National Library of Energy BETA

Sample records for thin film based

  1. High Temperature Thin Film Polymer Dielectric Based Capacitors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Temperature Thin Film Polymer Dielectric Based Capacitors for HEV Power Electronic Systems High Temperature Thin Film Polymer Dielectric Based Capacitors for HEV Power Electronic...

  2. Preparation and characterization of TL-based superconducting thin films 

    E-Print Network [OSTI]

    Wang, Pingshu

    1995-01-01

    A simple method for growth of Tl-based superconducting thin films is described. In this method, the precursor was prepared in a vacuum chamber by deposition of Ba, Ca and Cu metals or a Ba-Ca alloy and Cu metal. The precursor was then oxidized...

  3. High-temperature superconducting thin-film-based electronic devices

    SciTech Connect (OSTI)

    Wu, X.D; Finokoglu, A.; Hawley, M.; Jia, Q.; Mitchell, T.; Mueller, F.; Reagor, D.; Tesmer, J.

    1996-09-01

    This the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project involved optimization of processing of Y123 and Tl-2212 thin films deposited on novel substrates for advanced electronic devices. The Y123 films are the basis for development of Josephson Junctions to be utilized in magnetic sensors. Microwave cavities based on the Tl-2212 films are the basis for subsequent applications as communication antennas and transmitters in satellites.

  4. Engineering Al-based Thin Film Materials for Power Devices and Energy Storage Applications

    E-Print Network [OSTI]

    Perng, Ya-Chuan

    2012-01-01

    O Thin Films as a Solid Electrolyte for 3D Microbatteries,”Li 0.5 La 0.5 )TiO 3 solid electrolyte thin films grown byIonic conductivity in solid electrolytes based on lithium

  5. MEMS-based thin-film fuel cells

    DOE Patents [OSTI]

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2003-10-28

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  6. Naphthacene Based Organic Thin Film Transistor With Rare Earth Oxide

    SciTech Connect (OSTI)

    Konwar, K. [Department of Physics, Digboi College, Digboi-786171, Assam (India); Baishya, B. [Department of Physics, Dibrugarh University, Dibrugarh-786004, Assam (India)

    2010-12-01

    Naphthacene based organic thin film transistors (OTFTs) have been fabricated using La{sub 2}O{sub 3}, as the gate insulator. All the OTFTs have been fabricated by the process of thermal evaporation in vacuum on perfectly cleaned glass substrates with aluminium as source-drain and gate electrodes. The naphthacene film morphology on the glass substrate has been studied by XRD and found to be polycrystalline in nature. The field effect mobility, output resistance, amplification factor, transconductance and gain bandwidth product of the OTFTs have been calculated by using theoretical TFT model. The highest value of field effect mobility is found to be 0.07x10{sup -3} cm{sup 2}V{sup -1}s{sup -1} for the devices annealed in vacuum at 90 deg. C for 5 hours.

  7. TiNi-based thin films for MEMS applications

    E-Print Network [OSTI]

    Fu, Yongqing

    In this paper, some critical issues and problems in the development of TiNi thin films were discussed, including preparation and characterization considerations, residual stress and adhesion, frequency improvement, fatigue ...

  8. High Efficiency Thin Film CdTe and a-Si Based Solar Cells Annual Technical Report for the Period

    E-Print Network [OSTI]

    Deng, Xunming

    High Efficiency Thin Film CdTe and a-Si Based Solar Cells Annual Technical Report for the Period This report covers the second year of this subcontract for research on high efficiency CdTe-based thin-film solar cells and on high efficiency a-Si-based thin-film solar cells. The effort on CdTe- based materials

  9. Hot-Wire Deposition of Hydrogenated Nanocrystalline SiGe Films for Thin-Film Si Based Solar Cells

    E-Print Network [OSTI]

    Deng, Xunming

    Hot-Wire Deposition of Hydrogenated Nanocrystalline SiGe Films for Thin-Film Si Based Solar Cells bandgap absorber in an a-Si/a-SiGe/nc-SiGe(nc- Si) triple-junction solar cell due to its higher optical in an a-Si based multiple- junction solar cell. 1. INTRODUCTION Narrow bandgap amorphous SiGe (a

  10. Thin film lithium-based batteries and electrochromic devices fabricated with nanocomposite electrode materials

    DOE Patents [OSTI]

    Gillaspie, Dane T; Lee, Se-Hee; Tracy, C. Edwin; Pitts, John Roland

    2014-02-04

    Thin-film lithium-based batteries and electrochromic devices (10) are fabricated with positive electrodes (12) comprising a nanocomposite material composed of lithiated metal oxide nanoparticles (40) dispersed in a matrix composed of lithium tungsten oxide.

  11. Amorphous Si Thin Film Based Photocathodes with High Photovoltage for Efficient Hydrogen Production

    E-Print Network [OSTI]

    Javey, Ali

    Amorphous Si Thin Film Based Photocathodes with High Photovoltage for Efficient Hydrogen Production for solar hydrogen production. With platinum as prototypical cocatalyst, a photocurrent onset potential of 0 for solar hydrogen production. KEYWORDS: Water splitting, hydrogen production, photochemistry, high

  12. Design and modeling of a PZT thin film based piezoelectric micromachined ultrasonic transducer (PMUT)

    E-Print Network [OSTI]

    Smyth, Katherine Marie

    2012-01-01

    The design and modelling framework for a piezoelectric micromachined ultrasonic transducer (PMUT) based on the piezoelectric thin film deposition of lead zirconate titanate (PZT) is defined. Through high frequency vibration ...

  13. Formation of thin film Tl-based high-Tc? superconducting oxides from amorphous alloy precursors 

    E-Print Network [OSTI]

    Williams, John Charles

    1991-01-01

    FORMATION OF THIN FILM Tl-BASED HIGH-Tc SUPERCONDUCTING OXIDES FROM AMORPHOUS ALLOY PRECURSORS A Thesis JOHN CHARLES WILLIAMS Submitted to the Once of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 1991 Major Subject: Physics FORMATION OF THIN FILM Tl BASED HIGH Tc SUPERCONDUCTING OXIDES FROM AMORPHOUS ALLOY PRECURSORS A Thesis JOHN CHARLES WILLIAMS Approved as to style and content by: Donald G. Naugle...

  14. High Efficiency Thin Film CdTe and a-Si Based Solar Cells Final Technical Report for the Period

    E-Print Network [OSTI]

    Deng, Xunming

    High Efficiency Thin Film CdTe and a-Si Based Solar Cells Final Technical Report for the PeriodTe-based thin-film solar cells and on high efficiency a-Si-based thin-film solar cells. Phases I and II have-SiGe bottom cells. · Studied the sputter deposition of ITO films for the top electrode on a-Si cells and found

  15. Photoluminescence-based quality control for thin film absorber layers of photovoltaic devices

    DOE Patents [OSTI]

    Repins, Ingrid L.; Kuciauskas, Darius

    2015-07-07

    A time-resolved photoluminescence-based system providing quality control during manufacture of thin film absorber layers for photovoltaic devices. The system includes a laser generating excitation beams and an optical fiber with an end used both for directing each excitation beam onto a thin film absorber layer and for collecting photoluminescence from the absorber layer. The system includes a processor determining a quality control parameter such as minority carrier lifetime of the thin film absorber layer based on the collected photoluminescence. In some implementations, the laser is a low power, pulsed diode laser having photon energy at least great enough to excite electron hole pairs in the thin film absorber layer. The scattered light may be filterable from the collected photoluminescence, and the system may include a dichroic beam splitter and a filter that transmit the photoluminescence and remove scattered laser light prior to delivery to a photodetector and a digital oscilloscope.

  16. Electrodeposition of Zn based nanostructure thin films for photovoltaic applications

    SciTech Connect (OSTI)

    Al-Bat’hi, S. A. M.

    2015-03-30

    We present here a systematic study on the synthesis thin films of various ZnO, CdO, Zn{sub x}Cd{sub 1-x} (O) and ZnTe nanostructures by electrodeposition technique with ZnCl{sub 2,} CdCl{sub 2} and ZnSO{sub 4} solution as starting reactant. Several reaction parameters were examined to develop an optimal procedure for controlling the size, shape, and surface morphology of the nanostructure. The results showed that the morphology of the products can be carefully controlled through adjusting the concentration of the electrolyte. The products present well shaped Nanorods arrays at specific concentration and temperature. UV-VIS spectroscopy and X-ray diffraction results show that the product presents good crystallinity. A possible formation process has been proposed.

  17. Tunable electrical conductivity in oriented thin films of tetrathiafulvalene-based covalent organic framework

    SciTech Connect (OSTI)

    Cai, SL; Zhang, YB; Pun, AB; He, B; Yang, JH; Toma, FM; Sharp, ID; Yaghi, OM; Fan, J; Zheng, SR; Zhang, WG; Liu, Y

    2014-09-16

    Despite the high charge-carrier mobility in covalent organic frameworks (COFs), the low intrinsic conductivity and poor solution processability still impose a great challenge for their applications in flexible electronics. We report the growth of oriented thin films of a tetrathiafulvalene-based COF (TTF-COF) and its tunable doping. The porous structure of the crystalline TTF-COF thin film allows the diffusion of dopants such as I-2 and tetracyanoquinodimethane (TCNQ) for redox reactions, while the closely packed 2D grid sheets facilitate the cross-layer delocalization of thus-formed TTF radical cations to generate more conductive mixed-valence TTF species, as is verified by UV-vis-NIR and electron paramagnetic resonance spectra. Conductivity as high as 0.28 S m(-1) is observed for the doped COF thin films, which is three orders of magnitude higher than that of the pristine film and is among the highest for COF materials.

  18. Functionally graded alumina-based thin film systems

    DOE Patents [OSTI]

    Moore, John J.; Zhong, Dalong

    2006-08-29

    The present invention provides coating systems that minimize thermal and residual stresses to create a fatigue- and soldering-resistant coating for aluminum die casting dies. The coating systems include at least three layers. The outer layer is an alumina- or boro-carbide-based outer layer that has superior non-wettability characteristics with molten aluminum coupled with oxidation and wear resistance. A functionally-graded intermediate layer or "interlayer" enhances the erosive wear, toughness, and corrosion resistance of the die. A thin adhesion layer of reactive metal is used between the die substrate and the interlayer to increase adhesion of the coating system to the die surface.

  19. Activated Charcoal Based Diffusive Gradients in Thin Films for in Situ Monitoring of Bisphenols in Waters

    E-Print Network [OSTI]

    Ma, Lena

    Activated Charcoal Based Diffusive Gradients in Thin Films for in Situ Monitoring of Bisphenols, Gainesville, Florida 32611, United States *S Supporting Information ABSTRACT: Widespread use of bisphenols monitoring of BPs in waters. Endocrine-disrupting chemicals, including bisphenols (BPs), are widely used

  20. Molecular solution processing of metal chalcogenide thin film solar cells

    E-Print Network [OSTI]

    Yang, Wenbing

    2013-01-01

    to High-Efficiency CZTSSe Thin-film Solar Cells, Proc. IEEEMetal chalcogenide-based thin film solar cells are currentlyof metal chalcogenide thin film solar cells A dissertation

  1. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Cheng, Y.T.; Poli, A.A.; Meltser, M.A.

    1999-03-23

    A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.

  2. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Cheng, Yang-Tse (Rochester Hills, MI); Poli, Andrea A. (Livonia, MI); Meltser, Mark Alexander (Pittsford, NY)

    1999-01-01

    A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

  3. Multifunctional thin film surface

    DOE Patents [OSTI]

    Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.

    2015-10-13

    A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.

  4. Polycrystalline Thin Film Solar Cell Technologies: Preprint

    SciTech Connect (OSTI)

    Ullal, H. S.

    2008-12-01

    Rapid progress is being made by CdTe and CIGS-based thin-film PV technologies in entering commercial markets.

  5. Improvement in the Mechanical Properties of B-Staged Carbon Nanotube/Epoxy Based Thin Film Systems 

    E-Print Network [OSTI]

    White, Kevin

    2011-01-11

    -1 IMPROVEMENT IN THE MECHANICAL PROPERTIES OF B-STAGED CARBON NANOTUBE/EPOXY BASED THIN FILM SYSTEMS Major: Mechanical Engineering April 2009 Submitted to the Office of Undergraduate Research Texas A&M University in partial fulfillment... of the requirements for the designation as UNDERGRADUATE RESEARCH SCHOLAR A Senior Scholars Thesis by KEVIN LEE WHITE IMPROVEMENT IN THE MECHANICAL PROPERTIES OF B-STAGED CARBON NANOTUBE/EPOXY BASED THIN FILM SYSTEMS Approved by: Research...

  6. Oxygen evolution mediated by co-based thin film electrocatalysts

    E-Print Network [OSTI]

    Surendranath, Yogesh

    2011-01-01

    The electrocatalytic conversion of water to O? is the key efficiency-determining reaction for the storage of electrical energy in the form of liquid fuels. In this thesis, the simple preparation of a cobalt-based catalyst ...

  7. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, A.W.; Bhushan, M.

    1982-08-03

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids. 5 figs.

  8. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, Anthony W. (Wilmington, DE); Bhushan, Manjul (Wilmington, DE)

    1982-01-01

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

  9. Epitaxial thin films

    DOE Patents [OSTI]

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  10. NMR characterization of thin films

    DOE Patents [OSTI]

    Gerald, II, Rex E. (Brookfield, IL); Klingler, Robert J. (Glenview, IL); Rathke, Jerome W. (Homer Glen, IL); Diaz, Rocio (Chicago, IL); Vukovic, Lela (Westchester, IL)

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  11. NMR characterization of thin films

    DOE Patents [OSTI]

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  12. Thin film photovoltaic cell

    DOE Patents [OSTI]

    Meakin, John D. (Newark, DE); Bragagnolo, Julio (Newark, DE)

    1982-01-01

    A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

  13. Nanostructured ceria based thin films ({<=}1 {mu}m) As cathode/electrolyte interfaces

    SciTech Connect (OSTI)

    Hierso, J. [Laboratoire de Chimie de la Matiere Condensee de Paris, Universite Paris 6-UMR 7574-College de France, 11 Place Marcelin Berthelot, 75005 Paris (France); Boy, P.; Valle, K. [CEA-Le Ripault, LSCG, BP 15, 37000 Monts (France); Vulliet, J.; Blein, F. [CEA-Le Ripault, LCCA, BP 15, 37000 Monts (France); Laberty-Robert, Ch., E-mail: christel.laberty@upmc.fr [Laboratoire de Chimie de la Matiere Condensee de Paris, Universite Paris 6-UMR 7574-College de France, 11 Place Marcelin Berthelot, 75005 Paris (France); Sanchez, C. [Laboratoire de Chimie de la Matiere Condensee de Paris, Universite Paris 6-UMR 7574-College de France, 11 Place Marcelin Berthelot, 75005 Paris (France)

    2013-01-15

    Gadolinium doped cerium oxide (CGO: Ce{sub 0,9}Gd{sub 0,1}O{sub 2-{delta}}) films were used as an oxygen anion diffusion layer at the cathode/electrolyte interface of Solid Oxide Fuel Cells (SOFCs), between LSCF (lanthanum strontium cobalt ferrite) and YSZ (yttria-stabilized zirconia). Thin ({approx}100 nm) and thick ({approx}700 nm) mesoporous CGO layers were synthesized through a sol-gel process including organic template coupled with the dip-coating method. Structural and microstructural characterizations were performed, highlighting a well-bonded crystalline CGO nanoparticles network which delineates a 3-D inter-connected mesoporous network. Their electrical behaviors were investigated by impedance spectroscopy analysis of YSZ/mesoporous-CGO/LSCF half-cell. Anode-supported SOFCs, operating at 800 Degree-Sign C, with either dense or mesoporous CGO dip-coated interlayers were also fabricated [NiO-YSZ anode/YSZ/CGO/LSCF cathode]. The impact of the mesoporous CGO interlayers on SOFCs performances was investigated by galvanostatic analysis and compared to the behavior of a dense CGO interlayer. The polarization curves revealed an enhancement in the electrical performance of the cell, which is assigned to a decrease of the polarization resistance at the cathode/electrolyte interface. The integrity and connectivity of the CGO nanoparticles bonded network facilitates O{sup 2-} transport across the interface. - Graphical abstract: Thin and thick CGO films have been prepared through a sol-gel process and their potential application as SOFC cathode/electrolyte interlayer in SOFC has been investigated. Highlights: Black-Right-Pointing-Pointer Mesoporous ceria based thin films exhibit interesting performances for Solid Oxide Fuel Cell. Black-Right-Pointing-Pointer Mesoporous films were synthesized through the sol-gel process combined with the dip-coating. Black-Right-Pointing-Pointer Integrity and connectivity of the nanoparticles facilitates O{sup 2-} transport across the interface.

  14. Giant magnetoelectric effect at low frequencies in polymer-based thin film composites

    SciTech Connect (OSTI)

    Kulkarni, A. [Institute for Materials Science – Chair for Multicomponent Materials, Faculty of Engineering, University of Kiel, Kaiserstraße 2, D-24143 Kiel (Germany); Institute of Electrical and Information Engineering – Technology for Silicon Based Micro- and Nanosystems, Faculty of Engineering, University of Kiel, Kaiserstraße 2, D-24143 Kiel (Germany); Meurisch, K.; Strunskus, T.; Faupel, F. [Institute for Materials Science – Chair for Multicomponent Materials, Faculty of Engineering, University of Kiel, Kaiserstraße 2, D-24143 Kiel (Germany); Teliban, I.; Jahns, R.; Knöchel, R. [Institute of Electrical and Information Engineering – Microwave Laboratory, Faculty of Engineering, University of Kiel, Kaiserstraße 2, D-24143 Kiel (Germany); Piorra, A. [Institute for Materials Science – Chair for Inorganic Functional Materials, Faculty of Engineering, University of Kiel, Kaiserstraße 2, D-24143 Kiel (Germany)

    2014-01-13

    A polymer-based magnetoelectric 2-2 composite was fabricated in a thin film approach by direct spin coating of polyvinylidenefluoride-co-trifluoroethylene onto a Metglas substrate without the usage of an adhesive for the mechanical coupling between the piezoelectric and magnetostrictive materials. For a prototype single-sided clamped cantilever, a magnetoelectric coefficient as high as 850?V?cm{sup ?1}?Oe{sup ?1} is observed at its fundamental bending mode resonance frequency at 27.8 Hz and a detection limit of 10 pTHz{sup ?1/2} at its second bending mode resonance frequency at 169.5 Hz.

  15. Thin-film encapsulation of the air-sensitive organic-based ferrimagnet vanadium tetracyanoethylene

    SciTech Connect (OSTI)

    Froning, I. H.; Harberts, M.; Yu, H.; Johnston-Halperin, E.; Lu, Y.; Epstein, A. J.

    2015-03-23

    The organic-based ferrimagnet vanadium tetracyanoethylene (V[TCNE]{sub x?2}) has demonstrated potential for use in both microwave electronics and spintronics due to the combination of high temperature magnetic ordering (T{sub C}?>?600?K), extremely sharp ferromagnetic resonance (peak to peak linewidth of 1?G), and low-temperature conformal deposition via chemical vapor deposition (deposition temperature of 50?°C). However, air-sensitivity leads to the complete degradation of the films within 2?h under ambient conditions, with noticeable degradation occurring within 30 min. Here, we demonstrate encapsulation of V[TCNE]{sub x?2} thin films using a UV-cured epoxy that increases film lifetime to over 710 h (30 days) as measured by the remanent magnetization. The saturation magnetization and Curie temperature decay more slowly than the remanence, and the coercivity is unchanged after 340 h (14 days) of air exposure. Fourier transform infrared spectroscopy indicates that the epoxy does not react with the film, and magnetometry measurements show that the presence of the epoxy does not degrade the magnetic properties. This encapsulation strategy directly enables a host of experimental protocols and investigations not previously feasible for air-sensitive samples and lays the foundation for the development of practical applications for this promising organic-based magnetic material.

  16. Thin film superconductor magnetic bearings

    DOE Patents [OSTI]

    Weinberger, Bernard R. (Avon, CT)

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  17. Modeling and control of thin film surface morphology: application to thin film solar cells

    E-Print Network [OSTI]

    Huang, Jianqiao

    2012-01-01

    151 Two-stage thin film deposition process15 Description of thin film depositionProcess Model . . . . 54 Porous Thin-Film Deposition Process

  18. Evaluation on the thin-film phase change material-based technologies

    E-Print Network [OSTI]

    Guo, Qiang, M. Eng. Massachusetts Institute of Technology

    2006-01-01

    Two potential applications of thin film phase-change materials are considered, non-volatile electronic memories and MEMS (Micro-Electro-Mechanical Systems) actuators. The markets for those two applications are fast growing ...

  19. Integration of pentacene-based thin film transistors via photolithography for low and high voltage applications

    E-Print Network [OSTI]

    Smith, Melissa Alyson

    2012-01-01

    An organic thin film transistor (OTFT) technology platform has been developed for flexible integrated circuits applications. OTFT performance is tuned by engineering the dielectric constant of the gate insulator and the ...

  20. Optimization-based design of surface textures for thin-film Si solar cells

    E-Print Network [OSTI]

    Sheng, Xing

    We numerically investigate the light-absorption behavior of thin-film silicon for normal-incident light, using surface textures to enhance absorption. We consider a variety of texture designs, such as simple periodic ...

  1. Engineering Al-based Thin Film Materials for Power Devices and Energy Storage Applications

    E-Print Network [OSTI]

    Perng, Ya-Chuan

    2012-01-01

    and J. P. Chang, “Atomic layer deposition of Pb(Zr, Ti)O xfilms deposited by atomic layer deposition on 4H-SiC,” Appl.AlN Thin Films by Atomic Layer Deposition on Wide Bandgap

  2. Electrostatic thin film chemical and biological sensor

    DOE Patents [OSTI]

    Prelas, Mark A. (Columbia, MO); Ghosh, Tushar K. (Columbia, MO); Tompson, Jr., Robert V. (Columbia, MO); Viswanath, Dabir (Columbia, MO); Loyalka, Sudarshan K. (Columbia, MO)

    2010-01-19

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  3. Laser Induced Breakdown Spectroscopy and Applications Toward Thin Film Analysis

    E-Print Network [OSTI]

    Owens, Travis Nathan

    2011-01-01

    Organic Thin Films 4.1 Introduction . . . . . . . . . . . .T iO 2 thin films. . . . . . . . . . . . . . . . . . . . .properties of the organic thin films. . . . . . . . .

  4. Structural and chemical investigations of CBD-and PVD-CdS buffer layers and interfaces in Cu(In,Ga)Se2-based thin film solar cells

    E-Print Network [OSTI]

    Romeo, Alessandro

    (In,Ga)Se2-based thin film solar cells D. Abou-Rasa,b,*, G. Kostorza , A. Romeob,1 , D. Rudmannb , A.N. Tiwarib,2 a ETH Zu¨rich, Institute of Applied Physics, 8093 Zu¨rich, Switzerland b ETH Zu¨rich, Thin Film Available online 8 December 2004 Abstract It is known that high-efficiency thin film solar cells based on Cu

  5. Thin film composite electrolyte

    DOE Patents [OSTI]

    Schucker, Robert C. (The Woodlands, TX)

    2007-08-14

    The invention is a thin film composite solid (and a means for making such) suitable for use as an electrolyte, having a first layer of a dense, non-porous conductive material; a second layer of a porous ionic conductive material; and a third layer of a dense non-porous conductive material, wherein the second layer has a Coefficient of thermal expansion within 5% of the coefficient of thermal expansion of the first and third layers.

  6. Low temperature thin film transistors with hollow cathode plasma-assisted atomic layer deposition based GaN channels

    SciTech Connect (OSTI)

    Bolat, S. E-mail: aokyay@ee.bilkent.edu.tr; Tekcan, B.; Ozgit-Akgun, C.; Biyikli, N.; Okyay, A. K. E-mail: aokyay@ee.bilkent.edu.tr

    2014-06-16

    We report GaN thin film transistors (TFT) with a thermal budget below 250?°C. GaN thin films are grown at 200?°C by hollow cathode plasma-assisted atomic layer deposition (HCPA-ALD). HCPA-ALD-based GaN thin films are found to have a polycrystalline wurtzite structure with an average crystallite size of 9.3?nm. TFTs with bottom gate configuration are fabricated with HCPA-ALD grown GaN channel layers. Fabricated TFTs exhibit n-type field effect characteristics. N-channel GaN TFTs demonstrated on-to-off ratios (I{sub ON}/I{sub OFF}) of 10{sup 3} and sub-threshold swing of 3.3?V/decade. The entire TFT device fabrication process temperature is below 250?°C, which is the lowest process temperature reported for GaN based transistors, so far.

  7. Femtosecond laser ablation-based mass spectrometry. An ideal tool for stoichiometric analysis of thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    LaHaye, Nicole L.; Kurian, Jose; Diwakar, Prasoon K.; Alff, Lambert; Harilal, Sivanandan S.

    2015-08-19

    An accurate and routinely available method for stoichiometric analysis of thin films is a desideratum of modern materials science where a material’s properties depend sensitively on elemental composition. We thoroughly investigated femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fs-LA-ICP-MS) as an analytical technique for determination of the stoichiometry of thin films down to the nanometer scale. The use of femtosecond laser ablation allows for precise removal of material with high spatial and depth resolution that can be coupled to an ICP-MS to obtain elemental and isotopic information. We used molecular beam epitaxy-grown thin films of LaPd(x)Sb2 and T´-La2CuO4 to demonstrate themore »capacity of fs-LA-ICP-MS for stoichiometric analysis and the spatial and depth resolution of the technique. Here we demonstrate that the stoichiometric information of thin films with a thickness of ~10 nm or lower can be determined. Furthermore, our results indicate that fs-LA-ICP-MS provides precise information on the thin film-substrate interface and is able to detect the interdiffusion of cations.« less

  8. Structural and chemical investigations of CBD-and PVD-CdS buffer layers and interfaces in Cu(In,Ga)Se2-based thin film solar cells

    E-Print Network [OSTI]

    Romeo, Alessandro

    (In,Ga)Se2-based thin film solar cells D. Abou-Rasa,b,*, G. Kostorza , A. Romeob,1 , D. Rudmannb , A Available online 8 December 2004 Abstract It is known that high-efficiency thin film solar cells based on Cu in efficiencies of solar cells with CBD- and PVD-CdS buffer layers can partly be explained by referring

  9. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Hoffheins, Barbara S. (Knoxville, TN); Fleming, Pamela H. (Oak Ridge, TN)

    1994-01-01

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

  10. Sputtered Molybdenum Bilayer Back Contact for Copper Indium Diselenide-Based Polycrystalline Thin-Film Solar Cells

    E-Print Network [OSTI]

    Scofield, John H.

    -of-the-art polycrystalline copper indium gallium diselenide solar cells with good results. Thin Solid Films, 260 (1), pp. 26), have emerged as promising polycrystalline thin-film semiconductors for solar cell absorber layers.2 polycrystalline thin-film photovoltaic (PV) technology. 3 Solar cells fabricated at the National Renewable Energy

  11. Thin film ion conducting coating

    DOE Patents [OSTI]

    Goldner, Ronald B. (Lexington, MA); Haas, Terry (Sudbury, MA); Wong, Kwok-Keung (Watertown, MA); Seward, George (Arlington, MA)

    1989-01-01

    Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

  12. Reduced Order Based Compensator Control of Thin Film Growth in a CVD Reactor

    E-Print Network [OSTI]

    of the electrical/optical properties and the reliability of wide bandgap semiconductor devices and circuits, material scientists and physicists at North Carolina State University, to integrate new intelligent deposition (CVD) is an important industrial technique used to grow thin films with certain desired properties

  13. Sensors and Actuators B 49 (1998) 258267 Pd/PVDF thin film hydrogen sensor based on

    E-Print Network [OSTI]

    Mandelis, Andreas

    1998-01-01

    in photodiode detectors. When hydrogen gas comes into contact with the thin palladium film the gas is absorbed to the change of the thermophysical properties of the ambient gas. However this latter response is non to its inherent safe nature when compared with techniques requiring electrical measurements

  14. Plasmonic Based Sensing Using an Array of Au-Metal Oxide Thin Films

    SciTech Connect (OSTI)

    Joy, N.; Rogers, Phillip H.; Nandasiri, Manjula I.; Thevuthasan, Suntharampillai; Carpenter, Michael A.

    2012-12-04

    An optical plasmonic-based sensing array has been developed and tested for the selective and sensitive detection of H2, CO, and NO2 at a temperature of 500°C in an oxygen-containing background. The three element sensing array used Au nanoparticles embedded in separate thin films of yttria stabilized zirconia (YSZ), CeO2, and TiO2. A peak in the absorbance spectrum due to a localized surface plasmon resonance (LSPR) on the Au nanoparticles was monitored for each film during gas exposures and showed a blue shift in the peak positions for the reducing gases, H2 and CO, and a red shift for the oxidizing gas NO2. A more in-depth look at the sensing response was performed using the multivariate methods of principal component analysis (PCA) analysis and linear discriminant analysis (LDA) on data from across the entire absorbance spectrum range. Qualitative results from both methods showed good separation between the three analytes for both the full array and the Au-TiO2 sample. Quantification of LDA cluster separation using the Mahalanobis distance showed better cluster separation for the array, but there were some instances with the lowest concentrations where the single Au-TiO2 film had better separation than the array. A second method to quantify cluster separation in LDA space was developed using multidimensional volume analysis of the individual cluster volume, overlapped cluster volume and empty volume between clusters. Compared to the individual sensing elements, the array showed less cluster overlap, smaller cluster volumes, and more space between clusters, all of which were expected for improved separability between the analytes.

  15. High-efficiency micro-energy generation based on free-carrier-modulated ZnO:N piezoelectric thin films

    SciTech Connect (OSTI)

    Lee, Eunju; Park, Jaedon; Yim, Munhyuk; Jeong, Sangbeom; Yoon, Giwan, E-mail: gwyoon@kaist.ac.kr [Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2014-05-26

    The free-carrier-modulated ZnO:N thin film-based flexible nanogenerators (NZTF-FNGs) are proposed and experimentally demonstrated. The suggested flexible nanogenerators (FNGs) are fabricated using N-doped ZnO thin films (NZTFs) as their piezoelectric active elements, which are deposited by a radio frequency magnetron sputtering technique with an N{sub 2}O reactive gas as an in situ dopant source. Considerable numbers of N atoms are uniformly incorporated into NZTFs overall during their growth, which would enable them to significantly compensate the unintentional background free electron carriers both in the bulk and at the surface of ZnO thin films (ZTFs). This N-doping approach is found to remarkably enhance the performance of NZTF-FNGs, which shows output voltages that are almost two orders of magnitude higher than those of the conventionally grown ZnO thin film-based FNGs. This is believed to be a result of both substantial screening effect suppression in the ZTF bulk and more reliable Schottky barrier formation at the ZTF interfaces, which is all mainly caused by the N-compensatory doping process. Furthermore, the NZTF-FNGs fabricated are verified via charging tests to be suitable for micro-energy harvesting devices.

  16. Control method and system for use when growing thin-films on semiconductor-based materials

    DOE Patents [OSTI]

    McKee, Rodney A. (Kingston, TN); Walker, Frederick J. (Oak Ridge, TN)

    2001-01-01

    A process and system for use during the growth of a thin film upon the surface of a substrate by exposing the substrate surface to vaporized material in a high vacuum (HV) facility involves the directing of an electron beam generally toward the surface of the substrate as the substrate is exposed to vaporized material so that electrons are diffracted from the substrate surface by the beam and the monitoring of the pattern of electrons diffracted from the substrate surface as vaporized material settles upon the substrate surface. When the monitored pattern achieves a condition indicative of the desired condition of the thin film being grown upon the substrate, the exposure of the substrate to the vaporized materials is shut off or otherwise adjusted. To facilitate the adjustment of the crystallographic orientation of the film relative to the electron beam, the system includes a mechanism for altering the orientation of the surface of the substrate relative to the electron beam.

  17. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Lauf, R.J.; Hoffheins, B.S.; Fleming, P.H.

    1994-11-22

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed. 6 figs.

  18. Thin films and uses

    DOE Patents [OSTI]

    Baskaran, Suresh (Kennewick, WA); Graff, Gordon L. (Kennewick, WA); Song, Lin (Richland, WA)

    1998-01-01

    The invention provides a method for synthesizing a titanium oxide-containing film comprising the following steps: (a) preparing an aqueous solution of a titanium chelate with a titanium molarity in the range of 0.01M to 0.6M. (b) immersing a substrate in the prepared solution, (c) decomposing the titanium chelate to deposit a film on the substrate. The titanium chelate maybe decomposed acid, base, temperature or other means. A preferred method provides for the deposit of adherent titanium oxide films from C2 to C5 hydroxy carboxylic acids. In another aspect the invention is a novel article of manufacture having a titanium coating which protects the substrate against ultraviolet damage. In another aspect the invention provides novel semipermeable gas separation membranes, and a method for producing them.

  19. Femtosecond laser-induced periodic surface structure on the Ti-based nanolayered thin films

    SciTech Connect (OSTI)

    Petrovi?, Suzana M.; Gakovi?, B.; Peruško, D.; Stratakis, E.; Department of Materials Science and Technology, University of Crete, 710 03 Heraklion, Crete ; Bogdanovi?-Radovi?, I.; ?ekada, M.; Fotakis, C.; Department of Physics, University of Crete, 714 09 Heraklion, Crete ; Jelenkovi?, B.

    2013-12-21

    Laser-induced periodic surface structures (LIPSSs) and chemical composition changes of Ti-based nanolayered thin films (Al/Ti, Ni/Ti) after femtosecond (fs) laser pulses action were studied. Irradiation is performed using linearly polarized Ti:Sapphire fs laser pulses of 40 fs pulse duration and 800 nm wavelength. The low spatial frequency LIPSS (LSFL), oriented perpendicular to the laser polarization with periods slightly lower than the irradiation wavelength, was typically formed at elevated laser fluences. On the contrary, high spatial frequency LIPSS (HSFL) with uniform period of 155 nm, parallel to the laser light polarization, appeared at low laser fluences, as well as in the wings of the Gaussian laser beam distribution for higher used fluence. LSFL formation was associated with the material ablation process and accompanied by the intense formation of nanoparticles, especially in the Ni/Ti system. The composition changes at the surface of both multilayer systems in the LSFL area indicated the intermixing between layers and the substrate. Concentration and distribution of all constitutive elements in the irradiated area with formed HSFLs were almost unchanged.

  20. Vertically Aligned Nanocomposite Thin Films 

    E-Print Network [OSTI]

    Bi, Zhenxing

    2012-07-16

    and epitaxial growth ability on given substrates. In the present work, we investigated unique epitaxial two-phase VAN (BiFeO3)x:(Sm2O3)1-x and (La0.7Sr0.3MnO3)x:(Mn3O4)1-x thin film systems by pulsed laser deposition. These VAN thin films exhibit a highly...

  1. Creating CZTS Thin Films Via Stacked Metallic CVD and Sulfurization

    E-Print Network [OSTI]

    Bielecki, Anthony

    2013-01-01

    Katagiri, Cu2ZnSnS4 thin film solar cells, Thin Solid FilmsIndium Galenide Films Thin-film solar cells are created bycandidate for thin- film solar cells. CIGS solar cell

  2. Modeling and control of thin film surface morphology: application to thin film solar cells

    E-Print Network [OSTI]

    Huang, Jianqiao

    2012-01-01

    of a p-i-n thin-film solar cell with front transparent con-for thin-film a-si:h solar cells. Progress in Photovoltaics,in thin-film silicon solar cells. Optics Communications,

  3. Modeling and control of thin film surface morphology: application to thin film solar cells

    E-Print Network [OSTI]

    Huang, Jianqiao

    2012-01-01

    microcrystalline silicon thin films and solar cells. Journalof a p-i-n thin-film solar cell with front transparent con-microcrystalline silicon thin film solar cells. Solar Energy

  4. Modeling and control of thin film surface morphology: application to thin film solar cells

    E-Print Network [OSTI]

    Huang, Jianqiao

    2012-01-01

    modeling of ? -Si : H solar cells with rough interfaces:of a p-i-n thin-film solar cell with front transparent con-amorphous-silicon-based P-I-N solar cells deposited on rough

  5. Vapor deposition of thin films

    DOE Patents [OSTI]

    Smith, David C. (Los Alamos, NM); Pattillo, Stevan G. (Los Alamos, NM); Laia, Jr., Joseph R. (Los Alamos, NM); Sattelberger, Alfred P. (Los Alamos, NM)

    1992-01-01

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl).sub.3, iridium(allyl).sub.3, molybdenum(allyl).sub.4, tungsten(allyl).sub.4, rhenium(allyl).sub.4, platinum(allyl).sub.2, or palladium(allyl).sub.2 are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  6. Vapor deposition of thin films

    SciTech Connect (OSTI)

    Smith, D.C.; Pattillo, S.G.; Laia, J.R. Jr.; Sattelberger, A.P.

    1990-10-05

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl){sub 3}, iridium(allyl){sub 3}, molybdenum(allyl){sub 4}, tungsten(allyl){sub 4}, rhenium (allyl){sub 4}, platinum(allyl){sub 2}, or palladium(allyl){sub 2} are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  7. Thin Film Transistors On Plastic Substrates

    DOE Patents [OSTI]

    Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Sigmon, Thomas W. (Portola Valley, CA); Aceves, Randy C. (Livermore, CA)

    2004-01-20

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250.degree. C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.

  8. Compact standing-wave transform spectrometer based on integrated MEMS mirror and thin-film photodetector

    E-Print Network [OSTI]

    Miller, David A. B.

    Compact standing-wave transform spectrometer based on integrated MEMS mirror and thin an integrated standing-wave Fourier-transform spectrometer, 17 × 13 × 2 mm, with 32 nm spectral resolution spectrometer, based on the 1-D standing-wave transform spectrometer architecture [1], with an integrated

  9. Electronic and optical device applications of hollow cathode plasma assisted atomic layer deposition based GaN thin films

    SciTech Connect (OSTI)

    Bolat, Sami Tekcan, Burak; Ozgit-Akgun, Cagla; Biyikli, Necmi; Okyay, Ali Kemal

    2015-01-15

    Electronic and optoelectronic devices, namely, thin film transistors (TFTs) and metal–semiconductor–metal (MSM) photodetectors, based on GaN films grown by hollow cathode plasma-assisted atomic layer deposition (PA-ALD) are demonstrated. Resistivity of GaN thin films and metal-GaN contact resistance are investigated as a function of annealing temperature. Effect of the plasma gas and postmetallization annealing on the performances of the TFTs as well as the effect of the annealing on the performance of MSM photodetectors are studied. Dark current to voltage and responsivity behavior of MSM devices are investigated as well. TFTs with the N{sub 2}/H{sub 2} PA-ALD based GaN channels are observed to have improved stability and transfer characteristics with respect to NH{sub 3} PA-ALD based transistors. Dark current of the MSM photodetectors is suppressed strongly after high-temperature annealing in N{sub 2}:H{sub 2} ambient.

  10. Mechanical characterization of thin TiO{sub 2} films by means of microelectromechanical systems-based cantilevers

    SciTech Connect (OSTI)

    Adami, A.; Decarli, M.; Bartali, R.; Micheli, V.; Laidani, N.; Lorenzelli, L. [FBK-CMM: Fondazione Bruno Kessler-Center for Materials and MicroSystems, via Sommarive 18, Trento 38123 (Italy)

    2010-01-15

    The measurement of mechanical parameters by means of microcantilever structures offers a reliable and accurate alternative to traditional methods, especially when dealing with thin films, which are extensively used in microfabrication technology and nanotechnology. In this work, microelectromechanical systems (MEMS)-based piezoresistive cantilevers were realized and used for the determination of Young's modulus and residual stress of thin titanium dioxide (TiO{sub 2}) deposited by sputtering from a TiO{sub 2} target using a rf plasma discharge. Films were deposited at different thicknesses, ranging from a few to a hundred nanometers. Dedicated silicon microcantilevers were designed through an optimization of geometrical parameters with the development of analytical as well as numerical models. Young's modulus and residual stress of sputtered TiO{sub 2} films were assessed by using both mechanical characterization based on scanning profilometers and piezoresistive sensing elements integrated in the silicon cantilevers. Results of MEMS-based characterization were combined with the tribological and morphological properties measured by microscratch test and x-ray diffraction analysis.

  11. Low work function, stable thin films

    DOE Patents [OSTI]

    Dinh, Long N. (Concord, CA); McLean, II, William (Oakland, CA); Balooch, Mehdi (Berkeley, CA); Fehring, Jr., Edward J. (Dublin, CA); Schildbach, Marcus A. (Livermore, CA)

    2000-01-01

    Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

  12. Thin film-coated polymer webs

    DOE Patents [OSTI]

    Wenz, Robert P. (Cottage Grove, MN); Weber, Michael F. (Shoreview, MN); Arudi, Ravindra L. (Woodbury, MN)

    1992-02-04

    The present invention relates to thin film-coated polymer webs, and more particularly to thin film electronic devices supported upon a polymer web, wherein the polymer web is treated with a purifying amount of electron beam radiation.

  13. Nanomechanical properties of hydrated organic thin films

    E-Print Network [OSTI]

    Choi, Jae Hyeok

    2007-01-01

    Hydrated organic thin films are biological or synthetic molecularly thin coatings which impart a particular functionality to an underlying substrate and which have discrete water molecules associated with them. Such films ...

  14. Semiconductor-nanocrystal/conjugated polymer thin films

    DOE Patents [OSTI]

    Alivisatos, A. Paul (Oakland, CA); Dittmer, Janke J. (Munich, DE); Huynh, Wendy U. (Munich, DE); Milliron, Delia (Berkeley, CA)

    2010-08-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  15. Simulation of nanostructure-based and ultra-thin film solar cell devices beyond the classical picture

    E-Print Network [OSTI]

    Aeberhard, Urs

    2014-01-01

    In this paper, an optoelectronic device simulation framework valid for arbitrary spatial variation of electronic potentials and optical modes, and for transport regimes ranging from ballistic to diffusive, is used to study non-local photon absorption, photocurrent generation and carrier extraction in ultra-thin film and nanostructure-based solar cell devices at the radiative limit. Among the effects that are revealed by the microscopic approach and which are inaccessible to macroscopic models is the impact of structure, doping or bias induced nanoscale potential variations on the local photogeneration rate and the photocarrier transport regime.

  16. Shielding superconductors with thin films

    E-Print Network [OSTI]

    Posen, Sam; Catelani, Gianluigi; Liepe, Matthias U; Sethna, James P

    2015-01-01

    Determining the optimal arrangement of superconducting layers to withstand large amplitude AC magnetic fields is important for certain applications such as superconducting radiofrequency cavities. In this paper, we evaluate the shielding potential of the superconducting film/insulating film/superconductor (SIS') structure, a configuration that could provide benefits in screening large AC magnetic fields. After establishing that for high frequency magnetic fields, flux penetration must be avoided, the superheating field of the structure is calculated in the London limit both numerically and, for thin films, analytically. For intermediate film thicknesses and realistic material parameters we also solve numerically the Ginzburg-Landau equations. It is shown that a small enhancement of the superheating field is possible, on the order of a few percent, for the SIS' structure relative to a bulk superconductor of the film material, if the materials and thicknesses are chosen appropriately.

  17. Glass Transition Temperature in Polystyrene Supported Thin Films: a SPM-based Investigation of the Role of Molecular Entanglement

    E-Print Network [OSTI]

    Franco Dinelli; Tommaso Sgrilli; Andrea Ricci; Paolo Baschieri; Pasqualantonio Pingue; Manjunath Puttaswamy; Peter Kingshott

    2011-12-07

    The viscoelastic properties of thin polymeric films represent a central issue, especially for nanotechnological applications. In particular, it is highly relevant the dependence of viscoelasticity on the temperature. For polystyrene it is known that the glass transition temperature is dependent on the film thickness. At present, there is wide agreement on the importance of the two interfaces that the films form with the air and with the substrate. The relevance of molecular entanglement has been also stressed for the case of suspended films. However, the role of molecular entanglement on the glass transition temperature of supported films still remains elusive. In order to investigate the viscoelastic properties of thin films on the nanoscale, we have employed a scanning probe microscope suitably modified in order to monitor the indentation of a tip into a polymeric film during a given lapse of time with the application of a constant load. Thin polystyrene films have been prepared on a range of different substrates: native silicon oxide, hydrogen-terminated silicon and polystyrene brushes. In particular, we have considered polystyrene molecules with molecular weight values below and above the critical value for the occurrence of molecular entanglement. We find that, for samples where molecular entanglement can occur accompanied by a strong interaction with the substrate either by means of chemical bonds or physisorption, the glass transition temperature of thin films increases back to values comparable with those of thick films. This phenomenon is envisioned to be of great relevance in those cases where one needs to improve the adhesion and/or to control the viscoelastic properties of thin films.

  18. Thin film buried anode battery

    DOE Patents [OSTI]

    Lee, Se-Hee (Lakewood, CO); Tracy, C. Edwin (Golden, CO); Liu, Ping (Denver, CO)

    2009-12-15

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  19. Electrical property measurements of thin film based Lithium Ion Battery electrodes "Nanostructured Lithium Ion Batteries (LIB) are one of the most promising class of next generation energy

    E-Print Network [OSTI]

    Milgram, Paul

    Electrical property measurements of thin film based Lithium Ion Battery electrodes "Nanostructured Lithium Ion Batteries (LIB) are one of the most promising class of next generation energy storage devices materials during the charging/discharging process. However, in previous graphene based LIB battery research

  20. Ultra-narrow ferromagnetic resonance in organic-based thin films grown via low temperature chemical vapor deposition

    SciTech Connect (OSTI)

    Yu, H.; Harberts, M.; Adur, R.; Hammel, P. Chris; Johnston-Halperin, E., E-mail: ejh@physics.osu.edu, E-mail: epstein@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210-1117 (United States); Lu, Y. [Department of Chemistry, The Ohio State University, Columbus, Ohio 43210-1173 (United States); Epstein, A. J., E-mail: ejh@physics.osu.edu, E-mail: epstein@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210-1117 (United States); Department of Chemistry, The Ohio State University, Columbus, Ohio 43210-1173 (United States)

    2014-07-07

    We present the growth of thin films of the organic-based ferrimagnetic semiconductor V[TCNE]{sub x} (x???2, TCNE: tetracyanoethylene) via chemical vapor deposition. Under optimized growth conditions, we observe a significant increase in magnetic homogeneity, as evidenced by a Curie temperature above 600?K and sharp magnetization switching. Further, ferromagnetic resonance studies reveal a single resonance with full width at half maximum linewidth of 1.4?G, comparable to the narrowest lines measured in inorganic magnetic materials and in contrast to previous studies that showed multiple resonance features. These characteristics are promising for the development of high frequency electronic devices that take advantage of the unique properties of this organic-based material, such as the potential for low cost synthesis combined with low temperature and conformal deposition on a wide variety of substrates.

  1. Nonlinear Model-Based Control of Thin-Film Drying for Continuous Pharmaceutical Manufacturing

    E-Print Network [OSTI]

    shrinkage during drying. A critical parameter to describe the highly nonlinear dynamics of the thin of four steps: preparation of the formulation solution, casting the solution as a thin layer that is dried

  2. Modeling and control of thin film surface morphology: application to thin film solar cells

    E-Print Network [OSTI]

    Huang, Jianqiao

    2012-01-01

    Solar Energy Materials and Solar Cells, 86:207–216, 2005. [silicon thin films and solar cells. Journal of Appliedof a p-i-n thin-film solar cell with front transparent con-

  3. Zinc oxide thin film acoustic sensor

    SciTech Connect (OSTI)

    Mohammed, Ali Jasim; Salih, Wafaa Mahdi; Hassan, Marwa Abdul Muhsien; Nusseif, Asmaa Deiaa; Kadhum, Haider Abdullah [Department of Physics , College of Science, Al-Mustansiriyah University, Baghdad (Iraq); Mansour, Hazim Louis [Department of Physics , College of Education, Al-Mustansiriyah University, Baghdad (Iraq)

    2013-12-16

    This paper reports the implementation of (750 nm) thickness of Zinc Oxide (ZnO) thin film for the piezoelectric pressure sensors. The film was prepared and deposited employing the spray pyrolysis technique. XRD results show that the growth preferred orientation is the (002) plane. A polycrystalline thin film (close to mono crystallite like) was obtained. Depending on the Scanning Electron Microscopy photogram, the film homogeneity and thickness were shown. The resonance frequency measured (about 19 kHz) and the damping coefficient was calculated and its value was found to be about (2.5538), the thin film be haves as homogeneous for under and over damped. The thin film pressure sensing was approximately exponentially related with frequency, the thin film was observed to has a good response for mechanical stresses also it is a good material for the piezoelectric properties.

  4. The development of a thin-film rollforming process for pharmaceutical continuous manufacturing

    E-Print Network [OSTI]

    Slaughter, Ryan (Ryan R.)

    2013-01-01

    In this thesis, a continuous rollforming process for the folding of thin-films was proposed and studied as a key step in the continuous manufacturing of pharmaceutical tablets. HPMC and PEG based polymeric thin-films were ...

  5. Accounting for Localized Defects in the Optoelectronic Design of Thin-Film Solar Cells

    E-Print Network [OSTI]

    Deceglie, Michael G.

    2014-01-01

    W. Prather, "Thin film solar cell design based on photonicH. A. Atwater, "Design of nanostructured solar cells usingBrongersma, "Design of Plasmonic Thin-Film Solar Cells with

  6. The state of the art of thin-film photovoltaics

    SciTech Connect (OSTI)

    Surek, T.

    1993-10-01

    Thin-film photovoltaic technologies, based on materials such as amorphous or polycrystalline silicon, copper indium diselenide, cadmium telluride, and gallium arsenide, offer the potential for significantly reducing the cost of electricity generated by photovoltaics. The significant progress in the technologies, from the laboratory to the marketplace, is reviewed. The common concerns and questions raised about thin films are addressed. Based on the progress to date and the potential of these technologies, along with continuing investments by the private sector to commercialize the technologies, one can conclude that thin-film PV will provide a competitive alternative for large-scale power generation in the future.

  7. Thin film photovoltaic panel and method

    DOE Patents [OSTI]

    Ackerman, Bruce (El Paso, TX); Albright, Scot P. (El Paso, TX); Jordan, John F. (El Paso, TX)

    1991-06-11

    A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

  8. Multiferroic oxide thin films and heterostructures

    SciTech Connect (OSTI)

    Lu, Chengliang E-mail: Tao.Wu@kaust.edu.sa; Hu, Weijin; Wu, Tom E-mail: Tao.Wu@kaust.edu.sa; Tian, Yufeng

    2015-06-15

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  9. High electron mobility thin-film transistors based on Ga{sub 2}O{sub 3} grown by atmospheric ultrasonic spray pyrolysis at low temperatures

    SciTech Connect (OSTI)

    Thomas, Stuart R. E-mail: thomas.anthopoulos@imperial.ac.uk; Lin, Yen-Hung; Faber, Hendrik; Anthopoulos, Thomas D. E-mail: thomas.anthopoulos@imperial.ac.uk; Adamopoulos, George; Sygellou, Labrini; Stratakis, Emmanuel; Pliatsikas, Nikos; Patsalas, Panos A.

    2014-09-01

    We report on thin-film transistors based on Ga{sub 2}O{sub 3} films grown by ultrasonic spray pyrolysis in ambient atmosphere at 400–450?°C. The elemental, electronic, optical, morphological, structural, and electrical properties of the films and devices were investigated using a range of complementary characterisation techniques, whilst the effects of post deposition annealing at higher temperature (700?°C) were also investigated. Both as-grown and post-deposition annealed Ga{sub 2}O{sub 3} films are found to be slightly oxygen deficient, exceptionally smooth and exhibit a wide energy bandgap of ?4.9?eV. Transistors based on as-deposited Ga{sub 2}O{sub 3} films show n-type conductivity with the maximum electron mobility of ?2?cm{sup 2}/V s.

  10. Thin Film Encapsulation Methods for Large Area MEMS Packaging

    E-Print Network [OSTI]

    Mahajerin, Armon

    2012-01-01

    P. J. French, “Robust Wafer-Level Thin-Film Encapsulation ofThe Elastic Properties of Thin- Film Silicon Nitride,” IEEELPCVD Silicon Nitride Thin Films at Cryogenic Temperatures,”

  11. Material Development for Highly Processable Thin Film Solar Cells

    E-Print Network [OSTI]

    Bob, Brion

    2014-01-01

    Structuring of Thin-film Solar Cells with a Single Laser1. Background on Thin Film Solar Cells and TransparentCuIn(Se,S)2 thin film solar cells: Secondary phases and

  12. Nanostructured thin films for solid oxide fuel cells 

    E-Print Network [OSTI]

    Yoon, Jongsik

    2009-05-15

    The goals of this work were to synthesize high performance perovskite based thin film solid oxide fuel cell (TF-SOFC) cathodes by pulsed laser deposition (PLD), to study the structural, electrical and electrochemical properties of these cathodes...

  13. Engineering Al-based Thin Film Materials for Power Devices and Energy Storage Applications

    E-Print Network [OSTI]

    Perng, Ya-Chuan

    2012-01-01

    for rechargeable lithium ion batteries." Thin Solid Filmsof LiCoO 2 cathodes in lithium-ion batteries using surfacein secondary lithium-ion batteries." Journal Of Power

  14. Thin films of mixed metal compounds

    DOE Patents [OSTI]

    Mickelsen, Reid A. (Bellevue, WA); Chen, Wen S. (Seattle, WA)

    1985-01-01

    A compositionally uniform thin film of a mixed metal compound is formed by simultaneously evaporating a first metal compound and a second metal compound from independent sources. The mean free path between the vapor particles is reduced by a gas and the mixed vapors are deposited uniformly. The invention finds particular utility in forming thin film heterojunction solar cells.

  15. Atomistic surface erosion and thin film growth modelled over...

    Office of Scientific and Technical Information (OSTI)

    Atomistic surface erosion and thin film growth modelled over realistic time scales Citation Details In-Document Search Title: Atomistic surface erosion and thin film growth...

  16. Institute of Photo Electronic Thin Film Devices and Technology...

    Open Energy Info (EERE)

    Institute of Photo Electronic Thin Film Devices and Technology of Nankai University Jump to: navigation, search Name: Institute of Photo-Electronic Thin Film Devices and Technology...

  17. Solvothermal Thin Film Deposition of Electron Blocking Layers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solvothermal Thin Film Deposition of Electron Blocking Layers Home > Research > ANSER Research Highlights > Solvothermal Thin Film Deposition of Electron Blocking Layers...

  18. A Sensitivity Analysis of a Thin Film Conductivity Estimation...

    Office of Scientific and Technical Information (OSTI)

    Conference: A Sensitivity Analysis of a Thin Film Conductivity Estimation Method Citation Details In-Document Search Title: A Sensitivity Analysis of a Thin Film Conductivity...

  19. Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications 2004 Diesel Engine Emissions Reduction...

  20. Semiconductor-nanocrystal/conjugated polymer thin films (Patent...

    Office of Scientific and Technical Information (OSTI)

    Semiconductor-nanocrystalconjugated polymer thin films Citation Details In-Document Search Title: Semiconductor-nanocrystalconjugated polymer thin films You are accessing a...

  1. High performance AlScN thin film based surface acoustic wave devices with large electromechanical coupling coefficient

    SciTech Connect (OSTI)

    Wang, Wenbo; He, Xingli; Ye, Zhi E-mail: jl2@bolton.ac.uk; Wang, Xiaozhi; Mayrhofer, Patrick M.; Gillinger, Manuel; Bittner, Achim; Schmid, Ulrich

    2014-09-29

    AlN and AlScN thin films with 27% scandium (Sc) were synthesized by DC magnetron sputtering deposition and used to fabricate surface acoustic wave (SAW) devices. Compared with AlN-based devices, the AlScN SAW devices exhibit much better transmission properties. Scandium doping results in electromechanical coupling coefficient, K{sup 2}, in the range of 2.0%???2.2% for a wide normalized thickness range, more than a 300% increase compared to that of AlN-based SAW devices, thus demonstrating the potential applications of AlScN in high frequency resonators, sensors, and high efficiency energy harvesting devices. The coupling coefficients of the present AlScN based SAW devices are much higher than that of the theoretical calculation based on some assumptions for AlScN piezoelectric material properties, implying there is a need for in-depth investigations on the material properties of AlScN.

  2. Dissolution dynamics of thin films measured by optical reflectance Christian Punckt and Ilhan A. Aksaya

    E-Print Network [OSTI]

    Aksay, Ilhan A.

    of copper thin films on gold substrates in a mild hydrochloric acid solution. Due to its simplicity, our of corrosion rates of thin films are in high demand for the quan- tification of material degradation measurement of dissolution rates of galvanically corrod- ing copper thin films based on bright field optical

  3. Performance predictions for monolithic, thin-film CdTe/Ge tandem solar cells

    E-Print Network [OSTI]

    Pulfrey, David L.

    Performance predictions for monolithic, thin-film CdTe/Ge tandem solar cells D.L. Pulfrey*, J. Dell): pulfrey@ece.ubc.ca ABSTRACT Cadmium telluride thin-film solar cells are now commercially available be attainable. 1. INTRODUCTION Thin film solar cells based on polycrystalline CdTe have been investigated

  4. The interplay between spatially separated ferromagnetic and superconducting thin films 

    E-Print Network [OSTI]

    Sullivan, Isaac John

    2013-02-22

    characterized. 26 CHAPTER III THE SC/FM THIN FILM MULTILAYER The fabrication and characterization of the SC/FM film couples comprised the most de- manding and arduous work during the tenure of my thesis project. Many special parts were designed... EXPERIMENTAL DETAILS A. Ferromagnetic Thin Films 1. Film Preparation 2. Film Characterization B. Superconducting Thin Films 1. Film Preparation III THE SC/FM THIN FILM MULTILAYER . A. SC/FM Thin Film Multilayer Preparation B. SC/FM Thin Film Multilayer...

  5. Strain Relaxation and Vacancy Creation in Thin Platinum Films

    SciTech Connect (OSTI)

    Gruber, W.; Chakravarty, S.; Schmidt, H. [Technische Universitaet Clausthal, Institut fuer Metallurgie, Clausthal-Zellerfeld (Germany); Baehtz, C. [Helmholtz Zentrum Dresden Rossendorf, Institute of Ion Beam Physics and Materials Research, Dresden (Germany); Leitenberger, W. [Universitaet Potsdam, Institut fuer Physik und Astronomie, Potsdam (Germany); Bruns, M. [Karlsruher Institut fuer Technologie, Institute for Applied Materials, Eggenstein-Leopoldshafen (Germany); Karlsruher Institut fuer Technologie, Karlsruher Micro Nano Facility, Eggenstein-Leopoldshafen (Germany); Kobler, A.; Kuebel, C. [Karlsruher Institut fuer Technologie, Institute of Nanotechnology, Eggenstein-Leopoldshafen (Germany); Karlsruher Institut fuer Technologie, Karlsruher Micro Nano Facility, Eggenstein-Leopoldshafen (Germany)

    2011-12-23

    Synchrotron based combined in situ x-ray diffractometry and reflectometry is used to investigate the role of vacancies for the relaxation of residual stress in thin metallic Pt films. From the experimentally determined relative changes of the lattice parameter a and of the film thickness L the modification of vacancy concentration and residual strain was derived as a function of annealing time at 130 deg. C. The results indicate that relaxation of strain resulting from compressive stress is accompanied by the creation of vacancies at the free film surface. This proves experimentally the postulated dominant role of vacancies for stress relaxation in thin metal films close to room temperature.

  6. STABILITY ANALYSIS OF NON-CONSTANT BASE STATES IN THIN FILM EQUATIONS

    E-Print Network [OSTI]

    Nabben, Reinhard

    the one obtained by the linear stability analysis with "frozen modes", frequently found in the literature. multiple-scale methods, stability analysis, rim instability, free boundaries, dewet- ting films AMS subject important tools to predict pattern formation in many phenomena in nature and technological processes

  7. Deposition, Characterization, and Thin-Film-Based Chemical Sensing of Ultra-Long Chemically Synthesized Graphene

    E-Print Network [OSTI]

    Zhou, Chongwu

    Synthesized Graphene Nanoribbons Ahmad N. Abbas ,, , Gang Liu , , Akimitsu Narita , Manuel Orosco¶ , Xinliang dispersion is prepared by sonicating GNR powder in 1- cyclohexyl-2-pyrrolidone (CHP) for 30 min to 1 h with a nitrogen gun. GNR dispersion preparation (films): The dispersion is prepared by sonic

  8. Acid-Base Equilibria of Weak Polyelectrolytes in Multilayer Thin Films

    E-Print Network [OSTI]

    Barrett, Christopher

    charged substrate from dilute aqueous solution leading to charge reversal on the surface. This simple,4 The stratified structure of polyelectrolyte multilayer films has also been combined with small molecules polyelectrolytes because they remain fully charged over a wide pH range.14 Although manipulating the ionic strength

  9. Identification and design of novel polymer-based mechanical transducers: A nano-structural model for thin film indentation

    SciTech Connect (OSTI)

    Villanueva, Joshua; Huang, Qian; Sirbuly, Donald J.

    2014-09-14

    Mechanical characterization is important for understanding small-scale systems and developing devices, particularly at the interface of biology, medicine, and nanotechnology. Yet, monitoring sub-surface forces is challenging with current technologies like atomic force microscopes (AFMs) or optical tweezers due to their probe sizes and sophisticated feedback mechanisms. An alternative transducer design relying on the indentation mechanics of a compressible thin polymer would be an ideal system for more compact and versatile probes, facilitating measurements in situ or in vivo. However, application-specific tuning of a polymer's mechanical properties can be burdensome via experimental optimization. Therefore, efficient transducer design requires a fundamental understanding of how synthetic parameters such as the molecular weight and grafting density influence the bulk material properties that determine the force response. In this work, we apply molecular-level polymer scaling laws to a first order elastic foundation model, relating the conformational state of individual polymer chains to the macroscopic compression of thin film systems. A parameter sweep analysis was conducted to observe predicted model trends under various system conditions and to understand how nano-structural elements influence the material stiffness. We validate the model by comparing predicted force profiles to experimental AFM curves for a real polymer system and show that it has reasonable predictive power for initial estimates of the force response, displaying excellent agreement with experimental force curves. We also present an analysis of the force sensitivity of an example transducer system to demonstrate identification of synthetic protocols based on desired mechanical properties. These results highlight the usefulness of this simple model as an aid for the design of a new class of compact and tunable nanomechanical force transducers.

  10. Electric and magnetic behaviors observed in NiO-based thin films under light-irradiation

    SciTech Connect (OSTI)

    Luo, Yi-Dong; Song, Kenan; Shun, Li; Gao, Junqi; Xu, Ben, E-mail: xuben@mail.tsinghua.edu.cn, E-mail: linyh@mail.tsinghua.edu.cn; Lin, Yuan-Hua, E-mail: xuben@mail.tsinghua.edu.cn, E-mail: linyh@mail.tsinghua.edu.cn; Nan, Ce-Wen; Liu, Wei [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2014-09-07

    We report the room-temperature ferromagnetic properties that can be tuned by light irradiation in the Li and Mn co-doped NiO films (LMNO) grown by the spinning coating. The optical tunable magnetic behavior is enhanced by the increase of the Li doping concentration. First-principle calculations reveal that the Li doping plays key roles in the optical tuned magnetic behavior, which brings a 3d-like impurity state to enhance a significant hybridization between the Mn{sup 3+} 3d state and the impurity band, thus strengthening the ferromagnetic coupling effects. Additionally, it can tune the band gap of the LMNO films and produce more holes under the light irradiation, enhancing the optical tuned magnetic behavior.

  11. Structural characterization of thin film photonic crystals

    SciTech Connect (OSTI)

    Subramania, G.; Biswas, R.; Constant, K.; Sigalas, M. M.; Ho, K. M.

    2001-06-15

    We quantitatively analyze the structure of thin film inverse-opal photonic crystals composed of ordered arrays of air pores in a background of titania. Ordering of the sphere template and introduction of the titania background were performed simultaneously in the thin film photonic crystals. Nondestructive optical measurements of backfilling with high refractive index liquids, angle-resolved reflectivity, and optical spectroscopy were combined with band-structure calculations. The analysis reveals a thin film photonic crystal structure with a very high filling fraction (92{endash}94%) of air and a substantial compression along the c axis ({similar_to}22{endash}25%).

  12. Permanent laser conditioning of thin film optical materials

    DOE Patents [OSTI]

    Wolfe, C.R.; Kozlowski, M.R.; Campbell, J.H.; Staggs, M.; Rainer, F.

    1995-12-05

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold. 9 figs.

  13. Permanent laser conditioning of thin film optical materials

    DOE Patents [OSTI]

    Wolfe, C. Robert (Palo Alto, CA); Kozlowski, Mark R. (Pleasanton, CA); Campbell, John H. (Livermore, CA); Staggs, Michael (Tracy, CA); Rainer, Frank (Livermore, CA)

    1995-01-01

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold.

  14. The dynamic behavior of thin-film ionic transition metal complex-based light-emitting electrochemical cells

    SciTech Connect (OSTI)

    Meier, Sebastian B., E-mail: sebastian.meier@belectric.com, E-mail: wiebke.sarfert@siemens.com [Department of Materials Science VI: Materials for Electronics and Energy Technology, Friedrich-Alexander-University of Erlangen-Nuremberg, 91058 Erlangen (Germany); Siemens AG, Corporate Technology, CT RTC MAT IEC-DE, 91058 Erlangen (Germany); Hartmann, David; Sarfert, Wiebke, E-mail: sebastian.meier@belectric.com, E-mail: wiebke.sarfert@siemens.com [Siemens AG, Corporate Technology, CT RTC MAT IEC-DE, 91058 Erlangen (Germany); Winnacker, Albrecht [Department of Materials Science VI: Materials for Electronics and Energy Technology, Friedrich-Alexander-University of Erlangen-Nuremberg, 91058 Erlangen (Germany)

    2014-09-14

    Light-emitting electrochemical cells (LECs) have received increasing attention during recent years due to their simple architecture, based on solely air-stabile materials, and ease of manufacture in ambient atmosphere, using solution-based technologies. The LEC's active layer offers semiconducting, luminescent as well as ionic functionality resulting in device physical processes fundamentally different as compared with organic light-emitting diodes. During operation, electrical double layers (EDLs) form at the electrode interfaces as a consequence of ion accumulation and electrochemical doping sets in leading to the in situ development of a light-emitting p-i-n junction. In this paper, we comment on the use of impedance spectroscopy in combination with complex nonlinear squares fitting to derive key information about the latter events in thin-film ionic transition metal complex-based light-emitting electrochemical cells based on the model compound bis-2-phenylpyridine 6-phenyl-2,2´-bipyridine iridium(III) hexafluoridophosphate ([Ir(ppy)?(pbpy)][PF?]). At operating voltages below the bandgap potential of the ionic complex used, we obtain the dielectric constant of the active layer, the conductivity of mobile ions, the transference numbers of electrons and ions, and the thickness of the EDLs, whereas the transient thickness of the p-i-n junction is determined at voltages above the bandgap potential. Most importantly, we find that charge transport is dominated by the ions when carrier injection from the electrodes is prohibited, that ion movement is limited by the presence of transverse internal interfaces and that the width of the intrinsic region constitutes almost 60% of the total active layer thickness in steady state at a low operating voltage.

  15. Rechargeable thin-film electrochemical generator

    DOE Patents [OSTI]

    Rouillard, Roger (Beloeil, CA); Domroese, Michael K. (South St. Paul, MN); Hoffman, Joseph A. (Minneapolis, MN); Lindeman, David D. (Hudson, WI); Noel, Joseph-Robert-Gaetan (St-Hubert, CA); Radewald, Vern E. (Austin, TX); Ranger, Michel (Lachine, CA); Sudano, Anthony (Laval, CA); Trice, Jennifer L. (Eagan, MN); Turgeon, Thomas A. (Fridley, MN)

    2000-09-15

    An improved electrochemical generator is disclosed. The electrochemical generator includes a thin-film electrochemical cell which is maintained in a state of compression through use of an internal or an external pressure apparatus. A thermal conductor, which is connected to at least one of the positive or negative contacts of the cell, conducts current into and out of the cell and also conducts thermal energy between the cell and thermally conductive, electrically resistive material disposed on a vessel wall adjacent the conductor. The thermally conductive, electrically resistive material may include an anodized coating or a thin sheet of a plastic, mineral-based material or conductive polymer material. The thermal conductor is fabricated to include a resilient portion which expands and contracts to maintain mechanical contact between the cell and the thermally conductive material in the presence of relative movement between the cell and the wall structure. The electrochemical generator may be disposed in a hermetically sealed housing.

  16. A comparison of thick film and thin film traffic stripes 

    E-Print Network [OSTI]

    Keese, Charles J

    1952-01-01

    of this thesis. CONTESTS Introduction ~ ~ ~ ~ ~ 1 Scope and Obfectives Method of Conducting Road Service Tests ~ ~ ~ ~ ~ ~ ~ ~ 7 ~ ~ ~ ~ ~ ~ ~ ~ ~ 8 PART I A Comparison of Paint Films of Various Thicknesses . . . . . . . . ~ ~, ~, ~ 72 App1ioation... of Test Stripes . Results of Thiokness Tests . 13 19 Conclusions 2$ PART II A Comparison of Various Thick Film and Thin Film Traffic Stripes. 26 Paint Stripes Over Adhesive Films Rosin Striping Compounds. . . + ~ . , ~ 29 ~ ~ ~ Preforsmd Plastic...

  17. Durham Workshop, Dec 2005Durham Workshop, Dec 2005 Thin Film Metrology UsingThin Film Metrology Using

    E-Print Network [OSTI]

    Greenaway, Alan

    Durham Workshop, Dec 2005Durham Workshop, Dec 2005 Thin Film Metrology UsingThin Film Metrology Modelling to investigate level of aberrations introduced by thin film structure.introduced by thin film Solar Cells Reflectors Solar Cell Covers Security UV Protection Anti-static Gas Temperature Pressure

  18. Thin film production method and apparatus

    DOE Patents [OSTI]

    Loutfy, Raouf O. (Tucson, AZ); Moravsky, Alexander P. (Tucson, AZ); Hassen, Charles N. (Tucson, AZ)

    2010-08-10

    A method for forming a thin film material which comprises depositing solid particles from a flowing suspension or aerosol onto a filter and next adhering the solid particles to a second substrate using an adhesive.

  19. Polycrystalline Thin-Film Multijunction Solar Cells

    SciTech Connect (OSTI)

    Noufi, R.; Wu, X.; Abu-Shama, J.; Ramanathan, K; Dhere, R.; Zhou, J.; Coutts, T.; Contreras, M.; Gessert, T.; Ward, J. S.

    2005-11-01

    We present a digest of our research on the thin-film material components that comprise the top and bottom cells of three different material systems and the tandem devices constructed from them.

  20. Creating CZTS Thin Films Via Stacked Metallic CVD and Sulfurization

    E-Print Network [OSTI]

    Bielecki, Anthony

    2013-01-01

    film solar cells. CIGS solar cell efficiencies have beenCIGS, making it a favorable choice for thin-film solar cells.thin film solar cell [3]. However, use of CIGS has a number

  1. A thin film transistor driven microchannel device 

    E-Print Network [OSTI]

    Lee, Hyun Ho

    2005-02-17

    THIN FILM TRANSISTOR DRIVEN MICROCHANNEL DEVICE FOR PROTEIN AND DNA ELECTROPHORESIS A Dissertation by HYUN HO LEE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of DOCTOR OF PHILOSOPHY December 2004 Major Subject: Chemical Engineering A THIN FILM TRANSISTOR DRIVEN MICROCHANNEL DEVICE FOR PROTEIN AND DNA ELECTROPHORESIS A Dissertation by HYUN HO LEE Submitted to Texas A...

  2. Shape variation of micelles in polymer thin films

    SciTech Connect (OSTI)

    Zhou, Jiajia Shi, An-Chang

    2014-01-14

    The equilibrium properties of block copolymer micelles confined in polymer thin films are investigated using self-consistent field theory. The theory is based on a model system consisting of AB diblock copolymers and A homopolymers. Two different methods, based on the radius of gyration tensor and the spherical harmonics expansion, are used to characterize the micellar shape. The results reveal that the morphology of micelles in thin films depends on the thickness of the thin films and the selectivity of the confining surfaces. For spherical (cylindrical) micelles, the spherical (cylindrical) symmetry is broken by the presence of the one-dimensional confinement, whereas the top-down symmetry is broken by the selectivity of the confining surfaces. Morphological transitions from spherical or cylindrical micelles to cylinders or lamella are predicted when the film thickness approaches the micellar size.

  3. Mode Splitting for Efficient Plasmoinc Thin-film Solar Cell

    E-Print Network [OSTI]

    Li, Tong; Jiang, Chun

    2010-01-01

    We propose an efficient plasmonic structure consisting of metal strips and thin-film silicon for solar energy absorption. We numerically demonstrate the absorption enhancement in symmetrical structure based on the mode coupling between the localized plasmonic mode in Ag strip pair and the excited waveguide mode in silicon slab. Then we explore the method of symmetry-breaking to excite the dark modes that can further enhance the absorption ability. We compare our structure with bare thin-film Si solar cell, and results show that the integrated quantum efficiency is improved by nearly 90% in such thin geometry. It is a promising way for the solar cell.

  4. Deployable telescope having a thin-film mirror and metering structure

    DOE Patents [OSTI]

    Krumel, Leslie J. (Cedar Crest, NM); Martin, Jeffrey W. (Albuquerque, NM)

    2010-08-24

    A deployable thin-film mirror telescope comprises a base structure and a metering structure. The base structure houses a thin-film mirror, which can be rolled for stowage and unrolled for deployment. The metering structure is coupled to the base structure and can be folded for stowage and unfolded for deployment. In the deployed state, the unrolled thin-film mirror forms a primary minor for the telescope and the unfolded metering structure positions a secondary minor for the telescope.

  5. Fully Solution-Processed Copper Chalcopyrite Thin Film Solar Cells: Materials Chemistry, Processing, and Device Physics

    E-Print Network [OSTI]

    Chung, Choong-Heui

    2012-01-01

    CuIn(Se,S) 2 thin film solar cells: secondary phaseChalcopyrite Thin Film Solar Cells: Materials Chemistry,Chalcopyrite Thin Film Solar Cells: Materials Chemistry,

  6. Thin film absorber for a solar collector

    DOE Patents [OSTI]

    Wilhelm, William G. (Cutchogue, NY)

    1985-01-01

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  7. Ambient pressure process for preparing aerogel thin films reliquified sols useful in preparing aerogel thin films

    DOE Patents [OSTI]

    Brinker, Charles Jeffrey (Albuquerque, NM); Prakash, Sai Sivasankaran (Minneapolis, MN)

    1999-01-01

    A method for preparing aerogel thin films by an ambient-pressure, continuous process. The method of this invention obviates the use of an autoclave and is amenable to the formation of thin films by operations such as dip coating. The method is less energy intensive and less dangerous than conventional supercritical aerogel processing techniques.

  8. Tungsten-doped thin film materials

    DOE Patents [OSTI]

    Xiang, Xiao-Dong; Chang, Hauyee; Gao, Chen; Takeuchi, Ichiro; Schultz, Peter G.

    2003-12-09

    A dielectric thin film material for high frequency use, including use as a capacitor, and having a low dielectric loss factor is provided, the film comprising a composition of tungsten-doped barium strontium titanate of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3, where X is between about 0.5 and about 1.0. Also provided is a method for making a dielectric thin film of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3 and doped with W, where X is between about 0.5 and about 1.0, a substrate is provided, TiO.sub.2, the W dopant, Ba, and optionally Sr are deposited on the substrate, and the substrate containing TiO.sub.2, the W dopant, Ba, and optionally Sr is heated to form a low loss dielectric thin film.

  9. Mg-Based Nano-layered Thin Films for Hydrogen Storage 

    E-Print Network [OSTI]

    Junkaew, Anchalee

    2013-11-26

    fuel cell (SOFC) [1]. They are classified based on the electrolyte. The operating temperatures of those fuel cells increase in the following order: AFC (80 oC), PEMFC (SOFC... is that the electrolyte reacts with CO2 and decrease the cell performance. Therefore, it is required to incorporate expensive CO2 removal systems. SOFC employs ceramics materials (i.e. yttria-stabilised zirconia (YSZ)) as its electrolyte and electrodes. SOFC has high...

  10. Photo-modulated thin film transistor based on dynamic charge transfer within quantum-dots-InGaZnO interface

    SciTech Connect (OSTI)

    Liu, Xiang; Yang, Xiaoxia; Liu, Mingju; Tao, Zhi; Wei, Lei Li, Chi Zhang, Xiaobing; Wang, Baoping; Dai, Qing; Nathan, Arokia

    2014-03-17

    The temporal development of next-generation photo-induced transistor across semiconductor quantum dots and Zn-related oxide thin film is reported in this paper. Through the dynamic charge transfer in the interface between these two key components, the responsibility of photocurrent can be amplified for scales of times (?10{sup 4}?A/W 450?nm) by the electron injection from excited quantum dots to InGaZnO thin film. And this photo-transistor has a broader waveband (from ultraviolet to visible light) optical sensitivity compared with other Zn-related oxide photoelectric device. Moreover, persistent photoconductivity effect can be diminished in visible waveband which lead to a significant improvement in the device's relaxation time from visible illuminated to dark state due to the ultrafast quenching of quantum dots. With other inherent properties such as integrated circuit compatible, low off-state current and high external quantum efficiency resolution, it has a great potential in the photoelectric device application, such as photodetector, phototransistor, and sensor array.

  11. Experimental determination of band offsets of NiO-based thin film heterojunctions

    SciTech Connect (OSTI)

    Kawade, Daisuke; Sugiyama, Mutsumi, E-mail: mutsumi@rs.noda.tus.ac.jp [Faculty of Science and Technology/Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510 (Japan); Chichibu, Shigefusa F. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980–8577 (Japan)

    2014-10-28

    The energy band diagrams of NiO-based solar cell structures that use various n-type oxide semiconductors such as ZnO, Mg{sub 0.3}Zn{sub 0.7}O, Zn{sub 0.5}Sn{sub 0.5}O, In{sub 2}O{sub 3}:Sn (ITO), SnO{sub 2}, and TiO{sub 2} were evaluated by photoelectron yield spectroscopy. The valence band discontinuities were estimated to be 1.6?eV for ZnO/NiO and Mg{sub 0.3}Zn{sub 0.7}O/NiO, 1.7?eV for Zn{sub 0.5}Sn{sub 0.5}O/NiO and ITO/NiO, and 1.8?eV for SnO{sub 2}/NiO and TiO{sub 2}/NiO heterojunctions. By using the valence band discontinuity values and corresponding energy bandgaps of the layers, energy band diagrams were developed. Judging from the band diagram, an appropriate solar cell consisting of p-type NiO and n-type ZnO layers was deposited on ITO, and a slight but noticeable photovoltaic effect was obtained with an open circuit voltage (V{sub oc}) of 0.96?V, short circuit current density (J{sub sc}) of 2.2??A/cm{sup 2}, and fill factor of 0.44.

  12. Communications to the Editor Thin-Film Differential Scanning

    E-Print Network [OSTI]

    Allen, Leslie H.

    -mail: L-ALLEN9@uiuc.edu. Figure 1. MEMS-based calorimetric sensor for TDSC (not to scale). Volume 35. In this paper we demonstrate a recently developed MEMS-based thin-film differential scanning calorimetry (TDSC a microfabricated sensor shown in Figure 1 as a calorimetric cell. The sensor consists of a Si3Nx membrane supported

  13. Graphene as tunable contact for high performance thin film transistor

    E-Print Network [OSTI]

    Liu, Yuan

    2015-01-01

    64 Figure 4-5. Air stability of a planar PCBM thin filmfilm. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .obtained by annealing 8-nm thick gold thin film. . . . .

  14. Thermoelectric effect in very thin film Pt/Au thermocouples

    E-Print Network [OSTI]

    Salvadori, M.C.; Vaz, A.R.; Teixeira, F.S.; Cattani, M.; Brown, I.G.

    2006-01-01

    TABLE I. Measured thermoelectric power S for samples ofThermoelectric effect in very thin film Pt/Au thermocouplesthickness dependence of the thermoelectric power of Pt films

  15. Thin film dielectric composite materials

    SciTech Connect (OSTI)

    Jia, Quanxi; Gibbons, Brady J.; Findikoglu, Alp T.; Park, Bae Ho

    2002-01-01

    A dielectric composite material comprising at least two crystal phases of different components with TiO.sub.2 as a first component and a material selected from the group consisting of Ba.sub.1-x Sr.sub.x TiO.sub.3 where x is from 0.3 to 0.7, Pb.sub.1-x Ca.sub.x TiO.sub.3 where x is from 0.4 to 0.7, Sr.sub.1-x Pb.sub.x TiO.sub.3 where x is from 0.2 to 0.4, Ba.sub.1-x Cd.sub.x TiO.sub.3 where x is from 0.02 to 0.1, BaTi.sub.1-x Zr.sub.x O.sub.3 where x is from 0.2 to 0.3, BaTi.sub.1-x Sn.sub.x O.sub.3 where x is from 0.15 to 0.3, BaTi.sub.1-x Hf.sub.x O.sub.3 where x is from 0.24 to 0.3, Pb.sub.1-1.3x La.sub.x TiO.sub.3+0.2x where x is from 0.23 to 0.3, (BaTiO.sub.3).sub.x (PbFeo.sub.0.5 Nb.sub.0.5 O.sub.3).sub.1-x where x is from 0.75 to 0.9, (PbTiO.sub.3).sub.- (PbCo.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.1 to 0.45, (PbTiO.sub.3).sub.x (PbMg.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.2 to 0.4, and (PbTiO.sub.3).sub.x (PbFe.sub.0.5 Ta.sub.0.5 O.sub.3).sub.1-x where x is from 0 to 0.2, as the second component is described. The dielectric composite material can be formed as a thin film upon suitable substrates.

  16. Mesoscale morphologies in polymer thin films.

    SciTech Connect (OSTI)

    Ramanathan, M.; Darling, S. B. (Center for Nanoscale Materials)

    2011-06-01

    In the midst of an exciting era of polymer nanoscience, where the development of materials and understanding of properties at the nanoscale remain a major R&D endeavor, there are several exciting phenomena that have been reported at the mesoscale (approximately an order of magnitude larger than the nanoscale). In this review article, we focus on mesoscale morphologies in polymer thin films from the viewpoint of origination of structure formation, structure development and the interaction forces that govern these morphologies. Mesoscale morphologies, including dendrites, holes, spherulites, fractals and honeycomb structures have been observed in thin films of homopolymer, copolymer, blends and composites. Following a largely phenomenological level of description, we review the kinetic and thermodynamic aspects of mesostructure formation outlining some of the key mechanisms at play. We also discuss various strategies to direct, limit, or inhibit the appearance of mesostructures in polymer thin films as well as an outlook toward potential areas of growth in this field of research.

  17. Vibration welding system with thin film sensor

    DOE Patents [OSTI]

    Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

    2014-03-18

    A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

  18. Thin Film Packaging Solutions for High Efficiency OLED Lighting Products

    SciTech Connect (OSTI)

    None

    2008-06-30

    The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000 hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology was characterized as having less than 10% change in transmission during the 15,000 hour test period; (3) demonstrated thin film encapsulation of a phosphorescent OLED device with 1,500 hours of lifetime at 60 C and 80% RH; (4) demonstrated that a thin film laminate encapsulation, in addition to the direct thin film deposition process, of a polymer OLED device was another feasible packaging strategy for OLED lighting. The thin film laminate strategy was developed to mitigate defects, demonstrate roll-to-roll process capability for high volume throughput (reduce costs) and to support a potential commercial pathway that is less dependent upon integrated manufacturing since the laminate could be sold as a rolled good; (5) demonstrated that low cost 'blue' glass substrates could be coated with a siloxane barrier layer for planarization and ion-protection and used in the fabrication of a polymer OLED lighting device. This study further demonstrated that the substrate cost has potential for huge cost reductions from the white borosilicate glass substrate currently used by the OLED lighting industry; (6) delivered four-square feet of white phosphorescent OLED technology, including novel high efficiency devices with 82 CRI, greater than 50 lm/W efficiency, and more than 1,000 hours lifetime in a product concept model shelf; (7) presented and or published more than twenty internal studies (for private use), three external presentations (OLED workshop-for public use), and five technology-related external presentations (industry conferences-for public use); and (8) issued five patent applications, which are in various maturity stages at time of publication. Delivery of thin film encapsulated white phosphorescent OLED lighting technology remains a challenging technical achievement, and it seems that commercial availability of thin, bright, white OLED light that meets market requirements will continue to require research and development effort. However, there will be glass encapsulated white OLED lighting products commercialized in niche markets during the 2008 calendar year. This commercializ

  19. Fabrication and testing of thermoelectric thin film devices

    SciTech Connect (OSTI)

    Wagner, A.V.; Foreman, R.J.; Summers, L.J.; Barbee, T.W. Jr.; Farmer, J.C. [Lawrence Livermore National Lab., CA (United States). Chemistry and Materials Science Dept.

    1996-03-01

    Two thin-film thermoelectric devices are experimentally demonstrated. The relevant thermal loads on the cold junction of these devices are determined. The analytical form of the equation that describes the thermal loading of the device enables one to model the performance based on the independently measured electronic properties of the films forming the devices. This model elucidates which parameters determine device performance, and how they can be used to maximize performance.

  20. Piezoreslstive graphite/polyimide thin films for micromachining applications

    E-Print Network [OSTI]

    Piezoreslstive graphite/polyimide thin films for micromachining applications A. Bruno Frazier) In this work, graphite/polyimide composite thin films are introduced and characterized for micromachining tetracarboxylic dianhydride+xydianiline/metaphenylene diamine polyimide matrix. The resultant material represents

  1. Superconducting thin films on potassium tantalate substrates

    DOE Patents [OSTI]

    Feenstra, Roeland (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN)

    1992-01-01

    A superconductive system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.

  2. Large area quantitative analysis of nanostructured thin-films

    E-Print Network [OSTI]

    Sliz, Rafal; Eneh, Chibuzor; Suzuki, Yuji; Czajkowski, Jakub; Fabritius, Tapio; Kathirgamanathan, Poopathy; Nathan, Arokia; Myllyla, Risto; Jabbour, Ghassan

    2015-01-09

    of SEM images of quantum dots and InP nanostructured thin-films are provided in the supple- mentary information. 3 Results 3.1 Physical Characterization The AFM and XRD techniques were used to verify the sur- face morphology and provide the reference... research subject for their high applicability in optoelectronics22–24. In addi- tion, self-assembled gold quantum dots and InP-based nanos- tructures were examined. Prior to the analysis, ZnO fabricated thin-films were additionally characterized with AFM...

  3. Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film

    E-Print Network [OSTI]

    Deng, Xunming

    -infrared to ultraviolet: Applications in thin film photovoltaics A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, and R. W. Collinsa) Department of Physics, Materials Research Institute, and Center for Thin Film, it has numerous applications in the analysis and simulation of thin film a-Si:H based p-i-n and n

  4. Fundamental Materials Research and Advanced Process Development for Thin-Film CIS-Based Photovoltaics: Final Technical Report, 2 October 2001 - 30 September 2005

    SciTech Connect (OSTI)

    Anderson, T. J.; Li, S. S.; Crisalle, O. D.; Craciun, V.

    2006-09-01

    The objectives for this thin-film copper-indium-diselenide (CIS) solar cell project cover the following areas: Develop and characterize buffer layers for CIS-based solar cell; grow and characterize chemical-bath deposition of Znx Cd1-xS buffer layers grown on CIGS absorbers; study effects of buffer-layer processing on CIGS thin films characterized by the dual-beam optical modulation technique; grow epitaxial CuInSe2 at high temperature; study the defect structure of CGS by photoluminescence spectroscopy; investigate deep-level defects in Cu(In,Ga)Se2 solar cells by deep-level transient spectroscopy; conduct thermodynamic modeling of the isothermal 500 C section of the Cu-In-Se system using a defect model; form alpha-CuInSe2 by rapid thermal processing of a stacked binary compound bilayer; investigate pulsed non-melt laser annealing on the film properties and performance of Cu(In,Ga)Se2 solar cells; and conduct device modeling and simulation of CIGS solar cells.

  5. Polymer-Metal Nanocomposites via Polymer Thin Film

    E-Print Network [OSTI]

    Shyamasundar, R.K.

    Polymer-Metal Nanocomposites via Polymer Thin Film T. P. Radhakrishnan School of Chemistry, University of Hyderabad Polymer-metal nanocomposite thin films are versatile materials that not only Chemistry Inside a Polymer Thin Film P. Radhakrishnan School of Chemistry, University of Hyderabad metal

  6. Environmental Aspects of Thin Film Module Production and Product Lifetime

    E-Print Network [OSTI]

    Bergman, Keren

    Impact #12;3 Thin-Film PV -The Triangle of SuccessThin-Film PV -The Triangle of Success Low Cost of Thin Film Module Production and Product Lifetime Vasilis Fthenakis PV Environmental Research Center@bnl.gov web: www.pv.bnl.gov www.clca.columbia.edu #12;2 PV Sustainability CriteriaPV Sustainability Criteria

  7. Modeling and control of thin film surface morphology: application to thin film solar cells

    E-Print Network [OSTI]

    Huang, Jianqiao

    2012-01-01

    Solar Energy Materials and Solar Cells, 86:207–216, 2005. [silicon thin films and solar cells. Journal of Appliedtrapping in nanostructured solar cells. ACS Nano, 5:10055–

  8. Flexoelectricity in barium strontium titanate thin film

    SciTech Connect (OSTI)

    Kwon, Seol Ryung; Huang, Wenbin; Yuan, Fuh-Gwo; Jiang, Xiaoning, E-mail: xjiang5@ncsu.edu [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Shu, Longlong [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Electronic Materials Research Laboratory, International Center for Dielectric Research, Xi'an Jiao Tong University, Xi'an, Shaanxi 710049 (China); Maria, Jon-Paul [Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2014-10-06

    Flexoelectricity, the linear coupling between the strain gradient and the induced electric polarization, has been intensively studied as an alternative to piezoelectricity. Especially, it is of interest to develop flexoelectric devices on micro/nano scales due to the inherent scaling effect of flexoelectric effect. Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} thin film with a thickness of 130?nm was fabricated on a silicon wafer using a RF magnetron sputtering process. The flexoelectric coefficients of the prepared thin films were determined experimentally. It was revealed that the thin films possessed a transverse flexoelectric coefficient of 24.5??C/m at Curie temperature (?28?°C) and 17.44??C/m at 41?°C. The measured flexoelectric coefficients are comparable to that of bulk BST ceramics, which are reported to be 10–100??C/m. This result suggests that the flexoelectric thin film structures can be effectively used for micro/nano-sensing devices.

  9. ORIGINAL PAPER Nanocrystalline Diamond Thin Films Synthesis

    E-Print Network [OSTI]

    Qin, Qinghua

    -CVD, and Meng [13] prepared NCD thin film on cemented carbide using a high extended DC arc plasma process substrate using direct current plasma jet chemical vapor deposition. A special cooling system was designed of Physics, Australian National University, Canberra, ACT 0200, Australia 123 Plasma Chem Plasma Process

  10. Thin film hydrous metal oxide catalysts

    DOE Patents [OSTI]

    Dosch, Robert G. (Albuquerque, NM); Stephens, Howard P. (Albuquerque, NM)

    1995-01-01

    Thin film (<100 nm) hydrous metal oxide catalysts are prepared by 1) synthesis of a hydrous metal oxide, 2) deposition of the hydrous metal oxide upon an inert support surface, 3) ion exchange with catalytically active metals, and 4) activating the hydrous metal oxide catalysts.

  11. Magnetic/metallic thin films and nanostructures

    E-Print Network [OSTI]

    Lewis, Robert Michael

    examples. During the past decade applications of nano-scale magnetic devices to data storage have hadMagnetic/metallic thin films and nanostructures The College of William and MarY;'l Virginia http://www.as.wm.cdu/Faculty/Lukaszcw.html It is widely believed that revolutionary progress can be made as materials and devices are developed to operate

  12. Post-Growth Manipulation of Transition Metal Dichalcogenides Thin Film

    E-Print Network [OSTI]

    Ma, Quan

    2014-01-01

    electron doping in thin MoS2 films deposited on dielectriclayer Molybdenum Disulfide Films by Sulfur/Selenium ExchangeMolybdenum disulfide films by sulfur/ selenium exchange, ACS

  13. Preparation of thin film high temperature superconductors

    SciTech Connect (OSTI)

    VenKatesan, X.X.T.; Li, Q.; Findikoglu, A.; Hemmick, D. . Dept. of Physics); Wu, X.D. ); Inam, A.; Chang, C.C.; Ramesh, R.; Hwang, D.M.; Ravi, T.S.; Etemad, S.; Martinez, J.A.; Wilkens, B. )

    1991-03-01

    This paper addresses fundamental issues in preparing high quality high T{sub c} YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} thin films. The techniques of inverted cylindrical magnetron sputtering and pulsed laser deposition are chosen as successful examples to illustrate how the key problems can be solved. The fabrication of YBa{sub 2}Cu{sub 3}O{sub 7{minus}x}/PrBa{sub 2}Cu{sub 3}O{sub 7{minus}x} superlattices where superconductivity in a single unit cell layer of YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} was observed demonstrates the state of the art of thin film deposition of high T{sub c} materials. Systematic variations of the deposition parameters result in changes of superconducting and structural properties of the films that correlate with their microwave and infrared characteristics.

  14. Strategies for Electrooptic Film Fabrication. Influence of Pyrrole-Pyridine-Based Dibranched Chromophore Architecture on Covalent Self-Assembly, Thin-Film Microstructure, and Nonlinear Optical Response

    SciTech Connect (OSTI)

    Facchetti,A.; Beverina, L.; van der Boom, M.; Shukla, A.; Dutta, P.; Evmenenko, G.; Marks, T.; Pagani, G.

    2006-01-01

    The new dibranched, heterocyclic 'push-pull' chromophores bis{l_brace}1-(pyridin-4-yl)-2-[2-(N-methylpyrrol-5-yl)]ethane{r_brace}methane (1), 1-(pyrid-4-yl)-2-(N-methyl-5-formylpyrrol-2-yl)ethylene (2), {l_brace}1-(N-methylpyridinium-4-yl)-2-[2-(N-methylpyrrol-5-yl)]ethane{r_brace}{l_brace}[1-(pyridin-4-yl)-2-[2-(N-methylpyrrol-5-yl)]ethane]{r_brace}methane (3), N-methyl-2-[1-(N-methylpyrid-4-yl)ethen-2-yl]-5-[pyrid-4-yl]ethen-2-yl-pyrrole iodide (4), bis{l_brace}1-(N-methyl-4-pyridinio)-2-[2-(N-methylpyrrol-5-yl)]ethane{r_brace}methane iodide (5), and N-methyl-2,5-[1-(N-methylpyrid-4-yl)ethen-2-yl]pyrrole iodide (6) have been synthesized and characterized. The neutral (1 and 2) and monomethyl salts (3 and 4) undergo chemisorptive reaction with iodobenzyl-functionalized surfaces to afford chromophore monolayers SA-1/SA-2 and SA-3/SA-4, respectively. Molecular structures and other physicochemical properties have been defined by 1H NMR, optical spectroscopy, and XRD. Thin-film characterization by a variety of techniques (optical spectroscopy, specular X-ray reflectivity, atomic force microscopy, X-ray photoelectron spectroscopy, and angle-dependent polarized second harmonic generation) underscore the importance of the chromophore molecular architecture as well as film growth method on film microstructure and optical/electrooptic response.

  15. Electrohydrodynamic instabilities in thin liquid trilayer films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Roberts, Scott A. [Sandia National Lab., Albuquerque, NM (United States); Kumar, Satish [Univ. of Minnesota, Minneapolis, MN (United States)

    2010-09-12

    Experiments by Dickey et al. [Langmuir, 22, 4315 (2006)] and Leach et al. [Chaos, 15, 047506 (2005)] show that novel pillar shapes can be generated from electrohydrodynamic instabilities at the interfaces of thin polymer/polymer/air trilayer films. In this paper, we use linear stability analysis to investigate the effect of free charge and ac electric fields on the stability of trilayer systems. Our work is also motivated by our recent theoretical study [J. Fluid Mech., 631, 255 (2009)] which demonstrates how ac electric fields can be used to increase control over the pillar formation process in thin liquid bilayer films. For perfect dielectric films, the effect of an AC electric field can be understood by considering an equivalent DC field. Leaky dielectric films yield pillar configurations that are drastically different from perfect dielectric films, and AC fields can be used to control the location of free charge within the trilayer system. This can alter the pillar instability modes and generate smaller diameter pillars when conductivities are mismatched. The results presented here may be of interest for the creation of complex topographical patterns on polymer coatings and in microelectronics.

  16. Electrohydrodynamic instabilities in thin liquid trilayer films

    SciTech Connect (OSTI)

    Roberts, Scott A.; Kumar, Satish

    2010-01-01

    Experiments by Dickey and Leach show that novel pillar shapes can be generated from electrohydrodynamic instabilities at the interfaces of thin polymer/polymer/air trilayer films. In this paper, we use linear stability analysis to investigate the effect of free charge and ac electric fields on the stability of trilayer systems. Our work is also motivated by our recent theoretical study which demonstrates how ac electric fields can be used to increase control over the pillar formation process in thin liquid bilayer films. For perfect dielectric films, the effect of an AC electric field can be understood by considering an equivalent DC field. Leaky dielectric films yield pillar configurations that are drastically different from perfect dielectric films, and AC fields can be used to control the location of free charge within the trilayer system. This can alter the pillar instability modes and generate smaller diameter pillars when conductivities are mismatched. The results presented here may be of interest for the creation of complex topographical patterns on polymer coatings and in microelectronics.

  17. Electrohydrodynamic instabilities in thin liquid trilayer films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Roberts, Scott A.; Kumar, Satish

    2010-12-09

    Experiments by Dickey and Leach show that novel pillar shapes can be generated from electrohydrodynamic instabilities at the interfaces of thin polymer/polymer/air trilayer films. In this paper, we use linear stability analysis to investigate the effect of free charge and ac electric fields on the stability of trilayer systems. Our work is also motivated by our recent theoretical study which demonstrates how ac electric fields can be used to increase control over the pillar formation process in thin liquid bilayer films. For perfect dielectric films, the effect of an AC electric field can be understood by considering an equivalent DCmore »field. Leaky dielectric films yield pillar configurations that are drastically different from perfect dielectric films, and AC fields can be used to control the location of free charge within the trilayer system. This can alter the pillar instability modes and generate smaller diameter pillars when conductivities are mismatched. The results presented may be of interest for the creation of complex topographical patterns on polymer coatings and in microelectronics.« less

  18. Nitrogen doped zinc oxide thin film

    SciTech Connect (OSTI)

    Li, Sonny X.

    2003-12-15

    To summarize, polycrystalline ZnO thin films were grown by reactive sputtering. Nitrogen was introduced into the films by reactive sputtering in an NO{sub 2} plasma or by N{sup +} implantation. All ZnO films grown show n-type conductivity. In unintentionally doped ZnO films, the n-type conductivities are attributed to Zn{sub i}, a native shallow donor. In NO{sub 2}-grown ZnO films, the n-type conductivity is attributed to (N{sub 2}){sub O}, a shallow double donor. In NO{sub 2}-grown ZnO films, 0.3 atomic % nitrogen was found to exist in the form of N{sub 2}O and N{sub 2}. Upon annealing, N{sub 2}O decomposes into N{sub 2} and O{sub 2}. In furnace-annealed samples N{sub 2} redistributes diffusively and forms gaseous N{sub 2} bubbles in the films. Unintentionally doped ZnO films were grown at different oxygen partial pressures. Zni was found to form even at oxygen-rich condition and led to n-type conductivity. N{sup +} implantation into unintentionally doped ZnO film deteriorates the crystallinity and optical properties and leads to higher electron concentration. The free electrons in the implanted films are attributed to the defects introduced by implantation and formation of (N{sub 2}){sub O} and Zni. Although today there is still no reliable means to produce good quality, stable p-type ZnO material, ZnO remains an attractive material with potential for high performance short wavelength optoelectronic devices. One may argue that gallium nitride was in a similar situation a decade ago. Although we did not obtain any p-type conductivity, we hope our research will provide a valuable reference to the literature.

  19. Substrate heater for thin film deposition

    DOE Patents [OSTI]

    Foltyn, Steve R. (111 Beryl St., Los Alamos, NM 87544)

    1996-01-01

    A substrate heater for thin film deposition of metallic oxides upon a target substrate configured as a disk including means for supporting in a predetermined location a target substrate configured as a disk, means for rotating the target substrate within the support means, means for heating the target substrate within the support means, the heating means about the support means and including a pair of heating elements with one heater element situated on each side of the predetermined location for the target substrate, with one heater element defining an opening through which desired coating material can enter for thin film deposition and with the heating means including an opening slot through which the target substrate can be entered into the support means, and, optionally a means for thermal shielding of the heating means from surrounding environment is disclosed.

  20. Packaging material for thin film lithium batteries

    DOE Patents [OSTI]

    Bates, John B. (116 Baltimore Dr., Oak Ridge, TN 37830); Dudney, Nancy J. (11634 S. Monticello Rd., Knoxville, TN 37922); Weatherspoon, Kim A. (223 Wadsworth Pl., Oak Ridge, TN 37830)

    1996-01-01

    A thin film battery including components which are capable of reacting upon exposure to air and water vapor incorporates a packaging system which provides a barrier against the penetration of air and water vapor. The packaging system includes a protective sheath overlying and coating the battery components and can be comprised of an overlayer including metal, ceramic, a ceramic-metal combination, a parylene-metal combination, a parylene-ceramic combination or a parylene-metal-ceramic combination.

  1. Structures for dense, crack free thin films

    DOE Patents [OSTI]

    Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); De Jonghe, Lutgard C. (Lafayette, CA)

    2011-03-08

    The process described herein provides a simple and cost effective method for making crack free, high density thin ceramic film. The steps involve depositing a layer of a ceramic material on a porous or dense substrate. The deposited layer is compacted and then the resultant laminate is sintered to achieve a higher density than would have been possible without the pre-firing compaction step.

  2. Comparative study of the mechanical properties of nanostructured thin films on stretchable substrates

    SciTech Connect (OSTI)

    Djaziri, S. [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf (Germany); Institut P' (UPR 3346 CNRS), Université de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Renault, P.-O.; Le Bourhis, E.; Goudeau, Ph., E-mail: Philippe.goudeau@univ-poitiers.fr [Institut P' (UPR 3346 CNRS), Université de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Faurie, D. [LSPM, (UPR 3407 CNRS), Université Paris 13, Institut Galilée, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse (France); Geandier, G. [Institut Jean Lamour (UMR 3079 CNRS), Université de Lorraine, Parc de Saurupt, CS 50840, 54011 NANCY Cedex (France); Mocuta, C.; Thiaudière, D. [Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France)

    2014-09-07

    Comparative studies of the mechanical behavior between copper, tungsten, and W/Cu nanocomposite based on copper dispersoïd thin films were performed under in-situ controlled tensile equi-biaxial loadings using both synchrotron X-ray diffraction and digital image correlation techniques. The films first deform elastically with the lattice strain equal to the true strain given by digital image correlation measurements. The Cu single thin film intrinsic elastic limit of 0.27% is determined below the apparent elastic limit of W and W/Cu nanocomposite thin films, 0.30% and 0.49%, respectively. This difference is found to be driven by the existence of as-deposited residual stresses. Above the elastic limit on the lattice strain-true strain curves, we discriminate two different behaviors presumably footprints of plasticity and fracture. The Cu thin film shows a large transition domain (0.60% true strain range) to a plateau with a smooth evolution of the curve which is associated to peak broadening. In contrast, W and W/Cu nanocomposite thin films show a less smooth and reduced transition domain (0.30% true strain range) to a plateau with no peak broadening. These observations indicate that copper thin film shows some ductility while tungsten/copper nanocomposites thin films are brittle. Fracture resistance of W/Cu nanocomposite thin film is improved thanks to the high compressive residual stress and the elimination of the metastable ?-W phase.

  3. Multilayer thin-film coatings for optical communication systems

    E-Print Network [OSTI]

    Miller, David A. B.

    Multilayer thin-film coatings for optical communication systems Martina Gerken Lichttechnisches-film coatings for optical communication systems are reviewed. Particular emphasis is given to thin-film designs with dispersion related to the photonic crystal superprism effect. A single dispersive coating may be used

  4. Photochemical Pattern Transfer and Enhancement of Thin Film Silica

    E-Print Network [OSTI]

    Parikh, Atul N.

    Photochemical Pattern Transfer and Enhancement of Thin Film Silica Mesophases Andrew M. Dattelbaum chemical treatment of the film can selectively remove the mesostructured regions, leading to patterned, hydrophobicity, and structural morphology of the mesoscopic thin film material on a wide range of substrates

  5. Fracture patterns in thin films and multilayers Alex A. Volinsky

    E-Print Network [OSTI]

    Volinsky, Alex A.

    Fracture patterns in thin films and multilayers Alex A. Volinsky University of South Florida, excessive residual and externally applied stresses cause film fracture. In the case of tensile stress is the key for causing thin film fracture, either in tension, or compression, it is the influence

  6. Atmospheric Pressure Chemical Vapor Deposition of High Silica SiO2-TiO2 Antireflective Thin Films for Glass Based Solar Panels

    SciTech Connect (OSTI)

    Klobukowski, Erik R; Tenhaeff, Wyatt E; McCamy, James; Harris, Caroline; Narula, Chaitanya Kumar

    2013-01-01

    The atmospheric pressure chemical vapor deposition (APCVD) of SiO2-TiO2 thin films employing [[(tBuO)3Si]2O-Ti(OiPr)2], which can be prepared from commercially available materials, results in antireflective thin films on float glass under industrially relevant manufacturing conditions. It was found that while the deposition temperature had an effect on the SiO2:TiO2 ratio, the thickness was dependent on the time of deposition. This study shows that it is possible to use APCVD employing a single source precursor containing titanium and silicon to produce thin films on float glass with high SiO2:TiO2 ratios.

  7. Band Gap Energy of Chalcopyrite Thin Film Solar Cell Absorbers Determined by Soft X-Ray Emission and Absorption Spectroscopy

    E-Print Network [OSTI]

    Bar, M.

    2010-01-01

    OF CHALCOPYRITE THIN FILM SOLAR CELL ABSORBERS DETERMINED BYchalcopyrite thin film solar cell absorbers significantlyof chalcopyrite thin film solar cell absorbers. excitation

  8. Organic light emitting diodes (OLEDs) are a rapidly emerging technology based on organic thin film semiconductors. Recently, there has been substantial investment in their use in displays. At the heart of

    E-Print Network [OSTI]

    Organic light emitting diodes (OLEDs) are a rapidly emerging technology based on organic thin film semiconductors. Recently, there has been substantial investment in their use in displays. At the heart of an OLED are emissive molecules that generate light in response to electrical stimulation. Ideal emitters are efficient

  9. Overview and Challenges of Thin Film Solar Electric Technologies

    SciTech Connect (OSTI)

    Ullal, H. S.

    2008-12-01

    In this paper, we report on the significant progress made worldwide by thin-film solar cells, namely, amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium diselenide (CIGS). Thin-film photovoltaic (PV) technology status is also discussed in detail. In addition, R&D and technology challenges in all three areas are elucidated. The worldwide estimated projection for thin-film PV technology production capacity announcements are estimated at more than 5000 MW by 2010.

  10. Preparation of redox polymer cathodes for thin film rechargeable batteries

    DOE Patents [OSTI]

    Skotheim, T.A.; Lee, H.S.; Okamoto, Yoshiyuki.

    1994-11-08

    The present invention relates to the manufacture of thin film solid state electrochemical devices using composite cathodes comprising a redox polymer capable of undergoing oxidation and reduction, a polymer solid electrolyte and conducting carbon. The polymeric cathode material is formed as a composite of radiation crosslinked polymer electrolytes and radiation crosslinked redox polymers based on polysiloxane backbones with attached organosulfur side groups capable of forming sulfur-sulfur bonds during electrochemical oxidation.

  11. Fluorination of amorphous thin-film materials with xenon fluoride

    DOE Patents [OSTI]

    Weil, R.B.

    1987-05-01

    A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

  12. Chemical vapor deposition of organosilicon and sacrificial polymer thin films

    E-Print Network [OSTI]

    Casserly, Thomas Bryan

    2005-01-01

    Chemical vapor deposition (CVD) produced films for a wide array of applications from a variety of organosilicon and organic precursors. The structure and properties of thin films were controlled by varying processing ...

  13. Creating CZTS Thin Films Via Stacked Metallic CVD and Sulfurization

    E-Print Network [OSTI]

    Bielecki, Anthony

    2013-01-01

    Research, Thin-Film Photovoltaic (PV) Cells Market Analysiscost of photovoltaic systems (such as solar cells) due tosolar cells are created by depositing layers of photovoltaic

  14. Rechargeable thin film battery and method for making the same

    DOE Patents [OSTI]

    Goldner, Ronald B.; Liu, Te-Yang; Goldner, Mark A.; Gerouki, Alexandra; Haas, Terry E.

    2006-01-03

    A rechargeable, stackable, thin film, solid-state lithium electrochemical cell, thin film lithium battery and method for making the same is disclosed. The cell and battery provide for a variety configurations, voltage and current capacities. An innovative low temperature ion beam assisted deposition method for fabricating thin film, solid-state anodes, cathodes and electrolytes is disclosed wherein a source of energetic ions and evaporants combine to form thin film cell components having preferred crystallinity, structure and orientation. The disclosed batteries are particularly useful as power sources for portable electronic devices and electric vehicle applications where high energy density, high reversible charge capacity, high discharge current and long battery lifetimes are required.

  15. Tax Credits Give Thin-Film Solar a Big Boost

    Office of Energy Efficiency and Renewable Energy (EERE)

    California company will expand its capacity to make its thin-film solar panels by more than ten times, thanks to two Recovery Act tax credits.

  16. Fast lithium-ion conducting thin film electrolytes integrated...

    Office of Scientific and Technical Information (OSTI)

    Fast lithium-ion conducting thin film electrolytes integrated directly on flexible substrates for high power solid-state batteries. Citation Details In-Document Search Title: Fast...

  17. Production and characterization of thin film group IIIB, IVB...

    Office of Scientific and Technical Information (OSTI)

    Production and characterization of thin film group IIIB, IVB and rare earth hydrides by reactive evaporation Citation Details In-Document Search Title: Production and...

  18. Orientational Analysis of Molecules in Thin Films | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    crucial if an epitaxial or even crystalline organic growth is desired, if such thin film should serve as template or anchoring unit for further depositiongrowth in a...

  19. Molecular solution processing of metal chalcogenide thin film solar cells

    E-Print Network [OSTI]

    Yang, Wenbing

    2013-01-01

    for further improvement on CZTS solar cells efficiency.improvement. Figure 6.1 Efficiency progress for hydrazine solution processing CIGS and CZTS thin film solar cells

  20. Uncooled thin film pyroelectric IR detector with aerogel thermal isolation

    DOE Patents [OSTI]

    Ruffner, Judith A. (Albuquerque, NM); Bullington, Jeff A. (Albuquerque, NM); Clem, Paul G. (Albuquerque, NM); Warren, William L. (Albuquerque, NM); Brinker, C. Jeffrey (Albuquerque, NM); Tuttle, Bruce A. (Albuquerque, NM); Schwartz, Robert W. (Seneca, SC)

    1999-01-01

    A monolithic infrared detector structure which allows integration of pyroelectric thin films atop low thermal conductivity aerogel thin films. The structure comprises, from bottom to top, a substrate, an aerogel insulating layer, a lower electrode, a pyroelectric layer, and an upper electrode layer capped by a blacking layer. The aerogel can offer thermal conductivity less than that of air, while providing a much stronger monolithic alternative to cantilevered or suspended air-gap structures for pyroelectric thin film pixel arrays. Pb(Zr.sub.0.4 Ti.sub.0.6)O.sub.3 thin films deposited on these structures displayed viable pyroelectric properties, while processed at 550.degree. C.

  1. Fabrication of Microporous Thin Films from Polyelectrolyte Multilayers

    E-Print Network [OSTI]

    Barrett, Christopher

    , are established biomaterials finding application as drug delivery systems, enteric coatings for drugs, dental and biomaterial applications. Introduction The fabrication of polyelectrolyte multilayer thin films has received

  2. Eddy Current Testing for Detecting Small Defects in Thin Films

    SciTech Connect (OSTI)

    Obeid, Simon; Tranjan, Farid M. [Electrical and Computer Engineering Department, UNCC (United States); Dogaru, Teodor [Albany Instruments, 426-O Barton Creek, Charlotte, NC 28262 (United States)

    2007-03-21

    Presented here is a technique of using Eddy Current based Giant Magneto-Resistance sensor (GMR) to detect surface and sub-layered minute defects in thin films. For surface crack detection, a measurement was performed on a copper metallization of 5-10 microns thick. It was done by scanning the GMR sensor on the surface of the wafer that had two scratches of 0.2 mm, and 2.5 mm in length respectively. In another experiment, metal coatings were deposited over the layers containing five defects with known lengths such that the defects were invisible from the surface. The limit of detection (resolution), in terms of defect size, of the GMR high-resolution Eddy Current probe was studied using this sample. Applications of Eddy Current testing include detecting defects in thin film metallic layers, and quality control of metallization layers on silicon wafers for integrated circuits manufacturing.

  3. Method for formation of thin film transistors on plastic substrates

    DOE Patents [OSTI]

    Carey, P.G.; Smith, P.M.; Sigmon, T.W.; Aceves, R.C.

    1998-10-06

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics. 5 figs.

  4. Method for formation of thin film transistors on plastic substrates

    DOE Patents [OSTI]

    Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Sigmon, Thomas W. (Portola Valley, CA); Aceves, Randy C. (Livermore, CA)

    1998-10-06

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics.

  5. Effect of annealing temperature on optical and electrical properties of ZrO{sub 2}?SnO{sub 2} based nanocomposite thin films

    SciTech Connect (OSTI)

    Anitha, V. S., E-mail: jolly2jolly@gmail.com; Lekshmy, S. Sujatha, E-mail: jolly2jolly@gmail.com; Berlin, I. John, E-mail: jolly2jolly@gmail.com; Joy, K., E-mail: jolly2jolly@gmail.com [Thin film Laboratory, Post Graduate and Research Department of Physics, Mar Ivanios College, Thiruvananthapuram 695 015 (India)

    2014-01-28

    Transparent nanocomposite ZrO{sub 2}?SnO{sub 2} thin films were prepared by sol-gel dip-coating technique. Films were annealed at 500°C, 800°C and 1200°C respectively. X-ray diffraction(XRD) spectra showed a mixture of three phases: tetragonal ZrO{sub 2} and SnO{sub 2} and orthorhombic ZrSnO{sub 4}. The grain size of all the three phases' increased with annealing temperature. An average transmittance greater than 85%(in UV-Visible region) is observed for all the films. The band gap for the films decreased from 4.79 eV to 4.62 eV with increase in annealing temperature from 500 to 1200 °C. The electrical resistivity increased with increase in annealing temperature. Such composite ZrO{sub 2}?SnO{sub 2} films can be used in many applications and in optoelectronic devices.

  6. TEM characterization of nanodiamond thin films.

    SciTech Connect (OSTI)

    Qin, L.-C.; Zhou, D.; Krauss, A. R.; Gruen, D. M.; Chemistry

    1998-05-01

    The microstructure of thin films grown by microwave plasma-enhanced chemical vapor deposition (MPCVD) from fullerene C{sub 60} precursors has been characterized by scanning electron microscopy (SEM), selected-area electron diffraction (SAED), bright-field electron microscopy, high-resolution electron microscopy (HREM), and parallel electron energy loss spectroscopy (PEELS). The films are composed of nanosize crystallites of diamond, and no graphitic or amorphous phases were observed. The diamond crystallite size measured from lattice images shows that most grains range between 3-5 nm, reflecting a gamma distribution. SAED gave no evidence of either sp2-bonded glassy carbon or sp3-bonded diamondlike amorphous carbon. The sp2-bonded configuration found in PEELS was attributed to grain boundary carbon atoms, which constitute 5-10% of the total. Occasionally observed larger diamond grains tend to be highly faulted.

  7. Process for making dense thin films

    DOE Patents [OSTI]

    Jacobson, Craig P.; Visco, Steven J.; DeJonghe, Lutgard C.

    2005-07-26

    Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for firing of device substrate to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

  8. Thin Film Solar Technologies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film Solar Technologies Jump to: navigation, search Name: Thin

  9. Innovative Thin Films LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on Openei |sourceAndInformation ReeseInnovativeThin Films

  10. Bandgap widening in thermochromic Mg-doped VO{sub 2} thin films: Quantitative data based on optical absorption

    SciTech Connect (OSTI)

    Li, Shu-Yi; Niklasson, Gunnar A.; Granqvist, Claes G.; Mlyuka, Nuru R.; Department of Physics, University of Dar es Salaam, P.O. Box 35063, Dar es Salaam ; Primetzhofer, Daniel; Possnert, Göran; Hallén, Anders

    2013-10-14

    Thermochromic Mg-doped VO{sub 2} films were deposited by reactive direct current magnetron sputtering onto heated glass and carbon substrates. Elemental compositions were inferred from Rutherford backscattering. Optical bandgaps were obtained from spectral transmittance and reflectance measurements—from both the film side and the back side of the samples—and ensuing determination of absorption coefficients. The bandgap of Mg-doped films was found to increase by 3.9 ± 0.5 eV per unit of atom ratio Mg/(Mg + V) for 0 < Mg/(Mg + V) < 0.21. The presence of ?0.45 at. % Si enhanced the bandgap even more.

  11. Tuning the Magnetic and Electronic Properties of FexSi1-x Thin Films for Spintronics

    E-Print Network [OSTI]

    Karel, Julie Elizabeth

    2012-01-01

    x Si 1-x Thin Films for Spintronics By Julie Elizabeth Karelx Si 1-x Thin Films for Spintronics Copyright 2012 by Juliex Si 1-x Thin Films for Spintronics by Julie Elizabeth Karel

  12. Quantification of thin film crystallographic orientation using X-ray diffraction with an area detector

    E-Print Network [OSTI]

    Baker, Jessica L

    2010-01-01

    properties of Au thin films by X?ray diffraction and in in  polythiophene thin?film transistors.  Nat Mater 2006, copper  phthalocyanine thin films evaporated on amorphous 

  13. The Effects of Non-Uniform Electronic Properties on Thin Film Photovoltaics

    E-Print Network [OSTI]

    Brown, Gregory Ferguson

    2011-01-01

    Intensity  in  Thin  Film  Solar  Cells   3.2.1   U.  Rau,  EL)  Intensity   in  Thin  Film  Solar  Cells   3.3  properties  of  thin  film  solar  cell   absorbers,  with  

  14. Accounting for Localized Defects in the Optoelectronic Design of Thin-Film Solar Cells

    E-Print Network [OSTI]

    Deceglie, Michael G.

    2014-01-01

    trapping in silicon thin film solar cells," Solar Energy,textured surfaces in thin-film solar cells," Opt. Express,Design of Plasmonic Thin-Film Solar Cells with Broadband

  15. Materials properties of pharmaceutical formulations for thin-film-tablet continuous manufacturing

    E-Print Network [OSTI]

    Barcena, Jose R. (Jose Roberto)

    2012-01-01

    The development of manufacturing tablets in a continuous way has been possible greatly to the fabrication of polymer based thin-films. It is estimated that the pharmaceutical industry loses as much as a 25% on revenues ...

  16. Role of Polycrystalline Thin-Film PV Technologies in Competitive PV Module Markets: Preprint

    SciTech Connect (OSTI)

    von Roedern, B.; Ullal, H. S.

    2008-05-01

    This paper discusses the developments in thin-film PV technologies and provides an outlook on future commercial module efficiencies achievable based on today's knowledge about champion cell performance.

  17. Method of improving field emission characteristics of diamond thin films

    DOE Patents [OSTI]

    Krauss, Alan R. (Naperville, IL); Gruen, Dieter M. (Downer Grove, IL)

    1999-01-01

    A method of preparing diamond thin films with improved field emission properties. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display.

  18. Method of improving field emission characteristics of diamond thin films

    DOE Patents [OSTI]

    Krauss, A.R.; Gruen, D.M.

    1999-05-11

    A method of preparing diamond thin films with improved field emission properties is disclosed. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display. 3 figs.

  19. Rechargeable thin-film lithium batteries

    SciTech Connect (OSTI)

    Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, X.

    1993-09-01

    Rechargeable thin-film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. These include Li-TiS{sub 2}, Li-V{sub 2}O{sub 5}, and Li-Li{sub x}Mn{sub 2}O{sub 4} cells with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The realization of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46}and a conductivity at 25 C of 2 {mu}S/cm. The thin-film cells have been cycled at 100% depth of discharge using current densities of 5 to 100 {mu}A/cm{sup 2}. Over most of the charge-discharge range, the internal resistance appears to be dominated by the cathode, and the major source of the resistance is the diffusion of Li{sup +} ions from the electrolyte into the cathode. Chemical diffusion coefficients were determined from ac impedance measurements.

  20. VACUUM PUMPING STUDY OF TITANIUM-ZIRCONIUM-VANADIUM THIN FILMS*

    E-Print Network [OSTI]

    ERL 03-8 VACUUM PUMPING STUDY OF TITANIUM-ZIRCONIUM-VANADIUM THIN FILMS* Yulin Li# and Simon Ho, LEPP, Cornell University, Ithaca, NY 14853, USA Abstract* Vacuum pumping via non-evaporable getter (NEG) thin film deposited directly onto the interior of a vacuum chamber is a novel way to achieve extreme

  1. Stress and Moisture Effects on Thin Film Buckling Delamination

    E-Print Network [OSTI]

    Volinsky, Alex A.

    ­2 GPa compres- sive residual stresses were sputter deposited on top of thin (below 100 nm) copperStress and Moisture Effects on Thin Film Buckling Delamination P. Waters & A.A. Volinsky Received, commonly called telephone cords, shown in Fig. 2 for the 1 2m W film on top of a 20 nm diamond-like carbon

  2. A survey of thin-film solar photovoltaic industry & technologies

    E-Print Network [OSTI]

    Grama, Sorin

    2007-01-01

    A new type of solar cell technology using so-called thin-film solar photovoltaic material has the potential to make a great impact on our lives. Because it uses very little or no silicon at all, thin- film (TF) solar ...

  3. Lubrication approximation for thin viscous films: asymptotic behavior of nonnegative solutions

    E-Print Network [OSTI]

    Tudorascu, Adrian

    Lubrication approximation for thin viscous films: asymptotic behavior of nonnegative solutions-order nonlinear de- generate parabolic equations of lubrication approximation for thin viscous film type. The weak

  4. Accounting for Localized Defects in the Optoelectronic Design of Thin-Film Solar Cells

    E-Print Network [OSTI]

    Deceglie, Michael G.

    2014-01-01

    in ultrathin plasmonic solar cells," Optics Express, vol.Bailat, "Thin-film silicon solar cell technology," Progresstrapping in silicon thin film solar cells," Solar Energy,

  5. The Electrodeless Discharge Lamps Coated with the Titania Thin Film for Photocatalysis in a Microwave Field

    E-Print Network [OSTI]

    Cirkva, Vladimir

    The Electrodeless Discharge Lamps Coated with the Titania Thin Film for Photocatalysis assisted photocatalysis using TiO2 thin films has been examined. Several factors influencing

  6. Stress Evolution Behavior in CoCrPt Alloy Thin Films with varying Pt Concentration

    E-Print Network [OSTI]

    Im, M.-Y.

    2009-01-01

    Stress Evolution Behavior in CoCrPt Alloy Thin Films withmagnetic recording media is to investigate growth stress,since stress inevitably generated during thin film

  7. Nitrogen-doped cuprous oxide as a p-type hole-transporting layer in thin-film solar cells

    E-Print Network [OSTI]

    Nitrogen-doped cuprous oxide as a p-type hole- transporting layer in thin-film solar cells Yun Seog-transparent tunnel junction to a back-contact. We fabricate Cu2O-based heterojunction thin-film solar cells-factor and power conversion efficiency of the solar cells. Cu2O:N thin-films may also be useful in other

  8. Bandgap-Graded Cu2Zn(Sn1-xGex)S4 Thin-Film Solar Cells Derived from Metal Chalcogenide Complex Ligand Capped Nanocrystals

    E-Print Network [OSTI]

    Cao, Guozhong

    Bandgap-Graded Cu2Zn(Sn1-xGex)S4 Thin-Film Solar Cells Derived from Metal Chalcogenide ComplexS) thin-film solar cells based on metal chalcogenide complex (MCC) ligand capped nanocrystals (NCs attention as a promising absorber material in thin film-solar cells due to its abundance and nontoxicity

  9. STRESS-INDUCED PERIODIC FRACTURE PATTERNS IN THIN FILMS Alex A. Volinsky1

    E-Print Network [OSTI]

    Volinsky, Alex A.

    STRESS-INDUCED PERIODIC FRACTURE PATTERNS IN THIN FILMS Alex A. Volinsky1 , Neville R. Moody2 applied stresses in thin films can cause film fracture. In the case of compressive stress thin film stress a network of through- thickness cracks forms in thin films. Excessive biaxial residual stress

  10. Oxynitride Thin Film Barriers for PV Packaging

    SciTech Connect (OSTI)

    Glick, S. H.; delCueto, J. A.; Terwilliger, K. M.; Jorgensen, G. J.; Pankow, J. W.; Keyes, B. M.; Gedvilas, L. M.; Pern, F. J.

    2005-11-01

    Dielectric thin-film barrier and adhesion-promoting layers consisting of silicon oxynitride materials (SiOxNy, with various stoichiometry) were investigated. For process development, films were applied to glass (TCO, conductive SnO2:F; or soda-lime), polymer (PET, polyethylene terephthalate), aluminized soda-lime glass, or PV cell (a-Si, CIGS) substrates. Design strategy employed de-minimus hazard criteria to facilitate industrial adoption and reduce implementation costs for PV manufacturers or suppliers. A restricted process window was explored using dilute compressed gases (3% silane, 14% nitrous oxide, 23% oxygen) in nitrogen (or former mixtures, and 11.45% oxygen mix in helium and/or 99.999% helium dilution) with a worst-case flammable and non-corrosive hazard classification. Method employed low radio frequency (RF) power, less than or equal to 3 milliwatts per cm2, and low substrate temperatures, less than or equal to 100 deg C, over deposition areas less than or equal to 1000 cm2. Select material properties for barrier film thickness (profilometer), composition (XPS/FTIR), optical (refractive index, %T and %R), mechanical peel strength and WVTR barrier performance are presented.

  11. Nanopatterning of ultrananocrystalline diamond thin films via block copolymer lithography.

    SciTech Connect (OSTI)

    Ramanathan, M.; Darling, S. B.; Sumant, A. V.; Auciello, O.

    2010-07-01

    Nanopatterning of diamond surfaces is critical for the development of diamond-based microelectromechanical system/nanoelectromechanical system (MEMS/NEMS), such as resonators or switches. Micro-/nanopatterning of diamond materials is typically done using photolithography or electron beam lithography combined with reactive ion etching (RIE). In this work, we demonstrate a simple process, block copolymer (BCP) lithography, for nanopatterning of ultrananocrystalline diamond (UNCD) films to produce nanostructures suitable for the fabrication of NEMS based on UNCD. In BCP lithography, nanoscale self-assembled polymeric domains serve as an etch mask for pattern transfer. The authors used thin films of a cylinder-forming organic-inorganic BCP, poly(styrene-block-ferrocenyldimethylsilane), PS-b-PFS, as an etch mask on the surface of UNCD films. Orientational control of the etch masking cylindrical PFS blocks is achieved by manipulating the polymer film thickness in concert with the annealing treatment. We have observed that the surface roughness of UNCD layers plays an important role in transferring the pattern. Oxygen RIE was used to etch the exposed areas of the UNCD film underneath the BCP. Arrays of both UNCD posts and wirelike structures have been created using the same starting polymeric materials as the etch mask.

  12. Effect of current injection into thin-film Josephson junctions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kogan, V. G.; Mints, R. G.

    2014-11-11

    New thin-film Josephson junctions have recently been tested in which the current injected into one of the junction banks governs Josephson phenomena. One thus can continuously manage the phase distribution at the junction by changing the injected current. Our method of calculating the distribution of injected currents is also proposed for a half-infinite thin-film strip with source-sink points at arbitrary positions at the film edges. The strip width W is assumed small relative to ?=2?2/d;? is the bulk London penetration depth of the film material and d is the film thickness.

  13. Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign

    E-Print Network [OSTI]

    Sargent, Edward H. "Ted"

    to the substrate, and produced Sb2Se3 thin-film solar cells with a certified device efficiency of 5.6%. Our results are one of the major limiting factors for high-efficiency thin-film solar cells. We began with first cells based on inorganic absorbers, such as Si, GaAs, CdTe and Cu(In,Ga)Se2, permit a high device

  14. Thin Film Femtosecond Laser Damage Competition

    SciTech Connect (OSTI)

    Stolz, C J; Ristau, D; Turowski, M; Blaschke, H

    2009-11-14

    In order to determine the current status of thin film laser resistance within the private, academic, and government sectors, a damage competition was started at the 2008 Boulder Damage Symposium. This damage competition allows a direct comparison of the current state of the art of high laser resistance coatings since they are tested using the same damage test setup and the same protocol. In 2009 a high reflector coating was selected at a wavelength of 786 nm at normal incidence at a pulse length of 180 femtoseconds. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials and layer count, and spectral results will also be shared.

  15. Glow discharge plasma deposition of thin films

    DOE Patents [OSTI]

    Weakliem, Herbert A. (Pennington, NJ); Vossen, Jr., John L. (Bridgewater, NJ)

    1984-05-29

    A glow discharge plasma reactor for deposition of thin films from a reactive RF glow discharge is provided with a screen positioned between the walls of the chamber and the cathode to confine the glow discharge region to within the region defined by the screen and the cathode. A substrate for receiving deposition material from a reactive gas is positioned outside the screened region. The screen is electrically connected to the system ground to thereby serve as the anode of the system. The energy of the reactive gas species is reduced as they diffuse through the screen to the substrate. Reactive gas is conducted directly into the glow discharge region through a centrally positioned distribution head to reduce contamination effects otherwise caused by secondary reaction products and impurities deposited on the reactor walls.

  16. Thin films of mixed metal compounds

    DOE Patents [OSTI]

    Mickelsen, R.A.; Chen, W.S.

    1985-06-11

    Disclosed is a thin film heterojunction solar cell, said heterojunction comprising a p-type I-III-IV[sub 2] chalcopyrite substrate and an overlying layer of an n-type ternary mixed metal compound wherein said ternary mixed metal compound is applied to said substrate by introducing the vapor of a first metal compound to a vessel containing said substrate from a first vapor source while simultaneously introducing a vapor of a second metal compound from a second vapor source of said vessel, said first and second metals comprising the metal components of said mixed metal compound; independently controlling the vaporization rate of said first and second vapor sources; reducing the mean free path between vapor particles in said vessel, said gas being present in an amount sufficient to induce homogeneity of said vapor mixture; and depositing said mixed metal compound on said substrate in the form of a uniform composition polycrystalline mixed metal compound. 5 figs.

  17. PHOTOCATALYTIC GENERATION OF DISSOLVED OXYGEN AND OXYHEMOGLOBIN IN WHOLE BLOOD BASED ON THE INDIRECT INTERACTION OF UV LIGHT WITH A SEMICONDUCTING TITANIUM DIOXIDE THIN FILM

    SciTech Connect (OSTI)

    Gilbert, Richard J.; Carleton, Linda M.; Dasse, Kurt A.; Martin, Peter M.; Williford, Rick E.; Monzyk, Bruce F.

    2007-10-01

    Most current artificial lung technologies require the delivery of oxygen to the blood via permeable hollow fibers, depending on membrane diffusivity and differential partial pressure to drive gas exchange. We have identified an alternative approach in which dissolved oxygen (DO) is generated directly from the water content of blood through the indirect interaction of UV light with a semi-conducting titanium dioxide thin film. This reaction is promoted by photon absorption and displacement of electrons from the photoactive film, and yields a cascading displacement of electron “holes” to the aqueous interface resulting in the oxidation of water molecules to form DO. Anatase TiO2 (photocatalyst) and ITO (electrically conductive and light transparent) coatings were deposited onto quartz flow-cell plates by DC reactive magnetron sputtering. The crystal structure of the films was evaluated by grazing incidence X-Ray Diffraction (GIXRD), which confirmed that the primary crystal phase of the TiO2 thin film was anatase with a probable rutile secondary phase. Surface topology and roughness were determined by atomic force microscopy, demonstrating a stochastically uniform array of nanocrystallites. UV illumination of the titanium dioxide thin film through the quartz/ITO surface resulted in the rapid increase of DO and oxyhemoglobin in adjacent flowing blood on the opposite TiO2 surface at a rate of 1.28 x 10-5 mmol O2/sec. The rate of oxyhemoglobin generation was linearly proportional to residence time adjacent to the photoactive surface in a flow-through test cell under steady-state conditions. Preliminary biocompatibility for the proposed photocatalytic effect on whole blood demonstrated no increase in the rate of hemolysis or generation of toxic byproducts of photo-oxidation. These results demonstrate the feasibility and safety of employing optoelectronic mechanisms to promote oxygenation of hemoglobin in whole blood, and provide substantiation for the use of this technology as a mechanism for artificial respiratory support.

  18. CaTiO.sub.3 Interfacial template structure on semiconductor-based material and the growth of electroceramic thin-films in the perovskite class

    DOE Patents [OSTI]

    McKee, Rodney Allen (Kingston, TN); Walker, Frederick Joseph (Oak Ridge, TN)

    1998-01-01

    A structure including a film of a desired perovskite oxide which overlies and is fully commensurate with the material surface of a semiconductor-based substrate and an associated process for constructing the structure involves the build up of an interfacial template film of perovskite between the material surface and the desired perovskite film. The lattice parameters of the material surface and the perovskite of the template film are taken into account so that during the growth of the perovskite template film upon the material surface, the orientation of the perovskite of the template is rotated 45.degree. with respect to the orientation of the underlying material surface and thereby effects a transition in the lattice structure from fcc (of the semiconductor-based material) to the simple cubic lattice structure of perovskite while the fully commensurate periodicity between the perovskite template film and the underlying material surface is maintained. The film-growth techniques of the invention can be used to fabricate solid state electrical components wherein a perovskite film is built up upon a semiconductor-based material and the perovskite film is adapted to exhibit ferroelectric, piezoelectric, pyroelectric, electro-optic or large dielectric properties during use of the component.

  19. Method for making surfactant-templated thin films

    DOE Patents [OSTI]

    Brinker, C. Jeffrey (Albuquerque, NM); Lu, Yunfeng (New Orleans, LA); Fan, Hong You (Albuquerque, NM)

    2010-08-31

    An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

  20. Strain controlled metal-insulator transition in epitaxial NdNiO{sub 3} thin films

    SciTech Connect (OSTI)

    Xiang, P.-H. Zhong, N.; Duan, C.-G.; Tang, X. D.; Hu, Z. G.; Yang, P. X.; Zhu, Z. Q.; Chu, J. H.

    2013-12-28

    We have fabricated epitaxial thin films of NdNiO{sub 3} (NNO) on various single crystal substrates. The transport properties of NNO films are very sensitive to substrate-controlled epitaxial strain. As the strain varies from tensile to compressive, the Mott metal-insulator transition of NNO films shifts to low temperatures. Under a larger compressive strain, the film on LaSrAlO{sub 4} substrate exhibits a practically metallic transport characteristic. We have found that the conductivities of NNO films at low temperatures follow Mott's variable range hopping mechanism rather than thermal activation model and the epitaxial strain has a strong effect on Mott's parameters of NNO films. These findings demonstrate that the electronic transport of NNO thin films can be tuned by the epitaxial strain for next-generation perovskite-based microelectronic devices.

  1. Growth of nano-and microcrystalline silicon thin films at low temperature by pulsed electron deposition

    E-Print Network [OSTI]

    Zexian, Cao

    in a multi-junction design [4]. The solar cells based on nanocrystalline silicon (nc-Si) films have now in electronic and optoelectronic devices, particularly in the fabrication of solar cells. Noticeably, thin-film silicon solar cells take a larger market share than the single- and polycrystalline silicon solar cells

  2. Transparent conducting thin films for spacecraft applications

    SciTech Connect (OSTI)

    Perez-Davis, M.E.; Malave-Sanabria, T.; Hambourger, P.; Rutledge, S.K.; Roig, D.; Degroh, K.K.; Hung, C.

    1994-01-01

    Transparent conductive thin films are required for a variety of optoelectronic applications: automotive and aircraft windows, and solar cells for space applications. Transparent conductive coatings of indium-tin-oxide (ITO)-magnesium fluoride (MgF2) and aluminum doped zinc oxide (AZO) at several dopant levels are investigated for electrical resistivity (sheet resistance), carrier concentration, optical properties, and atomic oxygen durability. The sheet resistance values of ITO-MgF2 range from 10[sup 2] to 10[sup 11] ohms/square, with transmittance of 75 to 86 percent. The AZO films sheet resistances range from 10[sup 7] to 10[sup 11] ohms/square with transmittances from 84 to 91 percent. It was found that in general, with respect to the optical properties, the zinc oxide (ZnO), AZO, and the high MgF2 content ITO-MgF2 samples, were all durable to atomic oxygen plasma, while the low MgF2 content of ITO-MgF2 samples were not durable to atomic oxygen plasma exposure.

  3. Superconducting thin films of (100) and (111) oriented indium doped topological crystalline insulator SnTe

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Si, W.; Zhang, C.; Wu, L.; Ozaki, T.; Gu, G.; Li, Q.

    2015-09-01

    Recent discovery of the topological crystalline insulator SnTe has triggered a search for topological superconductors, which have potential application to topological quantum computing. The present work reports on the superconducting properties of indium doped SnTe thin films. The (100) and (111) oriented thin films were epitaxially grown by pulsed-laser deposition on (100) and (111) BaF2 crystalline substrates respectively. The onset superconducting transition temperatures are about 3.8 K for (100) and 3.6 K for (111) orientations, slightly lower than that of the bulk. Magneto-resistive measurements indicate that these thin films may have upper critical fields higher than that of the bulk.more »With large surface-to-bulk ratio, superconducting indium doped SnTe thin films provide a rich platform for the study of topological superconductivity and potential device applications based on topological superconductors.« less

  4. Efficiency calculations of thin-film GaAs solar cells on Si substrates

    SciTech Connect (OSTI)

    Yamaguchi, M.; Amano, C.

    1985-11-01

    Dislocation effect upon the efficiency of single-crystal thin-film AlGaAs-GaAs heteroface solar cells on Si substrates is analyzed. Solar-cell properties are calculated based on a simple model; in the model, dislocations act as recombination centers to reduce the minority-carrier diffusion length in each layer and increase the space-charge layer recombination current. Numerical analysis is also carried out to optimize thin-film AlGaAs-GaAs heteroface solar-cell structures. The fabrication of thin-film AlGaAs-GaAs heteroface solar cells with a practical efficiency larger than 18% on Si substrates appears possible if the dislocation density in the thin-film GaAs layer is less than 10/sup 6/ cm/sup -2/.

  5. Electrodynamic Properties of Single-Crystal and Thin-Film Strontium Titanate

    SciTech Connect (OSTI)

    Findikoglu, A.T.; Jia, Q.; Reagor, D.W.; Kwon, C.; Rasmussen, K.O.

    1999-05-13

    The authors present a comparative study of broadband electrodynamic properties of coplanar waveguides made from nonlinear dielectric single-crystal and thin-film SrTiO{sub 3} (STO) with high-temperature superconducting thin-film YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} electrodes. The waveguides that use single-crystal STO exhibit a monotonic increase in refractive index, dielectric nonlinearity, and dissipation with decreasing temperature (from 80 K to 20 K), whereas those based on thin-film STO show similar but weaker effects with increasing temperature. Under dc bias, both types of waveguides show reduced refractive index, but dissipation increases in the case of single-crystal STO, while it decreases in the case of STO thin-films.

  6. Atomic layer deposition of Zn(O,S) thin films with tunable electrical properties by oxygen annealing

    E-Print Network [OSTI]

    properties to further improve the performance of thin-film solar cells using earth- abundant and non) is one of the most reliable materials used in thin-film solar cells, but currently the most efficient CIGS-based solar cells use CdS,1,2 a toxic material, as an n-type buffer layer between the p-type CIGS

  7. Towards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping and non-radiative recombinations

    E-Print Network [OSTI]

    important evaluation criterion for photovoltaic (PV) technology. Therefore, research on novel structuresTowards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping February 2014; published online 3 March 2014) Thin-film solar cells based on silicon have emerged

  8. Measuring the structure of thin soft matter films under confinement: A surface-force type apparatus for neutron reflection, based on a flexible membrane approach

    SciTech Connect (OSTI)

    Vos, Wiebe M. de; Mears, Laura L. E.; Richardson, Robert M.; Cosgrove, Terence; Prescott, Stuart W.; Dalgliesh, Robert M.

    2012-11-15

    A unique surface force type apparatus that allows the investigation of a confined thin film using neutron reflection is described. The central feature of the setup consists of a solid substrate (silicon) and a flexible polymer membrane (Melinex{sup Registered-Sign }). We show that inflation of the membrane against the solid surface provides close and even contact between the interfaces over a large surface area. Both heavy water and air can be completely squeezed out from between the flexible film and the solid substrate, leaving them in molecular contact. The strength of confinement is controlled by the pressure used to inflate the membrane. Dust provides a small problem for this approach as it can get trapped between membrane and substrate to prevent a small part of the membrane from making good contact with the substrate. This results in the measured neutron reflectivity containing a small component of an unwanted reflection, between 10% and 20% at low confining pressures (1 bar) and between 1% and 5% at high confining pressures (5 bar). However, we show that this extra signal does not prevent good and clear information on the structure of thin films being extracted from the neutron reflectivity. The effects of confinement are illustrated with data from a poly(vinyl pyrollidone) gel layer in water, a polyelectrolyte multilayer in water, and with data from a stack of supported lipid-bilayers swollen with D{sub 2}O vapor. The data demonstrates the potential of this apparatus to provide information on the structure of thin films under confinement for a known confining pressure.

  9. Substrate Effect on the Melting Temperature of Thin Polyethylene Films M. Rafailovich,1,* J. Sokolov,1

    E-Print Network [OSTI]

    Substrate Effect on the Melting Temperature of Thin Polyethylene Films Y. Wang,1 M. Rafailovich,1 polyethylene thin films. The Tm decreases with the film thickness decrease when the film is thinner than that the degree of crystal- linity of polyethylene (PE) remained high even in films as thin as 15 nm [5]. A novel

  10. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, Scot P. (Lakewood, CO); Chamberlin, Rhodes (El Paso, TX)

    1999-02-09

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

  11. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, Scot P. (Lakewood, CO); Chamberlin, Rhodes (El Paso, TX)

    1997-10-07

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

  12. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, S.P.; Chamberlin, R.

    1999-02-09

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

  13. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, S.P.; Chamberlin, R.

    1997-10-07

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

  14. TI--CR--AL--O thin film resistors

    DOE Patents [OSTI]

    Jankowski, Alan F. (Livermore, CA); Schmid, Anthony P. (Solana Beach, CA)

    2000-01-01

    Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  15. Multimonth controlled small molecule release from biodegradable thin films

    E-Print Network [OSTI]

    Hammond, Paula T.

    Long-term, localized delivery of small molecules from a biodegradable thin film is challenging owing to their low molecular weight and poor charge density. Accomplishing highly extended controlled release can facilitate ...

  16. Molecular solution processing of metal chalcogenide thin film solar cells

    E-Print Network [OSTI]

    Yang, Wenbing

    2013-01-01

    S. Guha, High-Efficiency Cu2ZnSnSe4 Solar Cells with a TiNfurther improvement on CZTS solar cells efficiency. Finally,Route to High-Efficiency CZTSSe Thin-film Solar Cells, Proc.

  17. Enabling integration of vapor-deposited polymer thin films

    E-Print Network [OSTI]

    Petruczok, Christy D. (Christy Danielle)

    2014-01-01

    Initiated Chemical Vapor Deposition (iCVD) is a versatile, one-step process for synthesizing conformal and functional polymer thin films on a variety of substrates. This thesis emphasizes the development of tools to further ...

  18. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ELECTROPLATED Cu THIN FILMS

    E-Print Network [OSTI]

    Volinsky, Alex A.

    MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ELECTROPLATED Cu THIN FILMS A.A. Volinsky* , J. Vella microns were electroplated on top of the adhesion-promoting barrier layers on single crystal silicon

  19. The macroscopic delamination of thin films from elastic substrates

    E-Print Network [OSTI]

    Reis, Pedro Miguel

    The wrinkling and delamination of stiff thin films adhered to a polymer substrate have important applications in “flexible electronics.” The resulting periodic structures, when used for circuitry, have remarkable mechanical ...

  20. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guided Self-Assembly of Gold Thin Films Print Nanoparticles-man-made atoms with unique optical, electrical, and mechanical properties-have become key components in many fields of...

  1. Initiated chemical vapor deposition of functional polyacrylic thin films

    E-Print Network [OSTI]

    Mao, Yu, 1975-

    2005-01-01

    Initiated chemical vapor deposition (iCVD) was explored as a novel method for synthesis of functional polyacrylic thin films. The process introduces a peroxide initiator, which can be decomposed at low temperatures (<200?C) ...

  2. Direct printing of lead zirconate titanate thin films

    E-Print Network [OSTI]

    Bathurst, Stephen, 1980-

    2008-01-01

    Thus far, use of lead zirconate titanate (PZT) in MEMS has been limited due to the lack of process compatibility with existing MEMS manufacturing techniques. Direct printing of thin films eliminates the need for photolithographic ...

  3. Functionalized multilayer thin films for protection against acutely toxic agents

    E-Print Network [OSTI]

    Krogman, Kevin Christopher

    2009-01-01

    The recently developed practice of spraying polyelectrolyte solutions onto a substrate in order to construct thin films via the Layer-by-Layer (LbL) technique has been further investigated and extended. In this process a ...

  4. Optical and Structural Characterizations of Tin Phthalocvanine Thin Films

    SciTech Connect (OSTI)

    Cherian, Regimol C.; Menon, C. S. [School of Pure and Applied Physics, Mahatma Gandhi University Priyadarshini Hills P.O., Kottayam-686560, Kerala (India)

    2008-04-23

    Phthalocyanines are today regarded as optical materials, which applies to organic dye lasers. The analysis of the optical properties of these thin films enforces the application in the field of thin film optics. Tin phthalocyanine (SnPc) thin films used for the characterization studies are prepared by thermal evaporation technique. The variation of optical band gap with irradiation of heat radiation and post deposition heat treatment are studied from the absorption spectra. Structural properties have been analyzed using the X-ray diffractogram of SnPc powder and thin films. The structure is identified as monoclinic with a = 12.132 A, b = 8.712 A, c = 10.806 A and {beta} = 108.85 deg. The grain size increases with increase of annealing temperature. The SEM images show a rough corrugated surface. Due to heat treatment, crystallites grow into bigger size.

  5. Efficient light trapping structure in thin film silicon solar cells

    E-Print Network [OSTI]

    Sheng, Xing

    Thin film silicon solar cells are believed to be promising candidates for continuing cost reduction in photovoltaic panels because silicon usage could be greatly reduced. Since silicon is an indirect bandgap semiconductor, ...

  6. Properties and sensor performance of zinc oxide thin films

    E-Print Network [OSTI]

    Min, Yongki, 1965-

    2003-01-01

    Reactively sputtered ZnO thin film gas sensors were fabricated onto Si wafers. The atmosphere dependent electrical response of the ZnO micro arrays was examined. The effects of processing conditions on the properties and ...

  7. Functionality Tuning in Vertically Aligned Nanocomposite Thin Films 

    E-Print Network [OSTI]

    Chen, Aiping

    2013-04-04

    Vertically aligned nanocomposite (VAN) oxide thin films are unique nanostructures with two-phase self-assembled, heteroepitaxially grown on single-crystal substrates. Both phases tend to grow vertically and simultaneously ...

  8. Antimony-Doped Tin(II) Sulfide Thin Films

    E-Print Network [OSTI]

    Chakraborty, Rupak

    Thin-film solar cells made from earth-abundant, inexpensive, and nontoxic materials are needed to replace the current technologies whose widespread use is limited by their use of scarce, costly, and toxic elements. Tin ...

  9. June 26, 2000 1 Fracture in Thin Films

    E-Print Network [OSTI]

    Suo, Zhigang

    in many technologies. Examples include zirconia coatings as thermal barriers on superalloys in enginesJune 26, 2000 1 Fracture in Thin Films Z. Suo Mechanical and Aerospace Engineering Department

  10. Self-Assembling Process for Fabricating Tailored Thin Films

    ScienceCinema (OSTI)

    None

    2010-01-08

    A simple, economical nanotechnology coating process that enables the development of nanoparticle thin films with architectures and properties unattainable by any other processing method. 2007 R&D 100 winner (SAND2007-1878P)

  11. Self-Assembling Process for Fabricating Tailored Thin Films

    ScienceCinema (OSTI)

    Sandia

    2009-09-01

    A simple, economical nanotechnology coating process that enables the development of nanoparticle thin films with architectures and properties unattainable by any other processing method. 2007 R&D 100 winner (SAND2007-1878P)

  12. Modeling of thin-film solar thermoelectric generators

    E-Print Network [OSTI]

    Weinstein, Lee Adragon

    Recent advances in solar thermoelectric generator (STEG) performance have raised their prospect as a potential technology to convert solar energy into electricity. This paper presents an analysis of thin-film STEGs. ...

  13. Sol-gel-derived Epitaxial Nanocomposite Thin Films with Large...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sol-gel-derived Epitaxial Nanocomposite Thin Films with Large Sharp Magnetoelectric Effect Home Author: B. Liu, T. Sun, J. He, V. P. Dravid Year: 2010 Abstract: Nanostructures of...

  14. Transparent and conductive indium doped cadmium oxide thin films prepared by pulsed filtered cathodic arc deposition

    E-Print Network [OSTI]

    Zhu, Yuankun

    2014-01-01

    7. Optical bandgap of the doped CdO thin films as a functionelectrical properties of In-doped CdO thin films fabricatedand transparent Ti-doped CdO films by pulsed laser

  15. Simple flash evaporator for making thin films of compounds

    SciTech Connect (OSTI)

    Hemanadhan, M.; Bapanayya, Ch.; Agarwal, S. C. [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India)

    2010-07-15

    A simple and compact arrangement for flash evaporation is described. It uses a cell phone vibrator for powder dispensing that can be incorporated into a vacuum deposition chamber without any major alterations. The performance of the flash evaporation system is checked by making thin films of the optical memory chalcogenide glass Ge{sub 2}Sb{sub 2}Te{sub 5} (GST). Energy dispersive x-ray analysis shows that the flash evaporation preserves the stoichiometry in thin films.

  16. Photovoltaic manufacturing cost and throughput improvements for thin-film CIGS-based modules: Phase 1 technical report, July 1998--July 1999

    SciTech Connect (OSTI)

    Wiedeman, S.; Wendt, R.G.

    2000-03-01

    The primary objectives of the Global Solar Energy (GSE) Photovoltaic Manufacturing Technology (PVMaT) subcontract are directed toward reducing cost and expanding the production rate of thin-film CuInGaSe{sub 2} (CIGS)-based PV modules on flexible substrates. Improvements will be implemented in monolithic integration, CIGS deposition, contact deposition, and in-situ CIGS control and monitoring. In Phase 1, GSE has successfully attacked many of the highest risk aspects of each task. All-laser, selective scribing processes for CIGS have been developed, and many end-of-contract goals for scribing speed have been exceeded in the first year. High-speed ink-jet deposition of insulating material in the scribes now appears to be a viable technique, again exceeding some end-of-contract goals in the first year. Absorber deposition of CIGS was reduced corresponding to throughput speeds of up to 24-in/min, also exceeding an end-of-contract goal. Alternate back-contact materials have been identified that show potential as candidates for replacement of higher-cost molybdenum, and a novel, real-time monitoring technique (parallel-detector spectroscopic ellipsometry) has shown remarkable sensitivity to relevant properties of the CIGS absorber layer for use as a diagnostic tool. Currently, one of the bilayers has been baselined by GSE for flexible CIGS on polymeric substrates. Resultant back-contacts meet sheet-resistance goals and exhibit much less intrinsic stress than Mo. CIGS has been deposited, and resultant devices are comparable in performance to pure Mo back-contacts. Debris in the chamber has been substantially reduced, allowing longer roll-length between system cleaning.

  17. Thin aerogel films for optical, thermal, acoustic, and electronic applications

    SciTech Connect (OSTI)

    Hrubesh, L.W.; Poco, J.F.

    1994-09-01

    Aerogels are a special class of continuously porous solid materials which are characterized by nanometer size particles and pores. Typically, aerogels are made using sol-gel chemistry to form a solvent filled, high porosity gel that is dried by removing the solvent without collapsing the tenuous solid phase. As bulk materials, aerogels are known to have many exceptional, and even some unique physical properties. Aerogels provide the highest thermal insulation and lowest dielectric constant of any other material known. However, some important applications require the aerogels in the form of thin films or sheets. For example, electronic applications require micrometer thin aerogel films bonded to a substrate, and others require thicker films, either on a substrate or as free standing sheets. Special methods are required to make aerogel thin films or sheets. In this paper, the authors discuss the special conditions needed to fabricate thin aerogel films and they describe methods to make films and thin sheets. They also give some specific applications for which aerogel films are being developed.

  18. Geometric shape control of thin film ferroelectrics and resulting structures

    DOE Patents [OSTI]

    McKee, Rodney A. (Kingston, TN); Walker, Frederick J. (Oak Ridge, TN)

    2000-01-01

    A monolithic crystalline structure and a method of making involves a semiconductor substrate, such as silicon, and a ferroelectric film, such as BaTiO.sub.3, overlying the surface of the substrate wherein the atomic layers of the ferroelectric film directly overlie the surface of the substrate. By controlling the geometry of the ferroelectric thin film, either during build-up of the thin film or through appropriate treatment of the thin film adjacent the boundary thereof, the in-plane tensile strain within the ferroelectric film is relieved to the extent necessary to permit the ferroelectric film to be poled out-of-plane, thereby effecting in-plane switching of the polarization of the underlying substrate material. The method of the invention includes the steps involved in effecting a discontinuity of the mechanical restraint at the boundary of the ferroelectric film atop the semiconductor substrate by, for example, either removing material from a ferroelectric film which has already been built upon the substrate, building up a ferroelectric film upon the substrate in a mesa-shaped geometry or inducing the discontinuity at the boundary by ion beam deposition techniques.

  19. Research on high-efficiency, multiple-gap, multijunction, amorphous-silicon-based alloy thin-film solar cells

    SciTech Connect (OSTI)

    Guha, S. )

    1989-06-01

    This report presents results of research on advancing our understanding of amorphous-silicon-based alloys and their use in small-area multijunction solar cells. The principal objectives of the program are to develop a broad scientific base for the chemical, structural, optical, and electronic properties of amorphous-silicon-based alloys; to determine the optimum properties of these alloy materials as they relate to high-efficiency cells; to determine the optimum device configuration for multijunction cells; and to demonstrate proof-of-concept, multijunction, a-Si-alloy-based solar cells with 18% efficiency under standard AM1.5 global insolation conditions and with an area of at least 1 cm{sup 2}. A major focus of the work done during this reporting period was the optimization of a novel, multiple-graded structure that enhances cell efficiency through band-gap profiling. The principles of the operation of devices incorporating such a structure, computer simulations of those, and experimental results for both single- and multijunction cells prepared by using the novel structure are discussed in detail. 14 refs., 35 figs., 7 tabs.

  20. Thin transparent conducting films of cadmium stannate

    DOE Patents [OSTI]

    Wu, Xuanzhi (Golden, CO); Coutts, Timothy J. (Lakewood, CO)

    2001-01-01

    A process for preparing thin Cd.sub.2 SnO.sub.4 films. The process comprises the steps of RF sputter coating a Cd.sub.2 SnO.sub.4 layer onto a first substrate; coating a second substrate with a CdS layer; contacting the Cd.sub.2 SnO.sub.4 layer with the CdS layer in a water- and oxygen-free environment and heating the first and second substrates and the Cd.sub.2 SnO.sub.4 and CdS layers to a temperature sufficient to induce crystallization of the Cd.sub.2 SnO.sub.4 layer into a uniform single-phase spinel-type structure, for a time sufficient to allow full crystallization of the Cd.sub.2 SnO.sub.4 layer at that temperature; cooling the first and second substrates to room temperature; and separating the first and second substrates and layers from each other. The process can be conducted at temperatures less than 600.degree. C., allowing the use of inexpensive soda lime glass substrates.

  1. Enhanced Superconducting Properties of Iron Chalcogenide Thin Films 

    E-Print Network [OSTI]

    Chen, Li

    2013-07-26

    phase have been studied and correlated with the superconducting properties. Second, we reported our initial attempt on introducing the flux pinning centers into FeSe_0.5Te_0.5 thin films either under a controlled oxygen atmosphere or with a thin CeO_2...

  2. Composite polymeric film and method for its use in installing a very-thin polymeric film in a device

    DOE Patents [OSTI]

    Duchane, D.V.; Barthell, B.L.

    1982-04-26

    A composite polymeric film and a method for its use in forming and installing a very thin (< 10 ..mu..m) polymeric film are disclosed. The composite film consists of a thin film layer and a backing layer. The backing layer is soluble in a solvent in which the thin film layer is not soluble. In accordance with the method, the composite film is installed in a device in the same position in which it is sought to finally emplace the thin film. The backing layer is then selectiely dissolved in the solvent to leave the insoluble thin film layer as an unbacked film. The method permits a very thin film to e successfully installed in devices where the fragility of the film would preclude handling and installation by conventional methods.

  3. RF sputtered piezoelectric zinc oxide thin film for transducer applications

    E-Print Network [OSTI]

    Tang, William C

    parameters that could influence the quality of the resulting films include RF power, the ratio of argon depen- dency of the c-axis zinc oxide growth in radio-frequency sputtering system. Different deposition on the piezoelectric and crystalline qualities of the ZnO thin films. Experimental results showed that the multilayer

  4. Pulsed laser deposition of AlMgB14 thin films

    SciTech Connect (OSTI)

    Russell, Alan; Bastawros, Ashraf; Tan, Xiaoli

    2008-11-18

    Hard, wear-resistant coatings of thin film borides based on AlMgB{sub 14} have the potential to be applied industrially to improve the tool life of cutting tools and pump vanes and may account for several million dollars in savings as a result of reduced wear on these parts. Past work with this material has shown that it can have a hardness of up to 45GPa and be fabricated into thin films with a similar hardness using pulsed laser deposition. These films have already been shown to be promising for industrial applications. Cutting tools coated with AlMgB{sub 14} used to mill titanium alloys have been shown to substantially reduce the wear on the cutting tool and extend its cutting life. However, little research into the thin film fabrication process using pulsed laser deposition to make AlMgB{sub 14} has been conducted. In this work, research was conducted into methods to optimize the deposition parameters for the AlMgB{sub 14} films. Processing methods to eliminate large particles on the surface of the AlMgB{sub 14} films, produce films that were at least 1m thick, reduce the surface roughness of the films, and improve the adhesion of the thin films were investigated. Use of a femtosecond laser source rather than a nanosecond laser source was found to be effective in eliminating large particles considered detrimental to wear reduction properties from the films. Films produced with the femtosecond laser were also found to be deposited at a rate 100 times faster than those produced with the nanosecond laser. However, films produced with the femtosecond laser developed a relatively high RMS surface roughness around 55nm. Attempts to decrease the surface roughness were largely unsuccessful. Neither increasing the surface temperature of the substrate during deposition nor using a double pulse to ablate the material was found to be extremely successful to reduce the surface roughness. Finally, the adhesion of the thin films to M2 tool steel substrates, assessed using the Rockwell C indentation adhesion test, was found to be substantially improved by the deposition of a titanium interlayer, but unaffected by increasing the temperature of the substrates. The titanium was found to improve the adhesion strength of the films because it reacted with both the steel and the AlMgB{sub 14} compound to form new compounds. Ultimately, it was concluded that the films with the best properties were produced with a femtosecond pulsed laser and were deposited on top of a titanium interlayer to improve the thin film adhesion.

  5. Deuterium phase behavior in thin-film Pd

    SciTech Connect (OSTI)

    Munter, A.E.; Heuser, B.J.

    1998-07-01

    The absorption of deuterium from the gas phase into two Pd thin films 668 {Angstrom} and 1207 {Angstrom} thick was measured at room temperature with {ital in situ} neutron reflectometry. Room-temperature solubility isothermal curves, out-of-plane film expansion, and deuterium depth profiles were determined from fits to the neutron reflectivity data. The measurements demonstrate that the deuterium solubility behavior, both in solid solution and within the two-phase region, is strongly perturbed by the thin-film geometry, consistent with previous solubility measurements in the published literature. The phase behavior investigated here was observed to depend on film thickness and on deuterium cycling through the two-phase region. The 668-{Angstrom} film exhibited the greatest initial phase perturbation and most significant changes upon cycling. Upon repeated cycling, both films approach nearly identical deuterium isothermal solubility and out-of-plane expansion behaviors. The observed equilibrium out-of-plane expansion behavior was consistent with the films expanding under an in-plane clamping constraint imposed by the substrate. The effect of this substrate constraining force is to amplify the out-of-plane expansion beyond that expected in bulk Pd. Taken together, these measurements implicate the film/substrate interfacial clamping interaction as the origin of the perturbed hydrogen phase behavior in thin-film geometry. {copyright} {ital 1998} {ital The American Physical Society}

  6. Flexible cadmium telluride thin films grown on electron-beam-irradiated graphene/thin glass substrates

    SciTech Connect (OSTI)

    Seo, Won-Oh; Kim, Jihyun, E-mail: hyunhyun7@korea.ac.kr [Department of Chemical and Biological Engineering, Korea University, Anam-dong, Sungbuk-gu, Seoul 136-713 (Korea, Republic of); Koo, Yong Hwan; Kim, Byungnam; Lee, Byung Cheol [Radiation Integrated System Research Division, Korea Atomic Energy Research Institute (KAERI), Daejeon 305-353 (Korea, Republic of); Kim, Donghwan [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of)

    2014-08-25

    We demonstrate the close-spaced sublimation growth of polycrystalline cadmium telluride (CdTe) thin films on a flexible graphene electrode/thin glass substrate structure. Prior to the growth of CdTe films, chemical-vapor-deposited graphene was transferred onto a flexible glass substrate and subjected to electron-beam irradiation at an energy of 0.2?MeV in order to intentionally introduce the defects into it in a controlled manner. Micro-Raman spectroscopy and sheet resistance measurements were employed to monitor the damage and disorder in the electron-beam irradiated graphene layers. The morphology and optical properties of the CdTe thin films deposited on a graphene/flexible glass substrate were systematically characterized. The integration of the defective graphene layers with a flexible glass substrate can be a useful platform to grow various thin-film structures for flexible electronic and optoelectronic devices.

  7. Thin-film absorber for a solar collector

    SciTech Connect (OSTI)

    Wilhelm, W.G.

    1982-02-09

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  8. DISSERTATION ELECTRON-REFLECTOR STRATEGY FOR CdTe THIN-FILM SOLAR CELLS

    E-Print Network [OSTI]

    Sites, James R.

    DISSERTATION ELECTRON-REFLECTOR STRATEGY FOR CdTe THIN-FILM SOLAR CELLS Submitted by Kuo-Jui Hsiao ELECTRON- REFLECTOR STRATEGY FOR CdTe THIN-FILM SOLAR CELLS BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS-FILM SOLAR CELLS The CdTe thin-film solar cell has a large absorption coefficient and high theoretical

  9. Chapter 1. Introduction to Thin Film Technologygy Thin films are deposited onto bulk materials (substrates) to achieveThin films are deposited onto bulk materials (substrates) to achieve

    E-Print Network [OSTI]

    Wang, Jianfang

    parts TiN coatings on cutting tools Offer hardness, low friction, and a chemical barrier to alloying on this system. #12;Thin films for multiple properties Cr coatings on automobile parts TiN coatings on cutting tools Impart hardness, metallic luster, and protection against ultraviolet light. Cr coatings on plastic

  10. PV prospects: thinPV prospects: thin--film cellsfilm cells Si cell costs

    E-Print Network [OSTI]

    Pulfrey, David L.

    1 PV prospects: thinPV prospects: thin--film cellsfilm cells LECTURE 8 · Si cell costs · optimizing://www.solarbuzz.com/Moduleprices.htm #12;6 Cost of PV modulesCost of PV modules The lowest retail price for a multicrystalline silicon

  11. Thermoelectric effect in very thin film Pt/Au thermocouples

    SciTech Connect (OSTI)

    Salvadori, M.C.; Vaz, A.R.; Teixeira, F.S.; Cattani, M.; Brown,I.G.

    2006-01-10

    The thickness dependence of the thermoelectric power of Pt films of variable thickness on a reference Au film has been determined for the case when the Pt film thickness, t, is not large compared to the charge carrier mean free path, {ell}, that is, t/{ell}. Pt film thicknesses down to 2.2 nm were investigated. We find that {Delta}S{sub F} = S{sub B}-S{sub F} (where S{sub B} and S{sub F} are the thermopowers of the Pt bulk and film, respectively) does not vary linearly as 1/t as is the case for thin film thermocouples when the film thickness is large compared to the charge carrier mean free path.

  12. Uncooled thin film pyroelectric IR detector with aerogel thermal isolation

    SciTech Connect (OSTI)

    Ruffner, J.A.; Clem, P.G.; Tuttle, B.A. [and others

    1998-01-01

    Uncooled pyroelectric IR imaging systems, such as night vision goggles, offer important strategic advantages in battlefield scenarios and reconnaissance surveys. Until now, the current technology for fabricating these devices has been limited by low throughput and high cost which ultimately limit the availability of these sensor devices. We have developed and fabricated an alternative design for pyroelectric IR imaging sensors that utilizes a multilayered thin film deposition scheme to create a monolithic thin film imaging element on an active silicon substrate for the first time. This approach combines a thin film pyroelectric imaging element with a thermally insulating SiO{sub 2} aerogel thin film to produce a new type of uncooled IR sensor that offers significantly higher thermal, spatial, and temporal resolutions at a substantially lower cost per unit. This report describes the deposition, characterization and optimization of the aerogel thermal isolation layer and an appropriate pyroelectric imaging element. It also describes the overall integration of these components along with the appropriate planarization, etch stop, adhesion, electrode, and blacking agent thin film layers into a monolithic structure. 19 refs., 8 figs., 6 tabs.

  13. Thin Film Deposition of Conducting Polymers and Carbon Allotropes via Interfacial Solution Processing and Evaporative Vapor Phase Polymerization

    E-Print Network [OSTI]

    D'Arcy, Julio Marcelo

    2012-01-01

    K. ; Shimidzu, T. Thin Solid Films 1989, 179, Matharu, Z. ;V. ; Malhotra, B. D. Thin Solid Films 2011, 519, 1110- (27)H. ; Rubner, M. F. Thin Solid Films 1994, 244, 990-994. (28)

  14. Thin film cadmium telluride and zinc phosphide solar cells

    SciTech Connect (OSTI)

    Chu, T.

    1984-10-01

    This report describes research performed from June 1982 to October 1983 on the deposition of cadmium telluride films by direct combination of the cadmium and tellurium vapor on foreign substrates. Nearly stoichiometric p-type cadmium telluride films and arsenic-doped p-type films have been prepared reproducibly. Major efforts were directed to the deposition and characterization of heterojunction window materials, indium tin oxide, fluorine-doped tin oxide, cadmium oxide, and zinc oxide. A number of heterojunction solar cells were prepared, and the best thin-film ITO/CdTe solar cells had an AMl efficiency of about 7.2%. Zinc phosphide films were deposited on W/steel substrates by the reaction of zinc and phosphine in a hydrogen flow. Films without intentional doping had an electrical resistivity on the order of 10/sup 6/ ohm-cm, and this resistivity may be reduced to about 5 x 10/sup 4/ ohm-cm by adding hydrogen chloride or hydrogen bromide to the reaction mixture. Lower resistivity films were deposited by adding a controlled amount of silver nitrate solution on to the substrate surface. Major efforts were directed to the deposition of low-resistivity zinc selenide in order to prepare ZnSe/An/sub 3/P/sub 2/ heterojunction thin-film solar cells. However, zinc selenide films deposited by vacuum evaporation and chemical vapor deposition techniques were all of high resistivity.

  15. Design of anti-ring back reflectors for thin-film solar cells based on three-dimensional optical and electrical modeling

    SciTech Connect (OSTI)

    Hsiao, Hui-Hsin; Wu, Yuh-Renn, E-mail: yrwu@ntu.edu.tw [Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan (China); Chang, Hung-Chun [Graduate Institute of Photonics and Optoelectronics, Graduate Institute of Communication Engineering, and Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan (China)

    2014-08-11

    The optical and electrical properties of a photonic-plasmonic nanostructure on the back contact of thin-film solar cells were investigated numerically through the three-dimensional (3D) finite-difference time-domain method and the 3D Poisson and drift-diffusion solver. The focusing effect and the Fabry-Perot resonances are identified as the main mechanisms for the enhancement of the optical generation rate as well as the short circuit current density. However, the surface topography of certain nanopattern structures is found to reduce the internal electrostatic field of the device, thus limiting charge collection. The optimized conditions for both optics and electronics have been analyzed in this paper.

  16. Deformation of an asymmetric thin film

    E-Print Network [OSTI]

    Jun Geng; Jonathan V. Selinger

    2011-11-03

    Experiments have investigated shape changes of polymer films induced by asymmetric swelling by a chemical vapor. Inspired by recent work on the shaping of elastic sheets by non-Euclidean metrics [Y. Klein, E. Efrati, and E. Sharon, Science 315, 1116 (2007)], we represent the effect of chemical vapors by a change in the target metric tensor. In this problem, unlike that earlier work, the target metric is asymmetric between the two sides of the film. Changing this metric induces a curvature of the film, which may be curvature into a partial cylinder or a partial sphere. We calculate the elastic energy for each of these shapes, and show that the sphere is favored for films smaller than a critical size, which depends on the film thickness, while the cylinder is favored for larger films.

  17. Pulsed laser deposition and characterization of conductive RuO{sub 2} thin films

    SciTech Connect (OSTI)

    Iembo, A.; Fuso, F.; Arimondo, E.; Ciofi, C.; Pennelli, G.; Curro, G.M.; Neri, F.; Allegrini, M. |

    1997-06-01

    RuO{sub 2} thin films have been produced on silicon-based substrates by {ital in situ} pulsed laser deposition for the first time. The electrical properties, the surface characteristics, the crystalline structure, and the film-substrate interface of deposited samples have been investigated by 4-probe resistance versus temperature technique, scanning electron microscopy, x-ray photoelectron spectroscopy, x-ray diffraction, and transmission electron microscopy, respectively. The films show good electrical properties. The RuO{sub 2}-substrate interface is very thin ({approx}3 nm), since not degraded by any annealing process. These two characteristics render our films suitable to be used as electrodes in PZT-based capacitors.{copyright} {ital 1997 Materials Research Society.}

  18. Low Temperature Chemical Vapor Deposition Of Thin Film Magnets

    DOE Patents [OSTI]

    Miller, Joel S. (Salt Lake City, UT); Pokhodnya, Kostyantyn I. (Salt Lake City, UT)

    2003-12-09

    A thin-film magnet formed from a gas-phase reaction of tetracyanoetheylene (TCNE) OR (TCNQ), 7,7,8,8-tetracyano-P-quinodimethane, and a vanadium-containing compound such as vanadium hexcarbonyl (V(CO).sub.6) and bis(benzene)vanalium (V(C.sub.6 H.sub.6).sub.2) and a process of forming a magnetic thin film upon at least one substrate by chemical vapor deposition (CVD) at a process temperature not exceeding approximately 90.degree. C. and in the absence of a solvent. The magnetic thin film is particularly suitable for being disposed upon rigid or flexible substrates at temperatures in the range of 40.degree. C. and 70.degree. C. The present invention exhibits air-stable characteristics and qualities and is particularly suitable for providing being disposed upon a wide variety of substrates.

  19. Properties of zirconia thin films deposited by laser ablation

    SciTech Connect (OSTI)

    Cancea, V. N.; Filipescu, M.; Colceag, D.; Dinescu, M.; Mustaciosu, C.

    2013-11-13

    Zirconia thin films have been deposited by laser ablation of a ceramic ZrO{sub 2} target in vacuum or in oxygen background at 0.01 mbar. The laser beam generated by an ArF laser (?=193 nm, ?=40 Hz) has been focalized on the target through a spherical lens at an incident angle of 45°. The laser fluence has been established to a value from 2.0 to 3.4 Jcm{sup ?2}. A silicon (100) substrate has been placed parallel to the target, at a distance of 4 cm, and subsequently has been heated to temperatures ranging between 300 °C and 600 °C. Thin films morphology has been characterized by atomic force microscopy and secondary ion mass spectrometry. Biocompatibility of these thin films has been assessed by studying the cell attachment of L929 mouse fibroblasts.

  20. Growth and Oxidation of Thin Film Al(2)Cu

    SciTech Connect (OSTI)

    SON,KYUNG-AH; MISSERT,NANCY A.; BARBOUR,J. CHARLES; HREN,J.J.; COPELAND,ROBERT GUILD; MINOR,KENNETH G.

    2000-01-18

    Al{sub 2}Cu thin films ({approx} 382 nm) are fabricated by melting and resolidifying Al/Cu bilayers in the presence of a {micro} 3 nm Al{sub 2}O{sub 3} passivating layer. X-ray Photoelectron Spectroscopy (XPS) measures a 1.0 eV shift of the Cu2p{sub 3/2} peak and a 1.6 eV shift of the valence band relative to metallic Cu upon Al{sub 2}Cu formation. Scanning Electron microscopy (SEM) and Electron Back-Scattered Diffraction (EBSD) show that the Al{sub 2}Cu film is composed of 30-70 {micro}m wide and 10-25 mm long cellular grains with (110) orientation. The atomic composition of the film as estimated by Energy Dispersive Spectroscopy (EDS) is 67 {+-} 2% Al and 33 {+-} 2% Cu. XPS scans of Al{sub 2}O{sub 3}/Al{sub 2}Cu taken before and after air exposure indicate that the upper Al{sub 2}Cu layers undergo further oxidation to Al{sub 2}O{sub 3} even in the presence of {approx} 5 nm Al{sub 2}O{sub 3}. The majority of Cu produced from oxidation is believed to migrate below the Al{sub 2}O{sub 3} layers, based upon the lack of evidence for metallic Cu in the XPS scans. In contrast to Al/Cu passivated with Al{sub 2}O{sub 3}, melting/resolidifying the Al/Cu bilayer without Al{sub 2}O{sub 3} results in phase-segregated dendritic film growth.

  1. Scaling law analysis of paraffin thin films on different surfaces

    SciTech Connect (OSTI)

    Dotto, M. E. R.; Camargo, S. S. Jr. [Engenharia Metalurgica e de Materials, Universidade Federal do Rio de Janeiro, Cx. Postal 68505, Rio de Janeiro, RJ, CEP 21945-970 (Brazil)

    2010-01-15

    The dynamics of paraffin deposit formation on different surfaces was analyzed based on scaling laws. Carbon-based films were deposited onto silicon (Si) and stainless steel substrates from methane (CH{sub 4}) gas using radio frequency plasma enhanced chemical vapor deposition. The different substrates were characterized with respect to their surface energy by contact angle measurements, surface roughness, and morphology. Paraffin thin films were obtained by the casting technique and were subsequently characterized by an atomic force microscope in noncontact mode. The results indicate that the morphology of paraffin deposits is strongly influenced by substrates used. Scaling laws analysis for coated substrates present two distinct dynamics: a local roughness exponent ({alpha}{sub local}) associated to short-range surface correlations and a global roughness exponent ({alpha}{sub global}) associated to long-range surface correlations. The local dynamics is described by the Wolf-Villain model, and a global dynamics is described by the Kardar-Parisi-Zhang model. A local correlation length (L{sub local}) defines the transition between the local and global dynamics with L{sub local} approximately 700 nm in accordance with the spacing of planes measured from atomic force micrographs. For uncoated substrates, the growth dynamics is related to Edwards-Wilkinson model.

  2. Fabrication of polycrystalline thin films by pulsed laser processing

    DOE Patents [OSTI]

    Mitlitsky, Fred (Livermore, CA); Truher, Joel B. (San Rafael, CA); Kaschmitter, James L. (Pleasanton, CA); Colella, Nicholas J. (Livermore, CA)

    1998-02-03

    A method for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells.

  3. Fabrication of polycrystalline thin films by pulsed laser processing

    DOE Patents [OSTI]

    Mitlitsky, F.; Truher, J.B.; Kaschmitter, J.L.; Colella, N.J.

    1998-02-03

    A method is disclosed for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells. 1 fig.

  4. Perovskite phase thin films and method of making

    DOE Patents [OSTI]

    Boyle, Timothy J. (Albuquerque, NM); Rodriguez, Mark A. (Albuquerque, NM)

    2000-01-01

    The present invention comprises perovskite-phase thin films, of the general formula A.sub.x B.sub.y O.sub.3 on a substrate, wherein A is selected from beryllium, magnesium, calcium, strontium, and barium or a combination thereof; B is selected from niobium and tantalum or a combination thereof; and x and y are mole fractions between approximately 0.8 and 1.2. More particularly, A is strontium or barium or a combination thereof and B is niobium or tantalum or a combination thereof. Also provided is a method of making a perovskite-phase thin film, comprising combining at least one element-A-containing compound, wherein A is selected from beryllium, magnesium, calcium, strontium or barium, with at least one element-B-containing compound, wherein B niobium or tantalum, to form a solution; adding a solvent to said solution to form another solution; spin-coating the solution onto a substrate to form a thin film; and heating the film to form the perovskite-phase thin film.

  5. Preparation of a semiconductor thin film

    DOE Patents [OSTI]

    Pehnt, M.; Schulz, D.L.; Curtis, C.J.; Ginley, D.S.

    1998-01-27

    A process is disclosed for the preparation of a semiconductor film. The process comprises depositing nanoparticles of a semiconductor material onto a substrate whose surface temperature during nanoparticle deposition thereon is sufficient to cause substantially simultaneous fusion of the nanoparticles to thereby coalesce with each other and effectuate film growth.

  6. Preparation of a semiconductor thin film

    DOE Patents [OSTI]

    Pehnt, Martin (TuBingen, DE); Schulz, Douglas L. (Denver, CO); Curtis, Calvin J. (Lakewood, CO); Ginley, David S. (Evergreen, CO)

    1998-01-01

    A process for the preparation of a semiconductor film. The process comprises depositing nanoparticles of a semiconductor material onto a substrate whose surface temperature during nanoparticle deposition thereon is sufficient to cause substantially simultaneous fusion of the nanoparticles to thereby coalesce with each other and effectuate film growth.

  7. Generation of low work function, stable compound thin films by laser ablation

    DOE Patents [OSTI]

    Dinh, Long N. (Concord, CA); McLean, II, William (Oakland, CA); Balooch, Mehdi (Berkeley, CA); Fehring, Jr., Edward J. (Dublin, CA); Schildbach, Marcus A. (Livermore, CA)

    2001-01-01

    Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

  8. PID Failure of c-Si and Thin-Film Modules and Possible Correlation...

    Energy Savers [EERE]

    PID Failure of c-Si and Thin-Film Modules and Possible Correlation with Leakage Currents PID Failure of c-Si and Thin-Film Modules and Possible Correlation with Leakage Currents...

  9. Electron-beam-evaporated thin films of hafnium dioxide for fabricating...

    Office of Scientific and Technical Information (OSTI)

    complementary metal-oxide semiconductor (CMOS) integrated circuits using this HfO2 thin film as the gate oxide. The authors analyzed the thin films using high-resolution...

  10. Cathodic ALD V2O5 thin films for high-rate electrochemical energy...

    Office of Scientific and Technical Information (OSTI)

    Cathodic ALD V2O5 thin films for high-rate electrochemical energy storage Citation Details In-Document Search Title: Cathodic ALD V2O5 thin films for high-rate electrochemical...

  11. Layer-by-Layer Assembly of Clay-filled Polymer Nanocomposite Thin Films 

    E-Print Network [OSTI]

    Jang, Woo-Sik

    2010-01-14

    robotic dipping system, for the preparation of these thin films, was built. The robot alternately dips a substrate into aqueous mixtures with rinsing and drying in between. Thin films of sodium montmorillonite clay and cationic polymer were grown...

  12. Characterization of Zirconium Phosphate/Polycation Thin Films Grown by Sequential Adsorption Reactions

    E-Print Network [OSTI]

    Characterization of Zirconium Phosphate/Polycation Thin Films Grown by Sequential Adsorption Received April 7, 1997X Monolayer and multilayer thin films consisting of anionic R-zirconium phosphate (R

  13. High efficiency thin film silicon solar cells with novel light trapping : principle, design and processing

    E-Print Network [OSTI]

    Zeng, Lirong, Ph. D. Massachusetts Institute of Technology

    2008-01-01

    One major efficiency limiting factor in thin film solar cells is weak absorption of long wavelength photons due to the limited optical path length imposed by the thin film thickness. This is especially severe in Si because ...

  14. Flexible Ultra Moisture Barrier Film for Thin-Film Photovoltaic Applications

    SciTech Connect (OSTI)

    David M. Dean

    2012-10-30

    Flexible Thin-film photovoltaic (TFPV) is a low cost alternative to incumbent c-Si PV products as it requires less volume of costly semiconductor materials and it can potentially reduce installation cost. Among the TFPV options, copper indium gallium diselenide (CIGS) has the highest efficiency and is believed to be one of the most attractive candidates to achieve PV cost reduction. However, CIGS cells are very moisture sensitive and require module water vapor transmission rate (WVTR) of less than 1x10-4 gram of water per square meter per day (g-H2O/m2/day). Successful development and commercialization of flexible transparent ultra moisture barrier film is the key to enable flexible CIGS TFPV products, and thus enable ultimate PV cost reduction. At DuPont, we have demonstrated at lab scale that we can successfully make polymer-based flexible transparent ultra moisture barrier film by depositing alumina on polymer films using atomic layer deposition (ALD) technology. The layer by layer ALD approach results in uniform and amorphous structure which effectively reduces pinhole density of the inorganic coating on the polymer, and thus allow the fabrication of flexible barrier film with WVTR of 10-5 g-H2O/m2/day. Currently ALD is a time-consuming process suitable only for high-value, relatively small substrates. To successfully commercialize the ALD-on-plastic technology for the PV industry, there is the need to scale up this technology and improve throughput. The goal of this contract work was to build a prototype demonstrating that the ALD technology could be scaled-up for commercial use. Unfortunately, the prototype failed to produce an ultra-barrier film by the close of the project.

  15. Enhanced Efficiency of Light-Trapping Nanoantenna Arrays for Thin Film Solar Cells

    E-Print Network [OSTI]

    Simovski, Constantin R; Voroshilov, Pavel M; Guzhva, Michael E; Belov, Pavel A; Kivshar, Yuri S

    2013-01-01

    We suggest a novel concept of efficient light-trapping structures for thin-film solar cells based on arrays of planar nanoantennas operating far from plasmonic resonances. The operation principle of our structures relies on the excitation of chessboard-like collective modes of the nanoantenna arrays with the field localized between the neighboring metal elements. We demonstrated theoretically substantial enhancement of solar-cell short-circuit current by the designed light-trapping structure in the whole spectrum range of the solar-cell operation compared to conventional structures employing anti-reflecting coating. Our approach provides a general background for a design of different types of efficient broadband light-trapping structures for thin-film solar-cell technologically compatible with large-area thin-film fabrication techniques.

  16. Thin palladium films on silicon and titanium

    SciTech Connect (OSTI)

    Harris, L.A.

    1982-12-01

    Films of Pd from 20 to 160A thick were deposited on sputter-etched Si and on Ti films of Si and then tested electrochemically in 0.5M H/sub 2/SO/sub 4/. The behavior characteristic of Pd metal was lost with prolonged storage or with extended electrochemical cycling. The thinner films produced oxidation and reduction peaks in the voltammograms similar to the hydrogen peaks observed with Pt. Hydrogen sorption measured from voltammograms at different sweep rates and by pulse measurements indicates a definite diffusion component that begins to limit hydrogen sorption for P films thicker than about 80A. Shifts of the oxygen reduction peak indicate an increase in oxygen bonding strength as the films are made thinner.

  17. Junction Evolution During Fabrication of CdS/CdTe Thin-film PV Solar Cells (Presentation)

    SciTech Connect (OSTI)

    Gessert, T. A.

    2010-09-01

    Discussion of the formation of CdTe thin-film PV junctions and optimization of CdTe thin-film PV solar cells.

  18. Substrates suitable for deposition of superconducting thin films

    DOE Patents [OSTI]

    Feenstra, Roeland (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN)

    1993-01-01

    A superconducting system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.

  19. Method for producing high quality thin layer films on substrates

    DOE Patents [OSTI]

    Strongin, Myron (Center Moriches, NY); Ruckman, Mark (Middle Island, NY); Strongin, Daniel (Port Jefferson, NY)

    1994-01-01

    A method for producing high quality, thin layer films of inorganic compounds upon the surface of a substrate is disclosed. The method involves condensing a mixture of preselected molecular precursors on the surface of a substrate and subsequently inducing the formation of reactive species using high energy photon or charged particle irradiation. The reactive species react with one another to produce a film of the desired compound upon the surface of the substrate.

  20. Method for producing high quality thin layer films on substrates

    DOE Patents [OSTI]

    Strongin, M.; Ruckman, M.; Strongin, D.

    1994-04-26

    A method for producing high quality, thin layer films of inorganic compounds upon the surface of a substrate is disclosed. The method involves condensing a mixture of preselected molecular precursors on the surface of a substrate and subsequently inducing the formation of reactive species using high energy photon or charged particle irradiation. The reactive species react with one another to produce a film of the desired compound upon the surface of the substrate. 4 figures.

  1. Experimental thin film deposition and surface analysis techniques

    SciTech Connect (OSTI)

    Collins, W.E.; Rambabu, B.

    1986-01-01

    An attempt has been made to present some of the thin-film deposition and surface analysis techniques which may be useful in growing superionic conducting materials. Emphasis is made on the importance of being careful in selecting process parameters and materials in order to produce films with properties outlined in this article. Also, special care should be given to proper consideration of grain boundary effects.

  2. Molecular orientation in soft matter thin films studied by resonant soft x-ray reflectivity

    SciTech Connect (OSTI)

    Mezger, Markus; Jerome, Blandine; Kortright, Jeffrey B; Valvidares, Manuel; Gullikson, Eric M; Giglia, Angelo; Mahne, Nicola; Nannarone, Stefano

    2011-04-05

    We present a technique to study depth profiles of molecular orientation in soft matter thin films with nanometer resolution. The method is based on dichroism in resonant soft x-ray reflectivity using linear s and p polarization. It combines the chemical sensitivity of near-edge x-ray absorption fine structure spectroscopy to specific molecular bonds and their orientation relative to the polarization of the incident beam with the precise depth profiling capability of x-ray reflectivity. We demonstrate these capabilities on side chain liquid crystalline polymer thin films with soft x-ray reflectivity data at the carbon K edge. Optical constants of the anisotropic refractive index ellipsoid were obtained from a quantitative analysis using the Berreman formalism. For films up to 50 nm thickness we find that the degree of orientation of the long axis exhibits no depth variation and is independent of the film thickness.

  3. Molecular orientation in soft matter thin films studied by resonant soft X-ray reflectivity

    SciTech Connect (OSTI)

    Mezger, Markus; Jerome, Blandine; Kortright, Jeffrey B.; Valvidares, Manuel; Gullikson, Eric; Giglia, Angelo; Mahne, Nicola; Nannarone, Stefano

    2011-01-12

    We present a technique to study depth profiles of molecular orientation in soft matter thin films with nanometer resolution. The method is based on dichroism in resonant soft X-ray reflectivity using linear s- and p-polarization. It combines the chemical sensitivity of Near-Edge X-ray Absorption Fine Structure spectroscopy to specific molecular bonds and their orientation relative to the polarization of the incident beam with the precise depth profiling capability of X-ray reflectivity. We demonstrate these capabilities on side chain liquid crystalline polymer thin films with soft X-ray reflectivity data at the carbon K edge. Optical constants of the anisotropic refractive index ellipsoid were obtained from a quantitative analysis using the Berreman formalism. For films up to 50 nm thickness we find that the degree of orientation of the long axis exhibits no depth variation and isindependent of the film thickness.

  4. Gravity-Driven flow of evaporating thin liquid films over substrates with topography

    E-Print Network [OSTI]

    Jimack, Peter

    Gravity-Driven flow of evaporating thin liquid films over substrates with topography Gaskell, P. Abstract This paper considers gravity-driven flow of thin liquid films over substrates with topography of gravity-driven flow of thin liquid films over well defined topography, as indicated in Figure 1, in which

  5. EARTH ABUNDANT MATERIALS FOR HIGH EFFICIENCY HETEROJUNCTION THIN FILM SOLAR CELLS

    E-Print Network [OSTI]

    Ceder, Gerbrand

    materials for thin film solar cells such as CdTe and CIGS suffer from concerns over resource scarcity (eEARTH ABUNDANT MATERIALS FOR HIGH EFFICIENCY HETEROJUNCTION THIN FILM SOLAR CELLS Yun Seog Lee 1 conversion efficiencies should be increased. In terms of reducing module cost, thin film solar cells

  6. DETERMINING OPTICAL CONSTANTS OF URANIUM NITRIDE THIN FILMS IN THE EXTREME

    E-Print Network [OSTI]

    Hart, Gus

    deposition and characterization of reactively-sputtered uranium nitride thin films. I also report opticalDETERMINING OPTICAL CONSTANTS OF URANIUM NITRIDE THIN FILMS IN THE EXTREME ULTRAVIOLET (1.6-35 NM.1 Application 1 1.2 Optical Constants 2 1.3 Project Focus 7 2 Uranium Nitride Thin Films 8 2.1 Sputtering 8 2

  7. Asymptotic study of film thinning process on a spinning annular disk B. S. Dandapat

    E-Print Network [OSTI]

    Daripa, Prabir

    Asymptotic study of film thinning process on a spinning annular disk B. S. Dandapat Physics consider an axisymmetric flow of a thin liquid film on a rotating annular disk. The effects of surface tension and gravity terms are included. An asymptotic solution for the free surface of the thin film

  8. Small-scale thin film experiments provide models for large-scale engineering applications

    E-Print Network [OSTI]

    Reis, Pedro Miguel

    Small-scale thin film experiments provide models for large-scale engineering applicationsMIT's Department of Civil and Environmental Engineering · http://cee.mit.edu Delamination occurs in a thin film blisters occur in a predictable manner. Photo / Donna Coveney, MIT PROBLEM Thin films are omnipresent

  9. Physics of thin-film ferroelectric oxides DPMC, University of Geneva, CH-1211, Geneva 4, Switzerland

    E-Print Network [OSTI]

    Wu, Zhigang

    Physics of thin-film ferroelectric oxides M. Dawber* DPMC, University of Geneva, CH-1211, Geneva 4 of thin-film ferroelectric oxides, the strongest emphasis being on those aspects particular to ferroelectrics in thin-film form. The authors introduce the current state of development in the application

  10. Barium ferrite thin film media with perpendicular c-axis orientation and small grain size

    E-Print Network [OSTI]

    Laughlin, David E.

    Barium ferrite thin film media with perpendicular c-axis orientation and small grain size Zailong, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 Barium ferrite thin films with perpendicular c conditions. The c-axis orientation of barium ferrite thin films is most sensitive to the oxygen partial

  11. Femtosecond laser ablation of indium tin-oxide narrow grooves for thin film solar cells

    E-Print Network [OSTI]

    Van Stryland, Eric

    Femtosecond laser ablation of indium tin-oxide narrow grooves for thin film solar cells Qiumei Bian in the fabrication and assembly of thin film solar cells. Using a femtosecond (fs) laser, we selectively removed a unique scheme to ablate the indium tin-oxide layer for the fabrication of thin film solar cells

  12. Computational analysis of thin film InGaAs/GaAs quantum well solar cells with

    E-Print Network [OSTI]

    Yu, Edward T.

    Computational analysis of thin film InGaAs/GaAs quantum well solar cells with back side light, Austin, TX 78758, USA * ety@ece.utexas.edu Abstract: Simulations of thin film (~2.5 µm thick) InGaAs/GaAs. Roberts, G. Hill, and C. Calder, "Progress in quantum well solar cells," Thin Solid Films 511­512, 76

  13. Microwave plasma assisted supersonic gas jet deposition of thin film materials

    DOE Patents [OSTI]

    Schmitt, III, Jerome J. (New Haven, CT); Halpern, Bret L. (Bethany, CT)

    1993-01-01

    An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures.

  14. Metal-black scattering centers to enhance light harvesting by thin-film solar cells

    E-Print Network [OSTI]

    Peale, Robert E.

    Metal-black scattering centers to enhance light harvesting by thin-film solar cells Deep Panjwania as scattering centers to increase the effective optical thickness of thin-film solar cells. The particular type. Gold-black was deposited on commercial thin-film solar cells using a thermal evaporator in nitrogen

  15. Predictive Modeling for Glass-Side Laser Scribing of Thin Film Photovoltaic Cells

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    :F, CdTe, solar cell INTRODUCTION Thin-film solar cell is a promising technology to achieve substrates. Cadmium telluride (CdTe) is the dominant thin film solar cell material in recent years because manufacturing processes in the fabrication of thin film solar cells is monolithic cell isolation and series

  16. CARRIER COLLECTION IN THIN-FILM CDTE SOLAR CELLS: THEORY AND EXPERIMENT

    E-Print Network [OSTI]

    CARRIER COLLECTION IN THIN-FILM CDTE SOLAR CELLS: THEORY AND EXPERIMENT A.E. Delahoy, Z. Cheng different wavelengths. Keywords: CdTe, thin film solar cell, modeling 1 INTRODUCTION Traditional Si p, Jsc, is independent of voltage, i.e. superposition holds. Thin film CdTe solar cells deviate from

  17. Enhanced efficiency of thin film solar cells using a shifted dual grating plasmonic structure

    E-Print Network [OSTI]

    Levy, Uriel

    Enhanced efficiency of thin film solar cells using a shifted dual grating plasmonic structure Ronen, "Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric in thin film solar cells," Appl. Phys. Lett. 99(13), 131114 (2011). 10. H. R. Stuart and D. G. Hall

  18. Light trapping in thin-film solar cells with randomly rough and hybrid

    E-Print Network [OSTI]

    Light trapping in thin-film solar cells with randomly rough and hybrid textures Piotr Kowalczewski. M. Smets, and M. Zeman, "Plasmonic light trapping in thin-film silicon solar cells with improved Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns," Opt. Express 20, A224­A

  19. Engineering Gaussian disorder at rough interfaces for light trapping in thin-film solar cells

    E-Print Network [OSTI]

    Engineering Gaussian disorder at rough interfaces for light trapping in thin-film solar cells Piotr A theoretical study of randomly rough interfaces to obtain light trapping in thin-film silicon solar cells of thin-film solar cells. © 2012 Optical Society of America OCIS codes: 040.5350, 050.1950. Reducing

  20. LBIC ANALYSIS OF THIN-FILM POLYCRYSTALLINE SOLAR CELLS James R. Sites and Timothy J. Nagle

    E-Print Network [OSTI]

    Sites, James R.

    LBIC ANALYSIS OF THIN-FILM POLYCRYSTALLINE SOLAR CELLS James R. Sites and Timothy J. Nagle Physics response map, was developed and used to map defects in thin-film solar cells [4]. Improvements to the two) measurements are providing a direct link between the spatial non-uniformities inherent in thin-film

  1. LOSS ANALYSIS OF BACK-CONTACT BACK-JUNCTION THIN-FILM MONOCRYSTALLINE SILICON SOLAR CELLS

    E-Print Network [OSTI]

    LOSS ANALYSIS OF BACK-CONTACT BACK-JUNCTION THIN-FILM MONOCRYSTALLINE SILICON SOLAR CELLS F. Haase losses in back-contact back- junction monocrystalline thin-film silicon solar cells. The cells are made for back-contact back- junction (BC BJ) monocrystalline thin-film silicon solar cells using the PSI process

  2. Light trapping in thin-film solar cells via scattering by nanostructured antireflection coatings

    E-Print Network [OSTI]

    Yu, Edward T.

    Light trapping in thin-film solar cells via scattering by nanostructured antireflection coatings X://jap.aip.org/authors #12;Light trapping in thin-film solar cells via scattering by nanostructured antireflection coatings X of nanostructured TiO2 layers fabricated on thin-film solar cells to provide, simultaneously, both antireflection

  3. Mechanics of thin-film transistors and solar cells on flexible substrates

    E-Print Network [OSTI]

    Suo, Zhigang

    Mechanics of thin-film transistors and solar cells on flexible substrates Helena Gleskova a,*, I be minimized throughout the fab- rication process. Amorphous silicon thin-film transistors and solar cells rights reserved. Keywords: Amorphous silicon; Thin-film transistor; Solar cell; Flexible electronics 1

  4. Dielectric back scattering patterns for light trapping in thin-film Si solar cells

    E-Print Network [OSTI]

    Polman, Albert

    Dielectric back scattering patterns for light trapping in thin-film Si solar cells M. van Lare,1 of dielectric and metallic backscattering patterns in thin-film a-Si:H solar cells. We compare devices for Light Trapping in Thin-Film Silicon Solar Cells", in Proceedings of the 23rd European Photovoltaic Solar

  5. Light trapping regimes in thin-film silicon solar cells with a photonic pattern

    E-Print Network [OSTI]

    Light trapping regimes in thin-film silicon solar cells with a photonic pattern Simone Zanotto a theoretical study of crystalline and amorphous silicon thin-film solar cells with a periodic pattern on a sub. Poortmans and V. Arkhipov (editors), Thin Film Solar Cells (Wiley, Chichester 2006). 4. P. W¨urfel, Physics

  6. BACK CONTACT MONOCRYSTALLINE THIN-FILM SILICON SOLAR CELLS FROM THE POROUS SILICON PROCESS

    E-Print Network [OSTI]

    BACK CONTACT MONOCRYSTALLINE THIN-FILM SILICON SOLAR CELLS FROM THE POROUS SILICON PROCESS F. Haase contact cells. Kraiem et al [7] made a back contact thin film monocrystalline solar cell with cell), Am Ohrberg 1, D-31860 Emmerthal, Germany ABSTRACT We develop a back contact monocrystalline thin-film

  7. ENGINEERED SUBSTRATES FOR THIN-FILM SOLAR CELLS: SCATTERING PROPERTIES OF 1D ROUGHNESS

    E-Print Network [OSTI]

    ENGINEERED SUBSTRATES FOR THIN-FILM SOLAR CELLS: SCATTERING PROPERTIES OF 1D ROUGHNESS S. Del Sorbo, Optical Properties, Substrates, Texturisation, Thin Film Solar Cells 1 MOTIVATION OF THIS WORK The aim of thin film technology is to reduce both the electrical transport losses in the bulk region of a solar

  8. Ultrashort pulse laser deposition of thin films

    DOE Patents [OSTI]

    Perry, Michael D. (Livermore, CA); Banks, Paul S. (Livermore, CA); Stuart, Brent C. (Fremont, CA)

    2002-01-01

    Short pulse PLD is a viable technique of producing high quality films with properties very close to that of crystalline diamond. The plasma generated using femtosecond lasers is composed of single atom ions with no clusters producing films with high Sp.sup.3 /Sp.sup.2 ratios. Using a high average power femtosecond laser system, the present invention dramatically increases deposition rates to up to 25 .mu.m/hr (which exceeds many CVD processes) while growing particulate-free films. In the present invention, deposition rates is a function of laser wavelength, laser fluence, laser spot size, and target/substrate separation. The relevant laser parameters are shown to ensure particulate-free growth, and characterizations of the films grown are made using several diagnostic techniques including electron energy loss spectroscopy (EELS) and Raman spectroscopy.

  9. Fully Printed, High Performance Carbon Nanotube Thin-Film Transistors on Flexible Substrates

    E-Print Network [OSTI]

    Javey, Ali

    range of large-area electronic applications based on carbon nanotube networks. KEYWORDS: Flexible using SWNT TFTs has been shown.1,5,7,8 In order to enable the use of flexible electronics for largeFully Printed, High Performance Carbon Nanotube Thin-Film Transistors on Flexible Substrates Pak

  10. LAYER TRANSFER OF LARGE AREA MACROPOROUS SILICON FOR MONOCRYSTALLINE THIN-FILM SOLAR CELLS

    E-Print Network [OSTI]

    LAYER TRANSFER OF LARGE AREA MACROPOROUS SILICON FOR MONOCRYSTALLINE THIN-FILM SOLAR CELLS Marco-based solar cells is approximately 200 µm with a kerf loss of about 100 µm caused by wire sawing. However, lower wafer thicknesses are sufficient for achieving high solar cell efficiencies exceeding 20 % [1

  11. Equiatomic CoPt thin films with extremely high coercivity

    SciTech Connect (OSTI)

    Varghese, Binni; Piramanayagam, S. N. Yang, Yi; Kai Wong, Seng; Khume Tan, Hang; Kiat Lee, Wee; Okamoto, Iwao

    2014-05-07

    In this paper, magnetic and structural properties of near-equiatomic CoPt thin films, which exhibited a high coercivity in the film-normal direction—suitable for perpendicular magnetic recording media applications—are reported. The films exhibited a larger coercivity of about 6.5 kOe at 8?nm. The coercivity showed a monotonous decrease as the film thickness was increased. The transmission electron microscopy images indicated that the as fabricated CoPt film generally consists of a stack of magnetically hard hexagonal-close-packed phase, followed by stacking faults and face-centred-cubic phase. The thickness dependent magnetic properties are explained on the basis of exchange-coupled composite media. Epitaxial growth on Ru layers is a possible factor leading to the unusual observation of magnetically hard hcp-phase at high concentrations of Pt.

  12. Atomic layer deposition of superparamagnetic and ferrimagnetic magnetite thin films

    SciTech Connect (OSTI)

    Zhang, Yijun; Liu, Ming E-mail: wren@mail.xjtu.edu.cn Ren, Wei E-mail: wren@mail.xjtu.edu.cn; Zhang, Yuepeng; Chen, Xing; Ye, Zuo-Guang E-mail: wren@mail.xjtu.edu.cn

    2015-05-07

    One of the key challenges in realizing superparamagnetism in magnetic thin films lies in finding a low-energy growth way to create sufficiently small grains and magnetic domains which allow the magnetization to randomly and rapidly reverse. In this work, well-defined superparamagnetic and ferrimagnetic Fe{sub 3}O{sub 4} thin films are successfully prepared using atomic layer deposition technique by finely controlling the growth condition and post-annealing process. As-grown Fe{sub 3}O{sub 4} thin films exhibit a conformal surface and poly-crystalline nature with an average grain size of 7?nm, resulting in a superparamagnetic behavior with a blocking temperature of 210?K. After post-annealing in H{sub 2}/Ar at 400?°C, the as-grown ??Fe{sub 2}O{sub 3} sample is reduced to Fe{sub 3}O{sub 4} phase, exhibiting a ferrimagnetic ordering and distinct magnetic shape anisotropy. Atomic layer deposition of magnetite thin films with well-controlled morphology and magnetic properties provides great opportunities for integrating with other order parameters to realize magnetic nano-devices with potential applications in spintronics, electronics, and bio-applications.

  13. Crystalline Thin Films Formed by Supramolecular Assembly for

    E-Print Network [OSTI]

    Gao, Hongjun

    Crystalline Thin Films Formed by Supramolecular Assembly for Ultrahigh-Density Data Storage with crystalline materials.[9] In contrast with small-mole- cule materials, supramolecular materials, which combine the benefits of polymers with those of organic crystalline systems, have been considered a promising medium

  14. Synthesis and Characterization of Functional Nanostructured Zinc Oxide Thin Films

    E-Print Network [OSTI]

    Chow, Lee

    .1149/1.2357098, copyright The Electrochemical Society 65 #12;66 reduced environmental impact and a minimum undesirable inter-temperature thin film growth technique has been developed to fabricate a new generation of smart and functional and structural requirements of their applications in gas sensors and solar cells. The rapid photothermal

  15. Long-wave instabilities and saturation in thin film equations

    E-Print Network [OSTI]

    Pugh, Mary

    to shorter wavelengths which then dissipate the energy. The nonlinearity in the KS equation is advective.2) The equation arises as an interface model in bio-fluids [15], solar convec- tion [19], and binary alloys [48Long-wave instabilities and saturation in thin film equations A. L. Bertozzi Department

  16. Longwave instabilities and saturation in thin film equations

    E-Print Network [OSTI]

    Pugh, Mary

    then dissipate the energy. The nonlinearity in the KS equation is advective, and a#ects the dy­ namics di.2) The equation arises as an interface model in bio­fluids [15], solar convec­ tion [19], and binary alloys [48Long­wave instabilities and saturation in thin film equations A. L. Bertozzi Department

  17. Low cost and high performance light trapping structure for thin-film solar cells

    E-Print Network [OSTI]

    Wang, DongLin; Su, Gang

    2015-01-01

    Nano-scaled dielectric and metallic structures are popular light tapping structures in thin-film solar cells. However, a large parasitic absorption in those structures is unavoidable. Most schemes based on such structures also involve the textured active layers that may bring undesirable degradation of the material quality. Here we propose a novel and cheap light trapping structure based on the prism structured SiO2 for thin-film solar cells, and a flat active layer is introduced purposefully. Such a light trapping structure is imposed by the geometrical shape optimization to gain the best optical benefit. By examining our scheme, it is disclosed that the conversion efficiency of the flat a-Si:H thin-film solar cell can be promoted to exceed the currently certified highest value. As the cost of SiO2-based light trapping structure is much cheaper and easier to fabricate than other materials, this proposal would have essential impact and wide applications in thin-film solar cells.

  18. Characterization of Thin Films by XAFS: Application to Spintronics Materials

    SciTech Connect (OSTI)

    Heald, Steve M.; Kaspar, Tiffany C.; Droubay, Timothy C.; Chambers, Scott A.

    2009-10-25

    X-ray absorption fine structure (XAFS) has proven very valuable in characterizing thin films. This is illustrated with some examples from the area of diluted magnetic semiconductor (DMS) materials for spintronics applications. A promising route to DMS materials is doping of oxides such as TiO2 and ZnO with magnetic atoms such as Co. These can be grown as epitaxial thin films on various substrates. XAFS is especially valuable for characterizing the dopant atoms. The near edge region is sensitive to the symmetry of the bonding and valence of the dopants, and the extended XAFS can determine the details of the lattice site. XAFS is also valuable for detecting metallic nanoparticles. These can be difficult to detect by other methods, and can give a spurious magnetic signal. The power of XAFS is illustrated by examples from studies on Co doped ZnO films.

  19. Thin film porous membranes for catalytic sensors

    SciTech Connect (OSTI)

    Hughes, R.C.; Boyle, T.J.; Gardner, T.J. [and others

    1997-06-01

    This paper reports on new and surprising experimental data for catalytic film gas sensing resistors coated with nanoporous sol-gel films to impart selectivity and durability to the sensor structure. This work is the result of attempts to build selectivity and reactivity to the surface of a sensor by modifying it with a series of sol-gel layers. The initial sol-gel SiO{sub 2} layer applied to the sensor surprisingly showed enhanced O{sub 2} interaction with H{sub 2} and reduced susceptibility to poisons such as H{sub 2}S.

  20. Study of plasma enhanced chemical vapor deposition of boron-doped hydrogenated amorphous silicon thin films and the application to p-channel thin film transistor 

    E-Print Network [OSTI]

    Nominanda, Helinda

    2004-01-01

    The material and process characteristics of boron doped hydrogenated amorphous silicon (a-Si:H) thin film deposited by plasma enhanced chemical vapor deposition technique (PECVD) have been studied. The goal is to apply the high quality films...

  1. Photoconductivity in reactively evaporated copper indium selenide thin films

    SciTech Connect (OSTI)

    Urmila, K. S., E-mail: urmilaks7@gmail.com; Asokan, T. Namitha, E-mail: urmilaks7@gmail.com; Pradeep, B., E-mail: urmilaks7@gmail.com [Solid State Physics Laboratory, Cochin University of Science and Technology, Kochi, Kerala (India); Jacob, Rajani; Philip, Rachel Reena [Thin Film Research Laboratory, Union Christian College, Aluva, Kerala (India)

    2014-01-28

    Copper indium selenide thin films of composition CuInSe{sub 2} with thickness of the order of 130 nm are deposited on glass substrate at a temperature of 423 ±5 K and pressure of 10{sup ?5} mbar using reactive evaporation, a variant of Gunther's three temperature method with high purity Copper (99.999%), Indium (99.999%) and Selenium (99.99%) as the elemental starting materials. X-ray diffraction (XRD) studies shows that the films are polycrystalline in nature having preferred orientation of grains along the (112) plane. The structural type of the film is found to be tetragonal with particle size of the order of 32 nm. The structural parameters such as lattice constant, particle size, dislocation density, number of crystallites per unit area and strain in the film are also evaluated. The surface morphology of CuInSe{sub 2} films are studied using 2D and 3D atomic force microscopy to estimate the grain size and surface roughness respectively. Analysis of the absorption spectrum of the film recorded using UV-Vis-NIR Spectrophotometer in the wavelength range from 2500 nm to cutoff revealed that the film possess a direct allowed transition with a band gap of 1.05 eV and a high value of absorption coefficient (?) of 10{sup 6} cm{sup ?1} at 570 nm. Photoconductivity at room temperature is measured after illuminating the film with an FSH lamp (82 V, 300 W). Optical absorption studies in conjunction with the good photoconductivity of the prepared p-type CuInSe{sub 2} thin films indicate its suitability in photovoltaic applications.

  2. Abstract--In this paper, the propagation characteristics of an enhanced-thickness magnetic nanoparticle thin film are

    E-Print Network [OSTI]

    Tentzeris, Manos

    nanoparticle thin film are investigated on high resistivity silicon substrate (10,000 ohm-cm) for the first time up to 60 GHz. Contrary to other thin films, this nanoparticle thin film can achieve a thickness up to several hundred nanometers, even to micron. The enhanced thickness of this thin film is achieved

  3. Thin film composition with biological substance and method of making

    DOE Patents [OSTI]

    Campbell, Allison A. (Kennewick, WA); Song, Lin (Richland, WA)

    1999-01-01

    The invention provides a thin-film composition comprising an underlying substrate of a first material including a plurality of attachment sites; a plurality of functional groups chemically attached to the attachment sites of the underlying substrate; and a thin film of a second material deposited onto the attachment sites of the underlying substrate, and a biologically active substance deposited with the thin-film. Preferably the functional groups are attached to a self assembling monolayer attached to the underlying substrate. Preferred functional groups attached to the underlying substrate are chosen from the group consisting of carboxylates, sulfonates, phosphates, optionally substituted, linear or cyclo, alkyl, alkene, alkyne, aryl, alkylaryl, amine, hydroxyl, thiol, silyl, phosphoryl, cyano, metallocenyl, carbonyl, and polyphosphate. Preferred materials for the underlying substrate are selected from the group consisting of a metal, a metal alloy, a plastic, a polymer, a proteic film, a membrane, a glass or a ceramic. The second material is selected from the group consisting of inorganic crystalline structures, inorganic amorphus structures, organic crystalline structures, and organic amorphus structures. Preferred second materials are phosphates, especially calcium phosphates and most particularly calcium apatite. The biologically active molecule is a protein, peptide, DNA segment, RNA segment, nucleotide, polynucleotide, nucleoside, antibiotic, antimicrobal, radioisotope, chelated radioisotope, chelated metal, metal salt, anti-inflamatory, steriod, nonsteriod anti-inflammatory, analgesic, antihistamine, receptor binding agent, or chemotherapeutic agent, or other biologically active material. Preferably the biologically active molecule is an osteogenic factor the compositions listed above.

  4. Thin film composition with biological substance and method of making

    SciTech Connect (OSTI)

    Campbell, A.A.; Song, L.

    1999-09-28

    The invention provides a thin-film composition comprising an underlying substrate of a first material including a plurality of attachment sites; a plurality of functional groups chemically attached to the attachment sites of the underlying substrate; and a thin film of a second material deposited onto the attachment sites of the underlying substrate, and a biologically active substance deposited with the thin-film. Preferably the functional groups are attached to a self assembling monolayer attached to the underlying substrate. Preferred functional groups attached to the underlying substrate are chosen from the group consisting of carboxylates, sulfonates, phosphates, optionally substituted, linear or cyclo, alkyl, alkene, alkyne, aryl, alkylaryl, amine, hydroxyl, thiol, silyl, phosphoryl, cyano, metallocenyl, carbonyl, and polyphosphate. Preferred materials for the underlying substrate are selected from the group consisting of a metal, a metal alloy, a plastic, a polymer, a proteic film, a membrane, a glass or a ceramic. The second material is selected from the group consisting of inorganic crystalline structures, inorganic amorphous structures, organic crystalline structures, and organic amorphous structures. Preferred second materials are phosphates, especially calcium phosphates and most particularly calcium apatite. The biologically active molecule is a protein, peptide, DNA segment, RNA segment, nucleotide, polynucleotide, nucleoside, antibiotic, antimicrobial, radioisotope, chelated radioisotope, chelated metal, metal salt, anti-inflammatory, steroid, nonsteroid anti-inflammatory, analgesic, antihistamine, receptor binding agent, or chemotherapeutic agent, or other biologically active material. Preferably the biologically active molecule is an osteogenic factor consisting of the compositions listed above.

  5. Characterization on RF magnetron sputtered niobium pentoxide thin films

    SciTech Connect (OSTI)

    Usha, N. [Department of Physics, Alagappa University, Karaikudi - 630 004 (India); Sivakumar, R., E-mail: krsivakumar1979@yahoo.com [Directorate of Distance Education, Alagappa University, Karaikudi - 630 004 (India); Sanjeeviraja, C. [Department of Physics, Alagappa Chettiar College of Engineering and Technology, Karaikudi - 630 004 (India)

    2014-10-15

    Niobium pentoxide (Nb{sub 2}O{sub 5}) thin films with amorphous nature were deposited on microscopic glass substrates at 100°C by rf magnetron sputtering technique. The effect of rf power on the structural, morphological, optical, and vibrational properties of Nb{sub 2}O{sub 5} films have been investigated. Optical study shows the maximum average transmittance of about 87% and the optical energy band gap (indirect allowed) changes between 3.70 eV and 3.47 eV. AFM result indicates the smooth surface nature of the samples. Photoluminescence measurement showed the better optical quality of the deposited films. Raman spectra show the LO-TO splitting of Nb-O stretching of Nb{sub 2}O{sub 5} films.

  6. 22nd European Photovoltaic Solar Energy Conference, Milan, 3-7 September 2007 Cu(InGa)Se2 THIN-FILM SOLAR CELLS

    E-Print Network [OSTI]

    22nd European Photovoltaic Solar Energy Conference, Milan, 3-7 September 2007 Cu(InGa)Se2 THIN-FILM INTRODUCTION Cu(InGa)Se2-based thin-film solar cells have high conversion-efficiencies (the laboratory record

  7. High quality transparent conducting oxide thin films

    DOE Patents [OSTI]

    Gessert, Timothy A. (Conifer, CO); Duenow, Joel N. (Golden, CO); Barnes, Teresa (Evergreen, CO); Coutts, Timothy J. (Golden, CO)

    2012-08-28

    A transparent conducting oxide (TCO) film comprising: a TCO layer, and dopants selected from the elements consisting of Vanadium, Molybdenum, Tantalum, Niobium, Antimony, Titanium, Zirconium, and Hafnium, wherein the elements are n-type dopants; and wherein the transparent conducting oxide is characterized by an improved electron mobility of about 42 cm.sup.2/V-sec while simultaneously maintaining a high carrier density of .about.4.4e.times.10.sup.20 cm.sup.-3.

  8. Multilayer thin film thermoelectrics produced by sputtering

    SciTech Connect (OSTI)

    Wagner, A.V.; Foreman, R.J.; Summers, L.J.; Barbee, T.W. Jr.; Farmer, J.C.

    1995-06-19

    In this work we explore the possibility of achieving bulk electrical properties in single layer sputter deposited films grown epitaxially on (111) oriented BaF{sub 2} substrates. There are a number of sputter deposition parameters that can be varied in order to optimize the film quality. It is important to understand the effect of varying the deposition temperature, Ar sputtering gas pressure, and the substrate bias. We will consider only Bi and Bi{sub 0.86}Sb{sub 0.14} films in this paper. These materials were chosen since they have the same simple structure, two different band gaps and do not change significantly either in physical or electrical properties with small amounts of cross contamination. We will also present our work on multilayer thermoelectrics made of Bi and Bi{sub 0.86}Sb{sub 0.14} layers. There has been considerable interest in this multilayer structure in the literature. Theoretical calculations of the band structure and interface states of these multilayer structures have been made by Mustafaev and Agassi et al. respectively [6,7]. Experimentally Yoshida et al. have examined similar multilayer structures grown by MBE as well as Bi/Sb multilayer samples in which report an anomalous thermoelectric power [8].

  9. Method for bonding thin film thermocouples to ceramics

    DOE Patents [OSTI]

    Kreider, Kenneth G. (Potomac, MD)

    1993-01-01

    A method is provided for adhering a thin film metal thermocouple to a ceramic substrate used in an environment up to 700 degrees Centigrade, such as at a cylinder of an internal combustion engine. The method includes the steps of: depositing a thin layer of a reactive metal on a clean ceramic substrate; and depositing thin layers of platinum and a platinum-10% rhodium alloy forming the respective legs of the thermocouple on the reactive metal layer. The reactive metal layer serves as a bond coat between the thin noble metal thermocouple layers and the ceramic substrate. The thin layers of noble metal are in the range of 1-4 micrometers thick. Preferably, the ceramic substrate is selected from the group consisting of alumina and partially stabilized zirconia. Preferably, the thin layer of reactive metal is in the range of 0.015-0.030 micrometers (15-30 nanometers) thick. The preferred reactive metal is chromium. Other reactive metals may be titanium or zirconium. The thin layer of reactive metal may be deposited by sputtering in ultra high purity argon in a vacuum of approximately 2 milliTorr (0.3 Pascals).

  10. Durable silver thin film coating for diffraction gratings

    DOE Patents [OSTI]

    Wolfe, Jesse D. (Discovery Bay, CA); Britten, Jerald A. (Oakley, CA); Komashko, Aleksey M. (San Diego, CA)

    2006-05-30

    A durable silver film thin film coated non-planar optical element has been developed to replace Gold as a material for fabricating such devices. Such a coating and resultant optical element has an increased efficiency and is resistant to tarnishing, can be easily stripped and re-deposited without modifying underlying grating structure, improves the throughput and power loading of short pulse compressor designs for ultra-fast laser systems, and can be utilized in variety of optical and spectrophotometric systems, particularly high-end spectrometers that require maximized efficiency.

  11. Medium scale carbon nanotube thin film integrated circuits on flexible plastic substrates

    DOE Patents [OSTI]

    Rogers, John A; Cao, Qing; Alam, Muhammad; Pimparkar, Ninad

    2015-02-03

    The present invention provides device components geometries and fabrication strategies for enhancing the electronic performance of electronic devices based on thin films of randomly oriented or partially aligned semiconducting nanotubes. In certain aspects, devices and methods of the present invention incorporate a patterned layer of randomly oriented or partially aligned carbon nanotubes, such as one or more interconnected SWNT networks, providing a semiconductor channel exhibiting improved electronic properties relative to conventional nanotubes-based electronic systems.

  12. Thin-Film Reliability Trends Toward Improved Stability: Preprint

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2011-07-01

    Long-term, stable performance of photovoltaic (PV) modules will be increasingly important to their successful penetration of the power grid. This paper summarizes more than 150 thin-film and more than 1700 silicon PV degradation rates (Rd) quoted in publications for locations worldwide. Partitioning the literature results by technology and date of installation statistical analysis shows an improvement in degradation rate especially for thin-film technologies in the last decade. A CIGS array deployed at NREL for more than 5 years that appears to be stable supports the literature trends. Indoor and outdoor data indicate undetectable change in performance (0.2+/-0.2 %/yr). One module shows signs of slight degradation from what appears to be an initial manufacturing defect, however it has not affected the overall system performance.

  13. Thin film battery and method for making same

    DOE Patents [OSTI]

    Bates, John B. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN); Gruzalski, Greg R. (Oak Ridge, TN); Luck, Christopher F. (Knoxville, TN)

    1994-01-01

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

  14. Thin film battery and method for making same

    DOE Patents [OSTI]

    Bates, J.B.; Dudney, N.J.; Gruzalski, G.R.; Luck, C.F.

    1994-08-16

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode. Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between [minus]15 C and 150 C. 9 figs.

  15. Status of High Performance PV: Polycrystalline Thin-Film Tandems

    SciTech Connect (OSTI)

    Symko-Davies, M.

    2005-02-01

    The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and our environment. The HiPerf PV Project aims at exploring the ultimate performance limits of existing PV technologies, approximately doubling their sunlight-to-electricity conversion efficiencies during its course. This work includes bringing thin-film cells and modules toward 25% and 20% efficiencies, respectively, and developing multijunction concentrator cells and modules able to convert more than one-third of the sun's energy to electricity (i.e., 33% efficiency). This paper will address recent accomplishments of the NREL in-house research effort involving polycrystalline thin-film tandems, as well as the research efforts under way in the subcontracted area.

  16. Synthesis of thin films and materials utilizing a gaseous catalyst

    DOE Patents [OSTI]

    Morse, Daniel E; Schwenzer, Birgit; Gomm, John R; Roth, Kristian M; Heiken, Brandon; Brutchey, Richard

    2013-10-29

    A method for the fabrication of nanostructured semiconducting, photoconductive, photovoltaic, optoelectronic and electrical battery thin films and materials at low temperature, with no molecular template and no organic contaminants. High-quality metal oxide semiconductor, photovoltaic and optoelectronic materials can be fabricated with nanometer-scale dimensions and high dopant densities through the use of low-temperature biologically inspired synthesis routes, without the use of any biological or biochemical templates.

  17. Method for making dense crack free thin films

    DOE Patents [OSTI]

    Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); De Jonghe, Lutgard C. (Lafayette, CA)

    2007-01-16

    The process described herein provides a simple and cost effective method for making crack free, high density thin ceramic film. The steps involve depositing a layer of a ceramic material on a porous or dense substrate. The deposited layer is compacted and then the resultant laminate is sintered to achieve a higher density than would have been possible without the pre-firing compaction step.

  18. Terminology relating to measurements taken on thin, reflecting films

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This standard consists of terms and definitions pertaining to measurements taken on thin, reflecting films, such as found in microelectromechanical systems (MEMS) materials. In particular, the terms are related to the standards in Section , which were generated by Committee E08 on Fatigue and Fracture. Terminology E 1823 Relating to Fatigue and Fracture Testing is applicable to this standard. 1.2 The terms are listed in alphabetical order.

  19. Scintillation of thin tetraphenyl butadiene films under alpha particle excitation

    E-Print Network [OSTI]

    Pollmann, Tina; Ku?niak, Marcin

    2010-01-01

    The alpha induced scintillation of the wavelength shifter 1,1,4,4-tetraphenyl-1,3-butadiene (TPB) was studied to improve the understanding of possible surface alpha backgrounds in the DEAP dark matter search experiment. We found that vacuum deposited thin TPB films emit 882 +/-210 photons per MeV under alpha particle excitation. The scintillation pulse shape consists of a double exponential decay with lifetimes of 11 +/-5 ns and 275 +/-10ns.

  20. Preparation of LiMn{sub 2}O{sub 4} cathode thin films for thin film lithium secondary batteries by a mist CVD process

    SciTech Connect (OSTI)

    Tadanaga, Kiyoharu, E-mail: tadanaga@chem.osakafu-u.ac.jp [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, 599-8531 (Japan); Yamaguchi, Akihiro; Sakuda, Atsushi; Hayashi, Akitoshi; Tatsumisago, Masahiro [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, 599-8531 (Japan); Duran, Alicia; Aparacio, Mario [Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas, Kelsen 5 (Campus de Cantoblanco), Madrid, 28049 (Spain)

    2014-05-01

    Highlights: • LiMn{sub 2}O{sub 4} thin films were prepared by using the mist CVD process. • An aqueous solution of lithium and manganese acetates is used for the precursor solution. • The cell with the LiMn{sub 2}O{sub 4} thin films exhibited a capacity of about 80 mAh/g. • The cell showed good cycling performance during 10 cycles. - Abstract: LiMn{sub 2}O{sub 4} cathode thin films for thin film lithium secondary batteries were prepared by using so-called the “mist CVD process”, employing an aqueous solution of lithium acetate and manganese acetate, as the source of Li and Mn, respectively. The aqueous solution of starting materials was ultrasonically atomized to form mist particles, and mists were transferred by nitrogen gas to silica glass substrate to form thin films. FE-SEM observation revealed that thin films obtained by this process were dense and smooth, and thin films with a thickness of about 750 nm were obtained. The electrochemical cell with the thin films obtained by sintering at 700 °C exhibited a capacity of about 80 mAh/g, and the cell showed good cycling performance during 10 cycles.

  1. Thin-film fiber optic hydrogen and temperature sensor system

    DOE Patents [OSTI]

    Nave, S.E.

    1998-07-21

    The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiber optic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences. 3 figs.

  2. Thin-film fiber optic hydrogen and temperature sensor system

    DOE Patents [OSTI]

    Nave, Stanley E. (Evans, GA)

    1998-01-01

    The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiberoptic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences.

  3. Ambipolar charge transport in microcrystalline silicon thin-film transistors

    SciTech Connect (OSTI)

    Knipp, Dietmar; Marinkovic, M.; Chan, Kah-Yoong; Gordijn, Aad; Stiebig, Helmut

    2011-01-15

    Hydrogenated microcrystalline silicon ({mu}c-Si:H) is a promising candidate for thin-film transistors (TFTs) in large-area electronics due to high electron and hole charge carrier mobilities. We report on ambipolar TFTs based on {mu}c-Si:H prepared by plasma-enhanced chemical vapor deposition at temperatures compatible with flexible substrates. Electrons and holes are directly injected into the {mu}c-Si:H channel via chromium drain and source contacts. The TFTs exhibit electron and hole charge carrier mobilities of 30-50 cm{sup 2}/V s and 10-15 cm{sup 2}/V s, respectively. In this work, the electrical characteristics of the ambipolar {mu}c-Si:H TFTs are described by a simple analytical model that takes the ambipolar charge transport into account. The analytical expressions are used to model the transfer curves, the potential and the net surface charge along the channel of the TFTs. The electrical model provides insights into the electronic transport of ambipolar {mu}c-Si:H TFTs.

  4. Plasticity contributions to interface adhesion in thin-film interconnect structures

    E-Print Network [OSTI]

    Vainchtein, Anna

    Plasticity contributions to interface adhesion in thin-film interconnect structures Michael Lanea of plasticity in thin copper layers on the interface fracture resistance in thin-film interconnect structures yield properties together with a plastic flow model for the metal layers were used to predict

  5. Brillouin light scattering studies of the mechanical properties of thin freely standing polystyrene films

    E-Print Network [OSTI]

    Dutcher, John

    Brillouin light scattering studies of the mechanical properties of thin freely standing polystyrene-frequency mechanical properties of thin freely standing polystyrene PS films. We have investigated the effects of chain, and thermal expansion of thin, freely stand- ing PS films in the glassy state are consistent with bulk values

  6. MultiLayer solid electrolyte for lithium thin film batteries

    DOE Patents [OSTI]

    Lee, Se -Hee; Tracy, C. Edwin; Pitts, John Roland; Liu, Ping

    2015-07-28

    A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.

  7. THIN-FILM FLOWS WITH WALL SLIP: AN ASYMPTOTIC ANALYSIS OF HIGHER ORDER GLACIER FLOW MODELS

    E-Print Network [OSTI]

    Fournier, John J.F.

    THIN-FILM FLOWS WITH WALL SLIP: AN ASYMPTOTIC ANALYSIS OF HIGHER ORDER GLACIER FLOW MODELS, Cambridge, CB3 0ET, UK) [Received 6 January 2009. Revise 6 November 2009] Summary Free-surface thin film of the flow. Conversely, membrane or `free film' models are appropriate in situations where there is rapid

  8. "Enhanced Field Emission from Vertically Oriented Graphene by Thin Solid Film Coatings"

    E-Print Network [OSTI]

    Shaw, Leah B.

    "Enhanced Field Emission from Vertically Oriented Graphene by Thin Solid Film Coatings" MICHAEL films such as nanotubes, nanohorns, and graphene due to their favorable field emission properties by the application of low work function thin films. These studies employ various characterization techniques

  9. DISSERTATION ANALYSIS OF IMPACT OF NON-UNIFORMITIES ON THIN-FILM SOLAR CELLS

    E-Print Network [OSTI]

    Sites, James R.

    DISSERTATION ANALYSIS OF IMPACT OF NON-UNIFORMITIES ON THIN-FILM SOLAR CELLS AND MODULES WITH 2-D-FILM SOLAR CELLS AND MODULES WITH 2-D SIMULATIONS BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS-UNIFORMITIES ON THIN-FILM SOLAR CELLS AND MODULES WITH 2-D SIMULATIONS Clean and environmentally friendly photovoltaic

  10. Study of lithium diffusion in RF sputtered Nickel/Vanadium mixed oxides thin films

    E-Print Network [OSTI]

    Artuso, Florinda

    Study of lithium diffusion in RF sputtered NickelÁ/Vanadium mixed oxides thin films F. Artuso a lithium insertion inside RF sputtered Ni/V mixed oxides thin films have been investigated employing, showed three steps clearly involved in the intercalation mechanism of lithium in the oxide films: (i

  11. METAL BLACKS AS SCATTERING CENTERS TO INCREASE THE EFFICIENCY OF THIN FILM SOLAR CELLS

    E-Print Network [OSTI]

    Peale, Robert E.

    METAL BLACKS AS SCATTERING CENTERS TO INCREASE THE EFFICIENCY OF THIN FILM SOLAR CELLS by DEEP R surface of thin-film solar cells to improve efficiency. The principle is that scattering, which film solar cell. The particular types of particles investigated here are known as "metal-black", well

  12. Oriented niobate ferroelectric thin films for electrical and optical devices and method of making such films

    DOE Patents [OSTI]

    Wessels, B.W.; Nystrom, M.J.

    1998-05-19

    Sr{sub x}Ba{sub 1{minus}x}Nb{sub 2}O{sub 6}, where x is greater than 0.25 and less than 0.75, and KNbO{sub 3} ferroelectric thin films metalorganic chemical vapor deposited on amorphous or crystalline substrate surfaces to provide a crystal axis of the film exhibiting a high dielectric susceptibility, electro-optic coefficient, and/or nonlinear optic coefficient oriented preferentially in a direction relative to a crystalline or amorphous substrate surface are disclosed. Such films can be used in electronic, electro-optic, and frequency doubling components. 8 figs.

  13. Sputter deposition for multi-component thin films

    DOE Patents [OSTI]

    Krauss, A.R.; Auciello, O.

    1990-05-08

    Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams. 10 figs.

  14. Sputter deposition for multi-component thin films

    DOE Patents [OSTI]

    Krauss, Alan R. (Plainfield, IL); Auciello, Orlando (Cary, NC)

    1990-01-01

    Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams.

  15. Long-laser-pulse method of producing thin films

    DOE Patents [OSTI]

    Balooch, Mehdi (Berkeley, CA); Olander, Donald K. (Berkeley, CA); Russo, Richard E. (Walnut Creek, CA)

    1991-01-01

    A method of depositing thin films by means of laser vaporization employs a long-pulse laser (Nd-glass of about one millisecond duration) with a peak power density typically in the range 10.sup.5 -10.sup.6 W/cm.sup.2. The method may be used to produce high T.sub.c superconducting films of perovskite material. In one embodiment, a few hundred nanometers thick film of YBa.sub.2 Cu.sub.3 O.sub.7-x is produced on a SrTiO.sub.3 crystal substrate in one or two pulses. In situ-recrystallization and post-annealing, both at elevated temperature and in the presence of an oxidizing agen The invention described herein arose in the course of, or under, Contract No. DE-C03-76SF0098 between the United States Department of Energy and the University of California.

  16. Novel wide band gap materials for highly efficient thin film tandem solar cells

    SciTech Connect (OSTI)

    Brian E. Hardin, Stephen T. Connor, Craig H. Peters

    2012-06-11

    Tandem solar cells (TSCs), which use two or more materials to absorb sunlight, have achieved power conversion efficiencies of >25% versus 11-20% for commercialized single junction solar cell modules. The key to widespread commercialization of TSCs is to develop the wide-band, top solar cell that is both cheap to fabricate and has a high open-circuit voltage (i.e. >1V). Previous work in TSCs has generally focused on using expensive processing techniques with slow growth rates resulting in costs that are two orders of magnitude too expensive to be used in conventional solar cell modules. The objective of the PLANT PV proposal was to investigate the feasibility of using Ag(In,Ga)Se2 (AIGS) as the wide-bandgap absorber in the top cell of a thin film tandem solar cell (TSC). Despite being studied by very few in the solar community, AIGS solar cells have achieved one of the highest open-circuit voltages within the chalcogenide material family with a Voc of 949mV when grown with an expensive processing technique (i.e. Molecular Beam Epitaxy). PLANT PV�s goal in Phase I of the DOE SBIR was to 1) develop the chemistry to grow AIGS thin films via solution processing techniques to reduce costs and 2) fabricate new device architectures with high open-circuit voltage to produce full tandem solar cells in Phase II. PLANT PV attempted to translate solution processing chemistries that were successful in producing >12% efficient Cu(In,Ga)Se2 solar cells by replacing copper compounds with silver. The main thrust of the research was to determine if it was possible to make high quality AIGS thin films using solution processing and to fully characterize the materials properties. PLANT PV developed several different types of silver compounds in an attempt to fabricate high quality thin films from solution. We found that silver compounds that were similar to the copper based system did not result in high quality thin films. PLANT PV was able to deposit AIGS thin films using a mixture of solution and physical vapor deposition processing, but these films lacked the p-type doping levels that are required to make decent solar cells. Over the course of the project PLANT PV was able to fabricate efficient CIGS solar cells (8.7%) but could not achieve equivalent performance using AIGS. During the nine-month grant PLANT PV set up a variety of thin film characterization tools (e.g. drive-level capacitance profiling) at the Molecular Foundry, a Department of Energy User Facility, that are now available to both industrial and academic researchers via the grant process. PLANT PV was also able to develop the back end processing of thin film solar cells at Lawrence Berkeley National Labs to achieve 8.7% efficient CIGS solar cells. This processing development will be applied to other types of thin film PV cells at the Lawrence Berkeley National Labs. While PLANT PV was able to study AIGS film growth and optoelectronic properties we concluded that AIGS produced using these methods would have a limited efficiency and would not be commercially feasible. PLANT PV did not apply for the Phase II of this grant.

  17. DEVELOPMENT OF A NOVEL PRECURSOR FOR THE PREPARATION BY SELENIZATION OF HIGH EFFICIENCY CuInGaSe2/CdS THIN FILM SOLAR CELLS

    E-Print Network [OSTI]

    Romeo, Alessandro

    /CdS THIN FILM SOLAR CELLS N. Romeo1 , A. Bosio1 , V. Canevari2 , R. Tedeschi1 , S. Sivelli1 , A. Solar cells prepared by depositing in sequence on top of the CuInGaSe2 film 60 nm of CdS, 100 nm of pure(InGa)Se2, Thin Films, Selenization 1 INTRODUCTION CuInGaSe2 based solar cells exhibit the highest

  18. Convective mass transfer from a submerged drop in a thin falling film

    E-Print Network [OSTI]

    Landel, Julien R; McEvoy, H; Dalziel, Stuart B

    2015-01-01

    We study the fluid mechanics of removing a passive tracer contained in small, viscous drops attached to a flat inclined substrate using thin gravity-driven film flows. A convective mass transfer establishes across the drop-film interface and the tracer in the drop diffuses into the film flow. The Peclet number for the tracer in the film is large. The Peclet number Pe_d in the drop varies from 0.01 to 1. The characteristic transport time in the drop is much larger than in the film. We model the mass transfer of the tracer from the drop bulk into the film using an empirical model based on Newton's law of cooling. This model is supported by a theoretical model solving the quasi-steady 2D advection-diffusion equation in the film coupled with a time-dependent 1D diffusion equation in the drop. We find excellent agreement between our experimental data and the 2 models, which predict an exponential decrease in time of the tracer concentration in the drop. The results are valid for all drop and film Peclet numbers st...

  19. Methods for fabricating thin film III-V compound solar cell

    DOE Patents [OSTI]

    Pan, Noren; Hillier, Glen; Vu, Duy Phach; Tatavarti, Rao; Youtsey, Christopher; McCallum, David; Martin, Genevieve

    2011-08-09

    The present invention utilizes epitaxial lift-off in which a sacrificial layer is included in the epitaxial growth between the substrate and a thin film III-V compound solar cell. To provide support for the thin film III-V compound solar cell in absence of the substrate, a backing layer is applied to a surface of the thin film III-V compound solar cell before it is separated from the substrate. To separate the thin film III-V compound solar cell from the substrate, the sacrificial layer is removed as part of the epitaxial lift-off. Once the substrate is separated from the thin film III-V compound solar cell, the substrate may then be reused in the formation of another thin film III-V compound solar cell.

  20. May 2003 NREL/CP-520-33933 Amorphous and Thin-Film

    E-Print Network [OSTI]

    Deng, Xunming

    May 2003 · NREL/CP-520-33933 Amorphous and Thin-Film Silicon B.P. Nelson, H.A. Atwater, B. von and Thin-Film Silicon Brent P. Nelson,1 Harry A. Atwater,2 Bolko von Roedern,1 Jeff Yang,3 Paul Sims,4 in the Amorphous and Thin-Film Silicon session at the National Center for Photovoltaics and Solar Program Review

  1. p-Doping limit and donor compensation in CdTe polycrystalline thin film solar cells

    E-Print Network [OSTI]

    p-Doping limit and donor compensation in CdTe polycrystalline thin film solar cells Ken K. Chin n substitution of Cd CuCd 0=À #12; #12; play critical roles in p-doping of CdTe in CdS/CdTe thin film solar cells in Fig. 1. As for the CdTe polycrystalline thin film in a CdS/CdTe solar cell, it is still being debated

  2. An approach to simultaneously test multiple devices for high-throughput production of thin film electronics

    E-Print Network [OSTI]

    Kumar, A.; Flewitt, A. J.

    2015-07-28

    of transparent flexible thin-film transistors using amorphous oxide semiconductors.,” Nature, vol. 432, no. 7016, pp. 488–492, 2004. [2] E. Fortunato, P. Barquinha, and R. Martins, “Oxide semiconductor thin-film transistors: a review of recent advances... , M. Lavine, and R. Coontz, “Looking Beyond Silicon,” Science, vol. 327, no. 5973. pp. 1595–1595, 2010. [6] A. J. Flewitt, “Hydrogenated Amorphous Silicon Thin Film Transistors (a Si:H TFTs),” Handbook of Visual Display Technology-Springer, 2012...

  3. Microwave plasma assisted supersonic gas jet deposition of thin film materials

    DOE Patents [OSTI]

    Schmitt, J.J. III; Halpern, B.L.

    1993-10-26

    An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures. 5 figures.

  4. DISSERTATION DEVICE PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS

    E-Print Network [OSTI]

    Sites, James R.

    OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS Thin-film solar cells have the potential to be an important contributor to the global energy demand by the mid-21st-century. Cu(In,Ga)Se2 (CIGS) solar cells, which haveDISSERTATION DEVICE PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS Submitted by Markus Gloeckler

  5. Light trapping and electrical transport in thin-film solar cells with randomly rough textures

    E-Print Network [OSTI]

    Yet, the central problem of thin-film photovoltaics is to capture and absorb sunlight in a thin active for photovoltaic applica- tions as intrinsically broadband scatterers. In this work, we use rigorous electro

  6. Thin film transistors on plastic substrates with reflective coatings for radiation protection

    DOE Patents [OSTI]

    Wolfe, Jesse D.; Theiss, Steven D.; Carey, Paul G.; Smith, Patrick M.; Wickboldt, Paul

    2003-11-04

    Fabrication of silicon thin film transistors (TFT) on low-temperature plastic substrates using a reflective coating so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The TFT can be used in large area low cost electronics, such as flat panel displays and portable electronics such as video cameras, personal digital assistants, and cell phones.

  7. Thin film transistors on plastic substrates with reflective coatings for radiation protection

    DOE Patents [OSTI]

    Wolfe, Jesse D. (Fairfield, CA); Theiss, Steven D. (Woodbury, MN); Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Wickbold, Paul (Walnut Creek, CA)

    2006-09-26

    Fabrication of silicon thin film transistors (TFT) on low-temperature plastic substrates using a reflective coating so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The TFT can be used in large area low cost electronics, such as flat panel displays and portable electronics such as video cameras, personal digital assistants, and cell phones.

  8. Novel Structure and Dynamics of Polymer Thin Films in Supercritical Fluids-Effect of Density Fluctuation

    SciTech Connect (OSTI)

    Koga,T.

    2004-01-01

    Supercritical carbon dioxide (scCO2) is being used increasingly as a green solvent in polymer processing. The major disadvantage thus far is that only a limited class of polymers, such as fluorinated or silicone-based polymers, can be dissolved in CO2. Here I show that large density fluctuations in scCO2 can significantly enhance the solubility of scCO2 in polymer thin films even when the bulk polymers have very poor miscibility with CO2. By using in situ neutron reflectivity, I found that a wide variety of polymer thin films can swell as much as 30-60% when exposed to scCO2 within a narrow temperature and pressure regime, known as the 'density fluctuation ridge', which defines the maximum density fluctuation amplitude in CO2. Furthermore, the swollen structures induced by the density fluctuation could be frozen by a flash evaporation of CO2 via the vitrification process of the polymer without a formation of void structures. X-ray reflectivity clearly showed that the scCO2 process could be used to produce uniform low-density polymer thin films. I also found that other properties of the vitrified films, such as index of refraction, dielectric constant and glass transition, were correlated with the low-density density profile.

  9. Real time intelligent process control system for thin film solar cell manufacturing

    SciTech Connect (OSTI)

    George Atanasoff

    2010-10-29

    This project addresses the problem of lower solar conversion efficiency and waste in the typical solar cell manufacturing process. The work from the proposed development will lead toward developing a system which should be able to increase solar panel conversion efficiency by an additional 12-15% resulting in lower cost panels, increased solar technology adoption, reduced carbon emissions and reduced dependency on foreign oil. All solar cell manufacturing processes today suffer from manufacturing inefficiencies that currently lead to lower product quality and lower conversion efficiency, increased product cost and greater material and energy consumption. This results in slower solar energy adoption and extends the time solar cells will reach grid parity with traditional energy sources. The thin film solar panel manufacturers struggle on a daily basis with the problem of thin film thickness non-uniformity and other parameters variances over the deposited substrates, which significantly degrade their manufacturing yield and quality. Optical monitoring of the thin films during the process of the film deposition is widely perceived as a necessary step towards resolving the non-uniformity and non-homogeneity problem. In order to enable the development of an optical control system for solar cell manufacturing, a new type of low cost optical sensor is needed, able to acquire local information about the panel under deposition and measure its local characteristics, including the light scattering in very close proximity to the surface of the film. This information cannot be obtained by monitoring from outside the deposition chamber (as traditional monitoring systems do) due to the significant signal attenuation and loss of its scattering component before the reflected beam reaches the detector. In addition, it would be too costly to install traditional external in-situ monitoring systems to perform any real-time monitoring over large solar panels, since it would require significant equipment refurbishing needed for installation of multiple separate ellipsometric systems, and development of customized software to control all of them simultaneously. The proposed optical monitoring system comprises AccuStrata’s fiber optics sensors installed inside the thin film deposition equipment, a hardware module of different components (beyond the scope of this project) and our software program with iterative predicting capability able to control material bandgap and surface roughness as films are deposited. Our miniature fiber optics monitoring sensors are installed inside the vacuum chamber compartments in very close proximity where the independent layers are deposited (an option patented by us in 2003). The optical monitoring system measures two of the most important parameters of the photovoltaic thin films during deposition on a moving solar panel - material bandgap and surface roughness. In this program each sensor array consists of two fiber optics sensors monitoring two independent areas of the panel under deposition. Based on the monitored parameters and their change in time and from position to position on the panel, the system is able to provide to the equipment operator immediate information about the thin films as they are deposited. This DoE Supply Chain program is considered the first step towards the development of intelligent optical control system capable of dynamically adjusting the manufacturing process “on-the-fly” in order to achieve better performance. The proposed system will improve the thin film solar cell manufacturing by improving the quality of the individual solar cells and will allow for the manufacturing of more consistent and uniform products resulting in higher solar conversion efficiency and manufacturing yield. It will have a significant impact on the multibillion-dollar thin film solar market. We estimate that the financial impact of these improvements if adopted by only 10% of the industry ($7.7 Billion) would result in about $1.5 Billion in savings by 2015 (at the assumed 20% improvement). This can b

  10. Thin Film Solar Cells with Light Trapping Transparent Conducting Oxide Layer 

    E-Print Network [OSTI]

    Lu, Tianlin

    2012-07-16

    Thin film solar cells, if film thickness is thinner than the optical absorption length, typically give lower cell performance. For the thinner structure, electric current loss due to light penetration can offset the electric ...

  11. Characterization of the viscoelastic properties of thin-film materials using dynamic-mechanical testing techniques 

    E-Print Network [OSTI]

    Biskup, Bruce Allen

    1994-01-01

    An investigation into the use of dynamic mechanical analysis to characterize the viscoelastic properties of thin film materials is presented. The methodology was investigated using polyethylene films used on high altitude research balloons. Time...

  12. Near-infrared photodetector consisting of J-aggregating cyanine dye and metal oxide thin films

    E-Print Network [OSTI]

    Osedach, Timothy P.

    We demonstrate a near-infrared photodetector that consists of a thin film of the J-aggregating cyanine dye, U3, and transparent metal-oxide charge transport layers. The high absorption coefficient of the U3 film, combined ...

  13. Quantitative analysis of anisotropic edge retraction during solid-state dewetting of thin single crystal films

    E-Print Network [OSTI]

    Kim, Gye Hyun

    2012-01-01

    In the as-deposited state, thin films are generally far from equilibrium and will agglomerate or dewet to form arrays of islands when sufficient atomic motion is allowed. Dewetting can occur well below the films' melting ...

  14. Bi-Sr-Ca-Cu-O thin films grown by flash evaporation and pulsed laser deposition 

    E-Print Network [OSTI]

    Ganapathy Subramanian, Santhana

    2004-09-30

    -phase 2212 films were grown on a MgO substrate using the pulsed laser deposition technique from commercially available 2212 powder. The effect of annealing on the thin films was also studied....

  15. Universal scaling of the critical temperature for thin films near the superconducting-to-insulating transition

    E-Print Network [OSTI]

    Ivry, Yachin

    Thin superconducting films form a unique platform for geometrically confined, strongly interacting electrons. They allow an inherent competition between disorder and superconductivity, which in turn enables the intriguing ...

  16. Electrochromism vs. the Bugs:DevelopingWO3 Thin Film Windows...

    Office of Scientific and Technical Information (OSTI)

    Electrochromism vs. the Bugs:DevelopingWO3 Thin Film Windows toControl Photoactive Biological Systems. Citation Details In-Document Search Title: Electrochromism vs. the...

  17. Nonlinear optical characterization of ZnS thin film synthesized by chemical spray pyrolysis method

    SciTech Connect (OSTI)

    G, Sreeja V; Anila, E. I., E-mail: anilaei@gmail.com; R, Reshmi, E-mail: anilaei@gmail.com; John, Manu Punnan, E-mail: anilaei@gmail.com [Optolectronic and Nanomaterials Research Laboratory, Department of Physics, Union Christian College, Aluva-683 102, Kerala (India); V, Sabitha P; Radhakrishnan, P. [International School of Photonics, CUSAT, Cochin-22 (India)

    2014-10-15

    ZnS thin film was prepared by Chemical Spray Pyrolysis (CSP) method. The sample was characterized by X-ray diffraction method and Z scan technique. XRD pattern showed that ZnS thin film has hexagonal structure with an average size of about 5.6nm. The nonlinear optical properties of ZnS thin film was studied by open aperture Z-Scan technique using Q-switched Nd-Yag Laser at 532nm. The Z-scan plot showed that the investigated ZnS thin film has saturable absorption behavior. The nonlinear absorption coefficient and saturation intensity were also estimated.

  18. Finite-element analysis of the deformation of thin Mylar films...

    Office of Scientific and Technical Information (OSTI)

    PROCUREMENT; PRODUCTION; QUALITY CONTROL; REFRACTIVE INDEX; SHRINKAGE; SIMULATION; SOLVENTS; TESTING; THICKNESS; THIN FILMS Word Cloud More Like This Full Text preview image...

  19. Investigation of the optical properties of MoS{sub 2} thin films...

    Office of Scientific and Technical Information (OSTI)

    ellipsometry Spectroscopic ellipsometry (SE) characterization of layered transition metal dichalcogenide (TMD) thin films grown by vapor phase sulfurization is reported. By...

  20. High-Rate Fabrication of a-Si-Based Thin-Film Solar Cells Using Large-Area VHF PECVD Processes

    SciTech Connect (OSTI)

    Deng, Xunming; Fan, Qi Hua

    2011-12-31

    The University of Toledo (UT), working in concert with it’s a-Si-based PV industry partner Xunlight Corporation (Xunlight), has conducted a comprehensive study to develop a large-area (3ft x 3ft) VHF PECVD system for high rate uniform fabrication of silicon absorber layers, and the large-area VHF PECVD processes to achieve high performance a-Si/a-SiGe or a-Si/nc-Si tandem junction solar cells during the period of July 1, 2008 to Dec. 31, 2011, under DOE Award No. DE-FG36-08GO18073. The project had two primary goals: (i) to develop and improve a large area (3 ft × 3 ft) VHF PECVD system for high rate fabrication of > = 8 Å/s a-Si and >= 20 Å/s nc-Si or 4 Å/s a-SiGe absorber layers with high uniformity in film thicknesses and in material structures. (ii) to develop and optimize the large-area VHF PECVD processes to achieve high-performance a-Si/nc-Si or a-Si/a-SiGe tandem-junction solar cells with >= 10% stable efficiency. Our work has met the goals and is summarized in “Accomplishments versus goals and objectives”.

  1. Ultrafast transient reflectance of epitaxial semiconducting perovskite thin films

    SciTech Connect (OSTI)

    Smolin, S. Y.; Guglietta, G. W.; Baxter, J. B. E-mail: smay@coe.drexel.edu; Scafetta, M. D.; May, S. J. E-mail: smay@coe.drexel.edu

    2014-07-14

    Ultrafast pump-probe transient reflectance (TR) spectroscopy was used to study carrier dynamics in an epitaxial perovskite oxide thin film of LaFeO{sub 3} (LFO) with a thickness of 40 unit cells (16?nm) grown by molecular beam epitaxy on (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7} (LSAT). TR spectroscopy shows two negative transients in reflectance with local maxima at ?2.5?eV and ?3.5?eV which correspond to two optical transitions in LFO as determined by ellipsometry. The kinetics at these transients were best fit with an exponential decay model with fast (5–40 ps), medium (?200 ps), and slow (??3?ns) components that we attribute mainly to recombination of photoexcited carriers. Moreover, these reflectance transients did not completely decay within the observable time window, indicating that ?10% of photoexcited carriers exist for at least 3?ns. This work illustrates that TR spectroscopy can be performed on thin (<20?nm) epitaxial oxide films to provide a quantitative understanding of recombination lifetimes, which are important parameters for the potential utilization of perovskite films in photovoltaic and photocatalytic applications.

  2. Buffer layer for thin film structures

    DOE Patents [OSTI]

    Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.; Wang, Haiyan

    2010-06-15

    A composite structure including a base substrate and a layer of a mixture of strontium titanate and strontium ruthenate is provided. A superconducting article can include a composite structure including an outermost layer of magnesium oxide, a buffer layer of strontium titanate or a mixture of strontium titanate and strontium ruthenate and a top-layer of a superconducting material such as YBCO upon the buffer layer.

  3. Buffer layer for thin film structures

    DOE Patents [OSTI]

    Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.; Wang, Haiyan

    2006-10-31

    A composite structure including a base substrate and a layer of a mixture of strontium titanate and strontium ruthenate is provided. A superconducting article can include a composite structure including an outermost layer of magnesium oxide, a buffer layer of strontium titanate or a mixture of strontium titanate and strontium ruthenate and a top-layer of a superconducting material such as YBCO upon the buffer layer.

  4. Epitaxial ternary nitride thin films prepared by a chemical solution method

    SciTech Connect (OSTI)

    Luo, Hongmei [Los Alamos National Laboratory; Feldmann, David M [Los Alamos National Laboratory; Wang, Haiyan [TEXAS A& M; Bi, Zhenxing [TEXAS A& M

    2008-01-01

    It is indispensable to use thin films for many technological applications. This is the first report of epitaxial growth of ternary nitride AMN2 films. Epitaxial tetragonal SrTiN2 films have been successfully prepared by a chemical solution approach, polymer-assisted deposition. The structural, electrical, and optical properties of the films are also investigated.

  5. Silicon-integrated thin-film structure for electro-optic applications

    DOE Patents [OSTI]

    McKee, Rodney A. (Kingston, TN); Walker, Frederick Joseph (Oak Ridge, TN)

    2000-01-01

    A crystalline thin-film structure suited for use in any of an number of electro-optic applications, such as a phase modulator or a component of an interferometer, includes a semiconductor substrate of silicon and a ferroelectric, optically-clear thin film of the perovskite BaTiO.sub.3 overlying the surface of the silicon substrate. The BaTiO.sub.3 thin film is characterized in that substantially all of the dipole moments associated with the ferroelectric film are arranged substantially parallel to the surface of the substrate to enhance the electro-optic qualities of the film.

  6. Design and development of an in-line sputtering system and process development of thin film multilayer neutron supermirrors

    SciTech Connect (OSTI)

    Biswas, A.; Sampathkumar, R.; Kumar, Ajaya; Bhattacharyya, D.; Sahoo, N. K.; Lagoo, K. D.; Veerapur, R. D.; Padmanabhan, M.; Puri, R. K.; Bhattacharya, Debarati; Singh, Surendra; Basu, S.

    2014-12-15

    Neutron supermirrors and supermirror polarizers are thin film multilayer based devices which are used for reflecting and polarizing neutrons in various neutron based experiments. In the present communication, the in-house development of a 9 m long in-line dc sputtering system has been described which is suitable for deposition of neutron supermirrors on large size (1500 mm × 150 mm) substrates and in large numbers. The optimisation process of deposition of Co and Ti thin film, Co/Ti periodic multilayers, and a-periodic supermirrors have also been described. The system has been used to deposit thin film multilayer supermirror polarizers which show high reflectivity up to a reasonably large critical wavevector transfer of ?0.06 Å{sup ?1} (corresponding to m = 2.5, i.e., 2.5 times critical wavevector transfer of natural Ni). The computer code for designing these supermirrors has also been developed in-house.

  7. Method for controlling energy density for reliable pulsed laser deposition of thin films

    SciTech Connect (OSTI)

    Dowden, P. C., E-mail: dowden@lanl.gov, E-mail: qxjia@lanl.gov; Bi, Z.; Jia, Q. X., E-mail: dowden@lanl.gov, E-mail: qxjia@lanl.gov [Center for Integrated Nanotechnologies, Division of Materials Physics and Applications, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-02-15

    We have established a methodology to stabilize the laser energy density on a target surface in pulsed laser deposition of thin films. To control the focused laser spot on a target, we have imaged a defined aperture in the beamline (so called image-focus) instead of focusing the beam on a target based on a simple “lens-focus.” To control the laser energy density on a target, we have introduced a continuously variable attenuator between the output of the laser and the imaged aperture to manipulate the energy to a desired level by running the laser in a “constant voltage” mode to eliminate changes in the lasers’ beam dimensions. This methodology leads to much better controllability/reproducibility for reliable pulsed laser deposition of high performance electronic thin films.

  8. Studies on nickel-tungsten oxide thin films

    SciTech Connect (OSTI)

    Usha, K. S. [Department of Physics, Alagappa University, Karaikudi - 630 004 (India); Sivakumar, R., E-mail: krsivakumar1979@yahoo.com [Directorate of Distance Education, Alagappa University, Karaikudi - 630 004 (India); Sanjeeviraja, C. [Department of Physics, Alagappa Chettiar College of Engineering and Technology, Karaikudi - 630 004 (India)

    2014-10-15

    Nickel-Tungsten oxide (95:5) thin films were prepared by rf sputtering at 200W rf power with various substrate temperatures. X-ray diffraction study reveals the amorphous nature of films. The substrate temperature induced decrease in energy band gap with a maximum transmittance of 71%1 was observed. The Micro-Raman study shows broad peaks at 560 cm{sup ?1} and 1100 cm{sup ?1} correspond to Ni-O vibration and the peak at 860 cm{sup ?1} can be assigned to the vibration of W-O-W bond. Photoluminescence spectra show two peaks centered on 420 nm and 485 nm corresponding to the band edge emission and vacancies created due to the addition of tungsten, respectively.

  9. Microstructure of amorphous indium oxide and tin oxide thin films

    SciTech Connect (OSTI)

    Rauf, I.A.; Brown, L.M. (Univ. of Cambridge (United Kingdom))

    1994-03-15

    Indium oxide, tin oxide, and some other doped and undoped oxide semiconductors show an interesting and technologically important combination of properties. They have high luminous transparency, good electrical conductivity and high infrared reflectivity. Numerous techniques for depositing these materials have been developed and have undergone a number of changes during last two decades. An understanding of the basic physics of these materials has begun to dawn. Most of the literature on transparent conducting oxides consists of studying the dependence of the properties on the composition, preparation conditions, such as deposition rate, substrate temperature or post-deposition heat treatment. In this paper the authors have employed the transmission electron microscopy to study the microstructure of reactively evaporated, electron beam evaporated, ion-beam sputtered amorphous indium oxide and reactively evaporated amorphous tin oxide thin films. These films, which have received little attention in the past, can have enormous potential as transparent conductive coatings on heat-sensitive substrates and inexpensive solar cells.

  10. Nanocomposite thin films for optical gas sensing

    SciTech Connect (OSTI)

    Ohodnicki, Paul R; Brown, Thomas D

    2014-06-03

    The disclosure relates to a plasmon resonance-based method for gas sensing in a gas stream utilizing a gas sensing material. In an embodiment the gas stream has a temperature greater than about 500.degree. C. The gas sensing material is comprised of gold nanoparticles having an average nanoparticle diameter of less than about 100 nanometers dispersed in an inert matrix having a bandgap greater than or equal to 5 eV, and an oxygen ion conductivity less than approximately 10.sup.-7 S/cm at a temperature of 700.degree. C. Exemplary inert matrix materials include SiO.sub.2, Al.sub.2O.sub.3, and Si.sub.3N.sub.4 as well as modifications to modify the effective refractive indices through combinations and/or doping of such materials. Changes in the chemical composition of the gas stream are detected by changes in the plasmon resonance peak. The method disclosed offers significant advantage over active and reducible matrix materials typically utilized, such as yttria-stabilized zirconia (YSZ) or TiO.sub.2.

  11. Thin film solar cell including a spatially modulated intrinsic layer

    DOE Patents [OSTI]

    Guha, Subhendu (Troy, MI); Yang, Chi-Chung (Troy, MI); Ovshinsky, Stanford R. (Bloomfield Hills, MI)

    1989-03-28

    One or more thin film solar cells in which the intrinsic layer of substantially amorphous semiconductor alloy material thereof includes at least a first band gap portion and a narrower band gap portion. The band gap of the intrinsic layer is spatially graded through a portion of the bulk thickness, said graded portion including a region removed from the intrinsic layer-dopant layer interfaces. The band gap of the intrinsic layer is always less than the band gap of the doped layers. The gradation of the intrinsic layer is effected such that the open circuit voltage and/or the fill factor of the one or plural solar cell structure is enhanced.

  12. Thin film superconductors and process for making same

    DOE Patents [OSTI]

    Nigrey, P.J.

    1988-01-21

    A process for the preparation of oxide superconductors from high-viscosity non-aqueous solution is described. Solutions of lanthanide nitrates, alkaline earth nitrates and copper nitrates in a 1:2:3 stoichiometric ratio, when added to ethylene glycol containing citric acid solutions, have been used to prepare highly viscous non-aqueous solutions of metal mixed nitrates-citrates. Thin films of these compositions are produced when a layer of the viscous solution is formed on a substrate and subjected to thermal decomposition.

  13. Preparation of thin ceramic films via an aqueous solution route

    DOE Patents [OSTI]

    Pederson, Larry R. (Kennewick, WA); Chick, Lawrence A. (Richland, WA); Exarhos, Gregory J. (Richland, WA)

    1989-01-01

    A new chemical method of forming thin ceramic films has been developed. An aqueous solution of metal nitrates or other soluble metal salts and a low molecular weight amino acid is coated onto a substrate and pyrolyzed. The amino acid serves to prevent precipitation of individual solution components, forming a very viscous, glass-like material as excess water is evaporated. Using metal nitrates and glycine, the method has been demonstrated for zirconia with various levels of yttria stabilization, for lanthanum-strontium chromites, and for yttrium-barium-copper oxide superconductors on various substrates.

  14. Thin-Film Material Science and Processing | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.Week DayDr. JeffreyThermalš ÐÓÔÑ ÒØ ÓworkThin-Film

  15. Hydrogen adsorption in thin films of Prussian blue analogue

    SciTech Connect (OSTI)

    Yang, Dali [Los Alamos National Laboratory; Ding, Vivian [Los Alamos National Laboratory; Luo, Junhua [Los Alamos National Laboratory; Currier, Robert P [Los Alamos National Laboratory; Obrey, Steve [Los Alamos National Laboratory; Zhao, Yusheng [Los Alamos National Laboratory

    2008-01-01

    Quartz crystal microbalance with dissipation (QCM-D) measurement was used to investigate the kinetics of the molecular hydrogen adsorption into thin films of prussian blue analogues - Cu{sub 3}[Co(CN){sub 6}]{sub 2} at ambient conditions. Although the equilibrium adsorption seems to be independent of the thickness, the adsorption rate substantially decreases with the thickness of the films. In addition, the reversibility of H{sub 2} adsorption into the Cu{sub 3}[Co(CN){sub 6}]{sub 2} films was investigated. The results indicate that the Cu{sub 3}[Co(CN){sub 6}]{sub 2} maily interacts with H{sub 2} molecules physically. The highest H{sub 2} uptake by the Cu{sub 3}[Co(CN){sub 6}]{sub 2} films is obtained when the gas phase is stagnant inside the testing cell. However, the unusual high H{sub 2} uptake obtained from the QCM-D measurement makes us question how reliable this analytic methodology is.

  16. High-performance chemical-bath deposited CdS thin-film transistors with ZrO2 gate dielectric

    E-Print Network [OSTI]

    Dondapati, Hareesh; Ha, Duc; Jenrette, Erin; Xiao, Bo; Pradhan, A. K

    2014-01-01

    2014) High-performance chemical-bath deposited CdS thin-filmWe demonstrate high performance chemical bath deposited CdSgeneration, inexpensive chemical-based low temperature

  17. Optical, ferroelectric, and piezoresponse force microscopy studies of pulsed laser deposited Aurivillius Bi?FeTi?O?? thin films

    SciTech Connect (OSTI)

    Kooriyattil, Sudheendran [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, P.O. Box 70377, San Juan, Puerto Rico 00936-8377 (United States); Department of Physics, Sree Kerala Varma College, Thrissur-680011, Kerala (India); Pavunny, Shojan P., E-mail: rkatiyar@uprrp.edu, E-mail: shojanpp@gmail.com; Barrionuevo, Danilo; Katiyar, Ram S., E-mail: rkatiyar@uprrp.edu, E-mail: shojanpp@gmail.com [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, P.O. Box 70377, San Juan, Puerto Rico 00936-8377 (United States)

    2014-10-14

    Bi?FeTi?O?? (BFTO) based Aurivillius ferroelectric thin films were fabricated on strontium ruthanate coated amorphous fused silica substrates using pulsed laser deposition technique. Optical, ferroelectric, and piezoresponse properties of these thin films were investigated. The estimated refractive index (n) and extinction coefficient (k) for these films were in the range from 2.40 to 2.59 and 0.012 to 0.19, respectively. The bandgap of the BFTO thin layers was estimated to be 2.88 eV. Domain switching and hysteresis loops of BFTO films were studied utilizing piezoresponse force microscopy (PFM). The measured apparent polarization (P{sub r}) and coercive field (E{sub c}) for the samples were 20 ?C/cm² and 250 kV/cm, respectively. The amplitude and phase hysteresis curves obtained from PFM characterization reveal that these films can be switched below 5 V. These results suggest that BFTO in thin film form is a promising material for photo ferroelectric and optoelectronic devices applications.

  18. P-14 / C. Chen P-14: AM-OLED Pixel Circuits Based on a-InGaZnO Thin Film Transistors

    E-Print Network [OSTI]

    Kanicki, Jerzy

    film transistors (TFTs) to active- matrix organic light emitting display (AM-OLED) pixel circuits-matrix organic light-emitting display (AM-OLED) is now generally viewed as the next generation display because to constantly supply a current to the organic light- emitting diode (OLED) instead of just acting like a switch

  19. Silicon Oxynitride Thin Film Barriers for PV Packaging (Poster)

    SciTech Connect (OSTI)

    del Cueto, J. A.; Glick, S. H.; Terwilliger, K. M.; Jorgensen, G. J.; Pankow, J. W.; Keyes, B. M.; Gedvilas, L. M.; Pern, F. J.

    2006-10-03

    Dielectric, adhesion-promoting, moisture barriers comprised of silicon oxynitride thin film materials (SiOxNy with various material stoichiometric compositions x,y) were applied to: 1) bare and pre-coated soda-lime silicate glass (coated with transparent conductive oxide SnO2:F and/or aluminum), and polymer substrates (polyethylene terephthalate, PET, or polyethylene napthalate, PEN); plus 2) pre- deposited photovoltaic (PV) cells and mini-modules consisting of amorphous silicon (a-Si) and copper indium gallium diselenide (CIGS) thin-film PV technologies. We used plasma enhanced chemical vapor deposition (PECVD) process with dilute silane, nitrogen, and nitrous oxide/oxygen gas mixtures in a low-power (< or = 10 milliW per cm2) RF discharge at ~ 0.2 Torr pressure, and low substrate temperatures < or = 100(degrees)C, over deposition areas ~ 1000 cm2. Barrier properties of the resulting PV cells and coated-glass packaging structures were studied with subsequent stressing in damp-heat exposure at 85(degrees)C/85% RH. Preliminary results on PV cells and coated glass indicate the palpable benefits of the barriers in mitigating moisture intrusion and degradation of the underlying structures using SiOxNy coatings with thicknesses in the range of 100-200 nm.

  20. Method of lift-off patterning thin films in situ employing phase change resists

    DOE Patents [OSTI]

    Bahlke, Matthias Erhard; Baldo, Marc A; Mendoza, Hiroshi Antonio

    2014-09-23

    Method for making a patterned thin film of an organic semiconductor. The method includes condensing a resist gas into a solid film onto a substrate cooled to a temperature below the condensation point of the resist gas. The condensed solid film is heated selectively with a patterned stamp to cause local direct sublimation from solid to vapor of selected portions of the solid film thereby creating a patterned resist film. An organic semiconductor film is coated on the patterned resist film and the patterned resist film is heated to cause it to sublime away and to lift off because of the phase change.

  1. Thin Films for Microelectronics and Photonics: Physics, Mechanics,

    E-Print Network [OSTI]

    Volinsky, Alex A.

    , and carried out using accurate val- ues of material properties, are more valuable than simulations based on ad for years included the need for accurate modeling based on actual material properties. The 2003 version. With silicon-on-insulator (SOI) and strained silicon, semiconductor films have entered commercial design

  2. Damage mechanisms in thin film solar cells during sputtering deposition of transparent conductive coatings

    SciTech Connect (OSTI)

    Fan Qihua; Liao Xianbo [Department of Physics and Astronomy, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606 (United States); Deng, Michael [Xunlight Corporation, 3145 Nebraska Avenue, Toledo, Ohio 43607 (United States); Deng Xunming [Department of Physics and Astronomy, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606 (United States); Xunlight Corporation, 3145 Nebraska Avenue, Toledo, Ohio 43607 (United States)

    2009-02-01

    Amorphous silicon (a-Si) based thin film solar cell grown on flexible stainless steel substrate is one of the most promising energy conversion devices in the future. This type of solar cell uses a transparent conductive oxide (TCO) film as top electrode. It has been a widely accepted opinion that the radio frequency sputtering deposition of the TCO film produces a higher yield than direct current sputtering, and the reason is not clear. Here we show that the damage to the solar cell during the sputtering process is caused by a reverse bias applied to the n-i-p junction. This reverse bias is related to the characteristics of plasma discharge. The mechanism we reveal may significantly affect the solar cell process.

  3. Effects of Process Conditions on Properties of Electroplated Ni Thin Films for Microsystem Applications

    E-Print Network [OSTI]

    Fleck, Norman A.

    Effects of Process Conditions on Properties of Electroplated Ni Thin Films for Microsystem, Southampton SO17 1QJ, United Kingdom The properties of electroplated Ni thin films have been systematically, micromotors, and pneumatic actuators.3-11 Ni and NiFe are the electroplated metals most commonly used for MEMS

  4. Ambient induced degradation and chemically activated recovery in copper phthalocyanine thin film transistors

    E-Print Network [OSTI]

    Kummel, Andrew C.

    Ambient induced degradation and chemically activated recovery in copper phthalocyanine thin film 2009 The electrical degradation aging of copper phthalocyanine CuPc organic thin film transistors OTFTs of Physics. DOI: 10.1063/1.3159885 I. INTRODUCTION The recent demand for low cost, versatile electronic de

  5. THE LUBRICATION APPROXIMATION FOR THIN VISCOUS FILMS: REGULARITY AND LONG TIME BEHAVIOR OF WEAK SOLUTIONS

    E-Print Network [OSTI]

    Pugh, Mary

    THE LUBRICATION APPROXIMATION FOR THIN VISCOUS FILMS: REGULARITY AND LONG TIME BEHAVIOR OF WEAK = - · (f(h) h) in one space dimension. This equation, derived from a `lubrication approximation', models from a `lubrication approximation', models surface tension dominated motion of thin viscous films

  6. High quality crystalline YBa2Cu307+ films on thin silicon substrates FL Haakenaasen

    E-Print Network [OSTI]

    Golovchenko, Jene A.

    High quality crystalline YBa2Cu307+ films on thin silicon substrates FL Haakenaasen Department) films with near perfect crystallinity have been grown epitaxially on Si(100) using two intermediate good crystallinity and be quite thin ((1 m)? Relativistic electrons are sent through the crystal

  7. Focused ion beam specimen preparation for electron holography of electrically biased thin film solar cells

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    solar cells M. Duchamp1 , M. den Hertog2 , R. Imlau1 , C. B. Boothroyd1 , A. Kovács1 , A. H. Tavabi1, biased TEM specimen, thin film solar cell, FIB Thin films of hydrogenated Si (Si:H) can be used as active absorber layers in solar cells deposited on low cost substrates using plasma-enhanced chemical vapour

  8. Dual gratings for enhanced light trapping in thin-film solar cells

    E-Print Network [OSTI]

    Dual gratings for enhanced light trapping in thin-film solar cells by a layer-transfer technique, Ireland * christian.schuster@york.ac.uk Abstract: Thin film solar cells benefit significantly from, "Progress and outlook for high-efficiency crystalline silicon solar cells," Sol. Energy Mater. Sol. Cells 65

  9. Optimization of the absorption efficiency of an amorphous-silicon thin-film tandem solar cell

    E-Print Network [OSTI]

    to bring down the cost of photovoltaic (PV) solar cells has gained huge momentum, and many strategiesOptimization of the absorption efficiency of an amorphous-silicon thin-film tandem solar cell-wave approach was used to compute the plane-wave absorptance of a thin-film tandem solar cell with a metallic

  10. Optimization and Characterization of RF Sputtered Piezoelectric Zinc Oxide Thin Film for

    E-Print Network [OSTI]

    Tang, William C

    Oxide (ZnO) thin films had been found to have unique piezoelectric effect for the applicationsOptimization and Characterization of RF Sputtered Piezoelectric Zinc Oxide Thin Film for Transducer Applications Yu-Hsiang Hsu, John Lin, and William C. Tang* Department of Biomedical Engineering University

  11. Thin-Film Active Nano-PWAS for Structural Health Monitoring , Victor Giurgiutiu1

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    Thin-Film Active Nano-PWAS for Structural Health Monitoring Bin Lin1 , Victor Giurgiutiu1 , Amar S 3 University of Texas Arlington, Arlington, TX 76019 ABSTRACT Structural health monitoring (SHM is to develop the fabrication and optimum design of thin-film nano-PWAS for structural health monitoring

  12. Organic thin film devices with stabilized threshold voltage and mobility, and method for preparing the devices

    DOE Patents [OSTI]

    Nastasi, Michael Anthony; Wang, Yongqiang; Fraboni, Beatrice; Cosseddu, Piero; Bonfiglio, Annalisa

    2013-06-11

    Organic thin film devices that included an organic thin film subjected to a selected dose of a selected energy of ions exhibited a stabilized mobility (.mu.) and threshold voltage (VT), a decrease in contact resistance R.sub.C, and an extended operational lifetime that did not degrade after 2000 hours of operation in the air.

  13. Conductive polymer/fullerene blend thin films with honeycomb framework for transparent photovoltaic application

    DOE Patents [OSTI]

    Cotlet, Mircea; Wang, Hsing-Lin; Tsai, Hsinhan; Xu, Zhihua

    2015-04-21

    Optoelectronic devices and thin-film semiconductor compositions and methods for making same are disclosed. The methods provide for the synthesis of the disclosed composition. The thin-film semiconductor compositions disclosed herein have a unique configuration that exhibits efficient photo-induced charge transfer and high transparency to visible light.

  14. Configuration Optimization of a Nanosphere Array on Top of a Thin Film Solar Cell

    E-Print Network [OSTI]

    Grandidier, Jonathan

    Configuration Optimization of a Nanosphere Array on Top of a Thin Film Solar Cell J. Grandidier photocurrent of the solar cell. On a typical thin film amorphous silicon solar cell, a parametric analysis of SiO2 spheres directly placed on top of a-Si [1] and gallium arsenide (GaAs) [3] solar cells. We

  15. Semiconductor heterostructures and optimization of light-trapping structures for efficient thin-film solar cells

    E-Print Network [OSTI]

    Yu, Edward T.

    and optimization of light-trapping structures for efficient thin-film solar cells Claiborne O McPheeters1 , Dongzhi elements are integrated for light trapping. Measurements and simulations of GaAs solar cells with less than in their performance. Keywords: quantum-well, quantum-dot, scattering, diffraction, thin-film, GaAs, InAs, photovoltaic

  16. The peeling behavior of thin films with finite bending stiffness and the implications on gecko adhesion

    E-Print Network [OSTI]

    . This paper assesses the influence of the bending stiffness on thin film peeling and argues that detailedThe peeling behavior of thin films with finite bending stiffness and the implications on gecko the bending stiffness of the spatula has a strong influence on the peeling force which is neglected

  17. Bending tests of carbon nanotube thin-film transistors on flexible Daniel Pham1

    E-Print Network [OSTI]

    Chen, Ray

    Bending tests of carbon nanotube thin-film transistors on flexible substrate Daniel Pham1 , Harish, San Marcos, TX 78666. ABSTRACT Bending tests of carbon nanotube thin-film transistors on flexible substrate have been characterized in this paper. The device channel consisting of dense, aligned, 99% pure

  18. Mixed-mode interfacial adhesive strength of a thin film on an anisotropic substrate

    E-Print Network [OSTI]

    Sottos, Nancy R.

    Mixed-mode interfacial adhesive strength of a thin film on an anisotropic substrate Rajesh Kiteya adhesion strength between a gold (Au) thin film and an anisotropic passivated silicon (Si) substrate delamination remain a major reliability concern as interfacial properties, in particular interfacial adhesion

  19. Tearing as a test for mechanical characterization of thin adhesive films

    E-Print Network [OSTI]

    Roman, Benoît

    ARTICLES Tearing as a test for mechanical characterization of thin adhesive films EUGENIO HAMM1 Thin adhesive films have become increasingly important in applications involving packaging, coating of the conversion of bending energy into surface energy of fracture and adhesion. In particular, this triangular

  20. Growth and characterization of aligned carbon nanotubes from patterned nickel nanodots and uniform thin films

    E-Print Network [OSTI]

    Reed, Mark

    Growth and characterization of aligned carbon nanotubes from patterned nickel nanodots and uniform nanotubes grown on patterned nickel nanodots and uniform thin films by plasma-enhanced chemical vapor on patterned nickel nanodots and uniform thin films is different. During growth of carbon nanotubes, a nickel

  1. Role of oxide thickening in fatigue crack initiation in LIGA nickel MEMS thin films

    E-Print Network [OSTI]

    Shan, Wanliang

    Role of oxide thickening in fatigue crack initiation in LIGA nickel MEMS thin films W.L. Shan a 2012 Accepted 16 October 2012 Available online 24 October 2012 Keywords: LIGA Ni MEMS thin films Oxide micro-electro-mechanical-systems (MEMS) structures. & 2012 Elsevier B.V. All rights reserved. 1

  2. Fracture toughness of polycrystalline silicon carbide thin films J. J. Bellante and H. Kahn

    E-Print Network [OSTI]

    Ballarini, Roberto

    Fracture toughness of polycrystalline silicon carbide thin films J. J. Bellante and H. Kahn online 11 February 2005 Thin film polycrystalline silicon carbide poly-SiC doubly clamped microtensile reported, including pressure sensors,2,3 bolometers,4 resonators,5,6 and fuel atomizers;7 these were

  3. Thin-film Lithium Niobate Contour-mode Resonators Renyuan Wang and Sunil A. Bhave

    E-Print Network [OSTI]

    Afshari, Ehsan

    Thin-film Lithium Niobate Contour-mode Resonators Renyuan Wang and Sunil A. Bhave School Micro Devices, Inc. Greensboro, North Carolina, USA Abstract--This paper presents Lithium Niobate (LN this platform, we demonstrate, on a black Y136 cut Lithium Niobate thin-film, one-port high-order width

  4. Photonic light trapping and electrical transport in thin-film silicon solar cells

    E-Print Network [OSTI]

    Photonic light trapping and electrical transport in thin-film silicon solar cells Lucio Claudio Keywords: Thin-film solar cells Light trapping Photonic structures Carrier collection Electro-optical simulations Surface recombination a b s t r a c t Efficient solar cells require both strong absorption

  5. Extended light scattering model incorporating coherence for thin-film silicon solar cells

    E-Print Network [OSTI]

    Lenstra, Arjen K.

    Extended light scattering model incorporating coherence for thin-film silicon solar cells Thomas film solar cells. The model integrates coherent light propagation in thin layers with a direct, non efficiency spectra of state-of-the-art microcrystalline silicon solar cells. The simulations agree very well

  6. Bill Shafarman 1 May 15, 2013 Thin Film Photovoltaics Research at the

    E-Print Network [OSTI]

    Firestone, Jeremy

    Bill Shafarman 1 May 15, 2013 Thin Film Photovoltaics Research at the Institute of Energy of Photovoltaics 2. IEC: History and Capabilities 3. Current Research at IEC #12;Bill Shafarman 2 May 15, 2013 Concentrators #12;Bill Shafarman 5 May 15, 2013 Thin Film Photovoltaics Potential for low cost PV using " a

  7. Study of the thin-film palladium/hydrogen system by an optical transmittance method

    E-Print Network [OSTI]

    Mandelis, Andreas

    Study of the thin-film palladium/hydrogen system by an optical transmittance method Jose A. Garcia, Canada Received 22 March 1996; accepted for publication 21 August 1996 The thin-film palladium/hydrogen Laboratory and Center for Hydrogen and Electrochemical Studies (CHES), University of Toronto, Toronto M5S 3G8

  8. Resonant cavity enhanced light harvesting in flexible thin-film organic solar cells

    E-Print Network [OSTI]

    Fan, Shanhui

    Resonant cavity enhanced light harvesting in flexible thin-film organic solar cells Nicholas P of solar energy conversion be- cause they use thin films of photoactive material and can be manufactured and photocurrent in flexible organic solar cells. We demonstrate that this enhancement is attributed to a broadband

  9. Molecular Dynamics Simulation of Thin Films with Rough and Asymmetric Interfaces

    E-Print Network [OSTI]

    Walker, D. Greg

    Molecular Dynamics Simulation of Thin Films with Rough and Asymmetric Interfaces N.A. Roberts with the use of interfaces and shows that pristine, imperfect and asymmetric interfaces in thin films can interface whose features are of the order of the phonon wavelength. At a constant temperature difference

  10. Investigation of Solar Energy Transfer through Plasmonic Au Nanoparticle-doped Sol-derived TiO? Thin Films in Photocatalysis and Photovoltaics /

    E-Print Network [OSTI]

    Zelinski, Andrew

    2013-01-01

    TiO 2 Thin Films in Photocatalysis and Photovoltaics ATiO 2 Thin Films in Photocatalysis and Photovoltaics by

  11. Surface structure determinations of crystalline ionic thin films grown on transition metal single crystal surfaces by low energy electron diffraction

    SciTech Connect (OSTI)

    Roberts, J.G.

    2000-05-01

    The surface structures of NaCl(100), LiF(100) and alpha-MgCl2(0001) adsorbed on various metal single crystals have been determined by low energy electron diffraction (LEED). Thin films of these salts were grown on metal substrates by exposing the heated metal surface to a molecular flux of salt emitted from a Knudsen cell. This method of investigating thin films of insulators (ionic salts) on a conducting substrate (metal) circumvents surface charging problems that plagued bulk studies, thereby allowing the use of electron-based techniques to characterize the surface.

  12. High-field magnets using high-critical-temperature superconducting thin films

    DOE Patents [OSTI]

    Mitlitsky, F.; Hoard, R.W.

    1994-05-10

    High-field magnets fabricated from high-critical-temperature superconducting ceramic (HTSC) thin films which can generate fields greater than 4 Tesla are disclosed. The high-field magnets are made of stackable disk-shaped substrates coated with HTSC thin films, and involves maximizing the critical current density, superconducting film thickness, number of superconducting layers per substrate, substrate diameter, and number of substrates while minimizing substrate thickness. The HTSC thin films are deposited on one or both sides of the substrates in a spiral configuration with variable line widths to increase the field. 4 figures.

  13. High-field magnets using high-critical-temperature superconducting thin films

    DOE Patents [OSTI]

    Mitlitsky, Fred (Livermore, CA); Hoard, Ronald W. (Livermore, CA)

    1994-01-01

    High-field magnets fabricated from high-critical-temperature superconducting ceramic (HTSC) thin films which can generate fields greater than 4 Tesla. The high-field magnets are made of stackable disk-shaped substrates coated with HTSC thin films, and involves maximizing the critical current density, superconducting film thickness, number of superconducting layers per substrate, substrate diameter, and number of substrates while minimizing substrate thickness. The HTSC thin films are deposited on one or both sides of the substrates in a spiral configuration with variable line widths to increase the field.

  14. Thin Film Coating Optimization For HIE-ISOLDE SRF Cavities: Coating Parameters Study and Film Characterization

    E-Print Network [OSTI]

    Sublet, A; Calatroni, S; Costa Pinto, P; Jecklin, N; Prunet, S; Sapountzis, A; Venturini Delsolaro, W; Vollenberg, W

    2013-01-01

    The HIE-ISOLDE project at CERN requires the production of 32 superconducting Quarter Wave Resonators (QWRs) in order to increase the energy of the beam up to 10 MeV/u. The cavities, of complex cylindrical geometry (0.3m diameter and 0.8m height), are made of copper and are coated with a thin superconducting layer of niobium. In the present phase of the project the aim is to obtain a niobium film, using the DC bias diode sputtering technique, providing adequate high quality factor of the cavities and to ensure reproducibility for the future series production. After an overview of the explored coating parameters (hardware and process), the resulting film characteristics, thickness profile along the cavity, structure and morphology and Residual Resistivity Ratio (RRR) of the Nb film will be shown. The effect of the sputtering gas process pressure and configuration of the coating setup will be highlighted.

  15. Dissociation of dilute immiscible copper alloy thin films

    SciTech Connect (OSTI)

    Barmak, K.; Lucadamo, G. A.; Cabral, C. Jr.; Lavoie, C.; Harper, J. M. E.

    2000-03-01

    The dissociation behavior of dilute, immiscible Cu-alloy thin films is found to fall into three broad categories that correlate most closely with the form of the Cu-rich end of the binary alloy phase diagrams. Available thermodynamic and tracer diffusion data shed further light on alloy behavior. Eight alloying elements were selected for these studies, with five elements from groups 5 and 6, two from group 8, and one from group 11 of the periodic table. They are respectively V, Nb, Ta, Cr, Mo, Fe, Ru, and Ag. The progress of precipitation in approximately 500-nm-thick alloy films, containing 2.5-3.8 at. % solute, was followed with in situ resistance and stress measurements as well as with in situ synchrotron x-ray diffraction. In addition, texture analysis and transmission electron microscopy were used to investigate the evolution of microstructure and texture of Cu(Ta) and Cu(Ag). For all eight alloys, dissociation occurred upon heating, with the rejection of solute and evolution of microstructure often occurring in multiple steps that range over several hundred degrees between approximately 100 and 900 degree sign C. However, in most cases, substantial reductions in resistivity of the films took place below 400 degree sign C, at temperatures of interest to copper metallization schemes for silicon chip technology. (c) 2000 American Institute of Physics.

  16. Development of Nb and Alternative Material Thin Films Tailored for SRF Applications

    SciTech Connect (OSTI)

    Valente-Feliciano, A -M; Reece, C E; Spradlin, J K; Xiao, B; Zhao, X; Gu, Diefeng; Baumgart, Helmut; Beringer, Douglas; Lukaszew, Rosa

    2011-09-01

    Over the years, Nb/Cu technology, despite its shortcomings due to the commonly used magnetron sputtering, has positioned itself as an alternative route for the future of superconducting structures used in accelerators. Recently, significant progress has been made in the development of energetic vacuum deposition techniques, showing promise for the production of thin films tailored for SRF applications. JLab is pursuing energetic condensation deposition via techniques such as Electron Cyclotron Resonance and High Power Impulse Magnetron Sputtering. As part of this project, the influence of the deposition energy on the material and RF properties of the Nb thin film is investigated with the characterization of their surface, structure, superconducting properties and RF response. It has been shown that the film RRR can be tuned from single digits to values greater than 400. This paper presents results on surface impedance measurements correlated with surface and material characterization for Nb films produced on various substrates, monocrystalline and polycrystalline as well as amorphous. A progress report on work on NbTiN and AlN based multilayer structures will also be presented.

  17. Polarity compensation in ultra-thin films of complex oxides: The case of a perovskite nickelate

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Middey, S.; Rivero, P.; Meyers, D.; Kareev, M.; Liu, X.; Cao, Y.; Freeland, J. W.; Barraza-Lopez, S.; Chakhalian, J.

    2014-10-29

    We address the fundamental issue of growth of perovskite ultra-thin films under the condition of a strong polar mismatch at the heterointerface exemplified by the growth of a correlated metal LaNiO3 on the band insulator SrTiO3 along the pseudo cubic [111] direction. While in general the metallic LaNiO3 film can effectively screen this polarity mismatch, we establish that in the ultra-thin limit, films are insulating in nature and require additional chemical and structural reconstruction to compensate for such mismatch. A combination of in-situ reflection high-energy electron diffraction recorded during the growth, X-ray diffraction, and synchrotron based resonant X-ray spectroscopy revealmore »the formation of a chemical phase La2Ni2O5 (Ni2+) for a few unit-cell thick films. First-principles layer-resolved calculations of the potential energy across the nominal LaNiO3/SrTiO3 interface confirm that the oxygen vacancies can efficiently reduce the electric field at the interface.« less

  18. Polarity compensation in ultra-thin films of complex oxides: The case of a perovskite nickelate

    SciTech Connect (OSTI)

    Middey, S.; Rivero, P.; Meyers, D.; Kareev, M.; Liu, X.; Cao, Y.; Freeland, J. W.; Barraza-Lopez, S.; Chakhalian, J.

    2014-10-29

    We address the fundamental issue of growth of perovskite ultra-thin films under the condition of a strong polar mismatch at the heterointerface exemplified by the growth of a correlated metal LaNiO3 on the band insulator SrTiO3 along the pseudo cubic [111] direction. While in general the metallic LaNiO3 film can effectively screen this polarity mismatch, we establish that in the ultra-thin limit, films are insulating in nature and require additional chemical and structural reconstruction to compensate for such mismatch. A combination of in-situ reflection high-energy electron diffraction recorded during the growth, X-ray diffraction, and synchrotron based resonant X-ray spectroscopy reveal the formation of a chemical phase La2Ni2O5 (Ni2+) for a few unit-cell thick films. First-principles layer-resolved calculations of the potential energy across the nominal LaNiO3/SrTiO3 interface confirm that the oxygen vacancies can efficiently reduce the electric field at the interface.

  19. Atomically Thin Heterostructures based on Single-Layer Tungsten...

    Office of Scientific and Technical Information (OSTI)

    Atomically Thin Heterostructures based on Single-Layer Tungsten Diselenide and Graphene. Citation Details In-Document Search Title: Atomically Thin Heterostructures based on...

  20. Enhancement of Heat and Mass Transfer in Mechanically Contstrained Ultra Thin Films

    SciTech Connect (OSTI)

    Kevin Drost; Jim Liburdy; Brian Paul; Richard Peterson

    2005-01-01

    Oregon State University (OSU) and the Pacific Northwest National Laboratory (PNNL) were funded by the U.S. Department of Energy to conduct research focused on resolving the key technical issues that limited the deployment of efficient and extremely compact microtechnology based heat actuated absorption heat pumps and gas absorbers. Success in demonstrating these technologies will reduce the main barriers to the deployment of a technology that can significantly reduce energy consumption in the building, automotive and industrial sectors while providing a technology that can improve our ability to sequester CO{sub 2}. The proposed research cost $939,477. $539,477 of the proposed amount funded research conducted at OSU while the balance ($400,000) was used at PNNL. The project lasted 42 months and started in April 2001. Recent developments at the Pacific Northwest National Laboratory and Oregon State University suggest that the performance of absorption and desorption systems can be significantly enhanced by the use of an ultra-thin film gas/liquid contactor. This device employs microtechnology-based structures to mechanically constrain the gas/liquid interface. This technology can be used to form very thin liquid films with a film thickness less then 100 microns while still allowing gas/liquid contact. When the resistance to mass transfer in gas desorption and absorption is dominated by diffusion in the liquid phase the use of extremely thin films (<100 microns) for desorption and absorption can radically reduce the size of a gas desorber or absorber. The development of compact absorbers and desorbers enables the deployment of small heat-actuated absorption heat pumps for distributed space heating and cooling applications, heat-actuated automotive air conditioning, manportable cooling, gas absorption units for the chemical process industry and the development of high capacity CO{sub 2} absorption devices for CO{sub 2} collection and sequestration. The energy potential energy savings associated with these technologies is estimated to ultimately be 2.88 quads per year. It has become clear that commercial application of these technologies depends on a deeper understanding of the thermal phenomena encountered in a mechanically constrained ultra-thin film device. Our lack of understanding is currently limiting both the performance of these devices and the potential for further size reductions. Barriers to successful commercial applications of the mechanically-constrained ultra-thin film contactors include poorly understood single and two phase flow phenomena in the thin film, the need for improved micromachined contactors and a poor understanding of the phenomena effecting the dimensional stability of the thin film. The research included in this proposal is focused on research associated with resolving and removing these technical barriers to commercialization. The results of the research will significantly advance the prospects for the commercialization of the whole range to technologies that depend on improved gas/liquid contacting.

  1. Universality of non-Ohmic shunt leakage in thin-film solar cells S. Dongaonkar,1,a

    E-Print Network [OSTI]

    Alam, Muhammad A.

    Universality of non-Ohmic shunt leakage in thin-film solar cells S. Dongaonkar,1,a J. D. Servaites thin-film solar cell types: hydrogenated amorphous silicon a-Si:H p-i-n cells, organic bulk understanding of thin film solar cell device physics, including important module performance variability issues

  2. Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors

    E-Print Network [OSTI]

    Polman, Albert

    Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors is a critical component of solar cell development. In typical thin film cells the thickness of the absorbing of photovoltaic power. Thin film Si solar cells using hydrogenated amorphous Si a-Si:H and nano- crystalline Si nc

  3. Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells M. van Lare,1

    E-Print Network [OSTI]

    Polman, Albert

    Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells M. van Lare,1 F a completed thin-film a-Si:H solar cell. Current-voltage measurements show a photocurrent enhancement of 10 of Physics. [http://dx.doi.org/10.1063/1.4767997] Thin-film solar cells offer the potential of high photovol

  4. EFFECT OF HYDROGEN ON SURFACE TEXTURING AND CRYSTALLIZATION ON A-SI:H THIN FILM IRRADIATED BY EXCIMER LASER

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    -Si:H thin film solar cell applications. Introduction Many industrial solar cells in use today use bulk and instability, thin-film a- Si:H solar cells require a highly efficient light-trapping design to absorb cell applications. In this study, hydrogenated and dehydrogenated amorphous silicon thin films

  5. Studies of thin film hydrogenated silicon solar cells using electron energy-loss spectroscopy in the transmission electron microscope

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    Studies of thin film hydrogenated silicon solar cells using electron energy-loss spectroscopy (TEM) to study n-i-p thin film Si solar cells grown on steel foil or glass substrates. For a solar cell experiment, we study the chemical compositions of defective regions in thin film Si solar cells using energy

  6. CRYSTALLINE SILICON THIN-FILM SOLAR CELLS FROM THE POROUS SILICON PROCESS APPLYING CONVECTION ASSISTED CHEMICAL VAPOR DEPOSITION

    E-Print Network [OSTI]

    CRYSTALLINE SILICON THIN-FILM SOLAR CELLS FROM THE POROUS SILICON PROCESS APPLYING CONVECTION for the first time to monocrystalline Si thin-film solar cells from the porous silicon (PSI) layer transfer for manufacturing high efficiency silicon thin-film solar cells. Industrially feasible epitaxy systems therefore

  7. Transparent electrode requirements for thin film solar cell modules Michael W. Rowell and Michael D. McGehee*

    E-Print Network [OSTI]

    McGehee, Michael

    Transparent electrode requirements for thin film solar cell modules Michael W. Rowell and Michael D The transparent conductor (TC) layer in thin film solar cell modules has a significant impact on the power to replace conducting oxides in this geometry. Thin film solar cell modules can be manufactured either

  8. Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings

    E-Print Network [OSTI]

    Fan, Shanhui

    Enhancement of optical absorption in thin-film organic solar cells through the excitation.1063/1.3377791 Thin-film organic solar cells OSCs are a promising candidate for low-cost energy conversion.1­6 However 2010 We theoretically investigate the enhancement of optical absorption in thin-film organic solar

  9. Near perfect solar absorption in ultra-thin-film GaAs photonic crystals

    E-Print Network [OSTI]

    John, Sajeev

    Near perfect solar absorption in ultra-thin-film GaAs photonic crystals Sergey Eyderman,*a Alexei voltage of GaAs solar cells. The current world record for high efficiency solar cells is held by thin ultra-thin (GaAs in low-cost solar cells. However, this reduction in the volume

  10. Optimization of chemical bath deposited CdS thin films using nitrilotriacetic acid as a complexing agent

    E-Print Network [OSTI]

    Chow, Lee

    thin film solar cells based on CdTe or CIGS [1,2]. CdS has also been used in other applications. The highest efficiencies reported for both CdTe and CIGS solar cells were obtained when chemical bath is known to greatly enhance the performance of CdS windows used in the above mentioned solar cells

  11. Modulated IR radiometry for determining thermal properties and basic characteristics of titanium thin films

    SciTech Connect (OSTI)

    Apreutesei, Mihai; Lopes, Claudia; Vaz, Filipe; Macedo, Francisco; Borges, Joel

    2014-07-01

    Titanium thin films of different thicknesses were prepared by direct current magnetron sputtering to study modulated infrared (IR) radiometry as a tool for analyzing film thickness. Thickness was varied by regularly increasing the deposition time, keeping all the other deposition parameters constant. The influence of film thickness on morphological, structural, and electrical properties of the titanium coatings also was investigated. The experimental results revealed a systematic grain growth with increasing film thickness, along with enhanced film crystallinity, which led to increased electrical conductivity. Using the results obtained by modulated IR radiometry, the thickness of each thin film was calculated. These thickness values were then compared with the coating thickness measurements obtained by scanning electron microscopy. The values confirmed the reliability of modulated IR radiometry as an analysis tool for thin films and coatings, and for determining thicknesses in the micrometer range, in particular.

  12. Strain shielding and confined plasticity in thin polymer films: Impacts on thermomechanical data storage

    E-Print Network [OSTI]

    Strain shielding and confined plasticity in thin polymer films: Impacts on thermomechanical data shielding is present when the plastic deformation radius exceeds $65% of the film thickness. Thereafter. The shielding effects were alleviated with use of a modulus-matched buffer layer between the polymer film

  13. Sensors and Actuators A 125 (2006) 170177 Thin film temperature sensor for real-time measurement

    E-Print Network [OSTI]

    Mench, Matthew M.

    2006-01-01

    electrolyte fuel cell (PEFC). A patterned thin film gold thermistor embedded in a 16 m thick parylene film polymer elec- trolyte fuel cell (PEFC) is critical to understand for cold start, water balance of temperature in an operating PEFC. A patternedthinfilmgoldthermistorembeddedina16 mthick parylene film

  14. SEARCH FOR CHARGED -PARTICLE d -d FUSION PRODUCTS IN AN ENCAPSULATED Pd THIN FILM

    E-Print Network [OSTI]

    Neuhauser, Barbara

    of activity in two nearby Geiger counters were observed with the film loaded to a nominal 150% deuterium-to-palladium the deuterated palladium film from being sputtered by the deuterium ion beam during the implantation for charged particle reaction products from d-d fusion in a deuterated palladium thin film. A silicon nitride

  15. "Perfect" Electrochemical Molecular Sieving by Thin and Ultrathin Metallopolymeric Films

    E-Print Network [OSTI]

    such as membrane-based ultrafiltration and separa- tor-controlled fuel cell optimization. An interesting: In principle, optimization of these properties, together with binding properties, can contrib- ute tremendously to selective transport optimization is to prepare films of moderate or low thickness and then plug pinholes

  16. Preparation of Polymer Thin Films & Characterization by Fluorescence

    E-Print Network [OSTI]

    Petta, Jason

    · Found in car parts, food storage, electronic packaging, optical components adhesives proteins, starches chamber · Vacuum tray slot spins (based on set revolutions-per-minute rate) · Ultrathin, uniform films are created from high speed spinning 7 #12;Spin Coating System 8 Vacuum Substrate Spin Coater Controls #12

  17. Strain engineered barium strontium titanate for tunable thin film resonators

    SciTech Connect (OSTI)

    Khassaf, H.; Khakpash, N.; Sun, F.; Sbrockey, N. M.; Tompa, G. S.; Kalkur, T. S.; Alpay, S. P.

    2014-05-19

    Piezoelectric properties of epitaxial (001) barium strontium titanate (BST) films are computed as functions of composition, misfit strain, and temperature using a non-linear thermodynamic model. Results show that through adjusting in-plane strains, a highly adaptive rhombohedral ferroelectric phase can be stabilized at room temperature with outstanding piezoelectric response exceeding those of lead based piezoceramics. Furthermore, by adjusting the composition and the in-plane misfit, an electrically tunable piezoelectric response can be obtained in the paraelectric state. These findings indicate that strain engineered BST films can be utilized in the development of electrically tunable and switchable surface and bulk acoustic wave resonators.

  18. Effect of Shunts on Thin-Film CdTe Module Performance. Galymzhan T. Koishiyev, James R. Sites

    E-Print Network [OSTI]

    Sites, James R.

    -film module. A numerical estimate of module-efficiency loss in the worst-case scenario due to shunts-film modules have now been on the market for more than two decades, and the minimization of loss mechanisms design and geometry of most thin- film modules is essentially the same. A typical thin-film module

  19. Determination of Grain Boundary Charging in Cu(In,Ga)Se2 Thin Films: Preprint

    SciTech Connect (OSTI)

    Jiang, C. S.; Contreras, M. A.; Repins, I.; Moutinho, H. R.; Noufi, R.; Al-Jassim, M. M.

    2012-06-01

    Surface potential mapping of Cu(In,Ga)Se2 (CIGS) thin films using scanning Kelvin probe force microscopy (SKPFM) aims to understand the minority-carrier recombination at the grain boundaries (GBs) of this polycrystalline material by examining GB charging, which has resulted in a number of publications. However, the reported results are highly inconsistent. In this paper, we report on the potential mapping by measuring wide-bandgap or high-Ga-content films and by using a complementary atomic force microscopy-based electrical technique of scanning capacitance microscopy (SCM). The results demonstrate consistent, positively charged GBs on our high-quality films with minimal surface defects/charges. The potential image taken on a low-quality film with a 1.2-eV bandgap shows significantly degraded potential contrast on the GBs and degraded potential uniformity on grain surfaces, resulting from the surface defects/charges of the low-quality film. In contrast, the potential image on an improved high-quality film with the same wide bandgap shows significantly improved GB potential contrast and surface potential uniformity, indicating that the effect of surface defects is critical when examining GB charging using surface potential data. In addition, we discuss the effect of the SKPFM setup on the validity of potential measurement, to exclude possible artifacts due to improper SKPFM setups. The SKPFM results were corroborated by using SCM measurements on the films with a CdS buffer layer. The SCM image shows clear GB contrast, indicating different electrical impedance on the GB from the grain surface. Further, we found that the GB contrast disappeared when the CdS window layer was deposited after the CIGS film was exposed extensively to ambient, which was caused by the creation of CIGS surface defects by the ambient exposure.

  20. Optical limiting effects in nanostructured silicon carbide thin films

    SciTech Connect (OSTI)

    Borshch, A A; Starkov, V N; Volkov, V I; Rudenko, V I; Boyarchuk, A Yu; Semenov, A V

    2013-12-31

    We present the results of experiments on the interaction of nanosecond laser radiation at 532 and 1064 nm with nanostructured silicon carbide thin films of different polytypes. We have found the effect of optical intensity limiting at both wavelengths. The intensity of optical limiting at ? = 532 nm (I{sub cl} ? 10{sup 6} W cm{sup -2}) is shown to be an order of magnitude less than that at ? = 1064 nm (I{sub cl} ? 10{sup 7} W cm{sup -2}). We discuss the nature of the nonlinearity, leading to the optical limiting effect. We have proposed a method for determining the amount of linear and two-photon absorption in material media. (nonlinear optical phenomena)

  1. The electron beam hole drilling of silicon nitride thin films

    SciTech Connect (OSTI)

    Howitt, D. G.; Chen, S. J.; Gierhart, B. C.; Smith, R. L.; Collins, S. D.

    2008-01-15

    The mechanism by which an intense electron beam can produce holes in thin films of silicon nitride has been investigated using a combination of in situ electron energy loss spectrometry and electron microscopy imaging. A brief review of electron beam interactions that lead to material loss in different materials is also presented. The loss of nitrogen and silicon decreases with decreasing beam energy and although still observable at a beam energy of 150 keV ceases completely at 120 keV. The linear behavior of the loss rate coupled with the energy dependency indicates that the process is primarily one of direct displacement, involving the sputtering of atoms from the back surface of the specimen with the rate controlling mechanism being the loss of nitrogen.

  2. Origin of superstructures in (double) perovskite thin films

    SciTech Connect (OSTI)

    Shabadi, V. Major, M.; Komissinskiy, P.; Vafaee, M.; Radetinac, A.; Baghaie Yazdi, M.; Donner, W.; Alff, L.

    2014-09-21

    We have investigated the origin of superstructure peaks as observed by X-ray diffraction of multiferroic Bi(Fe{sub 0.5}Cr{sub 0.5})O{sub 3} thin films grown by pulsed laser deposition on single crystal SrTiO{sub 3} substrates. The photon energy dependence of the contrast between the atomic scattering factors of Fe and Cr is used to rule out a chemically ordered double perovskite Bi{sub 2}FeCrO{sub 6} (BFCO). Structural calculations suggest that the experimentally observed superstructure occurs due to unequal cation displacements along the pseudo-cubic [111] direction that mimic the unit cell of the chemically ordered compound. This result helps to clarify discrepancies in the correlations of structural and magnetic order reported for Bi{sub 2}FeCrO{sub 6}. The observation of a superstructure in itself is not a sufficient proof of chemical order in double perovskites.

  3. Method for making thick and/or thin film

    DOE Patents [OSTI]

    Pham, Ai Quoc; Glass, Robert S.

    2004-11-02

    A method to make thick or thin films a very low cost. The method is generally similar to the conventional tape casting techniques while being more flexible and versatile. The invention involves preparing a slip (solution) of desired material and including solvents such as ethanol and an appropriate dispersant to prevent agglomeration. The slip is then sprayed on a substrate to be coated using an atomizer which spreads the slip in a fine mist. Upon hitting the substrate, the solvent evaporates, leaving a green tape containing the powder and other additives, whereafter the tape may be punctured, cut, and heated for the desired application. The tape thickness can vary from about 1 .mu.m upward.

  4. Room-temperature magnetoelectric multiferroic thin films and applications thereof

    DOE Patents [OSTI]

    Katiyar, Ram S; Kuman, Ashok; Scott, James F.

    2014-08-12

    The invention provides a novel class of room-temperature, single-phase, magnetoelectric multiferroic (PbFe.sub.0.67W.sub.0.33O.sub.3).sub.x (PbZr.sub.0.53Ti.sub.0.47O.sub.3).sub.1-x (0.2.ltoreq.x.ltoreq.0.8) (PFW.sub.x-PZT.sub.1-x) thin films that exhibit high dielectric constants, high polarization, weak saturation magnetization, broad dielectric temperature peak, high-frequency dispersion, low dielectric loss and low leakage current. These properties render them to be suitable candidates for room-temperature multiferroic devices. Methods of preparation are also provided.

  5. Ultra-high current density thin-film Si diode

    DOE Patents [OSTI]

    Wang; Qi (Littleton, CO)

    2008-04-22

    A combination of a thin-film .mu.c-Si and a-Si:H containing diode structure characterized by an ultra-high current density that exceeds 1000 A/cm.sup.2, comprising: a substrate; a bottom metal layer disposed on the substrate; an n-layer of .mu.c-Si deposited the bottom metal layer; an i-layer of .mu.c-Si deposited on the n-layer; a buffer layer of a-Si:H deposited on the i-layer, a p-layer of .mu.c-Si deposited on the buffer layer; and a top metal layer deposited on the p-layer.

  6. Fundamentals of polycrystalline thin film materials and devices

    SciTech Connect (OSTI)

    Baron, B.N.; Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Hegedus, S.S.; McCandless, B.E. (Delaware Univ., Newark, DE (USA). Inst. of Energy Conversion)

    1991-01-01

    This report presents the results of a one-year research program on polycrystalline thin-film solar cells. The research was conducted to better understand the limitations and potential of solar cells using CuInSe{sub 2} and CdTe by systematically investigating the fundamental relationships linking material processing, material properties, and device behavior. By selenizing Cu and In layers, we fabricated device-quality CuInSe{sub 2} thin films and demonstrated a CuInSe{sub 2} solar cell with 7% efficiency. We added Ga, to increase the band gap of CuInSe{sub 2} devices to increase the open-circuit voltage to 0.55 V. We fabricated and analyzed Cu(InGa)Se{sub 2}/CuInSe{sub 2} devices to demonstrate the potential for combining the benefits of higher V{sub oc} while retaining the current-generating capacity of CuInSe{sub 2}. We fabricated an innovative superstrate device design with more than 5% efficiency, as well as a bifacial spectral-response technique for determining the electron diffusion length and optical absorption coefficient of CuInSe{sub 2} in an operational cell. The diffusion length was found to be greater than 1 {mu}m. We qualitatively modeled the effect of reducing heat treatments in hydrogen and oxidizing treatments in air on the I-V behavior of CuInSe{sub 2} devices. We also investigated post-deposition heat treatments and chemical processing and used them to fabricate a 9.6%-efficient CdTe/CdS solar cell using physical vapor deposition.

  7. Switchable mirrors based on nickel-magnesium films

    SciTech Connect (OSTI)

    Richardson,Thomas J.; Slack, Jonathan L.; Armitage, Robert D.; Kostecki, Robert; Farangis, Baker; Rubin, Michael D.

    2001-01-16

    A new type of electrochromic mirror electrode based on reversible uptake of hydrogen in nickel magnesium alloy films is reported. Thin,magnesium-rich Ni-Mg films prepared on glass substrates by cosputtering from Ni and Mg targets are mirror-like in appearance and have low visible transmittance. Upon exposure to hydrogen gas or on reduction in alkaline electrolyte, the films take up hydrogen and become transparent. When hydrogen is removed, the mirror properties are recovered. The transition is believed to result from reversible formation of Mg2NiH4 and MgH2. A thin overlayer of palladium was found to enhance the kinetics of hydrogen insertion and extraction,and to protect the metal surface against oxidation.

  8. Efficient combining of ion pumps and getter-palladium thin films

    SciTech Connect (OSTI)

    Paolini, C.; Mura, M.; Ravelli, F.

    2008-07-15

    Nonevaporable getters (NEGs) have been extensively studied in the last several years for their sorption properties toward many gases. In particular, an innovative alloy as a thin film by magnetron sputtering was developed and characterized at the European Organization for Nuclear Research. It is composed of Ti-Zr-V and protected by an overlayer of palladium (Pd), according to a technology for which the authors got the licence. NEG-Pd thin films used in combination with ion getter pumps is a simple, easy way to handle pumping devices for ultrahigh and extremely high vacuum applications. To show how to apply this coating technology to the internal surface of different types of ion pumps, the authors carried out several tests on pumps of various shapes, sizes (in terms of nominal pumping speed), and types (diode, noble diode, and triode). Special care was taken during the thermal cycle of baking and activation of the pumps to preserve the internal film from sources of contamination and/or from the sputtering of the titanium cathodes of the pump. Some important remarks will be made about the most appropriate conditions of pressure and temperature. The performance of the NEG-Pd-coated ion pumps was evaluated in terms of ultimate pressure and hydrogen pumping speed. The contribution of the thin film is particularly relevant for the pumping of this gas, due to its high sticking factor on palladium and the great sorption capacity of the underlying getter. Finally, the possibility of further improvement by substituting palladium with other Pd-based alloys will also be evaluated.

  9. X-ray microstructural analysis of nanocrystalline TiZrN thin films by diffraction pattern modeling

    SciTech Connect (OSTI)

    Escobar, D.; Ospina, R.; Gómez, A.G.; Restrepo-Parra, E.; Arango, P.J.

    2014-02-15

    A detailed microstructural characterization of nanocrystalline TiZrN thin films grown at different substrate temperatures (T{sub S}) was carried out by X-ray diffraction (XRD). Total diffraction pattern modeling based on more meaningful microstructural parameters, such as crystallite size distribution and dislocation density, was performed to describe the microstructure of the thin films more precisely. This diffraction modeling has been implemented and used mostly to characterize powders, but the technique can be very useful to study hard thin films by taking certain considerations into account. Nanocrystalline films were grown by using the cathodic pulsed vacuum arc technique on stainless steel 316L substrates, varying the temperature from room temperature to 200 °C. Further surface morphology analysis was performed to study the dependence of grain size on substrate temperature using atomic force microscopy (AFM). The crystallite and surface grain sizes obtained and the high density of dislocations observed indicate that the films underwent nanostructured growth. Variations in these microstructural parameters as a function of T{sub S} during deposition revealed a competition between adatom mobility and desorption processes, resulting in a specific microstructure. These films also showed slight anisotropy in their microstructure, and this was incorporated into the diffraction pattern modeling. The resulting model allowed for the films' microstructure during synthesis to be better understood according to the experimental results obtained. - Highlights: • Mobility and desorption competition generates a critical temperature. • A microstructure anisotropy related to the local strain was observed in thin films. • Adatom mobility and desorption influence grain size and microstrain.

  10. Wake and wave resistance on viscous thin films

    E-Print Network [OSTI]

    Ledesma-Alonso, René; Salez, Thomas; Raphaël, Elie

    2015-01-01

    The effect of an external pressure disturbance, being displaced with a constant speed along the free surface of a viscous thin film, is studied theoretically in the lubrication approximation in one- and two-dimensional geometries. In the comoving frame, the imposed pressure field creates a stationary deformation of the interface - a wake - that spatially vanishes in the far region. The shape of the wake and the way it vanishes depend on both the speed and size of the external source and the properties of the film. The wave resistance, namely the force that has to be externally furnished in order to maintain the wake, is analysed in details. For finite-size pressure disturbances, it increases with the speed, up to a certain transition value above which a monotonic decrease occurs. The role of the horizontal extent of the pressure field is studied as well, revealing that for a smaller disturbance the latter transition occurs at higher speed. Eventually, for a Dirac pressure source, the wave resistance either sa...

  11. Residual ferroelectricity in barium strontium titanate thin film tunable dielectrics

    SciTech Connect (OSTI)

    Garten, L. M., E-mail: lmg309@psu.edu; Trolier-McKinstry, S. [Department of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Lam, P.; Harris, D.; Maria, J.-P. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27607 (United States)

    2014-07-28

    Loss reduction is critical to develop Ba{sub 1?x}Sr{sub x}TiO{sub 3} thin film tunable microwave dielectric components and dielectric energy storage devices. The presence of ferroelectricity, and hence the domain wall contributions to dielectric loss, will degrade the tunable performance in the microwave region. In this work, residual ferroelectricity—a persistent ferroelectric response above the global phase transition temperature—was characterized in tunable dielectrics using Rayleigh analysis. Chemical solution deposited Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} films, with relative tunabilities of 86% over 250?kV/cm at 100?kHz, demonstrated residual ferroelectricity 65?°C above the ostensible paraelectric transition temperature. Frequency dispersion observed in the dielectric temperature response was consistent with the presence of nanopolar regions as one source of residual ferroelectricity. The application of AC electric field for the Rayleigh analysis of these samples led to a doubling of the dielectric loss for fields over 10?kV/cm at room temperature.

  12. Challenges and opportunities for multi-functional oxide thin films for voltage tunable radio frequency/microwave components

    SciTech Connect (OSTI)

    Subramanyam, Guru, E-mail: gsubramanyam1@udayton.edu [Department of Electrical and Computer Engineering, University of Dayton, Dayton, Ohio 45469 (United States); Cole, M. W., E-mail: melanie.w.cole.civ@mail.mil [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, Maryland 21005 (United States); Sun, Nian X. [Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115 (United States); Kalkur, Thottam S. [Department of Electrical and Computer Engineering, University of Colorado, Colorado Springs, Colorado 80918 (United States); Sbrockey, Nick M.; Tompa, Gary S. [Structured Materials Industries, Inc., Piscataway, New Jersey 08854 (United States); Guo, Xiaomei [Boston Applied Technologies, Inc., Woburn, Massachusetts 01801 (United States); Chen, Chonglin [Department of Physics and Astronomy, University of Texas, San Antonio, Texas 78249 (United States); Alpay, S. P.; Rossetti, G. A. [Institute of Materials Science and Materials Science and Engineering Program, University of Connecticut, Storrs, Connecticut 06269 (United States); Dayal, Kaushik [Mechanics, Materials and Computing, Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Chen, Long-Qing [Department of Materials Science and Engineering, Penn State University, University Park, Pennsylvania 16802 (United States); Schlom, Darrell G. [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States); Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853 (United States)

    2013-11-21

    There has been significant progress on the fundamental science and technological applications of complex oxides and multiferroics. Among complex oxide thin films, barium strontium titanate (BST) has become the material of choice for room-temperature-based voltage-tunable dielectric thin films, due to its large dielectric tunability and low microwave loss at room temperature. BST thin film varactor technology based reconfigurable radio frequency (RF)/microwave components have been demonstrated with the potential to lower the size, weight, and power needs of a future generation of communication and radar systems. Low-power multiferroic devices have also been recently demonstrated. Strong magneto-electric coupling has also been demonstrated in different multiferroic heterostructures, which show giant voltage control of the ferromagnetic resonance frequency of more than two octaves. This manuscript reviews recent advances in the processing, and application development for the complex oxides and multiferroics, with the focus on voltage tunable RF/microwave components. The over-arching goal of this review is to provide a synopsis of the current state-of the-art of complex oxide and multiferroic thin film materials and devices, identify technical issues and technical challenges that need to be overcome for successful insertion of the technology for both military and commercial applications, and provide mitigation strategies to address these technical challenges.

  13. Magnetoelectric coupling of multiferroic chromium doped barium titanate thin film probed by magneto-impedance spectroscopy

    SciTech Connect (OSTI)

    Shah, Jyoti Kotnala, Ravinder K. E-mail: rkkotnala@gmail.com

    2014-04-07

    Thin film of BaTiO{sub 3} doped with 0.1?at.?% Cr (Cr:BTO) has been prepared by pulsed laser deposition technique. Film was deposited on Pt/SrTiO{sub 3} substrate at 500?°C in 50 mTorr Oxygen gas pressure using KrF (298 nm) laser. Polycrystalline growth of single phase Cr:BTO thin film has been confirmed by grazing angle X-ray diffraction. Cr:BTO film exhibited remnant polarization 6.4??C/cm{sup 2} and 0.79?MV/cm coercivity. Magnetization measurement of Cr:BTO film showed magnetic moment 12 emu/cc. Formation of weakly magnetic domains has been captured by magnetic force microscopy. Theoretical impedance equation fitted to experimental data in Cole-Cole plot for thin film in presence of transverse magnetic field resolved the increase in grain capacitance from 4.58?×?10{sup ?12} to 5.4?×?10{sup ?11}?F. Film exhibited high value 137?mV/cm-Oe magneto-electric (ME) coupling coefficient at room temperature. The high value of ME coupling obtained can reduce the typical processing steps involved in multilayer deposition to obtain multiferrocity in thin film. Barium titanate being best ferroelectric material has been tailored to be multiferroic by non ferromagnetic element, Cr, doping in thin film form opens an avenue for more stable and reliable spintronic material for low power magnetoelectric random excess memory applications.

  14. CuInSe/sub 2/-based photoelectrochemical cells: their use in characterization of thin CuInSe/sub 2/ films, and as photovoltaic cells per se

    SciTech Connect (OSTI)

    Cahen, D.; Chen, Y.W.; Ireland, P.J.; Noufi, R.; Turner, J.A.; Rincon, C.; Bachmann, K.J.

    1984-05-01

    Photoelectrochemistry has been employed to characterize the p-CuInSe/sub 2/ component of the CdS/CuInSe/sub 2/ on-metal and a nonaqueous electrolyte containing a redox couple not specifically adsorbed onto the semiconductor, we can test the films for photovoltaic activity and obtain effective electronic properties of them, before CdS deposition, in a nondestructive manner. Electrochemical decomposition of CuInSe/sub 2/ was investigated in acetonitrile solutions to determine the mechanism of decomposition (n and p) in the dark and under illumination. Electrochemical, solution chemical and surface analyses confirmed at the light-assisted decomposition of CuInSe/sub 2/ resulted in metal ions and elemental chalcogen. On the basis of the results from the electrochemical decomposition, and studies on the solid state chemistry of the (Cu/sub 2/Se)/sub x/(In/sub 2/Se/sub 3/)/sub 1-x/ system and surface analyses, the CuInSe/sub 2//polyiodide interface was stabilized and up to 11.7% conversion efficiencies were obtained.

  15. Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof

    DOE Patents [OSTI]

    Perkins, John (Boulder, CO); Van Hest, Marinus Franciscus Antonius Maria (Lakewood, CO); Ginley, David (Evergreen, CO); Taylor, Matthew (Golden, CO); Neuman, George A. (Holland, MI); Luten, Henry A. (Holland, MI); Forgette, Jeffrey A. (Hudsonville, MI); Anderson, John S. (Holland, MI)

    2010-07-13

    Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

  16. Structure and composition of zirconium carbide thin-film grown by ion beam sputtering for optical applications

    SciTech Connect (OSTI)

    Singh, Amol, E-mail: modimh@rrcat.gov.in; Modi, Mohammed H., E-mail: modimh@rrcat.gov.in; Dhawan, Rajnish, E-mail: modimh@rrcat.gov.in; Lodha, G. S., E-mail: modimh@rrcat.gov.in [X-ray Optics Section, ISU Division, Raja Ramanna Centre for Advanced Technology, Indore-452013 (India)

    2014-04-24

    Thin film of compound material ZrC was deposited on Si (100) wafer using ion beam sputtering method. The deposition was carried out at room temperature and at base pressure of 3×10{sup ?5} Pa. X-ray photoelectron spectroscopy (XPS) measurements were performed for determining the surface chemical compositions. Grazing incidence x-ray reflectivity (GIXRR) measurements were performed to study the film thickness, roughness and density. From GIXRR curve roughness value of the film was found less than 1 nm indicating smooth surface morphology. Films density was found 6.51 g/cm{sup 3}, which is close to bulk density. Atomic force microscopy (AFM) measurements were performed to check the surface morphology. AFM investigation showed that the film surface is smooth, which corroborate the GIXRR data. Figure 2 of the original article PDF file, as supplied to AIP Publishing, contained a PDF processing error. This article was updated on 12 May 2014 to correct that error.

  17. TRANSMISSION ELECTRON MICROSCOPY OF THE TEXTURED SILVER BACK REFLECTOR OF A THIN FILM SILICON SOLAR CELL: FROM CRYSTALLOGRAPHY TO OPTICAL ABSORPTION

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    in amorphous, microcrystalline and micromorph thin-film Si solar cells is an important and active field-reflector of thin-film Si solar cells. 1 INTRODUCTION The study of light trapping in thin-film Si solar cells for an optimized back reflector structure in a microcrystalline thin film Si solar cell, when compared with the use

  18. Spectral behavior of the optical constants in the visible/near infrared of GeSbSe chalcogenide thin films grown at glancing angle

    SciTech Connect (OSTI)

    Martin-Palma, R. J.; Ryan, Joseph V.; Pantano, C. G.

    2007-04-23

    GeSbSe chalcogenide thin films were deposited using glancing angle deposition onto transparent glass substrates for the determination of the spectral behavior of the optical constants (index of refraction n and extinction coefficient k) in the visible and near infrared ranges (400-2500 nm) as a function of the deposition angle. Computational simulations based on the matrix method were employed to determine the values of the optical constants of the different films from the experimental reflectance and transmittance spectra. A significant dependence of the overall optical behavior on the deposition angle is found. Furthermore, the band gap of the GeSbSe thin films was calculated. The accurate determination of the optical constants of films grown at glancing angle will enable the development of sculptured thin film fiber-optic chemical sensors and biosensors.

  19. Thin film polycrystalline silicon: Promise and problems in displays and solar cells

    SciTech Connect (OSTI)

    Fonash, S.J.

    1995-08-01

    Thin film polycrystalline Si (poly-Si) with its carrier mobilities, potentially good stability, low intragrain defect density, compatibility with silicon processing, and ease of doping activation is an interesting material for {open_quotes}macroelectronics{close_quotes} applications such as TFTs for displays and solar cells. The poly-Si films needed for these applications can be ultra-thin-in the 500{Angstrom} to 1000{Angstrom} thickness range for flat panel display TFTs and in the 4{mu}m to 10{mu}m thickness range for solar cells. Because the films needed for these microelectronics applications can be so thin, an effective approach to producing the films is that of crystallizing a-Si precursor material. Unlike cast materials, poly-Si films made this way can be produced using low temperature processing. Unlike deposited poly-Si films, these crystallized poly-Si films can have grain widths that are much larger than the film thickness and almost atomically smooth surfaces. This thin film poly-Si crystallized from a-Si precursor films, and its promise and problems for TFTs and solar cells, is the focus of this discussion.

  20. 0-7803-8906-9/05/$20.00 2005 IEEE 2005 Electronic Components and Technology Conference Exploring the Limits of Low Cost, Organics-Compatible High-k Ceramic Thin-Films

    E-Print Network [OSTI]

    Swaminathan, Madhavan

    the Limits of Low Cost, Organics-Compatible High-k Ceramic Thin-Films for Embedded Decoupling Applications to integrate them. Ceramic-polymer nanocomposite approach pursued by various research groups over the past today are investigating ceramic-based thin films (