phthalocyanine thin films”, F. I. Bohrer, A. Sharoni,copper phthalocyanine thin-film transistors”, R. D. Yang, J.

  8. Doping in Zinc Oxide Thin Films

    E-Print Network [OSTI]

    Yang, Zheng

    2009-01-01T23:59:59.000Z

    properties of ZnO:Mn thin films were comprehensivelyd exchange in ZnO:Mn DMS thin films. Both the ordinary andspin-obital ferromagnetism in ZnO:Mn DMS thin films.

  9. Thin film ion conducting coating

    DOE Patents [OSTI]

    Goldner, Ronald B. (Lexington, MA); Haas, Terry (Sudbury, MA); Wong, Kwok-Keung (Watertown, MA); Seward, George (Arlington, MA)

    1989-01-01T23:59:59.000Z

    Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

  10. P-type and N-type multi-gate polycrystalline silicon vertical thin film transistors based on low-temperature technology

    E-Print Network [OSTI]

    Boyer, Edmond

    is obtained. P-type and N-type vertical TFTs have shown symmetric electrical characteristics. DifferentP-type and N-type multi-gate polycrystalline silicon vertical thin film transistors based on low) ABSTRACT P-type and N-type multi-gate vertical thin film transistors (vertical TFTs) have been fabricated

  11. 1282 IEEE ELECTRON DEVICE LETTERS, VOL. 33, NO. 9, SEPTEMBER 2012 Top-Gate GaN Thin-Film Transistors Based

    E-Print Network [OSTI]

    is to deposit high-quality GaN thin films using inexpensive substrate under low temper- ature. Recently1282 IEEE ELECTRON DEVICE LETTERS, VOL. 33, NO. 9, SEPTEMBER 2012 Top-Gate GaN Thin-Film Transistors Based on AlN/GaN Heterostructures Rongsheng Chen, Wei Zhou, Meng Zhang, and Hoi Sing Kwok Abstract

  12. High-efficiency micro-energy generation based on free-carrier-modulated ZnO:N piezoelectric thin films

    SciTech Connect (OSTI)

    Lee, Eunju; Park, Jaedon; Yim, Munhyuk; Jeong, Sangbeom; Yoon, Giwan, E-mail: gwyoon@kaist.ac.kr [Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2014-05-26T23:59:59.000Z

    The free-carrier-modulated ZnO:N thin film-based flexible nanogenerators (NZTF-FNGs) are proposed and experimentally demonstrated. The suggested flexible nanogenerators (FNGs) are fabricated using N-doped ZnO thin films (NZTFs) as their piezoelectric active elements, which are deposited by a radio frequency magnetron sputtering technique with an N{sub 2}O reactive gas as an in situ dopant source. Considerable numbers of N atoms are uniformly incorporated into NZTFs overall during their growth, which would enable them to significantly compensate the unintentional background free electron carriers both in the bulk and at the surface of ZnO thin films (ZTFs). This N-doping approach is found to remarkably enhance the performance of NZTF-FNGs, which shows output voltages that are almost two orders of magnitude higher than those of the conventionally grown ZnO thin film-based FNGs. This is believed to be a result of both substantial screening effect suppression in the ZTF bulk and more reliable Schottky barrier formation at the ZTF interfaces, which is all mainly caused by the N-compensatory doping process. Furthermore, the NZTF-FNGs fabricated are verified via charging tests to be suitable for micro-energy harvesting devices.

  13. Amorphous Si Thin Film Based Photocathodes with High Photovoltage for Efficient Hydrogen Production

    E-Print Network [OSTI]

    Javey, Ali

    thin film with TiO2 encapsulation layer is demonstrated as a highly promising and stable photo- cathode for solar hydrogen production. With platinum as prototypical cocatalyst, a photocurrent onset potential of 0 for solar hydrogen production. KEYWORDS: Water splitting, hydrogen production, photochemistry, high

  14. Thin films and uses

    DOE Patents [OSTI]

    Baskaran, Suresh (Kennewick, WA); Graff, Gordon L. (Kennewick, WA); Song, Lin (Richland, WA)

    1998-01-01T23:59:59.000Z

    The invention provides a method for synthesizing a titanium oxide-containing film comprising the following steps: (a) preparing an aqueous solution of a titanium chelate with a titanium molarity in the range of 0.01M to 0.6M. (b) immersing a substrate in the prepared solution, (c) decomposing the titanium chelate to deposit a film on the substrate. The titanium chelate maybe decomposed acid, base, temperature or other means. A preferred method provides for the deposit of adherent titanium oxide films from C2 to C5 hydroxy carboxylic acids. In another aspect the invention is a novel article of manufacture having a titanium coating which protects the substrate against ultraviolet damage. In another aspect the invention provides novel semipermeable gas separation membranes, and a method for producing them.

  15. Thin-film photovoltaic partnership -- CIS-based thin film PV technology: Final technical report, September 1995--December 1998

    SciTech Connect (OSTI)

    Tarrant, D.E.; Gay, R.R.

    1999-10-26T23:59:59.000Z

    Siemens Solar Industries (SSI) achieved outstanding progress toward NREL/DOE goals during this subcontract. The statistical process control methodology was applied, and it demonstrated process reproducibility and yields for a 10-cm {times} 10-cm substrate size baseline process. Based on an understanding of the importance of materials of construction and the physical layout for absorber formation reactors, SSI designed and built a replacement large-area reactor based on a more direct scale-up of the baseline reactor. While designing and building the new large-area reactor, SSI defined and demonstrated new package designs to combine 10-cm {times} 30-cm circuit plates into one package; this allowed SSI to deliver large-area prototype modules to NREL for evaluation, and to introduce the first CIS-based products--5-watt (ST5) and 10-watt (ST10) modules. After completion of the new large-area reactor, all processes were scaled to a 30-cm {times} 120-cm plate size. Subsequently, only large 30-cm {times} 120-cm circuit plates were fabricated for 30-cm {times} 120-cm prototype modules or, after cutting the large circuit plates into smaller circuit plates, for the two new CIS-based products. The scaled process exhibits generally good control for extended periods with periodic shifts in the short-term process average that appears to result from batch-to-batch variability in precursor or base electrode preparation. Similarly, periodic shunting along the laser-scribed pattern lines in the Mo base electrode appears to result from batch-to-batch variability in base electrode preparation. Significant progress was made in understanding transient effects in CIS devices. Transient effects are important for many topics, including accelerated testing, process definition, measurement protocols, process predictability, interpretation of experimental test results, and understanding of device structures. Long-term outdoor stability of CIS continues to be demonstrated at NREL where 30-cm {times} 30-cm and 30-cm {times} 120-cm modules have undergone testing for more than ten years. SSI delivered two sets of upgraded modules for 1-kW arrays to the NREL Outdoor Test Facility. Improvements in efficiency and the temperature coefficient for power were demonstrated for these modules with sulfur incorporated to form a graded (Cu(In,Ga)(Se,S){sub 2}) absorber. The NREL-measured average module efficiency at standard test conditions is 11.4% for the second array, and the efficiency of all modules far exceeds the DOE year 2000 goal of 10% for commercial CIS modules. SSI demonstrated a succession of NREL-confirmed world-record efficiencies culminating in demonstration of an 11.8 %-efficient, large-area, 3,651-cm{sup 2} module.

  16. Modeling of multilayer SiGe based thin film solar cells

    SciTech Connect (OSTI)

    Christoffel, E.; Debarge, L.; Slaoui, A. [CNRS, Strasbourg (France). Lab. PHASE

    1997-12-31T23:59:59.000Z

    Simulations using PC1D have been performed to demonstrate the viability of crystalline SiGe alloys implementation in thin film solar cells. An optimized structure would consist of a p-type doped SiGe layer, capped with a Si p-n junction at the top, and a Si BSF at the bottom. Further refinements in such cell structure include a gradual compositional profile of the SiGe alloy layer. Compared to a conventional Si thin film cell, up to 5% relative efficiency gain is demonstrated, for a 20 {micro}m thick SiGe layer with less than 10% Ge content, p-type doped to more than 1 10{sup 17} cm{sup {minus}3}, and a realistic minority carriers diffusion length of the order of the layer thickness.

  17. Femtosecond laser-induced periodic surface structure on the Ti-based nanolayered thin films

    SciTech Connect (OSTI)

    Petrovi?, Suzana M.; Gakovi?, B.; Peruško, D. [Institute of Nuclear Science—Vin?a, University of Belgrade, POB 522, 11001 Belgrade (Serbia)] [Institute of Nuclear Science—Vin?a, University of Belgrade, POB 522, 11001 Belgrade (Serbia); Stratakis, E. [Institute of Electronic Structure and Laser, Foundation for Research and Technology–Hellas, P.O. Box 1527, Gr-711 10 Heraklion (Greece) [Institute of Electronic Structure and Laser, Foundation for Research and Technology–Hellas, P.O. Box 1527, Gr-711 10 Heraklion (Greece); Department of Materials Science and Technology, University of Crete, 710 03 Heraklion, Crete (Greece); Bogdanovi?-Radovi?, I. [Ru?er Boškovi? Institute, P.O. Box 180, 10002 Zagreb (Croatia)] [Ru?er Boškovi? Institute, P.O. Box 180, 10002 Zagreb (Croatia); ?ekada, M. [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)] [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Fotakis, C. [Institute of Electronic Structure and Laser, Foundation for Research and Technology–Hellas, P.O. Box 1527, Gr-711 10 Heraklion (Greece) [Institute of Electronic Structure and Laser, Foundation for Research and Technology–Hellas, P.O. Box 1527, Gr-711 10 Heraklion (Greece); Department of Physics, University of Crete, 714 09 Heraklion, Crete (Greece); Jelenkovi?, B. [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia)] [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia)

    2013-12-21T23:59:59.000Z

    Laser-induced periodic surface structures (LIPSSs) and chemical composition changes of Ti-based nanolayered thin films (Al/Ti, Ni/Ti) after femtosecond (fs) laser pulses action were studied. Irradiation is performed using linearly polarized Ti:Sapphire fs laser pulses of 40 fs pulse duration and 800 nm wavelength. The low spatial frequency LIPSS (LSFL), oriented perpendicular to the laser polarization with periods slightly lower than the irradiation wavelength, was typically formed at elevated laser fluences. On the contrary, high spatial frequency LIPSS (HSFL) with uniform period of 155 nm, parallel to the laser light polarization, appeared at low laser fluences, as well as in the wings of the Gaussian laser beam distribution for higher used fluence. LSFL formation was associated with the material ablation process and accompanied by the intense formation of nanoparticles, especially in the Ni/Ti system. The composition changes at the surface of both multilayer systems in the LSFL area indicated the intermixing between layers and the substrate. Concentration and distribution of all constitutive elements in the irradiated area with formed HSFLs were almost unchanged.

  18. Vertically Aligned Nanocomposite Thin Films

    E-Print Network [OSTI]

    Bi, Zhenxing

    2012-07-16T23:59:59.000Z

    and epitaxial growth ability on given substrates. In the present work, we investigated unique epitaxial two-phase VAN (BiFeO3)x:(Sm2O3)1-x and (La0.7Sr0.3MnO3)x:(Mn3O4)1-x thin film systems by pulsed laser deposition. These VAN thin films exhibit a highly...

  19. Modeling and control of thin film surface morphology: application to thin film solar cells

    E-Print Network [OSTI]

    Huang, Jianqiao

    2012-01-01T23:59:59.000Z

    of a p-i-n thin-film solar cell with front transparent con-for thin-film a-si:h solar cells. Progress in Photovoltaics,in thin-film silicon solar cells. Optics Communications,

  20. Thin Metal Oxide Films to Modify a Window Layer in CdTe-Based Solar Cells for Improved Performance

    SciTech Connect (OSTI)

    Lemmon, John P.; Polikarpov, Evgueni; Bennett, Wendy D.; Kovarik, Libor

    2012-05-05T23:59:59.000Z

    We report on CdS/CdTe photovoltaic devices that contain a thin Ta2O5 film deposited onto the CdS window layer by sputtering. We show that for thicknesses below 5 nm, Ta2O5 films between CdS and CdTe positively affect the solar cell performance, improving JSC, VOC, and the cell power conversion efficiency despite the insulating nature of the interlayer material. Using the Ta2O5 interlayer, a VOC gain of over 100 mV was demonstrated compared to a CdTe/CdS baseline. Application of a 1nm Ta2O5 interlayer enabled the fabrication of CdTe solar cells with extremely thin (less than 30 nm) CdS window layers. The efficiency of these cells exceeded that of a base line cell with 95 nm of CdS.

  1. Vapor deposition of thin films

    DOE Patents [OSTI]

    Smith, David C. (Los Alamos, NM); Pattillo, Stevan G. (Los Alamos, NM); Laia, Jr., Joseph R. (Los Alamos, NM); Sattelberger, Alfred P. (Los Alamos, NM)

    1992-01-01T23:59:59.000Z

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl).sub.3, iridium(allyl).sub.3, molybdenum(allyl).sub.4, tungsten(allyl).sub.4, rhenium(allyl).sub.4, platinum(allyl).sub.2, or palladium(allyl).sub.2 are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  2. Thin-Film Lithium-Based Electrochromic Devices - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in theTheoreticalEnergy InnovationThin Film

  3. Thin Film Transistors On Plastic Substrates

    DOE Patents [OSTI]

    Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Sigmon, Thomas W. (Portola Valley, CA); Aceves, Randy C. (Livermore, CA)

    2004-01-20T23:59:59.000Z

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250.degree. C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.

  4. Mechanical characterization of thin TiO{sub 2} films by means of microelectromechanical systems-based cantilevers

    SciTech Connect (OSTI)

    Adami, A.; Decarli, M.; Bartali, R.; Micheli, V.; Laidani, N.; Lorenzelli, L. [FBK-CMM: Fondazione Bruno Kessler-Center for Materials and MicroSystems, via Sommarive 18, Trento 38123 (Italy)

    2010-01-15T23:59:59.000Z

    The measurement of mechanical parameters by means of microcantilever structures offers a reliable and accurate alternative to traditional methods, especially when dealing with thin films, which are extensively used in microfabrication technology and nanotechnology. In this work, microelectromechanical systems (MEMS)-based piezoresistive cantilevers were realized and used for the determination of Young's modulus and residual stress of thin titanium dioxide (TiO{sub 2}) deposited by sputtering from a TiO{sub 2} target using a rf plasma discharge. Films were deposited at different thicknesses, ranging from a few to a hundred nanometers. Dedicated silicon microcantilevers were designed through an optimization of geometrical parameters with the development of analytical as well as numerical models. Young's modulus and residual stress of sputtered TiO{sub 2} films were assessed by using both mechanical characterization based on scanning profilometers and piezoresistive sensing elements integrated in the silicon cantilevers. Results of MEMS-based characterization were combined with the tribological and morphological properties measured by microscratch test and x-ray diffraction analysis.

  5. Thin film-coated polymer webs

    DOE Patents [OSTI]

    Wenz, Robert P. (Cottage Grove, MN); Weber, Michael F. (Shoreview, MN); Arudi, Ravindra L. (Woodbury, MN)

    1992-02-04T23:59:59.000Z

    The present invention relates to thin film-coated polymer webs, and more particularly to thin film electronic devices supported upon a polymer web, wherein the polymer web is treated with a purifying amount of electron beam radiation.

  6. Nanomechanical properties of hydrated organic thin films

    E-Print Network [OSTI]

    Choi, Jae Hyeok

    2007-01-01T23:59:59.000Z

    Hydrated organic thin films are biological or synthetic molecularly thin coatings which impart a particular functionality to an underlying substrate and which have discrete water molecules associated with them. Such films ...

  7. Low work function, stable thin films

    DOE Patents [OSTI]

    Dinh, Long N. (Concord, CA); McLean, II, William (Oakland, CA); Balooch, Mehdi (Berkeley, CA); Fehring, Jr., Edward J. (Dublin, CA); Schildbach, Marcus A. (Livermore, CA)

    2000-01-01T23:59:59.000Z

    Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

  8. Semiconductor-nanocrystal/conjugated polymer thin films

    DOE Patents [OSTI]

    Alivisatos, A. Paul (Oakland, CA); Dittmer, Janke J. (Munich, DE); Huynh, Wendy U. (Munich, DE); Milliron, Delia (Berkeley, CA)

    2010-08-17T23:59:59.000Z

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  9. Shielding superconductors with thin films

    E-Print Network [OSTI]

    Posen, Sam; Catelani, Gianluigi; Liepe, Matthias U; Sethna, James P

    2015-01-01T23:59:59.000Z

    Determining the optimal arrangement of superconducting layers to withstand large amplitude AC magnetic fields is important for certain applications such as superconducting radiofrequency cavities. In this paper, we evaluate the shielding potential of the superconducting film/insulating film/superconductor (SIS') structure, a configuration that could provide benefits in screening large AC magnetic fields. After establishing that for high frequency magnetic fields, flux penetration must be avoided, the superheating field of the structure is calculated in the London limit both numerically and, for thin films, analytically. For intermediate film thicknesses and realistic material parameters we also solve numerically the Ginzburg-Landau equations. It is shown that a small enhancement of the superheating field is possible, on the order of a few percent, for the SIS' structure relative to a bulk superconductor of the film material, if the materials and thicknesses are chosen appropriately.

  10. Sputtered Molybdenum Bilayer Back Contact for Copper Indium Diselenide-Based Polycrystalline Thin-Film Solar Cells

    E-Print Network [OSTI]

    Scofield, John H.

    of the CIS or CIGS solar cell structure (not to scale). In these investigations, however, the metal layers-Film Solar Cells John H. Scofield1, A. Duda, and D. Albin National Renewable Energy Laboratory, 1617 Cole-of-the-art polycrystalline copper indium gallium diselenide solar cells with good results. Thin Solid Films, 260 (1), pp. 26

  11. Thin film buried anode battery

    DOE Patents [OSTI]

    Lee, Se-Hee (Lakewood, CO); Tracy, C. Edwin (Golden, CO); Liu, Ping (Denver, CO)

    2009-12-15T23:59:59.000Z

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  12. Method of producing solution-derived metal oxide thin films

    DOE Patents [OSTI]

    Boyle, Timothy J. (Albuquerque, NM); Ingersoll, David (Albuquerque, NM)

    2000-01-01T23:59:59.000Z

    A method of preparing metal oxide thin films by a solution method. A .beta.-metal .beta.-diketonate or carboxylate compound, where the metal is selected from groups 8, 9, 10, 11, and 12 of the Periodic Table, is solubilized in a strong Lewis base to form a homogeneous solution. This precursor solution forms within minutes and can be deposited on a substrate in a single layer or a multiple layers to form a metal oxide thin film. The substrate with the deposited thin film is heated to change the film from an amorphous phase to a ceramic metal oxide and cooled.

  13. Ultra-narrow ferromagnetic resonance in organic-based thin films grown via low temperature chemical vapor deposition

    SciTech Connect (OSTI)

    Yu, H.; Harberts, M.; Adur, R.; Hammel, P. Chris; Johnston-Halperin, E., E-mail: ejh@physics.osu.edu, E-mail: epstein@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210-1117 (United States); Lu, Y. [Department of Chemistry, The Ohio State University, Columbus, Ohio 43210-1173 (United States); Epstein, A. J., E-mail: ejh@physics.osu.edu, E-mail: epstein@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210-1117 (United States); Department of Chemistry, The Ohio State University, Columbus, Ohio 43210-1173 (United States)

    2014-07-07T23:59:59.000Z

    We present the growth of thin films of the organic-based ferrimagnetic semiconductor V[TCNE]{sub x} (x???2, TCNE: tetracyanoethylene) via chemical vapor deposition. Under optimized growth conditions, we observe a significant increase in magnetic homogeneity, as evidenced by a Curie temperature above 600?K and sharp magnetization switching. Further, ferromagnetic resonance studies reveal a single resonance with full width at half maximum linewidth of 1.4?G, comparable to the narrowest lines measured in inorganic magnetic materials and in contrast to previous studies that showed multiple resonance features. These characteristics are promising for the development of high frequency electronic devices that take advantage of the unique properties of this organic-based material, such as the potential for low cost synthesis combined with low temperature and conformal deposition on a wide variety of substrates.

  14. The development of a thin-film rollforming process for pharmaceutical continuous manufacturing

    E-Print Network [OSTI]

    Slaughter, Ryan (Ryan R.)

    2013-01-01T23:59:59.000Z

    In this thesis, a continuous rollforming process for the folding of thin-films was proposed and studied as a key step in the continuous manufacturing of pharmaceutical tablets. HPMC and PEG based polymeric thin-films were ...

  15. Modeling and control of thin film surface morphology: application to thin film solar cells

    E-Print Network [OSTI]

    Huang, Jianqiao

    2012-01-01T23:59:59.000Z

    Solar Energy Materials and Solar Cells, 86:207–216, 2005. [silicon thin films and solar cells. Journal of Appliedof a p-i-n thin-film solar cell with front transparent con-

  16. Corrosion in low dielectric constant Si-O based thin films: Buffer concentration effects

    SciTech Connect (OSTI)

    Zeng, F. W.; Lane, M. W., E-mail: mlane@ehc.edu [Department of Chemistry, Emory and Henry College, Emory, Virginia 24340 (United States); Gates, S. M. [IBM TJ Watson Research Center, Yorktown Heights, New York 10598 (United States)] [IBM TJ Watson Research Center, Yorktown Heights, New York 10598 (United States)

    2014-05-15T23:59:59.000Z

    Organosilicate glass (OSG) is often used as an interlayer dielectric (ILD) in high performance integrated circuits. OSG is a brittle material and prone to stress-corrosion cracking reminiscent of that observed in bulk glasses. Of particular concern are chemical-mechanical planarization techniques and wet cleans involving solvents commonly encountered in microelectronics fabrication where the organosilicate film is exposed to aqueous environments. Previous work has focused on the effect of pH, surfactant, and peroxide concentration on the subcritical crack growth of these films. However, little or no attention has focused on the effect of the conjugate acid/base concentration in a buffer. Accordingly, this work examines the “strength” of the buffer solution in both acidic and basic environments. The concentration of the buffer components is varied keeping the ratio of acid/base and therefore pH constant. In addition, the pH was varied by altering the acid/base ratio to ascertain any additional effect of pH. Corrosion tests were conducted with double-cantilever beam fracture mechanics specimens and fracture paths were verified with ATR-FTIR. Shifts in the threshold fracture energy, the lowest energy required for bond rupture in the given environment, G{sub TH}, were found to shift to lower values as the concentration of the base in the buffer increased. This effect was found to be much larger than the effect of the hydroxide ion concentration in unbuffered solutions. The results are rationalized in terms of the salient chemical bond breaking process occurring at the crack tip and modeled in terms of the chemical potential of the reactive species.

  17. A thin film transistor driven microchannel device

    E-Print Network [OSTI]

    Lee, Hyun Ho

    2005-02-17T23:59:59.000Z

    .1. Principle of Electrophoresis?????????????? 1.2. Capillary and Microchip Electrophoresis????????... 1.3. Electrophoresis of DNA???????????????.. 2. Plasma Thin Film Deposition Process???????????... 2.1. Fundamentals of Plasma?????????????.?? 2.2. Plasma... Phase Chemical Reactions???????????.. 2.3. Plasma Enhanced Chemical Vapor Deposition??????.. 2.4. PECVD Thin Film?????????????????.. 3. Thin Film Transistor??????????????????.. 7 7 12 17 20 20 23 24 25 29 III...

  18. Thin film photovoltaic panel and method

    DOE Patents [OSTI]

    Ackerman, Bruce (El Paso, TX); Albright, Scot P. (El Paso, TX); Jordan, John F. (El Paso, TX)

    1991-06-11T23:59:59.000Z

    A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

  19. High electron mobility thin-film transistors based on Ga{sub 2}O{sub 3} grown by atmospheric ultrasonic spray pyrolysis at low temperatures

    SciTech Connect (OSTI)

    Thomas, Stuart R., E-mail: s.thomas09@imperial.ac.uk, E-mail: thomas.anthopoulos@imperial.ac.uk; Lin, Yen-Hung; Faber, Hendrik; Anthopoulos, Thomas D., E-mail: s.thomas09@imperial.ac.uk, E-mail: thomas.anthopoulos@imperial.ac.uk [Department of Physics, Blackett Laboratory, Imperial College London, London SW7 2BW (United Kingdom); Adamopoulos, George [Department of Engineering, Engineering Building, Lancaster University, Bailrigg, Lancaster LA1 4YR (United Kingdom); Sygellou, Labrini [Institute of Chemical Engineering and High Temperature Processes (ICEHT), Foundation of Research and Technology Hellas (FORTH), Stadiou Strasse Platani, P.O. Box 1414, Patras GR-265 04 (Greece); Stratakis, Emmanuel [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion 71003 (Greece); Materials Science and Technology Department, University, of Crete, Heraklion 71003 (Greece); Pliatsikas, Nikos; Patsalas, Panos A. [Laboratory of Applied Physics, Department of Physics, Aristotle University of Thessaloniki, Thessaloniki GR-54124 (Greece)

    2014-09-01T23:59:59.000Z

    We report on thin-film transistors based on Ga{sub 2}O{sub 3} films grown by ultrasonic spray pyrolysis in ambient atmosphere at 400–450?°C. The elemental, electronic, optical, morphological, structural, and electrical properties of the films and devices were investigated using a range of complementary characterisation techniques, whilst the effects of post deposition annealing at higher temperature (700?°C) were also investigated. Both as-grown and post-deposition annealed Ga{sub 2}O{sub 3} films are found to be slightly oxygen deficient, exceptionally smooth and exhibit a wide energy bandgap of ?4.9?eV. Transistors based on as-deposited Ga{sub 2}O{sub 3} films show n-type conductivity with the maximum electron mobility of ?2?cm{sup 2}/V s.

  20. Effective Optical Properties of Highly Ordered Mesoporous Thin Films

    E-Print Network [OSTI]

    Hutchinson, Neal J.; Coquil, Thomas; Navid, Ashcon; Pilon, Laurent

    2010-01-01T23:59:59.000Z

    a solid-state dye-sensitized solar cells”, Thin Solid Films,tions include dye-sensitized solar cells [8– 10], low-ke?ciency solar cell based on dye- a sensitized colloidal

  1. Nanostructured thin films for solid oxide fuel cells 

    E-Print Network [OSTI]

    Yoon, Jongsik

    2009-05-15T23:59:59.000Z

    The goals of this work were to synthesize high performance perovskite based thin film solid oxide fuel cell (TF-SOFC) cathodes by pulsed laser deposition (PLD), to study the structural, electrical and electrochemical properties of these cathodes...

  2. Scanned pulsed laser annealing of Cu thin films

    E-Print Network [OSTI]

    Verma, Harsh Anand, 1980-

    2005-01-01T23:59:59.000Z

    As the microelectronics industry has moved to Cu as the conductor material, there has been much research into microstructure control in Cu thin films, primarily because grain sizes affect resistivity. Also with Cu-based ...

  3. Orientational Analysis of Molecules in Thin Films | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Orientational Analysis of Molecules in Thin Films Monday, September 17, 2012 - 10:00am SSRL Bldg. 137, room 226 Daniel Kaefer The synchrotron-based X-ray absorption spectroscopy is...

  4. Thin Film Encapsulation Methods for Large Area MEMS Packaging

    E-Print Network [OSTI]

    Mahajerin, Armon

    2012-01-01T23:59:59.000Z

    P. J. French, “Robust Wafer-Level Thin-Film Encapsulation ofThe Elastic Properties of Thin- Film Silicon Nitride,” IEEELPCVD Silicon Nitride Thin Films at Cryogenic Temperatures,”

  5. 3D-2D ASYMPTOTIC ANALYSIS FOR INHOMOGENEOUS THIN FILMS

    E-Print Network [OSTI]

    3D-2D ASYMPTOTIC ANALYSIS FOR INHOMOGENEOUS THIN FILMS plate models, periodic pr* *o- files, and within the context of optimal design for thin films 5. Third application - Optimal design of a thin film 19 6. Final Remarks

  6. Mechanisms for fatigue and wear of polysilicon structural thin films

    E-Print Network [OSTI]

    Alsem, Daniel Henricus

    2006-01-01T23:59:59.000Z

    of single-crystal silicon thin films from 1991 to 2006. Thefor polycrystalline silicon thin films After the initialThis mechanism is specific to thin-film silicon where cracks

  7. Interface and Size Effects on TiN-based Nanostructured Thin Films

    E-Print Network [OSTI]

    Kim, Ickchan

    2012-07-16T23:59:59.000Z

    and theoretically. For example, microstructural changes caused by helium ion-irradiation in several multilayer systems, including immiscible Cu/Nb [16], Cu/V [7], and miscible Al/Nb [17], and Fe/W [8], have been systematically studied. It was reported... components. Further elaboration on the microstructure and composition of nitride films has improved dramatically some properties of these nitride films [26], a quick example shows that nanocrystalline quality of TiN films enhances grain boundary sliding...

  8. Thin film solar energy collector

    DOE Patents [OSTI]

    Aykan, Kamran (Monmouth Beach, NJ); Farrauto, Robert J. (Westfield, NJ); Jefferson, Clinton F. (Millburn, NJ); Lanam, Richard D. (Westfield, NJ)

    1983-11-22T23:59:59.000Z

    A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.

  9. Interface and Size Effects on TiN-based Nanostructured Thin Films 

    E-Print Network [OSTI]

    Kim, Ickchan

    2012-07-16T23:59:59.000Z

    reactors. In order to enhance the material property, superlattices is one of artificially engineered protective coatings, such as AlN/TiN and TaN/TiN multilayered films. Epitaxial cubic multilayer films, TaN/TiN and AlN/TiN nanolayers were grown on Si(001...

  10. Design and fabrication of photonic crystal thin film photovoltaic cells Guillaume Gomarda,b

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Design and fabrication of photonic crystal thin film photovoltaic cells Guillaume Gomarda,b , Ounsi of an absorbing planar photonic crystal within a thin film photovoltaic cell. The devices are based on a stack with large areas. Keywords: Photonic crystal, Photovoltaic solar cell, Thin film solar cell, Hydrogenated

  11. Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications 2004 Diesel Engine Emissions Reduction...

  12. Templating Mesoporous Hierarchies in Silica Thin Films Using...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Templating Mesoporous Hierarchies in Silica Thin Films Using the Thermal Degradation of Cellulose Nitrate. Templating Mesoporous Hierarchies in Silica Thin Films Using the Thermal...

  13. Direct Measurement of Oxygen Incorporation into Thin Film Oxides...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement of Oxygen Incorporation into Thin Film Oxides at Room Temperature Upon Ultraviolet Phton Irradiation. Direct Measurement of Oxygen Incorporation into Thin Film Oxides...

  14. Improved Stability Of Amorphous Zinc Tin Oxide Thin Film Transistors...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stability Of Amorphous Zinc Tin Oxide Thin Film Transistors Using Molecular Passivation. Improved Stability Of Amorphous Zinc Tin Oxide Thin Film Transistors Using Molecular...

  15. A monolithic thin film electrochromic window

    SciTech Connect (OSTI)

    Goldner, R.B.; Arntz, F.O.; Berera, G.; Haas, T.E.; Wong, K.K. [Tufts Univ., Medford, MA (United States). Electro-Optics Technology Center; Wei, G. [Mobil Solar Energy Corp., Billerica, MA (United States); Yu, P.C. [PPG Industries, Inc., Monroeville, PA (United States)

    1991-12-31T23:59:59.000Z

    Three closely related thin film solid state ionic devices that are potentially important for applications are: electrochromic smart windows, high energy density thin film rechargeable batteries, and thin film electrochemical sensors. Each usually has at least on mixed ion/electron conductor, an electron-blocking ion conductor, and an ion-blocking electron conductor, and many of the technical issues associated with thin film solid state ionics are common to all three devices. Since the electrochromic window has the added technical requirement of electrically-controlled optical modulation, (over the solar spectrum), and since research at the authors` institution has focused primarily on the window structure, this paper will address the electrochromic window, and particularly a monolithic variable reflectivity electrochromic window, as an illustrative example of some of the challenges and opportunities that are confronting the thin film solid state ionics community. 33 refs.

  16. Strain Relaxation and Vacancy Creation in Thin Platinum Films

    SciTech Connect (OSTI)

    Gruber, W.; Chakravarty, S.; Schmidt, H. [Technische Universitaet Clausthal, Institut fuer Metallurgie, Clausthal-Zellerfeld (Germany); Baehtz, C. [Helmholtz Zentrum Dresden Rossendorf, Institute of Ion Beam Physics and Materials Research, Dresden (Germany); Leitenberger, W. [Universitaet Potsdam, Institut fuer Physik und Astronomie, Potsdam (Germany); Bruns, M. [Karlsruher Institut fuer Technologie, Institute for Applied Materials, Eggenstein-Leopoldshafen (Germany); Karlsruher Institut fuer Technologie, Karlsruher Micro Nano Facility, Eggenstein-Leopoldshafen (Germany); Kobler, A.; Kuebel, C. [Karlsruher Institut fuer Technologie, Institute of Nanotechnology, Eggenstein-Leopoldshafen (Germany); Karlsruher Institut fuer Technologie, Karlsruher Micro Nano Facility, Eggenstein-Leopoldshafen (Germany)

    2011-12-23T23:59:59.000Z

    Synchrotron based combined in situ x-ray diffractometry and reflectometry is used to investigate the role of vacancies for the relaxation of residual stress in thin metallic Pt films. From the experimentally determined relative changes of the lattice parameter a and of the film thickness L the modification of vacancy concentration and residual strain was derived as a function of annealing time at 130 deg. C. The results indicate that relaxation of strain resulting from compressive stress is accompanied by the creation of vacancies at the free film surface. This proves experimentally the postulated dominant role of vacancies for stress relaxation in thin metal films close to room temperature.

  17. Deposition, Characterization, and Thin-Film-Based Chemical Sensing of Ultra-Long Chemically Synthesized Graphene

    E-Print Network [OSTI]

    Zhou, Chongwu

    Synthesized Graphene Nanoribbons Ahmad N. Abbas ,, , Gang Liu , , Akimitsu Narita , Manuel Orosco¶ , Xinliang dispersion is prepared by sonicating GNR powder in 1- cyclohexyl-2-pyrrolidone (CHP) for 30 min to 1 h with a nitrogen gun. GNR dispersion preparation (films): The dispersion is prepared by sonic

  18. Aging phenomena in polystyrene thin films

    E-Print Network [OSTI]

    Koji Fukao; Hiroki Koizumi

    2008-01-05T23:59:59.000Z

    The aging behavior is investigated for thin films of atactic polystyrene through measurements of complex electric capacitance. During isothermal aging process the real part of the electric capacitance increases with aging time, while the imaginary part decreases with aging time. This result suggests that the aging time dependence of the real and imaginary parts are mainly associated with change in thickness and dielectric permittivity, respectively. In thin films, the thickness depends on thermal history of aging even above the glass transition. Memory and `rejuvenation' effects are also observed in the thin films.

  19. Permanent laser conditioning of thin film optical materials

    DOE Patents [OSTI]

    Wolfe, C.R.; Kozlowski, M.R.; Campbell, J.H.; Staggs, M.; Rainer, F.

    1995-12-05T23:59:59.000Z

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold. 9 figs.

  20. Permanent laser conditioning of thin film optical materials

    DOE Patents [OSTI]

    Wolfe, C. Robert (Palo Alto, CA); Kozlowski, Mark R. (Pleasanton, CA); Campbell, John H. (Livermore, CA); Staggs, Michael (Tracy, CA); Rainer, Frank (Livermore, CA)

    1995-01-01T23:59:59.000Z

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold.

  1. The dynamic behavior of thin-film ionic transition metal complex-based light-emitting electrochemical cells

    SciTech Connect (OSTI)

    Meier, Sebastian B., E-mail: sebastian.meier@belectric.com, E-mail: wiebke.sarfert@siemens.com [Department of Materials Science VI: Materials for Electronics and Energy Technology, Friedrich-Alexander-University of Erlangen-Nuremberg, 91058 Erlangen (Germany); Siemens AG, Corporate Technology, CT RTC MAT IEC-DE, 91058 Erlangen (Germany); Hartmann, David; Sarfert, Wiebke, E-mail: sebastian.meier@belectric.com, E-mail: wiebke.sarfert@siemens.com [Siemens AG, Corporate Technology, CT RTC MAT IEC-DE, 91058 Erlangen (Germany); Winnacker, Albrecht [Department of Materials Science VI: Materials for Electronics and Energy Technology, Friedrich-Alexander-University of Erlangen-Nuremberg, 91058 Erlangen (Germany)

    2014-09-14T23:59:59.000Z

    Light-emitting electrochemical cells (LECs) have received increasing attention during recent years due to their simple architecture, based on solely air-stabile materials, and ease of manufacture in ambient atmosphere, using solution-based technologies. The LEC's active layer offers semiconducting, luminescent as well as ionic functionality resulting in device physical processes fundamentally different as compared with organic light-emitting diodes. During operation, electrical double layers (EDLs) form at the electrode interfaces as a consequence of ion accumulation and electrochemical doping sets in leading to the in situ development of a light-emitting p-i-n junction. In this paper, we comment on the use of impedance spectroscopy in combination with complex nonlinear squares fitting to derive key information about the latter events in thin-film ionic transition metal complex-based light-emitting electrochemical cells based on the model compound bis-2-phenylpyridine 6-phenyl-2,2?-bipyridine iridium(III) hexafluoridophosphate ([Ir(ppy){sub 2}(pbpy)][PF{sub 6}]). At operating voltages below the bandgap potential of the ionic complex used, we obtain the dielectric constant of the active layer, the conductivity of mobile ions, the transference numbers of electrons and ions, and the thickness of the EDLs, whereas the transient thickness of the p-i-n junction is determined at voltages above the bandgap potential. Most importantly, we find that charge transport is dominated by the ions when carrier injection from the electrodes is prohibited, that ion movement is limited by the presence of transverse internal interfaces and that the width of the intrinsic region constitutes almost 60% of the total active layer thickness in steady state at a low operating voltage.

  2. Rechargeable thin-film electrochemical generator

    DOE Patents [OSTI]

    Rouillard, Roger (Beloeil, CA); Domroese, Michael K. (South St. Paul, MN); Hoffman, Joseph A. (Minneapolis, MN); Lindeman, David D. (Hudson, WI); Noel, Joseph-Robert-Gaetan (St-Hubert, CA); Radewald, Vern E. (Austin, TX); Ranger, Michel (Lachine, CA); Sudano, Anthony (Laval, CA); Trice, Jennifer L. (Eagan, MN); Turgeon, Thomas A. (Fridley, MN)

    2000-09-15T23:59:59.000Z

    An improved electrochemical generator is disclosed. The electrochemical generator includes a thin-film electrochemical cell which is maintained in a state of compression through use of an internal or an external pressure apparatus. A thermal conductor, which is connected to at least one of the positive or negative contacts of the cell, conducts current into and out of the cell and also conducts thermal energy between the cell and thermally conductive, electrically resistive material disposed on a vessel wall adjacent the conductor. The thermally conductive, electrically resistive material may include an anodized coating or a thin sheet of a plastic, mineral-based material or conductive polymer material. The thermal conductor is fabricated to include a resilient portion which expands and contracts to maintain mechanical contact between the cell and the thermally conductive material in the presence of relative movement between the cell and the wall structure. The electrochemical generator may be disposed in a hermetically sealed housing.

  3. Creating CZTS Thin Films Via Stacked Metallic CVD and Sulfurization

    E-Print Network [OSTI]

    Bielecki, Anthony

    2013-01-01T23:59:59.000Z

    film solar cells. CIGS solar cell efficiencies have beenCIGS, making it a favorable choice for thin-film solar cells.thin film solar cell [3]. However, use of CIGS has a number

  4. Solid State Thin Film Lithium Microbatteries

    E-Print Network [OSTI]

    Shi, Z.

    Solid state thin film lithium microbatteries fabricated by pulsed-laser deposition (PLD) are suggested. During deposition the following process parameters must be considered, which are laser energy and fluence, laser pulse ...

  5. Thermal Characterizationof Thin Film Superlattice Micro Refrigerators

    E-Print Network [OSTI]

    on a microscopic scale. Semiconductor lasers or other high power devices could also benefit from monolithic. Low contact resistance is essential for thin film coolers [3]. A 100 nm titanium metal layer was first

  6. Mode Splitting for Efficient Plasmoinc Thin-film Solar Cell

    E-Print Network [OSTI]

    Li, Tong; Jiang, Chun

    2010-01-01T23:59:59.000Z

    We propose an efficient plasmonic structure consisting of metal strips and thin-film silicon for solar energy absorption. We numerically demonstrate the absorption enhancement in symmetrical structure based on the mode coupling between the localized plasmonic mode in Ag strip pair and the excited waveguide mode in silicon slab. Then we explore the method of symmetry-breaking to excite the dark modes that can further enhance the absorption ability. We compare our structure with bare thin-film Si solar cell, and results show that the integrated quantum efficiency is improved by nearly 90% in such thin geometry. It is a promising way for the solar cell.

  7. Thin-film interference Aditya Joshi

    E-Print Network [OSTI]

    Packard, Richard E.

    , y, z, t) = Eo sin(kx - t)^y (1) It is worth noting what all the symbols stand for. · Eo is the peak of two important effects that will be explained presently. Figure 1: A thin film of oil floating on water that is incident upon the interface between air (na = 1) and a thin film of oil of thickness `t'(for this oil

  8. Quantification of thin film crystallographic orientation using X-ray diffraction with an area detector

    E-Print Network [OSTI]

    Baker, Jessica L

    2010-01-01T23:59:59.000Z

    elastic  properties of Au thin films by X?ray diffraction interface in  polythiophene thin?film transistors.  Nat copper  phthalocyanine thin films evaporated on amorphous 

  9. Optical Constants ofOptical Constants of Uranium Nitride Thin FilmsUranium Nitride Thin Films

    E-Print Network [OSTI]

    Hart, Gus

    Optical Constants ofOptical Constants of Uranium Nitride Thin FilmsUranium Nitride Thin FilmsDelta--Beta Scatter Plot at 220 eVBeta Scatter Plot at 220 eV #12;Why Uranium Nitride?Why Uranium Nitride? UraniumUranium, uranium,Bombard target, uranium, with argon ionswith argon ions Uranium atoms leaveUranium atoms leave

  10. Ambient pressure process for preparing aerogel thin films reliquified sols useful in preparing aerogel thin films

    DOE Patents [OSTI]

    Brinker, Charles Jeffrey (Albuquerque, NM); Prakash, Sai Sivasankaran (Minneapolis, MN)

    1999-01-01T23:59:59.000Z

    A method for preparing aerogel thin films by an ambient-pressure, continuous process. The method of this invention obviates the use of an autoclave and is amenable to the formation of thin films by operations such as dip coating. The method is less energy intensive and less dangerous than conventional supercritical aerogel processing techniques.

  11. Thin film absorber for a solar collector

    DOE Patents [OSTI]

    Wilhelm, William G. (Cutchogue, NY)

    1985-01-01T23:59:59.000Z

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  12. Thin Films for Microelectronics and Photonics: Physics, Mechanics,

    E-Print Network [OSTI]

    Volinsky, Alex A.

    4 Thin Films for Microelectronics and Photonics: Physics, Mechanics, Characterization, USA bUniversity of South Florida, Tampa, FL, USA 4.1. TERMINOLOGY AND SCOPE 4.1.1. Thin Films Thin practice. The term thin films as used here refers to material layers deposited by vapor

  13. Tungsten-doped thin film materials

    DOE Patents [OSTI]

    Xiang, Xiao-Dong; Chang, Hauyee; Gao, Chen; Takeuchi, Ichiro; Schultz, Peter G.

    2003-12-09T23:59:59.000Z

    A dielectric thin film material for high frequency use, including use as a capacitor, and having a low dielectric loss factor is provided, the film comprising a composition of tungsten-doped barium strontium titanate of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3, where X is between about 0.5 and about 1.0. Also provided is a method for making a dielectric thin film of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3 and doped with W, where X is between about 0.5 and about 1.0, a substrate is provided, TiO.sub.2, the W dopant, Ba, and optionally Sr are deposited on the substrate, and the substrate containing TiO.sub.2, the W dopant, Ba, and optionally Sr is heated to form a low loss dielectric thin film.

  14. SAND2003-8146C Symposium on Thin Films

    E-Print Network [OSTI]

    Volinsky, Alex A.

    SAND2003-8146C Symposium on Thin Films ICM-9 9th International Conference on the Mechanical FRACTURE OF THIN GOLD FILMS N. R. Moody, D. P. Adams*, M. J. Cordill**, D. F. Bahr**, A. A. Volinsky of interfacial fracture energies of thin gold films as a function of film thickness is presented in this paper

  15. Mg-Based Nano-layered Thin Films for Hydrogen Storage 

    E-Print Network [OSTI]

    Junkaew, Anchalee

    2013-11-26T23:59:59.000Z

    -plane direction as a function of the distance from interface. . . . . . . . . . . . . . . 152 xvii LIST OF TABLES TABLE Page 1.1 Selected hydrogen storage targets for light-duty vehicles proposed by DOE in 2009... for hydrogen storage in light-duty vehicles shown in Table 1.1 [10]. Development of materials-based storage will be further discussed in the literature review section. 1.1.3 Hydrogen combustion: fuel cells Fuel cells are electrochemical devices that essentially...

  16. Mg-Based Nano-layered Thin Films for Hydrogen Storage

    E-Print Network [OSTI]

    Junkaew, Anchalee

    2013-11-26T23:59:59.000Z

    -plane direction as a function of the distance from interface. . . . . . . . . . . . . . . 152 xvii LIST OF TABLES TABLE Page 1.1 Selected hydrogen storage targets for light-duty vehicles proposed by DOE in 2009... for hydrogen storage in light-duty vehicles shown in Table 1.1 [10]. Development of materials-based storage will be further discussed in the literature review section. 1.1.3 Hydrogen combustion: fuel cells Fuel cells are electrochemical devices that essentially...

  17. A comparison of thick film and thin film traffic stripes

    E-Print Network [OSTI]

    Keese, Charles J

    1952-01-01T23:59:59.000Z

    Striys. . . Pigmented Bitusmn Stripes . Asphalt %uilt-Upa Striye vith Pigmented Portland Cement Mortar Cover Course 38 . ~ 41 Thin Film Stripes Used for Comparison Results of Comparing Thick Film Stripes and Thin Film Paint Stripes . ~ ~ ~ ~ ~ 43... was aspbaltio oonorets. The pavement in Test Areas 2y 3p and 4 vas portland cesmnh ooncrete, Two test areas (3 and 4) vere located in such manner as to provide uninterrupted flow of traffic over tbs entire length of the test area. The other two test areas (1...

  18. Photo-modulated thin film transistor based on dynamic charge transfer within quantum-dots-InGaZnO interface

    SciTech Connect (OSTI)

    Liu, Xiang [Electronic Science and Engineering School, Southeast University, Nanjing (China); National Center for Nanoscience and Technology, Beijing (China); Yang, Xiaoxia; Liu, Mingju [National Center for Nanoscience and Technology, Beijing (China); Tao, Zhi; Wei, Lei, E-mail: lw@seu.edu.cn; Li, Chi, E-mail: lichi@seu.edu.cn; Zhang, Xiaobing; Wang, Baoping [Electronic Science and Engineering School, Southeast University, Nanjing (China); Dai, Qing, E-mail: daiq@nanoctr.cn [National Center for Nanoscience and Technology, Beijing (China); London Center for Nanotechnology, University College London, London WC1H 0AH (United Kingdom); Nathan, Arokia [Electronic Science and Engineering School, Southeast University, Nanjing (China); London Center for Nanotechnology, University College London, London WC1H 0AH (United Kingdom)

    2014-03-17T23:59:59.000Z

    The temporal development of next-generation photo-induced transistor across semiconductor quantum dots and Zn-related oxide thin film is reported in this paper. Through the dynamic charge transfer in the interface between these two key components, the responsibility of photocurrent can be amplified for scales of times (?10{sup 4}?A/W 450?nm) by the electron injection from excited quantum dots to InGaZnO thin film. And this photo-transistor has a broader waveband (from ultraviolet to visible light) optical sensitivity compared with other Zn-related oxide photoelectric device. Moreover, persistent photoconductivity effect can be diminished in visible waveband which lead to a significant improvement in the device's relaxation time from visible illuminated to dark state due to the ultrafast quenching of quantum dots. With other inherent properties such as integrated circuit compatible, low off-state current and high external quantum efficiency resolution, it has a great potential in the photoelectric device application, such as photodetector, phototransistor, and sensor array.

  19. Characterization of recombination processes in epitaxial thin films and substrates for antimonide based thermophotovoltaic devices

    SciTech Connect (OSTI)

    Saroop, S.; Borrego, J.; Gutmann, R.; Dutta, P.; Ostrogorsky, A. [Rensselaer Polytechnic Inst., Troy, NY (United States). Center for Integrated Electronics and Electronics Manufacturing; Charache, G. [Lockheed Martin Inc., Schenectady, NY (United States); Wang, C. [Massachusetts Inst. of Tech., Lexington, MA (United States). Lincoln Lab.

    1998-06-01T23:59:59.000Z

    Recombination processes in antimonide-based materials for thermophotovoltaic (TPV) devices have been investigated using a radio-frequency (RF) photoreflectance technique, in which a Nd-YAG pulsed laser is used to excite excess carriers, and the short-pulse response and photoconductivity decay are monitored with an inductively-coupled non-contacting RF probe. Double-capped lattice-matched GaInAsSb organometallic vapor phase epitaxy (OMVPE)--grown layers on GaSb substrates have been used to evaluate bulk lifetime and surface recombination velocity with different layer thicknesses. With an active layer doping of 2 {times} 10{sup 17} cm{sup {minus}3}, effective bulk lifetimes of 95 ns and surface recombination velocities of 1,900 cm/s have been obtained. As the laser intensity is increased the lifetime decreases, which may be indicative of radiative recombination under these high level injection conditions. Similar measurements have been taken on both commercially available GaSb boules as well as in-house grown quaternary GaInAsSb boules. A two-step decay is observed with the quaternary boules, an initial decay of nominally 15 ns which is relatively independent of laser intensity and a second decay of 30--60 ns which increases with decreasing laser intensity. This behavior may be indicative of free charge separation as a result of short-range ordering in the quaternary crystals. GaSb boules, both commercially available and those grown in-house, exhibit more classical characteristics.

  20. Experimental determination of band offsets of NiO-based thin film heterojunctions

    SciTech Connect (OSTI)

    Kawade, Daisuke; Sugiyama, Mutsumi, E-mail: mutsumi@rs.noda.tus.ac.jp [Faculty of Science and Technology/Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510 (Japan); Chichibu, Shigefusa F. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980–8577 (Japan)

    2014-10-28T23:59:59.000Z

    The energy band diagrams of NiO-based solar cell structures that use various n-type oxide semiconductors such as ZnO, Mg{sub 0.3}Zn{sub 0.7}O, Zn{sub 0.5}Sn{sub 0.5}O, In{sub 2}O{sub 3}:Sn (ITO), SnO{sub 2}, and TiO{sub 2} were evaluated by photoelectron yield spectroscopy. The valence band discontinuities were estimated to be 1.6?eV for ZnO/NiO and Mg{sub 0.3}Zn{sub 0.7}O/NiO, 1.7?eV for Zn{sub 0.5}Sn{sub 0.5}O/NiO and ITO/NiO, and 1.8?eV for SnO{sub 2}/NiO and TiO{sub 2}/NiO heterojunctions. By using the valence band discontinuity values and corresponding energy bandgaps of the layers, energy band diagrams were developed. Judging from the band diagram, an appropriate solar cell consisting of p-type NiO and n-type ZnO layers was deposited on ITO, and a slight but noticeable photovoltaic effect was obtained with an open circuit voltage (V{sub oc}) of 0.96?V, short circuit current density (J{sub sc}) of 2.2??A/cm{sup 2}, and fill factor of 0.44.

  1. Institute of Photo Electronic Thin Film Devices and Technology...

    Open Energy Info (EERE)

    Place: Tianjin Municipality, China Zip: 300071 Sector: Solar Product: A thin-film solar cell research institute in China. References: Institute of Photo-Electronic Thin...

  2. Thermoelectric effect in very thin film Pt/Au thermocouples

    E-Print Network [OSTI]

    Salvadori, M.C.; Vaz, A.R.; Teixeira, F.S.; Cattani, M.; Brown, I.G.

    2006-01-01T23:59:59.000Z

    TABLE I. Measured thermoelectric power S for samples ofThermoelectric effect in very thin film Pt/Au thermocouplesthickness dependence of the thermoelectric power of Pt films

  3. alumina thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    films Engineering Websites Summary: of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from the switching mechanisms of...

  4. acid thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    films Engineering Websites Summary: of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from the switching mechanisms of...

  5. ablation thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    films Engineering Websites Summary: of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from the switching mechanisms of...

  6. anatase thin film: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    films Engineering Websites Summary: of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from the switching mechanisms of...

  7. arsenide thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    films Engineering Websites Summary: of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from the switching mechanisms of...

  8. Thin Film Packaging Solutions for High Efficiency OLED Lighting Products

    SciTech Connect (OSTI)

    None

    2008-06-30T23:59:59.000Z

    The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000 hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology was characterized as having less than 10% change in transmission during the 15,000 hour test period; (3) demonstrated thin film encapsulation of a phosphorescent OLED device with 1,500 hours of lifetime at 60 C and 80% RH; (4) demonstrated that a thin film laminate encapsulation, in addition to the direct thin film deposition process, of a polymer OLED device was another feasible packaging strategy for OLED lighting. The thin film laminate strategy was developed to mitigate defects, demonstrate roll-to-roll process capability for high volume throughput (reduce costs) and to support a potential commercial pathway that is less dependent upon integrated manufacturing since the laminate could be sold as a rolled good; (5) demonstrated that low cost 'blue' glass substrates could be coated with a siloxane barrier layer for planarization and ion-protection and used in the fabrication of a polymer OLED lighting device. This study further demonstrated that the substrate cost has potential for huge cost reductions from the white borosilicate glass substrate currently used by the OLED lighting industry; (6) delivered four-square feet of white phosphorescent OLED technology, including novel high efficiency devices with 82 CRI, greater than 50 lm/W efficiency, and more than 1,000 hours lifetime in a product concept model shelf; (7) presented and or published more than twenty internal studies (for private use), three external presentations (OLED workshop-for public use), and five technology-related external presentations (industry conferences-for public use); and (8) issued five patent applications, which are in various maturity stages at time of publication. Delivery of thin film encapsulated white phosphorescent OLED lighting technology remains a challenging technical achievement, and it seems that commercial availability of thin, bright, white OLED light that meets market requirements will continue to require research and development effort. However, there will be glass encapsulated white OLED lighting products commercialized in niche markets during the 2008 calendar year. This commercializ

  9. Vibration welding system with thin film sensor

    DOE Patents [OSTI]

    Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

    2014-03-18T23:59:59.000Z

    A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

  10. Method for synthesizing thin film electrodes

    DOE Patents [OSTI]

    Boyle, Timothy J. (Albuquerque, NM)

    2007-03-13T23:59:59.000Z

    A method for making a thin-film electrode, either an anode or a cathode, by preparing a precursor solution using an alkoxide reactant, depositing multiple thin film layers with each layer approximately 500 1000 .ANG. in thickness, and heating the layers to above 600.degree. C. to achieve a material with electrochemical properties suitable for use in a thin film battery. The preparation of the anode precursor solution uses Sn(OCH.sub.2C(CH.sub.3).sub.3).sub.2 dissolved in a solvent in the presence of HO.sub.2CCH.sub.3 and the cathode precursor solution is formed by dissolving a mixture of (Li(OCH.sub.2C(CH.sub.3).sub.3)).sub.8 and Co(O.sub.2CCH.sub.3).H.sub.2O in at least one polar solvent.

  11. Mesoscale morphologies in polymer thin films.

    SciTech Connect (OSTI)

    Ramanathan, M.; Darling, S. B. (Center for Nanoscale Materials)

    2011-06-01T23:59:59.000Z

    In the midst of an exciting era of polymer nanoscience, where the development of materials and understanding of properties at the nanoscale remain a major R&D endeavor, there are several exciting phenomena that have been reported at the mesoscale (approximately an order of magnitude larger than the nanoscale). In this review article, we focus on mesoscale morphologies in polymer thin films from the viewpoint of origination of structure formation, structure development and the interaction forces that govern these morphologies. Mesoscale morphologies, including dendrites, holes, spherulites, fractals and honeycomb structures have been observed in thin films of homopolymer, copolymer, blends and composites. Following a largely phenomenological level of description, we review the kinetic and thermodynamic aspects of mesostructure formation outlining some of the key mechanisms at play. We also discuss various strategies to direct, limit, or inhibit the appearance of mesostructures in polymer thin films as well as an outlook toward potential areas of growth in this field of research.

  12. Thin film dielectric composite materials

    DOE Patents [OSTI]

    Jia, Quanxi (Los Alamos, NM); Gibbons, Brady J. (Los Alamos, NM); Findikoglu, Alp T. (Los Alamos, NM); Park, Bae Ho (Los Alamos, NM)

    2002-01-01T23:59:59.000Z

    A dielectric composite material comprising at least two crystal phases of different components with TiO.sub.2 as a first component and a material selected from the group consisting of Ba.sub.1-x Sr.sub.x TiO.sub.3 where x is from 0.3 to 0.7, Pb.sub.1-x Ca.sub.x TiO.sub.3 where x is from 0.4 to 0.7, Sr.sub.1-x Pb.sub.x TiO.sub.3 where x is from 0.2 to 0.4, Ba.sub.1-x Cd.sub.x TiO.sub.3 where x is from 0.02 to 0.1, BaTi.sub.1-x Zr.sub.x O.sub.3 where x is from 0.2 to 0.3, BaTi.sub.1-x Sn.sub.x O.sub.3 where x is from 0.15 to 0.3, BaTi.sub.1-x Hf.sub.x O.sub.3 where x is from 0.24 to 0.3, Pb.sub.1-1.3x La.sub.x TiO.sub.3+0.2x where x is from 0.23 to 0.3, (BaTiO.sub.3).sub.x (PbFeo.sub.0.5 Nb.sub.0.5 O.sub.3).sub.1-x where x is from 0.75 to 0.9, (PbTiO.sub.3).sub.- (PbCo.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.1 to 0.45, (PbTiO.sub.3).sub.x (PbMg.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.2 to 0.4, and (PbTiO.sub.3).sub.x (PbFe.sub.0.5 Ta.sub.0.5 O.sub.3).sub.1-x where x is from 0 to 0.2, as the second component is described. The dielectric composite material can be formed as a thin film upon suitable substrates.

  13. Quasi-Rheotaxy a new technique to grow large grain thin films on low cost amorphous substrates (*)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , could be used to build low cost thin film solar cells. Revue Phys. Appl. 16 (1981) 11-14 JANVIER 1981 is required in thin film direct gap absorbers solar cells to overcome thebfficiency value of 10 % is about 2 comparable with the grain size, reports that a thin film solar cell based on GaAs with a resistivity of 10

  14. SAW determination of surface area of thin films

    DOE Patents [OSTI]

    Frye, Gregory C. (Albuquerque, NM); Martin, Stephen J. (Albuquerque, NM); Ricco, Antonio J. (Albuquerque, NM)

    1990-01-01T23:59:59.000Z

    N.sub.2 adsorption isotherms are measured from thin films on SAW devices. The isotherms may be used to determine the surface area and pore size distribution of thin films.

  15. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guided Self-Assembly of Gold Thin Films Guided Self-Assembly of Gold Thin Films Print Wednesday, 21 November 2012 12:18 Nanoparticles-man-made atoms with unique optical,...

  16. Piezoreslstive graphite/polyimide thin films for micromachining applications

    E-Print Network [OSTI]

    Piezoreslstive graphite/polyimide thin films for micromachining applications A. Bruno Frazier) In this work, graphite/polyimide composite thin films are introduced and characterized for micromachining tetracarboxylic dianhydride+xydianiline/metaphenylene diamine polyimide matrix. The resultant material represents

  17. The interplay between spatially separated ferromagnetic and superconducting thin films

    E-Print Network [OSTI]

    Sullivan, Isaac John

    2013-02-22T23:59:59.000Z

    Ferromagnetic thin films have been grown via physical vapor deposition utilizing the technique of flash evaporation and characterized by measuring magnetization as a function of magnetic field. An Al thin film was evaporated atop the ferromagnetic...

  18. au thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    micro-machine (see S. S. Irudayaraj and A. Emadi 15). In general, magnetic thin-film elements are used in many applications Hadiji, Rejeb 29 Thin Films of Chiral Motors...

  19. Conductivity of Oriented Samaria-Doped Ceria Thin Films Grown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conductivity of Oriented Samaria-Doped Ceria Thin Films Grown by Oxygen-plasma-assisted Molecular Beam Epitaxy. Conductivity of Oriented Samaria-Doped Ceria Thin Films Grown by...

  20. aluminium thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 21 Thin-Film Metamaterials called Sculptured Thin Films CERN Preprints Summary: Morphology...

  1. Electrochromism in copper oxide thin films

    E-Print Network [OSTI]

    Richardson, Thomas J.; Slack, Jonathan L.; Rubin, Michael D.

    2000-01-01T23:59:59.000Z

    by a variety of routes, and electrochromic behavior has beenof Cu x O films, electrochromic devices based onbeen investigated. Unlike electrochromic devices based on

  2. Viscous fingering in volatile thin films

    E-Print Network [OSTI]

    Oded Agam

    2009-02-23T23:59:59.000Z

    A thin water film on a cleaved mica substrate undergoes a first order phase transition between two values of film thickness. By inducing a finite evaporation rate of the water, the interface between the two phases develops a fingering instability similar to that observed in the Saffman-Taylor problem. We draw the connection between the two problems, and construct solutions describing the dynamics of evaporation in this system.

  3. Properties of TiO{sub 2}-based transparent conducting oxide thin films on GaN(0001) surfaces

    SciTech Connect (OSTI)

    Kasai, J.; Nakao, S.; Yamada, N. [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Hitosugi, T. [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577 (Japan); Moriyama, M.; Goshonoo, K. [Toyoda Gosei Co., Ltd., Nishikasugai, Aichi 452-8564 (Japan); Hoang, N. L. H. [Department of Chemistry, University of Tokyo, Tokyo 113-0033 (Japan); Hasegawa, T. [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Department of Chemistry, University of Tokyo, Tokyo 113-0033 (Japan)

    2010-03-15T23:59:59.000Z

    Anatase Nb-doped TiO{sub 2} transparent conducting oxide has been formed on GaN(0001) surfaces using a sputtering method. Amorphous films deposited at room temperature were annealed at a substrate temperature of 500 deg. C in vacuum to form single-phase anatase films. Films with a thickness of 170 nm exhibited a resistivity of 8x10{sup -4} {Omega} cm with absorptance less than 5% at a wavelength of 460 nm. Furthermore, the refractive index of the Nb-doped TiO{sub 2} was well matched to that of GaN. These findings indicate that Nb-doped TiO{sub 2} is a promising material for use as transparent electrodes in GaN-based light emitting diodes (LEDs), particularly since reflection at the electrode/GaN boundary can be suppressed, enhancing the external quantum efficiency of blue LEDs.

  4. Long-wave models of thin film fluid dynamics

    E-Print Network [OSTI]

    A. J. Roberts

    1994-11-04T23:59:59.000Z

    Centre manifold techniques are used to derive rationally a description of the dynamics of thin films of fluid. The derived model is based on the free-surface $\\eta(x,t)$ and the vertically averaged horizontal velocity $\\avu(x,t)$. The approach appears to converge well and has significant differences from conventional depth-averaged models.

  5. INTERFACIAL STABILITY OF THIN FILM FIBER-OPTIC HYDROGEN SENSORS

    E-Print Network [OSTI]

    INTERFACIAL STABILITY OF THIN FILM FIBER-OPTIC HYDROGEN SENSORS R. Davis Smith, Ping Liu, Se and utility of these sensors, especially in the configuration that is based upon the optical response hydrogen sensors for use as safety monitors wherever hydrogen is used, stored, or produced. Prior work has

  6. Method of preparing thin film polymeric gel electrolytes

    DOE Patents [OSTI]

    Derzon, Dora K. (Albuquerque, NM); Arnold, Jr., Charles (Albuquerque, NM)

    1997-01-01T23:59:59.000Z

    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  7. Method of preparing thin film polymeric gel electrolytes

    DOE Patents [OSTI]

    Derzon, D.K.; Arnold, C. Jr.

    1997-11-25T23:59:59.000Z

    Novel hybrid thin film electrolyte is described, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1}cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

  8. 3D-2D ASYMPTOTIC ANALYSIS FOR MICROMAGNETIC THIN FILMS

    E-Print Network [OSTI]

    3D-2D ASYMPTOTIC ANALYSIS FOR MICROMAGNETIC THIN FILMS Classification: 35E99, 35M10, 49J45, 74K35. Keywords: -limit, thin films, micromagnetics, relaxation; 1 1. Introduction In recent years the understanding of thin film behavior has been helped

  9. THIN FILM MECHANICS BULGING AND Ph.D Dissertation

    E-Print Network [OSTI]

    Huston, Dryver R.

    THIN FILM MECHANICS ­BULGING AND STRETCHING Ph.D Dissertation Mechanical Engineering University of Vermont Wolfgang Sauter October 2000 #12;ii Abstract Thin films have experienced revolutionary development for the intensive effort in research in materials and processing techniques. Thin film windows are window

  10. Electrified thin films: Global existence of non-negative solutions

    E-Print Network [OSTI]

    Boyer, Edmond

    Electrified thin films: Global existence of non-negative solutions C. Imbert and A. Mellet February 6, 2012 Abstract We consider an equation modeling the evolution of a viscous liquid thin film equation, Non-local equation, Thin film equation, Non-negative solutions MSC: 35G25, 35K25, 35A01, 35B09 1

  11. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ELECTROPLATED Cu THIN FILMS

    E-Print Network [OSTI]

    Volinsky, Alex A.

    MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ELECTROPLATED Cu THIN FILMS A.A. Volinsky* , J. Vella size, thin film microstructure and mechanical properties have become critical parameters-K dielectric materials and novel interconnects (Cu). For most reliability tests, knowledge of the thin film

  12. Electrified thin films: Global existence of non-negative solutions

    E-Print Network [OSTI]

    Electrified thin films: Global existence of non-negative solutions C. Imbert and A. Mellet August 31, 2011 Abstract We consider an equation modeling the evolution of a viscous liquid thin film equation, Non-local equation, Thin film equation, Non-negative solutions MSC: 35G25, 35K25, 35A01, 35B09 1

  13. Electrified thin films: Global existence of non-negative solutions

    E-Print Network [OSTI]

    Electrified thin films: Global existence of non-negative solutions C. Imbert and A. Mellet February 4, 2011 Abstract We consider an equation modeling the evolution of a viscous liquid thin film equation, Non-local equation, Thin film equation, Non-negative solutions MSC: 35G25, 35K25, 35A01, 35B09 1

  14. SEECOMMENTARYAPPLIEDPHYSICAL The macroscopic delamination of thin films from

    E-Print Network [OSTI]

    Reis, Pedro Miguel

    SEECOMMENTARYAPPLIEDPHYSICAL SCIENCES The macroscopic delamination of thin films from elastic toughness, our analysis suggests a number of design guidelines for the thin films used in flexible fatigue damage, the thin film thickness must be greater than a critical value, which we determine

  15. RisR980(EN) Epitaxy, Thin films and

    E-Print Network [OSTI]

    Risø­R­980(EN) Epitaxy, Thin films and Superlattices Morten Jagd Christensen Risø National of substrates as well as growth of thin films and Fe/V superlattices by molecular beam epitaxy, including in structures were investigated. This thesis, "Epitaxy, Thin films and Superlattices", is written in partial

  16. Polymer-Metal Nanocomposites via Polymer Thin Film

    E-Print Network [OSTI]

    Shyamasundar, R.K.

    Polymer-Metal Nanocomposites via Polymer Thin Film T. P. Radhakrishnan School of Chemistry, University of Hyderabad Polymer-metal nanocomposite thin films are versatile materials that not only Chemistry Inside a Polymer Thin Film P. Radhakrishnan School of Chemistry, University of Hyderabad metal

  17. New techniques for producing thin boron films

    SciTech Connect (OSTI)

    Thomas, G.E.

    1988-01-01T23:59:59.000Z

    A review will be presented of methods for producing thin boron films using an electron gun. Previous papers have had the problem of spattering of the boron source during the evaporation. Methods for reducing this problem will also be presented. 12 refs., 4 figs.

  18. US polycrystalline thin film solar cells program

    SciTech Connect (OSTI)

    Ullal, H.S.; Zweibel, K.; Mitchell, R.L. (Solar Energy Research Inst., Golden, CO (USA)) [Solar Energy Research Inst., Golden, CO (USA)

    1989-11-01T23:59:59.000Z

    The Polycrystalline Thin Film Solar Cells Program, part of the United States National Photovoltaic Program, performs R D on copper indium diselenide and cadmium telluride thin films. The objective of the Program is to support research to develop cells and modules that meet the US Department of Energy's long-term goals by achieving high efficiencies (15%-20%), low-cost ($50/m{sup 2}), and long-time reliability (30 years). The importance of work in this area is due to the fact that the polycrystalline thin-film CuInSe{sub 2} and CdTe solar cells and modules have made rapid advances. They have become the leading thin films for PV in terms of efficiency and stability. The US Department of Energy has increased its funding through an initiative through the Solar Energy Research Institute in CuInSe{sub 2} and CdTe with subcontracts to start in Spring 1990. 23 refs., 5 figs.

  19. Magnetic/metallic thin films and nanostructures

    E-Print Network [OSTI]

    Lewis, Robert Michael

    examples. During the past decade applications of nano-scale magnetic devices to data storage have hadMagnetic/metallic thin films and nanostructures The College of William and MarY;'l Virginia http://www.as.wm.cdu/Faculty/Lukaszcw.html It is widely believed that revolutionary progress can be made as materials and devices are developed to operate

  20. A thin film transistor driven microchannel device 

    E-Print Network [OSTI]

    Lee, Hyun Ho

    2005-02-17T23:59:59.000Z

    perturbation, an amorphous silicon (a-Si:H) thin film transistor (TFT) was connected to the microchannel device. The self-aligned a-Si:H TFT was fabricated with a two-photomask process. The result shows that the attachment of the TFT successfully suppressed...

  1. LIQUID PHASE DEPOSITION OF ELECTROCHROMIC THIN FILMS T. J. Richardson and M. D. Rubin

    E-Print Network [OSTI]

    , and readily scalable to larger substrates. Keywords: liquid phase deposition; electrochromic films; thin film

  2. Niobium-based sputtered thin films for Corrosion Protection of proton-irradiated liquid water targets for [18F] production

    E-Print Network [OSTI]

    Skliarova, H; Dousset, O; Johnson, R R; Palmieri, V

    2013-01-01T23:59:59.000Z

    Chemically inert Coatings on Havar entrance foils of the targets for [18F] production via proton irradiation of enriched water at pressurized conditions are needed to decrease the amount of ionic contaminants released from Havar. In order to find the most effective protective coatings, the Nb-based coating microstructure and barrier properties have been correlated with deposition parameters as: substrate temperature, applied bias, deposition rate and sputtering gas pressure. Aluminated quartz used as a substrate allowed us to verify the protection efficiency of the desirable coatings as diffusion barriers. Two modeling corrosion tests based on the extreme susceptibility of aluminum to liquid gallium and acid corrosion were applied. Pure Niobium coatings have been found less effective barriers than Niobium-titanium coatings. But Niobium oxide films, according to the corrosion tests performed, showed superior barrier properties. Therefore Multi-layered Niobium-Niobium oxide films have been suggested, since they...

  3. High Efficiency Thin Film CdTe and a-Si Based Solar Cells: Annual Technical Report, 4 March 1999 - 3 March 2000

    SciTech Connect (OSTI)

    Compaan, A. D.; Deng, X.; Bohn, R. G. (The University of Toledo)

    2001-08-29T23:59:59.000Z

    This report describes the research on high-efficiency CdTe-based thin-film solar cells and on high-efficiency a-Si-based thin-film solar cells. Implemented a diode-array spectrograph system and used optical emission spectroscopy to help optimize the reactive sputtering of N-doped ZnTe for CdTe back-contact structures. Identified the photoluminescence signatures of various defect states in CdTe related to Cd vacancies, CuCd acceptors, Cu-VCd complexes, and donor-acceptor pairs, and related these states to instabilities in the hole concentration at room temperature. Showed that Cu is an important non-radiative center in CdS, reducing the PL efficiency. Studied band tailing in CdS weakly alloyed with CdTe and CdTe weakly alloyed with CdS. Fabricated superstrate ITO/CdS/CdTe cells on Mo substrates with efficiencies above 7.5%. Collaborated in studies of EXAFS of Cu in CdTe which indicate a Cu-Te bond length of 2.62 {angstrom} or 6.7% shorter than the CdTe, bond in agreement with calculations of Wei et al. Provided assistance to two groups on laser scribing. Comparatively studied the performance of a-SiGe solar cells and properties of a-SiGe single-layer films deposited using a wide range of H dilution, observed transition from a-SiGe to {mu}c-SiGe at high H dilution and the impact on cell performances. Comparatively studied the performance of a-SiGe solar cells and properties of a-SiGe single-layer films with different Ge contents, suitable for use as component cells of triple-junction devices. Fabricated a-Si-based solar cells on ultra-thin stainless-steel substrate (7.5 micron) and obtained equivalent performance and yield as on the regular SS substrates (127 microns). Comparatively studied the performance of a-Si-based solar cells on SS substrates and on SnO2-coated glass substrates. Studied the performance of p-layers deposited under various deposition conditions for n-i-p type solar cells. Performed an analysis for the component cell current-matching within a triple-junction solar cell.

  4. B{sub 4}C thin films for neutron detection

    SciTech Connect (OSTI)

    Hoeglund, Carina [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); Department of Physics, Chemistry and Biology (IFM), Thin Film Physics Division, Linkoeping University, SE-581 83 Linkoeping (Sweden); Birch, Jens; Jensen, Jens; Hultman, Lars [Department of Physics, Chemistry and Biology (IFM), Thin Film Physics Division, Linkoeping University, SE-581 83 Linkoeping (Sweden); Andersen, Ken; Hall-Wilton, Richard [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); Bigault, Thierry; Buffet, Jean-Claude; Correa, Jonathan; Esch, Patrick van; Guerard, Bruno; Piscitelli, Francesco [Institute Laue Langevin, Rue Jules Horowitz, FR-380 00 Grenoble (France); Khaplanov, Anton [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); Institute Laue Langevin, Rue Jules Horowitz, FR-380 00 Grenoble (France); Vettier, Christian [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); European Synchrotron Radiation Facility, BP 220, FR-380 43 Grenoble Cedex 9 (France); Vollenberg, Wilhelmus [Vacuum, Surfaces and Coatings Group (TE/VSC), CERN, CH-1211 Geneva 23 (Switzerland)

    2012-05-15T23:59:59.000Z

    Due to the very limited availability of {sup 3}He, new kinds of neutron detectors, not based on {sup 3}He, are urgently needed. Here, we present a method to produce thin films of {sup 10}B{sub 4}C, with maximized detection efficiency, intended to be part of a new generation of large area neutron detectors. B{sub 4}C thin films have been deposited onto Al-blade and Si wafer substrates by dc magnetron sputtering from {sup nat}B{sub 4}C and {sup 10}B{sub 4}C targets in an Ar discharge, using an industrial deposition system. The films were characterized with scanning electron microscopy, elastic recoil detection analysis, x-ray reflectivity, and neutron radiography. We show that the film-substrate adhesion and film purity are improved by increased substrate temperature and deposition rate. A deposition rate of 3.8 A/s and substrate temperature of 400 deg. C result in films with a density close to bulk values and good adhesion to film thickness above 3 {mu}m. Boron-10 contents of almost 80 at. % are obtained in 6.3 m{sup 2} of 1 {mu}m thick {sup 10}B{sub 4}C thin films coated on Al-blades. Initial neutron absorption measurements agree with Monte Carlo simulations and show that the layer thickness, number of layers, neutron wavelength, and amount of impurities are determining factors. The study also shows the importance of having uniform layer thicknesses over large areas, which for a full-scale detector could be in total {approx}1000 m{sup 2} of two-side coated Al-blades with {approx}1 {mu}m thick {sup 10}B{sub 4}C films.

  5. Quasi-Reversible Oxygen Exchange of Amorphous IGZO Thin Films

    E-Print Network [OSTI]

    Shahriar, Selim

    MRSEC Quasi-Reversible Oxygen Exchange of Amorphous IGZO Thin Films NSF Grant # 1121262 A. U. Adler Center In situ electrical properties of a-IGZO thin films were carried out at 200ºC as a function/"defect" structure of amorphous oxide films. In situ conductivity of 70 nm a-IGZO thin film at 200oC measured in van

  6. Concentration of remote-handled, transuranic, sodium nitrate-based sludge using agitated thin-film evaporators

    SciTech Connect (OSTI)

    Walker, J.F. Jr.; Youngblood, E.L.; Berry, J.B. (Oak Ridge National Lab., TN (USA)); Pen, Ben-Li (Institute of Nuclear Energy Research, Lung-Tan (Taiwan))

    1991-01-01T23:59:59.000Z

    The Waste Handling and Packaging Plant (WHPP) is being designed at Oak Ridge National Laboratory (ORNL) to prepared transuranic waste for final disposal. Once operational, this facility will process, package, and certify remote-handled transuranic waste for ultimate shipment and disposal at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. One of the wastes that will be handled at WHIPP is the transuranic sludge currently stored at ORNL in eight 50,000-gal underground tanks. The use of an Agitated Thin-Film Evaporator (ATFE) for concentration of this waste is being investigated. Tests have shown that the ATFE can be used to produce a thick slurry, a powder, or a fused salt. A computer model developed at the Savannah River Plant (SRP) to simulate the operation of ATFE's on their waste is being modified for use on the ORNL transuranic sludge. This paper summarizes the results of the test with the ATFEs to date, discusses the changes in the SRP model necessary to use this model with the ORNL waste, and compares the results of the model with the actual data taken from the operation of ATFEs at vendors' test facilities. 8 refs., 1 fig., 3 tabs.

  7. Electrohydrodynamic instabilities in thin liquid trilayer films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Roberts, Scott A. [Sandia National Lab., Albuquerque, NM (United States); Kumar, Satish [Univ. of Minnesota, Minneapolis, MN (United States)

    2010-09-12T23:59:59.000Z

    Experiments by Dickey et al. [Langmuir, 22, 4315 (2006)] and Leach et al. [Chaos, 15, 047506 (2005)] show that novel pillar shapes can be generated from electrohydrodynamic instabilities at the interfaces of thin polymer/polymer/air trilayer films. In this paper, we use linear stability analysis to investigate the effect of free charge and ac electric fields on the stability of trilayer systems. Our work is also motivated by our recent theoretical study [J. Fluid Mech., 631, 255 (2009)] which demonstrates how ac electric fields can be used to increase control over the pillar formation process in thin liquid bilayer films. For perfect dielectric films, the effect of an AC electric field can be understood by considering an equivalent DC field. Leaky dielectric films yield pillar configurations that are drastically different from perfect dielectric films, and AC fields can be used to control the location of free charge within the trilayer system. This can alter the pillar instability modes and generate smaller diameter pillars when conductivities are mismatched. The results presented here may be of interest for the creation of complex topographical patterns on polymer coatings and in microelectronics.

  8. Electrohydrodynamic instabilities in thin liquid trilayer films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Roberts, Scott A.; Kumar, Satish

    2010-01-01T23:59:59.000Z

    Experiments by Dickey and Leach show that novel pillar shapes can be generated from electrohydrodynamic instabilities at the interfaces of thin polymer/polymer/air trilayer films. In this paper, we use linear stability analysis to investigate the effect of free charge and ac electric fields on the stability of trilayer systems. Our work is also motivated by our recent theoretical study which demonstrates how ac electric fields can be used to increase control over the pillar formation process in thin liquid bilayer films. For perfect dielectric films, the effect of an AC electric field can be understood by considering an equivalent DCmore »field. Leaky dielectric films yield pillar configurations that are drastically different from perfect dielectric films, and AC fields can be used to control the location of free charge within the trilayer system. This can alter the pillar instability modes and generate smaller diameter pillars when conductivities are mismatched. The results presented here may be of interest for the creation of complex topographical patterns on polymer coatings and in microelectronics.« less

  9. Electrochromism in copper oxide thin films

    SciTech Connect (OSTI)

    Richardson, T.J.; Slack, J.L.; Rubin, M.D.

    2000-08-15T23:59:59.000Z

    Transparent thin films of copper(I) oxide prepared on conductive SnO2:F glass substrates by anodic oxidation of sputtered copper films or by direct electrodeposition of Cu2O transformed reversibly to opaque metallic copper films when reduced in alkaline electrolyte. In addition, the same Cu2O films transform reversibly to black copper(II) oxide when cycled at more anodic potentials. Copper oxide-to-copper switching covered a large dynamic range, from 85% and 10% photopic transmittance, with a coloration efficiency of about 32 cm2/C. Gradual deterioration of the switching range occurred over 20 to 100 cycles. This is tentatively ascribed to coarsening of the film and contact degradation caused by the 65% volume change on conversion of Cu to Cu2O. Switching between the two copper oxides (which have similar volumes) was more stable and more efficient (CE = 60 cm2/C), but covered a smaller transmittance range (60% to 44% T). Due to their large electrochemical storage capacity and tolerance for alkaline electrolytes, these cathodically coloring films may be useful as counter electrodes for anodically coloring electrode films such as nickel oxide or metal hydrides.

  10. Nitrogen doped zinc oxide thin film

    SciTech Connect (OSTI)

    Li, Sonny X.

    2003-12-15T23:59:59.000Z

    To summarize, polycrystalline ZnO thin films were grown by reactive sputtering. Nitrogen was introduced into the films by reactive sputtering in an NO{sub 2} plasma or by N{sup +} implantation. All ZnO films grown show n-type conductivity. In unintentionally doped ZnO films, the n-type conductivities are attributed to Zn{sub i}, a native shallow donor. In NO{sub 2}-grown ZnO films, the n-type conductivity is attributed to (N{sub 2}){sub O}, a shallow double donor. In NO{sub 2}-grown ZnO films, 0.3 atomic % nitrogen was found to exist in the form of N{sub 2}O and N{sub 2}. Upon annealing, N{sub 2}O decomposes into N{sub 2} and O{sub 2}. In furnace-annealed samples N{sub 2} redistributes diffusively and forms gaseous N{sub 2} bubbles in the films. Unintentionally doped ZnO films were grown at different oxygen partial pressures. Zni was found to form even at oxygen-rich condition and led to n-type conductivity. N{sup +} implantation into unintentionally doped ZnO film deteriorates the crystallinity and optical properties and leads to higher electron concentration. The free electrons in the implanted films are attributed to the defects introduced by implantation and formation of (N{sub 2}){sub O} and Zni. Although today there is still no reliable means to produce good quality, stable p-type ZnO material, ZnO remains an attractive material with potential for high performance short wavelength optoelectronic devices. One may argue that gallium nitride was in a similar situation a decade ago. Although we did not obtain any p-type conductivity, we hope our research will provide a valuable reference to the literature.

  11. Comparative study of the mechanical properties of nanostructured thin films on stretchable substrates

    SciTech Connect (OSTI)

    Djaziri, S. [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf (Germany); Institut P' (UPR 3346 CNRS), Université de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Renault, P.-O.; Le Bourhis, E.; Goudeau, Ph., E-mail: Philippe.goudeau@univ-poitiers.fr [Institut P' (UPR 3346 CNRS), Université de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Faurie, D. [LSPM, (UPR 3407 CNRS), Université Paris 13, Institut Galilée, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse (France); Geandier, G. [Institut Jean Lamour (UMR 3079 CNRS), Université de Lorraine, Parc de Saurupt, CS 50840, 54011 NANCY Cedex (France); Mocuta, C.; Thiaudière, D. [Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France)

    2014-09-07T23:59:59.000Z

    Comparative studies of the mechanical behavior between copper, tungsten, and W/Cu nanocomposite based on copper dispersoïd thin films were performed under in-situ controlled tensile equi-biaxial loadings using both synchrotron X-ray diffraction and digital image correlation techniques. The films first deform elastically with the lattice strain equal to the true strain given by digital image correlation measurements. The Cu single thin film intrinsic elastic limit of 0.27% is determined below the apparent elastic limit of W and W/Cu nanocomposite thin films, 0.30% and 0.49%, respectively. This difference is found to be driven by the existence of as-deposited residual stresses. Above the elastic limit on the lattice strain-true strain curves, we discriminate two different behaviors presumably footprints of plasticity and fracture. The Cu thin film shows a large transition domain (0.60% true strain range) to a plateau with a smooth evolution of the curve which is associated to peak broadening. In contrast, W and W/Cu nanocomposite thin films show a less smooth and reduced transition domain (0.30% true strain range) to a plateau with no peak broadening. These observations indicate that copper thin film shows some ductility while tungsten/copper nanocomposites thin films are brittle. Fracture resistance of W/Cu nanocomposite thin film is improved thanks to the high compressive residual stress and the elimination of the metastable ?-W phase.

  12. Polycrystalline thin films FY 1992 project report

    SciTech Connect (OSTI)

    Zweibel, K. [ed.

    1993-01-01T23:59:59.000Z

    This report summarizes the activities and results of the Polycrystalline Thin Film Project during FY 1992. The purpose of the DOE/NREL PV (photovoltaic) Program is to facilitate the development of PV that can be used on a large enough scale to produce a significant amount of energy in the US and worldwide. The PV technologies under the Polycrystalline Thin Film project are among the most exciting ``next-generation`` options for achieving this goal. Over the last 15 years, cell-level progress has been steady, with laboratory cell efficiencies reaching levels of 15 to 16%. This progress, combined with potentially inexpensive manufacturing methods, has attracted significant commercial interest from US and international companies. The NREL/DOE program is designed to support the efforts of US companies through cost-shared subcontracts (called ``government/industry partnerships``) that we manage and fund and through collaborative technology development work among industry, universities, and our laboratory.

  13. Structures for dense, crack free thin films

    DOE Patents [OSTI]

    Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); De Jonghe, Lutgard C. (Lafayette, CA)

    2011-03-08T23:59:59.000Z

    The process described herein provides a simple and cost effective method for making crack free, high density thin ceramic film. The steps involve depositing a layer of a ceramic material on a porous or dense substrate. The deposited layer is compacted and then the resultant laminate is sintered to achieve a higher density than would have been possible without the pre-firing compaction step.

  14. Packaging material for thin film lithium batteries

    DOE Patents [OSTI]

    Bates, John B. (116 Baltimore Dr., Oak Ridge, TN 37830); Dudney, Nancy J. (11634 S. Monticello Rd., Knoxville, TN 37922); Weatherspoon, Kim A. (223 Wadsworth Pl., Oak Ridge, TN 37830)

    1996-01-01T23:59:59.000Z

    A thin film battery including components which are capable of reacting upon exposure to air and water vapor incorporates a packaging system which provides a barrier against the penetration of air and water vapor. The packaging system includes a protective sheath overlying and coating the battery components and can be comprised of an overlayer including metal, ceramic, a ceramic-metal combination, a parylene-metal combination, a parylene-ceramic combination or a parylene-metal-ceramic combination.

  15. Atmospheric Pressure Chemical Vapor Deposition of High Silica SiO2-TiO2 Antireflective Thin Films for Glass Based Solar Panels

    SciTech Connect (OSTI)

    Klobukowski, Erik R [ORNL; Tenhaeff, Wyatt E [ORNL; McCamy, James [PPG; Harris, Caroline [PPG; Narula, Chaitanya Kumar [ORNL

    2013-01-01T23:59:59.000Z

    The atmospheric pressure chemical vapor deposition (APCVD) of SiO2-TiO2 thin films employing [[(tBuO)3Si]2O-Ti(OiPr)2], which can be prepared from commercially available materials, results in antireflective thin films on float glass under industrially relevant manufacturing conditions. It was found that while the deposition temperature had an effect on the SiO2:TiO2 ratio, the thickness was dependent on the time of deposition. This study shows that it is possible to use APCVD employing a single source precursor containing titanium and silicon to produce thin films on float glass with high SiO2:TiO2 ratios.

  16. Improvement in electrochromic stability of electrodeposited nickel hydroxide thin film

    SciTech Connect (OSTI)

    Natarajan, C.; Matsumoto, H.; Nogami, G. [Kyushu Inst. of Tech., Kitakyushu (Japan). Dept. of Electrical Engineering

    1997-01-01T23:59:59.000Z

    The electrochromic nickel hydroxide thin film was anodically deposited from an aqueous solution. The effect of solution temperature, postheat-treatment temperature, and addition of cadmium on the electrochromic behavior (color/bleach durability cycle, response time, and coloration efficiency of the nickel hydroxide films in NaOH) were investigated. A significant increase in the color/bleach durability cycle from 500 (for the as-deposited film) to more than 5000 cycles (for the heat-treated film) was observed. The addition of cadmium increased the utilization of the active materials. It was found that the coloration efficiency was 40 cm{sup 2}/C and coloration and bleaching response time were 20 to 30 s and 8 to 10 s, respectively. The change in the electrochromic properties with heat-treatment temperature is discussed based on the physical and electrochemical analysis.

  17. Elastic modulus mapping of atomically thin film based Lithium Ion Battery electrodes Lithium Ion Batteries (LIB) are one of the most promising class of next generation energy storage devices,

    E-Print Network [OSTI]

    Batteries (LIB) are one of the most promising class of next generation energy storage devices, which canElastic modulus mapping of atomically thin film based Lithium Ion Battery electrodes Lithium Ion the charging/discharging which otherwise lead to in efficient battery operation. The cyclically charging

  18. Modeling of Substrate-Induced Anisotropy in Through-Plane Thermal Behavior of Polymeric Thin Films

    E-Print Network [OSTI]

    Lee, Jeong-Bong

    Modeling of Substrate-Induced Anisotropy in Through-Plane Thermal Behavior of Polymeric Thin Films, Atlanta, Georgia 30332-0269 SYNOPSIS Polymeric thin films are widely used in microelectronic applications properties of isotropic thin films for single layer (thin film rigidly clamped) and bilayer (thin film

  19. Preparation of redox polymer cathodes for thin film rechargeable batteries

    DOE Patents [OSTI]

    Skotheim, T.A.; Lee, H.S.; Okamoto, Yoshiyuki.

    1994-11-08T23:59:59.000Z

    The present invention relates to the manufacture of thin film solid state electrochemical devices using composite cathodes comprising a redox polymer capable of undergoing oxidation and reduction, a polymer solid electrolyte and conducting carbon. The polymeric cathode material is formed as a composite of radiation crosslinked polymer electrolytes and radiation crosslinked redox polymers based on polysiloxane backbones with attached organosulfur side groups capable of forming sulfur-sulfur bonds during electrochemical oxidation.

  20. alloys thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: Thin liquid films on surfaces are part of our everyday life, they serve e.g. as coatings or lubricants. The stability of a thin layer is governed by interfacial forces,...

  1. alloy thin film: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: Thin liquid films on surfaces are part of our everyday life, they serve e.g. as coatings or lubricants. The stability of a thin layer is governed by interfacial forces,...

  2. alloy thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: Thin liquid films on surfaces are part of our everyday life, they serve e.g. as coatings or lubricants. The stability of a thin layer is governed by interfacial forces,...

  3. Enhanced Superconducting Properties of Iron Chalcogenide Thin Films 

    E-Print Network [OSTI]

    Chen, Li

    2013-07-26T23:59:59.000Z

    . In this thesis, we first optimized pure FeSe thin films by different growth conditions using pulsed laser deposition (PLD) and post-annealing procedures. The microstructure properties of the films including the epitaxial quality, interface structure and secondary...

  4. Chemical vapor deposition of organosilicon and sacrificial polymer thin films

    E-Print Network [OSTI]

    Casserly, Thomas Bryan

    2005-01-01T23:59:59.000Z

    Chemical vapor deposition (CVD) produced films for a wide array of applications from a variety of organosilicon and organic precursors. The structure and properties of thin films were controlled by varying processing ...

  5. Uncooled thin film pyroelectric IR detector with aerogel thermal isolation

    DOE Patents [OSTI]

    Ruffner, Judith A. (Albuquerque, NM); Bullington, Jeff A. (Albuquerque, NM); Clem, Paul G. (Albuquerque, NM); Warren, William L. (Albuquerque, NM); Brinker, C. Jeffrey (Albuquerque, NM); Tuttle, Bruce A. (Albuquerque, NM); Schwartz, Robert W. (Seneca, SC)

    1999-01-01T23:59:59.000Z

    A monolithic infrared detector structure which allows integration of pyroelectric thin films atop low thermal conductivity aerogel thin films. The structure comprises, from bottom to top, a substrate, an aerogel insulating layer, a lower electrode, a pyroelectric layer, and an upper electrode layer capped by a blacking layer. The aerogel can offer thermal conductivity less than that of air, while providing a much stronger monolithic alternative to cantilevered or suspended air-gap structures for pyroelectric thin film pixel arrays. Pb(Zr.sub.0.4 Ti.sub.0.6)O.sub.3 thin films deposited on these structures displayed viable pyroelectric properties, while processed at 550.degree. C.

  6. applications thin film: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nikolay 27 Solvent-enhanced dye diffusion in polymer thin films for polymer light-emitting diode application Engineering Websites Summary: Solvent-enhanced dye diffusion in...

  7. Inexpensive Production of High Density Thin Ceramic Films on...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inexpensive Production of High Density Thin Ceramic Films on Rigid or Porous Substrates Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing...

  8. Creating CZTS Thin Films Via Stacked Metallic CVD and Sulfurization

    E-Print Network [OSTI]

    Bielecki, Anthony

    2013-01-01T23:59:59.000Z

    Photovoltaics . . . . . . . . . . . . . . . . . . . . . . .2 ZnSnS 4 (CZTS) thin film photovoltaics is an increasinglyfor Large-Scale Photovoltaics Deployment Environ. Sci.

  9. Rechargeable thin film battery and method for making the same

    DOE Patents [OSTI]

    Goldner, Ronald B.; Liu, Te-Yang; Goldner, Mark A.; Gerouki, Alexandra; Haas, Terry E.

    2006-01-03T23:59:59.000Z

    A rechargeable, stackable, thin film, solid-state lithium electrochemical cell, thin film lithium battery and method for making the same is disclosed. The cell and battery provide for a variety configurations, voltage and current capacities. An innovative low temperature ion beam assisted deposition method for fabricating thin film, solid-state anodes, cathodes and electrolytes is disclosed wherein a source of energetic ions and evaporants combine to form thin film cell components having preferred crystallinity, structure and orientation. The disclosed batteries are particularly useful as power sources for portable electronic devices and electric vehicle applications where high energy density, high reversible charge capacity, high discharge current and long battery lifetimes are required.

  10. active thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    behavior Biotechnology Websites Summary: on elastic polymeric membranes. Further development of such muscular thin films for building actuators). The development of such...

  11. antibacterial thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skovlin, Dean Oliver 2012-06-07 138 Uncooled Thin Film Pyroelectric IR Detector with Aerogel Thermal Isolation CiteSeer Summary: Uncooled pyroelectric IR imaging systems, such...

  12. Tax Credits Give Thin-Film Solar a Big Boost

    Broader source: Energy.gov [DOE]

    California company will expand its capacity to make its thin-film solar panels by more than ten times, thanks to two Recovery Act tax credits.

  13. almgb14 thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  14. aggase2 thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  15. aln thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    deposited by the reactive dc magnetron sputtering technique at room, amorphous and polycrystalline GaN thin films have been deposited using the magnetron sputtering...

  16. area thin film: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  17. aluminide thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  18. antiferroelectric thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  19. ain thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  20. advanced thin film: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  1. Thickness Dependency of Thin Film Samaria Doped Ceria for Oxygen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High temperature oxygen sensors are widely used for exhaust gas monitoring in automobiles. This particular study explores the use of thin film single crystalline samaria...

  2. Properties of tungsten oxide thin films formed by ion-plasma and laser deposition methods for MOSiC-based hydrogen sensors

    SciTech Connect (OSTI)

    Fominski, V. Y., E-mail: vyfominskij@mephi.ru [National Research Nuclear University 'MEPhI' (Russian Federation); Grigoriev, S. N. [Moscow State Technological University 'Stankin' (Russian Federation); Romanov, R. I.; Zuev, V. V.; Grigoriev, V. V. [National Research Nuclear University 'MEPhI' (Russian Federation)

    2012-03-15T23:59:59.000Z

    Thin-film structures based on gas-sensitive tungsten oxide and catalytic platinum are fabricated by room-temperature deposition on a silicon carbide wafer using pulsed laser and ion-plasma methods. Oxide layer annealing in air to 600 Degree-Sign C caused the formation of microstructured and nanostructured crystalline states depending on the deposition conditions. Structural differences affect the electrical parameters and the stability of characteristics. The maximum response to hydrogen is detected in the structure fabricated by depositing a low-energy laser-induced flow of tungsten atoms in oxygen. The voltage shift of the currentvoltage curves for 2% H{sub 2} in air at 350 Degree-Sign C was 4.6 V at a current of {approx}10 {mu}A. The grown structures' metastability caused a significant decrease in the shift after long-term cyclic testing. The most stable shifts of {approx}2 V at positive bias on the Pt contact were detected for oxide films deposited by ion-plasma sputtering.

  3. Compositional depth profiling of TaCN thin films

    SciTech Connect (OSTI)

    Adelmann, Christoph; Conard, Thierry; Franquet, Alexis; Brijs, Bert; Munnik, Frans; Burgess, Simon; Witters, Thomas; Meersschaut, Johan; Kittl, Jorge A.; Vandervorst, Wilfried; Van Elshocht, Sven [Imec, B-3001 Leuven (Belgium); Forschungszentrum Dresden-Rossendorf, D-01314 Dresden (Germany); Oxford Instruments NanoAnalysis, High Wycombe, HP12 3SE (United Kingdom); Imec, B-3001 Leuven (Belgium); Imec, B-3001 Leuven, Belgium and Instituut voor Kern- en Stralingsfysica, Katholieke Universiteit Leuven, B-3001 Leuven (Belgium); Imec, B-3001 Leuven (Belgium)

    2012-07-15T23:59:59.000Z

    The composition profiling of thin TaCN films was studied. For the composition profile determination using x-ray photoemission spectrometry (XPS) in combination with Ar sputtering, preferential sputtering effects of N with respect to Ta and C were found to lead to inaccurate elemental concentrations. Sputter yield calculations for the given experimental conditions allowed for the correction of a part of the error, leading to fair accuracy by reference-free measurements. Further improvement of the accuracy was demonstrated by the calibration of the XPS compositions against elastic recoil detection analysis (ERDA) results. For Auger electron spectrometry (AES) in combination with Ar sputtering, accurate results required the calibration against ERDA. Both XPS and AES allowed for a reliable and accurate determination of the compositional profiles of TaCN-based thin films after calibration. Time-of-flight secondary-ion mass spectrometry was also used to assess the composition of the TaCN films. However, the analysis was hampered by large matrix effects due to small unintentional oxygen contents in the films. Energy-dispersive x-ray spectrometry is also discussed, and it is shown that an accurate reference-free measurement of the average film concentration can be achieved.

  4. Method for formation of thin film transistors on plastic substrates

    DOE Patents [OSTI]

    Carey, P.G.; Smith, P.M.; Sigmon, T.W.; Aceves, R.C.

    1998-10-06T23:59:59.000Z

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics. 5 figs.

  5. Eddy Current Testing for Detecting Small Defects in Thin Films

    SciTech Connect (OSTI)

    Obeid, Simon; Tranjan, Farid M. [Electrical and Computer Engineering Department, UNCC (United States); Dogaru, Teodor [Albany Instruments, 426-O Barton Creek, Charlotte, NC 28262 (United States)

    2007-03-21T23:59:59.000Z

    Presented here is a technique of using Eddy Current based Giant Magneto-Resistance sensor (GMR) to detect surface and sub-layered minute defects in thin films. For surface crack detection, a measurement was performed on a copper metallization of 5-10 microns thick. It was done by scanning the GMR sensor on the surface of the wafer that had two scratches of 0.2 mm, and 2.5 mm in length respectively. In another experiment, metal coatings were deposited over the layers containing five defects with known lengths such that the defects were invisible from the surface. The limit of detection (resolution), in terms of defect size, of the GMR high-resolution Eddy Current probe was studied using this sample. Applications of Eddy Current testing include detecting defects in thin film metallic layers, and quality control of metallization layers on silicon wafers for integrated circuits manufacturing.

  6. Method for formation of thin film transistors on plastic substrates

    DOE Patents [OSTI]

    Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Sigmon, Thomas W. (Portola Valley, CA); Aceves, Randy C. (Livermore, CA)

    1998-10-06T23:59:59.000Z

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics.

  7. Role of Polycrystalline Thin-Film PV Technologies in Competitive PV Module Markets: Preprint

    SciTech Connect (OSTI)

    von Roedern, B.; Ullal, H. S.

    2008-05-01T23:59:59.000Z

    This paper discusses the developments in thin-film PV technologies and provides an outlook on future commercial module efficiencies achievable based on today's knowledge about champion cell performance.

  8. Effective Optical Properties of Absorbing Nanoporous and Nanocomposite Thin-Films

    E-Print Network [OSTI]

    Garahan, Anna; Pilon, Laurent; Yin, Juan; Saxena, Indu

    2007-01-01T23:59:59.000Z

    a solid-state dye-sensitized solar cells”, Thin Solid Films,cations include dye-sensitized solar cells [5, 6, 7], low-ke?ciency solar cell based on dye- sensitized colloidal TiO

  9. Transparent and Conductive Carbon Nanotube Multilayer Thin Films Suitable as an Indium Tin Oxide Replacement 

    E-Print Network [OSTI]

    Park, Yong Tae

    2012-07-16T23:59:59.000Z

    Transparent electrodes made from metal oxides suffer from poor flexibility and durability. Highly transparent and electrically conductive thin films based on carbon nanotubes (CNTs) were assembled as a potential indium tin oxide (ITO) replacement...

  10. Electrically tunable quantum spin Hall state in topological crystalline insulator thin films

    E-Print Network [OSTI]

    Liu, Junwei

    Based on electronic structure calculations and theoretical analysis, we predict the (111) thin films of the SnTe class of three-dimensional (3D) topological crystalline insulators (TCIs) realize the quantum spin Hall phase ...

  11. Effect of Polarization and Morphology on the Optical Properties of Absorbing Nanoporous Thin Films

    E-Print Network [OSTI]

    Navid, Ashcon; Pilon, Laurent

    2008-01-01T23:59:59.000Z

    TE and TM waves incident on thin films with n c = 4.0, k c =hexagonal mesoporous silica thin films with pore diameter Dabsorbing nanocomposite thin film, graphically depicting the

  12. Charge transport and chemical sensing properties of organic thin-films

    E-Print Network [OSTI]

    Yang, Dengliang

    2007-01-01T23:59:59.000Z

    low Drift in Organic Thin-film Transistor Chemical Sensors”,emitting diodes and thin-film transistors. The electricalLOW DRIFT IN ORGANIC THIN-FILM TRANSISTOR CHEMICAL SENSORS

  13. Distributed Phase Shifter with PyrochloreBismuth Zinc Niobate Thin Films

    E-Print Network [OSTI]

    Park, Jaehoon; Lu, Jiwei; Boesch, Damien; Stemmer, Susanne; York, Robert A

    2006-01-01T23:59:59.000Z

    Bandpass Filter Using Thin-Film Barium-Strontium-Titanate (using Ba x Sr 1 - x TiO 3 thin films," IEEE Microwave GuidedBismuth Zinc Niobate Thin Films," J. Appl. Phys. 97,

  14. Epitaxial Stabilization of a Morphotropic Phase Boundary in Lead-Free Ferroelectric Thin Films

    E-Print Network [OSTI]

    Zeches, Robert James

    2011-01-01T23:59:59.000Z

    1376 (2005). D. L. Smith, Thin-Film Deposition PrinciplesMaterials Science of Thin Films, (Academic Press: San Diego,Laser Deposition of Thin Films, (John Wiley & Sons, Inc. :

  15. Topological transitions in evaporating thin films

    E-Print Network [OSTI]

    Avraham Klein; Oded Agam

    2012-07-31T23:59:59.000Z

    A thin water film evaporating from a cleaved mica substrate undergoes a first-order phase transition between two values of film thickness. During evaporation, the interface between the two phases develops a fingering instability similar to that observed in the Saffman-Taylor problem. The dynamics of the droplet interface is dictated by an infinite number of conserved quantities: all harmonic moments decay exponentially at the same rate. A typical scenario is the nucleation of a dry patch within the droplet domain. We construct solutions of this problem and analyze the toplogical transition occuring when the boundary of the dry patch meets the outer boundary. We show a duality between Laplacian growth and evaporation, and utilize it to explain the behaviour near the transition. We construct a family of problems for which evaporation and Laplacian growth are limiting cases and show that a necessary condition for a smooth topological transition, in this family, is that all boundaries share the same pressure.

  16. Process for making dense thin films

    DOE Patents [OSTI]

    Jacobson, Craig P.; Visco, Steven J.; DeJonghe, Lutgard C.

    2005-07-26T23:59:59.000Z

    Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for firing of device substrate to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

  17. Method of improving field emission characteristics of diamond thin films

    DOE Patents [OSTI]

    Krauss, A.R.; Gruen, D.M.

    1999-05-11T23:59:59.000Z

    A method of preparing diamond thin films with improved field emission properties is disclosed. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display. 3 figs.

  18. Method of improving field emission characteristics of diamond thin films

    DOE Patents [OSTI]

    Krauss, Alan R. (Naperville, IL); Gruen, Dieter M. (Downer Grove, IL)

    1999-01-01T23:59:59.000Z

    A method of preparing diamond thin films with improved field emission properties. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display.

  19. The Electrodeless Discharge Lamps Coated with the Titania Thin Film for Photocatalysis in a Microwave Field

    E-Print Network [OSTI]

    Cirkva, Vladimir

    The Electrodeless Discharge Lamps Coated with the Titania Thin Film for Photocatalysis assisted photocatalysis using TiO2 thin films has been examined. Several factors influencing

  20. A survey of thin-film solar photovoltaic industry & technologies

    E-Print Network [OSTI]

    Grama, Sorin

    2007-01-01T23:59:59.000Z

    A new type of solar cell technology using so-called thin-film solar photovoltaic material has the potential to make a great impact on our lives. Because it uses very little or no silicon at all, thin- film (TF) solar ...

  1. Wave propagation in highly inhomogeneous thin films: exactly solvable models

    E-Print Network [OSTI]

    Boyer, Edmond

    Wave propagation in highly inhomogeneous thin films: exactly solvable models Guillaume Petite(1 of wave propagation in some inhomogeneous thin films with highly space- dependent dielectric constant will show that depending on the type of space dependence, an incident wave can either propagate or tunnel

  2. CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND SILICON MULTILAYER THIN FILMS

    E-Print Network [OSTI]

    Hart, Gus

    CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND SILICON MULTILAYER THIN FILMS by David T. Oliphant. Woolley Dean, College of Physical and Mathematical Sciences #12;ABSTRACT CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND SILICON MULTILAYER THIN FILMS David T. Oliphant Department of Physics and Astronomy

  3. Electrical properties of quench-condensed thin film 

    E-Print Network [OSTI]

    Lee, Kyoungjin

    2009-05-15T23:59:59.000Z

    . The apparatus was shown to operate well for the fabrication of thin films while monitoring the growth in-situ. As a part of the preliminary research, we measured the electrical properties of aluminum thin films at liquid nitrogen temperature by using...

  4. VACUUM PUMPING STUDY OF TITANIUM-ZIRCONIUM-VANADIUM THIN FILMS*

    E-Print Network [OSTI]

    ERL 03-8 VACUUM PUMPING STUDY OF TITANIUM-ZIRCONIUM-VANADIUM THIN FILMS* Yulin Li# and Simon Ho high vacuum. As part of R&D efforts for the proposed Energy Recovery Linac at Cornell, the pumping performance of Titanium- Zirconium-Vanadium (TiZrV) NEG thin films was investigated to provide `engineering

  5. Apparatus for laser assisted thin film deposition

    DOE Patents [OSTI]

    Warner, Bruce E. (Pleasanton, CA); McLean, II, William (Oakland, CA)

    1996-01-01T23:59:59.000Z

    A pulsed laser deposition apparatus uses fiber optics to deliver visible output beams. One or more optical fibers are coupled to one or more laser sources, and delivers visible output beams to a single chamber, to multiple targets in the chamber or to multiple chambers. The laser can run uninterrupted if one of the deposition chambers ceases to operate because other chambers can continue their laser deposition processes. The laser source can be positioned at a remote location relative to the deposition chamber. The use of fiber optics permits multi-plexing. A pulsed visible laser beam is directed at a generally non-perpendicular angle upon the target in the chamber, generating a plume of ions and energetic neutral species. A portion of the plume is deposited on a substrate as a thin film. A pulsed visible output beam with a high pulse repetition frequency is used. The high pulse repetition frequency is greater than 500 Hz, and more preferably, greater than about 1000 Hz. Diamond-like-carbon (DLC) is one of the thin films produced using the apparatus.

  6. Rechargeable thin-film lithium batteries

    SciTech Connect (OSTI)

    Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, X.

    1993-09-01T23:59:59.000Z

    Rechargeable thin-film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. These include Li-TiS{sub 2}, Li-V{sub 2}O{sub 5}, and Li-Li{sub x}Mn{sub 2}O{sub 4} cells with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The realization of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46}and a conductivity at 25 C of 2 {mu}S/cm. The thin-film cells have been cycled at 100% depth of discharge using current densities of 5 to 100 {mu}A/cm{sup 2}. Over most of the charge-discharge range, the internal resistance appears to be dominated by the cathode, and the major source of the resistance is the diffusion of Li{sup +} ions from the electrolyte into the cathode. Chemical diffusion coefficients were determined from ac impedance measurements.

  7. Apparatus for laser assisted thin film deposition

    DOE Patents [OSTI]

    Warner, B.E.; McLean, W. II

    1996-02-13T23:59:59.000Z

    A pulsed laser deposition apparatus uses fiber optics to deliver visible output beams. One or more optical fibers are coupled to one or more laser sources, and delivers visible output beams to a single chamber, to multiple targets in the chamber or to multiple chambers. The laser can run uninterrupted if one of the deposition chambers ceases to operate because other chambers can continue their laser deposition processes. The laser source can be positioned at a remote location relative to the deposition chamber. The use of fiber optics permits multi-plexing. A pulsed visible laser beam is directed at a generally non-perpendicular angle upon the target in the chamber, generating a plume of ions and energetic neutral species. A portion of the plume is deposited on a substrate as a thin film. A pulsed visible output beam with a high pulse repetition frequency is used. The high pulse repetition frequency is greater than 500 Hz, and more preferably, greater than about 1000 Hz. Diamond-like-carbon (DLC) is one of the thin films produced using the apparatus. 9 figs.

  8. Controlled nanostructuration of polycrystalline tungsten thin films

    SciTech Connect (OSTI)

    Girault, B. [Institut P' (UPR 3346 CNRS), Universite de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Institut de Recherche en Genie Civil et Mecanique (UMR CNRS 6183), LUNAM Universite, Universite de Nantes, Centrale Nantes, CRTT, 37 Bd de l'Universite, BP 406, 44602 Saint-Nazaire Cedex (France); Eyidi, D.; Goudeau, P.; Guerin, P.; Bourhis, E. Le; Renault, P.-O. [Institut P' (UPR 3346 CNRS), Universite de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Sauvage, T. [CEMHTI/CNRS (UPR 3079 CNRS), Universite d'Orleans, 3A rue de la Ferollerie, 45071 Orleans Cedex 2 (France)

    2013-05-07T23:59:59.000Z

    Nanostructured tungsten thin films have been obtained by ion beam sputtering technique stopping periodically the growing. The total thickness was maintained constant while nanostructure control was obtained using different stopping periods in order to induce film stratification. The effect of tungsten sublayers' thicknesses on film composition, residual stresses, and crystalline texture evolution has been established. Our study reveals that tungsten crystallizes in both stable {alpha}- and metastable {beta}-phases and that volume proportions evolve with deposited sublayers' thicknesses. {alpha}-W phase shows original fiber texture development with two major preferential crystallographic orientations, namely, {alpha}-W<110> and unexpectedly {alpha}-W<111> texture components. The partial pressure of oxygen and presence of carbon have been identified as critical parameters for the growth of metastable {beta}-W phase. Moreover, the texture development of {alpha}-W phase with two texture components is shown to be the result of a competition between crystallographic planes energy minimization and crystallographic orientation channeling effect maximization. Controlled grain size can be achieved for the {alpha}-W phase structure over 3 nm stratification step. Below, the {beta}-W phase structure becomes predominant.

  9. Oxynitride Thin Film Barriers for PV Packaging

    SciTech Connect (OSTI)

    Glick, S. H.; delCueto, J. A.; Terwilliger, K. M.; Jorgensen, G. J.; Pankow, J. W.; Keyes, B. M.; Gedvilas, L. M.; Pern, F. J.

    2005-11-01T23:59:59.000Z

    Dielectric thin-film barrier and adhesion-promoting layers consisting of silicon oxynitride materials (SiOxNy, with various stoichiometry) were investigated. For process development, films were applied to glass (TCO, conductive SnO2:F; or soda-lime), polymer (PET, polyethylene terephthalate), aluminized soda-lime glass, or PV cell (a-Si, CIGS) substrates. Design strategy employed de-minimus hazard criteria to facilitate industrial adoption and reduce implementation costs for PV manufacturers or suppliers. A restricted process window was explored using dilute compressed gases (3% silane, 14% nitrous oxide, 23% oxygen) in nitrogen (or former mixtures, and 11.45% oxygen mix in helium and/or 99.999% helium dilution) with a worst-case flammable and non-corrosive hazard classification. Method employed low radio frequency (RF) power, less than or equal to 3 milliwatts per cm2, and low substrate temperatures, less than or equal to 100 deg C, over deposition areas less than or equal to 1000 cm2. Select material properties for barrier film thickness (profilometer), composition (XPS/FTIR), optical (refractive index, %T and %R), mechanical peel strength and WVTR barrier performance are presented.

  10. Vertically aligned biaxially textured molybdenum thin films

    SciTech Connect (OSTI)

    Krishnan, Rahul [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Riley, Michael [Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Lee, Sabrina [US Army Armament Research, Development and Engineering Center, Benet Labs, Watervliet, New York 12189 (United States); Lu, Toh-Ming [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2011-09-15T23:59:59.000Z

    Vertically aligned, biaxially textured molybdenum nanorods were deposited using dc magnetron sputtering with glancing flux incidence (alpha = 85 degrees with respect to the substrate normal) and a two-step substrate-rotation mode. These nanorods were identified with a body-centered cubic crystal structure. The formation of a vertically aligned biaxial texture with a [110] out-of-plane orientation was combined with a [-110] in-plane orientation. The kinetics of the growth process was found to be highly sensitive to an optimum rest time of 35 seconds for the two-step substrate rotation mode. At all other rest times, the nanorods possessed two separate biaxial textures each tilted toward one flux direction. While the in-plane texture for the vertical nanorods maintains maximum flux capture area, inclined Mo nanorods deposited at alpha = 85 degrees without substrate rotation display a [-1-1-4] in-plane texture that does not comply with the maximum flux capture area argument. Finally, an in situ capping film was deposited with normal flux incidence over the biaxially textured vertical nanorods resulting in a thin film over the porous nanorods. This capping film possessed the same biaxial texture as the nanorods and could serve as an effective substrate for the epitaxial growth of other functional materials.

  11. Microtensile Testing of Free-standing and Supported Metallic Thin Films

    E-Print Network [OSTI]

    Microtensile Testing of Free-standing and Supported Metallic Thin Films A thesis presented by Denis Films Abstract Mechanical properties of free-standing and supported Cu thin films were investi- gated observed experimentally on thin films. As-deposited Cu films with different film thicknesses on compliant

  12. Two-and three-dimensional folding of thin film single-crystalline silicon for photovoltaic

    E-Print Network [OSTI]

    Lewis, Jennifer

    Two- and three-dimensional folding of thin film single-crystalline silicon for photovoltaic power of a functional, nonpla- nar photovoltaic (PV) device. A mechanics model based on the theory of thin plates self-folding photovoltaics capillary force Silicon, in crystalline and amorphous forms, is currently

  13. High-mobility, air stable bottom-contact n-channel thin film transistors based on N,N?-ditridecyl perylene diimide

    SciTech Connect (OSTI)

    Ma, Lanchao [Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China) [Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Guo, Yunlong; Wen, Yugeng; Liu, Yunqi, E-mail: xwzhan@iccas.ac.cn, E-mail: liuyq@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)] [Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Zhan, Xiaowei, E-mail: xwzhan@iccas.ac.cn, E-mail: liuyq@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China) [Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China)

    2013-11-11T23:59:59.000Z

    Bottom-gate bottom-contact (BGBC) organic thin film transistors (OTFTs) based on N,N?-ditridecyl perylene diimide exhibit electron mobility as high as 3.54?cm{sup 2}?V{sup ?1}?s{sup ?1} in nitrogen, higher than that (1?cm{sup 2} V{sup ?1}?s{sup ?1}) of bottom-gate top-contact devices. The better performance of BGBC configuration in N{sub 2} is attributed to lower contact resistance, which is further reduced by thermal annealing. After thermally annealing the BGBC OTFTs at 180?°C, electron mobility as high as 3.5?cm{sup 2}?V{sup ?1}?s{sup ?1}, current on/off ratio of 10{sup 6} and threshold voltage of 9?V are achieved in air, and the mobility retains above 1?cm{sup 2}?V{sup ?1}?s{sup ?1} after storage for two months in air. Thermal treatment enhanced crystalline grains, reduced grain boundaries, and suppressed the adsorption of H{sub 2}O and O{sub 2}, leading to excellent performance in air.

  14. Glow discharge plasma deposition of thin films

    DOE Patents [OSTI]

    Weakliem, Herbert A. (Pennington, NJ); Vossen, Jr., John L. (Bridgewater, NJ)

    1984-05-29T23:59:59.000Z

    A glow discharge plasma reactor for deposition of thin films from a reactive RF glow discharge is provided with a screen positioned between the walls of the chamber and the cathode to confine the glow discharge region to within the region defined by the screen and the cathode. A substrate for receiving deposition material from a reactive gas is positioned outside the screened region. The screen is electrically connected to the system ground to thereby serve as the anode of the system. The energy of the reactive gas species is reduced as they diffuse through the screen to the substrate. Reactive gas is conducted directly into the glow discharge region through a centrally positioned distribution head to reduce contamination effects otherwise caused by secondary reaction products and impurities deposited on the reactor walls.

  15. Thin films of mixed metal compounds

    DOE Patents [OSTI]

    Mickelsen, R.A.; Chen, W.S.

    1985-06-11T23:59:59.000Z

    Disclosed is a thin film heterojunction solar cell, said heterojunction comprising a p-type I-III-IV[sub 2] chalcopyrite substrate and an overlying layer of an n-type ternary mixed metal compound wherein said ternary mixed metal compound is applied to said substrate by introducing the vapor of a first metal compound to a vessel containing said substrate from a first vapor source while simultaneously introducing a vapor of a second metal compound from a second vapor source of said vessel, said first and second metals comprising the metal components of said mixed metal compound; independently controlling the vaporization rate of said first and second vapor sources; reducing the mean free path between vapor particles in said vessel, said gas being present in an amount sufficient to induce homogeneity of said vapor mixture; and depositing said mixed metal compound on said substrate in the form of a uniform composition polycrystalline mixed metal compound. 5 figs.

  16. PHOTOCATALYTIC GENERATION OF DISSOLVED OXYGEN AND OXYHEMOGLOBIN IN WHOLE BLOOD BASED ON THE INDIRECT INTERACTION OF UV LIGHT WITH A SEMICONDUCTING TITANIUM DIOXIDE THIN FILM

    SciTech Connect (OSTI)

    Gilbert, Richard J.; Carleton, Linda M.; Dasse, Kurt A.; Martin, Peter M.; Williford, Rick E.; Monzyk, Bruce F.

    2007-10-01T23:59:59.000Z

    Most current artificial lung technologies require the delivery of oxygen to the blood via permeable hollow fibers, depending on membrane diffusivity and differential partial pressure to drive gas exchange. We have identified an alternative approach in which dissolved oxygen (DO) is generated directly from the water content of blood through the indirect interaction of UV light with a semi-conducting titanium dioxide thin film. This reaction is promoted by photon absorption and displacement of electrons from the photoactive film, and yields a cascading displacement of electron “holes” to the aqueous interface resulting in the oxidation of water molecules to form DO. Anatase TiO2 (photocatalyst) and ITO (electrically conductive and light transparent) coatings were deposited onto quartz flow-cell plates by DC reactive magnetron sputtering. The crystal structure of the films was evaluated by grazing incidence X-Ray Diffraction (GIXRD), which confirmed that the primary crystal phase of the TiO2 thin film was anatase with a probable rutile secondary phase. Surface topology and roughness were determined by atomic force microscopy, demonstrating a stochastically uniform array of nanocrystallites. UV illumination of the titanium dioxide thin film through the quartz/ITO surface resulted in the rapid increase of DO and oxyhemoglobin in adjacent flowing blood on the opposite TiO2 surface at a rate of 1.28 x 10-5 mmol O2/sec. The rate of oxyhemoglobin generation was linearly proportional to residence time adjacent to the photoactive surface in a flow-through test cell under steady-state conditions. Preliminary biocompatibility for the proposed photocatalytic effect on whole blood demonstrated no increase in the rate of hemolysis or generation of toxic byproducts of photo-oxidation. These results demonstrate the feasibility and safety of employing optoelectronic mechanisms to promote oxygenation of hemoglobin in whole blood, and provide substantiation for the use of this technology as a mechanism for artificial respiratory support.

  17. High efficiency cadmium telluride and zinc telluride based thin-film solar cells. Annual subcontract report, 1 March 1990--28 February 1992

    SciTech Connect (OSTI)

    Rohatgi, A.; Sudharsanan, R.; Ringel, S.A.; Chou, H.C. [Georgia Inst. of Tech., Atlanta, GA (United States)

    1992-10-01T23:59:59.000Z

    This report describes work to improve the basic understanding of CdTe and ZnTe alloys by growing and characterizing these films along with cell fabrication. The major objective was to develop wide-band-gap (1.6--1.8 eV) material for the top cell, along with compatible window material and transparent ohmic contacts, so that a cascade cell design can be optimized. Front-wall solar cells were fabricated with a glass/SnO{sub 2}/CdS window, where the CdS film is thin to maximize transmission and current. Wide-band-gap absorber films (E{sub g} = 1.75 eV) were grown by molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD) techniques, which provided excellent control for tailoring the film composition and properties. CdZnTe films were grown by both MBE and MOCVD. All the as-grown films were characterized by several techniques (surface photovoltage spectroscopy, Auger electron spectroscopy (AES), and x-ray photoelectron spectroscopy (XPS)) for composition, bulk uniformity, thickness, and film and interface quality. Front-wall-type solar cells were fabricated in collaboration with Ametek Materials Research Laboratory using CdTe and CdZnTe polycrystalline absorber films. The effects of processing on ternary film were studied by AES and XPS coupled with capacitance voltage and current voltage measurements as a function of temperature. Bias-dependent spectral response and electrical measurements were used to test some models in order to identify and quantify dominant loss mechanisms.

  18. Method for making surfactant-templated thin films

    DOE Patents [OSTI]

    Brinker, C. Jeffrey (Albuquerque, NM); Lu, Yunfeng (New Orleans, LA); Fan, Hong You (Albuquerque, NM)

    2010-08-31T23:59:59.000Z

    An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

  19. Method for making surfactant-templated thin films

    DOE Patents [OSTI]

    Brinker, C. Jeffrey (Albuquerque, NM); Lu, Yunfeng (San Jose, CA); Fan, Hongyou (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

  20. Ion Beam Deposition of Thin Films: Growth Processes and Nanostructure Formation

    SciTech Connect (OSTI)

    Hofsaess, Hans C. [II. Physikalisches Institut, Universitaet Goettingen, Friedrich-Hund-Platz 1, D-37077 Goettingen (Germany)

    2004-12-01T23:59:59.000Z

    Ion beam deposition is a process far from thermodynamic equilibrium and is in particular suited to grow metastable thin films with diamond-like properties, such as tetrahedral amorphous carbon (ta-C) and cubic boron nitride (c-BN). In this contribution the atomistic description of the deposition and growth processes are reviewed and compared to experimental results, obtained from mass selected ion beam deposition. The focus will be set to the nucleation and growth processes of boron nitride as a model system for ion based thin film formation. Furthermore, recent examples for nanostructure formation in ion deposited compound thin films will be presented. Ion beam deposited metal-carbon nano-composite thin films exhibit a variety of different morphologies such as rather homogeneous nanocluster distributions embedded in an a-C matrix, but also the self-organized formation of nanoscale multilayer structures.

  1. Singular Limits for Thin Film Superconductors in Strong Magnetic Fields - Maan Field Model for Thin Films

    E-Print Network [OSTI]

    Stan Alama; Lia Bronsard; Bernardo Galvão-Sousa

    2012-09-17T23:59:59.000Z

    We consider singular limits of the three-dimensional Ginzburg-Landau functional for a superconductor with thin-film geometry, in a constant external magnetic field. The superconducting domain has characteristic thickness on the scale $\\eps>0$, and we consider the simultaneous limit as the thickness $\\eps\\rightarrow 0$ and the Ginzburg-Landau parameter $\\kappa\\rightarrow\\infty$. We assume that the applied field is strong (on the order of $\\eps^{-1}$ in magnitude) in its components tangential to the film domain, and of order $\\log\\kappa$ in its dependence on $\\kappa$. We prove that the Ginzburg-Landau energy $\\Gamma$-converges to an energy associated with a two-obstacle problem, posed on the planar domain which supports the thin film. The same limit is obtained regardless of the relationship between $\\eps$ and $\\kappa$ in the limit. Two illustrative examples are presented, each of which demonstrating how the curvature of the film can induce the presence of both (positively oriented) vortices and (negatively oriented) antivortices coexisting in a global minimizer of the energy.

  2. Transparent conducting thin films for spacecraft applications

    SciTech Connect (OSTI)

    Perez-Davis, M.E.; Malave-Sanabria, T.; Hambourger, P.; Rutledge, S.K.; Roig, D.; Degroh, K.K.; Hung, C.

    1994-01-01T23:59:59.000Z

    Transparent conductive thin films are required for a variety of optoelectronic applications: automotive and aircraft windows, and solar cells for space applications. Transparent conductive coatings of indium-tin-oxide (ITO)-magnesium fluoride (MgF2) and aluminum doped zinc oxide (AZO) at several dopant levels are investigated for electrical resistivity (sheet resistance), carrier concentration, optical properties, and atomic oxygen durability. The sheet resistance values of ITO-MgF2 range from 10[sup 2] to 10[sup 11] ohms/square, with transmittance of 75 to 86 percent. The AZO films sheet resistances range from 10[sup 7] to 10[sup 11] ohms/square with transmittances from 84 to 91 percent. It was found that in general, with respect to the optical properties, the zinc oxide (ZnO), AZO, and the high MgF2 content ITO-MgF2 samples, were all durable to atomic oxygen plasma, while the low MgF2 content of ITO-MgF2 samples were not durable to atomic oxygen plasma exposure.

  3. Picoseconds-Laser Modification of Thin Films

    SciTech Connect (OSTI)

    Gakovic, Biljana; Trtica, Milan [Institute of Nuclear Sciences 'VINCA' 522, 11001 Belgrade (Serbia and Montenegro); Batani, Dimitri; Desai, Tara; Redaelli, Renato [Dipartimento di Fisica 'G. Occhialini', Universita' degli Studi Milano-Bicocca, Piazza della Scienza 3, Milan 20126 (Italy)

    2006-04-07T23:59:59.000Z

    The interaction of a Nd:YAG laser, pulse duration of 40 ps, with a titanium nitride (TiN) and tungsten-titanium (W-Ti) thin films deposited at silicon was studied. The peak intensity on targets was up to 1012 W/cm2. Results have shown that the TiN surface was modified, by the laser beam, with energy density of {>=}0.18 J/cm2 ({lambda}laser= 532 nm) as well as of 30.0 J/cm2 ({lambda}laser= 1064 nm). The W-Ti was surface modified with energy density of 5.0 J/cm2 ({lambda}laser= 532 nm). The energy absorbed from the Nd:YAG laser beam is partially converted to thermal energy, which generates a series of effects such as melting, vaporization of molten materials, dissociation and ionization of the vaporized material, appearance of plasma, etc. The following morphological changes of both targets were observed: (i) The appearance of periodic microstructures, in the central zone of the irradiated area, for laser irradiation at 532 nm. Accumulation of great number of laser pulses caused film ablation and silicon modification. (ii) Hole formation on the titanium nitride/silicon target was registered at 1064 nm. The process of the Nd:YAG laser interaction with both targets was accompanied by plasma formation above the target.

  4. Electron cyclotron resonance microwave ion sources for thin film processing

    SciTech Connect (OSTI)

    Berry, L.A.; Gorbatkin, S.M.

    1990-01-01T23:59:59.000Z

    Plasmas created by microwave absorption at the electron cyclotron resonance (ECR) are increasingly used for a variety of plasma processes, including both etching and deposition. ECR sources efficiently couple energy to electrons and use magnetic confinement to maximize the probability of an electron creating an ion or free radical in pressure regimes where the mean free path for ionization is comparable to the ECR source dimensions. The general operating principles of ECR sources are discussed with special emphasis on their use for thin film etching. Data on source performance during Cl base etching of Si using an ECR system are presented. 32 refs., 5 figs.

  5. Thin-film electrochemical power cells. Final report

    SciTech Connect (OSTI)

    Owens, B.B.; Smyrl, W.H.

    1991-01-01T23:59:59.000Z

    Fundamental properties of research cells were correlated with the projected performance of full scale power sources, considering both battery and supercapacitor concepts. In addition to establishing the data base for modelling and performance projections, the program had the additional objective of identifying loss mechanisms and degradation reactions, especially those unique to polymer thin film cell designs. Because of the intrinsic high electrode/electrolyte interface areas, interfacial reactions must be understood. Many applications require power under extreme conditions, and low temperature performance needs to be improved.

  6. Towards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping and non-radiative recombinations

    E-Print Network [OSTI]

    important evaluation criterion for photovoltaic (PV) technology. Therefore, research on novel structuresTowards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping February 2014; published online 3 March 2014) Thin-film solar cells based on silicon have emerged

  7. Swiss Federal Laboratories for Materials Science and Technology Advances in Thin Film PV: CIGS & CdTe

    E-Print Network [OSTI]

    Canet, Léonie

    and Photovoltaics Thin film solar cells based on compound semiconductor absorbers: CIGS and CdTe High efficiency and Photovoltaics Swiss Federal Laboratories for Material Science and Technology Key issues in high efficiency CIGSTe Laboratory for Thin Films and Photovoltaics Empa- Swiss Federal Laboratories for Material Science

  8. A Free Energy Model for Thin-film Shape Memory Alloys Jordan E. Massad*1

    E-Print Network [OSTI]

    Mechanical & Aerospace Engineering Dept., UCLA, Los Angeles, CA 90095 ABSTRACT Thin-film shape memory alloysA Free Energy Model for Thin-film Shape Memory Alloys Jordan E. Massad*1 , Ralph C. Smith1 and Greg comparison with thin-film NiTi superelastic hysteresis data. Keywords: Shape memory alloy model; thin film

  9. Effects of stretching and cycling on the fatigue behavior of polymer-supported Ag thin films

    E-Print Network [OSTI]

    Effects of stretching and cycling on the fatigue behavior of polymer-supported Ag thin films Gi March 2013 Keywords: Fatigue Thin films Fatigue crack initiation Intergranular failure Ductile fracture on characterizing the mechanical behavior of thin metal films and have observed that metals in thin-film form can

  10. Crystallization and Martensitic Transformation Behavior of NiTi Shape Memory Alloy Thin Films

    E-Print Network [OSTI]

    Crystallization and Martensitic Transformation Behavior of NiTi Shape Memory Alloy Thin Films Alloy Thin Films Abstract The microstructure evolution and shape memory properties of near-equiatomic Ni-Ti thin films were investigated. Ni-Ti thin films sputter-deposited at room tem- perature are usually

  11. DISSERTATION DEVICE PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS

    E-Print Network [OSTI]

    Sites, James R.

    DISSERTATION DEVICE PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS Submitted by Markus Gloeckler PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS Thin-film solar cells have the potential to be an important

  12. Measuring the structure of thin soft matter films under confinement: A surface-force type apparatus for neutron reflection, based on a flexible membrane approach

    SciTech Connect (OSTI)

    Vos, Wiebe M. de [School of Chemistry, University of Bristol, Cantock's close, BS8 1TS Bristol (United Kingdom); School of Physics, University of Bristol, Tyndall Avenue, BS8 1TL Bristol (United Kingdom); Mears, Laura L. E.; Richardson, Robert M. [School of Physics, University of Bristol, Tyndall Avenue, BS8 1TL Bristol (United Kingdom); Cosgrove, Terence; Prescott, Stuart W. [School of Chemistry, University of Bristol, Cantock's close, BS8 1TS Bristol (United Kingdom); Dalgliesh, Robert M. [ISIS Neutron Source, STFC Rutherford Appleton Laboratory, OX11 0QX Didcot (United Kingdom)

    2012-11-15T23:59:59.000Z

    A unique surface force type apparatus that allows the investigation of a confined thin film using neutron reflection is described. The central feature of the setup consists of a solid substrate (silicon) and a flexible polymer membrane (Melinex{sup Registered-Sign }). We show that inflation of the membrane against the solid surface provides close and even contact between the interfaces over a large surface area. Both heavy water and air can be completely squeezed out from between the flexible film and the solid substrate, leaving them in molecular contact. The strength of confinement is controlled by the pressure used to inflate the membrane. Dust provides a small problem for this approach as it can get trapped between membrane and substrate to prevent a small part of the membrane from making good contact with the substrate. This results in the measured neutron reflectivity containing a small component of an unwanted reflection, between 10% and 20% at low confining pressures (1 bar) and between 1% and 5% at high confining pressures (5 bar). However, we show that this extra signal does not prevent good and clear information on the structure of thin films being extracted from the neutron reflectivity. The effects of confinement are illustrated with data from a poly(vinyl pyrollidone) gel layer in water, a polyelectrolyte multilayer in water, and with data from a stack of supported lipid-bilayers swollen with D{sub 2}O vapor. The data demonstrates the potential of this apparatus to provide information on the structure of thin films under confinement for a known confining pressure.

  13. Tensile and fatigue behaviors of printed Ag thin films on flexible substrates

    SciTech Connect (OSTI)

    Sim, Gi-Dong; Won, Sejeong; Lee, Soon-Bok [Department of Mechanical Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2012-11-05T23:59:59.000Z

    Flexible electronics using nanoparticle (NP) printing has been highlighted as a key technology enabling eco-friendly, low-cost, and large-area fabrication. For NP-based printing to be used as a successive alternative to photolithography and vacuum deposition, stretchability and long term reliability must be considered. This paper reports the stretchability and fatigue behavior of 100 nm thick NP-based silver thin films printed on polyethylene-terephthalate substrate and compares it to films deposited by electron-beam evaporation. NP-based films show stretchability and fatigue life comparable to evaporated films with intergranular fracture as the dominant failure mechanism.

  14. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, S.P.; Chamberlin, R.

    1999-02-09T23:59:59.000Z

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

  15. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, Scot P. (Lakewood, CO); Chamberlin, Rhodes (El Paso, TX)

    1997-10-07T23:59:59.000Z

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

  16. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, Scot P. (Lakewood, CO); Chamberlin, Rhodes (El Paso, TX)

    1999-02-09T23:59:59.000Z

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

  17. Processing and Gas Barrier Behavior of Multilayer Thin Nanocomposite Films 

    E-Print Network [OSTI]

    Yang, You-Hao

    2012-10-19T23:59:59.000Z

    Thin films with the ability to impart oxygen and other types of gas barrier are crucial to commercial packaging applications. Commodity polymers, such as polyethylene (PE), polycarbonate (PC) and polyethylene terephthalate (PET), have insufficient...

  18. Laser Induced Breakdown Spectroscopy and Applications Toward Thin Film Analysis

    E-Print Network [OSTI]

    Owens, Travis Nathan

    2011-01-01T23:59:59.000Z

    on the surface. Ultrafast laser pulses are shorter than thethe advantages of ultrafast laser pulses for thin film LIBS,each time. While ultrafast laser pulses are effective in

  19. Modeling of thin-film solar thermoelectric generators

    E-Print Network [OSTI]

    Weinstein, Lee Adragon

    Recent advances in solar thermoelectric generator (STEG) performance have raised their prospect as a potential technology to convert solar energy into electricity. This paper presents an analysis of thin-film STEGs. ...

  20. Direct printing of lead zirconate titanate thin films

    E-Print Network [OSTI]

    Bathurst, Stephen, 1980-

    2008-01-01T23:59:59.000Z

    Thus far, use of lead zirconate titanate (PZT) in MEMS has been limited due to the lack of process compatibility with existing MEMS manufacturing techniques. Direct printing of thin films eliminates the need for photolithographic ...

  1. Functionality Tuning in Vertically Aligned Nanocomposite Thin Films 

    E-Print Network [OSTI]

    Chen, Aiping

    2013-04-04T23:59:59.000Z

    Vertically aligned nanocomposite (VAN) oxide thin films are unique nanostructures with two-phase self-assembled, heteroepitaxially grown on single-crystal substrates. Both phases tend to grow vertically and simultaneously on a given substrate...

  2. Structure of Molecular Thin Films for Organic Electronics | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organic Electronics Friday, April 6, 2012 - 1:00pm SSRL Conference Room 137-322 Bert Nickel, Physics Faculty and CeNS, Ludwig-Maximilians-University, Mnchen Thin films made out...

  3. Properties and sensor performance of zinc oxide thin films

    E-Print Network [OSTI]

    Min, Yongki, 1965-

    2003-01-01T23:59:59.000Z

    Reactively sputtered ZnO thin film gas sensors were fabricated onto Si wafers. The atmosphere dependent electrical response of the ZnO micro arrays was examined. The effects of processing conditions on the properties and ...

  4. The macroscopic delamination of thin films from elastic substrates

    E-Print Network [OSTI]

    Reis, Pedro Miguel

    The wrinkling and delamination of stiff thin films adhered to a polymer substrate have important applications in “flexible electronics.” The resulting periodic structures, when used for circuitry, have remarkable mechanical ...

  5. Flexible, transparent thin film transistors raise hopes for flexible...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the thin-film transistor, fabricated using single-atom-thick layers of graphene and tungsten diselenide, among other materials. The white scale bar shows 5 microns, which is...

  6. Steering and Separating Excitons in Organic Thin Films and Devices...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Steering and Separating Excitons in Organic Thin Films and Devices October 26, 2010 at 3pm36-428 Mark Thompson University of Southern California (USC) thompson abstract: We have...

  7. Structural, magnetic, and optical properties of orthoferrite thin films

    E-Print Network [OSTI]

    Supplee, William Wagner

    2007-01-01T23:59:59.000Z

    Pulsed laser deposition was used to create thin films of Ce-Fe-O and Y-Fe-O systems. Deposition temperature and ambient oxygen pressure were varied systematically between samples to determine which deposition conditions ...

  8. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guided Self-Assembly of Gold Thin Films Print Nanoparticles-man-made atoms with unique optical, electrical, and mechanical properties-have become key components in many fields of...

  9. Antimony-Doped Tin(II) Sulfide Thin Films

    E-Print Network [OSTI]

    Chakraborty, Rupak

    Thin-film solar cells made from earth-abundant, inexpensive, and nontoxic materials are needed to replace the current technologies whose widespread use is limited by their use of scarce, costly, and toxic elements. Tin ...

  10. Multimonth controlled small molecule release from biodegradable thin films

    E-Print Network [OSTI]

    Hammond, Paula T.

    Long-term, localized delivery of small molecules from a biodegradable thin film is challenging owing to their low molecular weight and poor charge density. Accomplishing highly extended controlled release can facilitate ...

  11. amorphous thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Amorphous Silicon Thin-Film Transistor Pixel.S.A. 1 LG Philips LCD Research and Development Center, An-Yang, 431-080, Korea (Received July 23, 2006; accepted October 31, 2006;...

  12. amorphous thin film: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Amorphous Silicon Thin-Film Transistor Pixel.S.A. 1 LG Philips LCD Research and Development Center, An-Yang, 431-080, Korea (Received July 23, 2006; accepted October 31, 2006;...

  13. Initiated chemical vapor deposition of functional polyacrylic thin films

    E-Print Network [OSTI]

    Mao, Yu, 1975-

    2005-01-01T23:59:59.000Z

    Initiated chemical vapor deposition (iCVD) was explored as a novel method for synthesis of functional polyacrylic thin films. The process introduces a peroxide initiator, which can be decomposed at low temperatures (<200?C) ...

  14. Functionalized multilayer thin films for protection against acutely toxic agents

    E-Print Network [OSTI]

    Krogman, Kevin Christopher

    2009-01-01T23:59:59.000Z

    The recently developed practice of spraying polyelectrolyte solutions onto a substrate in order to construct thin films via the Layer-by-Layer (LbL) technique has been further investigated and extended. In this process a ...

  15. al thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dalek@eee.hku.hk , C. Y. Kwong, T. W. Lau, L. S. M. Lam, and W. K 276 DEFECT-FREE THIN FILM MEMBRANES FOR H2 SEPARATION AND ISOLATION Energy Storage, Conversion and...

  16. al thin film: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dalek@eee.hku.hk , C. Y. Kwong, T. W. Lau, L. S. M. Lam, and W. K 276 DEFECT-FREE THIN FILM MEMBRANES FOR H2 SEPARATION AND ISOLATION Energy Storage, Conversion and...

  17. Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01T23:59:59.000Z

    This National Center for Photovoltaics sheet describes the capabilities of its polycrystalline thin-film research in the area of cadmium telluride. The scope and core competencies and capabilities are discussed.

  18. Enabling integration of vapor-deposited polymer thin films

    E-Print Network [OSTI]

    Petruczok, Christy D. (Christy Danielle)

    2014-01-01T23:59:59.000Z

    Initiated Chemical Vapor Deposition (iCVD) is a versatile, one-step process for synthesizing conformal and functional polymer thin films on a variety of substrates. This thesis emphasizes the development of tools to further ...

  19. Efficient light trapping structure in thin film silicon solar cells

    E-Print Network [OSTI]

    Sheng, Xing

    Thin film silicon solar cells are believed to be promising candidates for continuing cost reduction in photovoltaic panels because silicon usage could be greatly reduced. Since silicon is an indirect bandgap semiconductor, ...

  20. ag thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MgO, Ref. 21 Marcon, Marco 2 Multi-level surface enhanced Raman scattering using AgOx thin film Physics Websites Summary: by applying laser-direct writing (LDW) technique on...

  1. Self-Assembling Process for Fabricating Tailored Thin Films

    ScienceCinema (OSTI)

    None

    2010-01-08T23:59:59.000Z

    A simple, economical nanotechnology coating process that enables the development of nanoparticle thin films with architectures and properties unattainable by any other processing method. 2007 R&D 100 winner (SAND2007-1878P)

  2. Self-Assembling Process for Fabricating Tailored Thin Films

    ScienceCinema (OSTI)

    Sandia

    2009-09-01T23:59:59.000Z

    A simple, economical nanotechnology coating process that enables the development of nanoparticle thin films with architectures and properties unattainable by any other processing method. 2007 R&D 100 winner (SAND2007-1878P)

  3. Nonlinear viscoelastic characterization of thin films using dynamic mechanical analysis

    E-Print Network [OSTI]

    Payne, Debbie Flowers

    1993-01-01T23:59:59.000Z

    NONLINEAR VISCOELASTIC CHARACTERIZATION OF THIN FILMS USING DYNAMIC MECHANICAL ANALYSIS A Thesis by DEBBIE FLOWERS PAYNE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE AUGUST 1993 Major Subject: Aerospace Engineering NONLINEAR VISCOELASTIC CHARACTERIZATION OF THIN FILMS USING DYNAMIC MECHANICAL ANALYSIS A Thesis by DEBBIE FLOWERS PAYNE Approved as to style and content by: Thomas W...

  4. Recent technological advances in thin film solar cells

    SciTech Connect (OSTI)

    Ullal, H.S.; Zwelbel, K.; Surek, T.

    1990-03-01T23:59:59.000Z

    High-efficiency, low-cost thin film solar cells are an exciting photovoltaic technology option for generating cost-effective electricity in 1995 and beyond. This paper reviews the substantial advances made by several thin film solar cell technologies, namely, amorphous silicon, copper indium diselenide, cadmium telluride, and polycrystalline silicon. Recent examples of utility demonstration projects of these emerging materials are also discussed. 8 refs., 4 figs.

  5. Polycrystalline thin-film solar cells and modules

    SciTech Connect (OSTI)

    Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

    1991-12-01T23:59:59.000Z

    This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG&E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

  6. Polycrystalline thin-film solar cells and modules

    SciTech Connect (OSTI)

    Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

    1991-12-01T23:59:59.000Z

    This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

  7. Templated dewetting of thin solid films

    E-Print Network [OSTI]

    Giermann, Amanda L. (Amanda Leah)

    2009-01-01T23:59:59.000Z

    The dewetting of solid metal polycrystalline films to form metal nanoparticles occurs by the nucleation and growth of holes in the film. For typical films on flat substrates, this process is not well-controlled and results ...

  8. Functional requirements for component films in a solar thin-film photovoltaic/thermal panel

    SciTech Connect (OSTI)

    Johnston, David [Power and Energy Research Group, School of Engineering, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST (United Kingdom)

    2010-03-15T23:59:59.000Z

    The functional requirements of the component films of a solar thin-film photovoltaic/thermal panel were considered. Particular emphasis was placed on the new functions, that each layer is required to perform, in addition to their pre-existing functions. The cut-off wavelength of the window layer, required for solar selectivity, can be achieved with charge carrier concentrations typical of photovoltaic devices, and thus does not compromise electrical efficiency. The upper (semiconductor) absorber layer has a sufficiently high thermal conductivity that there is negligible temperature difference across the film, and thus negligible loss in thermal performance. The lower (cermet) absorber layer can be fabricated with a high ceramic content, to maintain high solar selectivity, without significant increase in electrical resistance. A thin layer of molybdenum-based cermet at the top of this layer can provide an Ohmic contact to the upper absorber layer. A layer of aluminium nitride between the metal substrate and the back metal contact can provide electrical isolation to avoid short-circuiting of series-connected cells, while maintaining a thermal path to the metal substrate and heat extraction systems. Potential problems of differential contraction of heated films and substrates were identified, with a recommendation that fabrication processes, which avoid heating, are preferable. (author)

  9. Thin aerogel films for optical, thermal, acoustic, and electronic applications

    SciTech Connect (OSTI)

    Hrubesh, L.W.; Poco, J.F. [Lawrence Livermore National Lab., CA (United States). Chemistry and Material Sciences Dept.

    1994-09-01T23:59:59.000Z

    Aerogels are a special class of continuously porous solid materials which are characterized by nanometer size particles and pores. Typically, aerogels are made using sol-gel chemistry to form a solvent filled, high porosity gel that is dried by removing the solvent without collapsing the tenuous solid phase. As bulk materials, aerogels are known to have many exceptional, and even some unique physical properties. Aerogels provide the highest thermal insulation and lowest dielectric constant of any other material known. However, some important applications require the aerogels in the form of thin films or sheets. For example, electronic applications require micrometer thin aerogel films bonded to a substrate, and others require thicker films, either on a substrate or as free standing sheets. Special methods are required to make aerogel thin films or sheets. In this paper, the authors discuss the special conditions needed to fabricate thin aerogel films and they describe methods to make films and thin sheets. They also give some specific applications for which aerogel films are being developed.

  10. Geometric shape control of thin film ferroelectrics and resulting structures

    DOE Patents [OSTI]

    McKee, Rodney A. (Kingston, TN); Walker, Frederick J. (Oak Ridge, TN)

    2000-01-01T23:59:59.000Z

    A monolithic crystalline structure and a method of making involves a semiconductor substrate, such as silicon, and a ferroelectric film, such as BaTiO.sub.3, overlying the surface of the substrate wherein the atomic layers of the ferroelectric film directly overlie the surface of the substrate. By controlling the geometry of the ferroelectric thin film, either during build-up of the thin film or through appropriate treatment of the thin film adjacent the boundary thereof, the in-plane tensile strain within the ferroelectric film is relieved to the extent necessary to permit the ferroelectric film to be poled out-of-plane, thereby effecting in-plane switching of the polarization of the underlying substrate material. The method of the invention includes the steps involved in effecting a discontinuity of the mechanical restraint at the boundary of the ferroelectric film atop the semiconductor substrate by, for example, either removing material from a ferroelectric film which has already been built upon the substrate, building up a ferroelectric film upon the substrate in a mesa-shaped geometry or inducing the discontinuity at the boundary by ion beam deposition techniques.

  11. Composite polymeric film and method for its use in installing a very-thin polymeric film in a device

    DOE Patents [OSTI]

    Duchane, D.V.; Barthell, B.L.

    1982-04-26T23:59:59.000Z

    A composite polymeric film and a method for its use in forming and installing a very thin (< 10 ..mu..m) polymeric film are disclosed. The composite film consists of a thin film layer and a backing layer. The backing layer is soluble in a solvent in which the thin film layer is not soluble. In accordance with the method, the composite film is installed in a device in the same position in which it is sought to finally emplace the thin film. The backing layer is then selectiely dissolved in the solvent to leave the insoluble thin film layer as an unbacked film. The method permits a very thin film to e successfully installed in devices where the fragility of the film would preclude handling and installation by conventional methods.

  12. Femtosecond all-optical parallel logic gates based on tunable saturable to reverse saturable absorption in graphene-oxide thin films

    SciTech Connect (OSTI)

    Roy, Sukhdev, E-mail: sukhdevroy@dei.ac.in; Yadav, Chandresh [Department of Physics and Computer Science, Dayalbagh Educational Institute, Dayalbagh, Agra 282 005 (India)] [Department of Physics and Computer Science, Dayalbagh Educational Institute, Dayalbagh, Agra 282 005 (India)

    2013-12-09T23:59:59.000Z

    A detailed theoretical analysis of ultrafast transition from saturable absorption (SA) to reverse saturable absorption (RSA) has been presented in graphene-oxide thin films with femtosecond laser pulses at 800?nm. Increase in pulse intensity leads to switching from SA to RSA with increased contrast due to two-photon absorption induced excited-state absorption. Theoretical results are in good agreement with reported experimental results. Interestingly, it is also shown that increase in concentration results in RSA to SA transition. The switching has been optimized to design parallel all-optical femtosecond NOT, AND, OR, XOR, and the universal NAND and NOR logic gates.

  13. Front and backside processed thin film electronic devices

    DOE Patents [OSTI]

    Evans, Paul G. (Madison, WI); Lagally, Max G. (Madison, WI); Ma, Zhenqiang (Middleton, WI); Yuan, Hao-Chih (Lakewood, CO); Wang, Guogong (Madison, WI); Eriksson, Mark A. (Madison, WI)

    2012-01-03T23:59:59.000Z

    This invention provides thin film devices that have been processed on their front- and backside. The devices include an active layer that is sufficiently thin to be mechanically flexible. Examples of the devices include back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  14. Thin transparent conducting films of cadmium stannate

    DOE Patents [OSTI]

    Wu, Xuanzhi (Golden, CO); Coutts, Timothy J. (Lakewood, CO)

    2001-01-01T23:59:59.000Z

    A process for preparing thin Cd.sub.2 SnO.sub.4 films. The process comprises the steps of RF sputter coating a Cd.sub.2 SnO.sub.4 layer onto a first substrate; coating a second substrate with a CdS layer; contacting the Cd.sub.2 SnO.sub.4 layer with the CdS layer in a water- and oxygen-free environment and heating the first and second substrates and the Cd.sub.2 SnO.sub.4 and CdS layers to a temperature sufficient to induce crystallization of the Cd.sub.2 SnO.sub.4 layer into a uniform single-phase spinel-type structure, for a time sufficient to allow full crystallization of the Cd.sub.2 SnO.sub.4 layer at that temperature; cooling the first and second substrates to room temperature; and separating the first and second substrates and layers from each other. The process can be conducted at temperatures less than 600.degree. C., allowing the use of inexpensive soda lime glass substrates.

  15. Adhesion and Thin-Film Module Reliability

    SciTech Connect (OSTI)

    McMahon, T. J.; Jorgenson, G. J.

    2006-01-01T23:59:59.000Z

    Among the infrequently measured but essential properties for thin-film (T-F) module reliability are the interlayer adhesion and cohesion within a layer. These can be cell contact layers to glass, contact layers to the semiconductor, encapsulant to cell, glass, or backsheet, etc. We use an Instron mechanical testing unit to measure peel strengths at 90deg or 180deg and, in some cases, a scratch and tape pull test to evaluate inter-cell layer adhesion strengths. We present peel strength data for test specimens laminated from the three T-F technologies, before and after damp heat, and in one instance at elevated temperatures. On laminated T-F cell samples, failure can occur uniformly at any one of the many interfaces, or non-uniformly across the peel area at more than one interface. Some peel strengths are Lt1 N/mm. This is far below the normal ethylene vinyl acetate/glass interface values of >10 N/mm. We measure a wide range of adhesion strengths and suggest that adhesion measured under higher temperature and relative humidity conditions is more relevant for module reliability.

  16. NANO-INDENTATION OF COPPER THIN FILMS ON SILICON SUBSTRATES

    E-Print Network [OSTI]

    Suresh, Subra

    on the nano-indentation of polycrystalline Cu thin films, of three different thicknesses) Si substrates. The films were then vacuum-annealed at 475°C for 1 h. The resulting polycrystalline. A diamond Berkovich pyramid indentor with a tip radius, R 50 nm, was used. It is known from nano

  17. Fabrication and Characterization of Titanium-doped Hydroxyapatite Thin Films

    E-Print Network [OSTI]

    Desai, Amit Y

    . Thin films of titanium-doped hydroxyapatite (HA-Ti) have been deposited onto silicon substrates at three different compositions. With direct current (dc) power to the Ti target of 5, 10, and 15W films with compositions of 0.7, 1.7 and 2.0 at.% titanium...

  18. Critical fields in ferromagnetic thin films: Identification of four regimes

    E-Print Network [OSTI]

    Otto, Felix

    Critical fields in ferromagnetic thin films: Identification of four regimes Rub´en Cantero­film elements is a paradigm for a multi­scale pattern­forming system. On one hand, there is a material length functional ceases to be positive definite. The degenerate subspace consists of the "unstable modes

  19. Pulsed laser deposition of AlMgB14 thin films

    SciTech Connect (OSTI)

    Russell, Alan; Bastawros, Ashraf; Tan, Xiaoli

    2008-11-18T23:59:59.000Z

    Hard, wear-resistant coatings of thin film borides based on AlMgB{sub 14} have the potential to be applied industrially to improve the tool life of cutting tools and pump vanes and may account for several million dollars in savings as a result of reduced wear on these parts. Past work with this material has shown that it can have a hardness of up to 45GPa and be fabricated into thin films with a similar hardness using pulsed laser deposition. These films have already been shown to be promising for industrial applications. Cutting tools coated with AlMgB{sub 14} used to mill titanium alloys have been shown to substantially reduce the wear on the cutting tool and extend its cutting life. However, little research into the thin film fabrication process using pulsed laser deposition to make AlMgB{sub 14} has been conducted. In this work, research was conducted into methods to optimize the deposition parameters for the AlMgB{sub 14} films. Processing methods to eliminate large particles on the surface of the AlMgB{sub 14} films, produce films that were at least 1m thick, reduce the surface roughness of the films, and improve the adhesion of the thin films were investigated. Use of a femtosecond laser source rather than a nanosecond laser source was found to be effective in eliminating large particles considered detrimental to wear reduction properties from the films. Films produced with the femtosecond laser were also found to be deposited at a rate 100 times faster than those produced with the nanosecond laser. However, films produced with the femtosecond laser developed a relatively high RMS surface roughness around 55nm. Attempts to decrease the surface roughness were largely unsuccessful. Neither increasing the surface temperature of the substrate during deposition nor using a double pulse to ablate the material was found to be extremely successful to reduce the surface roughness. Finally, the adhesion of the thin films to M2 tool steel substrates, assessed using the Rockwell C indentation adhesion test, was found to be substantially improved by the deposition of a titanium interlayer, but unaffected by increasing the temperature of the substrates. The titanium was found to improve the adhesion strength of the films because it reacted with both the steel and the AlMgB{sub 14} compound to form new compounds. Ultimately, it was concluded that the films with the best properties were produced with a femtosecond pulsed laser and were deposited on top of a titanium interlayer to improve the thin film adhesion.

  20. DOE/SERI polycrystalline thin-film photovoltaic research

    SciTech Connect (OSTI)

    Hermann, A.; Zweibel, K.; Mitchell, R.

    1984-05-01T23:59:59.000Z

    This paper presents recent results, status, and future prospects for the US Department of Energy's (DOE's) Polycrystalline Thin Film Photovoltaic program, managed by the Solar Energy Research Institute (SERI). The devices being studied most intensively are heterojunctions based on CuInSe/sub 2/ and on CdTe. Both materials have attained over 10% efficiency in polycrystalline form. The main emphasis is on CuInSe/sub 2/, for which Boeing has reported an 11%-efficient device (AMl ELH simulation). Important work is being done on studies of the composition/electronic properties of CuInSe/sub 2/ and its response to post-deposition annealing. In the CdTe research, ohmic, stable back-contacting and control of p-type doping are being investigated. New efforts to study polycrystalline two-junction stacked cells are underway with two-terminal cells (at IEC) and with four-terminal cells (at SMU). This preliminary work is expected to be expanded, with emphasis on CdTe and other top-cell (high-bandgap) materials. These efforts introduce a number of new research areas (e.g., transparent ohmic contacts to p-CdTe and sub-bandgap light-losses in polycrystalline materials). The aim of the program is to produce stable, high-efficiency (15%), thin-film cells that can be deposited inexpensively by techniques that are scalable to large areas.

  1. Atomic-scale Structural Characterizations of Functional Epitaxial Thin Films

    E-Print Network [OSTI]

    Zhu, Yuanyuan

    2013-06-03T23:59:59.000Z

    ................................................................ 10 1.3.1 Superconducting FeSe0.5Te0.5 epitaxial films........................................ 10 1.3.2 YBa2Cu3O7-x(YBCO) epitaxial thin films and flux-pinning effects ...... 14 1.3.3 Perovskite oxide epitaxial thin films... ...................................... 22 Figure 1.9. (a) Schematic illustration of ABO3 perovskite structure. (b) The corner -sharing oxygen octahedra in perovskite structure. . ................................... 23 Figure 1.10. (a) A HRTEM micrograph,67 (b) a Cs-corrected HRTEM image...

  2. Flexible cadmium telluride thin films grown on electron-beam-irradiated graphene/thin glass substrates

    SciTech Connect (OSTI)

    Seo, Won-Oh; Kim, Jihyun, E-mail: hyunhyun7@korea.ac.kr [Department of Chemical and Biological Engineering, Korea University, Anam-dong, Sungbuk-gu, Seoul 136-713 (Korea, Republic of); Koo, Yong Hwan; Kim, Byungnam; Lee, Byung Cheol [Radiation Integrated System Research Division, Korea Atomic Energy Research Institute (KAERI), Daejeon 305-353 (Korea, Republic of); Kim, Donghwan [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of)

    2014-08-25T23:59:59.000Z

    We demonstrate the close-spaced sublimation growth of polycrystalline cadmium telluride (CdTe) thin films on a flexible graphene electrode/thin glass substrate structure. Prior to the growth of CdTe films, chemical-vapor-deposited graphene was transferred onto a flexible glass substrate and subjected to electron-beam irradiation at an energy of 0.2?MeV in order to intentionally introduce the defects into it in a controlled manner. Micro-Raman spectroscopy and sheet resistance measurements were employed to monitor the damage and disorder in the electron-beam irradiated graphene layers. The morphology and optical properties of the CdTe thin films deposited on a graphene/flexible glass substrate were systematically characterized. The integration of the defective graphene layers with a flexible glass substrate can be a useful platform to grow various thin-film structures for flexible electronic and optoelectronic devices.

  3. Simultaneous probing of phase transformations in Ni-Ti thin film shape memory alloy by synchrotron radiation-based X-ray diffraction and electrical resistivity

    SciTech Connect (OSTI)

    Braz Fernandes, F.M. [CENIMAT/I3N, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Mahesh, K.K., E-mail: kkmahesh@rediffmail.com [CENIMAT/I3N, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Martins, R.M.S. [CENIMAT/I3N, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), P.O. Box 510119, 01314 Dresden (Germany); IST/Instituto Tecnológico e Nuclear (IST/ITN), Universidade Técnica de Lisboa, EN10, 2696-953 Sacavém (Portugal); Centro de Física Nuclear da Universidade de Lisboa (CFNUL), Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal); Silva, R.J.C. [CENIMAT/I3N, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Baehtz, C.; Borany, J. von [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), P.O. Box 510119, 01314 Dresden (Germany)

    2013-02-15T23:59:59.000Z

    Nickel–Titanium (Ni–Ti) thin film shape memory alloys (SMAs) have been widely projected as novel materials which can be utilized in microdevices. Characterization of their physical properties and its correlation with phase transformations has been a challenging issue. In the present study, X-ray beam diffraction has been utilized to obtain the structural information at different temperatures while cooling. Simultaneously, electrical resistivity (ER) was measured in the phase transformation temperature range. The variation of ER and integral area of the individual diffraction peaks of the different phases as a function of temperature have been compared. A mismatch between the conventional interpretation of ER variation and the results of the XRD data has been clearly identified. - Highlights: ? Phase transformation characterization of Ni–Ti thin film SMA has been carried out. ? Simultaneous monitoring of the XRD and ER with temperature is performed. ? The variation of ER and integral area of the diffraction peaks have been compared. ? A shift of the transformation temperatures obtained by two techniques is discussed.

  4. Switchable diode effect and ferroelectric resistive switching in epitaxial BiFeO3 thin films

    E-Print Network [OSTI]

    Tian, Weidong

    Switchable diode effect and ferroelectric resistive switching in epitaxial BiFeO3 thin films Can observed in epitaxial multiferroic BiFeO3 BFO thin films. The forward direction of the rectifying current the switchable diode effect and the ferroelectric resistive switching in epitaxially BFO thin films. BFO thin

  5. High-performance solar-blind ultraviolet photodetector based on mixed-phase ZnMgO thin film

    SciTech Connect (OSTI)

    Fan, M. M. [Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, 130033 Changchun (China); Liu, K. W., E-mail: liukw@ciomp.ac.cn, E-mail: shendz@ciomp.ac.cn; Zhang, Z. Z.; Li, B. H.; Chen, X.; Zhao, D. X.; Shan, C. X.; Shen, D. Z., E-mail: liukw@ciomp.ac.cn, E-mail: shendz@ciomp.ac.cn [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, 130033 Changchun (China)

    2014-07-07T23:59:59.000Z

    High Mg content mixed-phase Zn{sub 0.38}Mg{sub 0.62}O was deposited on a-face sapphire by plasma-assisted molecular beam epitaxy, based on which a metal-semiconductor-metal solar-blind ultraviolet (UV) photodetector was fabricated. The dark current is only 0.25?pA at 5?V, which is much lower than that of the reported mixed-phase ZnMgO photodetectors. More interestingly, different from the other mixed-phase ZnMgO photodetectors containing two photoresponse bands, this device shows only one response peak and its ?3?dB cut-off wavelength is around 275?nm. At 10?V, the peak responsivity is as high as 1.664?A/W at 260?nm, corresponding to an internal gain of ?8. The internal gain is mainly ascribed to the interface states at the grain boundaries acting as trapping centers of photogenerated holes. In view of the advantages of mixed-phase ZnMgO photodetectors over single-phase ZnMgO photodetectors, including easy fabrication, high responsivity, and low dark current, our findings are anticipated to pave a new way for the development of ZnMgO solar-blind UV photodetectors.

  6. All-thin-film multilayered multiferroic structures with a slot-line for spin-electromagnetic wave devices

    SciTech Connect (OSTI)

    Nikitin, Andrey A.; Ustinov, Alexey B. [Department of Physical Electronics and Technology, St. Petersburg Electrotechnical University, St. Petersburg 197376 (Russian Federation); Department of Mathematics and Physics, Lappeenranta University of Technology, Lappeenranta 53850 Finland (Finland); Semenov, Alexander A.; Kalinikos, Boris A. [Department of Physical Electronics and Technology, St. Petersburg Electrotechnical University, St. Petersburg 197376 (Russian Federation); Lähderanta, E. [Department of Mathematics and Physics, Lappeenranta University of Technology, Lappeenranta 53850 Finland (Finland)

    2014-03-03T23:59:59.000Z

    Spin-electromagnetic waves propagating in thin-film multilayered multiferroic structures containing a slot transmission line have been investigated both experimentally and theoretically. The thin-film structure was composed of a ferrite film, a ferroelectric film, and a slot-line. It was shown that the spectrum of the spin-electromagnetic wave was formed as a result of hybridization of the spin wave in the ferrite film with the electromagnetic wave in the slot-line and was electrically and magnetically tunable. For the experimental investigations, a microwave phase shifter based on the multiferroic structure has been fabricated. Performance characteristics are presented.

  7. Gas Sensing Mechanism in Chemiresistive Cobalt and Metal-Free Phthalocyanine Thin Films

    E-Print Network [OSTI]

    Kummel, Andrew C.

    Gas Sensing Mechanism in Chemiresistive Cobalt and Metal-Free Phthalocyanine Thin Films Forest I-free phthalocyanine (H2- Pc) thin films were investigated with respect to analyte basicity. Chemiresistive sensors However, when Pc thin films are exposed to O2, the films become doped and the conductivity increases

  8. Determination of refractive index, thickness, and the optical losses of thin films from

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Determination of refractive index, thickness, and the optical losses of thin films from prism­film.4760, 300.1030. 1. Introduction Transparent thin films find wide applications in optics: coating, sensors and optical losses. The optical losses of a thin film have three different origins: sur- face scattering due

  9. Microwave Planar Capacitors Employing Low Loss, High-K, and Tunable BZN Thin Films

    E-Print Network [OSTI]

    York, Robert A.

    Microwave Planar Capacitors Employing Low Loss, High-K, and Tunable BZN Thin Films Jaehoon Park) thin films deposited by RF magnetron sputtering. Device Q factors (QDUT) and capacitances (CDUT) were films can be the alternative to conventional BST thin films. Index Terms -- Dielectric properties

  10. DISSERTATION ELECTRON-REFLECTOR STRATEGY FOR CdTe THIN-FILM SOLAR CELLS

    E-Print Network [OSTI]

    Sites, James R.

    DISSERTATION ELECTRON-REFLECTOR STRATEGY FOR CdTe THIN-FILM SOLAR CELLS Submitted by Kuo-Jui Hsiao ELECTRON- REFLECTOR STRATEGY FOR CdTe THIN-FILM SOLAR CELLS BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS-FILM SOLAR CELLS The CdTe thin-film solar cell has a large absorption coefficient and high theoretical

  11. Thermoelectric effect in very thin film Pt/Au thermocouples

    SciTech Connect (OSTI)

    Salvadori, M.C.; Vaz, A.R.; Teixeira, F.S.; Cattani, M.; Brown,I.G.

    2006-01-10T23:59:59.000Z

    The thickness dependence of the thermoelectric power of Pt films of variable thickness on a reference Au film has been determined for the case when the Pt film thickness, t, is not large compared to the charge carrier mean free path, {ell}, that is, t/{ell}. Pt film thicknesses down to 2.2 nm were investigated. We find that {Delta}S{sub F} = S{sub B}-S{sub F} (where S{sub B} and S{sub F} are the thermopowers of the Pt bulk and film, respectively) does not vary linearly as 1/t as is the case for thin film thermocouples when the film thickness is large compared to the charge carrier mean free path.

  12. Uncooled thin film pyroelectric IR detector with aerogel thermal isolation

    SciTech Connect (OSTI)

    Ruffner, J.A.; Clem, P.G.; Tuttle, B.A. [and others

    1998-01-01T23:59:59.000Z

    Uncooled pyroelectric IR imaging systems, such as night vision goggles, offer important strategic advantages in battlefield scenarios and reconnaissance surveys. Until now, the current technology for fabricating these devices has been limited by low throughput and high cost which ultimately limit the availability of these sensor devices. We have developed and fabricated an alternative design for pyroelectric IR imaging sensors that utilizes a multilayered thin film deposition scheme to create a monolithic thin film imaging element on an active silicon substrate for the first time. This approach combines a thin film pyroelectric imaging element with a thermally insulating SiO{sub 2} aerogel thin film to produce a new type of uncooled IR sensor that offers significantly higher thermal, spatial, and temporal resolutions at a substantially lower cost per unit. This report describes the deposition, characterization and optimization of the aerogel thermal isolation layer and an appropriate pyroelectric imaging element. It also describes the overall integration of these components along with the appropriate planarization, etch stop, adhesion, electrode, and blacking agent thin film layers into a monolithic structure. 19 refs., 8 figs., 6 tabs.

  13. as2s3 thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    films Engineering Websites Summary: of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from the switching mechanisms of...

  14. Low Temperature Chemical Vapor Deposition Of Thin Film Magnets

    DOE Patents [OSTI]

    Miller, Joel S. (Salt Lake City, UT); Pokhodnya, Kostyantyn I. (Salt Lake City, UT)

    2003-12-09T23:59:59.000Z

    A thin-film magnet formed from a gas-phase reaction of tetracyanoetheylene (TCNE) OR (TCNQ), 7,7,8,8-tetracyano-P-quinodimethane, and a vanadium-containing compound such as vanadium hexcarbonyl (V(CO).sub.6) and bis(benzene)vanalium (V(C.sub.6 H.sub.6).sub.2) and a process of forming a magnetic thin film upon at least one substrate by chemical vapor deposition (CVD) at a process temperature not exceeding approximately 90.degree. C. and in the absence of a solvent. The magnetic thin film is particularly suitable for being disposed upon rigid or flexible substrates at temperatures in the range of 40.degree. C. and 70.degree. C. The present invention exhibits air-stable characteristics and qualities and is particularly suitable for providing being disposed upon a wide variety of substrates.

  15. Characterization of sputter deposited thin film scandate cathodes for miniaturized thermionic converter applications

    SciTech Connect (OSTI)

    Zavadil, K.R.; Ruffner, J.H.; King, D.B. [Sandia National Laboratories, Materials Processing Sciences Center, Albuquerque, New Mexico 87185-0340 (United States)

    1999-01-01T23:59:59.000Z

    We have successfully developed a method for fabricating scandate-based thermionic emitters in thin film form. The primary goal of our effort is to develop thin film emitters that exhibit low work function, high intrinsic electron emissivity, minimum thermal activation properties and that can be readily incorporated into a microgap converter. Our approach has been to incorporate BaSrO into a Sc{sub 2}O{sub 3} matrix using rf sputtering to produce thin films. Diode testing has shown the resulting films to be electron emissive at temperatures as low as 900 K with current densities of 0.1 mA{center_dot}cm{sup {minus}2} at 1100 K and saturation voltages. We calculate an approximate maximum work function of 1.8 eV and an apparent emission constant (Richardson{close_quote}s constant, A{sup {asterisk}}) of 36 mA{center_dot}cm{sup {minus}2}{center_dot}K{sup {minus}2}. Film compositional and structural analysis shows that a significant surface and subsurface alkaline earth hydroxide phase can form and probably explains the limited utilization and stability of Ba and its surface complexes. The flexibility inherent in sputter deposition suggests alternate strategies for eliminating undesirable phases and optimizing thin film emitter properties. {copyright} {ital 1999 American Institute of Physics.}

  16. Characterization of Sputter Deposited Thin Film Scandate Cathodes for Miniaturized Thermionic Converter Applications

    SciTech Connect (OSTI)

    King, D.B.; Ruffner, J.H.; Zavadil, K.R.

    1998-12-14T23:59:59.000Z

    We have successfully developed a method for fabricating scandate-based thermionic emitters in thin film form. The primary goal of our effort is to develop thin film emitters that exhibit low work fimction, high intrinsic electron emissivity, minimum thermal activation properties and that can be readily incorporated into a microgap converter. Our approach has been to incorporate BaSrO into a SqOq matrix using rf sputtering to produce thin films. Diode testing has shown the resulting films to be electron emissive at temperatures as low as 900 K with current densities of 0.1 mA.cm-2 at 1100 K and saturation voltages. We calculate an approximate maximum work function of 1.8 eV and an apparent emission constant (Richardson's constant, A*) of 36 mA.cm-2.K-2. Film compositional and structural analysis shows that a significant surface and subsurface alkaline earth hydroxide phase can form and probably explains the limited utilization and stability of Ba and its surface complexes. The flexibility inherent in sputter deposition suggests alternate strategies for eliminating undesirable phases and optimizing thin film emitter properties.

  17. Laser processing of polymer nanocomposite thin films A. T. Sellinger, E. M. Leveugle, K. Gogick, L. V. Zhigilei, and J. M. Fitz-Geralda

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    that nanocomposite thin films tend to exhibit.6­12 Poly- mer thin films infused with carbon nanotubes CNTs often

  18. Scaling law analysis of paraffin thin films on different surfaces

    SciTech Connect (OSTI)

    Dotto, M. E. R.; Camargo, S. S. Jr. [Engenharia Metalurgica e de Materials, Universidade Federal do Rio de Janeiro, Cx. Postal 68505, Rio de Janeiro, RJ, CEP 21945-970 (Brazil)

    2010-01-15T23:59:59.000Z

    The dynamics of paraffin deposit formation on different surfaces was analyzed based on scaling laws. Carbon-based films were deposited onto silicon (Si) and stainless steel substrates from methane (CH{sub 4}) gas using radio frequency plasma enhanced chemical vapor deposition. The different substrates were characterized with respect to their surface energy by contact angle measurements, surface roughness, and morphology. Paraffin thin films were obtained by the casting technique and were subsequently characterized by an atomic force microscope in noncontact mode. The results indicate that the morphology of paraffin deposits is strongly influenced by substrates used. Scaling laws analysis for coated substrates present two distinct dynamics: a local roughness exponent ({alpha}{sub local}) associated to short-range surface correlations and a global roughness exponent ({alpha}{sub global}) associated to long-range surface correlations. The local dynamics is described by the Wolf-Villain model, and a global dynamics is described by the Kardar-Parisi-Zhang model. A local correlation length (L{sub local}) defines the transition between the local and global dynamics with L{sub local} approximately 700 nm in accordance with the spacing of planes measured from atomic force micrographs. For uncoated substrates, the growth dynamics is related to Edwards-Wilkinson model.

  19. Enhanced Efficiency of Light-Trapping Nanoantenna Arrays for Thin Film Solar Cells

    E-Print Network [OSTI]

    Simovski, Constantin R; Voroshilov, Pavel M; Guzhva, Michael E; Belov, Pavel A; Kivshar, Yuri S

    2013-01-01T23:59:59.000Z

    We suggest a novel concept of efficient light-trapping structures for thin-film solar cells based on arrays of planar nanoantennas operating far from plasmonic resonances. The operation principle of our structures relies on the excitation of chessboard-like collective modes of the nanoantenna arrays with the field localized between the neighboring metal elements. We demonstrated theoretically substantial enhancement of solar-cell short-circuit current by the designed light-trapping structure in the whole spectrum range of the solar-cell operation compared to conventional structures employing anti-reflecting coating. Our approach provides a general background for a design of different types of efficient broadband light-trapping structures for thin-film solar-cell technologically compatible with large-area thin-film fabrication techniques.

  20. Carrier Dynamics in a-Fe2O3 (0001) Thin Films and Single Crystals...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carrier Dynamics in a-Fe2O3 (0001) Thin Films and Single Crystals Probed by Femtosecond Transient Absorption and Reflectivity. Carrier Dynamics in a-Fe2O3 (0001) Thin Films and...

  1. ZnS Thin Films Deposited by a Spin Successive Ionic Layer Adsorption...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ZnS Thin Films Deposited by a Spin Successive Ionic Layer Adsorption and Reaction Process. ZnS Thin Films Deposited by a Spin Successive Ionic Layer Adsorption and Reaction...

  2. Adsorption of iso-/n-butane on an Anatase Thin Film: A Molecular...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    iso-n-butane on an Anatase Thin Film: A Molecular Beam Scattering and TDS Study. Adsorption of iso-n-butane on an Anatase Thin Film: A Molecular Beam Scattering and TDS Study....

  3. Two-color Laser Desorption of Nanostructured MgO Thin Films....

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two-color Laser Desorption of Nanostructured MgO Thin Films. Two-color Laser Desorption of Nanostructured MgO Thin Films. Abstract: Neutral magnesium atom emission from...

  4. Epoxy/Single Walled Carbon Nanotube Nanocomposite Thin Films for Composites Reinforcement

    E-Print Network [OSTI]

    Warren, Graham

    2010-07-14T23:59:59.000Z

    This work is mainly focused upon the preparation, processing and evaluation of mechanical and material properties of epoxy/single walled carbon nanotube (SWCNT) nanocomposite thin films. B-staged epoxy/SWCNT nanocomposite thin films at 50% of cure...

  5. Characterization of LiNi?.?Mn?.?O? Thin Film Cathode Prepared by Pulsed Laser Deposition

    E-Print Network [OSTI]

    Xia, Hui

    LiNi?.?Mn?.?O? thin films have been grown by pulsed laser deposition (PLD) on stainless steel (SS) substrates. The crystallinity and structure of thin films were investigated by X-ray diffraction (XRD). Microstructure and ...

  6. Generation of low work function, stable compound thin films by laser ablation

    DOE Patents [OSTI]

    Dinh, Long N. (Concord, CA); McLean, II, William (Oakland, CA); Balooch, Mehdi (Berkeley, CA); Fehring, Jr., Edward J. (Dublin, CA); Schildbach, Marcus A. (Livermore, CA)

    2001-01-01T23:59:59.000Z

    Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

  7. Study of Martensitic Phase transformation in a NiTiCu Thin Film...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Martensitic Phase transformation in a NiTiCu Thin Film Shape Memory Alloy Using Photoelectron Emission Microscopy. Study of Martensitic Phase transformation in a NiTiCu Thin Film...

  8. Anisotropic dewetting in ultra-thin single-crystal silicon-on-insulator films

    E-Print Network [OSTI]

    Danielson, David T. (David Thomas)

    2008-01-01T23:59:59.000Z

    The single crystal silicon-on-insulator thin film materials system represents both an ideal model system for the study of anisotropic thin film dewetting as well as a technologically important system for the development ...

  9. Layer-by-Layer Assembly of Clay-filled Polymer Nanocomposite Thin Films

    E-Print Network [OSTI]

    Jang, Woo-Sik

    2010-01-14T23:59:59.000Z

    robotic dipping system, for the preparation of these thin films, was built. The robot alternately dips a substrate into aqueous mixtures with rinsing and drying in between. Thin films of sodium montmorillonite clay and cationic polymer were grown...

  10. Influence of samaria doping on the resistance of ceria thin films...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    doping on the resistance of ceria thin films and its implications to the planar oxygen sensing devices. Influence of samaria doping on the resistance of ceria thin films and...

  11. Growth of Epitaxial Thin Pd(111) Films on Pt(111) and Oxygen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Growth of Epitaxial Thin Pd(111) Films on Pt(111) and Oxygen-Terminated FeO(111) Surfaces . Growth of Epitaxial Thin Pd(111) Films on Pt(111) and Oxygen-Terminated FeO(111)...

  12. On the room-temperature ferromagnetism of Zn1-xCrxO thin films...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On the room-temperature ferromagnetism of Zn1-xCrxO thin films deposited by reactive co-sputtering. On the room-temperature ferromagnetism of Zn1-xCrxO thin films deposited by...

  13. Initiated chemical vapor deposition of polymeric thin films : mechanism and applications

    E-Print Network [OSTI]

    Chan, Kelvin, Ph. D. Massachusetts Institute of Technology

    2005-01-01T23:59:59.000Z

    Initiated chemical vapor deposition (iCVD) is a novel technique for depositing polymeric thin films. It is able to deposit thin films of application-specific polymers in one step without using any solvents. Its uniqueness ...

  14. High efficiency thin film silicon solar cells with novel light trapping : principle, design and processing

    E-Print Network [OSTI]

    Zeng, Lirong, Ph. D. Massachusetts Institute of Technology

    2008-01-01T23:59:59.000Z

    One major efficiency limiting factor in thin film solar cells is weak absorption of long wavelength photons due to the limited optical path length imposed by the thin film thickness. This is especially severe in Si because ...

  15. Fabrication of polycrystalline thin films by pulsed laser processing

    DOE Patents [OSTI]

    Mitlitsky, F.; Truher, J.B.; Kaschmitter, J.L.; Colella, N.J.

    1998-02-03T23:59:59.000Z

    A method is disclosed for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells. 1 fig.

  16. Fabrication of polycrystalline thin films by pulsed laser processing

    DOE Patents [OSTI]

    Mitlitsky, Fred (Livermore, CA); Truher, Joel B. (San Rafael, CA); Kaschmitter, James L. (Pleasanton, CA); Colella, Nicholas J. (Livermore, CA)

    1998-02-03T23:59:59.000Z

    A method for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells.

  17. Far From Threshold Buckling Analysis of Thin Films

    E-Print Network [OSTI]

    Benny Davidovitch; Robert D. Schroll; Dominic Vella; Mokhtar Adda-Bedia; Enrique Cerda

    2010-08-17T23:59:59.000Z

    Thin films buckle easily and form wrinkled states in regions of well defined size. The extent of a wrinkled region is typically assumed to reflect the zone of in-plane compressive stresses prior to buckling, but recent experiments on ultrathin sheets have shown that wrinkling patterns are significantly longer and follow different scaling laws than those predicted by standard buckling theory. Here we focus on a simple setup to show the striking differences between near-threshold buckling and the analysis of wrinkle patterns in very thin films, which are typically far from threshold.

  18. Flexible Ultra Moisture Barrier Film for Thin-Film Photovoltaic Applications

    SciTech Connect (OSTI)

    David M. Dean

    2012-10-30T23:59:59.000Z

    Flexible Thin-film photovoltaic (TFPV) is a low cost alternative to incumbent c-Si PV products as it requires less volume of costly semiconductor materials and it can potentially reduce installation cost. Among the TFPV options, copper indium gallium diselenide (CIGS) has the highest efficiency and is believed to be one of the most attractive candidates to achieve PV cost reduction. However, CIGS cells are very moisture sensitive and require module water vapor transmission rate (WVTR) of less than 1x10-4 gram of water per square meter per day (g-H2O/m2/day). Successful development and commercialization of flexible transparent ultra moisture barrier film is the key to enable flexible CIGS TFPV products, and thus enable ultimate PV cost reduction. At DuPont, we have demonstrated at lab scale that we can successfully make polymer-based flexible transparent ultra moisture barrier film by depositing alumina on polymer films using atomic layer deposition (ALD) technology. The layer by layer ALD approach results in uniform and amorphous structure which effectively reduces pinhole density of the inorganic coating on the polymer, and thus allow the fabrication of flexible barrier film with WVTR of 10-5 g-H2O/m2/day. Currently ALD is a time-consuming process suitable only for high-value, relatively small substrates. To successfully commercialize the ALD-on-plastic technology for the PV industry, there is the need to scale up this technology and improve throughput. The goal of this contract work was to build a prototype demonstrating that the ALD technology could be scaled-up for commercial use. Unfortunately, the prototype failed to produce an ultra-barrier film by the close of the project.

  19. Black Silicon Enhanced Thin Film Silicon Photovoltaic Devices

    SciTech Connect (OSTI)

    Martin U. Pralle; James E. Carey

    2010-07-31T23:59:59.000Z

    SiOnyx has developed an enhanced thin film silicon photovoltaic device with improved efficiency. Thin film silicon solar cells suffer from low material absorption characteristics resulting in poor cell efficiencies. SiOnyx’s approach leverages Black Silicon, an advanced material fabricated using ultrafast lasers. The laser treated films show dramatic enhancement in optical absorption with measured values in excess of 90% in the visible spectrum and well over 50% in the near infrared spectrum. Thin film Black Silicon solar cells demonstrate 25% higher current generation with almost no impact on open circuit voltage as compared with representative control samples. The initial prototypes demonstrated an improvement of nearly 2 percentage points in the suns Voc efficiency measurement. In addition we validated the capability to scale this processing technology to the throughputs (< 5 min/m2) required for volume production using state of the art commercially available high power industrial lasers. With these results we clearly demonstrate feasibility for the enhancement of thin film solar cells with this laser processing technique.

  20. Perovskite phase thin films and method of making

    DOE Patents [OSTI]

    Boyle, Timothy J. (Albuquerque, NM); Rodriguez, Mark A. (Albuquerque, NM)

    2000-01-01T23:59:59.000Z

    The present invention comprises perovskite-phase thin films, of the general formula A.sub.x B.sub.y O.sub.3 on a substrate, wherein A is selected from beryllium, magnesium, calcium, strontium, and barium or a combination thereof; B is selected from niobium and tantalum or a combination thereof; and x and y are mole fractions between approximately 0.8 and 1.2. More particularly, A is strontium or barium or a combination thereof and B is niobium or tantalum or a combination thereof. Also provided is a method of making a perovskite-phase thin film, comprising combining at least one element-A-containing compound, wherein A is selected from beryllium, magnesium, calcium, strontium or barium, with at least one element-B-containing compound, wherein B niobium or tantalum, to form a solution; adding a solvent to said solution to form another solution; spin-coating the solution onto a substrate to form a thin film; and heating the film to form the perovskite-phase thin film.

  1. Experimental thin film deposition and surface analysis techniques

    SciTech Connect (OSTI)

    Collins, W.E.; Rambabu, B.

    1986-01-01T23:59:59.000Z

    An attempt has been made to present some of the thin-film deposition and surface analysis techniques which may be useful in growing superionic conducting materials. Emphasis is made on the importance of being careful in selecting process parameters and materials in order to produce films with properties outlined in this article. Also, special care should be given to proper consideration of grain boundary effects.

  2. Electrical properties of quench-condensed thin film

    E-Print Network [OSTI]

    Lee, Kyoungjin

    2009-05-15T23:59:59.000Z

    cryopump is used for high vacuum pumping. Materials to be evaporated (evaporant) are held by evaporation sources, like a crucible, boat or wire coil. Tungsten wire is commonly used as an evaporation source for materials like aluminum, nickel, chromium... films were evaporated at room temperature with NRC 3114 commercial thermal evaporator. We deposited aluminum and nickel thin films in a form of bar with shadow mask. A commercial tungsten basket was used for the evaporation source. The evaporation...

  3. Substrates suitable for deposition of superconducting thin films

    DOE Patents [OSTI]

    Feenstra, Roeland (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN)

    1993-01-01T23:59:59.000Z

    A superconducting system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.

  4. Preparation of a semiconductor thin film

    DOE Patents [OSTI]

    Pehnt, M.; Schulz, D.L.; Curtis, C.J.; Ginley, D.S.

    1998-01-27T23:59:59.000Z

    A process is disclosed for the preparation of a semiconductor film. The process comprises depositing nanoparticles of a semiconductor material onto a substrate whose surface temperature during nanoparticle deposition thereon is sufficient to cause substantially simultaneous fusion of the nanoparticles to thereby coalesce with each other and effectuate film growth.

  5. Preparation of a semiconductor thin film

    DOE Patents [OSTI]

    Pehnt, Martin (TuBingen, DE); Schulz, Douglas L. (Denver, CO); Curtis, Calvin J. (Lakewood, CO); Ginley, David S. (Evergreen, CO)

    1998-01-01T23:59:59.000Z

    A process for the preparation of a semiconductor film. The process comprises depositing nanoparticles of a semiconductor material onto a substrate whose surface temperature during nanoparticle deposition thereon is sufficient to cause substantially simultaneous fusion of the nanoparticles to thereby coalesce with each other and effectuate film growth.

  6. Resonant cavity enhanced light harvesting in flexible thin-film organic solar cells

    E-Print Network [OSTI]

    Fan, Shanhui

    Optical Society of America OCIS codes: (310.7005) Transparent conductive coatings; (310.6845) Thin film

  7. Mechanisms of Zinc Oxide Nanocrystalline Thin Film Formation by Thermal Degradation of Metal-Loaded Hydrogels

    E-Print Network [OSTI]

    electrode in flat- panel displays,1 solar cells, and thin-film transistors.2,3 Other recent reports account

  8. Research on high-efficiency, large-area CuInSe{sub 2}-based thin-film modules. Final subcontract report, 16 August 1993--30 June 1995

    SciTech Connect (OSTI)

    Tarrant, D.E.; Gay, R.R. [Siemens Solar Industries, Camarillo, CA (United States)

    1995-07-01T23:59:59.000Z

    This final subcontract report, describing work to fabricate a large-area, stable, 12.5% (aperture)-efficient encapsulated CuInSe{sub 2} (CIS) module by scalable, low-cost techniques on inexpensive substrates. Demonstrated encapsulated module efficiencies (encapsulated 12.8%-efficient mini-module on 68.9cm{sup 2} and an NREL-verified 12.7%-efficient unencapsulated circuit on 69 CM{sup 2} with a prismatic cover) are the highest reported mini-module demonstrated (and verified by NREL). This is the first thin-film module of its size to exceed the 10% efficiency level. SSI also supplied NREL with a 1-kW array of large-area ({approximately}3890 CM{sup 2}) approximately 30-W modules. The NREL-verified performance of this array is a significant step toward meeting the efficiency target of the USDOE Five-Year Plan goals of 8%--10%-efficient commercial thin-film, flat-plate modules. Long-term outdoor stability of CIS and CIS-based absorbers was demonstrated by testing at NREL. Excellent stability was demonstrated for 6 years of outdoor exposure. The stability of the 1-kW Siemens CIS array, installed and tested at NREL, was also demonstrated for an exposure of about 1 year. The foundations have been laid to meet the thin-film milestones of the DOE Five-Year Plan. Outdoor testing has demonstrated excellent intrinsic module stability. Future plans include scaling these results to larger areas and emphasizing the reduction of variation methodology to lay the foundation for demonstrating the potential of CIS as a future commercial product.

  9. Molecular orientation in soft matter thin films studied by resonant soft X-ray reflectivity

    SciTech Connect (OSTI)

    Mezger, Markus; Jerome, Blandine; Kortright, Jeffrey B.; Valvidares, Manuel; Gullikson, Eric; Giglia, Angelo; Mahne, Nicola; Nannarone, Stefano

    2011-01-12T23:59:59.000Z

    We present a technique to study depth profiles of molecular orientation in soft matter thin films with nanometer resolution. The method is based on dichroism in resonant soft X-ray reflectivity using linear s- and p-polarization. It combines the chemical sensitivity of Near-Edge X-ray Absorption Fine Structure spectroscopy to specific molecular bonds and their orientation relative to the polarization of the incident beam with the precise depth profiling capability of X-ray reflectivity. We demonstrate these capabilities on side chain liquid crystalline polymer thin films with soft X-ray reflectivity data at the carbon K edge. Optical constants of the anisotropic refractive index ellipsoid were obtained from a quantitative analysis using the Berreman formalism. For films up to 50 nm thickness we find that the degree of orientation of the long axis exhibits no depth variation and isindependent of the film thickness.

  10. Realizing high-voltage thin film lateral bipolar transistors on SOI with a collector-tub

    E-Print Network [OSTI]

    Kumar, M. Jagadesh

    Realizing high-voltage thin film lateral bipolar transistors on SOI with a collector-tub Sukhendu-dimensional device simulation to examine the effect of a collector tub on the collector breakdown of the SOI based BJTs. This method involves creating a collector tub by etching the buried oxide followed by an n

  11. EARTH ABUNDANT MATERIALS FOR HIGH EFFICIENCY HETEROJUNCTION THIN FILM SOLAR CELLS

    E-Print Network [OSTI]

    Ceder, Gerbrand

    materials for thin film solar cells such as CdTe and CIGS suffer from concerns over resource scarcity (eEARTH ABUNDANT MATERIALS FOR HIGH EFFICIENCY HETEROJUNCTION THIN FILM SOLAR CELLS Yun Seog Lee 1 conversion efficiencies should be increased. In terms of reducing module cost, thin film solar cells

  12. A Homogenized Free Energy Model for Hysteresis in Thin-film Shape Memory Alloys

    E-Print Network [OSTI]

    A Homogenized Free Energy Model for Hysteresis in Thin-film Shape Memory Alloys Jordan E. Massad1-8205 Abstract Thin-film shape memory alloys (SMAs) have become excellent candidates for mi- croactuator- lustrate aspects of the model through comparison with thin-film SMA superelastic and shape memory effect

  13. Barium ferrite thin film media with perpendicular c-axis orientation and small grain size

    E-Print Network [OSTI]

    Laughlin, David E.

    Barium ferrite thin film media with perpendicular c-axis orientation and small grain size Zailong, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 Barium ferrite thin films with perpendicular c conditions. The c-axis orientation of barium ferrite thin films is most sensitive to the oxygen partial

  14. Time-Resolved Magnetic Flux and AC-Current Distributions in Superconducting YBCO Thin Films and

    E-Print Network [OSTI]

    Shaw, Leah B.

    Time-Resolved Magnetic Flux and AC-Current Distributions in Superconducting YBCO Thin Films magnetic field. We study the interaction behavior of YBCO thin films in an ac transport current and a dc the calibrated field profiles. The current density evolution in YBCO thin films is studied by TRMOI as a function

  15. Hybrid spectral/finite element analysis of dynamic delamination of patterned thin films

    E-Print Network [OSTI]

    Sottos, Nancy R.

    Hybrid spectral/finite element analysis of dynamic delamination of patterned thin films Phuong Tran Accepted 10 March 2008 Available online 20 March 2008 Keywords: Thin film Adhesion Delamination Dynamic analysis is performed to investigate the dynamic edge delamination of patterned thin films from a substrate

  16. X-ray Absorption Spectroscopy of Transition Metal-Magnesium Hydride Thin Films

    E-Print Network [OSTI]

    X-ray Absorption Spectroscopy of Transition Metal-Magnesium Hydride Thin Films T. J. Richardsona@lbl.gov Abstract Mixed metal thin films containing magnesium and a first-row transition element exhibit very large of magnesium hydride. Keywords: A. hydrogen storage materials, thin films; C. EXAFS, NEXAFS, X-ray diffraction

  17. Influence of stoichiometry on the dielectric properties of sputtered strontium titanate thin films

    E-Print Network [OSTI]

    York, Robert A.

    Influence of stoichiometry on the dielectric properties of sputtered strontium titanate thin films.1063/1.1598274 INTRODUCTION SrTiO3 thin films have been widely studied for their high dielectric constants and potential temperature superconductors. The dielectric permittivity of SrTiO3 thin films is significantly smaller than

  18. Effects of thickness on the piezoelectric and dielectric properties of lead zirconate titanate thin films

    E-Print Network [OSTI]

    Sottos, Nancy R.

    Lead zirconate titanate PZT thin films with a Zr/Ti ratio of 52/48 were deposited on platinized silicon. Both the piezoelectric properties and the dielectric constants of the PZT thin films were found thin films. The measured changes in properties with thickness were correlated with the residual stress

  19. THE THIN FILM EQUATION WITH "BACKWARDS" FORCING AMY NOVICK-COHEN

    E-Print Network [OSTI]

    Novick-Cohen, Amy

    THE THIN FILM EQUATION WITH "BACKWARDS" FORCING AMY NOVICK-COHEN DEPARTMENT OF MATHEMATICS TECHNION-2007) Abstract. In this paper, we focus on the thin film equation with lower order "backwards" diffusion which can describe, for example, structure formation in biofilms and the evolution of thin viscous films

  20. THIN FILM EPITAXY WITH OR WITHOUT SLOPE SELECTION BO LI AND JIAN-GUO LIU

    E-Print Network [OSTI]

    Soatto, Stefano

    THIN FILM EPITAXY WITH OR WITHOUT SLOPE SELECTION BO LI AND JIAN-GUO LIU Abstract. Two nonlinear diffusion equations for thin film epitaxy, with or without slope se- lection, are studied in this work = - · h 1 + | h|2 + h (1.1) and th = - · 1 - | h|2 h + h (1.2) that model epitaxial growth of thin films

  1. Thin film ZT characterization using transient Harman technique Zhixi Bian, Yan Zhang, Holger Schmidt, Ali Shakouri

    E-Print Network [OSTI]

    Thin film ZT characterization using transient Harman technique Zhixi Bian, Yan Zhang, Holger Street, Santa Cruz, CA 95064 Email: ali@soe.ucsc.edu, phone: (831) 459-3821 Abstract Thin-film to the freedom of tailoring the electron and heat transport. The characterization of these thin films

  2. Mathematical Model of Charge and Density Distributions in Interfacial Polymerization of Thin Films

    E-Print Network [OSTI]

    Freger, Viatcheslav "Slava"

    Mathematical Model of Charge and Density Distributions in Interfacial Polymerization of Thin Films INTRODUCTION Interfacial polymerization (IP) as a method of prepa- ration of thin film composite (TFC- tion. It has been shown that the formation of a thin film occurs very quickly and often results

  3. REVIEW OF SCIENTIFIC INSTRUMENTS 82, 023908 (2011) Calorimetry of epitaxial thin films

    E-Print Network [OSTI]

    Hellman, Frances

    2011-01-01T23:59:59.000Z

    REVIEW OF SCIENTIFIC INSTRUMENTS 82, 023908 (2011) Calorimetry of epitaxial thin films David W 2011; accepted 22 January 2011; published online 24 February 2011) Thin film growth allows. Microcalorimetry and nanocalorimetry techniques exist for the measurements of thin films but rely on an amorphous

  4. Thin film microcalorimeter for heat capacity measurements from 1.5 to 800 K

    E-Print Network [OSTI]

    Hellman, Frances

    Thin film microcalorimeter for heat capacity measurements from 1.5 to 800 K , D. W. Denlinger, E. N for publication 13 January 1994) A new microcalorimeter for measuring heat capacity of thin films in the range 1 silicon nitride membrane as the sample substrate, a Pt thin film resistor for temperatures greater than 40

  5. Thin-Film Solid-Phase Extraction To Measure Fugacities of Organic

    E-Print Network [OSTI]

    Gobas, Frank

    Thin-Film Solid-Phase Extraction To Measure Fugacities of Organic Chemicals with Low Volatility organic chemicals ranging in octanol-air partition coefficients from 105.6 to 109.2. Thin films feasibility, equilibration times, reproducibility, and property characteristics of the thin films

  6. Impact of thermal strain on the dielectric constant of sputtered barium strontium titanate thin films

    E-Print Network [OSTI]

    York, Robert A.

    thin films were deposited by sputtering on Pt/SiO2 structures using five different host substrates.1063/1.1459482 Oxide thin films remain very attractive to researchers due to their wide range of useful physical properties. Most groups have focused on the fabrication of thin films for op- tical and dielectric

  7. Hole Growth as a Microrheological Probe to Measure the Viscosity of Polymers Confined to Thin Films

    E-Print Network [OSTI]

    Dutcher, John

    Hole Growth as a Microrheological Probe to Measure the Viscosity of Polymers Confined to Thin Films thin freely-standing films revealed that hole formation and growth occurs only at temperatures: 3011­3021, 2006 Keywords: glass transition; nanoscale confinement; rheology; thin films; viscoelastic

  8. Sculptured thin films and glancing angle deposition: Growth mechanics and applications

    E-Print Network [OSTI]

    Robbie, Kevin

    Sculptured thin films and glancing angle deposition: Growth mechanics and applications K. Robbiea thin films with three dimensional microstructure controlled on the 10 nm scale were fabricated'' columnar thin film microstructure into desired forms ranging from zigzag shaped to helical to four

  9. Phase Transformations in Pulsed Laser Deposited Nanocrystalline Tin Oxide Thin Films

    E-Print Network [OSTI]

    Reid, Scott A.

    Phase Transformations in Pulsed Laser Deposited Nanocrystalline Tin Oxide Thin Films Haiyan Fan August 20, 2002. Revised Manuscript Received November 11, 2002 Thin SnOx films have been synthesized of reducing gases,1-3 and thin films have been synthesized by various means including evapora- tion,4

  10. Low-Loss, Tunable Microwave Capacitors Using Bismuth Zinc Niobate Thin Films

    E-Print Network [OSTI]

    York, Robert A.

    Low-Loss, Tunable Microwave Capacitors Using Bismuth Zinc Niobate Thin Films Jaehoon Park, Jiwei in the measured frequency range. The results show that BZN thin films have great potential for low loss, tunable microwave devices. Keyword: low loss, thin film, capacitors, dielectric properties, bismuth zinc niobate I

  11. ASC2014-4EPo2G-04 1 Aging of Ultra-Thin Niobium Films

    E-Print Network [OSTI]

    Prober, Daniel E.

    ASC2014-4EPo2G-04 1 Aging of Ultra-Thin Niobium Films Daniel F. Santavicca and Daniel E. Prober Abstract-- We characterize the evolution of the electrical properties of ultra-thin niobium films stored. Index Terms--Niobium, superconducting thin films, superconducting devices, nanofabrication I

  12. Microwave plasma assisted supersonic gas jet deposition of thin film materials

    DOE Patents [OSTI]

    Schmitt, III, Jerome J. (New Haven, CT); Halpern, Bret L. (Bethany, CT)

    1993-01-01T23:59:59.000Z

    An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures.

  13. Remote plasma enhanced atomic layer deposition of ZnO for thin film electronic applications

    E-Print Network [OSTI]

    Zheludev, Nikolay

    Remote plasma enhanced atomic layer deposition of ZnO for thin film electronic applications S: Available online 28 May 2012 Keywords: Remote plasma Atomic layer deposition (ALD) ZnO Thin film transistor of various reactant plasma parameters of remote plasma enhanced ALD (PEALD) on the ZnO thin film properties

  14. DETERMINING OPTICAL CONSTANTS OF URANIUM NITRIDE THIN FILMS IN THE EXTREME

    E-Print Network [OSTI]

    Hart, Gus

    DETERMINING OPTICAL CONSTANTS OF URANIUM NITRIDE THIN FILMS IN THE EXTREME ULTRAVIOLET (1.6-35 NM deposition and characterization of reactively-sputtered uranium nitride thin films. I also report optical.1 Application 1 1.2 Optical Constants 2 1.3 Project Focus 7 2 Uranium Nitride Thin Films 8 2.1 Sputtering 8 2

  15. Metal-black scattering centers to enhance light harvesting by thin-film solar cells

    E-Print Network [OSTI]

    Peale, Robert E.

    Metal-black scattering centers to enhance light harvesting by thin-film solar cells Deep Panjwania as scattering centers to increase the effective optical thickness of thin-film solar cells. The particular type. Gold-black was deposited on commercial thin-film solar cells using a thermal evaporator in nitrogen

  16. Growth of GaN Thin Films on Silicon Using Single Source Precursors

    E-Print Network [OSTI]

    Boo, Jin-Hyo

    Growth of GaN Thin Films on Silicon Using Single Source Precursors and Development of New We have grown the GaN thin films on silicon substrates using the newly developed single source precursors by thermal MOCVD method. Highly oriented GaN thin films in the [002] direction with hexagonal

  17. Electrochromic control of thin film light scattering

    SciTech Connect (OSTI)

    Lindstroem, T.; Kullman, L.; Roennow, D.; Ribbing, C.; Granqvist, C.G. [Department of Technology, Uppsala University, P.O. Box 534, S-752 21, Uppsala (Sweden)] [Department of Technology, Uppsala University, P.O. Box 534, S-752 21, Uppsala (Sweden)

    1997-02-01T23:59:59.000Z

    Total and diffuse reflectance spectra were measured on Al surfaces covered with electrochromic W oxide films in colored and bleached states. Vector perturbation theory was used for analyzing the spectra. The diffuse reflectance appeared to originate from correlated (uncorrelated) interface roughness when the W oxide film was fully colored (bleached). Assuming partially correlated interfaces led to agreement between experimental and calculated spectra. The use of an electrochromic film appears a promising method to control the relative contributions of the interfaces to the resulting scattering. {copyright} {ital 1997 American Institute of Physics.}

  18. Control of magnetization reversal in oriented strontium ferrite thin films

    SciTech Connect (OSTI)

    Roy, Debangsu, E-mail: debangsu@physics.iisc.ernet.in; Anil Kumar, P. S. [Department of Physics, Indian Institute of Science, Bangalore 560012 (India)

    2014-02-21T23:59:59.000Z

    Oriented Strontium Ferrite films with the c axis orientation were deposited with varying oxygen partial pressure on Al{sub 2}O{sub 3}(0001) substrate using Pulsed Laser Deposition technique. The angle dependent magnetic hysteresis, remanent coercivity, and temperature dependent coercivity had been employed to understand the magnetization reversal of these films. It was found that the Strontium Ferrite thin film grown at lower (higher) oxygen partial pressure shows Stoner-Wohlfarth type (Kondorsky like) reversal. The relative importance of pinning and nucleation processes during magnetization reversal is used to explain the type of the magnetization reversal with different oxygen partial pressure during growth.

  19. Oriented niobate ferroelectric thin films for electrical and optical devices

    DOE Patents [OSTI]

    Wessels, Bruce W. (Wilmette, IL); Nystrom, Michael J. (Chicago, IL)

    2001-01-01T23:59:59.000Z

    Sr.sub.x Ba.sub.1-x Nb.sub.2 O.sub.6, where x is greater than 0.25 and less than 0.75, and KNbO.sub.3 ferroelectric thin films metalorganic chemical vapor deposited on amorphous or cyrstalline substrate surfaces to provide a crystal axis of the film exhibiting a high dielectric susceptibility, electro-optic coefficient, and/or nonlinear optic coefficient oriented preferentially in a direction relative to a crystalline or amorphous substrate surface. Such films can be used in electronic, electro-optic, and frequency doubling components.

  20. Ultrashort pulse laser deposition of thin films

    DOE Patents [OSTI]

    Perry, Michael D. (Livermore, CA); Banks, Paul S. (Livermore, CA); Stuart, Brent C. (Fremont, CA)

    2002-01-01T23:59:59.000Z

    Short pulse PLD is a viable technique of producing high quality films with properties very close to that of crystalline diamond. The plasma generated using femtosecond lasers is composed of single atom ions with no clusters producing films with high Sp.sup.3 /Sp.sup.2 ratios. Using a high average power femtosecond laser system, the present invention dramatically increases deposition rates to up to 25 .mu.m/hr (which exceeds many CVD processes) while growing particulate-free films. In the present invention, deposition rates is a function of laser wavelength, laser fluence, laser spot size, and target/substrate separation. The relevant laser parameters are shown to ensure particulate-free growth, and characterizations of the films grown are made using several diagnostic techniques including electron energy loss spectroscopy (EELS) and Raman spectroscopy.

  1. Vacuum fluctuation forces between ultra-thin films

    E-Print Network [OSTI]

    Andrea Benassi; Carlo Calandra

    2008-08-18T23:59:59.000Z

    We have investigated the role of the quantum size effects in the evaluation of the force caused by electromagnetic vacuum fluctuations between ultra-thin films, using the dielectric tensor derived from the particle in a box model. Comparison with the results obtained by adopting a continuum dielectric model shows that, for film thicknesses of 1-10 nm, the electron confinement causes changes in the force intensity with respect to the isotropic plasma model which range from 40% to few percent depending upon the film electron density and the film separation. The calculated force shows quantum size oscillations, which can be significant for film separation distances of several nanometers. The role of electron confinement in reducing the large distance Casimir force is discussed.

  2. Equiatomic CoPt thin films with extremely high coercivity

    SciTech Connect (OSTI)

    Varghese, Binni; Piramanayagam, S. N., E-mail: Prem-SN@dsi.a-star.edu.sg; Yang, Yi; Kai Wong, Seng; Khume Tan, Hang; Kiat Lee, Wee [Data Storage Institute, (A-STAR) Agency for Science, Technology and Research, DSI Building, 5, Engineering Drive 1, Singapore 117608 (Singapore); Okamoto, Iwao [Western Digital Corporation, Singapore 638552 (Singapore)

    2014-05-07T23:59:59.000Z

    In this paper, magnetic and structural properties of near-equiatomic CoPt thin films, which exhibited a high coercivity in the film-normal direction—suitable for perpendicular magnetic recording media applications—are reported. The films exhibited a larger coercivity of about 6.5 kOe at 8?nm. The coercivity showed a monotonous decrease as the film thickness was increased. The transmission electron microscopy images indicated that the as fabricated CoPt film generally consists of a stack of magnetically hard hexagonal-close-packed phase, followed by stacking faults and face-centred-cubic phase. The thickness dependent magnetic properties are explained on the basis of exchange-coupled composite media. Epitaxial growth on Ru layers is a possible factor leading to the unusual observation of magnetically hard hcp-phase at high concentrations of Pt.

  3. Crystalline Thin Films Formed by Supramolecular Assembly for

    E-Print Network [OSTI]

    Gao, Hongjun

    with crystalline materials.[9] In contrast with small-mole- cule materials, supramolecular materials, which combineCrystalline Thin Films Formed by Supramolecular Assembly for Ultrahigh-Density Data Storage in this digital age, there is an urgent need to develop new technologies and materials. In the past decade

  4. THE ELECTRICAL BEHAVIOR OF SUPERCONDUCTING THIN-FILM MICROBRIDGES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    19 THE ELECTRICAL BEHAVIOR OF SUPERCONDUCTING THIN-FILM MICROBRIDGES SELF-HEATING below Tc their behavior is found to be dominated by the effects of self-heating. At low voltages near Tc. t Danforth Fellow. electrical behavior of these microbridges is largely dominated by the effects of self-heating

  5. Micromachined thin-film gas flow sensor for microchemical reactors

    E-Print Network [OSTI]

    Besser, Ronald S.

    Micromachined thin-film gas flow sensor for microchemical reactors W C Shin and R S Besser New applications not practical before such as highly compact, non-invasive pressure sensors, accelerometers and gas power consumption, fast response, and low-cost batch production [1-4]. Spurred by the development

  6. Atomic-scale Structural Characterizations of Functional Epitaxial Thin Films 

    E-Print Network [OSTI]

    Zhu, Yuanyuan

    2013-06-03T23:59:59.000Z

    by computer .......................................... 157 7.3.2. Thin films and TEM samples preparation ......................................... 158 7.3.3. Cs-corrected STEM and quantitative image processing .................... 159 7.4 Results... ......................................................................................................... 28 Figure 1.13. HR-STEM micrograph of Graphene (a) before83 and (b) after84 probe CS-correction. ............................................................................................ 29 Figure 2.1. Schematic diagram of the pulsed laser...

  7. Nonlinear viscoelastic characterization of thin films using dynamic mechanical analysis 

    E-Print Network [OSTI]

    Payne, Debbie Flowers

    1993-01-01T23:59:59.000Z

    manner similar to the traditional time temperature superposition principle for linear viscoelastic materials where stress systematically compresses or expands the time scale. From dynamic mechanical testing and analysis, the experimental viscoelastic.... D. Nonlinear Characterization of Thin Film Materials. . . . Nonlinear Viscoelastic Models . Dynamic Mechanical Testing. Summary of Literature Reviewed. 5 5 7 8 III THEORETICAL ANALYSIS . A. B. C. D. Conversion of Experimental Values...

  8. Thin Films and the Systems-Driven Approach

    SciTech Connect (OSTI)

    Zweibel, K.

    2005-01-01T23:59:59.000Z

    A systems-driven approach is used to discern tradeoffs between cost and efficiency improvements for various thin-film module technologies and designs. Prospects for reduced system cost via such strategies are enhanced as balance-of-systems costs decline, and some strategies are identified for greater research focus.

  9. Thin film cracking and ratcheting caused by temperature cycling

    E-Print Network [OSTI]

    Suo, Zhigang

    Thin film cracking and ratcheting caused by temperature cycling M. Huang and Z. Suo Mechanical caused by ratcheting in an adjacent ductile layer. For example, on a silicon die directly attached corners. Aided by cycling temperature, the shear stresses cause ratcheting in the aluminum pads

  10. Stripe Domain-Structures in a Thin Ferromagnetic Film

    E-Print Network [OSTI]

    KASHUBA, AB; Pokrovsky, Valery L.

    1993-01-01T23:59:59.000Z

    We present a theory of the stripe domain structure in a thin ferromagnetic film with single-ion easy-axis magnetic anisotropy and long-range dipole interactions, for a wide range of temperatures and applied magnetic field. The domains exist...

  11. Synthesis and Characterization of Functional Nanostructured Zinc Oxide Thin Films

    E-Print Network [OSTI]

    Chow, Lee

    and development of alternative energy technologies, such as low cost flat-panel solar cells thin film devices and structural requirements of their applications in gas sensors and solar cells. The rapid photothermalV) and GaN (21eV), is of interest for various high tech applications, such as optical devices (1), solar

  12. Amorphous silicon thin film transistor as nonvolatile device. 

    E-Print Network [OSTI]

    Nominanda, Helinda

    2008-10-10T23:59:59.000Z

    n-channel and p-channel amorphous-silicon thin-film transistors (a-Si:H TFTs) with copper electrodes prepared by a novel plasma etching process have been fabricated and studied. Their characteristics are similar to those of TFTs with molybdenum...

  13. university-logo Numerical stability analysis for thin film flow

    E-Print Network [OSTI]

    Marzuola, Jeremy

    university-logo Numerical stability analysis for thin film flow: toward rigorous verification Blake Barker Indiana University October 2, 2013 B. Rigorous verification #12;university-logo Viscous roll waves (Picture courtesy Neil Balmforth, UBC.) B. Rigorous verification #12;university-logo Viscous roll waves 0 2

  14. Low cost and high performance light trapping structure for thin-film solar cells

    E-Print Network [OSTI]

    Wang, DongLin; Su, Gang

    2015-01-01T23:59:59.000Z

    Nano-scaled dielectric and metallic structures are popular light tapping structures in thin-film solar cells. However, a large parasitic absorption in those structures is unavoidable. Most schemes based on such structures also involve the textured active layers that may bring undesirable degradation of the material quality. Here we propose a novel and cheap light trapping structure based on the prism structured SiO2 for thin-film solar cells, and a flat active layer is introduced purposefully. Such a light trapping structure is imposed by the geometrical shape optimization to gain the best optical benefit. By examining our scheme, it is disclosed that the conversion efficiency of the flat a-Si:H thin-film solar cell can be promoted to exceed the currently certified highest value. As the cost of SiO2-based light trapping structure is much cheaper and easier to fabricate than other materials, this proposal would have essential impact and wide applications in thin-film solar cells.

  15. PV prospects: thinPV prospects: thin--film cellsfilm cells Si cell costs

    E-Print Network [OSTI]

    Pulfrey, David L.

    1 PV prospects: thinPV prospects: thin--film cellsfilm cells LECTURE 8 · Si cell costs · optimizing://www.solarbuzz.com/Moduleprices.htm #12;6 Cost of PV modulesCost of PV modules The lowest retail price for a multicrystalline silicon for a monocrystalline silicon module is $1.48 per watt (1.04 per watt), from an Asian retailer. Brand, technical

  16. Polycrystalline thin-film technology: Recent progress in photovoltaics

    SciTech Connect (OSTI)

    Mitchell, R.L.; Zweibel, K.; Ullal, H.S.

    1991-12-01T23:59:59.000Z

    Polycrystalline thin films have made significant technical progress in the past year. Three of these materials that have been studied extensively for photovoltaic (PV) power applications are copper indium diselenide (CuInSe{sub 2}), cadmium telluride (CdTe), and thin-film polycrystalline silicon (x-Si) deposited on ceramic substrates. The first of these materials, polycrystalline thin-film CuInSe{sub 2}, has made some rapid advances in terms of high efficiency and long-term reliability. For CuInSe{sub 2} power modules, a world record has been reported on a 0.4-m{sup 2} module with an aperture-area efficiency of 10.4% and a power output of 40.4 W. Additionally, outdoor reliability testing of CuInSe{sub 2} modules, under both loaded and open-circuit conditions, has resulted in only minor changes in module performance after more than 1000 days of continuous exposure to natural sunlight. CdTe module research has also resulted in several recent improvements. Module performance has been increased with device areas reaching nearly 900 cm{sup 2}. Deposition has been demonstrated by several different techniques, including electrodeposition, spraying, and screen printing. Outdoor reliability testing of CdTe modules was also carried out under both loaded and open-circuit conditions, with more than 600 days of continuous exposure to natural sunlight. These tests were also encouraging and indicated that the modules were stable within measurement error. The highest reported aperture-area module efficiency for CdTe modules is 10%; the semiconductor material was deposited by electrodeposition. A thin-film CdTe photovoltaic system with a power output of 54 W has been deployed in Saudi Arabia for water pumping. The Module Development Initiative has made significant progress in support of the Polycrystalline Thin-Film Program in the past year, and results are presented in this paper.

  17. Energetic condensation growth of Nb thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Krishnan, M.; Valderrama, E.; James, C.; Zhao, X.; Spradlin, J.; Feliciano, A-M Valente; Phillips, L.; Reece, C. E.; Seo, K.; Sung, Z. H.

    2012-03-01T23:59:59.000Z

    This paper describes energetic condensation growth of Nb films using a cathodic arc plasma, whose 60–120 eV ions penetrate a few monolayers into the substrate and enable sufficient surface mobility to ensure that the lowest energy state (crystalline structure with minimal defects) is accessible to the film. Heteroepitaxial films of Nb were grown on ?-plane sapphire and MgO crystals with good superconducting properties and crystal size (10??mm × 20??mm ) limited only by substrate size. The substrates were heated to temperatures of up to 700°C and coated at 125°C, 300°C, 500°C, and 700°C . Film thickness was varied from ?0.25???m to >3???m . Residual resistivity ratio (RRR) values (up to a record (RRR)=587 on MgO and (RRR)=328 on ?-sapphire) depend strongly on substrate annealing and deposition temperatures. X-ray diffraction spectra and pole figures reveal that RRR increases as the crystal structure of the Nb film becomes more ordered, consistent with fewer defects and, hence, longer electron mean-free path. A transition from Nb(110) to Nb(100) orientation on the MgO(100) lattice occurs at higher temperatures. This transition is discussed in light of substrate heating and energetic condensation physics. Electron backscattered diffraction and scanning electron microscope images complement the XRD data.

  18. Optimal composition of europium gallium oxide thin films for device applications

    SciTech Connect (OSTI)

    Wellenius, P.; Muth, J. F. [Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Smith, E. R. [Kratos Defense and Security Solutions, Inc., 5030 Bradford Drive, Huntsville, Alabama 35805 (United States); LeBoeuf, S. M. [Valencell, Inc., 920 Main Campus Drive, Raleigh, North Carolina 27615 (United States); Everitt, H. O. [Army Aviation and Missile RD and E Center, Redstone Arsenal, Alabama 35898 (United States) and Department of Physics, Duke University, Durham, North Carolina 27708 (United States)

    2010-05-15T23:59:59.000Z

    Europium gallium oxide (Eu{sub x}Ga{sub 1-x}){sub 2}O{sub 3} thin films were deposited on sapphire substrates by pulsed laser deposition with varying Eu content from x=2.4 to 20 mol %. The optical and physical effects of high europium concentration on these thin films were studied using photoluminescence (PL) spectroscopy, x-ray diffraction (XRD), and Rutherford backscattering spectrometry. PL spectra demonstrate that emission due to the {sup 5}D{sub 0} to {sup 7}F{sub J} transitions in Eu{sup 3+} grows linearly with Eu content up to 10 mol %. Time-resolved PL indicates decay parameters remain similar for films with up to 10 mol % Eu. At 20 mol %, however, PL intensity decreases substantially and PL decay accelerates, indicative of parasitic energy transfer processes. XRD shows films to be polycrystalline and beta-phase for low Eu compositions. Increasing Eu content beyond 5 mol % does not continue to modify the film structure and thus, changes in PL spectra and decay cannot be attributed to structural changes in the host. These data indicate the optimal doping for optoelectronic devices based on (Eu{sub x}Ga{sub 1-x}){sub 2}O{sub 3} thin films is between 5 and 10 mol %.

  19. Study of plasma enhanced chemical vapor deposition of boron-doped hydrogenated amorphous silicon thin films and the application to p-channel thin film transistor

    E-Print Network [OSTI]

    Nominanda, Helinda

    2004-01-01T23:59:59.000Z

    The material and process characteristics of boron doped hydrogenated amorphous silicon (a-Si:H) thin film deposited by plasma enhanced chemical vapor deposition technique (PECVD) have been studied. The goal is to apply the high quality films...

  20. Thin film porous membranes for catalytic sensors

    SciTech Connect (OSTI)

    Hughes, R.C.; Boyle, T.J.; Gardner, T.J. [and others

    1997-06-01T23:59:59.000Z

    This paper reports on new and surprising experimental data for catalytic film gas sensing resistors coated with nanoporous sol-gel films to impart selectivity and durability to the sensor structure. This work is the result of attempts to build selectivity and reactivity to the surface of a sensor by modifying it with a series of sol-gel layers. The initial sol-gel SiO{sub 2} layer applied to the sensor surprisingly showed enhanced O{sub 2} interaction with H{sub 2} and reduced susceptibility to poisons such as H{sub 2}S.

  1. SiGe thin-film structures for solar cells

    SciTech Connect (OSTI)

    Bremond, G.; Daami, A.; Laugier, A. [Inst. National des Sciences Appliquees de Lyon, Villeurbanne (France). Lab. de Physique de la Matiere] [and others

    1998-12-31T23:59:59.000Z

    In order to study their applicability as the active base material in Si thin crystalline film solar cell technology, SiGe relaxed layers grown by Liquid Phase Epitaxy (LPE) and Chemical Vapor Deposition (CVD) on Si substrates are investigated by optical and electrical measurements (TEM, EXD, PL, EBIC). The main results of this work is to point out the improvement of the SiGe active base layer by using smooth Ge graded SiGe buffer layer and remote plasma hydrogenation. TEM, EXD, PL experiments show the effect of the Ge graded buffer layer grown using LPE, by confining the threading dislocations in the SiGe buffer layer close to the Si/SiGe interface. EBIC measurements reveal low recombination activity of dislocations at 300 K providing the diffusion length exceeds the 15 {micro}m layer thickness. The enhanced luminescence of SiGe near bandgap indicates that remote plasma hydrogenation induces a decrease of the non-radiative recombination pathways due to dislocations on CVD layers where defect recombinations dominate as indicated by EBIC measurements. This study points out the importance of controlling relaxed SiGe layers with good minority carrier recombination quality as a key issue for the optimization of new SiGe/Si based solar cells.

  2. Characterization on RF magnetron sputtered niobium pentoxide thin films

    SciTech Connect (OSTI)

    Usha, N. [Department of Physics, Alagappa University, Karaikudi - 630 004 (India); Sivakumar, R., E-mail: krsivakumar1979@yahoo.com [Directorate of Distance Education, Alagappa University, Karaikudi - 630 004 (India); Sanjeeviraja, C. [Department of Physics, Alagappa Chettiar College of Engineering and Technology, Karaikudi - 630 004 (India)

    2014-10-15T23:59:59.000Z

    Niobium pentoxide (Nb{sub 2}O{sub 5}) thin films with amorphous nature were deposited on microscopic glass substrates at 100°C by rf magnetron sputtering technique. The effect of rf power on the structural, morphological, optical, and vibrational properties of Nb{sub 2}O{sub 5} films have been investigated. Optical study shows the maximum average transmittance of about 87% and the optical energy band gap (indirect allowed) changes between 3.70 eV and 3.47 eV. AFM result indicates the smooth surface nature of the samples. Photoluminescence measurement showed the better optical quality of the deposited films. Raman spectra show the LO-TO splitting of Nb-O stretching of Nb{sub 2}O{sub 5} films.

  3. Method for bonding thin film thermocouples to ceramics

    DOE Patents [OSTI]

    Kreider, Kenneth G. (Potomac, MD)

    1993-01-01T23:59:59.000Z

    A method is provided for adhering a thin film metal thermocouple to a ceramic substrate used in an environment up to 700 degrees Centigrade, such as at a cylinder of an internal combustion engine. The method includes the steps of: depositing a thin layer of a reactive metal on a clean ceramic substrate; and depositing thin layers of platinum and a platinum-10% rhodium alloy forming the respective legs of the thermocouple on the reactive metal layer. The reactive metal layer serves as a bond coat between the thin noble metal thermocouple layers and the ceramic substrate. The thin layers of noble metal are in the range of 1-4 micrometers thick. Preferably, the ceramic substrate is selected from the group consisting of alumina and partially stabilized zirconia. Preferably, the thin layer of reactive metal is in the range of 0.015-0.030 micrometers (15-30 nanometers) thick. The preferred reactive metal is chromium. Other reactive metals may be titanium or zirconium. The thin layer of reactive metal may be deposited by sputtering in ultra high purity argon in a vacuum of approximately 2 milliTorr (0.3 Pascals).

  4. High quality transparent conducting oxide thin films

    DOE Patents [OSTI]

    Gessert, Timothy A. (Conifer, CO); Duenow, Joel N. (Golden, CO); Barnes, Teresa (Evergreen, CO); Coutts, Timothy J. (Golden, CO)

    2012-08-28T23:59:59.000Z

    A transparent conducting oxide (TCO) film comprising: a TCO layer, and dopants selected from the elements consisting of Vanadium, Molybdenum, Tantalum, Niobium, Antimony, Titanium, Zirconium, and Hafnium, wherein the elements are n-type dopants; and wherein the transparent conducting oxide is characterized by an improved electron mobility of about 42 cm.sup.2/V-sec while simultaneously maintaining a high carrier density of .about.4.4e.times.10.sup.20 cm.sup.-3.

  5. Liquid phase deposition synthesis of hexagonal molybdenum trioxide thin films

    SciTech Connect (OSTI)

    Deki, Shigehito; Beleke, Alexis Bienvenu; Kotani, Yuki [Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokko, Nada, Kobe 657-8501 (Japan); Mizuhata, Minoru, E-mail: mizuhata@kobe-u.ac.j [Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokko, Nada, Kobe 657-8501 (Japan)

    2009-09-15T23:59:59.000Z

    Hexagonal molybdenum trioxide thin films with good crystallinity and high purity have been fabricated by the liquid phase deposition (LPD) technique using molybdic acid (H{sub 2}MoO{sub 4}) dissolved in 2.82% hydrofluoric acid (HF) and H{sub 3}BO{sub 3} as precursors. The crystal was found to belong to a hexagonal hydrate system MoO{sub 3}.nH{sub 2}O (napprox0.56). The unit cell lattice parameters are a=10.651 A, c=3.725 A and V=365.997 A{sup 3}. Scanning electron microscope (SEM) images of the as-deposited samples showed well-shaped hexagonal rods nuclei that grew and where the amount increased with increase in reaction time. X-ray photon electron spectroscopy (XPS) spectra showed a Gaussian shape of the doublet of Mo 3d core level, indicating the presence of Mo{sup 6+} oxidation state in the deposited films. The deposited films exhibited an electrochromic behavior by lithium intercalation and deintercalation, which resulted in coloration and bleaching of the film. Upon dehydration at about 450 deg. C, the hexagonal MoO{sub 3}.nH{sub 2}O was transformed into the thermodynamically stable orthorhombic phase. - Abstract: SEM photograph of typical h-MoO{sub 3}.nH{sub 2}O thin film nuclei obtained after 36 h at 40 deg. C by the LPD method. Display Omitted

  6. Fractal-Mound Growth of Pentacene Thin Films

    E-Print Network [OSTI]

    Serkan Zorba; Yonathan Shapir; Yongli Gao

    2006-10-19T23:59:59.000Z

    The growth mechanism of pentacene film formation on SiO2 substrate was investigated with a combination of atomic force microscopy measurements and numerical modeling. In addition to the diffusion-limited aggregation (DLA) that has already been shown to govern the growth of the ordered pentacene thin films, it is shown here for the first time that the Schwoebel barrier effect steps in and disrupts the desired epitaxial growth for the subsequent layers, leading to mound growth. The terraces of the growing mounds have a fractal dimension of 1.6, indicating a lateral DLA shape. This novel growth morphology thus combines horizontal DLA-like growth with vertical mound growth.

  7. Mechanics of large folds in thin interfacial films

    E-Print Network [OSTI]

    Vincent Démery; Benny Davidovitch; Christian D. Santangelo

    2014-07-16T23:59:59.000Z

    A thin film at a liquid interface responds to uniaxial confinement by wrinkling and then by folding; its shape and energy have been computed exactly before self contact. Here, we address the mechanics of large folds, i.e. folds that absorb a length much larger than the wrinkle wavelength. With scaling arguments and numerical simulations, we show that the antisymmetric fold is energetically favorable and can absorb any excess length at zero pressure. Then, motivated by puzzles arising in the comparison of this simple model to experiments on lipid monolayers and capillary rafts, we discuss how to incorporate film weight, self-adhesion and energy dissipation.

  8. Durable silver thin film coating for diffraction gratings

    DOE Patents [OSTI]

    Wolfe, Jesse D. (Discovery Bay, CA); Britten, Jerald A. (Oakley, CA); Komashko, Aleksey M. (San Diego, CA)

    2006-05-30T23:59:59.000Z

    A durable silver film thin film coated non-planar optical element has been developed to replace Gold as a material for fabricating such devices. Such a coating and resultant optical element has an increased efficiency and is resistant to tarnishing, can be easily stripped and re-deposited without modifying underlying grating structure, improves the throughput and power loading of short pulse compressor designs for ultra-fast laser systems, and can be utilized in variety of optical and spectrophotometric systems, particularly high-end spectrometers that require maximized efficiency.

  9. Large area ceramic thin films on plastics: A versatile route via solution processing

    SciTech Connect (OSTI)

    Kozuka, H.; Yamano, A.; Uchiyama, H.; Takahashi, M. [Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, 564-8680 (Japan); Fukui, T.; Yoki, M.; Akase, T. [Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, 564-8680 (Japan)

    2012-01-01T23:59:59.000Z

    A new general route for large area, submicron thick ceramic thin films (crystalline metal oxide thin films) on plastic substrates is presented, where the crystallization of films is guaranteed by a firing process. Gel films are deposited on silicon substrates with a release layer and fired to be ceramic films, followed by transferring onto plastic substrates using adhesives. The ceramic films thus fabricated on plastics exhibit a certain degree of flexibility, implying the possibility of the technique to be applied to high-throughput roll-to-roll processes. Using this technique, we successfully realized transparent anatase thin films that provide high optical reflectance and transparent indium tin oxide thin films that exhibit electrical conductivity on polycarbonate and acrylic resin substrates, respectively. Crystallographically oriented zinc oxide films and patterned zinc oxide films are also demonstrated to be realized on acrylic resin substrates.

  10. Clarifying the controversy of the Tg depression in polystyrene thin films

    E-Print Network [OSTI]

    V. M. Boucher; D. Cangialosi; A. Alegría; J. Colmenero

    2011-08-01T23:59:59.000Z

    The glass transition temperature ($T_g$) of polymer thin films has been a subject of controversy in the last two decades. (Pseudo)thermodynamic determinations of $T_g$ generally suggest a significant depression, whereas the molecular mobility is found to be unchanged. The present study clarifies this apparent controversy by assuming that the $T_g$ in thin films is determined not only by the molecular mobility but also by the thickness of the film. This hypothesis is supported by the analysis of literature results on polystyrene thin films showing that the $T_g$ dependence on the cooling rate obtained on samples with different thicknesses can be rescaled onto a master curve. The thickness dependence of $T_g$ is quantitatively captured by an equilibration mechanism based on free volume holes diffusion. This dependence emerges from the ability of thinner films to maintain equilibrium, due to the shorter distance free volume holes have to diffuse to the polymer interface, the molecular motion determining the diffusion coefficient being thickness independent.

  11. Innovative Thin Films LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWPIndiantown,Innoferm GmbH Jump to:Energy SolutionsThin

  12. Thin film battery and method for making same

    DOE Patents [OSTI]

    Bates, John B. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN); Gruzalski, Greg R. (Oak Ridge, TN); Luck, Christopher F. (Knoxville, TN)

    1994-01-01T23:59:59.000Z

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

  13. Thin film battery and method for making same

    DOE Patents [OSTI]

    Bates, J.B.; Dudney, N.J.; Gruzalski, G.R.; Luck, C.F.

    1994-08-16T23:59:59.000Z

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode. Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between [minus]15 C and 150 C. 9 figs.

  14. Thin-Film Reliability Trends Toward Improved Stability

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2011-01-01T23:59:59.000Z

    Long-term, stable performance of photovoltaic (PV) modules will be increasingly important to their successful penetration of the power grid. This paper summarizes more than 150 thin-film and more than 1700 silicon PV degradation rates (R{sub d}) quoted in publications for locations worldwide. Partitioning the literature results by technology and date of installation statistical analysis shows an improvement in degradation rate especially for thin-film technologies in the last decade. A CIGS array deployed at NREL for more than 5 years that appears to be stable supports the literature trends. Indoor and outdoor data indicate undetectable change in performance (0.2 {+-} 0.2 %/yr). One module shows signs of slight degradation from what appears to be an initial manufacturing defect, however it has not affected the overall system performance.

  15. Thin-Film Reliability Trends Toward Improved Stability: Preprint

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2011-07-01T23:59:59.000Z

    Long-term, stable performance of photovoltaic (PV) modules will be increasingly important to their successful penetration of the power grid. This paper summarizes more than 150 thin-film and more than 1700 silicon PV degradation rates (Rd) quoted in publications for locations worldwide. Partitioning the literature results by technology and date of installation statistical analysis shows an improvement in degradation rate especially for thin-film technologies in the last decade. A CIGS array deployed at NREL for more than 5 years that appears to be stable supports the literature trends. Indoor and outdoor data indicate undetectable change in performance (0.2+/-0.2 %/yr). One module shows signs of slight degradation from what appears to be an initial manufacturing defect, however it has not affected the overall system performance.

  16. Autophagy induction by silver nanowires: A new aspect in the biocompatibility assessment of nanocomposite thin films

    SciTech Connect (OSTI)

    Verma, Navin K. [Institute of Molecular Medicine, Trinity College Dublin (Ireland) [Institute of Molecular Medicine, Trinity College Dublin (Ireland); Centre for Research on Adaptive Nanostructures and Nanodevices, Trinity College Dublin (Ireland); Conroy, Jennifer [Institute of Molecular Medicine, Trinity College Dublin (Ireland)] [Institute of Molecular Medicine, Trinity College Dublin (Ireland); Lyons, Philip E.; Coleman, Jonathan [Centre for Research on Adaptive Nanostructures and Nanodevices, Trinity College Dublin (Ireland)] [Centre for Research on Adaptive Nanostructures and Nanodevices, Trinity College Dublin (Ireland); O'Sullivan, Mary P. [Institute of Molecular Medicine, Trinity College Dublin (Ireland)] [Institute of Molecular Medicine, Trinity College Dublin (Ireland); Kornfeld, Hardy [University of Massachusetts Medical School, Massachusetts (United States)] [University of Massachusetts Medical School, Massachusetts (United States); Kelleher, Dermot [Institute of Molecular Medicine, Trinity College Dublin (Ireland)] [Institute of Molecular Medicine, Trinity College Dublin (Ireland); Volkov, Yuri, E-mail: yvolkov@tcd.ie [Institute of Molecular Medicine, Trinity College Dublin (Ireland) [Institute of Molecular Medicine, Trinity College Dublin (Ireland); Centre for Research on Adaptive Nanostructures and Nanodevices, Trinity College Dublin (Ireland)

    2012-11-01T23:59:59.000Z

    Nanomaterials and their enabled products have increasingly been attracting global attention due to their unique physicochemical properties. Among these emerging products, silver nanowire (AgNW)-based thin films are being developed for their promising applications in next generation nanoelectronics and nanodevices. However, serious concerns remain about possible health and safety risks they may pose. Here, we employed a multi-modal systematic biocompatibility assessment of thin films incorporating AgNW. To represent the possible routes of nanomaterial entry during occupational or environmental exposure, we employed four different cell lines of epithelial, endothelial, gastric, and phagocytic origin. Utilizing a cell-based automated image acquisition and analysis procedure in combination with real-time impedance sensing, we observed a low level of cytotoxicity of AgNW, which was dependent on cell type, nanowire lengths, doses and incubation times. Similarly, no major cytotoxic effects were induced by AgNW-containing thin films, as detected by conventional cell viability and imaging assays. However, transmission electron microscopy and Western immunoblotting analysis revealed AgNW-induced autophasosome accumulation together with an upregulation of the autophagy marker protein LC3. Autophagy represents a crucial mechanism in maintaining cellular homeostasis, and our data for the first time demonstrate triggering of such mechanism by AgNW in human phagocytic cells. Finally, atomic force microscopy revealed significant changes in the topology of cells attaching and growing on these films as substrates. Our findings thus emphasize the necessity of comprehensive biohazard assessment of nanomaterials in modern applications and devices and a thorough analysis of risks associated with their possible contact with humans through occupational or environmental exposure. Highlights: ? Thin films containing nanomaterials are subject to increasing contact with humans. ? This study provides multi-modal biohazard assessment of AgNW-based thin films. ? Thin films containing AgNW affect human cell topology and attachment. ? AgNW toxicity depends on cell type, nanowire length, dose, and exposure time. ? AgNW can induce the process of autophagy in phagocytic cells.

  17. Chemical deposition of thin films of lead selenide

    E-Print Network [OSTI]

    Skovlin, Dean Oliver

    1956-01-01T23:59:59.000Z

    LIBRARY A A IN COLLEGE OF TEXAS CHEMICAL DEPOSITIOH OF THIN FILMS OF LEAD SELEHIDE A THESIS DEAN OLIVER SEOVLIH Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements..., the author is indebted for her encouragenent and understanding which wade this study possible. iv I INTRODUCTIOW . I I LITERATURE SURVEY. I II EXP ERIMEHTAL Page 1. Choice of Reagents. 2. The Reaction of DMS and Lead Ritrate in Aqueous Solution. 3...

  18. Formation of thin-film resistors on silicon substrates

    DOE Patents [OSTI]

    Schnable, George L. (Montgomery County, PA); Wu, Chung P. (Hamilton Township, Mercer County, NJ)

    1988-11-01T23:59:59.000Z

    The formation of thin-film resistors by the ion implantation of a metallic conductive layer in the surface of a layer of phosphosilicate glass or borophosphosilicate glass which is deposited on a silicon substrate. The metallic conductive layer materials comprise one of the group consisting of tantalum, ruthenium, rhodium, platinum and chromium silicide. The resistor is formed and annealed prior to deposition of metal, e.g. aluminum, on the substrate.

  19. Strain mapping on gold thin film buckling and siliconblistering

    SciTech Connect (OSTI)

    Goudeau, P.; Tamura, N.; Parry, G.; Colin, J.; Coupeau, C.; Cleymand, F.; Padmore, H.

    2005-09-01T23:59:59.000Z

    Stress/Strain fields associated with thin film buckling induced by compressive stresses or blistering due to the presence of gas bubbles underneath single crystal surfaces are difficult to measure owing to the microscale dimensions of these structures. In this work, we show that micro Scanning X-ray diffraction is a well suited technique for mapping the strain/stress tensor of these damaged structures.

  20. Method for making dense crack free thin films

    DOE Patents [OSTI]

    Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); De Jonghe, Lutgard C. (Lafayette, CA)

    2007-01-16T23:59:59.000Z

    The process described herein provides a simple and cost effective method for making crack free, high density thin ceramic film. The steps involve depositing a layer of a ceramic material on a porous or dense substrate. The deposited layer is compacted and then the resultant laminate is sintered to achieve a higher density than would have been possible without the pre-firing compaction step.

  1. Optical sensors and multisensor arrays containing thin film electroluminescent devices

    DOE Patents [OSTI]

    Aylott, Jonathan W. (Ann Arbor, MI); Chen-Esterlit, Zoe (Ann Arbor, MI); Friedl, Jon H. (Ames, IA); Kopelman, Raoul (Ann Arbor, MI); Savvateev, Vadim N. (Ames, IA); Shinar, Joseph (Ames, IA)

    2001-12-18T23:59:59.000Z

    Optical sensor, probe and array devices for detecting chemical biological, and physical analytes. The devices include an analyte-sensitive layer optically coupled to a thin film electroluminescent layer which activates the analyte-sensitive layer to provide an optical response. The optical response varies depending upon the presence of an analyte and is detected by a photodetector and analyzed to determine the properties of the analyte.

  2. Synthesis of thin films and materials utilizing a gaseous catalyst

    DOE Patents [OSTI]

    Morse, Daniel E; Schwenzer, Birgit; Gomm, John R; Roth, Kristian M; Heiken, Brandon; Brutchey, Richard

    2013-10-29T23:59:59.000Z

    A method for the fabrication of nanostructured semiconducting, photoconductive, photovoltaic, optoelectronic and electrical battery thin films and materials at low temperature, with no molecular template and no organic contaminants. High-quality metal oxide semiconductor, photovoltaic and optoelectronic materials can be fabricated with nanometer-scale dimensions and high dopant densities through the use of low-temperature biologically inspired synthesis routes, without the use of any biological or biochemical templates.

  3. Plasticity contributions to interface adhesion in thin-film interconnect structures

    E-Print Network [OSTI]

    Vainchtein, Anna

    Plasticity contributions to interface adhesion in thin-film interconnect structures Michael Lanea of plasticity in thin copper layers on the interface fracture resistance in thin-film interconnect structures yield properties together with a plastic flow model for the metal layers were used to predict

  4. DOE/SERI polycrystalline thin-film photovoltaic research

    SciTech Connect (OSTI)

    Hermann, A.; Mitchell, R.; Zwelbel, K.

    1984-05-01T23:59:59.000Z

    This paper presents recent results, status, and future prospects for the U.S. Department of Energy's (DOE's) Polycrystalline Thin Film Photovoltaic Program, managed by the Solar Energy Research Institute (SERI). The devices being studied most intensively are heterojunctions based on CuInSe/sub 2/ and on CdTe. Both materials have attained over 10% efficiency in polycrystalline form. The main emphasis is on CuInSe/sub 2/, for which Boeing has reported an 11%-efficient device (AM) ELH simulation). Important work is being done on studies of the composition/electronic properties of CuInSe/sub 2/ and its response to post-deposition annealing. In the CdTe research, ohmic, stable back-contacting and control of p-type doping are being investigated. New efforts to study polycrystalline two-junction stacked cells are underway with two-terminal cells (at IEC) and with four-terminal cells (at SMU). This preliminary work is expected to be expanded, with emphasis on CdTe and other top-cell (high-bandgap) materials. These efforts introduce a number of new research areas (e.g., transparent ohmic contacts to p-CdTe and sub-bandgap light-losses in polycrystalline materials). The aim of the program is to produce stable, high-efficieny (15%), thinfilm cells that can be deposited inexpensively by techniques that are scalable to large areas.

  5. Thin-film fiber optic hydrogen and temperature sensor system

    DOE Patents [OSTI]

    Nave, S.E.

    1998-07-21T23:59:59.000Z

    The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiber optic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences. 3 figs.

  6. Thin-film fiber optic hydrogen and temperature sensor system

    DOE Patents [OSTI]

    Nave, Stanley E. (Evans, GA)

    1998-01-01T23:59:59.000Z

    The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiberoptic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences.

  7. LBIC ANALYSIS OF THIN-FILM POLYCRYSTALLINE SOLAR CELLS James R. Sites and Timothy J. Nagle

    E-Print Network [OSTI]

    Sites, James R.

    -film polycrystalline solar cells, such as CdTe and CIGS, and the overall performance of these cells. LBIC is uniquelyLBIC ANALYSIS OF THIN-FILM POLYCRYSTALLINE SOLAR CELLS James R. Sites and Timothy J. Nagle Physics response map, was developed and used to map defects in thin-film solar cells [4]. Improvements to the two

  8. Ferroelectrics 342:73-82, 2006 Computational Modeling of Ferromagnetic Shape Memory Thin Films

    E-Print Network [OSTI]

    Luskin, Mitchell

    1 Ferroelectrics 342:73-82, 2006 Computational Modeling of Ferromagnetic Shape Memory Thin Films J films of Ni2MnGa ferromagnetic shape memory alloys in response to the application of a magnetic field: ferromagnetic, shape memory, active thin film, computational modeling INTRODUCTION The Ni2MnGa ferromagnetic

  9. Influence of Ba content on grain size and dynamics of crystallization in barium ferrite thin films

    E-Print Network [OSTI]

    Laughlin, David E.

    Influence of Ba content on grain size and dynamics of crystallization in barium ferrite thin films of the crystallization process, which ultimately determines the grain size, were studied in barium ferrite thin films. Rapid thermal annealing was used to crystallize the amorphous as-deposited barium ferrite films

  10. Study of lithium diffusion in RF sputtered Nickel/Vanadium mixed oxides thin films

    E-Print Network [OSTI]

    Artuso, Florinda

    Study of lithium diffusion in RF sputtered NickelÁ/Vanadium mixed oxides thin films F. Artuso a lithium insertion inside RF sputtered Ni/V mixed oxides thin films have been investigated employing, showed three steps clearly involved in the intercalation mechanism of lithium in the oxide films: (i

  11. DISSERTATION ANALYSIS OF IMPACT OF NON-UNIFORMITIES ON THIN-FILM SOLAR CELLS

    E-Print Network [OSTI]

    Sites, James R.

    DISSERTATION ANALYSIS OF IMPACT OF NON-UNIFORMITIES ON THIN-FILM SOLAR CELLS AND MODULES WITH 2-D-FILM SOLAR CELLS AND MODULES WITH 2-D SIMULATIONS BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS-UNIFORMITIES ON THIN-FILM SOLAR CELLS AND MODULES WITH 2-D SIMULATIONS Clean and environmentally friendly photovoltaic

  12. METAL BLACKS AS SCATTERING CENTERS TO INCREASE THE EFFICIENCY OF THIN FILM SOLAR CELLS

    E-Print Network [OSTI]

    Peale, Robert E.

    METAL BLACKS AS SCATTERING CENTERS TO INCREASE THE EFFICIENCY OF THIN FILM SOLAR CELLS by DEEP R surface of thin-film solar cells to improve efficiency. The principle is that scattering, which film solar cell. The particular types of particles investigated here are known as "metal-black", well

  13. Plasticity in Cu thin films: an experimental investigation of the effect of microstructure

    E-Print Network [OSTI]

    Plasticity in Cu thin films: an experimental investigation of the effect of microstructure A thesis Author Joost J. Vlassak Yong Xiang Plasticity in Cu thin films: an experimental investigation is constructed. The elastic-plastic behavior of Cu films is studied with emphasis on the effects

  14. DEVELOPMENT OF A NOVEL PRECURSOR FOR THE PREPARATION BY SELENIZATION OF HIGH EFFICIENCY CuInGaSe2/CdS THIN FILM SOLAR CELLS

    E-Print Network [OSTI]

    Romeo, Alessandro

    /CdS THIN FILM SOLAR CELLS N. Romeo1 , A. Bosio1 , V. Canevari2 , R. Tedeschi1 , S. Sivelli1 , A. Solar cells prepared by depositing in sequence on top of the CuInGaSe2 film 60 nm of CdS, 100 nm of pure(InGa)Se2, Thin Films, Selenization 1 INTRODUCTION CuInGaSe2 based solar cells exhibit the highest

  15. Oriented niobate ferroelectric thin films for electrical and optical devices and method of making such films

    DOE Patents [OSTI]

    Wessels, B.W.; Nystrom, M.J.

    1998-05-19T23:59:59.000Z

    Sr{sub x}Ba{sub 1{minus}x}Nb{sub 2}O{sub 6}, where x is greater than 0.25 and less than 0.75, and KNbO{sub 3} ferroelectric thin films metalorganic chemical vapor deposited on amorphous or crystalline substrate surfaces to provide a crystal axis of the film exhibiting a high dielectric susceptibility, electro-optic coefficient, and/or nonlinear optic coefficient oriented preferentially in a direction relative to a crystalline or amorphous substrate surface are disclosed. Such films can be used in electronic, electro-optic, and frequency doubling components. 8 figs.

  16. Oriented niobate ferroelectric thin films for electrical and optical devices and method of making such films

    DOE Patents [OSTI]

    Wessels, Bruce W. (Wilmette, IL); Nystrom, Michael J. (Germantown, MD)

    1998-01-01T23:59:59.000Z

    Sr.sub.x Ba.sub.1-x Nb.sub.2 O.sub.6, where x is greater than 0.25 and less than 0.75, and KNbO.sub.3 ferroelectric thin films metalorganic chemical vapor deposited on amorphous or crystalline substrate surfaces to provide a crystal axis of the film exhibiting a high dielectric susceptibility, electro-optic coefficient, and/or nonlinear optic coefficient oriented preferentially in a direction relative to a crystalline or amorphous substrate surface. Such films can be used in electronic, electro-optic, and frequency doubling components.

  17. Long-laser-pulse method of producing thin films

    DOE Patents [OSTI]

    Balooch, Mehdi (Berkeley, CA); Olander, Donald K. (Berkeley, CA); Russo, Richard E. (Walnut Creek, CA)

    1991-01-01T23:59:59.000Z

    A method of depositing thin films by means of laser vaporization employs a long-pulse laser (Nd-glass of about one millisecond duration) with a peak power density typically in the range 10.sup.5 -10.sup.6 W/cm.sup.2. The method may be used to produce high T.sub.c superconducting films of perovskite material. In one embodiment, a few hundred nanometers thick film of YBa.sub.2 Cu.sub.3 O.sub.7-x is produced on a SrTiO.sub.3 crystal substrate in one or two pulses. In situ-recrystallization and post-annealing, both at elevated temperature and in the presence of an oxidizing agen The invention described herein arose in the course of, or under, Contract No. DE-C03-76SF0098 between the United States Department of Energy and the University of California.

  18. Decay Processes in the Presence of Thin Superconducting Films

    E-Print Network [OSTI]

    Per K. Rekdal; Bo-Sture K. Skagerstam

    2006-09-20T23:59:59.000Z

    In a recent paper [Phys. Rev. Lett. 97, 070401 (2006)] the transition rate of magnetic spin-flip of a neutral two-level atom trapped in the vicinity of a thick superconducting body was studied. In the present paper we will extend these considerations to a situation with an atom at various distances from a dielectric film. Rates for the corresponding electric dipole-flip transition will also be considered. The rates for these atomic flip transitions can be reduced or enhanced, and in some situations they can even be completely suppressed. For a superconducting film or a thin film of a perfect conducting material various analytical expressions are derived that reveals the dependence of the physical parameters at hand.

  19. Novel wide band gap materials for highly efficient thin film tandem solar cells

    SciTech Connect (OSTI)

    Brian E. Hardin, Stephen T. Connor, Craig H. Peters

    2012-06-11T23:59:59.000Z

    Tandem solar cells (TSCs), which use two or more materials to absorb sunlight, have achieved power conversion efficiencies of >25% versus 11-20% for commercialized single junction solar cell modules. The key to widespread commercialization of TSCs is to develop the wide-band, top solar cell that is both cheap to fabricate and has a high open-circuit voltage (i.e. >1V). Previous work in TSCs has generally focused on using expensive processing techniques with slow growth rates resulting in costs that are two orders of magnitude too expensive to be used in conventional solar cell modules. The objective of the PLANT PV proposal was to investigate the feasibility of using Ag(In,Ga)Se2 (AIGS) as the wide-bandgap absorber in the top cell of a thin film tandem solar cell (TSC). Despite being studied by very few in the solar community, AIGS solar cells have achieved one of the highest open-circuit voltages within the chalcogenide material family with a Voc of 949mV when grown with an expensive processing technique (i.e. Molecular Beam Epitaxy). PLANT PV�s goal in Phase I of the DOE SBIR was to 1) develop the chemistry to grow AIGS thin films via solution processing techniques to reduce costs and 2) fabricate new device architectures with high open-circuit voltage to produce full tandem solar cells in Phase II. PLANT PV attempted to translate solution processing chemistries that were successful in producing >12% efficient Cu(In,Ga)Se2 solar cells by replacing copper compounds with silver. The main thrust of the research was to determine if it was possible to make high quality AIGS thin films using solution processing and to fully characterize the materials properties. PLANT PV developed several different types of silver compounds in an attempt to fabricate high quality thin films from solution. We found that silver compounds that were similar to the copper based system did not result in high quality thin films. PLANT PV was able to deposit AIGS thin films using a mixture of solution and physical vapor deposition processing, but these films lacked the p-type doping levels that are required to make decent solar cells. Over the course of the project PLANT PV was able to fabricate efficient CIGS solar cells (8.7%) but could not achieve equivalent performance using AIGS. During the nine-month grant PLANT PV set up a variety of thin film characterization tools (e.g. drive-level capacitance profiling) at the Molecular Foundry, a Department of Energy User Facility, that are now available to both industrial and academic researchers via the grant process. PLANT PV was also able to develop the back end processing of thin film solar cells at Lawrence Berkeley National Labs to achieve 8.7% efficient CIGS solar cells. This processing development will be applied to other types of thin film PV cells at the Lawrence Berkeley National Labs. While PLANT PV was able to study AIGS film growth and optoelectronic properties we concluded that AIGS produced using these methods would have a limited efficiency and would not be commercially feasible. PLANT PV did not apply for the Phase II of this grant.

  20. Nonreciprocal dispersion of spin waves in ferromagnetic thin films covered with a finite-conductivity metal

    SciTech Connect (OSTI)

    Mruczkiewicz, M.; Krawczyk, M. [Faculty of Physics, Adam Mickiewicz University in Poznan, Umultowska 85, Pozna? 61-614 (Poland)

    2014-03-21T23:59:59.000Z

    We study the effect of one-side metallization of a uniform ferromagnetic thin film on its spin-wave dispersion relation in the Damon–Eshbach geometry. Due to the finite conductivity of the metallic cover layer on the ferromagnetic film, the spin-wave dispersion relation may be nonreciprocal only in a limited wave-vector range. We provide an approximate analytical solution for the spin-wave frequency, discuss its validity, and compare it with numerical results. The dispersion is analyzed systematically by varying the parameters of the ferromagnetic film, the metal cover layer and the value of the external magnetic field. The conclusions drawn from this analysis allow us to define a structure based on a 30?nm thick CoFeB film with an experimentally accessible nonreciprocal dispersion relation in a relatively wide wave-vector range.

  1. Enhanced electrochromic property of nickel hydroxide thin films prepared by anodic deposition

    SciTech Connect (OSTI)

    Chigane, Masaya; Ishikawa, Masami (Osaka Municipal Technical Research Inst. (Japan). Dept. of Inorganic Chemistry)

    1994-12-01T23:59:59.000Z

    Nickel hydroxide and nickel oxide thin films have received much attention as electrochromic (EC) materials, particularly as the materials for a complementary counterlayer against an EC tungsten oxide layer in smart window systems. Nickel hydroxide thin films were prepared onto transparent conductive tin oxide (NESA) substrates by potentiostatic electrolysis of a nickel amine complex solution at various potentials (0.6 to 1.5 V vs. Ag/AgCl). Nickel hydroxide thin film (F0.7) obtained at relatively lower anodic potential (0.7 V) showed enhanced electrochromism between colorless and dark brown in a sodium borate buffer solution at pH 12; the absorption spectrum in the colored (oxidized) state was broadened in the visible and near-infrared region compared with the nickel hydroxide films prepared at the higher anodic potential (1.1 V). characterization of the films revealed that crystal structure of F0.7 is assigned to [alpha]-Ni(OH)[sub 2], and that its electrochromism is based on the reversible oxidation to hexagonal [gamma][sub 2]-2NiO[sub 2] [center dot] NiOOH structure. Composite nickel hydroxide film, i.e., by the electrolytic deposition at 1.1 V followed by that at 0.7 V, showed electrochromic property similar to F0.7 and its durability in repeated redox cycles were much improved in comparison with that of F0.7. Electrochromic properties in switching performance of this composite nickel hydroxide film were investigated.

  2. Methods for fabricating thin film III-V compound solar cell

    DOE Patents [OSTI]

    Pan, Noren; Hillier, Glen; Vu, Duy Phach; Tatavarti, Rao; Youtsey, Christopher; McCallum, David; Martin, Genevieve

    2011-08-09T23:59:59.000Z

    The present invention utilizes epitaxial lift-off in which a sacrificial layer is included in the epitaxial growth between the substrate and a thin film III-V compound solar cell. To provide support for the thin film III-V compound solar cell in absence of the substrate, a backing layer is applied to a surface of the thin film III-V compound solar cell before it is separated from the substrate. To separate the thin film III-V compound solar cell from the substrate, the sacrificial layer is removed as part of the epitaxial lift-off. Once the substrate is separated from the thin film III-V compound solar cell, the substrate may then be reused in the formation of another thin film III-V compound solar cell.

  3. Thin film transistors on plastic substrates with reflective coatings for radiation protection

    DOE Patents [OSTI]

    Wolfe, Jesse D. (Fairfield, CA); Theiss, Steven D. (Woodbury, MN); Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Wickbold, Paul (Walnut Creek, CA)

    2006-09-26T23:59:59.000Z

    Fabrication of silicon thin film transistors (TFT) on low-temperature plastic substrates using a reflective coating so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The TFT can be used in large area low cost electronics, such as flat panel displays and portable electronics such as video cameras, personal digital assistants, and cell phones.

  4. Thin film transistors on plastic substrates with reflective coatings for radiation protection

    DOE Patents [OSTI]

    Wolfe, Jesse D.; Theiss, Steven D.; Carey, Paul G.; Smith, Patrick M.; Wickboldt, Paul

    2003-11-04T23:59:59.000Z

    Fabrication of silicon thin film transistors (TFT) on low-temperature plastic substrates using a reflective coating so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The TFT can be used in large area low cost electronics, such as flat panel displays and portable electronics such as video cameras, personal digital assistants, and cell phones.

  5. Microwave plasma assisted supersonic gas jet deposition of thin film materials

    DOE Patents [OSTI]

    Schmitt, J.J. III; Halpern, B.L.

    1993-10-26T23:59:59.000Z

    An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures. 5 figures.

  6. Crossover between fractal and nonfractal flux penetration in high-temperature superconducting thin films

    E-Print Network [OSTI]

    Wijngaarden, Rinke J.

    -optics. We study thin films of Tl2Ba2CuO6 x on substrates with vicinal angles of 0° well-oriented , 0.5°, 2 investigations of magnetic flux penetration in high-Tc superconducting thin films show often a flux front with the smooth and well-defined flux penetration observed in single crystals1,2,10­17 and in some thin films.1

  7. Novel Structure and Dynamics of Polymer Thin Films in Supercritical Fluids-Effect of Density Fluctuation

    SciTech Connect (OSTI)

    Koga,T.

    2004-01-01T23:59:59.000Z

    Supercritical carbon dioxide (scCO2) is being used increasingly as a green solvent in polymer processing. The major disadvantage thus far is that only a limited class of polymers, such as fluorinated or silicone-based polymers, can be dissolved in CO2. Here I show that large density fluctuations in scCO2 can significantly enhance the solubility of scCO2 in polymer thin films even when the bulk polymers have very poor miscibility with CO2. By using in situ neutron reflectivity, I found that a wide variety of polymer thin films can swell as much as 30-60% when exposed to scCO2 within a narrow temperature and pressure regime, known as the 'density fluctuation ridge', which defines the maximum density fluctuation amplitude in CO2. Furthermore, the swollen structures induced by the density fluctuation could be frozen by a flash evaporation of CO2 via the vitrification process of the polymer without a formation of void structures. X-ray reflectivity clearly showed that the scCO2 process could be used to produce uniform low-density polymer thin films. I also found that other properties of the vitrified films, such as index of refraction, dielectric constant and glass transition, were correlated with the low-density density profile.

  8. Real time intelligent process control system for thin film solar cell manufacturing

    SciTech Connect (OSTI)

    George Atanasoff

    2010-10-29T23:59:59.000Z

    This project addresses the problem of lower solar conversion efficiency and waste in the typical solar cell manufacturing process. The work from the proposed development will lead toward developing a system which should be able to increase solar panel conversion efficiency by an additional 12-15% resulting in lower cost panels, increased solar technology adoption, reduced carbon emissions and reduced dependency on foreign oil. All solar cell manufacturing processes today suffer from manufacturing inefficiencies that currently lead to lower product quality and lower conversion efficiency, increased product cost and greater material and energy consumption. This results in slower solar energy adoption and extends the time solar cells will reach grid parity with traditional energy sources. The thin film solar panel manufacturers struggle on a daily basis with the problem of thin film thickness non-uniformity and other parameters variances over the deposited substrates, which significantly degrade their manufacturing yield and quality. Optical monitoring of the thin films during the process of the film deposition is widely perceived as a necessary step towards resolving the non-uniformity and non-homogeneity problem. In order to enable the development of an optical control system for solar cell manufacturing, a new type of low cost optical sensor is needed, able to acquire local information about the panel under deposition and measure its local characteristics, including the light scattering in very close proximity to the surface of the film. This information cannot be obtained by monitoring from outside the deposition chamber (as traditional monitoring systems do) due to the significant signal attenuation and loss of its scattering component before the reflected beam reaches the detector. In addition, it would be too costly to install traditional external in-situ monitoring systems to perform any real-time monitoring over large solar panels, since it would require significant equipment refurbishing needed for installation of multiple separate ellipsometric systems, and development of customized software to control all of them simultaneously. The proposed optical monitoring system comprises AccuStrata’s fiber optics sensors installed inside the thin film deposition equipment, a hardware module of different components (beyond the scope of this project) and our software program with iterative predicting capability able to control material bandgap and surface roughness as films are deposited. Our miniature fiber optics monitoring sensors are installed inside the vacuum chamber compartments in very close proximity where the independent layers are deposited (an option patented by us in 2003). The optical monitoring system measures two of the most important parameters of the photovoltaic thin films during deposition on a moving solar panel - material bandgap and surface roughness. In this program each sensor array consists of two fiber optics sensors monitoring two independent areas of the panel under deposition. Based on the monitored parameters and their change in time and from position to position on the panel, the system is able to provide to the equipment operator immediate information about the thin films as they are deposited. This DoE Supply Chain program is considered the first step towards the development of intelligent optical control system capable of dynamically adjusting the manufacturing process “on-the-fly” in order to achieve better performance. The proposed system will improve the thin film solar cell manufacturing by improving the quality of the individual solar cells and will allow for the manufacturing of more consistent and uniform products resulting in higher solar conversion efficiency and manufacturing yield. It will have a significant impact on the multibillion-dollar thin film solar market. We estimate that the financial impact of these improvements if adopted by only 10% of the industry ($7.7 Billion) would result in about $1.5 Billion in savings by 2015 (at the assumed 20% improvement). This can b

  9. Characterization of the viscoelastic properties of thin-film materials using dynamic-mechanical testing techniques 

    E-Print Network [OSTI]

    Biskup, Bruce Allen

    1994-01-01T23:59:59.000Z

    An investigation into the use of dynamic mechanical analysis to characterize the viscoelastic properties of thin film materials is presented. The methodology was investigated using polyethylene films used on high altitude research balloons. Time...

  10. Thin Film Solar Cells with Light Trapping Transparent Conducting Oxide Layer

    E-Print Network [OSTI]

    Lu, Tianlin

    2012-07-16T23:59:59.000Z

    Thin film solar cells, if film thickness is thinner than the optical absorption length, typically give lower cell performance. For the thinner structure, electric current loss due to light penetration can offset the electric current gain obtained...

  11. Thin Film Solar Cells with Light Trapping Transparent Conducting Oxide Layer 

    E-Print Network [OSTI]

    Lu, Tianlin

    2012-07-16T23:59:59.000Z

    Thin film solar cells, if film thickness is thinner than the optical absorption length, typically give lower cell performance. For the thinner structure, electric current loss due to light penetration can offset the electric current gain obtained...

  12. Processing and properties of ytterbium-erbium silicate thin film gain media

    E-Print Network [OSTI]

    Kimerling, Lionel C.

    The structural and photoluminescence properties of ytterbium-erbium silicate thin films have been investigated. The films were fabricated by RF-magnetron co-sputtering of Er[subscript 2]O[subscript 3], Yb[subscript ...

  13. Bi-Sr-Ca-Cu-O thin films grown by flash evaporation and pulsed laser deposition

    E-Print Network [OSTI]

    Ganapathy Subramanian, Santhana

    2004-09-30T23:59:59.000Z

    -phase 2212 films were grown on a MgO substrate using the pulsed laser deposition technique from commercially available 2212 powder. The effect of annealing on the thin films was also studied....

  14. Structure-property Relationships in Pure and Doped Epitaxial Tungsten Trioxide Thin Films

    E-Print Network [OSTI]

    Structure-property Relationships in Pure and Doped Epitaxial Tungsten Trioxide Thin Films Principal-property relationships of well- defined epitaxial tungsten trioxide (WO3) films with and without dopants, and thereby

  15. PHYSICAL REVIEW B 85, 184101 (2012) Octahedral tilting in strained LaVO3 thin films

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    2012-01-01T23:59:59.000Z

    -Zentrum Berlin f¨ur Materialien und Energie GmbH, BESSY, Albert-Einstein-Strasse 15, 12489 Berlin, Germany rotations in a LaVO3 thin film is investigated using synchrotron radiation. First, we find that the film

  16. Near-infrared photodetector consisting of J-aggregating cyanine dye and metal oxide thin films

    E-Print Network [OSTI]

    Osedach, Timothy P.

    We demonstrate a near-infrared photodetector that consists of a thin film of the J-aggregating cyanine dye, U3, and transparent metal-oxide charge transport layers. The high absorption coefficient of the U3 film, combined ...

  17. ag sn thin-film: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by x-ray diffractogram. The deposition parameters were optimized to obtain good quality thin films. The film deposited with 10.0ml TEA showed good uniformity, good surface...

  18. Effects of aging on the characteristics of TiNiPd shape memory alloy thin films

    SciTech Connect (OSTI)

    Zhang Congchun [Key Laboratory for Thin Film and Micro-fabrication Technology of Ministry of Education, Research Institute of Micro/Nanometer Science and Technology (China)], E-mail: zhcc@mail.sjtu.edu.cn; Yang Chunsheng; Ding Guifu [Key Laboratory for Thin Film and Micro-fabrication Technology of Ministry of Education, Research Institute of Micro/Nanometer Science and Technology (China); Wu Jiansheng [School of Material Science and Engineering, Shanghai Jiaotong University, 200030, Shanghai (China)

    2008-07-15T23:59:59.000Z

    TiNiPd thin films have been deposited on glass substrate using R.F. magnetron sputtering. Effects of annealing and aging on the microstructure, phase transformation behaviors and shape memory effects of these thin films have been studied by X-ray diffractometry, differential scanning calorimeter, tensile tests and internal friction characteristics. The TiNiPd thin films annealed at 750 deg. C exhibit uniform martensite/austenite transformations and shape memory effect. Aging at 450 deg. C for 1 h improved the uniformity of transformations and shape memory effect. Long time aging decreased transformation temperatures and increased the brittleness of TiNiPd thin films.

  19. A thin film model for corotational Jeffreys fluids under strong slip

    E-Print Network [OSTI]

    A. Münch; B. Wagner; M. Rauscher; R. Blossey

    2006-05-14T23:59:59.000Z

    We derive a thin film model for viscoelastic liquids under strong slip which obey the stress tensor dynamics of corotational Jeffreys fluids.

  20. Chemical vapor deposition of organosilicon composite thin films for porous low-k dielectrics

    E-Print Network [OSTI]

    Ross, April Denise, 1977-

    2005-01-01T23:59:59.000Z

    Pulsed plasma enhanced chemical vapor deposition has produced organosilicon thin films with the potential use as low dielectric constant interconnect materials in microelectronic circuits. Both diethylsilane and ...

  1. abrasion-resistant thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  2. al-cu-fe thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  3. alendronate-hydroxyapatite thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  4. amorphous silicon thin-film: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    amorphous silicon Kanicki, Jerzy 17 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  5. ag-in-se thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  6. Electrochemical kinetics of thin film vanadium pentoxide cathodes for lithium batteries

    E-Print Network [OSTI]

    Mui, Simon C., 1976-

    2005-01-01T23:59:59.000Z

    Electrochemical experiments were performed to investigate the processing-property-performance relations of thin film vanadium pentoxide cathodes used in lithium batteries. Variations in microstructures were achieved via ...

  7. Thin film reactions on alloy semiconductor substrates

    SciTech Connect (OSTI)

    Olson, D.A.

    1990-11-01T23:59:59.000Z

    The interactions between Pt and In{sub .53}Ga{sub .47}As have been studied. In{sub .53}Ga{sub .47}As substrates with 70nm Pt films were encapsulated in SiO{sub 2}, and annealed up to 600{degree}C in flowing forming gas. The composition and morphology of the reaction product phases were studied using x-ray diffraction, Auger depth profiling, and transmission electron microscopy. The reaction kinetics were examined with Rutherford Backscattering. Results show that Pt/In{sub .53}Ga{sub .47}As reacts to form many of the reaction products encountered in the Pt/GaAs and Pt/InP reactions: PtGa, Pt{sub 3}Ga, and PtAs{sub 2}. In addition, a ternary phase, Pt(In:Ga){sub 2}, develops, which is a solid solution between PtIn{sub 2} and PtGa{sub 2}. The amount of Ga in the ternary phase increases with annealing temperature, which causes a decrease in the lattice parameter of the phase. The reaction products show a tendency to form layered structures, especially for higher temperatures and longer annealing times. Unlike the binary case, the PtAs{sub 2}, phase is randomly oriented on the substrate, and is intermingle with a significant amount of Pt(In:Ga){sub 2}. Following Pt/In{sub .53}Ga{sub .47}As reactions, two orientation relationships between the Pt(In:Ga){sub 2} product phase and the substrate were observed, despite the large mismatch with the substrate ({approximately}8%). For many metal/compound semiconductor interactions, the reaction rate is diffusion limited, i.e. exhibits a parabolic dependence on time. An additional result of this study was the development of an In-rich layer beneath the reacted layer. The Auger depth profile showed a substantial increase in the sample at this layer. This is a significant result for the production of ohmic contacts, as the Schottky barrier height in this system lower for higher In concentrations. 216 refs.

  8. Double-sided Tl{sub 2}Ba{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10} thin films based high temperature superconducting filter operating above 100?K

    SciTech Connect (OSTI)

    Xie, Wei; Wang, Pei; He, Ming, E-mail: heming@nankai.edu.cn; Qiao, Ren; Du, Jia-Nan; Gao, Xiao-Xin; Liu, Xin; Zhang, Xu; Ji, Lu; Chen, Hai-Hua; Zhao, Xin-Jie, E-mail: zhaoxj@nankai.edu.cn [College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071 (China)

    2014-09-01T23:59:59.000Z

    A high temperature superconducting (HTS) filter on double-sided Tl{sub 2}Ba{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10} (Tl-2223) thin films is designed in this letter. High-quality double-sided Tl-2223 thin films are prepared on 10?×?10?×?0.5?mm{sup 3} LaAlO{sub 3} (001) substrate. The critical temperatures T{sub c} of the films are 120?±?1?K and the critical current densities J{sub c} are 3–4 MA/cm{sup 2} at 77?K for both sides. X-ray diffraction ?-2? scans and rotational ?-scans prove that the films are strongly textured with the c axis perpendicular to the substrate surface. A 3-pole band-pass filter is then fabricated on the Tl-2223 thin films with 4% relative bandwidth and a center frequency of 4.0 GHz. At 77?K, 100?K, and 102?K, the insertion loss in the passband is 0.088?dB, 0.21?dB, and 0.27?dB, respectively. These performances show that the proposed HTS filter is satisfying even when the operating temperature is above 100?K, which makes it possible to work in outer space without cryogenic systems.

  9. High-Rate Fabrication of a-Si-Based Thin-Film Solar Cells Using Large-Area VHF PECVD Processes

    SciTech Connect (OSTI)

    Deng, Xunming [University of Toledo] [University of Toledo; Fan, Qi Hua

    2011-12-31T23:59:59.000Z

    The University of Toledo (UT), working in concert with it’s a-Si-based PV industry partner Xunlight Corporation (Xunlight), has conducted a comprehensive study to develop a large-area (3ft x 3ft) VHF PECVD system for high rate uniform fabrication of silicon absorber layers, and the large-area VHF PECVD processes to achieve high performance a-Si/a-SiGe or a-Si/nc-Si tandem junction solar cells during the period of July 1, 2008 to Dec. 31, 2011, under DOE Award No. DE-FG36-08GO18073. The project had two primary goals: (i) to develop and improve a large area (3 ft × 3 ft) VHF PECVD system for high rate fabrication of > = 8 Å/s a-Si and >= 20 Å/s nc-Si or 4 Å/s a-SiGe absorber layers with high uniformity in film thicknesses and in material structures. (ii) to develop and optimize the large-area VHF PECVD processes to achieve high-performance a-Si/nc-Si or a-Si/a-SiGe tandem-junction solar cells with >= 10% stable efficiency. Our work has met the goals and is summarized in “Accomplishments versus goals and objectives”.

  10. Epitaxial ternary nitride thin films prepared by a chemical solution method

    SciTech Connect (OSTI)

    Luo, Hongmei [Los Alamos National Laboratory; Feldmann, David M [Los Alamos National Laboratory; Wang, Haiyan [TEXAS A& M; Bi, Zhenxing [TEXAS A& M

    2008-01-01T23:59:59.000Z

    It is indispensable to use thin films for many technological applications. This is the first report of epitaxial growth of ternary nitride AMN2 films. Epitaxial tetragonal SrTiN2 films have been successfully prepared by a chemical solution approach, polymer-assisted deposition. The structural, electrical, and optical properties of the films are also investigated.

  11. Apparatus and method for the determination of grain size in thin films

    DOE Patents [OSTI]

    Maris, Humphrey J (Barrington, RI)

    2001-01-01T23:59:59.000Z

    A method for the determination of grain size in a thin film sample comprising the steps of measuring first and second changes in the optical response of the thin film, comparing the first and second changes to find the attenuation of a propagating disturbance in the film and associating the attenuation of the disturbance to the grain size of the film. The second change in optical response is time delayed from the first change in optical response.

  12. Apparatus and method for the determination of grain size in thin films

    DOE Patents [OSTI]

    Maris, Humphrey J (Barrington, RI)

    2000-01-01T23:59:59.000Z

    A method for the determination of grain size in a thin film sample comprising the steps of measuring first and second changes in the optical response of the thin film, comparing the first and second changes to find the attenuation of a propagating disturbance in the film and associating the attenuation of the disturbance to the grain size of the film. The second change in optical response is time delayed from the first change in optical response.

  13. Characterization of CdS thin films grown by chemical bath deposition using four different cadmium sources

    E-Print Network [OSTI]

    Chow, Lee

    efficiency thin film solar cells based on CdTe and Cu(In,Ga)Se2 (CIGS) [3,4]. It has also been used in other used in solar cell applications [6,7]. Deposition of CdS using CBD is based on the slow release of Cd2

  14. Buffer layer for thin film structures

    DOE Patents [OSTI]

    Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.; Wang, Haiyan

    2010-06-15T23:59:59.000Z

    A composite structure including a base substrate and a layer of a mixture of strontium titanate and strontium ruthenate is provided. A superconducting article can include a composite structure including an outermost layer of magnesium oxide, a buffer layer of strontium titanate or a mixture of strontium titanate and strontium ruthenate and a top-layer of a superconducting material such as YBCO upon the buffer layer.

  15. Buffer layer for thin film structures

    DOE Patents [OSTI]

    Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.; Wang, Haiyan

    2006-10-31T23:59:59.000Z

    A composite structure including a base substrate and a layer of a mixture of strontium titanate and strontium ruthenate is provided. A superconducting article can include a composite structure including an outermost layer of magnesium oxide, a buffer layer of strontium titanate or a mixture of strontium titanate and strontium ruthenate and a top-layer of a superconducting material such as YBCO upon the buffer layer.

  16. Method for controlling energy density for reliable pulsed laser deposition of thin films

    SciTech Connect (OSTI)

    Dowden, P. C., E-mail: dowden@lanl.gov, E-mail: qxjia@lanl.gov; Bi, Z.; Jia, Q. X., E-mail: dowden@lanl.gov, E-mail: qxjia@lanl.gov [Center for Integrated Nanotechnologies, Division of Materials Physics and Applications, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-02-15T23:59:59.000Z

    We have established a methodology to stabilize the laser energy density on a target surface in pulsed laser deposition of thin films. To control the focused laser spot on a target, we have imaged a defined aperture in the beamline (so called image-focus) instead of focusing the beam on a target based on a simple “lens-focus.” To control the laser energy density on a target, we have introduced a continuously variable attenuator between the output of the laser and the imaged aperture to manipulate the energy to a desired level by running the laser in a “constant voltage” mode to eliminate changes in the lasers’ beam dimensions. This methodology leads to much better controllability/reproducibility for reliable pulsed laser deposition of high performance electronic thin films.

  17. The origin of white luminescence from silicon oxycarbide thin films

    SciTech Connect (OSTI)

    Nikas, V.; Gallis, S., E-mail: sgalis@us.ibm.com; Huang, M.; Kaloyeros, A. E. [College of Nanoscale Sciences and Engineering, State University of New York, Albany, New York 12203 (United States); Nguyen, A. P. D.; Stesmans, A.; Afanas'ev, V. V. [Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium)

    2014-02-10T23:59:59.000Z

    Silicon oxycarbide (SiC{sub x}O{sub y}) is a promising material for achieving strong room-temperature white luminescence. The present work investigated the mechanisms for light emission in the visible/ultraviolet range (1.5–4.0?eV) from chemical vapor deposited amorphous SiC{sub x}O{sub y} thin films, using a combination of optical characterizations and electron paramagnetic resonance (EPR) measurements. Photoluminescence (PL) and EPR studies of samples, with and without post-deposition passivation in an oxygen and forming gas (H{sub 2} 5 at.?% and N{sub 2} 95 at.?%) ambient, ruled out typical structural defects in oxides, e.g., Si-related neutral oxygen vacancies or non-bridging oxygen hole centers, as the dominant mechanism for white luminescence from SiC{sub x}O{sub y}. The observed intense white luminescence (red, green, and blue emission) is believed to arise from the generation of photo-carriers by optical absorption through C-Si-O related electronic transitions, and the recombination of such carriers between bands and/or at band tail states. This assertion is based on the realization that the PL intensity dramatically increased at an excitation energy coinciding with the E{sub 04} band gaps of the material, as well as by the observed correlation between the Si-O-C bond density and the PL intensity. An additional mechanism for the existence of a blue component of the white emission is also discussed.

  18. Microstructure of amorphous indium oxide and tin oxide thin films

    SciTech Connect (OSTI)

    Rauf, I.A.; Brown, L.M. (Univ. of Cambridge (United Kingdom))

    1994-03-15T23:59:59.000Z

    Indium oxide, tin oxide, and some other doped and undoped oxide semiconductors show an interesting and technologically important combination of properties. They have high luminous transparency, good electrical conductivity and high infrared reflectivity. Numerous techniques for depositing these materials have been developed and have undergone a number of changes during last two decades. An understanding of the basic physics of these materials has begun to dawn. Most of the literature on transparent conducting oxides consists of studying the dependence of the properties on the composition, preparation conditions, such as deposition rate, substrate temperature or post-deposition heat treatment. In this paper the authors have employed the transmission electron microscopy to study the microstructure of reactively evaporated, electron beam evaporated, ion-beam sputtered amorphous indium oxide and reactively evaporated amorphous tin oxide thin films. These films, which have received little attention in the past, can have enormous potential as transparent conductive coatings on heat-sensitive substrates and inexpensive solar cells.

  19. Isothermal dehydration of thin films of water and sugar solutions

    SciTech Connect (OSTI)

    Heyd, R. [Centre de Recherche sur la Matière Divisée, University of Orleans and CNRS, rue de la Férollerie 1B, 45071 Orléans Cedex 2 (France)] [Centre de Recherche sur la Matière Divisée, University of Orleans and CNRS, rue de la Férollerie 1B, 45071 Orléans Cedex 2 (France); Rampino, A. [Centre de Recherche sur la Matière Divisée, University of Orleans and CNRS, rue de la Férollerie 1B, 45071 Orléans Cedex 2 (France) [Centre de Recherche sur la Matière Divisée, University of Orleans and CNRS, rue de la Férollerie 1B, 45071 Orléans Cedex 2 (France); Laboratory of Physical and Macromolecular Chemistry, University of Trieste, Via Giorgieri 1, 34127 Trieste (Italy); Bellich, B.; Elisei, E. [Laboratory of Physical and Macromolecular Chemistry, University of Trieste, Via Giorgieri 1, 34127 Trieste (Italy)] [Laboratory of Physical and Macromolecular Chemistry, University of Trieste, Via Giorgieri 1, 34127 Trieste (Italy); Cesàro, A. [Laboratory of Physical and Macromolecular Chemistry, University of Trieste, Via Giorgieri 1, 34127 Trieste (Italy) [Laboratory of Physical and Macromolecular Chemistry, University of Trieste, Via Giorgieri 1, 34127 Trieste (Italy); Elettra Sincrotrone Trieste, Area Science Park, I-34149 Trieste (Italy); Saboungi, M.-L. [Centre de Recherche sur la Matière Divisée, University of Orleans and CNRS, rue de la Férollerie 1B, 45071 Orléans Cedex 2 (France) [Centre de Recherche sur la Matière Divisée, University of Orleans and CNRS, rue de la Férollerie 1B, 45071 Orléans Cedex 2 (France); Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie (IMPMC), Sorbonne Univ-UPMC, Univ Paris 06, UMR CNRS 7590, Museum National d’Histoire Naturelle, IRD UMR 206, 4 Place Jussieu, F-75005 Paris (France)

    2014-03-28T23:59:59.000Z

    The process of quasi-isothermal dehydration of thin films of pure water and aqueous sugar solutions is investigated with a dual experimental and theoretical approach. A nanoporous paper disk with a homogeneous internal structure was used as a substrate. This experimental set-up makes it possible to gather thermodynamic data under well-defined conditions, develop a numerical model, and extract needed information about the dehydration process, in particular the water activity. It is found that the temperature evolution of the pure water film is not strictly isothermal during the drying process, possibly due to the influence of water diffusion through the cellulose web of the substrate. The role of sugar is clearly detectable and its influence on the dehydration process can be identified. At the end of the drying process, trehalose molecules slow down the diffusion of water molecules through the substrate in a more pronounced way than do the glucose molecules.

  20. Studies on nickel-tungsten oxide thin films

    SciTech Connect (OSTI)

    Usha, K. S. [Department of Physics, Alagappa University, Karaikudi - 630 004 (India); Sivakumar, R., E-mail: krsivakumar1979@yahoo.com [Directorate of Distance Education, Alagappa University, Karaikudi - 630 004 (India); Sanjeeviraja, C. [Department of Physics, Alagappa Chettiar College of Engineering and Technology, Karaikudi - 630 004 (India)

    2014-10-15T23:59:59.000Z

    Nickel-Tungsten oxide (95:5) thin films were prepared by rf sputtering at 200W rf power with various substrate temperatures. X-ray diffraction study reveals the amorphous nature of films. The substrate temperature induced decrease in energy band gap with a maximum transmittance of 71%1 was observed. The Micro-Raman study shows broad peaks at 560 cm{sup ?1} and 1100 cm{sup ?1} correspond to Ni-O vibration and the peak at 860 cm{sup ?1} can be assigned to the vibration of W-O-W bond. Photoluminescence spectra show two peaks centered on 420 nm and 485 nm corresponding to the band edge emission and vacancies created due to the addition of tungsten, respectively.

  1. Thin film solar cell including a spatially modulated intrinsic layer

    DOE Patents [OSTI]

    Guha, Subhendu (Troy, MI); Yang, Chi-Chung (Troy, MI); Ovshinsky, Stanford R. (Bloomfield Hills, MI)

    1989-03-28T23:59:59.000Z

    One or more thin film solar cells in which the intrinsic layer of substantially amorphous semiconductor alloy material thereof includes at least a first band gap portion and a narrower band gap portion. The band gap of the intrinsic layer is spatially graded through a portion of the bulk thickness, said graded portion including a region removed from the intrinsic layer-dopant layer interfaces. The band gap of the intrinsic layer is always less than the band gap of the doped layers. The gradation of the intrinsic layer is effected such that the open circuit voltage and/or the fill factor of the one or plural solar cell structure is enhanced.

  2. Preparation of thin ceramic films via an aqueous solution route

    DOE Patents [OSTI]

    Pederson, Larry R. (Kennewick, WA); Chick, Lawrence A. (Richland, WA); Exarhos, Gregory J. (Richland, WA)

    1989-01-01T23:59:59.000Z

    A new chemical method of forming thin ceramic films has been developed. An aqueous solution of metal nitrates or other soluble metal salts and a low molecular weight amino acid is coated onto a substrate and pyrolyzed. The amino acid serves to prevent precipitation of individual solution components, forming a very viscous, glass-like material as excess water is evaporated. Using metal nitrates and glycine, the method has been demonstrated for zirconia with various levels of yttria stabilization, for lanthanum-strontium chromites, and for yttrium-barium-copper oxide superconductors on various substrates.

  3. Thin film superconductors and process for making same

    DOE Patents [OSTI]

    Nigrey, P.J.

    1988-01-21T23:59:59.000Z

    A process for the preparation of oxide superconductors from high-viscosity non-aqueous solution is described. Solutions of lanthanide nitrates, alkaline earth nitrates and copper nitrates in a 1:2:3 stoichiometric ratio, when added to ethylene glycol containing citric acid solutions, have been used to prepare highly viscous non-aqueous solutions of metal mixed nitrates-citrates. Thin films of these compositions are produced when a layer of the viscous solution is formed on a substrate and subjected to thermal decomposition.

  4. NREL: Photovoltaics Research - Thin Film Photovoltaic Partnership Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit |Infrastructure JohnEnergyThin Film Photovoltaic

  5. Thin Film Deposition Method for Sensor Manufacturing - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in theTheoreticalEnergy InnovationThin Film CIGS

  6. Nonlinear dynamics of phase separation in thin films

    E-Print Network [OSTI]

    Lennon O Naraigh; Jean-Luc Thiffeault

    2009-11-03T23:59:59.000Z

    We present a long-wavelength approximation to the Navier-Stokes Cahn-Hilliard equations to describe phase separation in thin films. The equations we derive underscore the coupled behaviour of free-surface variations and phase separation. We introduce a repulsive substrate-film interaction potential and analyse the resulting fourth-order equations by constructing a Lyapunov functional, which, combined with the regularizing repulsive potential, gives rise to a positive lower bound for the free-surface height. The value of this lower bound depends on the parameters of the problem, a result which we compare with numerical simulations. While the theoretical lower bound is an obstacle to the rupture of a film that initially is everywhere of finite height, it is not sufficiently sharp to represent accurately the parametric dependence of the observed dips or `valleys' in free-surface height. We observe these valleys across zones where the concentration of the binary mixture changes sharply, indicating the formation of bubbles. Finally, we carry out numerical simulations without the repulsive interaction, and find that the film ruptures in finite time, while the gradient of the Cahn--Hilliard concentration develops a singularity.

  7. Hydrogen adsorption in thin films of Prussian blue analogue

    SciTech Connect (OSTI)

    Yang, Dali [Los Alamos National Laboratory; Ding, Vivian [Los Alamos National Laboratory; Luo, Junhua [Los Alamos National Laboratory; Currier, Robert P [Los Alamos National Laboratory; Obrey, Steve [Los Alamos National Laboratory; Zhao, Yusheng [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    Quartz crystal microbalance with dissipation (QCM-D) measurement was used to investigate the kinetics of the molecular hydrogen adsorption into thin films of prussian blue analogues - Cu{sub 3}[Co(CN){sub 6}]{sub 2} at ambient conditions. Although the equilibrium adsorption seems to be independent of the thickness, the adsorption rate substantially decreases with the thickness of the films. In addition, the reversibility of H{sub 2} adsorption into the Cu{sub 3}[Co(CN){sub 6}]{sub 2} films was investigated. The results indicate that the Cu{sub 3}[Co(CN){sub 6}]{sub 2} maily interacts with H{sub 2} molecules physically. The highest H{sub 2} uptake by the Cu{sub 3}[Co(CN){sub 6}]{sub 2} films is obtained when the gas phase is stagnant inside the testing cell. However, the unusual high H{sub 2} uptake obtained from the QCM-D measurement makes us question how reliable this analytic methodology is.

  8. Nanoparticle size and morphology control using ultrafast laser induced forward transfer of Ni thin films

    SciTech Connect (OSTI)

    Murphy, Ryan D. [Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States); Abere, Michael J.; Schrider, Keegan J.; Yalisove, Steven M. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Torralva, Ben [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2013-08-26T23:59:59.000Z

    We have developed a nanoparticle (NP) printing technique using Ni thin film lift-off from glass substrates after ultrafast irradiation in air. Unique interactions of ultrafast laser pulses with thin films allow for control over NP faceting and size distributions. Control is achieved by changing the laser fluence, film thickness, and film-substrate distance. We demonstrate 20 nm Ni film removal from substrates and rapid NP printing, with size distributions centered at a 6 nm diameter. When the Ni film thickness is lowered to 10 nm, NPs are printed with distributions peaked at a 2 nm diameter.

  9. Investigation into the growth and structure of thin-film solid solutions of iron-based superconductors in the FeSe{sub 0.92}-FeSe{sub 0.5}Te{sub 0.5} system

    SciTech Connect (OSTI)

    Stepantsov, E. A., E-mail: stepantsov@ns.cryst.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Kazakov, S. M.; Belikov, V. V. [Moscow State University (Russian Federation)] [Moscow State University (Russian Federation); Makarova, I. P. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)] [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Arpaia, R.; Gunnarsson, R.; Lombardi, F. [Chalmers University of Technology, Department of Microtechnology and Nanoscience (Sweden)] [Chalmers University of Technology, Department of Microtechnology and Nanoscience (Sweden)

    2013-09-15T23:59:59.000Z

    Thin films of FeSe{sub 0.92} and FeSe{sub 0.5}Te{sub 0.5} iron chalcogenide superconductors and solid solutions containing these components in different ratios have been grown on the surface of LaAlO{sub 3} (10 1-bar 2) crystals by pulsed laser deposition. Films of solid solutions have been deposited by simultaneous laser ablation from two targets of the FeSe{sub 0.92} and FeSe{sub 0.5}Te{sub 0.5} stoichiometric compositions onto one substrate. An X-ray diffraction study of the film structure shows that the films grown are epitaxial and their lattice parameters regularly vary with the ratio of the deposited components, which was controllably varied by changing the ablation intensities from the targets.

  10. Optical, ferroelectric, and piezoresponse force microscopy studies of pulsed laser deposited Aurivillius Bi?FeTi?O?? thin films

    SciTech Connect (OSTI)

    Kooriyattil, Sudheendran [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, P.O. Box 70377, San Juan, Puerto Rico 00936-8377 (United States); Department of Physics, Sree Kerala Varma College, Thrissur-680011, Kerala (India); Pavunny, Shojan P., E-mail: rkatiyar@uprrp.edu, E-mail: shojanpp@gmail.com; Barrionuevo, Danilo; Katiyar, Ram S., E-mail: rkatiyar@uprrp.edu, E-mail: shojanpp@gmail.com [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, P.O. Box 70377, San Juan, Puerto Rico 00936-8377 (United States)

    2014-10-14T23:59:59.000Z

    Bi?FeTi?O?? (BFTO) based Aurivillius ferroelectric thin films were fabricated on strontium ruthanate coated amorphous fused silica substrates using pulsed laser deposition technique. Optical, ferroelectric, and piezoresponse properties of these thin films were investigated. The estimated refractive index (n) and extinction coefficient (k) for these films were in the range from 2.40 to 2.59 and 0.012 to 0.19, respectively. The bandgap of the BFTO thin layers was estimated to be 2.88 eV. Domain switching and hysteresis loops of BFTO films were studied utilizing piezoresponse force microscopy (PFM). The measured apparent polarization (P{sub r}) and coercive field (E{sub c}) for the samples were 20 ?C/cm² and 250 kV/cm, respectively. The amplitude and phase hysteresis curves obtained from PFM characterization reveal that these films can be switched below 5 V. These results suggest that BFTO in thin film form is a promising material for photo ferroelectric and optoelectronic devices applications.

  11. It all began in 2001, when three NREL researchers took their thin-film expertise from window technology research and applied it to a solid-state, thin-film lithium battery. The researchers

    E-Print Network [OSTI]

    window technology research and applied it to a solid-state, thin-film lithium battery. The researchers

  12. Method of lift-off patterning thin films in situ employing phase change resists

    DOE Patents [OSTI]

    Bahlke, Matthias Erhard; Baldo, Marc A; Mendoza, Hiroshi Antonio

    2014-09-23T23:59:59.000Z

    Method for making a patterned thin film of an organic semiconductor. The method includes condensing a resist gas into a solid film onto a substrate cooled to a temperature below the condensation point of the resist gas. The condensed solid film is heated selectively with a patterned stamp to cause local direct sublimation from solid to vapor of selected portions of the solid film thereby creating a patterned resist film. An organic semiconductor film is coated on the patterned resist film and the patterned resist film is heated to cause it to sublime away and to lift off because of the phase change.

  13. Damage mechanisms in thin film solar cells during sputtering deposition of transparent conductive coatings

    SciTech Connect (OSTI)

    Fan Qihua; Liao Xianbo [Department of Physics and Astronomy, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606 (United States); Deng, Michael [Xunlight Corporation, 3145 Nebraska Avenue, Toledo, Ohio 43607 (United States); Deng Xunming [Department of Physics and Astronomy, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606 (United States); Xunlight Corporation, 3145 Nebraska Avenue, Toledo, Ohio 43607 (United States)

    2009-02-01T23:59:59.000Z

    Amorphous silicon (a-Si) based thin film solar cell grown on flexible stainless steel substrate is one of the most promising energy conversion devices in the future. This type of solar cell uses a transparent conductive oxide (TCO) film as top electrode. It has been a widely accepted opinion that the radio frequency sputtering deposition of the TCO film produces a higher yield than direct current sputtering, and the reason is not clear. Here we show that the damage to the solar cell during the sputtering process is caused by a reverse bias applied to the n-i-p junction. This reverse bias is related to the characteristics of plasma discharge. The mechanism we reveal may significantly affect the solar cell process.

  14. Investigation of Solar Energy Transfer through Plasmonic Au Nanoparticle-doped Sol-derived TiO? Thin Films in Photocatalysis and Photovoltaics /

    E-Print Network [OSTI]

    Zelinski, Andrew

    2013-01-01T23:59:59.000Z

    TiO 2 Thin Films in Photocatalysis and Photovoltaics ATiO 2 Thin Films in Photocatalysis and Photovoltaics by

  15. Band Gap Energy of Chalcopyrite Thin Film Solar Cell Absorbers Determined by Soft X-Ray Emission and Absorption Spectroscopy

    E-Print Network [OSTI]

    Bar, M.

    2010-01-01T23:59:59.000Z

    8] J.R. Tuttle et al. , Solar Cells 30, 21 (1991). [9] D.OF CHALCOPYRITE THIN FILM SOLAR CELL ABSORBERS DETERMINED BYchalcopyrite thin film solar cell absorbers significantly

  16. Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film

    E-Print Network [OSTI]

    Deng, Xunming

    Analytical model for the optical functions of amorphous semiconductors from the near functions of thin film semiconductors are useful for two important purposes, namely, materials, reflectance, and ellipso- metric spectra obtained on the thin film semiconductors. The conventional analysis

  17. Fabrication and Characterization of Spinel Magnetic Nanoparticle Thin Film Transmission Lines

    E-Print Network [OSTI]

    Papapolymerou, Ioannis "John"

    - Munich 2003 1307 #12;2 the glass slide. By altemating from a solution of amine-coated nanoparticles1 Fabrication and Characterization of Spinel Magnetic Nanoparticle Thin Film Transmission Lines-Spinel magnetic nanoparticle thin films were fabricated on high resistivity silicon substrates. TRL (through

  18. New measurement capability measures semiconductor minority-carrier lifetimes in conditions that simulate thin-film

    E-Print Network [OSTI]

    that simulate thin-film photovoltaic manufacturing environments. National Renewable Energy Laboratory (NREL of conditions in a thin-film photovoltaic (PV) manufacturing line. NREL's work in recent years has demonstrated system. The system, shown below, couples femtosecond laser pulses with optical fibers while avoiding

  19. Bill Shafarman 1 May 15, 2013 Thin Film Photovoltaics Research at the

    E-Print Network [OSTI]

    Firestone, Jeremy

    Bill Shafarman 1 May 15, 2013 Thin Film Photovoltaics Research at the Institute of Energy of Photovoltaics 2. IEC: History and Capabilities 3. Current Research at IEC #12;Bill Shafarman 2 May 15, 2013 Concentrators #12;Bill Shafarman 5 May 15, 2013 Thin Film Photovoltaics Potential for low cost PV using " a

  20. Thin-Film Active Nano-PWAS for Structural Health Monitoring , Victor Giurgiutiu1

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    Thin-Film Active Nano-PWAS for Structural Health Monitoring Bin Lin1 , Victor Giurgiutiu1 , Amar S 3 University of Texas Arlington, Arlington, TX 76019 ABSTRACT Structural health monitoring (SHM is to develop the fabrication and optimum design of thin-film nano-PWAS for structural health monitoring