Sample records for thin cloud rotating

  1. ARM - Field Campaign - Thin Cloud Rotating Shadowband Radiometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single Column Model IOP ARM(PROBE)govCampaignsThin

  2. Thin Cloud Length Scales Using CALIPSO and CloudSat Data

    E-Print Network [OSTI]

    Solbrig, Jeremy E.

    2010-10-12T23:59:59.000Z

    Thin clouds are the most difficult cloud type to observe. The recent availability of joint cloud products from the active remote sensing instruments aboard CloudSat and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO) facilitates...

  3. Solar differential rotation and properties of magnetic clouds

    E-Print Network [OSTI]

    K. Georgieva; B. Kirov; E. Gavruseva; J. Javaraiah

    2005-11-09T23:59:59.000Z

    The most geoeffective solar drivers are magnetic clouds - a subclass of coronal mass ejections (CME's) distinguished by the smooth rotation of the magnetic field inside the structure. The portion of CME's that are magnetic clouds is maximum at sunspot minimum and mimimum at sunspot maximum. This portion is determined by the amount of helicity carried away by CME's which in turn depends on the amount of helicity transferred from the solar interior to the surface, and on the surface differential rotation. The latter can increase or reduce, or even reverse the twist of emerging magnetic flux tubes, thus increasing or reducing the helicity in the corona, or leading to the violation of the hemispheric helicity rule, respectively. We investigate the CME's associated with the major geomagnetic storms in the last solar cycle whose solar sources have been identified, and find that in 10 out of 12 cases of violation of the hemispheric helicity rule or of highly geoeffective CME's with no magnetic field rotation, they originate from regions with "anti-solar" type of surface differential rotation.

  4. Gravitational collapse with rotating thin shells and cosmic censorship

    E-Print Network [OSTI]

    Jorge V. Rocha

    2015-03-17T23:59:59.000Z

    Gravitational collapse of matter in the presence of rotation is a mostly unexplored topic but it might have important implications for cosmic censorship. Recently a convenient setup was identified to address this problem, by considering thin matter shells at the interface between two equal angular momenta Myers-Perry spacetimes in five dimensions. This note provides more details about the matching of such cohomogeneity-1 spacetimes and extends the results obtained therein to arbitrary higher odd dimensions. It is also pointed out that oscillatory orbits for shells in asymptotically flat spacetimes can be naturally obtained if the matter has a negative pressure component.

  5. Managing lodgepole pine to yield merchantable thinning products and attain sawtimber rotations. Forest Service research paper

    SciTech Connect (OSTI)

    Cole, D.M.; Koch, P.

    1995-12-01T23:59:59.000Z

    This paper suggests solution for a longstanding problem in managing lodgepole pine forests- that of managing individual stands to reach their planned rotation age, despite serious hazard from bark beetles and wildfire. The management regimes presented yield merchantable thinning products. The 80-year sawtimber rotation can be achieved using these management recommendation. Thinning at 30 years of age is central to achieving the recommended alternative management regimes. The authors suggest that agencies give roundwood operators a portion of the thinning stemwood as payment. Management regimes that provide attainable rotations are presented in summary tables, by three site index classes and a number of initial stand density classes.

  6. An Atmospheric Radiation Measurement Value-Added Product to Retrieve Optically Thin Cloud Visible Optical Depth using Micropulse Lidar

    SciTech Connect (OSTI)

    Lo, C; Comstock, JM; Flynn, C

    2006-10-01T23:59:59.000Z

    The purpose of the Micropulse Lidar (MPL) Cloud Optical Depth (MPLCOD) Value-Added Product (VAP) is to retrieve the visible (short-wave) cloud optical depth for optically thin clouds using MPL. The advantage of using the MPL to derive optical depth is that lidar is able to detect optically thin cloud layers that may not be detected by millimeter cloud radar or radiometric techniques. The disadvantage of using lidar to derive optical depth is that the lidar signal becomes attenuation limited when ? approaches 3 (this value can vary depending on instrument specifications). As a result, the lidar will not detect optically thin clouds if an optically thick cloud obstructs the lidar beam.

  7. Constraints on the Formation and Evolution of Circumstellar Disks in Rotating Magnetized Cloud Cores

    E-Print Network [OSTI]

    Shantanu Basu

    1998-08-13T23:59:59.000Z

    We use magnetic collapse models to place some constraints on the formation and angular momentum evolution of circumstellar disks which are embedded in magnetized cloud cores. Previous models have shown that the early evolution of a magnetized cloud core is governed by ambipolar diffusion and magnetic braking, and that the core takes the form of a nonequilibrium flattened envelope which ultimately collapses dynamically to form a protostar. In this paper, we focus on the inner centrifugally-supported disk, which is formed only after a central protostar exists, and grows by dynamical accretion from the flattened envelope. We estimate a centrifugal radius for the collapse of mass shells within a rotating, magnetized cloud core. The centrifugal radius of the inner disk is related to its mass through the two important parameters characterizing the background medium: the background rotation rate $\\Omb$ and the background magnetic field strength $\\Bref$. We also revisit the issue of how rapidly mass is deposited onto the disk (the mass accretion rate) and use several recent models to comment upon the likely outcome in magnetized cores. Our model predicts that a significant centrifugal disk (much larger than a stellar radius) will be present in the very early (Class 0) stage of protostellar evolution. Additionally, we derive an upper limit for the disk radius as it evolves due to internal torques, under the assumption that the star-disk system conserves its mass and angular momentum even while most of the mass is transferred to a central star.

  8. Investigation of Thin Cirrus Cloud Optical and Microphysical Properties on the Basis of Satellite Observations and Fast Radiative Transfer Models

    E-Print Network [OSTI]

    Wang, Chenxi

    2013-07-25T23:59:59.000Z

    This dissertation focuses on the global investigation of optically thin cirrus cloud optical thickness (tau) and microphysical properties, such as, effective particle size (D_(eff)) and ice crystal habits (shapes), based on the global satellite...

  9. MAGNETIC FIELD STRUCTURE OF THE LARGE MAGELLANIC CLOUD FROM FARADAY ROTATION MEASURES OF DIFFUSE POLARIZED EMISSION

    SciTech Connect (OSTI)

    Mao, S. A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); McClure-Griffiths, N. M.; McConnell, D. [Australia Telescope National Facility, CSIRO Astronomy and Space Science, Epping, NSW 1710 (Australia); Gaensler, B. M. [Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Haverkorn, M. [Department of Astrophysics, Radboud University, P.O. Box 9010, 6500-GL Nijmegen (Netherlands); Beck, R. [Max-Planck-Institut fuer Radioastronomie, D-53121 Bonn (Germany); Wolleben, M. [Square Kilometre Array South Africa, The Park, Pinelands 7405 (South Africa); Stanimirovic, S. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); Dickey, J. M. [Physics Department, University of Tasmania, Hobart, TAS 7001 (Australia); Staveley-Smith, L., E-mail: mao@astro.wisc.edu [International Centre for Radio Astronomy Research (ICRAR), The University of Western Australia, Crawley, WA 6009 (Australia)

    2012-11-01T23:59:59.000Z

    We present a study of the magnetic field of the Large Magellanic Cloud (LMC), carried out using diffuse polarized synchrotron emission data at 1.4 GHz acquired at the Parkes Radio Telescope and the Australia Telescope Compact Array. The observed diffuse polarized emission is likely to originate above the LMC disk on the near side of the galaxy. Consistent negative rotation measures (RMs) derived from the diffuse emission indicate that the line-of-sight magnetic field in the LMC's near-side halo is directed coherently away from us. In combination with RMs of extragalactic sources that lie behind the galaxy, we show that the LMC's large-scale magnetic field is likely to be of quadrupolar geometry, consistent with the prediction of dynamo theory. On smaller scales, we identify two brightly polarized filaments southeast of the LMC, associated with neutral hydrogen arms. The filaments' magnetic field potentially aligns with the direction toward the Small Magellanic Cloud (SMC). We suggest that tidal interactions between the SMC and the LMC in the past 10{sup 9} years are likely to have shaped the magnetic field in these filaments.

  10. Thin Film Motion of an Ideal Fluid on the Rotating Cylinder Surface

    E-Print Network [OSTI]

    M. Yu. Zhukov; A. M. Morad

    2013-03-10T23:59:59.000Z

    The shallow water equations describing the motion of thin liquid film on the rotating cylinder surface are obtained. These equations are the analog of the modified Boussinesq equations for shallow water and the Korteweg-de Vries equation. It is clear that for rotating cylinder the centrifugal force plays the role of the gravity. For construction the shallow water equations (amplitude equations) usual depth-averaged and multi-scale asymptotic expansion methods are used. Preliminary analysis shows that a thin film of an ideal incompressible fluid precesses around the axis of the cylinder with velocity which differs from the angular velocity of rotating cylinder. For the mathematical model of the liquid film motion the analytical solutions are obtained by the Tanh-Function method. To illustrate the integrability of the equations the Painleve analysis is used. The truncated expansion method and symbolic computation allows to present an auto-Backlund transformation. The results of analysis show that the exact solutions of the model correspond to the solitary waves of different types.

  11. The frequency of tropopause-level thick and thin cirrus clouds as observed by CALIPSO and the relationship to relative humidity and outgoing longwave radiation

    E-Print Network [OSTI]

    Cardona, Allison Leanne

    2008-10-10T23:59:59.000Z

    THE FREQUENCY OF TROPOPAUSE-LEVEL THICK AND THIN CIRRUS CLOUDS AS OBSERVED BY CALIPSO AND THE RELATIONSHIP TO RELATIVE HUMIDITY AND OUTGOING LONGWAVE RADIATION A Thesis by ALLISON L. CARDONA Submitted to the Office of Graduate... Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2008 Major Subject: Atmospheric Sciences THE FREQUENCY OF TROPOPAUSE-LEVEL THICK AND THIN CIRRUS CLOUDS AS OBSERVED...

  12. Mixed-phase clouds, thin cirrus clouds, and OLR over the tropics: observations, retrievals, and radiative impacts

    E-Print Network [OSTI]

    Lee, Joonsuk

    2009-06-02T23:59:59.000Z

    to the inference of effective particle sizes and optical thicknesses are performed. Errors are calculated with respect to the assumption of a cloud containing solely liquid or ice phase particles. The analyses suggest that the effective particle size inferred for a...

  13. Cloud Services Cloud Services

    E-Print Network [OSTI]

    Cloud Services Cloud Services In 2012 UCD IT Services launched an exciting new set of cloud solutions called CloudEdu, which includes cloud servers, cloud storage, cloud hosting and cloud network. The CloudEdu package includes a consultancy service in design, deployment, management and utilisation

  14. Development and Testing of a Life Cycle Model and a Parameterization of Thin Mid-level Stratiform Clouds

    SciTech Connect (OSTI)

    Krueger, Steven K.

    2008-03-03T23:59:59.000Z

    We used a cloud-resolving model (a detailed computer model of cloud systems) to evaluate and improve the representation of clouds in global atmospheric models used for numerical weather prediction and climate modeling. We also used observations of the atmospheric state, including clouds, made at DOE's Atmospheric Radiation Measurement (ARM) Program's Climate Research Facility located in the Southern Great Plains (Kansas and Oklahoma) during Intensive Observation Periods to evaluate our detailed computer model as well as a single-column version of a global atmospheric model used for numerical weather prediction (the Global Forecast System of the NOAA National Centers for Environmental Prediction). This so-called Single-Column Modeling approach has proved to be a very effective method for testing the representation of clouds in global atmospheric models. The method relies on detailed observations of the atmospheric state, including clouds, in an atmospheric column comparable in size to a grid column used in a global atmospheric model. The required observations are made by a combination of in situ and remote sensing instruments. One of the greatest problems facing mankind at the present is climate change. Part of the problem is our limited ability to predict the regional patterns of climate change. In order to increase this ability, uncertainties in climate models must be reduced. One of the greatest of these uncertainties is the representation of clouds and cloud processes. This project, and ARM taken as a whole, has helped to improve the representation of clouds in global atmospheric models.

  15. Triggering Collapse of the Presolar Dense Cloud Core and Injecting Short-Lived Radioisotopes with a Shock Wave. IV. Effects of Rotational Axis Orientation

    E-Print Network [OSTI]

    Boss, Alan P

    2015-01-01T23:59:59.000Z

    Both astronomical observations of the interaction of Type II supernova remnants (SNR) with dense interstellar clouds as well as cosmochemical studies of the abundances of daughter products of short-lived radioisotopes (SLRIs) formed by supernova nucleosynthesis support the hypothesis that the Solar Systems SLRIs may have been derived from a supernova. This paper continues a series devoted to examining whether such a shock wave could have triggered the dynamical collapse of a dense, presolar cloud core and simultaneously injected sufficient abundances of SLRIs to explain the cosmochemical evidence. Here we examine the effects of shock waves striking clouds whose spin axes are oriented perpendicular, rather than parallel, to the direction of propagation of the shock front. The models start with 2.2 solar mass cloud cores and shock speeds of 20 or 40 km/sec. Central protostars and protoplanetary disks form in all models, though with disk spin axes aligned somewhat randomly. The disks derive most of their angular...

  16. Trirotron: triode rotating beam radio frequency amplifier

    DOE Patents [OSTI]

    Lebacqz, Jean V. (Stanford, CA)

    1980-01-01T23:59:59.000Z

    High efficiency amplification of radio frequencies to very high power levels including: establishing a cylindrical cloud of electrons; establishing an electrical field surrounding and coaxial with the electron cloud to bias the electrons to remain in the cloud; establishing a rotating electrical field that surrounds and is coaxial with the steady field, the circular path of the rotating field being one wavelength long, whereby the peak of one phase of the rotating field is used to accelerate electrons in a beam through the bias field in synchronism with the peak of the rotating field so that there is a beam of electrons continuously extracted from the cloud and rotating with the peak; establishing a steady electrical field that surrounds and is coaxial with the rotating field for high-energy radial acceleration of the rotating beam of electrons; and resonating the rotating beam of electrons within a space surrounding the second field, the space being selected to have a phase velocity equal to that of the rotating field to thereby produce a high-power output at the frequency of the rotating field.

  17. Cloud Computing

    SciTech Connect (OSTI)

    Pete Beckman and Ian Foster

    2009-12-04T23:59:59.000Z

    Chicago Matters: Beyond Burnham (WTTW). Chicago has become a world center of "cloud computing." Argonne experts Pete Beckman and Ian Foster explain what "cloud computing" is and how you probably already use it on a daily basis.

  18. Thin film superconductor magnetic bearings

    DOE Patents [OSTI]

    Weinberger, Bernard R. (Avon, CT)

    1995-12-26T23:59:59.000Z

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  19. Acoustic clouds: standing sound waves around a black hole analogue

    E-Print Network [OSTI]

    Carolina L. Benone; Luis C. B. Crispino; Carlos Herdeiro; Eugen Radu

    2015-01-28T23:59:59.000Z

    Under certain conditions sound waves in fluids experience an acoustic horizon with analogue properties to those of a black hole event horizon. In particular, a draining bathtub-like model can give rise to a rotating acoustic horizon and hence a rotating black hole (acoustic) analogue. We show that sound waves, when enclosed in a cylindrical cavity, can form stationary waves around such rotating acoustic black holes. These acoustic perturbations display similar properties to the scalar clouds that have been studied around Kerr and Kerr-Newman black holes; thus they are dubbed acoustic clouds. We make the comparison between scalar clouds around Kerr black holes and acoustic clouds around the draining bathtub explicit by studying also the properties of scalar clouds around Kerr black holes enclosed in a cavity. Acoustic clouds suggest the possibility of testing, experimentally, the existence and properties of black hole clouds, using analog models.

  20. Acoustic clouds: standing sound waves around a black hole analogue

    E-Print Network [OSTI]

    Benone, Carolina L; Herdeiro, Carlos; Radu, Eugen

    2014-01-01T23:59:59.000Z

    Under certain conditions sound waves in fluids experience an acoustic horizon with analogue properties to those of a black hole event horizon. In particular, a draining bathtub-like model can give rise to a rotating acoustic horizon and hence a rotating black hole (acoustic) analogue. We show that sound waves, when enclosed in a cylindrical cavity, can form stationary waves around such rotating acoustic black holes. These acoustic perturbations display similar properties to the scalar clouds that have been studied around Kerr and Kerr-Newman black holes; thus they are dubbed acoustic clouds. We make the comparison between scalar clouds around Kerr black holes and acoustic clouds around the draining bathtub explicit by studying also the properties of scalar clouds around Kerr black holes enclosed in a cavity. Acoustic clouds suggest the possibility of testing, experimentally, the existence and properties of black hole clouds, using analog models.

  1. TRIGGERING COLLAPSE OF THE PRESOLAR DENSE CLOUD CORE AND INJECTING SHORT-LIVED RADIOISOTOPES WITH A SHOCK WAVE. II. VARIED SHOCK WAVE AND CLOUD CORE PARAMETERS

    SciTech Connect (OSTI)

    Boss, Alan P.; Keiser, Sandra A., E-mail: boss@dtm.ciw.edu, E-mail: keiser@dtm.ciw.edu [Department of Terrestrial Magnetism, Carnegie Institution, 5241 Broad Branch Road, NW, Washington, DC 20015-1305 (United States)

    2013-06-10T23:59:59.000Z

    A variety of stellar sources have been proposed for the origin of the short-lived radioisotopes that existed at the time of the formation of the earliest solar system solids, including Type II supernovae (SNe), asymptotic giant branch (AGB) and super-AGB stars, and Wolf-Rayet star winds. Our previous adaptive mesh hydrodynamics models with the FLASH2.5 code have shown which combinations of shock wave parameters are able to simultaneously trigger the gravitational collapse of a target dense cloud core and inject significant amounts of shock wave gas and dust, showing that thin SN shocks may be uniquely suited for the task. However, recent meteoritical studies have weakened the case for a direct SN injection to the presolar cloud, motivating us to re-examine a wider range of shock wave and cloud core parameters, including rotation, in order to better estimate the injection efficiencies for a variety of stellar sources. We find that SN shocks remain as the most promising stellar source, though planetary nebulae resulting from AGB star evolution cannot be conclusively ruled out. Wolf-Rayet (WR) star winds, however, are likely to lead to cloud core shredding, rather than to collapse. Injection efficiencies can be increased when the cloud is rotating about an axis aligned with the direction of the shock wave, by as much as a factor of {approx}10. The amount of gas and dust accreted from the post-shock wind can exceed that injected from the shock wave, with implications for the isotopic abundances expected for a SN source.

  2. On the Relationship between Thermodynamic Structure and Cloud Top, and Its Climate Significance in the Arctic

    E-Print Network [OSTI]

    Shupe, Matthew

    longwave radiation, resulting in a warming at the surface--the cloud ``greenhouse'' effect. The mag. The authors test the longwave radiative impact of cloud liquid above the inversion through hypothetical liquid water distributions. Optically thin CII clouds alter the effective cloud emission temperature and can

  3. Retrievals of Cloud Fraction and Cloud Albedo from Surface-based Shortwave Radiation Measurements: A Comparison of 16 Year Measurements

    SciTech Connect (OSTI)

    Xie, Yu; Liu, Yangang; Long, Charles N.; Min, Qilong

    2014-07-27T23:59:59.000Z

    Ground-based radiation measurements have been widely conducted to gain information on clouds and the surface radiation budget; here several different techniques for retrieving cloud fraction (Long2006, Min2008 and XL2013) and cloud albedo (Min2008, Liu2011 and XL2013) from ground-based shortwave broadband and spectral radiation measurements are examined, and sixteen years of retrievals collected at the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site are compared. The comparison shows overall good agreement between the retrievals of both cloud fraction and cloud albedo, with noted differences however. The Long2006 and Min2008 cloud fractions are greater on average than the XL2013 values. Compared to Min2008 and Liu2011, the XL2013 retrieval of cloud albedo tends to be greater for thin clouds but smaller for thick clouds, with the differences decreasing with increasing cloud fraction. Further analysis reveals that the approaches that retrieve cloud fraction and cloud albedo separately may suffer from mutual contamination of errors in retrieved cloud fraction and cloud albedo. Potential influences of cloud absorption, land-surface albedo, cloud structure, and measurement instruments are explored.

  4. Dark Matter Annihilations in the Large Magellanic Cloud

    E-Print Network [OSTI]

    P Gondolo

    1993-12-06T23:59:59.000Z

    The flat rotation curve obtained for the outer star clusters of the Large Magellanic Cloud is suggestive of an LMC dark matter halo. From the composite HI and star cluster rotation curve, I estimate the parameters of an isothermal dark matter halo added to a `maximum disk.' I then examine the possibility of detecting high energy gamma-rays from non-baryonic dark matter annihilations in the central region of the Large Magellanic Cloud.

  5. Cloud Computing Adam Barker

    E-Print Network [OSTI]

    St Andrews, University of

    Cloud Computing 1 Adam Barker #12;Overview · Introduction to Cloud computing · Enabling technologies · Di erent types of cloud: IaaS, PaaS and SaaS · Cloud terminology · Interacting with a cloud: management consoles · Launching an instance · Connecting to an instance · Running your application · Clouds

  6. Lecture Ch. 8 Cloud Classification

    E-Print Network [OSTI]

    Russell, Lynn

    clouds Middle clouds Grayish, block the sun, sometimes patchy Sharp outlines, rising, bright white1 Lecture Ch. 8 · Cloud Classification ­ Descriptive approach to clouds · Drop Growth and Precipitation Processes ­ Microphysical characterization of clouds · Complex (i.e. Real) Clouds ­ Examples

  7. Cloud Controlling Factors --Low Clouds BJORN STEVENS,

    E-Print Network [OSTI]

    Stevens, Bjorn

    Cloud Controlling Factors -- Low Clouds BJORN STEVENS, Department of Atmospheric and Oceanic) clouds is reviewed, with an emphasis on factors that may be expected to change in a changing climate of low-cloud control- ling processes are offered: these include renewing our focus on theory, model

  8. Cloud Controlling Factors --Low Clouds BJORN STEVENS,

    E-Print Network [OSTI]

    Stevens, Bjorn

    Cloud Controlling Factors -- Low Clouds BJORN STEVENS, Department of Atmospheric and Oceanic conspire to determine the statistics and cli- matology of layers of shallow (boundary layer) clouds of low-cloud control- ling processes are offered: these include renewing our focus on theory, model

  9. Cloud Tracking in Cloud-Resolving Models

    E-Print Network [OSTI]

    Plant, Robert

    Cloud Tracking in Cloud-Resolving Models RMetS Conference 4th September 2007 Bob Plant Department of Meteorology, University of Reading, UK #12;Introduction Obtain life cycle statistics for clouds in CRM simulations What is the distribution of cloud lifetimes? What factors determine the lifetime of an individual

  10. Cloud Security by Max Garvey

    E-Print Network [OSTI]

    Tolmach, Andrew

    Cloud Security Survey by Max Garvey #12;Cloudy Cloud is Cloudy What is the cloud? On Demand Service Network access Resource pooling Elasticity of Resources Measured Service #12;Cloud Types/Variants Iaa Cloud Public Cloud Hybrid Cloud combination. Private cloud with overflow going to public cloud. #12

  11. Cloud Property Retrieval Products for Graciosa Island, Azores

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dong, Xiquan

    The motivation for developing this product was to use the Dong et al. 1998 method to retrieve cloud microphysical properties, such as cloud droplet effective radius, cloud droplets number concentration, and optical thickness. These retrieved properties have been used to validate the satellite retrieval, and evaluate the climate simulations and reanalyses. We had been using this method to retrieve cloud microphysical properties over ARM SGP and NSA sites. We also modified the method for the AMF at Shouxian, China and some IOPs, e.g. ARM IOP at SGP in March, 2000. The ARSCL data from ARM data archive over the SGP and NSA have been used to determine the cloud boundary and cloud phase. For these ARM permanent sites, the ARSCL data was developed based on MMCR measurements, however, there were no data available at the Azores field campaign. We followed the steps to generate this derived product and also include the MPLCMASK cloud retrievals to determine the most accurate cloud boundaries, including the thin cirrus clouds that WACR may under-detect. We use these as input to retrieve the cloud microphysical properties. Due to the different temporal resolutions of the derived cloud boundary heights product and the cloud properties product, we submit them as two separate netcdf files.

  12. Cloud Computing og availability

    E-Print Network [OSTI]

    Christensen, Henrik Bćrbak

    Cloud Computing og availability Projekt i pĺlidelighed Henrik Lavdal - 20010210 Sřren Bardino Kaa - 20011654 Gruppe 8 19-03-2010 #12;Cloud Computing og availability Side 2 af 28 Indholdsfortegnelse as a Service (SaaS) ...................................................................9 Availability i cloud

  13. Ad hoc cloud computing 

    E-Print Network [OSTI]

    McGilvary, Gary Andrew

    2014-11-27T23:59:59.000Z

    Commercial and private cloud providers offer virtualized resources via a set of co-located and dedicated hosts that are exclusively reserved for the purpose of offering a cloud service. While both cloud models appeal to ...

  14. Using Radar, Lidar, and Radiometer measurements to Classify Cloud Type and Study Middle-Level Cloud Properties

    SciTech Connect (OSTI)

    Wang, Zhien

    2010-06-29T23:59:59.000Z

    The project is mainly focused on the characterization of cloud macrophysical and microphysical properties, especially for mixed-phased clouds and middle level ice clouds by combining radar, lidar, and radiometer measurements available from the ACRF sites. First, an advanced mixed-phase cloud retrieval algorithm will be developed to cover all mixed-phase clouds observed at the ACRF NSA site. The algorithm will be applied to the ACRF NSA observations to generate a long-term arctic mixed-phase cloud product for model validations and arctic mixed-phase cloud processes studies. To improve the representation of arctic mixed-phase clouds in GCMs, an advanced understanding of mixed-phase cloud processes is needed. By combining retrieved mixed-phase cloud microphysical properties with in situ data and large-scale meteorological data, the project aim to better understand the generations of ice crystals in supercooled water clouds, the maintenance mechanisms of the arctic mixed-phase clouds, and their connections with large-scale dynamics. The project will try to develop a new retrieval algorithm to study more complex mixed-phase clouds observed at the ACRF SGP site. Compared with optically thin ice clouds, optically thick middle level ice clouds are less studied because of limited available tools. The project will develop a new two wavelength radar technique for optically thick ice cloud study at SGP site by combining the MMCR with the W-band radar measurements. With this new algorithm, the SGP site will have a better capability to study all ice clouds. Another area of the proposal is to generate long-term cloud type classification product for the multiple ACRF sites. The cloud type classification product will not only facilitates the generation of the integrated cloud product by applying different retrieval algorithms to different types of clouds operationally, but will also support other research to better understand cloud properties and to validate model simulations. The ultimate goal is to improve our cloud classification algorithm into a VAP.

  15. On Demand Surveillance Service in Vehicular Cloud

    E-Print Network [OSTI]

    Weng, Jui-Ting

    2013-01-01T23:59:59.000Z

    Toward Vehicular Service Cloud . . . . . . . . . . . . . . .4.2 Open Mobile Cloud Requirement . . . . .3.1 Mobile Cloud

  16. Radiative and Convective Driving of Tropical High Clouds TERENCE L. KUBAR, DENNIS L. HARTMANN, AND ROBERT WOOD

    E-Print Network [OSTI]

    Wood, Robert

    ). It is also shown that thin high cloud, which has a positive net radiative effect on the topRadiative and Convective Driving of Tropical High Clouds TERENCE L. KUBAR, DENNIS L. HARTMANN thick high cloud, which is a better proxy for precipitation than outgoing longwave radiation (OLR

  17. Retrieval of Cloud Phase Using the Moderate Resolution Imaging Spectroradiometer Data during the Mixed-Phase Arctic Cloud Experiment

    SciTech Connect (OSTI)

    Spangenberg, D.; Minnis, P.; Shupe, M.; Uttal, T.; Poellot, M.

    2005-03-18T23:59:59.000Z

    Improving climate model predictions over Earth's polar regions requires a comprehensive knowledge of polar cloud microphysics. Over the Arctic, there is minimal contrast between the clouds and background snow surface, making it difficult to detect clouds and retrieve their phase from space. Snow and ice cover, temperature inversions, and the predominance of mixed-phase clouds make it even more difficult to determine cloud phase. Also, since determining cloud phase is the first step toward analyzing cloud optical depth, particle size, and water content, it is vital that the phase be correct in order to obtain accurate microphysical and bulk properties. Changes in these cloud properties will, in turn, affect the Arctic climate since clouds are expected to play a critical role in the sea ice albedo feedback. In this paper, the IR trispectral technique (IRTST) is used as a starting point for a WV and 11-{micro}m brightness temperature (T11) parameterization (WVT11P) of cloud phase using MODIS data. In addition to its ability to detect mixed-phase clouds, the WVT11P also has the capability to identify thin cirrus clouds overlying mixed or liquid phase clouds (multiphase ice). Results from the Atmospheric Radiation Measurement (ARM) MODIS phase model (AMPHM) are compared to the surface-based cloud phase retrievals over the ARM North Slope of Alaska (NSA) Barrow site and to in-situ data taken from University of North Dakota Citation (CIT) aircraft which flew during the Mixed-Phase Arctic Cloud Experiment (MPACE). It will be shown that the IRTST and WVT11P combined to form the AMPHM can achieve a relative high accuracy of phase discrimination compared to the surface-based retrievals. Since it only uses MODIS WV and IR channels, the AMPHM is robust in the sense that it can be applied to daytime, twilight, and nighttime scenes with no discontinuities in the output phase.

  18. Cloud Computing For Bioinformatics

    E-Print Network [OSTI]

    Ferrara, Katherine W.

    Cloud Computing For Bioinformatics EC2 and AMIs #12;Quick-starting an EC2 instance (let's get our feet wet!) Cloud Computing #12;Cloud Computing: EC2 instance Quick Start · On EC2 console, we can click on Launch Instance · This will let us get up and going quickly #12;Cloud Computing: EC2 instance

  19. Use of the ARM Measurement of Spectral Zenith Radiance For Better Understanding Of 3D Cloud-Radiation Processes and Aerosol-Cloud Interaction

    SciTech Connect (OSTI)

    D. Jui-Yuan Chiu

    2010-10-19T23:59:59.000Z

    Our proposal focuses on cloud-radiation processes in a general 3D cloud situation, with particular emphasis on cloud optical depth and effective particle size. We also focus on zenith radiance measurements, both active and passive. The proposal has three main parts. Part One exploits the �¢����solar-background�¢��� mode of ARM lidars to allow them to retrieve cloud optical depth not just for thin clouds but for all clouds. This also enables the study of aerosol cloud interactions with a single instrument. Part Two exploits the large number of new wavelengths offered by ARM�¢����s zenith-pointing ShortWave Spectrometer (SWS), especially during CLASIC, to develop better retrievals not only of cloud optical depth but also of cloud particle size. We also propose to take advantage of the SWS�¢���� 1 Hz sampling to study the �¢����twilight zone�¢��� around clouds where strong aerosol-cloud interactions are taking place. Part Three involves continuing our cloud optical depth and cloud fraction retrieval research with ARM�¢����s 2NFOV instrument by, first, analyzing its data from the AMF-COPS/CLOWD deployment, and second, making our algorithms part of ARM�¢����s operational data processing.

  20. Traversable wormholes in a string cloud

    E-Print Network [OSTI]

    Martin Richarte; Claudio Simeone

    2007-11-14T23:59:59.000Z

    We study spherically symmetric thin-shell wormholes in a string cloud background in (3+1)-dimensional spacetime. The amount of exotic matter required for the construction, the traversability and the stability under radial perturbations, are analyzed as functions of the parameters of the model. Besides, in the Appendices a non perturbative approach to the dynamics and a possible extension of the analysis to a related model are briefly discussed.

  1. Evaluation of tropical cloud and precipitation statistics of CAM3 using CloudSat and CALIPSO data

    SciTech Connect (OSTI)

    Zhang, Y; Klein, S; Boyle, J; Mace, G G

    2008-11-20T23:59:59.000Z

    The combined CloudSat and CALIPSO satellite observations provide the first simultaneous measurements of cloud and precipitation vertical structure, and are used to examine the representation of tropical clouds and precipitation in the Community Atmosphere Model Version 3 (CAM3). A simulator package utilizing a model-to-satellite approach facilitates comparison of model simulations to observations, and a revised clustering method is used to sort the subgrid-scale patterns of clouds and precipitation into principal cloud regimes. Results from weather forecasts performed with CAM3 suggest that the model underestimates the horizontal extent of low and mid-level clouds in subsidence regions, but overestimates that of high clouds in ascending regions. CAM3 strongly overestimates the frequency of occurrence of the deep convection with heavy precipitation regime, but underestimates the horizontal extent of clouds and precipitation at low and middle levels when this regime occurs. This suggests that the model overestimates convective precipitation and underestimates stratiform precipitation consistent with a previous study that used only precipitation observations. Tropical cloud regimes are also evaluated in a different version of the model, CAM3.5, which uses a highly entraining plume in the parameterization of deep convection. While the frequency of occurrence of the deep convection with heavy precipitation regime from CAM3.5 forecasts decreases, the incidence of the low clouds with precipitation and congestus regimes increases. As a result, the parameterization change does not reduce the frequency of precipitating convection that is far too high relative to observations. For both versions of CAM, clouds and precipitation are overly reflective at the frequency of the CloudSat radar and thin clouds that could be detected by the lidar only are underestimated.

  2. RISK ASSESSMENT CLOUD COMPUTING

    E-Print Network [OSTI]

    Columbia University

    SECURITY RESEARCH PRIVACY RISK ASSESSMENT AMC DATA FISMA CLOUD COMPUTING MOBILE DEVICES OPERATIONS application hosted in the cloud · Alaska DHHS fined $1.7M ­ Portable device stolen from vehicle · Mass Eye

  3. Ice iron/sodium film as cause for high noctilucent cloud radar reflectivity

    E-Print Network [OSTI]

    Bellan, Paul M.

    Ice iron/sodium film as cause for high noctilucent cloud radar reflectivity P. M. Bellan1 Received] Noctilucent clouds, tiny cold electrically charged ice grains located at about 85 km altitude, exhibit by assuming the ice grains are coated by a thin metal film; substantial evidence exists indicating

  4. XSEDE Cloud Survey Report

    E-Print Network [OSTI]

    Walter, M.Todd

    XSEDE Cloud Survey Report David Lifka, Cornell Center for Advanced Computing Ian Foster, ANL, ANL and The University of Chicago A National Science Foundation-sponsored cloud user survey was conducted from September 2012 to April 2013 by the XSEDE Cloud Integration Investigation Team to better

  5. Research Cloud Computing Recommendations

    E-Print Network [OSTI]

    Qian, Ning

    Research Cloud Computing Recommendations SRCPAC December 3, 2014 #12;Mandate and Membership SRCPAC convened this committee in Sept 2014 to investigate the role that cloud computing should play in our & Academic Affairs (Social Work) #12;Questions discussed · What cloud resources are available? · Which kinds

  6. Wind Circulation in Selected Rotating Magnetic Early-B Stars

    E-Print Network [OSTI]

    Myron A. Smith; Detlef Groote

    2001-04-03T23:59:59.000Z

    The rotating magnetic B stars have oblique dipolar magnetic fields and often anomalous helium and metallic compositions. These stars develop co-rotating torus-shaped clouds by channelling winds from their magnetic poles to an anchored planar disk over the magnetic equator. The line absorptions from the cloud can be studied as the complex rotates and periodically occults the star. We describe an analysis of the clouds of four stars (HD184927, beta Cep, sigma Ori E, and HR6684). From line synthesis models, we find that the metallic compositions are spatially uniform over the stars' surfaces. Next, using the Hubeny CIRCUS code, we demonstate that periodic UV continuum fluxes can be explained by the absorption of low-excitation lines. The analysis also quantifies the cloud temperatures, densities, and turbulences, which appear to increase inward toward the stars. The temperatures range from about 12,000K for the weak Fe lines up to temperatures of 33,000K for N V absorptions, which is in excess of temperatures expected from radiative equilibrium. The spectroscopic hallmark of this stellar class is the presence of strong C IV and N V resonance line absorptions at occultation phases and of redshifted emissions at magnetic pole-on phases. The emissions have characteristics which seem most compatible with the generation of high-energy shocks at the wind-cloud interface, as predicted by Babel.

  7. Working inside the Cloud: Developing a Cloud Computing Infrastructure

    E-Print Network [OSTI]

    Krause, Rolf

    UROP 2012 Working inside the Cloud: Developing a Cloud Computing Infrastructure Cloud computing and live-migration of running VM. USI participates to the development of the first European Cloud computing for a motivated student that will have a chance to improve his/her knowledge on Cloud computing, Java and/or Ruby

  8. Dynamic Cloud Resource Reservation via Cloud Brokerage

    E-Print Network [OSTI]

    Li, Baochun

    Department of Electrical and Computer Engineering, University of Toronto Department of Electrical@eecg.toronto.edu, liang@utoronto.ca Abstract--Infrastructure-as-a-Service clouds offer diverse pric- ing options

  9. An Autonomous Reliabilit Cloud Comput

    E-Print Network [OSTI]

    Buyya, Rajkumar

    An Autonomous Reliabilit Ami Cloud Comput Department of Computing and Informa Abstract--Cloud computing paradigm allo based access to computing and storages s Internet. Since with advances of Cloud. Keywords- Cloud computing; SLA negotiat I. INTRODUCTION Cloud computing has transferred the services

  10. Clouds up close | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interactions that affect clouds and thus improve climate projections. Contact Heng Xiao Pacific Northwest National Laboratory 902 Battelle Blvd., PO Box 999 MSIN: K9-30...

  11. Finance Idol Word Cloud

    Broader source: Energy.gov [DOE]

    This word cloud represents the topics discussed during the Big and Small Ideas: How to Lower Solar Financing Costs breakout session at the SunShot Grand Challenge.

  12. SURFACE CLOUD RADIATIVE FORCING, CLOUD FRACTION AND CLOUD ALBEDO: THEIR RELATIONSHIP AND MULTISCALE VARIATION

    E-Print Network [OSTI]

    that have been used to quantify the effect of clouds on radiation budget in both modeling and observationalSURFACE CLOUD RADIATIVE FORCING, CLOUD FRACTION AND CLOUD ALBEDO: THEIR RELATIONSHIP AND MULTISCALE/Atmospheric Sciences Division Brookhaven National Laboratory P.O. Box, Upton, NY www.bnl.gov ABSTRACT Cloud-radiation

  13. Cloud Formation and Acceleration in a Radiative Environment

    E-Print Network [OSTI]

    Proga, Daniel

    2015-01-01T23:59:59.000Z

    In a radiatively heated and cooled medium, the thermal instability is a plausible mechanism for forming clouds, while the radiation force provides a natural acceleration, especially when ions recombine and opacity increases. Here we extend Field's theory to self-consistently account for a radiation force resulting from bound-free and bound-bound transitions in the optically thin limit. We present physical arguments for clouds to be significantly accelerated by a radiation force due to lines during a nonlinear phase of the instability. To qualitatively illustrate our main points, we perform both one and two-dimensional (1-D/2-D) hydrodynamical simulations that allow us to study the nonlinear outcome of the evolution of thermally unstable gas subjected to this radiation force. Our 1-D simulations demonstrate that the thermal instability can produce long-lived clouds that reach a thermal equilibrium between radiative processes and thermal conduction, while the radiation force can indeed accelerate the clouds to ...

  14. Sandia Energy - Cloud Computing Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Computing Services Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Grid Modernization Cyber Security for Electric Infrastructure Cloud Computing...

  15. Profiling clouds' inner life | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    life Released: May 29, 2014 Subgrid modeling pinpoints cloud transformation to uncover true reflective power An accurate understanding of clouds over the ocean is important for...

  16. CONTRIBUTED Green Cloud Computing

    E-Print Network [OSTI]

    Tucker, Rod

    to manage energy consumption across the entire information and communications technology (ICT) sector. While considers both public and private clouds, and includes energy consumption in switching and transmission to energy consumption and cloud computing seems to be an alternative to office-based computing. By Jayant

  17. Toward Securing Sensor Clouds

    E-Print Network [OSTI]

    · 32 GB microSDHC storage 2 Image from http://hothardware.com/News/Leaked-Motorola-DROID-X-2-Daytona Computer Mini Computer External Storage External Storage Router Router Router Router Cloud Computing Cloud: micro surveys, amber alerts 4 #12;Router Router Router Router Mini Computer Mini Computer Mini Computer

  18. July 2012July 2012 Cloud Computing and Virtualization:Cloud Computing and Virtualization

    E-Print Network [OSTI]

    Liu, Jiangchuan (JC)

    July 2012July 2012 Cloud Computing and Virtualization:Cloud Computing and Virtualization/26/2633 Recent: CloudRecent: Cloud The fast growth of cloud computing Cloud file storage/synchronization services Google entries about cloud computing: 184,000,000 #12;July 2012July 2012 44/26/2644 Our CloudOur Cloud 7

  19. When Clouds become Green: the Green Open Cloud Architecture

    E-Print Network [OSTI]

    Boyer, Edmond

    of a new original energy-efficient Cloud infrastructure called Green Open Cloud. Keywords. Energy with the support of energy-efficient frameworks dedicated to Cloud architectures. Virtualization is a key feature of the energy-aware Cloud infras- tructure that we propose. The conclusion and future works are reviewed

  20. Attribution Analysis of Cloud Feedback

    E-Print Network [OSTI]

    Zhou, Chen

    2014-07-15T23:59:59.000Z

    -term global warming. If the EIS-low cloud fraction relationship holds under global warming, it is likely that the tropical low cloud fraction change is non-negative. Climate models without significant negative low cloud fraction change suggest that the cloud...

  1. Convective Cloud Lifecycles Lunchtime seminar

    E-Print Network [OSTI]

    Plant, Robert

    Convective Cloud Lifecycles Lunchtime seminar 19th May 2009 Bob Plant Department of Meteorology, University of Reading, UK #12;Introduction Obtain life cycle statistics for clouds in CRM simulations Why Conclusions Convective Cloud Lifecycles ­ p.1/3 #12;Why bother? Convective Cloud Lifecycles ­ p.2/3 #12;Some

  2. A High Resolution Hydrometer Phase Classifier Based on Analysis of Cloud Radar Doppler Spectra.

    SciTech Connect (OSTI)

    Luke,E.; Kollias, P.

    2007-08-06T23:59:59.000Z

    The lifecycle and radiative properties of clouds are highly sensitive to the phase of their hydrometeors (i.e., liquid or ice). Knowledge of cloud phase is essential for specifying the optical properties of clouds, or else, large errors can be introduced in the calculation of the cloud radiative fluxes. Current parameterizations of cloud water partition in liquid and ice based on temperature are characterized by large uncertainty (Curry et al., 1996; Hobbs and Rangno, 1998; Intriery et al., 2002). This is particularly important in high geographical latitudes and temperature ranges where both liquid droplets and ice crystal phases can exist (mixed-phase cloud). The mixture of phases has a large effect on cloud radiative properties, and the parameterization of mixed-phase clouds has a large impact on climate simulations (e.g., Gregory and Morris, 1996). Furthermore, the presence of both ice and liquid affects the macroscopic properties of clouds, including their propensity to precipitate. Despite their importance, mixed-phase clouds are severely understudied compared to the arguably simpler single-phase clouds. In-situ measurements in mixed-phase clouds are hindered due to aircraft icing, difficulties distinguishing hydrometeor phase, and discrepancies in methods for deriving physical quantities (Wendisch et al. 1996, Lawson et al. 2001). Satellite-based retrievals of cloud phase in high latitudes are often hindered by the highly reflecting ice-covered ground and persistent temperature inversions. From the ground, the retrieval of mixed-phase cloud properties has been the subject of extensive research over the past 20 years using polarization lidars (e.g., Sassen et al. 1990), dual radar wavelengths (e.g., Gosset and Sauvageot 1992; Sekelsky and McIntosh, 1996), and recently radar Doppler spectra (Shupe et al. 2004). Millimeter-wavelength radars have substantially improved our ability to observe non-precipitating clouds (Kollias et al., 2007) due to their excellent sensitivity that enables the detection of thin cloud layers and their ability to penetrate several non-precipitating cloud layers. However, in mixed-phase clouds conditions, the observed Doppler moments are dominated by the highly reflecting ice crystals and thus can not be used to identify the cloud phase. This limits our ability to identify the spatial distribution of cloud phase and our ability to identify the conditions under which mixed-phase clouds form.

  3. Constructing a Merged Cloud-Precipitation Radar Dataset for Tropical Convective Clouds during the DYNAMO/AMIE Experiment at Addu Atoll

    SciTech Connect (OSTI)

    Feng, Zhe; McFarlane, Sally A.; Schumacher, Courtney; Ellis, Scott; Comstock, Jennifer M.; Bharadwaj, Nitin

    2014-05-16T23:59:59.000Z

    To improve understanding of the convective processes key to the Madden-Julian-Oscillation (MJO) initiation, the Dynamics of the MJO (DYNAMO) and Atmospheric Radiation Measurement MJO Investigation Experiment (AMIE) collected four months of observations from three radars, the S-band Polarization Radar (S-Pol), the C-band Shared Mobile Atmospheric Research & Teaching Radar (SMART-R), and Ka-band Zenith Radar (KAZR) on Addu Atoll in the tropical Indian Ocean. This study compares the measurements from the S-Pol and SMART-R to those from the more sensitive KAZR in order to characterize the hydrometeor detection capabilities of the two scanning precipitation radars. Frequency comparisons for precipitating convective clouds and non-precipitating high clouds agree much better than non-precipitating low clouds for both scanning radars due to issues in ground clutter. On average, SMART-R underestimates convective and high cloud tops by 0.3 to 1.1 km, while S-Pol underestimates cloud tops by less than 0.4 km for these cloud types. S-Pol shows excellent dynamic range in detecting various types of clouds and therefore its data are well suited for characterizing the evolution of the 3D cloud structures, complementing the profiling KAZR measurements. For detecting non-precipitating low clouds and thin cirrus clouds, KAZR remains the most reliable instrument. However, KAZR is attenuated in heavy precipitation and underestimates cloud top height due to rainfall attenuation 4.3% of the time during DYNAMO/AMIE. An empirical method to correct the KAZR cloud top heights is described, and a merged radar dataset is produced to provide improved cloud boundary estimates, microphysics and radiative heating retrievals.

  4. Interannual Variations of Arctic Cloud Types

    E-Print Network [OSTI]

    Hochberg, Michael

    Sciences #12;Changes in Arctic Climate What is the role of cloud cover in Arctic climate change? What is the Cloud Radiative Effect (CRE) in the Arctic? #12;CRE depends on season, cloud type CRE ­ whether clouds specifically chosen to include nighttime obs Total cloud cover and nine cloud types: - High cloud (cirriform

  5. Interannual Variations of Arctic Cloud Types

    E-Print Network [OSTI]

    Hochberg, Michael

    Declining September sea-ice extent #12;Clouds & Changes in Arctic Climate What is the role of cloud cover in Arctic climate change? What is the Cloud Radiative Effect (CRE) in the Arctic? #12;CRE Defined CRE nighttime obs Total cloud cover and nine cloud types: - High cloud (cirriform) - Middle Clouds: Altocumulus

  6. Characterization of melting level clouds over the tropical western pacific warm pool

    SciTech Connect (OSTI)

    Jensen, M.; Johnson, K.; Billings, J.; Troyan, D.; Long, C.; Comstock, J.

    2010-03-15T23:59:59.000Z

    A cursory examination of historical ARSCL data indicates a common cloud feature in the tropics are thin detrainment shelves (Attendant Shelf Clouds, or ASCs) near the melting level (see figure for example). We use the ARSCL product to identify ASCs by defining them as cloud layers with bases above 4 km, a corresponding top below 6 km, and a thickness of less than 1 km. In order to prevent biases in determination of the diurnal cycle of cloud occurrence, we require that both the MMCR and MPL are operating well. In this study we use a total of 55 months of data collected over 14 years of deployments at the Manus, Nauru, and Darwin ARM sites in the Tropical Western Pacific to define the frequency of occurrence (~ 14% of the time) and diurnal cycle of these clouds, along with the atmospheric thermodynamic profile. We further investigate the horizontal extent, cloud radiative forcing, and cloud particle phase through a series of “golden cases” where there is a general absence of additional cloud types in the column and nearby deep convection. These cases indicate that the clouds can cover horizontal areas on the order of a GCM gridbox, have significant (but not always) cloud radiative forcing, and may be composed of liquid or ice water.

  7. First observations of tracking clouds using scanning ARM cloud radars

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01T23:59:59.000Z

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud fieldmore »and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.« less

  8. First observations of tracking clouds using scanning ARM cloud radars

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Borque, Paloma [McGill Univ., Montreal, QC (Canada); Giangrande, Scott [Brookhaven National Lab. (BNL), Upton, NY (United States); Kollias, Pavlos [McGill Univ., Montreal, QC (Canada)

    2014-12-01T23:59:59.000Z

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud field and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.

  9. Migrating enterprise storage applications to the cloud

    E-Print Network [OSTI]

    Vrable, Michael Daniel

    2011-01-01T23:59:59.000Z

    2.1 Cloud Providers . . . . . . . . . . . .2.1.1 Cloud Storage . . . . . . . . .2.1.2 Cloud Computation . . . . . . 2.2 Enterprise Storage

  10. A developer's survey on different cloud platforms

    E-Print Network [OSTI]

    Doan, Dzung

    2009-01-01T23:59:59.000Z

    1 Introduction Cloud computing is a computing paradigm inFor this reason, cloud computing has also been describedparallel processing. Cloud computing can be contrasted with

  11. Diamagnetism of rotating plasma

    SciTech Connect (OSTI)

    Young, W. C.; Hassam, A. B.; Romero-Talamas, C. A.; Ellis, R. F.; Teodorescu, C. [IREAP, University of Maryland, College Park, Maryland 20742 (United States)

    2011-11-15T23:59:59.000Z

    Diamagnetism and magnetic measurements of a supersonically rotating plasma in a shaped magnetic field demonstrate confinement of plasma pressure along the magnetic field resulting from centrifugal force. The Grad-Shafranov equation of ideal magnetohydrodynamic force balance, including supersonic rotation, is solved to confirm that the predicted angular velocity is in agreement with spectroscopic measurements of the Doppler shifts.

  12. Rotational cavity optomechanics

    E-Print Network [OSTI]

    Bhattacharya, M

    2015-01-01T23:59:59.000Z

    We theoretically examine the optomechanical interaction between a rotating nanoparticle and an orbital angular momentum-carrying optical cavity mode. Specifically, we consider a dielectric nanosphere rotating uniformly in a ring-shaped optical potential inside a Fabry-Perot resonator. The motion of the particle is probed by a weak angular lattice, created by introducing two additional degenerate Laguerre-Gaussian cavity modes carrying equal and opposite orbital angular momenta. We demonstrate that the rotation frequency of the nanoparticle is imprinted on the probe optical mode, via the Doppler shift, and thus may be sensed experimentally using homodyne detection. We show analytically that the effect of the optical probe on the particle rotation vanishes in the regime of linear response, resulting in an accurate frequency measurement. We also numerically characterize the degradation of the measurement accuracy when the system is driven in the nonlinear regime. Our results are relevant to rotational Doppler ve...

  13. A Rotating Holographic Superconductor

    E-Print Network [OSTI]

    Julian Sonner

    2009-03-31T23:59:59.000Z

    In this paper we initiate the study of SSB in 3+1 dimensional rotating, charged, asymptotically AdS black holes. The theory living on their boundary, R x S^2, has the interpretation of a 2+1 dimensional rotating holographic superconductor. We study the appearance of a marginal mode of the condensate as the temperature is decreased. We find that the transition temperature depends on the rotation. At temperatures just below T_c, the transition temperature at zero rotation, there exists a critical value of the rotation, which destroys the superconducting order. This behaviour is analogous to the emergence of a critical applied magnetic field and we show that the superconductor in fact produces the expected London field in the planar limit.

  14. Rotating holographic superconductor

    SciTech Connect (OSTI)

    Sonner, Julian [Blackett Laboratory, Imperial College, London, SW7 2AZ (United Kingdom) and Trinity College, University of Cambridge, Cambridge, CB2 1TQ (United Kingdom)

    2009-10-15T23:59:59.000Z

    In this paper we initiate the study of spontaneous symmetry breaking in 3+1 dimensional rotating, charged, asymptotically AdS black holes. The theory living on their boundary, RxS{sup 2}, has the interpretation of a 2+1 dimensional rotating holographic superconductor. We study the appearance of a marginal mode of the condensate as the temperature is decreased. We find that the transition temperature depends on the rotation. At temperatures just below T{sub c}, the transition temperature at zero rotation, there exists a critical value of the rotation, which destroys the superconducting order. This behavior is analogous to the emergence of a critical applied magnetic field and we show that the superconductor in fact produces the expected London field in the planar limit.

  15. PHYSICAL REVIEW B 85, 184101 (2012) Octahedral tilting in strained LaVO3 thin films

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    2012-01-01T23:59:59.000Z

    -Zentrum Berlin f¨ur Materialien und Energie GmbH, BESSY, Albert-Einstein-Strasse 15, 12489 Berlin, Germany rotations in a LaVO3 thin film is investigated using synchrotron radiation. First, we find that the film

  16. ROTATING GLOBULAR CLUSTERS

    SciTech Connect (OSTI)

    Bianchini, P.; Varri, A. L. [Now at Department of Astronomy, Indiana University, 727 East 3rd Street, Swain West 319, Bloomington, IN 47405-7105 (United States); Bertin, G.; Zocchi, A., E-mail: bianchini@mpia.de [Dipartimento di Fisica, Universita degli Studi di Milano, via Celoria 16, I-20133 Milano (Italy)

    2013-07-20T23:59:59.000Z

    Internal rotation is thought to play a major role in the dynamics of some globular clusters. However, in only a few cases has internal rotation been studied by the quantitative application of realistic and physically justified global models. Here, we present a dynamical analysis of the photometry and three-dimensional kinematics of {omega} Cen, 47 Tuc, and M15, by means of a recently introduced family of self-consistent axisymmetric rotating models. The three clusters, characterized by different relaxation conditions, show evidence of differential rotation and deviations from sphericity. The combination of line-of-sight velocities and proper motions allows us to determine their internal dynamics, predict their morphology, and estimate their dynamical distance. The well-relaxed cluster 47 Tuc is interpreted very well by our model; internal rotation is found to explain the observed morphology. For M15, we provide a global model in good agreement with the data, including the central behavior of the rotation profile and the shape of the ellipticity profile. For the partially relaxed cluster {omega} Cen, the selected model reproduces the complex three-dimensional kinematics; in particular, the observed anisotropy profile, characterized by a transition from isotropy to weakly radial anisotropy and then to tangential anisotropy in the outer parts. The discrepancy found for the steep central gradient in the observed line-of-sight velocity dispersion profile and for the ellipticity profile is ascribed to the condition of only partial relaxation of this cluster and the interplay between rotation and radial anisotropy.

  17. Ice Heating Up Cold Clouds | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice Heating Up Cold Clouds Ice Heating Up Cold Clouds Released: October 04, 2011 In a heated battle, ice crystals win the competition for cloud water vapor The mighty cloud ice...

  18. Cloud Based Applications and Platforms (Presentation)

    SciTech Connect (OSTI)

    Brodt-Giles, D.

    2014-05-15T23:59:59.000Z

    Presentation to the Cloud Computing East 2014 Conference, where we are highlighting our cloud computing strategy, describing the platforms on the cloud (including Smartgrid.gov), and defining our process for implementing cloud based applications.

  19. Rotational Quantum Friction

    E-Print Network [OSTI]

    Rongkuo Zhao; Alejandro Manjavacas; F. Javier García de Abajo; J. B. Pendry

    2012-09-25T23:59:59.000Z

    We investigate the frictional forces due to quantum fluctuations acting on a small sphere rotating near a surface. At zero temperature, we find the frictional force near a surface to be several orders of magnitude larger than that for the sphere rotating in vacuum. For metallic materials with typical conductivity, quantum friction is maximized by matching the frequency of rotation with the conductivity. Materials with poor conductivity are favored to obtain large quantum frictions. For semiconductor materials that are able to support surface plasmon polaritons, quantum friction can be further enhanced by several orders of magnitude due to the excitation of surface plasmon polaritons.

  20. Attribution Analysis of Cloud Feedback 

    E-Print Network [OSTI]

    Zhou, Chen

    2014-07-15T23:59:59.000Z

    Uncertainty on cloud feedback is the primary contributor to the large spread of equilibrium climate sensitivity (ECS) in climate models. In this study, we compare the short-term cloud feedback in climate models with observations, and evaluate...

  1. Modeling Incoherent Electron Cloud Effects

    E-Print Network [OSTI]

    Benedetto, E.

    2008-01-01T23:59:59.000Z

    electron-cloud effects and synchrotron radiation can lead toelectron-cloud effects and synchrotron radiation can lead tocloud phenomena in positrons storage rings the effect of syn- chrotron radiation

  2. Algebra of Rotations

    E-Print Network [OSTI]

    Donu Arapura

    2013-01-07T23:59:59.000Z

    Chapter 1. Algebra of Rotations. One of our goals is to make precise the idea of symmetry, which is important in math and other parts of science. Something like ...

  3. Secure Cloud Computing With Brokered Trusted

    E-Print Network [OSTI]

    ) ·Audio ·QualComm 7201 528MHZ ·64MB Ram ·MicroSD Slow Storage ·Currently NO SIM CHIPS Monday, March 29 External Storage External Storage Router Router Router Router Cloud Computing Cloud Computing Cloud Storage External Storage Router Router Router Router Cloud Computing Cloud Computing Cloud Computing Tower

  4. Rotational rate sensor

    DOE Patents [OSTI]

    Hunter, Steven L. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    A rate sensor for angular/rotational acceleration includes a housing defining a fluid cavity essentially completely filled with an electrolyte fluid. Within the housing, such as a toroid, ions in the fluid are swept during movement from an excitation electrode toward one of two output electrodes to provide a signal for directional rotation. One or more ground electrodes within the housing serve to neutralize ions, thus preventing any effect at the other output electrode.

  5. Electromagnetic rotational actuation.

    SciTech Connect (OSTI)

    Hogan, Alexander Lee

    2010-08-01T23:59:59.000Z

    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  6. Rotating arc spark plug

    DOE Patents [OSTI]

    Whealton, John H.; Tsai, Chin-Chi

    2003-05-27T23:59:59.000Z

    A spark plug device includes a structure for modification of an arc, the modification including arc rotation. The spark plug can be used in a combustion engine to reduce emissions and/or improve fuel economy. A method for operating a spark plug and a combustion engine having the spark plug device includes the step of modifying an arc, the modifying including rotating the arc.

  7. Faraday rotation in graphene

    E-Print Network [OSTI]

    I. V. Fialkovsky; D. V. Vassilevich

    2012-11-29T23:59:59.000Z

    We study magneto--optical properties of monolayer graphene by means of quantum field theory methods in the framework of the Dirac model. We reveal a good agreement between the Dirac model and a recent experiment on giant Faraday rotation in cyclotron resonance. We also predict other regimes when the effects are well pronounced. The general dependence of the Faraday rotation and absorption on various parameters of samples is revealed both for suspended and epitaxial graphene.

  8. Astrophysics of Dust in Cold Clouds

    E-Print Network [OSTI]

    B. T. Draine

    2003-04-28T23:59:59.000Z

    Nine lectures reviewing the astrophysics of dust in interstellar clouds. Topics include: (1) Summary of observational evidence concerning interstellar dust: broadband extinction, scattering of starlight, polarization of starlight, spectroscopy of dust, IR and FIR emission, and depletions of grain-forming elements. (2) Optics of interstellar dust grains: dielectric functions of nonconducting and conducting materials, calculational techniques, formulae valid in the Rayleigh limit, Kramers-Kronig relations, microwave emission mechanisms, and X-ray scattering. (3) IR and FIR emission: heating of interstellar dust, including single-photon heating, and resulting IR emission spectrum. (4) Charging of dust grains: collisional charging, photoelectric emission, and resulting charge distribution functions. (5) Dynamics: gas drag, Lorentz force, forces due to anisotropic radiation, and resulting drift velocities. (6) Rotational dynamics: brownian rotation, suprathermal rotation, and effects of starlight torques. (7) Alignment of interstellar dust: observations and theories. (8) Evolution of the grain population: dust formation in outflows, grain growth in the ISM, photodesorption, and grain destruction in shock waves. (9) Effects of dust grains: photoelectric heating, H2 formation, ion recombination, coupling of gas to magnetic fields, and dust grains as indicators of magnetic field direction.

  9. Opaque cloud detection

    DOE Patents [OSTI]

    Roskovensky, John K. (Albuquerque, NM)

    2009-01-20T23:59:59.000Z

    A method of detecting clouds in a digital image comprising, for an area of the digital image, determining a reflectance value in at least three discrete electromagnetic spectrum bands, computing a first ratio of one reflectance value minus another reflectance value and the same two values added together, computing a second ratio of one reflectance value and another reflectance value, choosing one of the reflectance values, and concluding that an opaque cloud exists in the area if the results of each of the two computing steps and the choosing step fall within three corresponding predetermined ranges.

  10. Collapse of Magnetized Singular Isothermal Toroids: II. Rotation and Magnetic Braking

    E-Print Network [OSTI]

    Allen, A; Shu, F H

    2003-01-01T23:59:59.000Z

    We study numerically the collapse of rotating, magnetized molecular cloud cores, focusing on rotation and magnetic braking during the main accretion phase of isolated star formation. Motivated by previous numerical work and analytic considerations, we idealize the pre-collapse core as a magnetized singular isothermal toroid, with a constant rotational speed everywhere. The collapse starts from the center, and propagates outwards in an inside-out fashion, satisfying exact self-similarity in space and time. For rotation rates and field strengths typical of dense low-mass cores, the main feature remains the flattening of the mass distribution along field lines -- the formation of a pseudodisk, as in the nonrotating cases. The density distribution of the pseudodisk is little affected by rotation. On the other hand, the rotation rate is strongly modified by pseudodisk formation. Most of the centrally accreted material reaches the vicinity of the protostar through the pseudodisk. The specific angular momentum can b...

  11. Command Line Tools Cloud Computing

    E-Print Network [OSTI]

    Ferrara, Katherine W.

    Command Line Tools Cloud Computing #12;Everybody (or nearly everybody) loves GUI. AWS Command Line of advanced features. After surviving the cloud computing class till now, Your are almost a command line guru! You need AWS command line tools, ec2-api-tools, to maximize the power of AWS cloud computing. Plugging

  12. 8, 96979729, 2008 FRESCO+ cloud

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 8, 9697­9729, 2008 FRESCO+ cloud retrieval algorithm P. Wang et al. Title Page Abstract Chemistry and Physics Discussions FRESCO+: an improved O2 A-band cloud retrieval algorithm for tropospheric on behalf of the European Geosciences Union. 9697 #12;ACPD 8, 9697­9729, 2008 FRESCO+ cloud retrieval

  13. 3, 33013333, 2003 Cirrus cloud

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 3, 3301­3333, 2003 Cirrus cloud occurrence as function of ambient relative humidity J. Str and Physics Discussions Cirrus cloud occurrence as function of ambient relative humidity: A comparison¨om (johan@itm.su.se) 3301 #12;ACPD 3, 3301­3333, 2003 Cirrus cloud occurrence as function of ambient

  14. Cloud Formation, Evolution and Destruction

    E-Print Network [OSTI]

    Estalella, Robert

    Chapter 4 Cloud Formation, Evolution and Destruction We now begin to trace the journey towards a star. How long does this take? The answer is surprisingly short: a good many clouds already contain new stars and these stars tend to be young. The typical cloud cannot spend long, if any time at all

  15. 5, 60136039, 2005 FRESCO cloud

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 5, 6013­6039, 2005 FRESCO cloud algorithm N. Fournier et al. Title Page Abstract Introduction cloud information over deserts from SCIAMACHY O2 A-band N. Fournier 1 , P. Stammes 1 , M. de Graaf 1 , R, 6013­6039, 2005 FRESCO cloud algorithm N. Fournier et al. Title Page Abstract Introduction Conclusions

  16. NIST Cloud Computing Reference Architecture

    E-Print Network [OSTI]

    Perkins, Richard A.

    NIST Cloud Computing Reference Architecture Recommendations of the National Institute of Standards Publication 500-292 #12;i NIST Special Publication 500-292 NIST Cloud Computing Reference Architecture, John Messina, Lee Badger and Dawn Leaf Information Techonology Laboratory Cloud Computing Program

  17. Posters Parameterization of Thin Mid-Level Stratiform Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project Office PressPostdoctoraldecadal observations7197 Posters751

  18. Radiative Importance of ÂŤThinÂŽ Liquid Water Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation Protection Regulations: The FederalRadiative EffectsProgram

  19. Radiative Importance of ÂŤThinÂŽ Liquid Water Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation Protection Regulations: The FederalRadiative

  20. Simulating Electron Clouds in Heavy-Ion Accelerators

    SciTech Connect (OSTI)

    Cohen, R.H.; Friedman, A.; Kireeff Covo, M.; Lund, S.M.; Molvik,A.W.; Bieniosek, F.M.; Seidl, P.A.; Vay, J-L.; Stoltz, P.; Veitzer, S.

    2005-04-07T23:59:59.000Z

    Contaminating clouds of electrons are a concern for most accelerators of positive-charged particles, but there are some unique aspects of heavy-ion accelerators for fusion and high-energy density physics which make modeling such clouds especially challenging. In particular, self-consistent electron and ion simulation is required, including a particle advance scheme which can follow electrons in regions where electrons are strongly-, weakly-, and un-magnetized. They describe their approach to such self-consistency, and in particular a scheme for interpolating between full-orbit (Boris) and drift-kinetic particle pushes that enables electron time steps long compared to the typical gyro period in the magnets. They present tests and applications: simulation of electron clouds produced by three different kinds of sources indicates the sensitivity of the cloud shape to the nature of the source; first-of-a-kind self-consistent simulation of electron-cloud experiments on the High-Current Experiment (HCX) at Lawrence Berkeley National Laboratory, in which the machine can be flooded with electrons released by impact of the ion beam and an end plate, demonstrate the ability to reproduce key features of the ion-beam phase space; and simulation of a two-stream instability of thin beams in a magnetic field demonstrates the ability of the large-timestep mover to accurately calculate the instability.

  1. New limits on extragalactic magnetic fields from rotation measures

    E-Print Network [OSTI]

    Pshirkov, Maxim S; Urban, Federico R

    2015-01-01T23:59:59.000Z

    We take advantage of the wealth of rotation measures data contained in the NVSS catalogue to derive new, statistically robust, upper limits on the strength of extragalactic magnetic fields. We simulate the extragalactic contribution to the rotation measures for a given field strength and correlation length, by assuming that the electron density follows the distribution of Lyman-$\\alpha$ clouds. Based on the observation that rotation measures from low-luminosity distant radio sources do not exhibit any trend with redshift, while the extragalactic contribution instead grows with distance, we constrain fields with Mpc coherence length to be below 1.2 nG at the $2\\sigma$ level, and fields coherent across the entire observable Universe below 0.5 nG. These limits do not depend on the particular origin of these cosmological fields.

  2. Impossibility of secure cloud quantum computing for classical client

    E-Print Network [OSTI]

    Tomoyuki Morimae; Takeshi Koshiba

    2014-07-07T23:59:59.000Z

    The first generation quantum computer will be implemented in the cloud style, since only few groups will be able to access such an expensive and high-maintenance machine. How the privacy of the client can be protected in such a cloud quantum computing? It was theoretically shown [A. Broadbent, J. F. Fitzsimons, and E. Kashefi, Proceedings of the 50th Annual IEEE Symposium on Foundation of Computer Science, 517 (2009)], and experimentally demonstrated [S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, and P. Walther, Science {\\bf335}, 303 (2012)] that a client who can generate randomly-rotated single qubit states can delegate her quantum computing to a remote quantum server without leaking any privacy. The generation of a single qubit state is not too much burden for the client, and therefore we can say that "almost classical client" can enjoy the secure cloud quantum computing. However, isn't is possible to realize a secure cloud quantum computing for a client who is completely free from any quantum technology? Here we show that perfectly-secure cloud quantum computing is impossible for a completely classical client unless classical computing can simulate quantum computing, or a breakthrough is brought in classical cryptography.

  3. Stratocumulus Clouds ROBERT WOOD

    E-Print Network [OSTI]

    Wood, Robert

    by latent heating in updrafts and cooling in downdrafts. Turbulent eddies and evaporative cooling drives, stratification of the STBL, and in some cases cloud breakup. Feedbacks between radiative cooling, precipitation- way interactions may be a key driver of aerosol concentrations over the remote oceans. Aerosol

  4. Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part I: Cloud Radiative Kernels

    E-Print Network [OSTI]

    Hartmann, Dennis

    radiative forcing. The global and annual mean model-simulated cloud feedback is dominated by contributions to a hypothetical cloudless but other- wise identical planet, the global and annual mean effect of clouds at the top is how cloud radiative effects will change as the planet warms because of long-lived greenhouse gases

  5. Graphene Monolayer Rotation on Ni(111) Facilities Bilayer Graphene Growth

    SciTech Connect (OSTI)

    Batzill M.; Sutter P.; Dahal, A.; Addou, R.

    2012-06-11T23:59:59.000Z

    Synthesis of bilayer graphene by chemical vapor deposition is of importance for graphene-based field effect devices. Here, we demonstrate that bilayer graphene preferentially grows by carbon-segregation under graphene sheets that are rotated relative to a Ni(111) substrate. Rotated graphene monolayer films can be synthesized at growth temperatures above 650 C on a Ni(111) thin-film. The segregated second graphene layer is in registry with the Ni(111) substrate and this suppresses further C-segregation, effectively self-limiting graphene formation to two layers.

  6. Rotating Aperture System

    DOE Patents [OSTI]

    Rusnak, Brian (Livermore, CA); Hall, James M. (Livermore, CA); Shen, Stewart (Danville, CA); Wood, Richard L. (Santa Fe, NM)

    2005-01-18T23:59:59.000Z

    A rotating aperture system includes a low-pressure vacuum pumping stage with apertures for passage of a deuterium beam. A stator assembly includes holes for passage of the beam. The rotor assembly includes a shaft connected to a deuterium gas cell or a crossflow venturi that has a single aperture on each side that together align with holes every rotation. The rotating apertures are synchronized with the firing of the deuterium beam such that the beam fires through a clear aperture and passes into the Xe gas beam stop. Portions of the rotor are lapped into the stator to improve the sealing surfaces, to prevent rapid escape of the deuterium gas from the gas cell.

  7. EA-1852: Cloud County Community College Wind Energy Project,...

    Broader source: Energy.gov (indexed) [DOE]

    2: Cloud County Community College Wind Energy Project, Cloud County, Kansas EA-1852: Cloud County Community College Wind Energy Project, Cloud County, Kansas Summary This EA...

  8. Rotating bubble membrane radiator

    DOE Patents [OSTI]

    Webb, Brent J. (West Richland, WA); Coomes, Edmund P. (West Richland, WA)

    1988-12-06T23:59:59.000Z

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  9. Using Surface Remote Sensors to Derive Radiative Characteristics of Mixed-Phase Clouds: An Example from M-PACE

    SciTech Connect (OSTI)

    de Boer, Gijs; Collins, William D.; Menon, Surabi; Long, Charles N.

    2011-12-02T23:59:59.000Z

    Measurements from ground-based cloud radar, high spectral resolution lidar and microwave radiometer are used in conjunction with a column version of the Rapid Radiative Transfer Model (RRTMG) and radiosonde measurements to derive the surface radiative properties under mixed-phase cloud conditions. These clouds were observed during the United States Department of Energy (US DOE) Atmospheric Radiation Measurement (ARM) Mixed-Phase Arctic Clouds Experiment (M-PACE) between September and November of 2004. In total, sixteen half hour time periods are reviewed due to their coincidence with radiosonde launches. Cloud liquid (ice) water paths are found to range between 11.0-366.4 (0.5-114.1) gm-2, and cloud physical thicknesses fall between 286-2075 m. Combined with temperature and hydrometeor size estimates, this information is used to calculate surface radiative flux densities using RRTMG, which are demonstrated to generally agree with measured flux densities from surface-based radiometric instrumentation. Errors in longwave flux density estimates are found to be largest for thin clouds, while shortwave flux density errors are generally largest for thicker clouds. A sensitivity study is performed to understand the impact of retrieval assumptions and uncertainties on derived surface radiation estimates. Cloud radiative forcing is calculated for all profiles, illustrating longwave dominance during this time of year, with net cloud forcing generally between 50 and 90 Wm-2.

  10. CloudAnalyst: A CloudSim-based Visual Modeller for Analysing Cloud Computing Environments and Applications

    E-Print Network [OSTI]

    Calheiros, Rodrigo N.

    CloudAnalyst: A CloudSim-based Visual Modeller for Analysing Cloud Computing Environments and Applications Bhathiya Wickremasinghe1 , Rodrigo N. Calheiros2 , and Rajkumar Buyya1 1 The Cloud Computing and Distributed Systems (CLOUDS) Laboratory Department of Computer Science and Software Engineering The University

  11. CloudSat Overview CloudSat will provide, from space, the first global survey of cloud profiles and

    E-Print Network [OSTI]

    on the radiative and water budgets of clouds are broadly referred to as indirect aerosol effects. The aerosol processes and their accumulated effects on the global scale. 2. Mission Description CloudSat is plannedCloudSat Overview CloudSat will provide, from space, the first global survey of cloud profiles

  12. Microphysical Properties of Single and Mixed-Phase Arctic Clouds Derived from AERI Observations

    SciTech Connect (OSTI)

    Turner, David D.

    2003-06-01T23:59:59.000Z

    A novel new approach to retrieve cloud microphysical properties from mixed-phase clouds is presented. This algorithm retrieves cloud optical depth, ice fraction, and the effective size of the water and ice particles from ground-based, high-resolution infrared radiance observations. The theoretical basis is that the absorption coefficient of ice is stronger than that of liquid water from 10-13 mm, whereas liquid water is more absorbing than ice from 16-25 um. However, due to strong absorption in the rotational water vapor absorption band, the 16-25 um spectral region becomes opaque for significant water vapor burdens (i.e., for precipitable water vapor amounts over approximately 1 cm). The Arctic is characterized by its dry and cold atmosphere, as well as a preponderance of mixed-phase clouds, and thus this approach is applicable to Arctic clouds. Since this approach uses infrared observations, cloud properties are retrieved at night and during the long polar wintertime period. The analysis of the cloud properties retrieved during a 7 month period during the Surface Heat Budget of the Arctic (SHEBA) experiment demonstrates many interesting features. These results show a dependence of the optical depth on cloud phase, differences in the mode radius of the water droplets in liquid-only and mid-phase clouds, a lack of temperature dependence in the ice fraction for temperatures above 240 K, seasonal trends in the optical depth with the clouds being thinner in winter and becoming more optically thick in the late spring, and a seasonal trend in the effective size of the water droplets in liquid-only and mixed-phase clouds that is most likely related to aerosol concentration.

  13. Rotating Hairy Black Holes

    E-Print Network [OSTI]

    B. Kleihaus; J. Kunz

    2000-12-20T23:59:59.000Z

    We construct stationary black holes in SU(2) Einstein-Yang-Mills theory, which carry angular momentum and electric charge. Possessing non-trivial non-abelian magnetic fields outside their regular event horizon, they represent non-perturbative rotating hairy black holes.

  14. Rotatable stem and lock

    DOE Patents [OSTI]

    Deveney, J.E.; Sanderson, S.N.

    1981-10-27T23:59:59.000Z

    A valve stem and lock is disclosed which includes a housing surrounding a valve stem, a solenoid affixed to an interior wall of the housing, an armature affixed to the valve stem and a locking device for coupling the armature to the housing body. When the solenoid is energized, the solenoid moves away from the housing body, permitting rotation of the valve stem.

  15. FORMULATION OF ROTATIONAL SYSTEMS

    E-Print Network [OSTI]

    , by formulating a rotational equivalent mass called "moment of inertia." 3.1 Newton's Law Revisited Let us begin Figure 3.2: Simple Pendulum with Torsion Spring for T to obtain Newton's law in units of torque: T = (mr2 gravitational term as the crude analysis of Section ??, but now we know the magnitude of the terms we have

  16. The Rotating Quantum Vacuum

    E-Print Network [OSTI]

    Paul C. W. Davies; Tevian Dray; Corinne A. Manogue

    1996-01-22T23:59:59.000Z

    We derive conditions for rotating particle detectors to respond in a variety of bounded spacetimes and compare the results with the folklore that particle detectors do not respond in the vacuum state appropriate to their motion. Applications involving possible violations of the second law of thermodynamics are briefly addressed.

  17. A Catalog of HI Clouds in the Large Magellanic Cloud

    E-Print Network [OSTI]

    S. Kim; E. Rosolowsky; Y. Lee; Y. Kim; Y. C. Jung; M. A. Dopita; B. G. Elmegreen; K. C. Freeman; R. J. Sault; M. J. Kesteven; D. McConnell; Y. -H. Chu

    2007-06-28T23:59:59.000Z

    A 21 cm neutral hydrogen interferometric survey of the Large Magellanic Cloud (LMC) combined with the Parkes multi-beam HI single-dish survey clearly shows that the HI gas is distributed in the form of clumps or clouds. The HI clouds and clumps have been identified using a thresholding method with three separate brightness temperature thresholds ($T_b$). Each catalog of HI cloud candidates shows a power law relationship between the sizes and the velocity dispersions of the clouds roughly following the Larson Law scaling $\\sigma_v \\propto R^{0.5}$, with steeper indices associated with dynamically hot regions. The clouds in each catalog have roughly constant virial parameters as a function mass suggesting that that the clouds are all in roughly the same dynamical state, but the values of the virial parameter are significantly larger than unity showing that turbulent motions dominate gravity in these clouds. The mass distribution of the clouds is a power law with differential indices between -1.6 and -2.0 for the three catalogs. In contrast, the distribution of mean surface densities is a log-normal distribution.

  18. Wave-driven Rotation in Supersonically Rotating Mirrors

    SciTech Connect (OSTI)

    A. Fetterman and N.J. Fisch

    2010-02-15T23:59:59.000Z

    Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

  19. Broken and inhomogeneous cloud impact on satellite cloud particle effective radius and cloudphase retrievals

    E-Print Network [OSTI]

    Stoffelen, Ad

    on the particle size distribution, height, and thermo- dynamic phase of clouds. Water and ice clouds have parameterizations is the global dis- tribution of cloud thermodynamic phase, i.e., whether a cloud is composed on satellitederived cloud particle effective radius (re) and cloud phase (CPH) for broken and overcast inhomogeneous

  20. Clinical Rotation Descriptions-2013 Clinical Rotation Description Forms the Student

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Clinical Rotation Descriptions- 2013 Clinical Rotation Description Forms the Student Completes:1 with a PT 2 from rotation (3), allowing the PT 2 to teach the PT 1. GAs * at end of experience, Clinical Performance Evaluation, Physical Therapy Student Evaluation: Clinical Experience and Instruction 1 page form

  1. Amorphous carbon coatings for the mitigation of electron cloud in the CERN Super Proton Synchrotron

    E-Print Network [OSTI]

    Yin Vallgren, C; Bauche, J; Calatroni, S; Chiggiato, P; Cornelis, K; Costa Pinto, P; Henrist, B; Metral, E; Neupert, H; Rumolo, G; Shaposhnikova, E; Taborelli, M

    2011-01-01T23:59:59.000Z

    Electron cloud buildup is a major limitation for high-energy particle accelerators such as the CERN Super Proton Synchrotron (SPS). Amorphous carbon thin films with low initial secondary electron yield (SEY ~ 1.0) have been applied as a mitigation material in the SPS vacuum chambers. This paper summarizes the experimental setups for electron cloud monitoring, coating procedures, and recent measurements performed with amorphous carbon coated vacuum chambers in the SPS. The electron cloud measured by dedicated monitors is completely suppressed for LHC-type beams. Even after more than one year’s exposure in the SPS with the machine in operation, the coating does not show any increase in the secondary electron yield. The study of coated vacuum chambers for the SPS dipole magnets is in progress; the correlation between electron cloud reduction and pressure rises is not yet fully understood. Some prototypes have already been installed in the accelerator and plans for the implementation of an optimized coating tec...

  2. Measurements of electron cloud density in the CERN Super Proton Synchrotron with the microwave transmission method

    E-Print Network [OSTI]

    Federmann, S; Mahner, E

    2011-01-01T23:59:59.000Z

    The electron cloud effect can pose severe performance limitations in high-energy particle accelerators as the CERN Super Proton Synchrotron (SPS). Mitigation techniques such as vacuum chamber thin film coatings with low secondary electron yields (SEY < 1.3) aim to reduce or even suppress this effect. The microwave transmission method, developed and first applied in 2003 at the SPS, measures the integrated electron cloud density over a long section of an accelerator. This paper summarizes the theory and measurement principle and describes the new SPS microwave transmission setup used to study the electron cloud mitigation of amorphous carbon coated SPS dipole vacuum chambers. Comparative results of carbon coated and bare stainless steel dipole vacuum chambers are given for the beam with nominal LHC 25 ns bunch-to-bunch spacing in the SPS and the electron cloud density is derived.

  3. A Survey on Cloud Provider Security

    E-Print Network [OSTI]

    A Survey on Cloud Provider Security Measures Alex Pucher, Stratos Dimopoulos Abstract Cloud take advantage of this model already, but security and privacy concerns limit the further adoption agencies and start offering security certifications and separate tightly controlled "government" cloud

  4. Cicada: Predictive Guarantees for Cloud Network Bandwidth

    E-Print Network [OSTI]

    LaCurts, Katrina

    2014-03-24T23:59:59.000Z

    In cloud-computing systems, network-bandwidth guarantees have been shown to improve predictability of application performance and cost. Most previous work on cloud-bandwidth guarantees has assumed that cloud tenants know ...

  5. Electron-Cloud Build-Up: Summary

    E-Print Network [OSTI]

    Furman, M.A.

    2007-01-01T23:59:59.000Z

    Properties In?uencing Electron Cloud Phenomena,” Appl. Surf.Dissipation of the Electron Cloud,” Proc. PAC03 (Portland,is no signi?cant electron-cloud under nominal operating

  6. DIRSIG Cloud Modeling Capabilities; A Parametric Study

    E-Print Network [OSTI]

    Salvaggio, Carl

    1 DIRSIG Cloud Modeling Capabilities; A Parametric Study Kristen Powers powers:................................................................................................................... 13 Calculation of Sensor Reaching Radiance Truth Values for Cloudless & Stratus Cloud Scenes and Atmospheric Database Creation for Stratus Cloud Scene & Calculation of Associated Sensor Reaching Radiance

  7. Magellan: experiences from a Science Cloud

    E-Print Network [OSTI]

    Ramakrishnan, Lavanya

    2013-01-01T23:59:59.000Z

    2010. From Clusters To Clouds: xCAT 2 Is Out Of The Bag.Cost of Doing Science on the Cloud: The Montage Example. Incost of doing science on the cloud: the montage example. In

  8. The Cloud Computing and Other Variables

    E-Print Network [OSTI]

    Borjon-Kubota, Martha Estela

    2011-01-01T23:59:59.000Z

    12. Fragments in Six 13. Cloud Computing 14. Phase 15.Note 48. Devoured vi Cloud Computing and other Variables I.moment. Lasts hours. Cloud Computing Just there Over the

  9. The Magellan Final Report on Cloud Computing

    E-Print Network [OSTI]

    Coghlan, Susan

    2013-01-01T23:59:59.000Z

    4.3.1 Cloud Computing Attractive Features . 4.3.2A berkeley view of cloud computing. Technical Report UCB/matching computations on cloud computing platforms and hpc

  10. Polarization of far-infrared radiation from molecular clouds

    SciTech Connect (OSTI)

    Novak, G.; Gonatas, D.P.; Hildebrand, R.H.; Platt, S.R.; Dragovan, M. (Chicago Univ., IL (USA) AT T Bell Laboratories, Murray Hill, NJ (USA))

    1989-10-01T23:59:59.000Z

    The paper reports measurements of the polarization of far-infrared emission from dust in nine molecular clouds. Detections were obtained in Mon R2, in the Kleinmann-Low (KL) nebula in Orion, and in Sgr A. Upper limits were set for six other clouds. A comparison of the 100 micron polarization of KL with that previously measured at 270 microns provides new evidence that the polarization is due to emission from magnetically aligned dust grains. Comparing the results for Orion with measurements at optical wavelengths, it is inferred that the magnetic field direction in the outer parts of the Orion cloud is the same as that in the dense core. This direction is nearly perpendicular to the ridge of molecular emission and is parallel to both the molecular outflow in KL and the axis of rotation of the cloud core. In Mon R2, the field direction which the measurements imply does not agree withthat derived from 0.9-2.2 micron polarimetry. The discrepancy is attributed to scattering in the near-infrared. In Orion and Sgr A, where comparisons are possible, the measurements are in good agreement with 10 micron polarization measurements. 55 refs.

  11. Sunlight Changes Aerosols in Clouds | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sunlight Changes Aerosols in Clouds Sunlight Changes Aerosols in Clouds Released: October 20, 2011 Scientists show how sunlight alters optical, chemical properties of atmospheric...

  12. 3, 44614488, 2003 Cloud particle

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    effects. On one hand, clouds reflect the incoming solar radiation and thus cool the Earth significant effect on the radiation balance (Wielicki et al, 1996; Mitchell, 1989) due to two competing-Atmosphere system. On the other hand, clouds absorb longwave thermal radiation coming from the surface and then re

  13. Sample rotating turntable kit for infrared spectrometers

    DOE Patents [OSTI]

    Eckels, Joel Del (Livermore, CA); Klunder, Gregory L. (Oakland, CA)

    2008-03-04T23:59:59.000Z

    An infrared spectrometer sample rotating turntable kit has a rotatable sample cup containing the sample. The infrared spectrometer has an infrared spectrometer probe for analyzing the sample and the rotatable sample cup is adapted to receive the infrared spectrometer probe. A reflectance standard is located in the rotatable sample cup. A sleeve is positioned proximate the sample cup and adapted to receive the probe. A rotator rotates the rotatable sample cup. A battery is connected to the rotator.

  14. A Novel Retrieval Algorithm for Cloud Optical Properties from the Atmopsheric Radiation Measurement Program's Two-Channel Narrow-Field-of-View Radiometer

    SciTech Connect (OSTI)

    Wiscombe, Warren J.; Marshak, A.; Chiu, J.-Y. C.; Knyazikhin, Y.; Barnard, James C.; Luo, Yi

    2005-03-14T23:59:59.000Z

    Cloud optical depth is the most important of all cloud optical properties, and vital for any cloud-radiation parameterization. To estimate cloud optical depth, the atmospheric science community has widely used ground-based flux measurements from either broadband or narrowband radiometers in the past decade. However, this type of technique is limited to overcast conditions and, at best, gives us an "effective" cloud optical depth instead of its "local" value. Unlike flux observations, monochromatic narrow-field-of-view (NFOV) radiance measurements contain information of local cloud properties, but unfortunately, the use of radiance to interpret optical depth suffers from retrieval ambiguity. We have pioneered an algorithm to retrieve cloud optical depth in a fully three-dimensional cloud situation using new Atmospheric Radiation Measurement (ARM) ground-based passive two-channel (673 and 870 nm) NFOV measurements. The underlying principle of the algorithm is that these two channels have similar cloud properties but strong spectral contrast in surface reflectance. This algorthm offers the first opportunity to illustrate cloud evolution with high temporal resolution retrievals. A combination of two-channel NFOV radiances with multi-filter rotating shadowband radiometer (MFRSR) fluxes for the retrieval of cloud optical properties is also discussed.

  15. Compact High-Velocity Clouds at High Resolution

    E-Print Network [OSTI]

    W. B. Burton; Robert Braun

    1999-12-22T23:59:59.000Z

    Six examples of the compact, isolated high-velocity clouds catalogued by Braun & Burton (1999) and identified with a dynamically cold ensemble of primitive objects falling towards the barycenter of the Local Group have been imaged with the Westerbork Synthesis Radio Telescope; an additional ten have been imaged with the Arecibo telescope. The imaging reveals a characteristic core/halo morphology: one or several cores of cool, relatively high-column-density material, are embedded in an extended halo of warmer, lower-density material. Several of the cores show kinematic gradients consistent with rotation; these CHVCs are evidently rotationally supported and dark-matter dominated. The imaging data allows several independent estimates of the distances to these objects, which lie in the range 0.3 to 1.0 Mpc. The CHVC properties resemble what might be expected from very dark dwarf irregular galaxies.

  16. Ozone Depletion: Part 2 Antarctic Ozone Hole: Each spring, the ozone layer thins over the poles.

    E-Print Network [OSTI]

    Schofield, Jeremy

    Ozone Depletion: Part 2 Antarctic Ozone Hole: Each spring, the ozone layer thins over the poles breaks down before sunlight returns: smaller ozone hole { Formation of polar stratospheric clouds (PSC #3; Photo-initiation reactions: Cl 2 h#23; ! 2Cl HOCl h#23; ! OH + Cl #3; Rapid destruction of ozone

  17. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect (OSTI)

    Richard A. Ferrare; David D. Turner

    2011-09-01T23:59:59.000Z

    Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

  18. Rotating drum filter

    DOE Patents [OSTI]

    Anson, Donald (Worthington, OH)

    1990-01-01T23:59:59.000Z

    A perforated drum (10) rotates in a coaxial cylindrical housing (18) having three circumferential ports (19,22,23), and an axial outlet (24) at one end. The axis (11) is horizontal. A fibrous filter medium (20) is fed through a port (19) on or near the top of the housing (81) by a distributing mechanism (36) which lays a uniform mat (26) of the desired thickness onto the rotating drum (10). This mat (26) is carried by the drum (10) to a second port (23) through which dirty fluid (13) enters. The fluid (13) passes through the filter (26) and the cleaned stream (16) exits through the open end (15) of the drum (10) and the axial port (24) in the housing (18). The dirty filter material (20) is carried on to a third port (22) near the bottom of the housing (18) and drops into a receiver (31) from which it is continuously removed, cleaned (30), and returned (32) to the charging port (36) at the top. To support the filter mat, the perforated cylinder may carry a series of tines (40), shaped blades (41), or pockets, so that the mat (26) will not fall from the drum (10) prematurely. To minimize risk of mat failure, the fluid inlet port (23) may be located above the horizontal centerline (11).

  19. Digital rotation measurement unit

    DOE Patents [OSTI]

    Sanderson, S.N.

    1983-09-30T23:59:59.000Z

    A digital rotation indicator is disclosed for monitoring the position of a valve member having a movable actuator. The indicator utilizes mercury switches adapted to move in cooperation with the actuator. Each of the switches produces an output as it changes state when the actuator moves. A direction detection circuit is connected to the switches to produce a first digital signal indicative of the direction of rotation of the actuator. A count pulse generating circuit is also connected to the switches to produce a second digital pulse signal having count pulses corresponding to a change of state of any of the mercury switches. A reset pulse generating circuit is provided to generate a reset pulse each time a count pulse is generated. An up/down counter is connected to receive the first digital pulse signal and the second digital pulse signal and to count the pulses of the second digital pulse signal either up or down depending upon the instantaneous digital value of the first digital signal whereby a running count indicative of the movement of the actuator is maintained.

  20. Platform for Hybrid Cloud Technical White Paper

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    Platform for Hybrid Cloud Technical White Paper Published: September 2013 (updated) Applies to: SQL Server and Windows Azure Summary: Cloud computing brings a new paradigm shift in computing in the cloud with greater scale and flexibility. Microsoft SQL Server runs very well in the cloud environment

  1. Cloud Computing An enterprise perspective Raghavan Subramanian

    E-Print Network [OSTI]

    Rajamani, Sriram K.

    Cloud Computing ­ An enterprise perspective Raghavan Subramanian Infosys Technologies Limited #12;2Infosys Confidential Overview of cloud computing? Cloud computing* Computing in which dynamically scalable of cloud computing 1. On-demand self-service 2. Ubiquitous network access 3. Location independent resource

  2. IBM Software Solution Brief Safeguarding the cloud

    E-Print Network [OSTI]

    IBM Software Solution Brief Safeguarding the cloud with IBM Security solutions Maintain visibility and control with proven security solutions for public, private and hybrid clouds Highlights Address cloud internal and external users, data, applications and workloads as they move to and from the cloud Regain

  3. 7, 1711717146, 2007 Dependence of cloud

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 7, 17117­17146, 2007 Dependence of cloud fraction and cloud height on temperature T. Wagner et a Creative Commons License. Atmospheric Chemistry and Physics Discussions Dependence of cloud fraction and cloud top height on surface temperature derived from spectrally resolved UV/vis satellite observations T

  4. Draft NISTIR 80061 NIST Cloud Computing2

    E-Print Network [OSTI]

    Draft NISTIR 80061 NIST Cloud Computing2 Forensic Science Challenges NIST Cloud Computing Forensic Computing11 Forensic Science Challenges 12 NIST Cloud Computing Forensic Science Working Group13 Information challenges77 faced by experts when responding to incidents that have occurred in a cloud-computing ecosystem

  5. Cloud Data Management (CDM) Yunpeng Chai

    E-Print Network [OSTI]

    /W performance / Parallelism No/ Simple SQL operations 12 /26 Survey of CDM Cloud Storage: Architecture: Master#12;Cloud Data Management (CDM) Yunpeng Chai 2 /26 Outline Motivation of CDM Survey of CDM IBM SUR Cloud China Mobile National Health Care #12;9 /26 Outline Motivation of CDM Survey of CDM IBM SUR Cloud

  6. 6, 43414373, 2006 Cloud-borne aerosol

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Discussions Impact of cloud-borne aerosol representation on aerosol direct and indirect effects S. J. Ghan of aerosols employ a variety of rep- resentations of such cloud-borne particles. Here we use a global aerosol- ulated aerosol, cloud and radiation fields to various approximations to the representa- tion of cloud

  7. Cloud radar Doppler spectra in drizzling stratiform clouds: 2. Observations and microphysical modeling of drizzle evolution

    E-Print Network [OSTI]

    Cloud radar Doppler spectra in drizzling stratiform clouds: 2. Observations and microphysical I, the influence of cloud microphysics and dynamics on the shape of cloud radar Doppler spectra in warm stratiform clouds was discussed. The traditional analysis of radar Doppler moments was extended

  8. Vision: Cloud-Powered Sight for All Showing the Cloud What You See

    E-Print Network [OSTI]

    Zhong, Lin

    Vision: Cloud-Powered Sight for All Showing the Cloud What You See Paramvir Bahl Matthai Philipose argue that for computers to do more for us, we need to show the cloud what we see and embrace cloud General Terms Algorithms, Design, Human Factors, Languages, Performance, Security Keywords Camera, cloud

  9. CLOUD, DRIZZLE, AND TURBULENCE OBSERVATIONS IN MARINE STRATOCUMULUS CLOUDS IN THE AZORES

    E-Print Network [OSTI]

    CLOUD, DRIZZLE, AND TURBULENCE OBSERVATIONS IN MARINE STRATOCUMULUS CLOUDS IN THE AZORES Jasmine at the Azores provided a unique, long-term record (May 2009 to December 2010) of cloud observations in a regime dominated by low-level stratiform clouds. First, a comprehensive cloud classification scheme that utilizes

  10. Cloud Futures Workshop 2010 Cloud Computing Support for Massively Social Gaming Alexandru Iosup

    E-Print Network [OSTI]

    Iosup, Alexandru

    1 Cloud Futures Workshop 2010 ­ Cloud Computing Support for Massively Social Gaming Alexandru Iosup Pierre (Vrije U.). Cloud Computing Support for Massively Social Gaming (Rain for the Thirsty) #12;Cloud Futures Workshop 2010 ­ Cloud Computing Support for Massively Social Gaming 2 Intermezzo: Tips on how

  11. Changes in Cloud Cover and Cloud Types Over the Ocean from Surface

    E-Print Network [OSTI]

    Hochberg, Michael

    Total cloud cover 54 68 Clear sky (frequency) 22 3 #12;Low Clouds & Solar Radiation Low clouds scatterChanges in Cloud Cover and Cloud Types Over the Ocean from Surface Observations, 1954-2008 Ryan This produces a weak net warming effect in the atmosphere, since more radiation comes in, and less goes out

  12. Decomposing aerosol cloud radiative effects into cloud cover, liquid water path and Twomey components

    E-Print Network [OSTI]

    Daniel, Rosenfeld

    Decomposing aerosol cloud radiative effects into cloud cover, liquid water path and Twomey interactions radiative effects, i.e., the cloud cover, liquid water path (LWP) and cloud drop radius (Twomey negative radiative forcing on the global scale, mainly due to the cloud cover effect. © 2013 Elsevier B

  13. A Survey of Changes in Cloud Cover and Cloud Types over Land from Surface Observations, 197196

    E-Print Network [OSTI]

    Hochberg, Michael

    of their effects on solar radiation, terrestrial radiation, and precipitation. These effects depend on cloud height, and the season of the year and time of day. The effect of clouds on the earth's radiation budget, the "cloud to be a useful classification in studies of cloud processes (Houze 1993). The climatic effects of clouds further

  14. The Properties of Early-type Stars in the Magellanic Clouds

    E-Print Network [OSTI]

    Christopher J. Evans

    2008-09-15T23:59:59.000Z

    The past decade has witnessed impressive progress in our understanding of the physical properties of massive stars in the Magellanic Clouds, and how they compare to their cousins in the Galaxy. I summarise new results in this field, including evidence for reduced mass-loss rates and faster stellar rotational velocities in the Clouds, and their present-day compositions. I also discuss the stellar temperature scale, emphasizing its dependence on metallicity across the entire upper-part of the Hertzsprung-Russell diagram.

  15. Mixed phase clouds, cloud electrification and remote sensing.

    SciTech Connect (OSTI)

    Chylek, P. (Petr); Borel, C. C. (Christoph C.); Klett, James

    2004-01-01T23:59:59.000Z

    Most of hypothesis trying to explain charge separation in thunderstorm clouds require presence of ice and supercooled water. Thus the existence of ice or at least mixed phase regions near cloud tops should be a necessary (but not a sufficient) condition for development of lightning. We show that multispectral satellite based instruments, like the DOE MTI (Multispectral Thermal Imager) or NASA MODIS (Moderate Resolution Imaging Spectroradiometer), using the near infrared and visible spectral bands are able to distinguish between water, ice and mixed phase cloud regions. An analysis of the MTI images of mixed phase clouds - with spatial resolution of about 20 m - shows regions of pure water, pure ice as well as regions of water/ice mixtures. We suggest that multispectral satellite instruments may be useful for a short time forecast of lightning probabilities.

  16. Pulsed electrodeposition of copper/nickel multilayers on a rotating disk electrode. 2: Potentiostatic deposition

    SciTech Connect (OSTI)

    Yang, C.C.; Cheh, H.Y. [Columbia Univ., New York, NY (United States). Dept. of Chemical Engineering and Applied Chemistry

    1995-09-01T23:59:59.000Z

    Thin Cu/Ni multilayers were deposited on a rotating disk electrode (RDE) by square-wave potentiostatic pulses. A theoretical model was developed to predict the copper content in the Ni layer on the RDE. The copper content in the Ni layer was measured under a variety of experimental conditions. Theory agrees well with experimental results.

  17. The VLT-FLAMES survey of massive stars: rotation and nitrogen enrichment as the key to understanding massive star evolution

    E-Print Network [OSTI]

    I. Hunter; I. Brott; D. J. Lennon; N. Langer; P. L. Dufton; C. Trundle; S. J. Smartt; A. de Koter; C. J. Evans; R. S. I. Ryans

    2008-02-18T23:59:59.000Z

    Rotation has become an important element in evolutionary models of massive stars, specifically via the prediction of rotational mixing. Here, we study a sample of stars, including rapid rotators, to constrain such models and use nitrogen enrichments as a probe of the mixing process. Chemical compositions (C, N, O, Mg and Si) have been estimated for 135 early B-type stars in the Large Magellanic Cloud with projected rotational velocities up to ~300km/s using a non-LTE TLUSTY model atmosphere grid. Evolutionary models, including rotational mixing, have been generated attempting to reproduce these observations by adjusting the overshooting and rotational mixing parameters and produce reasonable agreement with 60% of our core hydrogen burning sample. We find (excluding known binaries) a significant population of highly nitrogen enriched intrinsic slow rotators vsini less than 50km/s incompatible with our models ~20% of the sample). Furthermore, while we find fast rotators with enrichments in agreement with the models, the observation of evolved (log g less than 3.7dex) fast rotators that are relatively unenriched (a further ~20% of the sample) challenges the concept of rotational mixing. We also find that 70% of our blue supergiant sample cannot have evolved directly from the hydrogen burning main-sequence. We are left with a picture where invoking binarity and perhaps fossil magnetic fields are required to understand the surface properties of a population of massive main sequence stars.

  18. Cloud Computing and Validation of Expandable In Silico Livers

    E-Print Network [OSTI]

    Ropella, Glen EP; Hunt, C Anthony

    2010-01-01T23:59:59.000Z

    benefit analysis of cloud computing versus desktop grids.as: Ropella and Hunt: Cloud computing and validation ofCloud computing and validation of expandable in silico

  19. Electrochemical thinning of silicon

    DOE Patents [OSTI]

    Medernach, John W. (Albuquerque, NM)

    1994-01-01T23:59:59.000Z

    Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR).

  20. Electrochemical thinning of silicon

    DOE Patents [OSTI]

    Medernach, J.W.

    1994-01-11T23:59:59.000Z

    Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR). 14 figures.

  1. Title: Networking the Cloud: Enabling Enterprise Computing and Storage Cloud computing has been changing how enterprises run and manage their IT systems. Cloud

    E-Print Network [OSTI]

    Title: Networking the Cloud: Enabling Enterprise Computing and Storage Abstract: Cloud computing has been changing how enterprises run and manage their IT systems. Cloud computing platforms provide introduction on Cloud Computing. We propose a Virtual Cloud Pool abstraction to logically unify cloud

  2. Cluster analysis of cloud properties : a method for diagnosing cloud-climate feedbacks

    E-Print Network [OSTI]

    Gordon, Neil D.

    2008-01-01T23:59:59.000Z

    represent cloud effects on gridbox mean visible radiationclouds and the resulting effect on the balance of radiationrepresent cloud effects on grid-box-mean visible radiation

  3. Slowly rotating homogeneous masses revisited

    E-Print Network [OSTI]

    Reina, Borja

    2015-01-01T23:59:59.000Z

    Hartle's model for slowly rotating stars has been extensively used to compute equilibrium configurations of slowly rotating stars to second order in perturbation theory in General Relativity, given a barotropic equation of state (EOS). A recent study based on the modern theory of perturbed matchings show that the model must be amended to accommodate EOS's in which the energy density does not vanish at the surface of the non rotating star. In particular, the expression for the change in mass given in the original model, i.e. a contribution to the mass that arises when the perturbations are chosen so that the pressure of the rotating and non rotating configurations agree, must be modified with an additional term. In this paper, the amended change in mass is calculated for the case of constant density stars.

  4. The Evolution of Cloud Computing in ATLAS

    E-Print Network [OSTI]

    Taylor, Ryan P.; The ATLAS collaboration; Love, Peter; Leblanc, Matthew Edgar; Di Girolamo, Alessandro; Paterson, Michael; Gable, Ian; Sobie, Randall; Field, Laurence

    2015-01-01T23:59:59.000Z

    The ATLAS experiment has successfully incorporated cloud computing technology and cloud resources into its primarily grid-based model of distributed computing. Cloud R&D activities continue to mature and transition into stable production systems, while ongoing evolutionary changes are still needed to adapt and refine the approaches used, in response to changes in prevailing cloud technology. In addition, completely new developments are needed to handle emerging requirements. This work will describe the overall evolution of cloud computing in ATLAS. The current status of the VM management systems used for harnessing IAAS resources will be discussed. Monitoring and accounting systems tailored for clouds are needed to complete the integration of cloud resources within ATLAS' distributed computing framework. We are developing and deploying new solutions to address the challenge of operation in a geographically distributed multi-cloud scenario, including a system for managing VM images across multiple clouds, ...

  5. CFN | Thin Films Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Synthesis and Characterization Facility Thin-Film Processing Facility Online Manager (FOM) website FOM manual ESR for lab 1L32 (High-Resolution SEM and x-ray...

  6. Thin Film Photovoltaics Research

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) supports research and development of four thin-film technologies on the path to achieving cost-competitive solar energy, including:

  7. Vertically aligned biaxially textured molybdenum thin films

    SciTech Connect (OSTI)

    Krishnan, Rahul [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Riley, Michael [Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Lee, Sabrina [US Army Armament Research, Development and Engineering Center, Benet Labs, Watervliet, New York 12189 (United States); Lu, Toh-Ming [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2011-09-15T23:59:59.000Z

    Vertically aligned, biaxially textured molybdenum nanorods were deposited using dc magnetron sputtering with glancing flux incidence (alpha = 85 degrees with respect to the substrate normal) and a two-step substrate-rotation mode. These nanorods were identified with a body-centered cubic crystal structure. The formation of a vertically aligned biaxial texture with a [110] out-of-plane orientation was combined with a [-110] in-plane orientation. The kinetics of the growth process was found to be highly sensitive to an optimum rest time of 35 seconds for the two-step substrate rotation mode. At all other rest times, the nanorods possessed two separate biaxial textures each tilted toward one flux direction. While the in-plane texture for the vertical nanorods maintains maximum flux capture area, inclined Mo nanorods deposited at alpha = 85 degrees without substrate rotation display a [-1-1-4] in-plane texture that does not comply with the maximum flux capture area argument. Finally, an in situ capping film was deposited with normal flux incidence over the biaxially textured vertical nanorods resulting in a thin film over the porous nanorods. This capping film possessed the same biaxial texture as the nanorods and could serve as an effective substrate for the epitaxial growth of other functional materials.

  8. Rotational response of superconductors: magneto-rotational isomorphism and rotation-induced vortex lattice

    E-Print Network [OSTI]

    Egor Babaev; Boris Svistunov

    2014-03-03T23:59:59.000Z

    The analysis of nonclassical rotational response of superfluids and superconductors was performed by Onsager (in 1949) \\cite{Onsager} and London (in 1950) \\cite{London} and crucially advanced by Feynman (in 1955) \\cite{Feynman}. It was established that, in thermodynamic limit, neutral superfluids rotate by forming---without any threshold---a vortex lattice. In contrast, the rotation of superconductors at angular frequency ${\\bf \\Omega}$---supported by uniform magnetic field ${\\bf B}_L\\propto {\\bf \\Omega}$ due to surface currents---is of the rigid-body type (London Law). Here we show that, neglecting the centrifugal effects, the behavior of a rotating superconductor is identical to that of a superconductor placed in a uniform fictitious external magnetic filed $\\tilde{\\bf H}=- {\\bf B}_L$. In particular, the isomorphism immediately implies the existence of two critical rotational frequencies in type-2 superconductors.

  9. Dust takes detour on ice-cloud journey | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dust takes detour on ice-cloud journey Dust takes detour on ice-cloud journey Pollution-coated particles bypass ice formation, but influence clouds Cirrus clouds are composed of...

  10. Collapse of Magnetized Singular Isothermal Toroids: II. Rotation and Magnetic Braking

    E-Print Network [OSTI]

    A. Allen; Z. Y. Li; F. H. Shu

    2003-11-17T23:59:59.000Z

    We study numerically the collapse of rotating, magnetized molecular cloud cores, focusing on rotation and magnetic braking during the main accretion phase of isolated star formation. Motivated by previous numerical work and analytic considerations, we idealize the pre-collapse core as a magnetized singular isothermal toroid, with a constant rotational speed everywhere. The collapse starts from the center, and propagates outwards in an inside-out fashion, satisfying exact self-similarity in space and time. For rotation rates and field strengths typical of dense low-mass cores, the main feature remains the flattening of the mass distribution along field lines -- the formation of a pseudodisk, as in the nonrotating cases. The density distribution of the pseudodisk is little affected by rotation. On the other hand, the rotation rate is strongly modified by pseudodisk formation. Most of the centrally accreted material reaches the vicinity of the protostar through the pseudodisk. The specific angular momentum can be greatly reduced on the way, by an order of magnitude or more, even when the pre-collapse field strength is substantially below the critical value for dominant cloud support. The efficient magnetic braking is due to the pinched geometry of the magnetic field in the pseudodisk, which strengthens the magnetic field and lengthens the level arm for braking. Both effects enhance the magnetic transport of angular momentum from inside to outside. The excess angular momentum is carried away in a low-speed outflow that has, despite claims made by other workers, little in common with observed bipolar molecular outflows. We discuss the implications of our calculations for the formation of true disks that are supported against gravity by rotation.

  11. Cooling system for rotating machine

    DOE Patents [OSTI]

    Gerstler, William Dwight (Niskayuna, NY); El-Refaie, Ayman Mohamed Fawzi (Niskayuna, NY); Lokhandwalla, Murtuza (Clifton Park, NY); Alexander, James Pellegrino (Ballston Lake, NY); Quirion, Owen Scott (Clifton Park, NY); Palafox, Pepe (Schenectady, NY); Shen, Xiaochun (Schenectady, NY); Salasoo, Lembit (Schenectady, NY)

    2011-08-09T23:59:59.000Z

    An electrical machine comprising a rotor is presented. The electrical machine includes the rotor disposed on a rotatable shaft and defining a plurality of radial protrusions extending from the shaft up to a periphery of the rotor. The radial protrusions having cavities define a fluid path. A stationary shaft is disposed concentrically within the rotatable shaft wherein an annular space is formed between the stationary and rotatable shaft. A plurality of magnetic segments is disposed on the radial protrusions and the fluid path from within the stationary shaft into the annular space and extending through the cavities within the radial protrusions.

  12. Socially Optimal Pricing of Cloud Computing Resources

    E-Print Network [OSTI]

    Menache, Ishai

    The cloud computing paradigm offers easily accessible computing resources of variable size and capabilities. We consider a cloud-computing facility that provides simultaneous service to a heterogeneous, time-varying ...

  13. The Evolution of Cloud Computing in ATLAS

    E-Print Network [OSTI]

    Taylor, Ryan P; The ATLAS collaboration; Brasolin, Franco; Cordeiro, Cristovao; Desmarais, Ron; Field, Laurence; Gable, Ian; Giordano, Domenico; Di Girolamo, Alessandro; Hover, John; Leblanc, Matthew Edgar; Love, Peter; Paterson, Michael; Sobie, Randall; Zaytsev, Alexandr

    2015-01-01T23:59:59.000Z

    The ATLAS experiment has successfully incorporated cloud computing technology and cloud resources into its primarily grid-based model of distributed computing. Cloud R&D activities continue to mature and transition into stable production systems, while ongoing evolutionary changes are still needed to adapt and refine the approaches used, in response to changes in prevailing cloud technology. In addition, completely new developments are needed to handle emerging requirements. This paper describes the overall evolution of cloud computing in ATLAS. The current status of the virtual machine (VM) management systems used for harnessing infrastructure as a service (IaaS) resources are discussed. Monitoring and accounting systems tailored for clouds are needed to complete the integration of cloud resources within ATLAS' distributed computing framework. We are developing and deploying new solutions to address the challenge of operation in a geographically distributed multi-cloud scenario, including a system for ma...

  14. Disruptive technology business models in cloud computing

    E-Print Network [OSTI]

    Krikos, Alexis Christopher

    2010-01-01T23:59:59.000Z

    Cloud computing, a term whose origins have been in existence for more than a decade, has come into fruition due to technological capabilities and marketplace demands. Cloud computing can be defined as a scalable and flexible ...

  15. SCANNING CLOUD RADAR OBSERVATIONS AT AZORES: PRELIMINARY 3D CLOUD PRODUCTS

    E-Print Network [OSTI]

    SCANNING CLOUD RADAR OBSERVATIONS AT AZORES: PRELIMINARY 3D CLOUD PRODUCTS P. Kollias, I. Jo, A, NY www.bnl.gov ABSTRACT The deployment of the Scanning W-Band ARM Cloud Radar (SWACR) during the AMF campaign at Azores signals the first deployment of an ARM Facility-owned scanning cloud radar and offers

  16. Cloud-Top Temperatures for Precipitating Winter Clouds JAY W. HANNA

    E-Print Network [OSTI]

    Schultz, David

    1 Cloud-Top Temperatures for Precipitating Winter Clouds JAY W. HANNA NOAA/NESDIS Satellite of satellite-derived cloud-top brightness temperatures from GOES longwave infrared (channel 4) satellite data, rain, freezing rain, and sleet. The distributions of cloud-top brightness temperatures were constructed

  17. Cloud networking and communications Cloud computing is having an important impact on

    E-Print Network [OSTI]

    Boutaba, Raouf

    Editorial Cloud networking and communications Cloud computing is having an important impact attention has been devoted to system aspects of Cloud computing. More recently, however, the focus is shifting towards Cloud net- working and communications with evolutionary and revo- lutionary propositions

  18. Cloud seeding as a technique for studying aerosol-cloud interactions in marine stratocumulus

    E-Print Network [OSTI]

    Miami, University of

    Cloud seeding as a technique for studying aerosol-cloud interactions in marine stratocumulus hygroscopic aerosols were introduced into a solid marine stratocumulus cloud (200 m thick) by burning hygroscopic flares mounted on an aircraft. The cloud microphysical response in two parallel seeding plumes

  19. Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications

    E-Print Network [OSTI]

    Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing broadening and drizzle growth in shallow liquid clouds remain not well understood. Detailed, cloudscale. Profiling, millimeterwavelength (cloud) radars can provide such observations. In particular, the first three

  20. The Cloud Adoption Toolkit: Supporting Cloud Adoption Decisions in the Enterprise

    E-Print Network [OSTI]

    Sommerville, Ian

    1 The Cloud Adoption Toolkit: Supporting Cloud Adoption Decisions in the Enterprise Ali Khajeh-Hosseini, David Greenwood, James W. Smith, Ian Sommerville Cloud Computing Co-laboratory, School of Computer Science University of St Andrews, UK {akh, dsg22, jws7, ifs}@cs.st-andrews.ac.uk Abstract Cloud computing

  1. CLOUD COMPUTING AND INFORMATION POLICY 1 Cloud Computing and Information Policy

    E-Print Network [OSTI]

    Lin, Jimmy

    CLOUD COMPUTING AND INFORMATION POLICY 1 Cloud Computing and Information Policy: Computing in a Policy Cloud? Forthcoming in the Journal of Information Technology and Politics, 5(3). Paul T. Jaeger University of Maryland Jimmy Lin University of Maryland Justin M. Grimes University of Maryland #12;CLOUD

  2. HPI Cloud Symposium ,Operating The Cloud` 25.09.2013, Hasso-Plattner-Institut, Auditorium Building

    E-Print Network [OSTI]

    Weske, Mathias

    Agenda HPI Cloud Symposium ,Operating The Cloud` 25.09.2013, Hasso-Plattner-Institut, Auditorium Building 09:30h Registration 10:00h Opening Prof. Dr. Christoph Meinel, HPI Potsdam 10:30h Cloud-RAID: Eine Methode zur Bereitstellung zuverlässiger Speicherressourcen in Öffentlichen Clouds Maxim Schnajkin, HPI

  3. Cloud Verifier: Verifiable Auditing Service for IaaS Clouds Joshua Schiffman

    E-Print Network [OSTI]

    Jaeger, Trent

    Cloud Verifier: Verifiable Auditing Service for IaaS Clouds Joshua Schiffman Security Architecture University Park, PA, USA yus138,hvijay,tjaeger@cse.psu.edu Abstract--Cloud computing has commoditized compute paradigm, its adoption has been stymied by cloud platform's lack of trans- parency, which leaves customers

  4. Cloud Tracking in Cloud-Resolving Models R. S. Plant1

    E-Print Network [OSTI]

    Plant, Robert

    Cloud Tracking in Cloud-Resolving Models R. S. Plant1 1 Department of Meteorology, University. INTRODUCTION In recent years Cloud Resolving Models (CRMs) have become an increasingly important tool for CRM data, which allows one to investigate statistical prop- erties of the lifecycles of the "clouds

  5. From mini-clouds to Cloud Computing Boris Mejias, Peter Van Roy

    E-Print Network [OSTI]

    Bonaventure, Olivier

    From mini-clouds to Cloud Computing Boris Mej´ias, Peter Van Roy Universit´e catholique de Louvain ­ Belgium {boris.mejias|peter.vanroy}@uclouvain.be Abstract Cloud computing has many definitions with different views within industry and academia, but everybody agrees on that cloud computing is the way

  6. AnonymousCloud: A Data Ownership Privacy Provider Framework in Cloud Computing

    E-Print Network [OSTI]

    Hamlen, Kevin W.

    AnonymousCloud: A Data Ownership Privacy Provider Framework in Cloud Computing Safwan Mahmud Khan their computation results are ultimately delivered. To provide this data ownership privacy, the cloud's distributed-anonymity; authentication; cloud computing; in- formation security; privacy; Tor I. INTRODUCTION Revolutionary advances

  7. Leveraging Platform Basic Services in Cloud Application Platforms for the Development of Cloud

    E-Print Network [OSTI]

    Simons, Anthony J. H.

    Leveraging Platform Basic Services in Cloud Application Platforms for the Development of Cloud.Simons@dcs.shef.ac.uk Abstract-- Cloud application platforms gain popularity and have the potential to alter the way service based cloud applications are developed involving utilisation of platform basic services. A platform

  8. Carbon Chemistry in interstellar clouds

    E-Print Network [OSTI]

    Maryvonne Gerin; David Fosse; Evelyne Roueff

    2002-12-03T23:59:59.000Z

    We discuss new developments of interstellar chemistry, with particular emphasis on the carbon chemistry. We confirm that carbon chains and cycles are ubiquitous in the ISM and closely chemically related to ea ch other, and to carbon. Investigation of the carbon budget in shielded and UV illuminated gas shows that the inventory of interstellar molecules is not complete and more complex molecules with 4 or more carbon atoms must be present. Finally we discuss the consequences for the evolution of clouds and conclude that the ubiquitous presence of carbon chains and cycles is not a necessary consequence of a very young age for interstellar clouds.

  9. Changes in high cloud conditions

    E-Print Network [OSTI]

    Himebrook, Richard Frank

    1974-01-01T23:59:59.000Z

    ). When the effect of unknowns is added to the data (Figs. 3(a) and 3(b), p, 21), the period with most high-cloud cover seems to alter- nate back and forth almost monthly, The average, global, solar radiation (Fig. 3(c), p. 21) depicts a decrease from... radiation, per cent possible sunshine, and average sky cover. The increases in high-cloud cover occurred in areas with the following characteristics: strong upper-air flow; frequent jet ' aircraft traffic; coverage of less than half the sky; late...

  10. Rotating Shadowband Spectroradiometer (RSS) Handbook

    SciTech Connect (OSTI)

    Kiedron, P; Schlemmer, J; Klassen, M

    2005-01-01T23:59:59.000Z

    The rotating shawdowband spectroradiometer (RSS) implements the same automated shadowbanding technique used by the multifilter rotating shadowband radiometer (MFRSR), and so it too provides spectrally-resolved, direct-normal, diffuse-horizontal, and total-horizontal irradiances, and can be calibrated in situ via Langley regression. The irradiance spectra are measured simultaneously at all spectral elements (pixels) in 360-nm to 1050-nm range.

  11. Thin-film optical initiator

    DOE Patents [OSTI]

    Erickson, Kenneth L. (Albuquerque, NM)

    2001-01-01T23:59:59.000Z

    A thin-film optical initiator having an inert, transparent substrate, a reactive thin film, which can be either an explosive or a pyrotechnic, and a reflective thin film. The resultant thin-film optical initiator system also comprises a fiber-optic cable connected to a low-energy laser source, an output charge, and an initiator housing. The reactive thin film, which may contain very thin embedded layers or be a co-deposit of a light-absorbing material such as carbon, absorbs the incident laser light, is volumetrically heated, and explodes against the output charge, imparting about 5 to 20 times more energy than in the incident laser pulse.

  12. Interactive physically-based cloud simulation

    E-Print Network [OSTI]

    Overby, Derek Robert

    2002-01-01T23:59:59.000Z

    of digital artistic media. Previous methods for modeling the growth of clouds do not account for the fluid interactions that are responsible for cloud formation in the physical atmosphere. We propose a model for simulating cloud formation based on a basic...

  13. Dynamics of Clouds Fall Semester 2012

    E-Print Network [OSTI]

    ATS712 Dynamics of Clouds Fall Semester 2012 Meeting Times: T/Th: 9-10:15am Room: ATS 101-2pm Course Description: This class focuses on the general dynamics of cloud systems. Models of fog and other Tools / Skills Cotton, W.R., G.H. Bryan, and S.C. van den Heever, 2010: Storm and Cloud Dynamics

  14. Microsoft Private Cloud Title of document

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    Microsoft Private Cloud Title of document 1 1 Microsoft Private Cloud A Comparative Look at Functionality, Benefits, and Economics November2012 #12;Microsoft Private Cloud Title of document 2 2 Copyright Information © 2012 Microsoft Corporation. All rights reserved. This document is provided "as-is." Information

  15. Performance Engineering for Cloud Computing John Murphy

    E-Print Network [OSTI]

    Murphy, John

    Performance Engineering for Cloud Computing John Murphy Lero ­ The Irish Software Engineering.Murphy@ucd.ie Abstract. Cloud computing potentially solves some of the major challenges in the engineering of large efficient operation. This paper argues that cloud computing is an area where performance engineering must

  16. Level Set Implementations on Unstructured Point Cloud

    E-Print Network [OSTI]

    Duncan, James S.

    Level Set Implementations on Unstructured Point Cloud by HO, Hon Pong A Thesis Submitted;Level Set Implementations on Unstructured Point Cloud by HO, Hon Pong This is to certify that I have implementations on unstructured point cloud 15 3.1 Level set initialization

  17. 6, 93519388, 2006 Aerosol-cloud

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 6, 9351­9388, 2006 Aerosol-cloud interaction inferred from MODIS and models G. Myhre et al Chemistry and Physics Discussions Aerosol-cloud interaction inferred from MODIS satellite data and global 6, 9351­9388, 2006 Aerosol-cloud interaction inferred from MODIS and models G. Myhre et al. Title

  18. Cloud Security: Issues and Concerns Pierangela Samarati*

    E-Print Network [OSTI]

    Samarati, Pierangela

    1 Cloud Security: Issues and Concerns Authors Pierangela Samarati* Universitŕ degli Studi di Milano, Italy sabrina.decapitani@unimi.it Keywords cloud security confidentiality integrity availability secure data storage and processing Summary The cloud has emerged as a successful computing paradigm

  19. Cloud Computing: Centralization and Data Sovereignty

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Cloud Computing: Centralization and Data Sovereignty Primavera De Filippi, Smari McCarthy Abstract: Cloud computing can be defined as the provision of computing resources on-demand over and elasticity of costs, problems arise concerning the collection of personal information in the Cloud

  20. Optimizing Offloading Strategies in Mobile Cloud Computing

    E-Print Network [OSTI]

    Hyytiä, Esa

    Optimizing Offloading Strategies in Mobile Cloud Computing Esa Hyyti¨a Department of Communications Abstract--We consider a dynamic offloading problem arising in the context of mobile cloud computing (MCC consider the task assignment problem arising in the context of the mobile cloud computing (MCC). In MCC

  1. CONTROLLING DATA IN THE CLOUD: OUTSOURCING COMPUTATION

    E-Print Network [OSTI]

    Zou, Cliff C.

    #12;CONTROLLING DATA IN THE CLOUD: OUTSOURCING COMPUTATION WITHOUT OUTSOURCING CONTROL Paper By Laboratories Of America 2009 ACM WORKSHOP ON CLOUD COMPUTING SECURITY (CCSW 2009) Presented By Talal Basaif CAP that will arise later · New directions to solve some issues #12;INTRODUCTION · Cloud computing is one of desirable

  2. Towards a Ubiquitous Cloud Computing Infrastructure

    E-Print Network [OSTI]

    van der Merwe, Kobus

    Towards a Ubiquitous Cloud Computing Infrastructure Jacobus Van der Merwe, K.K. Ramakrishnan of a number of cloud computing use cases. We specifically consider cloudbursting and follow-the-sun and focus that are also network service providers. I. INTRODUCTION Cloud computing is rapidly gaining acceptance

  3. Cloud Computing: Legal Issues in Centralized Architectures

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Cloud Computing: Legal Issues in Centralized Architectures Primavera DE FILIPPI1 , Smari McCARTHY2, Reykjavik, 101, Iceland - Email: smari@gmail.com Abstract: Cloud computing can be defined as the provision they can access their data and the extent to which parties can exploit it. Keywords: Cloud Computing

  4. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, Anthony W. (Wilmington, DE); Bhushan, Manjul (Wilmington, DE)

    1982-01-01T23:59:59.000Z

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

  5. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, A.W.; Bhushan, M.

    1982-08-03T23:59:59.000Z

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids. 5 figs.

  6. Cloud Seeding By: Julie Walter

    E-Print Network [OSTI]

    Toohey, Darin W.

    , smoke, that then are cooled because of the high altitudes. As the water or condensation nuclei cool more pushed up enough the warm air that is filled with moisture should reach an optimum cooling point-based Western Weather Consultants, whose company supplied Vail Resorts with the cloud seeding generators

  7. Cloud and Autonomic Computing Center

    E-Print Network [OSTI]

    Gelfond, Michael

    boundary layers and wind turbine aerodynamics Siva Parameswarn, Ph.D. Professor in the Department vehicles » Wake development behind wind turbines PHYSICS Ismael Regis de Farias Jr., Ph.D. Associate in cloud environments » Intelligent data management & understanding » Automated web service composition

  8. NMR characterization of thin films

    DOE Patents [OSTI]

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15T23:59:59.000Z

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  9. NMR characterization of thin films

    DOE Patents [OSTI]

    Gerald, II, Rex E. (Brookfield, IL); Klingler, Robert J. (Glenview, IL); Rathke, Jerome W. (Homer Glen, IL); Diaz, Rocio (Chicago, IL); Vukovic, Lela (Westchester, IL)

    2008-11-25T23:59:59.000Z

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  10. Global cloud liquid water path simulations

    SciTech Connect (OSTI)

    Lemus, L. [Southern Hemisphere Meteorology, Clayton, Victoria (Australia)] [Southern Hemisphere Meteorology, Clayton, Victoria (Australia); Rikus, L. [Bureau of Meteorology Research Centre, Melbourne, Victoria (Australia)] [Bureau of Meteorology Research Centre, Melbourne, Victoria (Australia); Martin, C.; Platt, R. [CSIRO, Aspendale, Victoria (Australia)] [CSIRO, Aspendale, Victoria (Australia)

    1997-01-01T23:59:59.000Z

    A new parameterization of cloud liquid water and ice content has been included in the Bureau of Meteorology Global Assimilation and Prediction System. The cloud liquid water content is derived from the mean cloud temperatures in the model using an empirical relationship based on observations. The results from perpetual January and July simulations are presented and show that the total cloud water path steadily decreases toward high latitudes, with two relative maxima at midlatitudes and a peak at low latitudes. To validate the scheme, the simulated fields need to be processed to produce liquid water paths that can be directly compared with the corresponding field derived from Special Sensor Microwave/Imager (SSM/I) data. This requires the identification of cloud ice water content within the parameterization and a prescription to account for the treatment of strongly precipitating subgrid-scale cloud. The resultant cloud liquid water paths agree qualitatively with the SSM/I data but show some systematic errors that are attributed to corresponding errors in the model`s simulation of cloud amounts. Given that a more quantitative validation requires substantial improvement in the model`s diagnostic cloud scheme, the comparison with the SSM/I data indicates that the cloud water path, derived from the cloud liquid water content parameterization introduced in this paper, is consistent with the observations and can be usefully incorporated in the prediction system. 40 refs., 11 figs., 1 tab.

  11. Radiative Heating of the ISCCP Upper Level Cloud Regimes and its Impact on the Large-scale Tropical Circulation

    SciTech Connect (OSTI)

    Li, Wei; Schumacher, Courtney; McFarlane, Sally A.

    2013-01-31T23:59:59.000Z

    Radiative heating profiles of the International Satellite Cloud Climatology Project (ISCCP) cloud regimes (or weather states) were estimated by matching ISCCP observations with radiative properties derived from cloud radar and lidar measurements from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) sites at Manus, Papua New Guinea, and Darwin, Australia. Focus was placed on the ISCCP cloud regimes containing the majority of upper level clouds in the tropics, i.e., mesoscale convective systems (MCSs), deep cumulonimbus with cirrus, mixed shallow and deep convection, and thin cirrus. At upper levels, these regimes have average maximum cloud occurrences ranging from 30% to 55% near 12 km with variations depending on the location and cloud regime. The resulting radiative heating profiles have maxima of approximately 1 K/day near 12 km, with equal heating contributions from the longwave and shortwave components. Upper level minima occur near 15 km, with the MCS regime showing the strongest cooling of 0.2 K/day and the thin cirrus showing no cooling. The gradient of upper level heating ranges from 0.2 to 0.4 K/(day?km), with the most convectively active regimes (i.e., MCSs and deep cumulonimbus with cirrus) having the largest gradient. When the above heating profiles were applied to the 25-year ISCCP data set, the tropics-wide average profile has a radiative heating maximum of 0.45Kday-1 near 250 hPa. Column-integrated radiative heating of upper level cloud accounts for about 20% of the latent heating estimated by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). The ISCCP radiative heating of tropical upper level cloud only slightly modifies the response of an idealized primitive equation model forced with the tropics-wide TRMM PR latent heating, which suggests that the impact of upper level cloud is more important to large-scale tropical circulation variations because of convective feedbacks rather than direct forcing by the cloud radiative heating profiles. However, the height of the radiative heating maxima and gradient of the heating profiles are important to determine the sign and patterns of the horizontal circulation anomaly driven by radiative heating at upper levels.

  12. Epitaxial thin films

    DOE Patents [OSTI]

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25T23:59:59.000Z

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  13. Thin film photovoltaic cell

    DOE Patents [OSTI]

    Meakin, John D. (Newark, DE); Bragagnolo, Julio (Newark, DE)

    1982-01-01T23:59:59.000Z

    A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

  14. INTERFERENCE Interference from Thin Films

    E-Print Network [OSTI]

    La Rosa, Andres H.

    INTERFERENCE Interference from Thin Films Lecture notes La Rosa Portland State University PH-213 through, a sheet of glass #12;Out of phase #12;In phase #12;#12;Interference from thin films Key reasoning for analyzing interference in a thin film: Waves undergo phase shift due to i) reflections at a interface

  15. Formation and Collapse of Nonaxisymmetric Protostellar Cores in Planar Magnetic Interstellar Clouds: Formulation of the Problem and Linear Analysis

    E-Print Network [OSTI]

    Glenn E. Ciolek; Shantanu Basu

    2006-07-27T23:59:59.000Z

    We formulate the problem of the formation and collapse of nonaxisymmetric protostellar cores in weakly ionized, self-gravitating, magnetic molecular clouds. In our formulation, molecular clouds are approximated as isothermal, thin (but with finite thickness) sheets. We present the governing dynamical equations for the multifluid system of neutral gas and ions, including ambipolar diffusion, and also a self-consistent treatment of thermal pressure, gravitational, and magnetic (pressure and tension) forces. The dimensionless free parameters characterizing model clouds are discussed. The response of cloud models to linear perturbations is also examined, with particular emphasis on length and time scales for the growth of gravitational instability in magnetically subcritical and supercritical clouds. We investigate their dependence on a cloud's initial mass-to-magnetic-flux ratio (normalized to the critical value for collapse), the dimensionless initial neutral-ion collision time, and also the relative external pressure exerted on a model cloud. Among our results, we find that nearly-critical model clouds have significantly larger characteristic instability lengthscales than do more distinctly sub- or supercritical models. Another result is that the effect of a greater external pressure is to reduce the critical lengthscale for instability. Numerical simulations showing the evolution of model clouds during the linear regime of evolution are also presented, and compared to the results of the dispersion analysis. They are found to be in agreement with the dispersion results, and confirm the dependence of the characteristic length and time scales on parameters such as the initial mass-to-flux ratio and relative external pressure.

  16. Cloud speed impact on solar variability scaling â?? Application to the wavelet variability model

    E-Print Network [OSTI]

    Lave, Matthew; Kleissl, Jan

    2013-01-01T23:59:59.000Z

    Kleissl, J. , 2013. Deriving cloud velocity from an array ofCloud Speed Impact on Solar Variability Scaling -this work, we determine from cloud speeds. Cloud simulator

  17. Rotational Mixing and Lithium Depletion

    E-Print Network [OSTI]

    Pinsonneault, M H

    2010-01-01T23:59:59.000Z

    I review basic observational features in Population I stars which strongly implicate rotation as a mixing agent; these include dispersion at fixed temperature in coeval populations and main sequence lithium depletion for a range of masses at a rate which decays with time. New developments related to the possible suppression of mixing at late ages, close binary mergers and their lithium signature, and an alternate origin for dispersion in young cool stars tied to radius anomalies observed in active young stars are discussed. I highlight uncertainties in models of Population II lithium depletion and dispersion related to the treatment of angular momentum loss. Finally, the origins of rotation are tied to conditions in the pre-main sequence, and there is thus some evidence that enviroment and planet formation could impact stellar rotational properties. This may be related to recent observational evidence for cluster to cluster variations in lithium depletion and a connection between the presence of planets and s...

  18. Rotational dynamics of entangled polymers

    E-Print Network [OSTI]

    Jean-Charles Walter; Michiel Laleman; Marco Baiesi; Enrico Carlon

    2014-09-01T23:59:59.000Z

    Some recent results on the rotational dynamics of polymers are reviewed and extended. We focus here on the relaxation of a polymer, either flexible or semiflexible, initially wrapped around a rigid rod. We also study the steady polymer rotation generated by a constant torque on the rod. The interplay of frictional and entropic forces leads to a complex dynamical behavior characterized by non-trivial universal exponents. The results are based on extensive simulations of polymers undergoing Rouse dynamics and on an analytical approach using force balance and scaling arguments. The analytical results are in general in good agreement with the simulations, showing how a simplified approach can correctly capture the complex dynamical behavior of rotating polymers.

  19. High velocity compact clouds in the sagittarius C region

    SciTech Connect (OSTI)

    Tanaka, Kunihiko; Oka, Tomoharu; Matsumura, Shinji [Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama, Kanagawa 223-8522 (Japan); Nagai, Makoto [Division of Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8571 (Japan); Kamegai, Kazuhisa, E-mail: ktanaka@phys.keio.ac.jp [Department of Industrial Administration, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan)

    2014-03-01T23:59:59.000Z

    We report the detection of extremely broad emission toward two molecular clumps in the Galactic central molecular zone. We have mapped the Sagittarius C complex (–0.°61 < l < –0.°27, –0.°29 < b < 0.°04) in the HCN J = 4-3, {sup 13}CO J = 3-2, and H{sup 13}CN J = 1-0 lines with the ASTE 10 m and NRO 45 m telescopes, detecting bright emission with 80-120 km s{sup –1} velocity width (in full-width at zero intensity) toward CO–0.30–0.07 and CO–0.40–0.22, which are high velocity compact clouds (HVCCs) identified with our previous CO J = 3-2 survey. Our data reveal an interesting internal structure of CO–0.30–0.07 comprising a pair of high velocity lobes. The spatial-velocity structure of CO–0.40–0.22 can be also understood as a multiple velocity component, or a velocity gradient across the cloud. They are both located on the rims of two molecular shells of about 10 pc in radius. Kinetic energies of CO–0.30–0.07 and CO–0.40–0.22 are (0.8-2) × 10{sup 49} erg and (1-4) × 10{sup 49} erg, respectively. We propose several interpretations of their broad emission: collision between clouds associated with the shells, bipolar outflow, expansion driven by supernovae (SNe), and rotation around a dark massive object. These scenarios cannot be discriminated because of the insufficient angular resolution of our data, though the absence of a visible energy source associated with the HVCCs seems to favor the cloud-cloud collision scenario. Kinetic energies of the two molecular shells are 1 × 10{sup 51} erg and 0.7 × 10{sup 51} erg, which can be furnished by multiple SN or hypernova explosions in 2 × 10{sup 5} yr. These shells are candidates of molecular superbubbles created after past active star formation.

  20. Vacuum friction in rotating particles

    E-Print Network [OSTI]

    A. Manjavacas; F. J. García de Abajo

    2010-09-21T23:59:59.000Z

    We study the frictional torque acting on particles rotating in empty space. At zero temperature, vacuum friction transforms mechanical energy into light emission and produces particle heating. However, particle cooling relative to the environment occurs at finite temperatures and low rotation velocities. Radiation emission is boosted and its spectrum significantly departed from a hot-body emission profile as the velocity increases. Stopping times ranging from hours to billions of years are predicted for materials, particle sizes, and temperatures accessible to experiment. Implications for the behavior of cosmic dust are discussed.

  1. Mechanics of Rotating Isolated Horizons

    E-Print Network [OSTI]

    Abhay Ashtekar; Christopher Beetle; Jerzy Lewandowski

    2001-04-11T23:59:59.000Z

    Black hole mechanics was recently extended by replacing the more commonly used event horizons in stationary space-times with isolated horizons in more general space-times (which may admit radiation arbitrarily close to black holes). However, so far the detailed analysis has been restricted to non-rotating black holes (although it incorporated arbitrary distortion, as well as electromagnetic, Yang-Mills and dilatonic charges). We now fill this gap by first introducing the notion of isolated horizon angular momentum and then extending the first law to the rotating case.

  2. Radiation Parameterization for Three-Dimensional Inhomogeneous Cirrus Clouds Applied to ARM Data and Climate Models

    SciTech Connect (OSTI)

    Kuo-Nan Liou

    2003-12-29T23:59:59.000Z

    OAK-B135 (a) We developed a 3D radiative transfer model to simulate the transfer of solar and thermal infrared radiation in inhomogeneous cirrus clouds. The model utilized a diffusion approximation approach (four-term expansion in the intensity) employing Cartesian coordinates. The required single-scattering parameters, including the extinction coefficient, single-scattering albedo, and asymmetry factor, for input to the model, were parameterized in terms of the ice water content and mean effective ice crystal size. The incorporation of gaseous absorption in multiple scattering atmospheres was accomplished by means of the correlated k-distribution approach. In addition, the strong forward diffraction nature in the phase function was accounted for in each predivided spatial grid based on a delta-function adjustment. The radiation parameterization developed herein is applied to potential cloud configurations generated from GCMs to investigate broken clouds and cloud-overlapping effects on the domain-averaged heating rate. Cloud inhomogeneity plays an important role in the determination of flux and heating rate distributions. Clouds with maximum overlap tend to produce less heating than those with random overlap. Broken clouds show more solar heating as well as more IR cooling as compared to a continuous cloud field (Gu and Liou, 2001). (b) We incorporated a contemporary radiation parameterization scheme in the UCLA atmospheric GCM in collaboration with the UCLA GCM group. In conjunction with the cloud/radiation process studies, we developed a physically-based cloud cover formation scheme in association with radiation calculations. The model clouds were first vertically grouped in terms of low, middle, and high types. Maximum overlap was then used for each cloud type, followed by random overlap among the three cloud types. Fu and Liou's 1D radiation code with modification was subsequently employed for pixel-by-pixel radiation calculations in the UCLA GCM. We showed that the simulated cloud cover and OLR fields without special tuning are comparable to those of ISCCP dataset and the results derived from radiation budget experiments. Use of the new radiation and cloud schemes enhances the radiative warming in the middle to upper tropical troposphere and alleviates the cold bias in the UCLA atmospheric GCM. We also illustrated that ice crystal size and cloud inhomogeneous are significant factors affecting the radiation budgets at the top of the atmosphere and the surface (Gu et al. 2003). (c) An innovative approach has been developed to construct a 3D field of inhomogeneous clouds in general and cirrus in particular in terms of liquid/ice water content and particle size on the basis of a unification of satellite and ground-based cloud radar data. Satellite remote sensing employing the current narrow-band spectro-radiometers has limitation and only the vertically integrated cloud parameters (optical depth and mean particle size) can be determined. However, by combining the horizontal cloud mapping inferred from satellites with the vertical structure derived from the profiling Doppler cloud radar, a 3D cloud field can be constructed. This represents a new conceptual approach to 3D remote sensing and imaging and offers a new perspective in observing the cloud structure. We applied this novel technique to AVHRR/NOAA satellite and mm-wave cloud radar data obtained from the ARM achieve and assessed the 3D cirrus cloud field with the ice crystal size distributions independently derived from optical probe measurements aboard the University of North Dakota Citation. The retrieved 3D ice water content and mean effective ice crystal size involving an impressive cirrus cloud occurring on April 18, 1997, are shown to be comparable to those derived from the analysis of collocated and coincident in situ aircraft measurements (Liou et al. 2002). (d) Detection of thin cirrus with optical depths less than 0.5, particularly those occurring i n the tropics remains a fundamental problem in remote sensing. We developed a new detection scheme for the

  3. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud

    E-Print Network [OSTI]

    Klein, Stephen A.

    2009-01-01T23:59:59.000Z

    cloud has the correct effect on surface fluxes of radiation.radiation is 200 W m –2 in clear-sky STREAMER calculations, the longwave cloud radiative effect

  4. Early-stage star forming cloud cores in GLIMPSE Extended Green Objects (EGOs) as traced by organics pecies

    E-Print Network [OSTI]

    Ge, Jixing; Chen, Xi; Takahashi, S

    2014-01-01T23:59:59.000Z

    In order to investigate the physical and chemical properties of massive star forming cores in early stages, we analyse the excitation and abundance of four organic species, CH3OH, CH3OCH3, HCOOCH3 and CH3CH2CN, toward 29 Extended Green Object (EGO) cloud cores that were observed by our previous single dish spectral line survey. The EGO cloud cores are found to have similar methanol J_3-J_2 rotation temperatures of ~44 K, a typical linear size of ~0.036 pc, and a typical beam averaged methanol abundance of several 10^(-9) (the beam corrected value could reach several 10^(-7)). The abundances of the latter three species, normalized by that of methanol, are found to be correlated also across a large variety of clouds such as EGO cloud cores, hot corinos, massive hot cores and Galactic Center clouds. The chemical properties of the EGO cloud cores lie between that of hot cores and hot corinos. However, the abundances and abundance ratios of the four species can not be satisfactorily explained by recent chemical mo...

  5. Large-scale star formation in the Magellanic Clouds

    E-Print Network [OSTI]

    Jochen M. Braun

    2001-08-03T23:59:59.000Z

    In this contribution I will present the current status of our project of stellar population analyses and spatial information of both Magellanic Clouds (MCs). The Magellanic Clouds - especially the LMC with its large size and small depth (<300pc) - are suitable laboratories and testing ground for theoretical models of star formation. With distance moduli of 18.5 and 18.9mag for the LMC and SMC, respectively, and small galactic extinction, their stellar content can be studied in detail from the most massive stars of the youngest populations (<25Myr) connected to H-alpha emission down to the low mass end of about 1/10 of a solar mass. Based on broad-band photometry (U,B,V) I present results for the supergiant shell (SGS) SMC1, some regions at the LMC east side incl. LMC2 showing different overlapping young populations and the region around N171 with its large and varying colour excess, and LMC4. This best studied SGS shows a coeval population aged about 12Myr with little age spread and no correlation to distance from LMC4's centre. I will show that the available data are not compatible with many of the proposed scenarios like SSPSF or a central trigger (like a cluster or GRB), while a large-scale trigger like the bow-shock of the rotating LMC can do the job.

  6. Rotating drum variable depth sampler

    DOE Patents [OSTI]

    Nance, Thomas A. (Aiken, SC); Steeper, Timothy J. (Trenton, SC)

    2008-07-01T23:59:59.000Z

    A sampling device for collecting depth-specific samples in silt, sludge and granular media has three chambers separated by a pair of iris valves. Rotation of the middle chamber closes the valves and isolates a sample in a middle chamber.

  7. Rotationally invariant multilevel block codes

    E-Print Network [OSTI]

    Kulandaivelu, Anita

    1993-01-01T23:59:59.000Z

    The objective of this thesis is to evaluate the performance of block codes that are designed to be rotationally invariant, in a multilevel coding scheme, over a channel modelled to be white gaussian noise. Also, the use of non-binary codes...

  8. Rotational ratchets with dipolar interactions

    E-Print Network [OSTI]

    Sebastian Jäger; Sabine H. L. Klapp

    2012-10-12T23:59:59.000Z

    We report results from a computer simulation study on the rotational ratchet effect in systems of magnetic particles interacting via dipolar interactions. The ratchet effect consists of directed rotations of the particles in an oscillating magnetic field, which lacks a net rotating component. Our investigations are based on Brownian dynamics simulations of such many-particle systems. We investigate the influence of both, the random and deterministic contributions to the equations of motion on the ratchet effect. As a main result, we show that dipolar interactions can have an enhancing as well as a dampening effect on the ratchet behavior depending on the dipolar coupling strength of the system under consideration. The enhancement is shown to be caused by an increase in the effective field on a particle generated by neighboring magnetic particles, while the dampening is due to restricted rotational motion in the effective field. Moreover, we find a non-trivial influence of the short-range, repulsive interaction between the particles.

  9. Thin film composite electrolyte

    DOE Patents [OSTI]

    Schucker, Robert C. (The Woodlands, TX)

    2007-08-14T23:59:59.000Z

    The invention is a thin film composite solid (and a means for making such) suitable for use as an electrolyte, having a first layer of a dense, non-porous conductive material; a second layer of a porous ionic conductive material; and a third layer of a dense non-porous conductive material, wherein the second layer has a Coefficient of thermal expansion within 5% of the coefficient of thermal expansion of the first and third layers.

  10. Temperature inversion on the surface of externally heated optically thick multigrain dust clouds

    E-Print Network [OSTI]

    Dejan Vinkovic

    2006-12-01T23:59:59.000Z

    It was recently discovered that the temperature in the surface layer of externally heated optically thick gray dust clouds increases with the optical depth for some distance from the surface, as opposed to the normal decrease in temperature with distance in the rest of the cloud. This temperature inversion is a result of efficient absorption of diffuse flux from the cloud interior by the surface dust exposed to the external radiation. A micron or bigger size grains experience this effect when the external flux is of stellar spectrum. We explore what happens to the effect when dust is a mixture of grain sizes (multigrain). Two possible boundary conditions are considered: i) a constant external flux without constrains on the dust temperature, and ii) the maximum dust temperature set to the sublimation temperature. We find that the first condition allows small grains to completely suppress the temperature inversion of big grains if the overall opacity is dominated by small grains. The second condition enables big grains to maintain the inversion even when they are a minor contributor to the opacity. In reality, the choice of boundary condition depends on the dust dynamics. When applied to the physics of protoplanetary disks, the temperature inversion leads to a previously unrecognized disk structure where optically thin dust can exist inside the dust destruction radius of an optically thick disk. We conclude that the transition between the dusty disk and the gaseous inner clearing is not a sharp edge, but rather a large optically thin region.

  11. Thin shell model revisited

    E-Print Network [OSTI]

    Sijie Gao; Xiaobao Wang

    2014-12-26T23:59:59.000Z

    We reconsider some fundamental problems of the thin shell model. First, we point out that the "cut and paste" construction does not guarantee a well-defined manifold because there is no overlap of coordinates across the shell. When one requires that the spacetime metric across the thin shell is continuous, it also provides a way to specify the tangent space and the manifold. Other authors have shown that this specification leads to the conservation laws when shells collide. On the other hand, the well-known areal radius $r$ seems to be a perfect coordinate covering all regions of a spherically symmetric spacetime. However, we show by simple but rigorous arguments that $r$ fails to be a coordinate covering a neighborhood of the thin shell if the metric across the shell is continuous. When two spherical shells collide and merge into one, we show that it is possible that $r$ remains to be a good coordinate and the conservation laws hold. To make this happen, different spacetime regions divided by the shells must be glued in a specific way such that some constraints are satisfied. We compare our new construction with the old one by solving constraints numerically.

  12. Determinating Timing Channels in Statistically Multiplexed Clouds

    E-Print Network [OSTI]

    Aviram, Amittai; Ford, Bryan; Gummadi, Ramakrishna

    2010-01-01T23:59:59.000Z

    Timing side-channels represent an insidious security challenge for cloud computing, because: (a) they enable one customer to steal information from another without leaving a trail or raising alarms; (b) only the cloud provider can feasibly detect and report such attacks, but the provider's incentives are not to; and (c) known general-purpose timing channel control methods undermine statistical resource sharing efficiency, and, with it, the cloud computing business model. We propose a new cloud architecture that uses provider-enforced deterministic execution to eliminate all timing channels internal to a shared cloud domain, without limiting internal resource sharing. A prototype determinism-enforcing hypervisor demonstrates that utilizing such a cloud might be both convenient and efficient. The hypervisor enables parallel guest processes and threads to interact via familiar shared memory and file system abstractions, and runs moderately coarse-grained parallel tasks as efficiently and scalably as current nond...

  13. Analysis of cloud layer structure in Shouxian, China using RS92 radiosonde aided by 95 GHz cloud radar

    E-Print Network [OSTI]

    Li, Zhanqing

    Analysis of cloud layer structure in Shouxian, China using RS92 radiosonde aided by 95 GHz cloud to analyze cloud vertical structure over this area by taking advantage of the first direct measurements of cloud vertical layers from the 95 GHz radar. Singlelayer, twolayer, and threelayer clouds account for 28

  14. In Proceedings of APSEC 2010 Cloud Workshop, Sydney, Australia, 30th An Analysis of The Cloud Computing Security Problem

    E-Print Network [OSTI]

    Grundy, John

    of The Cloud Computing Security Problem Mohamed Al Morsy, John Grundy and Ingo Müller Computer Science to adopt IT without upfront investment. Despite the potential gains achieved from the cloud computing solution. Keywords: cloud computing; cloud computing security; cloud computing security management. I

  15. April 12, 2014: The Era of Cloud Computing is coming Headline: The Era of Cloud Computing is coming

    E-Print Network [OSTI]

    Buyya, Rajkumar

    April 12, 2014: The Era of Cloud Computing is coming #12;Headline: The Era of Cloud Computing of Cloud Computing at a seminar in MANIT and RGPV on Saturday. Inset headline: This is the right time to build a career in Cloud Computing Article: Prof. Rajkumar Buyya gave guidance to students about Cloud

  16. After the definition of Cloud Computing ... What has NIST done in the Cloud space lately? What's next?

    E-Print Network [OSTI]

    After the definition of Cloud Computing ... What has NIST done in the Cloud space lately? What Publication SP 500-292: Cloud Computing Reference Architecture. This document takes the NIST definition of Cloud Computing a step further by expanding the definition into a logical representation of the cloud

  17. Generated using version 3.0 of the official AMS LATEX template Computing and Partitioning Cloud Feedbacks using Cloud1

    E-Print Network [OSTI]

    Hartmann, Dennis

    by adjusting the change in cloud radiative forcing for non-cloud22 related effects as in Soden et al. (2008 planet, the global and annual mean effect40 of clouds at the top of atmosphere (TOA) is to increase Feedbacks using Cloud1 Property Histograms.2 Part I: Cloud Radiative Kernels3 Mark D. Zelinka Department

  18. Influence of Cloud-Top Height and Geometric Thickness on a MODIS Infrared-Based Ice Cloud Retrieval

    E-Print Network [OSTI]

    Baum, Bryan A.

    of the net cloud radiative forc- ing of these clouds requires a global, diurnal climatology, which can most and temporal scales. In this study, the sensitivity of an infrared-based ice cloud retrieval to effective cloud temperature is investigated, with a focus on the effects of cloud-top height and geometric thickness

  19. Impact of plasma poloidal rotation on resistive wall mode instability in toroidally rotating plasmas

    SciTech Connect (OSTI)

    Aiba, N.; Shiraishi, J. [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Tokuda, S. [Research Organization for Information Science and Technology, Kita-Shinagawa, Shinagawa, Tokyo 140-0001 (Japan)

    2011-02-15T23:59:59.000Z

    Stability of resistive wall mode (RWM) is investigated in a cylindrical plasma and an axisymmetric toroidal plasma by taking into account not only toroidal rotation but also poloidal rotation. Since the Doppler shifted frequency is responsible for the RWM stability, the modification of this Doppler shifted frequency by poloidal rotation affects the rotation effect on RWM. When a poloidal rotation frequency is not so large, the effect of poloidal rotation on the RWM stability can be approximately treated with the modified toroidal rotation frequency. In a toroidal plasma, this modified frequency is determined by subtracting a toroidal component of the rotation parallel to the magnetic field from the toroidal rotation frequency. The poloidal rotation that counteracts the effect of the Doppler shift strongly reduces the stabilizing effect of toroidal rotation, but by changing the rotational direction, the poloidal rotation enhances this stabilizing effect. This trend is confirmed in not only a cylindrical plasma but also a toroidal plasma. This result indicates that poloidal rotation produces the dependence of the critical toroidal rotation frequency for stabilizing RWM on the rotational direction of toroidal rotation in the same magnetic configuration.

  20. CHARACTERIZATION OF CLOUDS IN TITAN'S TROPICAL ATMOSPHERE

    SciTech Connect (OSTI)

    Griffith, Caitlin A.; Penteado, Paulo [Department of Planetary Sciences, University of Arizona, Tucson, AZ 85719 (United States); Rodriguez, Sebastien [Laboratoire AIM, Universite Paris 7/CNRS/CEA-Saclay, DSM/IRFU/SAp (France); Le Mouelic, Stephane [Laboratoire de Planetologie et Geodynamique, CNRS, UMR-6112, Universite de Nantes, 44000 Nantes (France); Baines, Kevin H.; Buratti, Bonnie; Sotin, Christophe [Jet Propulsion Laboratory, Pasadena, CA 91109 (United States); Clark, Roger [U.S. Geological Survey, Denver, CO 80225 (United States); Nicholson, Phil [Department of Astronomy, Cornell University, Ithaca, NY (United States); Jaumann, Ralf [Institute of Planetary Exploration, Deutsche Zentrum, fuer Luft- und Raumfahrt (Germany)

    2009-09-10T23:59:59.000Z

    Images of Titan's clouds, possible over the past 10 years, indicate primarily discrete convective methane clouds near the south and north poles and an immense stratiform cloud, likely composed of ethane, around the north pole. Here we present spectral images from Cassini's Visual Mapping Infrared Spectrometer that reveal the increasing presence of clouds in Titan's tropical atmosphere. Radiative transfer analyses indicate similarities between summer polar and tropical methane clouds. Like their southern counterparts, tropical clouds consist of particles exceeding 5 {mu}m. They display discrete structures suggestive of convective cumuli. They prevail at a specific latitude band between 8 deg. - 20 deg. S, indicative of a circulation origin and the beginning of a circulation turnover. Yet, unlike the high latitude clouds that often reach 45 km altitude, these discrete tropical clouds, so far, remain capped to altitudes below 26 km. Such low convective clouds are consistent with the highly stable atmospheric conditions measured at the Huygens landing site. Their characteristics suggest that Titan's tropical atmosphere has a dry climate unlike the south polar atmosphere, and despite the numerous washes that carve the tropical landscape.

  1. Interstellar Turbulence, Cloud Formation and Pressure Balance

    E-Print Network [OSTI]

    Enrique Vazquez-Semadeni

    1998-10-23T23:59:59.000Z

    We discuss HD and MHD compressible turbulence as a cloud-forming and cloud-structuring mechanism in the ISM. Results from a numerical model of the turbulent ISM at large scales suggest that the phase-like appearance of the medium, the typical values of the densities and magnetic field strengths in the intercloud medium, as well as Larson's velocity dispersion-size scaling relation in clouds may be understood as consequences of the interstellar turbulence. However, the density-size relation appears to only hold for the densest simulated clouds, there existing a large population of small, low-density clouds, which, on the other hand, are hardest to observe. We then discuss several tests and implications of a fully dynamical picture of interstellar clouds. The results imply that clouds are transient, constantly being formed, distorted and disrupted by the turbulent velocity field, with a fraction of these fluctuations undergoing gravitational collapse. Simulated line profiles and estimated cloud lifetimes are consistent with observational data. In this scenario, we suggest it is quite unlikely that quasi-hydrostatic structures on any scale can form, and that the near pressure balance between clouds and the intercloud medium is an incidental consequence of the density field driven by the turbulence and in the presence of appropriate cooling, rather than a driving or confining mechanism.

  2. Rotation generation and transport in tokamak plasmas

    E-Print Network [OSTI]

    Podpaly, Yuri Anatoly

    2012-01-01T23:59:59.000Z

    Plasma toroidal rotation is a factor important for plasma stability and transport, but it is still a fairly poorly understood area of physics. This thesis focuses on three aspects of rotation: momentum transport, Ohmic ...

  3. Experiments with Fertilizers on Rotated and Non-Rotated Crops.

    E-Print Network [OSTI]

    Reynolds, E. B. (Elbert Brunner)

    1928-01-01T23:59:59.000Z

    This is a report of experiments conducted over a period of 14 years to study the effect of fertilizers, manure, removal. of crop residues, and rota- tion on the yield of crops. The fertilizer treatments included superphos- phate; superphosphate and manure...; superphosphate and cottonseed meal; manure; rock phosphate; and rock phosphate and manure. Cotton and corn were grown continuously on the same land and in rotation with oats and cowpeas. The soil responded more readily to nitrogenous than to phosphatic fer...

  4. Intercomparison of cloud model simulations of Arctic mixed-phase boundary layer clouds observed during

    E-Print Network [OSTI]

    Zuidema, Paquita

    /crystal concentration also suggests the need for improved understanding of ice nucleation and its parameterizationIntercomparison of cloud model simulations of Arctic mixed-phase boundary layer clouds observed is presented. This case study is based on observations of a persistent mixed-phase boundary layer cloud

  5. Dark Clouds on the Horizon: Using Cloud Storage as Attack Vector and Online Slack Space

    E-Print Network [OSTI]

    Dark Clouds on the Horizon: Using Cloud Storage as Attack Vector and Online Slack Space Martin this as online slack space. We conclude by discussing security improvements for mod- ern online storage services protocol. With the advent of cloud computing and the shared usage of resources, these centralized storage

  6. To Cloud or Not to Cloud: A Mobile Device Perspective on Energy Consumption of Applications

    E-Print Network [OSTI]

    Namboodiri, Vinod

    To Cloud or Not to Cloud: A Mobile Device Perspective on Energy Consumption of Applications Vinod important criteria might be the energy consumed by the applications they run. The goal of this work is to characterize under what scenarios cloud-based applications would be relatively more energy-efficient for users

  7. Aircraft Microphysical Documentation from Cloud Base to Anvils of Hailstorm Feeder Clouds in Argentina

    E-Print Network [OSTI]

    Daniel, Rosenfeld

    in Argentina DANIEL ROSENFELD The Hebrew University of Jerusalem, Jerusalem, Israel WILLIAM L. WOODLEY Woodley, Argentina, with a cloud-physics jet aircraft penetrating the major feeder clouds from cloud base to the 45°C. Introduction The province of Mendoza in western Argentina (32°S, 68°W), which is known worldwide for its wine

  8. Investigating the Radiative Impact Clouds Using Retrieved Properties to Classify Cloud Type

    E-Print Network [OSTI]

    Hogan, Robin

    of Reading, RG6 6AL, UK Abstract. Active remote sensing allows cloud properties such as ice and liquid water remote sensing, Cloud categorization, Cloud properties, Radiative impact. PACS: 92.60. Vb. INTRODUCTION in a radiation scheme which can simulate the radiation budget and heating rates throughout the atmospheric

  9. The Design of a Community Science Cloud: The Open Science Data Cloud Perspective

    E-Print Network [OSTI]

    Grossman, Robert

    The Design of a Community Science Cloud: The Open Science Data Cloud Perspective Robert L. Grossman, Matthew Greenway, Allison P. Heath, Ray Powell, Rafael D. Suarez, Walt Wells, and Kevin White University Abstract--In this paper we describe the design, and implemen- tation of the Open Science Data Cloud

  10. From Grid to private Clouds, to interClouds. Project Team

    E-Print Network [OSTI]

    Vialle, Stéphane

    24/10/2011 1 From Grid to private Clouds, to interClouds. AlGorille Project Team An overviewGorille INRIA Project Team October 21, 2011 I Premise of Grid ComputingI Premise of Grid Computing... From Grid to private Clouds, to inter

  11. LETTER The incidence and implications of clouds for cloud forest plant water relations

    E-Print Network [OSTI]

    Goldsmith, Greg

    , the montane forest experienced higher precipi- tation, cloud cover and leaf wetting events of longer duration for an improved understanding of clouds and their effects on cloud forest plant functioning. As summarised below (VPD) and photosynthetically active radiation. In turn, this decreases plant water demand. The suppres

  12. Variations in Cloud Cover and Cloud Types over the Ocean from Surface Observations, 19542008

    E-Print Network [OSTI]

    Hochberg, Michael

    ). MSC therefore have a cooling ef- fect on climate [negative cloud radiative effect (CRE)]. Randall et in climate, affecting both radiation fluxes and latent heat fluxes, but the various cloud types affect marine. By contrast, high (cirriform) clouds are thinner and colder, so their longwave effect dominates, giving them

  13. A 3D STOCHASTIC CLOUD MODEL FOR INVESTIGATING THE RADIATIVE PROPERTIES OF INHOMOGENEOUS CIRRUS CLOUDS

    E-Print Network [OSTI]

    Hogan, Robin

    A 3D STOCHASTIC CLOUD MODEL FOR INVESTIGATING THE RADIATIVE PROPERTIES OF INHOMOGENEOUS CIRRUS, Berkshire, United Kingdom 1 INTRODUCTION The importance of ice clouds on the earth's radiation budget for quantifying this effect, and several such models exist for boundary layer clouds, such as those of Cahalan et

  14. Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperational Management »EnergyHubs | DepartmentCloud Spatial

  15. Outflows and Jets from Collapsing Magnetized Cloud Cores

    E-Print Network [OSTI]

    Robi Banerjee; Ralph E. Pudritz

    2005-12-13T23:59:59.000Z

    Star formation is usually accompanied by outflow phenomena. There is strong evidence that these outflows and jets are launched from the protostellar disk by magneto-rotational processes. Here, we report on our three dimensional, adaptive mesh, magneto-hydrodynamic simulations of collapsing, rotating, magnetized Bonnor-Ebert-Spheres whose properties are taken directly from observations. In contrast to the pure hydro case where no outflows are seen, our present simulations show an outflow from the protodisk surface at ~ AU and a jet at ~ 0.07 AU after a strong toroidal magnetic field build up. The large scale outflow, which extends up to ~ AU at the end of our simulation, is driven by toroidal magnetic pressure (spring), whereas the jet is powered by magneto-centrifugal force (fling). At the final stage of our simulation these winds are still confined within two respective shock fronts. Furthermore, we find that the jet-wind and the disk-anchored magnetic field extracts a considerable amount of angular momentum from the protostellar disk. The initial spin of our cloud core was chosen high enough to produce a binary system. We indeed find a close binary system (separation ~ 3 R_sol) which results from the fragmentation of an earlier formed ring structure. The magnetic field strength in these protostars reaches ~ 3 kG and becomes about 3 G at 1 AU from the center in agreement with recent observational results.

  16. Gravity controlled anti-reverse rotation device

    DOE Patents [OSTI]

    Dickinson, Robert J. (Shaler Township, Allegheny County, PA); Wetherill, Todd M. (Lower Burrell, PA)

    1983-01-01T23:59:59.000Z

    A gravity assisted anti-reverse rotation device for preventing reverse rotation of pumps and the like. A horizontally mounted pawl is disposed to mesh with a fixed ratchet preventing reverse rotation when the pawl is advanced into intercourse with the ratchet by a vertically mounted lever having a lumped mass. Gravitation action on the lumped mass urges the pawl into mesh with the ratchet, while centrifugal force on the lumped mass during forward, allowed rotation retracts the pawl away from the ratchet.

  17. Shoring up Infrastructure Weaknesses with Hybrid Cloud Storage

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    Shoring up Infrastructure Weaknesses with Hybrid Cloud Storage #12;2StorSimple White Pages: Shoring Up Infrastructure Weaknesses with Hybrid Cloud Storage Table of Contents The Hybrid Cloud Context for IT Managers ............................................................. 3 The Bottleneck of Managing Storage

  18. Satellite Remote Sensing of Mid-level Clouds

    E-Print Network [OSTI]

    Jin, Hongchun 1980-

    2012-11-07T23:59:59.000Z

    algorithm is evaluated using the CALIPSO cloud phase products for single-layer, heterogeneous, and multi-layer scenes. The AIRS phase algorithm has excellent performance (>90%) in detecting ice clouds compared to the CALIPSO ice clouds. It is capable...

  19. A cloud-assisted design for autonomous driving

    E-Print Network [OSTI]

    Suresh Kumar, Swarun

    This paper presents Carcel, a cloud-assisted system for autonomous driving. Carcel enables the cloud to have access to sensor data from autonomous vehicles as well as the roadside infrastructure. The cloud assists autonomous ...

  20. Aneka Cloud Application Platform and Its Integration with Windows Azure

    E-Print Network [OSTI]

    Melbourne, University of

    scheduling, and energy efficient resource utilization. The Aneka Cloud Application platform, together. Ltd., Melbourne, Victoria, Australia 2 Cloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of Computer Science and Software Engineering, The University of Melbourne, Australia Abstract

  1. Fair-weather clouds hold dirty secret | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fair-weather clouds hold dirty secret Fair-weather clouds hold dirty secret Released: May 05, 2013 New study reveals particles that seed small-scale clouds over Oklahoma Air...

  2. E-Cloud Build-up in Grooved Chambers

    E-Print Network [OSTI]

    Venturini, Marco

    2007-01-01T23:59:59.000Z

    and F. Zimmermann, ”LC e-Cloud Activities at CERN”, talkal. , Simulations of the Electron Cloud for Vari- ous Con?E-CLOUD BUILD-UP IN GROOVED CHAMBERS ? M. Venturini † LBNL,

  3. Building Dynamic Computing Infrastructures over Distributed Clouds Pierre Riteau

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Building Dynamic Computing Infrastructures over Distributed Clouds Pierre Riteau University--The emergence of cloud computing infrastructures brings new ways to build and manage computing systems objectives. First, leveraging virtualization and cloud computing infrastruc- tures to build distributed large

  4. Modelling Cloud Computing Infrastructure Marianne Hickey and Maher Rahmouni,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Modelling Cloud Computing Infrastructure Marianne Hickey and Maher Rahmouni, HP Labs, Long Down, and shared vocabularies. Keywords: Modelling, Cloud Computing, RDF, Ontology, Rules, Validation 1 Introduction There is currently a shift towards cloud computing, which changes the model of provision

  5. Consistent cloud computing storage as the basis for distributed applications

    E-Print Network [OSTI]

    Anderson, James William

    2011-01-01T23:59:59.000Z

    Messaging in Cloud Computing . . . . . . . . . .7 1.4Eucalyptus Open—Source Cloud—Computing System. In C'C&#http://www.eweek.com/c/a/Cloud-Computing/Amazons—Head—Start—

  6. On the Energy of Rotating Gravitational Waves

    E-Print Network [OSTI]

    Bahram Mashhoon; James C. McClune; Enrique Chavez; Hernando Quevedo

    1996-09-06T23:59:59.000Z

    A class of solutions of the gravitational field equations describing vacuum spacetimes outside rotating cylindrical sources is presented. A subclass of these solutions corresponds to the exterior gravitational fields of rotating cylindrical systems that emit gravitational radiation. The properties of these rotating gravitational wave spacetimes are investigated. In particular, we discuss the energy density of these waves using the gravitational stress-energy tensor.

  7. LONG-LIVED MAGNETIC-TENSION-DRIVEN MODES IN A MOLECULAR CLOUD

    SciTech Connect (OSTI)

    Basu, Shantanu; Dapp, Wolf B., E-mail: basu@uwo.c, E-mail: wdapp@uwo.c [Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada)

    2010-06-10T23:59:59.000Z

    We calculate and analyze the longevity of magnetohydrodynamic (MHD) wave modes that occur in the plane of a magnetic thin sheet. Initial turbulent conditions applied to a magnetically subcritical cloud are shown to lead to relatively rapid energy decay if ambipolar diffusion is introduced at a level corresponding to partial ionization primarily by cosmic rays. However, in the flux-freezing limit, as may be applicable to photoionized molecular cloud envelopes, the turbulence persists at 'nonlinear' levels in comparison with the isothermal sound speed c {sub s}, with one-dimensional rms material motions in the range of {approx} 2 c {sub s}-5 c {sub s} for cloud sizes in the range of {approx} 2 pc-16 pc. These fluctuations persist indefinitely, maintaining a significant portion of the initial turbulent kinetic energy. We find the analytic explanation for these persistent fluctuations. They are magnetic-tension-driven modes associated with the interaction of the sheet with the external magnetic field. The phase speed of such modes is quite large, allowing residual motions to persist without dissipation in the flux-freezing limit, even as they are nonlinear with respect to the sound speed. We speculate that long-lived large-scale MHD modes such as these may provide the key to understanding observed supersonic motions in molecular clouds.

  8. TYCHO SN 1572: A NAKED Ia SUPERNOVA REMNANT WITHOUT AN ASSOCIATED AMBIENT MOLECULAR CLOUD

    SciTech Connect (OSTI)

    Tian, W. W. [National Astronomical Observatories, CAS, Beijing 100012 (China); Leahy, D. A., E-mail: tww@bao.ac.cn [Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada)

    2011-03-10T23:59:59.000Z

    The historical supernova remnant (SNR) Tycho SN 1572 originates from the explosion of a normal Type Ia supernova that is believed to have originated from a carbon-oxygen white dwarf in a binary system. We analyze the 21 cm continuum, H I, and {sup 12}CO-line data from the Canadian Galactic Plane Survey in the direction of SN 1572 and the surrounding region. We construct H I absorption spectra to SN 1572 and three nearby compact sources. We conclude that SN 1572 has no molecular cloud interaction, which argues against previous claims that a molecular cloud is interacting with the SNR. This new result does not support a recent claim that dust, newly detected by AKARI, originates from such an SNR-cloud interaction. We suggest that the SNR has a kinematic distance of 2.5-3.0 kpc based on a nonlinear rotational curve model. Very high energy {gamma}-ray emission from the remnant has been detected by the VERITAS telescope, so our result shows that its origin should not be an SNR-cloud interaction. Both radio and X-ray observations support that SN 1572 is an isolated Type Ia SNR.

  9. Rotating concave eddy current probe

    SciTech Connect (OSTI)

    Roach, Dennis P. (Albuquerque, NM); Walkington, Phil (Albuquerque, NM); Rackow, Kirk A. (Albuquerque, NM); Hohman, Ed (Albuquerque, NM)

    2008-04-01T23:59:59.000Z

    A rotating concave eddy current probe for detecting fatigue cracks hidden from view underneath the head of a raised head fastener, such as a buttonhead-type rivet, used to join together structural skins, such as aluminum aircraft skins. The probe has a recessed concave dimple in its bottom surface that closely conforms to the shape of the raised head. The concave dimple holds the probe in good alignment on top of the rivet while the probe is rotated around the rivet's centerline. One or more magnetic coils are rigidly embedded within the probe's cylindrical body, which is made of a non-conducting material. This design overcomes the inspection impediment associated with widely varying conductivity in fastened joints.

  10. Particle entanglement in rotating gases

    SciTech Connect (OSTI)

    Liu Zhao; Fan Heng [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2010-06-15T23:59:59.000Z

    In this paper, we investigate the particle entanglement in two-dimensional (2D) weakly interacting rotating Bose and Fermi gases. We find that both particle localization and vortex localization can be indicated by particle entanglement. We also use particle entanglement to show the occurrence of edge reconstruction of rotating fermions. The different properties of condensate phase and vortex liquid phase of bosons can be reflected by particle entanglement and in vortex liquid phase we construct the same trial wave function with that in [Phys. Rev. Lett. 87, 120405 (2001)] from the viewpoint of entanglement to relate the ground state with quantum Hall state. Finally, the relation between particle entanglement and interaction strength is studied.

  11. Vertically Aligned Nanocomposite Thin Films 

    E-Print Network [OSTI]

    Bi, Zhenxing

    2012-07-16T23:59:59.000Z

    microstructure is a brand new architecture in thin films and an exciting approach that promises tunable material functionalities as well as novel nanostructures....

  12. AEROSOL, CLOUDS, AND CLIMATE CHANGE

    SciTech Connect (OSTI)

    SCHWARTZ, S.E.

    2005-09-01T23:59:59.000Z

    Earth's climate is thought to be quite sensitive to changes in radiative fluxes that are quite small in absolute magnitude, a few watts per square meter, and in relation to these fluxes in the natural climate. Atmospheric aerosol particles exert influence on climate directly, by scattering and absorbing radiation, and indirectly by modifying the microphysical properties of clouds and in turn their radiative effects and hydrology. The forcing of climate change by these indirect effects is thought to be quite substantial relative to forcing by incremental concentrations of greenhouse gases, but highly uncertain. Quantification of aerosol indirect forcing by satellite- or ground-based remote sensing has proved quite difficult in view of inherent large variation in the pertinent observables such as cloud optical depth, which is controlled mainly by liquid water path and only secondarily by aerosols. Limited work has shown instances of large magnitude of aerosol indirect forcing, with local instantaneous forcing upwards of 50 W m{sup 66}-2. Ultimately it will be necessary to represent aerosol indirect effects in climate models to accurately identify the anthropogenic forcing at present and over secular time and to assess the influence of this forcing in the context of other forcings of climate change. While the elements of aerosol processes that must be represented in models describing the evolution and properties of aerosol particles that serve as cloud condensation particles are known, many important components of these processes remain to be understood and to be represented in models, and the models evaluated against observation, before such model-based representations can confidently be used to represent aerosol indirect effects in climate models.

  13. The Giant Molecular Cloud Environments of Infrared Dark Clouds

    E-Print Network [OSTI]

    Hernandez, Audra K

    2015-01-01T23:59:59.000Z

    We study the GMC environments surrounding 10 IRDCs, based on 13CO molecular line emission from the Galactic Ring Survey. Using a range of physical scales, we measure the physical properties of the IRDCs and their surrounding molecular material extending out to radii, R, of 30pc. By comparing different methods for defining cloud boundaries and for deriving mass surface densities, Sigma, and velocity dispersions, sigma, we settled on a preferred "CE,tau,G" method of "Connected Extraction" in position-velocity space along with Gaussian fitting to opacity-corrected line profiles for velocity dispersion and mass estimation. We examine how cloud definition affects measurements of the magnitude and direction of line of sight velocity gradients and velocity dispersions, including the associated dependencies on size scale. CE,tau,G-defined IRDCs and GMCs show velocity gradient versus size relations that scale approximately as dv_0/ds~s^(-1/2) and velocity dispersion versus size relations sigma~s^(1/2), which are consi...

  14. Method for thinning specimen

    DOE Patents [OSTI]

    Follstaedt, David M.; Moran, Michael P.

    2005-03-15T23:59:59.000Z

    A method for thinning (such as in grinding and polishing) a material surface using an instrument means for moving an article with a discontinuous surface with an abrasive material dispersed between the material surface and the discontinuous surface where the discontinuous surface of the moving article provides an efficient means for maintaining contact of the abrasive with the material surface. When used to dimple specimens for microscopy analysis, a wheel with a surface that has been modified to produce a uniform or random discontinuous surface significantly improves the speed of the dimpling process without loss of quality of finish.

  15. Mixed-phase clouds, thin cirrus clouds, and OLR over the tropics: observations, retrievals, and radiative impacts 

    E-Print Network [OSTI]

    Lee, Joonsuk

    2009-06-02T23:59:59.000Z

    The tropics is a very important region in terms of earth’s radiation budget because the net radiative heating is largest in the tropics and that surplus energy is redistributed by the circulations of oceans and atmospheres. Moreover, a large number...

  16. Detecting and Evaluating the Effect of Overlaying Thin Cirrus Cloud on MODIS Retrieved Water-Cloud Droplet Effective Radius

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITIONPortalToDepthandCirrus-Overlapping-WaterandDetecting

  17. Electron Cloud Effects in Accelerators

    SciTech Connect (OSTI)

    Furman, M.A.

    2012-11-30T23:59:59.000Z

    Abstract We present a brief summary of various aspects of the electron-cloud effect (ECE) in accelerators. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire ?ECLOUD? series [1?22]. In addition, the proceedings of the various flavors of Particle Accelerator Conferences [23] contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series [24] contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC [25].

  18. ARM - Lesson Plans: Making Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDC documentationBarrow, Alaska OutreachMaking Clouds Outreach Home

  19. Sandia Energy - Cloud Computing Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatings Initiated at PNNL's Sequim BayCaptureCloud Computing Services

  20. Morphological Characteristics of Compact High-Velocity Clouds Revealed by High-Resolution WSRT Imaging

    E-Print Network [OSTI]

    W. B. Burton; Robert Braun

    1999-12-22T23:59:59.000Z

    A class of compact, isolated high-velocity clouds which plausibly represents a homogeneous subsample of the HVC phenomenon in a single physical state was objectively identified by Braun and Burton (1999). Six examples of the CHVCs, unresolved in single-dish data, have been imaged with the Westerbork Synthesis Radio Telescope. The high-resolution imaging reveals the morphology of these objects, including a core/halo distribution of fluxes, signatures of rotation indicating dark matter, and narrow linewidths constraining the kinetic temperature of several opaque cores. In these regards, as well as in their kinematic and spatial deployment on the sky, the CHVC objects are evidently a dynamically cold ensemble of dark-matter-dominated HI clouds accreting onto the Local Group in a continuing process of galactic evolution.

  1. Cloud a particle beam facility to investigate the influence of cosmic rays on clouds

    E-Print Network [OSTI]

    Kirkby, Jasper

    2001-01-01T23:59:59.000Z

    Palaeoclimatic data provide extensive evidence for solar forcing of the climate during the Holocene and the last ice age, but the underlying mechanism remains a mystery. However recent observations suggest that cosmic rays may play a key role. Satellite data have revealed a surprising correlation between cosmic ray intensity and the fraction of the Earth covered by low clouds \\cite{svensmark97,marsh}. Since the cosmic ray intensity is modulated by the solar wind, this may be an important clue to the long-sought mechanism for solar-climate variability. In order to test whether cosmic rays and clouds are causally linked and, if so, to understand the microphysical mechanisms, a novel experiment known as CLOUD\\footnotemark\\ has been proposed \\cite{cloud_proposal}--\\cite{cloud_addendum_2}. CLOUD proposes to investigate ion-aerosol-cloud microphysics under controlled laboratory conditions using a beam from a particle accelerator, which provides a precisely adjustable and measurable artificial source of cosmic rays....

  2. CloneCloud: Boosting Mobile Device Applications Through Cloud Clone Execution

    E-Print Network [OSTI]

    Chun, Byung-Gon; Maniatis, Petros; Naik, Mayur

    2010-01-01T23:59:59.000Z

    Mobile applications are becoming increasingly ubiquitous and provide ever richer functionality on mobile devices. At the same time, such devices often enjoy strong connectivity with more powerful machines ranging from laptops and desktops to commercial clouds. This paper presents the design and implementation of CloneCloud, a system that automatically transforms mobile applications to benefit from the cloud. The system is a flexible application partitioner and execution runtime that enables unmodified mobile applications running in an application-level virtual machine to seamlessly off-load part of their execution from mobile devices onto device clones operating in a computational cloud. CloneCloud uses a combination of static analysis and dynamic profiling to optimally and automatically partition an application so that it migrates, executes in the cloud, and re-integrates computation in a fine-grained manner that makes efficient use of resources. Our evaluation shows that CloneCloud can achieve up to 21.2x s...

  3. Public Cloud B CarbonEmission

    E-Print Network [OSTI]

    Buyya, Rajkumar

    Sensors, Demand Prediction Power Capping, Green Software Services such as energy-efficient scientific) Request a Cloud service 4) Allocate service 5) Request service allocation 3) Request energy efficiency information Green Offer Directory 2) Request any `Green Offer' Routers Internet Green Broker #12;Cloud

  4. The CloudNets Network Virtualization Architecture

    E-Print Network [OSTI]

    Schmid, Stefan

    Nets Network Virtualization Architecture Johannes Grassler jgrassler@inet.tu-berlin.de 05. Februar, 2014 Johannes Grassler jgrassler@inet.tu-berlin.de The CloudNets Network Virtualization Architecture #12;..... . .... . .... . ..... . .... . .... . .... . ..... . .... . .... . .... . ..... . .... . .... . .... . ..... . .... . ..... . .... . .... . Johannes Grassler jgrassler@inet.tu-berlin.de The CloudNets Network Virtualization Architecture #12

  5. 7, 80878111, 2007 Influence of cloud top

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 7, 8087­8111, 2007 Influence of cloud top variability on radiative transfer Richter, Barfus top variability from radar measurements on 3-D radiative transfer F. Richter 1 , K. Barfus 1 , F. H.richter@awi.de) 8087 #12;ACPD 7, 8087­8111, 2007 Influence of cloud top variability on radiative transfer Richter

  6. Verifiable Resource Accounting for Cloud Computing Services

    E-Print Network [OSTI]

    Maniatis, Petros

    Verifiable Resource Accounting for Cloud Computing Services Vyas Sekar Intel Labs Petros Maniatis Intel Labs ABSTRACT Cloud computing offers users the potential to reduce operating and capital expenses cause providers to incorrectly attribute resource consumption to customers or im- plicitly bear

  7. Compression of Antiproton Clouds for Antihydrogen Trapping

    E-Print Network [OSTI]

    G. B. Andresen; W. Bertsche; P. D. Bowe; C. C. Bray; E. Butler; C. L. Cesar; S. Chapman; M. Charlton; J. Fajans; M. C. Fujiwara; R. Funakoshi; D. R. Gill; J. S. Hangst; W. N. Hardy; R. S. Hayano; M. E. Hayden; R. Hydomako; M. J. Jenkins; L. V. Jorgensen; L. Kurchaninov; R. Lambo; N. Madsen; P. Nolan; K. Olchanski; A. Olin; A. Povilus; P. Pusa; F. Robicheaux; E. Sarid; S. Seif El Nasr; D. M. Silveira; J. W. Storey; R. I. Thompson; D. P. van der Werf; J. S. Wurtele; Y. Yamazaki

    2008-06-30T23:59:59.000Z

    Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report the first detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile and its relation to that of the electron plasma.

  8. CLOUD COMPUTING INFRASTRUCTURE AND OPERATIONS PROGRAM

    E-Print Network [OSTI]

    Schaefer, Marcus

    theory and best practices, Cloud operations analytics, globally-responsive architecture, functional of Cloud infrastructures Best practices for building Infrastructure as a Service (IaaS), with an emphasis-distributed, responsive web application capable of massive scale with operational performance metrics. DePaul University

  9. Privacy in the Cloud Computing Era

    E-Print Network [OSTI]

    Narasayya, Vivek

    Privacy in the Cloud Computing Era A Microsoft Perspective November 2009 #12;The information information presented after the date of publication. This white paper is for informational purposes only. Microsoft Corp. · One Microsoft Way · Redmond, WA 98052-6399 · USA #12;Contents Cloud Computing and Privacy

  10. Cloud-integrated Storage What & Why 2StoreSimple White Pages: Shoring Up Infrastructure Weaknesses with Cloud Storage

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    Cloud-integrated Storage ­ What & Why #12;2StoreSimple White Pages: Shoring Up Infrastructure Weaknesses with Cloud Storage Overview..........................................................................................................3 Enterprise-class storage platform

  11. Rigid-body rotation of an electron cloud in divergent magnetic fields A. Fruchtman,1

    E-Print Network [OSTI]

    and N. J. Fisch2 1 H.I.T.--Holon Institute of Technology, Holon 58102, Israel 2 Princeton Plasma Physics

  12. Metallophthalocyanine thin films : structure and physical properties

    E-Print Network [OSTI]

    Colesniuc, Corneliu Nicolai

    2011-01-01T23:59:59.000Z

    in copper phthalocyanine thin film transistors”, J. Park, J.free phthalocyanine thin films”, F. I. Bohrer, A. Sharoni,copper phthalocyanine thin-film transistors”, R. D. Yang, J.

  13. Doping in Zinc Oxide Thin Films

    E-Print Network [OSTI]

    Yang, Zheng

    2009-01-01T23:59:59.000Z

    properties of ZnO:Mn thin films were comprehensivelyd exchange in ZnO:Mn DMS thin films. Both the ordinary andspin-obital ferromagnetism in ZnO:Mn DMS thin films.

  14. Thin film ion conducting coating

    DOE Patents [OSTI]

    Goldner, Ronald B. (Lexington, MA); Haas, Terry (Sudbury, MA); Wong, Kwok-Keung (Watertown, MA); Seward, George (Arlington, MA)

    1989-01-01T23:59:59.000Z

    Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

  15. Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t zManufacturing:DOE NationalCommitteeof3

  16. Manipulation of the magnetron orbit of a positron cloud in a Penning trap

    SciTech Connect (OSTI)

    Mortensen, T.; Deller, A.; Isaac, C. A.; Werf, D. P. van der; Charlton, M. [Department of Physics, College of Science, Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom); Machacek, J. R. [Centre for Matter-Antimatter Studies, Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia)

    2013-01-15T23:59:59.000Z

    We describe a simple and versatile method to manipulate the amplitude of the magnetron orbit of ions stored in a Penning trap, applied here to a cloud of low energy positrons. By applying a pulsed voltage to a split electrode in the trap, which is normally used for rotating wall compression of the particles, the size of the magnetron orbit can be changed at will. The modified orbit has been shown to be stable for many magnetron periods. The technique could find use in applications which require off-axis ejection of particles, for instance in the filling of arrays of traps for multicell positron storage.

  17. Gravitational duality and rotating solutions

    SciTech Connect (OSTI)

    Argurio, Riccardo; Dehouck, Francois [Physique Theorique et Mathematique and International Solvay Institutes, Universite Libre de Bruxelles, C.P. 231, 1050 Bruxelles (Belgium)

    2010-03-15T23:59:59.000Z

    We study how gravitational duality acts on rotating solutions, using the Kerr-NUT black hole as an example. After properly reconsidering how to take into account both electric (i.e. masslike) and magnetic (i.e. NUT-like) sources in the equations of general relativity, we propose a set of definitions for the dual Lorentz charges. We then show that the Kerr-NUT solution has nontrivial such charges. Further, we clarify in which respect Kerr's source can be seen as a mass M with a dipole of NUT charges.

  18. Dual rotating shaft seal apparatus

    DOE Patents [OSTI]

    Griggs, J.E.; Newman, H.J.

    1983-06-16T23:59:59.000Z

    The report is directed to apparatus suitable for transferring torque and rotary motion through a wall in a manner which is essentially gas impermeable. The apparatus can be used for pressurizing, agitating, and mixing fluids and features two ferrofluidic, i.e., ferrometic seals. Each seal is disposed on one of two supported shafts and each shaft is operably connected at one end to a gear mechanism and at its other end to an adjustable coupling means which is to be connected to a rotatable shaft extending through a wall through which torque and rotary motion are to be transferred.

  19. Magnetic Fields in Molecular Cloud Cores

    E-Print Network [OSTI]

    Shantanu Basu

    2004-10-22T23:59:59.000Z

    Observations of magnetic field strengths imply that molecular cloud fragments are individually close to being in a magnetically critical state, even though both magnetic field and column density measurements range over two orders of magnitude. The turbulent pressure also approximately balances the self-gravitational pressure. These results together mean that the one-dimensional velocity dispersion $\\sigv$ is proportional to the mean \\Alf speed of a cloud $\\va$. Global models of MHD turbulence in a molecular cloud show that this correlation is naturally satisfied for a range of different driving strengths of the turbulence. For example, an increase of turbulent driving causes a cloud expansion which also increases $\\va$. Clouds are in a time averaged balance but exhibit large oscillatory motions, particularly in their outer rarefied regions. We also discuss models of gravitational fragmentation in a sheet-like region in which turbulence has already dissipated, including the effects of magnetic fields and ion-neutral friction. Clouds with near-critical mass-to-flux ratios lead to subsonic infall within cores, consistent with some recent observations of motions in starless cores. Conversely, significantly supercritical clouds are expected to produce extended supersonic infall.

  20. Clouds and the Faint Young Sun Paradox

    E-Print Network [OSTI]

    Goldblatt, Colin

    2011-01-01T23:59:59.000Z

    We investigate the role which clouds could play in resolving the Faint Young Sun Paradox (FYSP). Lower solar luminosity in the past means that less energy was absorbed on Earth (a forcing of -50 Wm-2 during the late Archean), but geological evidence points to the Earth being at least as warm as it is today, with only very occasional glaciations. We perform radiative calculations on a single global mean atmospheric column. We select a nominal set of three layered, randomly overlapping clouds, which are both consistent with observed cloud climatologies and reproduce the observed global mean energy budget of Earth. By varying the fraction, thickness, height and particle size of these clouds we conduct a wide exploration of how changed clouds could affect climate, thus constraining how clouds could contribute to resolving the FYSP. Low clouds reflect sunlight but have little greenhouse effect. Removing them entirely gives a~forcing of +25 Wm-2 whilst more modest reduction in their efficacy gives a forcing of +10 ...

  1. ARM - Midlatitude Continental Convective Clouds

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike; Bartholomew, Mary Jane; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

    Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.

  2. Securely Managing Cryptographic Keys used within a Cloud Environment

    E-Print Network [OSTI]

    , Co-tenancy, Distributed Management Cryptography essential to secure cloud operations Use of sound;Page 3 Cloud Service Provider (CSP) - Models Cloud Service Models Software as a Service (Saa CSP know who I am? How is my connection to cloud components protected? Administration Who

  3. Proximity Graphs for Defining Surfaces over Point Clouds

    E-Print Network [OSTI]

    Behnke, Sven

    over Point Clouds Gabriel Zachmann University of Bonn Germany Jan Klein University of Paderborn Germany

  4. The aerosol direct radiative effect (DRE) over clouds is quantified using measured reflectance spectra of UV-absorbing aerosol polluted cloud scenes and modeled reflectance spectra of unpolluted cloud scenes. The cloud reflectance spectra are read from

    E-Print Network [OSTI]

    Graaf, Martin de

    distribution of clouds and aerosols along the white CALIPSO track in Fig.1b is shown in Fig. 2. The distanceThe aerosol direct radiative effect (DRE) over clouds is quantified using measured reflectance spectra of UV-absorbing aerosol polluted cloud scenes and modeled reflectance spectra of unpolluted cloud

  5. CLOUD PHYSICS From aerosol-limited to invigoration

    E-Print Network [OSTI]

    Napp, Nils

    CLOUD PHYSICS From aerosol-limited to invigoration of warm convective clouds Ilan Koren,1 * Guy Dagan,1 Orit Altaratz1 Among all cloud-aerosol interactions, the invigoration effect is the most elusive. Most of the studies that do suggest this effect link it to deep convective clouds with a warm base

  6. Fault-Tolerant and Reliable Computation in Cloud Computing

    E-Print Network [OSTI]

    Deng, Jing

    Fault-Tolerant and Reliable Computation in Cloud Computing Jing Deng Scott C.-H. Huang Yunghsiang S, Taipei, 106 Taiwan. § Intelligent Automation, Inc., Rockville, MD, USA. Abstract-- Cloud computing of scientific computation in cloud computing. We investigate a cloud selection strategy to decompose the matrix

  7. How Mobility Increases Mobile Cloud Computing Processing Capacity

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    How Mobility Increases Mobile Cloud Computing Processing Capacity Anh-Dung Nguyen, Patrick S--In this paper, we address a important and still unanswered question in mobile cloud computing "how mobility the resilience of mobile cloud computing services. Keywords--Mobile cloud computing, mobility, quality of service

  8. IBM Tivoli Cloud Computing: Technical Enablement for IBM Business Partners

    E-Print Network [OSTI]

    IBM Tivoli Cloud Computing: Technical Enablement for IBM Business Partners Cloud computing is a key part of driving greater alignment between business and IT. IBM Service Management and Cloud Computing to the IBM technical community. IBM Cloud Computing Business Partner Technical Enablement Offering

  9. Cloud Condensation Nuclei (CCN) Analysis of Biogenic Secondary Organic Aerosol

    E-Print Network [OSTI]

    Collins, Gary S.

    Cloud Condensation Nuclei (CCN) Analysis of Biogenic Secondary Organic Aerosol Rachel L. Atlas1' gas-phase emissions and the aerosols they form (figure 6), including a cloud condensation nuclei Cloud condensation nuclei (CCN) are particles which water vapor condenses onto to form cloud droplets

  10. Inertial measurement unit using rotatable MEMS sensors

    DOE Patents [OSTI]

    Kohler, Stewart M.; Allen, James J.

    2006-06-27T23:59:59.000Z

    A MEM inertial sensor (e.g. accelerometer, gyroscope) having integral rotational means for providing static and dynamic bias compensation is disclosed. A bias compensated MEM inertial sensor is described comprising a MEM inertial sense element disposed on a rotatable MEM stage. A MEM actuator for drives the rotation of the stage between at least two predetermined rotational positions. Measuring and comparing the output of the MEM inertial sensor in the at least two rotational positions allows, for both static and dynamic bias compensation in inertial calculations based on the sensor's output. An inertial measurement unit (IMU) comprising a plurality of independently rotatable MEM inertial sensors and methods for making bias compensated inertial measurements are disclosed.

  11. Inertial measurement unit using rotatable MEMS sensors

    DOE Patents [OSTI]

    Kohler, Stewart M. (Albuquerque, NM); Allen, James J. (Albuquerque, NM)

    2007-05-01T23:59:59.000Z

    A MEM inertial sensor (e.g. accelerometer, gyroscope) having integral rotational means for providing static and dynamic bias compensation is disclosed. A bias compensated MEM inertial sensor is described comprising a MEM inertial sense element disposed on a rotatable MEM stage. A MEM actuator drives the rotation of the stage between at least two predetermined rotational positions. Measuring and comparing the output of the MEM inertial sensor in the at least two rotational positions allows for both static and dynamic bias compensation in inertial calculations based on the sensor's output. An inertial measurement unit (IMU) comprising a plurality of independently rotatable MEM inertial sensors and methods for making bias compensated inertial measurements are disclosed.

  12. Contained Modes In Mirrors With Sheared Rotation

    SciTech Connect (OSTI)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2010-10-08T23:59:59.000Z

    In mirrors with E × B rotation, a fixed azimuthal perturbation in the lab frame can appear as a wave in the rotating frame. If the rotation frequency varies with radius, the plasma-frame wave frequency will also vary radially due to the Doppler shift. A wave that propagates in the high rotation plasma region might therefore be evanescent at the plasma edge. This can lead to radially localized Alfven eigenmodes with high azimuthal mode numbers. Contained Alfven modes are found both for peaked and non-peaked rotation profiles. These modes might be useful for alpha channeling or ion heating, as the high azimuthal wave number allows the plasma wave frequency in the rotating frame to exceed the ion cyclotron frequency. __________________________________________________

  13. Parameterizing Size Distribution in Ice Clouds

    SciTech Connect (OSTI)

    DeSlover, Daniel; Mitchell, David L.

    2009-09-25T23:59:59.000Z

    PARAMETERIZING SIZE DISTRIBUTIONS IN ICE CLOUDS David L. Mitchell and Daniel H. DeSlover ABSTRACT An outstanding problem that contributes considerable uncertainty to Global Climate Model (GCM) predictions of future climate is the characterization of ice particle sizes in cirrus clouds. Recent parameterizations of ice cloud effective diameter differ by a factor of three, which, for overcast conditions, often translate to changes in outgoing longwave radiation (OLR) of 55 W m-2 or more. Much of this uncertainty in cirrus particle sizes is related to the problem of ice particle shattering during in situ sampling of the ice particle size distribution (PSD). Ice particles often shatter into many smaller ice fragments upon collision with the rim of the probe inlet tube. These small ice artifacts are counted as real ice crystals, resulting in anomalously high concentrations of small ice crystals (D < 100 µm) and underestimates of the mean and effective size of the PSD. Half of the cirrus cloud optical depth calculated from these in situ measurements can be due to this shattering phenomenon. Another challenge is the determination of ice and liquid water amounts in mixed phase clouds. Mixed phase clouds in the Arctic contain mostly liquid water, and the presence of ice is important for determining their lifecycle. Colder high clouds between -20 and -36 oC may also be mixed phase but in this case their condensate is mostly ice with low levels of liquid water. Rather than affecting their lifecycle, the presence of liquid dramatically affects the cloud optical properties, which affects cloud-climate feedback processes in GCMs. This project has made advancements in solving both of these problems. Regarding the first problem, PSD in ice clouds are uncertain due to the inability to reliably measure the concentrations of the smallest crystals (D < 100 µm), known as the “small mode”. Rather than using in situ probe measurements aboard aircraft, we employed a treatment of ice cloud optical properties formulated in terms of PSD parameters in combination with remote measurements of thermal radiances to characterize the small mode. This is possible since the absorption efficiency (Qabs) of small mode crystals is larger at 12 µm wavelength relative to 11 µm wavelength due to the process of wave resonance or photon tunneling more active at 12 µm. This makes the 12/11 µm absorption optical depth ratio (or equivalently the 12/11 µm Qabs ratio) a means for detecting the relative concentration of small ice particles in cirrus. Using this principle, this project tested and developed PSD schemes that can help characterize cirrus clouds at each of the three ARM sites: SGP, NSA and TWP. This was the main effort of this project. These PSD schemes and ice sedimentation velocities predicted from them have been used to test the new cirrus microphysics parameterization in the GCM known as the Community Climate Systems Model (CCSM) as part of an ongoing collaboration with NCAR. Regarding the second problem, we developed and did preliminary testing on a passive thermal method for retrieving the total water path (TWP) of Arctic mixed phase clouds where TWPs are often in the range of 20 to 130 g m-2 (difficult for microwave radiometers to accurately measure). We also developed a new radar method for retrieving the cloud ice water content (IWC), which can be vertically integrated to yield the ice water path (IWP). These techniques were combined to determine the IWP and liquid water path (LWP) in Arctic clouds, and hence the fraction of ice and liquid water. We have tested this approach using a case study from the ARM field campaign called M-PACE (Mixed-Phase Arctic Cloud Experiment). This research led to a new satellite remote sensing method that appears promising for detecting low levels of liquid water in high clouds typically between -20 and -36 oC. We hope to develop this method in future research.

  14. The Experimental Cloud Lidar Pilot Study (ECLIPS) for cloud-radiation research

    SciTech Connect (OSTI)

    Platt, C.M.; Young, S.A. [Division of Atmospheric Research, Victoria (Australia)] [Division of Atmospheric Research, Victoria (Australia); Carswell, A.I.; Pal, S.R. [York Univ., North York, Ontario (Canada)] [York Univ., North York, Ontario (Canada); McCormick, M.P.; Winker, D.M. [NASA Langley Research Center, Hampton, VA (United States)] [NASA Langley Research Center, Hampton, VA (United States); DelGuasta, M.; Stefanutti, L. [Institute Ricerca Onde Elettromagnetiche, Florence (Italy)] [Institute Ricerca Onde Elettromagnetiche, Florence (Italy); Eberhard, W.L.; Hardesty, M. [NOAA Environmental Technology Lab., Boulder, CO (United States)] [and others] [NOAA Environmental Technology Lab., Boulder, CO (United States); and others

    1994-09-01T23:59:59.000Z

    The Experimental Cloud Lidar Pilot Study (ECLIPS) was initiated to obtain statistics on cloud-base height, extinction, optical depth, cloud brokenness, and surface fluxes. Two observational phases have taken place, in October-December 1989 and April-July 1991, with intensive 30-day periods selected within the two time intervals. Data are being archived at NASA Langley Research Center, and, once there, are readily available to the international scientific community. 43 refs., 13 figs., 4 tabs.

  15. NIST Cloud Computing Strategy working paper, April 2011 1 of 25 NIST Strategy to build a USG Cloud Computing

    E-Print Network [OSTI]

    NIST Cloud Computing Strategy working paper, April 2011 1 of 25 NIST Strategy to build a USG Cloud of United States Government (USG) secure and effective adoption of the Cloud Computing2 model to reduce costs and improve services. The working document describes the NIST Cloud Computing program efforts

  16. Generated using version 3.0 of the official AMS LATEX template Computing and Partitioning Cloud Feedbacks using Cloud1

    E-Print Network [OSTI]

    Hartmann, Dennis

    Generated using version 3.0 of the official AMS LATEX template Computing and Partitioning Cloud Feedbacks using Cloud1 Property Histograms.2 Part II: Attribution to the Nature of Cloud Changes3 Mark D-103 Livermore, CA 94551 E-mail: zelinka1@llnl.gov 1 #12;ABSTRACT7 Cloud radiative kernels

  17. IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 1 Cloud Federations in the Sky: Formation Game

    E-Print Network [OSTI]

    Grosu, Daniel

    IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 1 Cloud Federations in the Sky federation, virtual machine, game theory. 1 INTRODUCTION CLOUDS are large-scale distributed computing sys (VM) instances. Cloud computing systems' ability to provide on de- mand access to always-on computing

  18. The Impact of Rotation on Cluster Dynamics

    E-Print Network [OSTI]

    Christian Boily

    2000-02-23T23:59:59.000Z

    The evolution of rotating, isolated clusters of stars up to core-collapse is investigated with n-body numerical codes. The simulations start off from axisymmetric generalisations of King profiles, with added global angular momentum. In this contribution I report on results obtained for two sets of single-mass cluster simulations. These confirm the more rapid evolution of even mildly-rotating clusters. A model is presented with rotational energy comparable to omega-Centauri's; it reaches core-collapse in less than half the time required for non-rotating model clusters.

  19. Development of advanced cloud parameterizations to examine air quality, cloud properties, and cloud-radiation feedback in mesoscale models

    SciTech Connect (OSTI)

    Lee, In Young

    1993-09-01T23:59:59.000Z

    The distribution of atmospheric pollutants is governed by dynamic processes that create the general conditions for transport and mixing, by microphysical processes that control the evolution of aerosol and cloud particles, and by chemical processes that transform chemical species and form aerosols. Pollutants emitted into the air can undergo homogeneous gas reactions to create a suitable environment for the production by heterogeneous nucleation of embryos composed of a few molecules. The physicochemical properties of preexisting aerosols interact with newly produced embryos to evolve by heteromolecular diffusion and coagulation. Hygroscopic particles wig serve as effective cloud condensation nuclei (CCN), while hydrophobic particles will serve as effective ice-forming nuclei. Clouds form initially by condensation of water vapor on CCN and evolve in a vapor-liquid-solid system by deposition, sublimation, freezing, melting, coagulation, and breakup. Gases and aerosols that enter the clouds undergo aqueous chemical processes and may acidity hydrometer particles. Calculations for solar and longwave radiation fluxes depend on how the respective spectra are modified by absorbers such as H{sub 2}O, CO{sub 2}, O{sub 3}, CH{sub 4}, N{sub 2}O, chlorofruorocarbons, and aerosols. However, the flux calculations are more complicated for cloudy skies, because the cloud optical properties are not well defined. In this paper, key processes such as tropospheric chemistry, cloud microphysics parameterizations, and radiation schemes are reviewed in terms of physicochemical processes occurring, and recommendations are made for the development of advanced modules applicable to mesoscale models.

  20. Pre-Cloud Aerosol, Cloud Droplet Concentration, and Cloud Condensation Nuclei from the VAMOS Ocean-Cloud-Atmosphere Land Study (VOCALS) Field Campaign First Quarter 2010 ASR Program Metric Report

    SciTech Connect (OSTI)

    Kleinman, LI; Springston, SR; Daum, PH; Lee, Y-N; Sedlacek, AJ; Senum, G; Wang, J

    2011-08-31T23:59:59.000Z

    In this, the first of a series of Program Metric Reports, we (1) describe archived data from the DOE G-1 aircraft, (2) illustrate several relations between sub-cloud aerosol, CCN, and cloud droplets pertinent to determining the effects of pollutant sources on cloud properties, and (3) post to the data archive an Excel spreadsheet that contains cloud and corresponding sub-cloud data.

  1. Control of molecular rotation in the limit of extreme rotational excitation

    E-Print Network [OSTI]

    Milner, V

    2015-01-01T23:59:59.000Z

    Laser control of molecular rotation is an area of active research. A number of recent studies has aimed at expanding the reach of rotational control to extreme, previously inaccessible rotational states, as well as controlling the directionality of molecular rotation. Dense ensembles of molecules undergoing ultrafast uni-directional rotation, known as molecular superrotors, are anticipated to exhibit unique properties, from spatially anisotropic diffusion and vortex formation to the creation of powerful acoustic waves and tuneable THz radiation. Here we describe our recent progress in controlling molecular rotation in the regime of high rotational excitation. We review two experimental techniques of producing uni-directional rotational wave packets with a "chiral train" of femtosecond pulses and an "optical centrifuge". Three complementary detection methods, enabling the direct observation, characterization and control of the superrotor states, are outlined: the one based on coherent Raman scattering, and two...

  2. ARM Cloud Retrieval Ensemble Data Set (ACRED)

    SciTech Connect (OSTI)

    Zhao, C; Xie, S; Klein, SA; McCoy, R; Comstock, JM; Delanoë, J; Deng, M; Dunn, M; Hogan, RJ; Jensen, MP; Mace, GG; McFarlane, SA; O’Connor, EJ; Protat, A; Shupe, MD; Turner, D; Wang, Z

    2011-09-12T23:59:59.000Z

    This document describes a new Atmospheric Radiation Measurement (ARM) data set, the ARM Cloud Retrieval Ensemble Data Set (ACRED), which is created by assembling nine existing ground-based cloud retrievals of ARM measurements from different cloud retrieval algorithms. The current version of ACRED includes an hourly average of nine ground-based retrievals with vertical resolution of 45 m for 512 layers. The techniques used for the nine cloud retrievals are briefly described in this document. This document also outlines the ACRED data availability, variables, and the nine retrieval products. Technical details about the generation of ACRED, such as the methods used for time average and vertical re-grid, are also provided.

  3. EVENT CLOUDS : lighter than air architectural structures

    E-Print Network [OSTI]

    Peydro Duclos, Ignacio

    2014-01-01T23:59:59.000Z

    EVENT CLOUD is a versatile covering system that allows events to happen independently to weather conditions. It consists of a lighter than air pneumatic structure, filled either with helium or hot air, that covers spaces ...

  4. Uranus at equinox: Cloud morphology and dynamics

    E-Print Network [OSTI]

    Sromovsky, Lawrence; Hammel, Heidi; Ahue, William; de Pater, Imke; Rages, Kathy; Showalter, Mark; van Dam, Marcos

    2015-01-01T23:59:59.000Z

    As the 7 December 2007 equinox of Uranus approached, ring and atmosphere observers produced a substantial collection of observations using the 10-m Keck telescope and the Hubble Space Telescope. Those spanning the period from 7 June 2007 through 9 September 2007 we used to identify and track cloud features, determine atmospheric motions, characterize cloud morphology and dynamics, and define changes in atmospheric band structure. We confirmed the existence of the suspected northern hemisphere prograde jet, locating its peak near 58 N, and extended wind speed measurements to 73 N. For 28 cloud features we obtained extremely high wind-speed accuracy through extended tracking times. The new results confirm a small N-S asymmetry in the zonal wind profile, and the lack of any change in the southern hemisphere between 1986 (near solstice) and 2007 (near equinox) suggests that the asymmetry may be permanent rather than seasonally reversing. In the 2007 images we found two prominent groups of discrete cloud features ...

  5. Enabling Scalable Cloud Computing | Argonne Leadership Computing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enabling Scalable Cloud Computing Event Sponsor: Mathematics and Computer Science Division Start Date: Apr 9 2015 - 11:00am BuildingRoom: Building 240Room 4301 Location: Argonne...

  6. Factors shaping the future of Cloud Computing

    E-Print Network [OSTI]

    Francis, Steven (Steven Douglas)

    2011-01-01T23:59:59.000Z

    Many different forces are currently shaping the future of the Cloud Computing Market. End user demand and end user investment in existing technology are important drivers. Vendor innovation and competitive strategy are ...

  7. QER- Comment of Cloud Peak Energy Inc

    Broader source: Energy.gov [DOE]

    Dear Ms Pickett Please find attached comments from Cloud Peak Energy as input to the Department of Energy’s Quadrennial Energy Review. If possible I would appreciate a confirmation that this email has been received Thank you.

  8. HPC CLOUD APPLIED TO LATTICE OPTIMIZATION

    SciTech Connect (OSTI)

    Sun, Changchun; Nishimura, Hiroshi; James, Susan; Song, Kai; Muriki, Krishna; Qin, Yong

    2011-03-18T23:59:59.000Z

    As Cloud services gain in popularity for enterprise use, vendors are now turning their focus towards providing cloud services suitable for scientific computing. Recently, Amazon Elastic Compute Cloud (EC2) introduced the new Cluster Compute Instances (CCI), a new instance type specifically designed for High Performance Computing (HPC) applications. At Berkeley Lab, the physicists at the Advanced Light Source (ALS) have been running Lattice Optimization on a local cluster, but the queue wait time and the flexibility to request compute resources when needed are not ideal for rapid development work. To explore alternatives, for the first time we investigate running the Lattice Optimization application on Amazon's new CCI to demonstrate the feasibility and trade-offs of using public cloud services for science.

  9. Exploiting weather forecast data for cloud detection 

    E-Print Network [OSTI]

    Mackie, Shona

    2009-01-01T23:59:59.000Z

    Accurate, fast detection of clouds in satellite imagery has many applications, for example Numerical Weather Prediction (NWP) and climate studies of both the atmosphere and of the Earth’s surface temperature. Most ...

  10. Aircraft induced cirrus cloud First year report

    E-Print Network [OSTI]

    Oxford, University of

    and coagulation. A resulting size distribution of ice crystals is deemed indicative of contrail cirrus cloud model operates, simulating the life cycle of aerosol and ice particles: nucleation, condensation

  11. Ignition of Aluminum Particles and Clouds

    SciTech Connect (OSTI)

    Kuhl, A L; Boiko, V M

    2010-04-07T23:59:59.000Z

    Here we review experimental data and models of the ignition of aluminum (Al) particles and clouds in explosion fields. The review considers: (i) ignition temperatures measured for single Al particles in torch experiments; (ii) thermal explosion models of the ignition of single Al particles; and (iii) the unsteady ignition Al particles clouds in reflected shock environments. These are used to develop an empirical ignition model appropriate for numerical simulations of Al particle combustion in shock dispersed fuel explosions.

  12. The arc cloud complex: a case study

    E-Print Network [OSTI]

    Miller, Robert Loren

    1984-01-01T23:59:59.000Z

    THE ARC CLOUD COMPLEX: A CASE STUDY A Thesis by ROBERT LOREN MILLER Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1984 Major Subject...: Meteorology THE ARC CLOUD COMPLEX; A CASE STUDY A Thesis by ROBERT LOREN MILLER Approved as to style and content by: Kenneth C. Brundidge (Chairman of Committee) Walter K. Henry (Member) Marshall ~ Mcparland (Member) James R. Scog s (Head...

  13. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  14. Vertically Aligned Nanocomposite Thin Films

    E-Print Network [OSTI]

    Bi, Zhenxing

    2012-07-16T23:59:59.000Z

    and epitaxial growth ability on given substrates. In the present work, we investigated unique epitaxial two-phase VAN (BiFeO3)x:(Sm2O3)1-x and (La0.7Sr0.3MnO3)x:(Mn3O4)1-x thin film systems by pulsed laser deposition. These VAN thin films exhibit a highly...

  15. The Energy Efficiency Potential of Cloud-Based Software: A U.S. Case Study

    E-Print Network [OSTI]

    Masanet, Eric

    2014-01-01T23:59:59.000Z

    Technology:  Can  Cloud  Computing  Enable  Carbon  environment/resources/Can_Cloud_Computing_Enable_Carbon_AbatTechnology:  Can  Cloud  Computing  Enable  Carbon  

  16. Spontaneous generation of rotation in tokamak plasmas

    SciTech Connect (OSTI)

    Parra Diaz, Felix [Oxford University] [Oxford University

    2013-12-24T23:59:59.000Z

    Three different aspects of intrinsic rotation have been treated. i) A new, first principles model for intrinsic rotation [F.I. Parra, M. Barnes and P.J. Catto, Nucl. Fusion 51, 113001 (2011)] has been implemented in the gyrokinetic code GS2. The results obtained with the code are consistent with several experimental observations, namely the rotation peaking observed after an L-H transition, the rotation reversal observed in Ohmic plasmas, and the change in rotation that follows Lower Hybrid wave injection. ii) The model in [F.I. Parra, M. Barnes and P.J. Catto, Nucl. Fusion 51, 113001 (2011)] has several simplifying assumptions that seem to be satisfied in most tokamaks. To check the importance of these hypotheses, first principles equations that do not rely on these simplifying assumptions have been derived, and a version of these new equations has been implemented in GS2 as well. iii) A tokamak cross-section that drives large intrinsic rotation has been proposed for future large tokamaks. In large tokamaks, intrinsic rotation is expected to be very small unless some up-down asymmetry is introduced. The research conducted under this contract indicates that tilted ellipticity is the most efficient way to drive intrinsic rotation.

  17. Experimental and analytical study of rotating cavitation

    SciTech Connect (OSTI)

    Kamijo, Kenjiro; Shimura, Takashi; Tsujimoto, Yoshinobu [National Aerospace Lab., Miyagi (Japan). Kakuda Research Center

    1994-12-31T23:59:59.000Z

    This paper describes experimental and analytical results of rotating cavitation. There are four major sections in this paper. The first section presents the main characteristics of rotating cavitation which was found in the inducer test using a water tunnel. The second section describes the rotating cavitation which occurred in the development test of an LE-7 liquid oxygen pump for the H-II rocket. Also described in this section is how the rotating cavitation was suppressed. The rotating cavitation was the cause of both super synchronous shaft vibration and an unstable head coefficient curve. The third section presents how the theory of rotating cavitation was developed. The final section shows the measured cavitation compliance and mass flow gain factor of the LE-7 pump inducer for comparison of the experimental and analytical results of the rotating cavitation of the LE-7 pump inducer. Almost all the information presented in this paper has already been reported by Kamijo et al. (1977, 1980, 1993, 1993) and by Shimura (1993). In the present paper, the authors attempt to combine and give a clear overview of the experimental and analytical results described in the previous papers to systematically show their experience and findings on rotating cavitation.

  18. FIRST YEAR CLINIC ROTATIONS Inpatient unit

    E-Print Network [OSTI]

    Chapman, Michael S.

    FIRST YEAR CLINIC ROTATIONS Inpatient unit The fellow is responsible for the care and supervision weekly. Pediatric Hematology-Oncology Clinic The fellow on the PHO clinic rotation will be scheduled to evaluate scheduled clinic and infusion center patients along with an attending provider. Patients seen

  19. Computational Methods for High-Dimensional Rotations

    E-Print Network [OSTI]

    Buja, Andreas

    . To be useful, virtual rotations need to be under interactive user control, and they need to be animated. We scatters in virtual 3-D space. Although not obvivous, three-dimensional data rotations can be extended is due to the power of human 3-D perception and the natural controls they afford. To perform 3-D

  20. Holographic Superconductors in a Rotating Spacetime

    E-Print Network [OSTI]

    Kai Lin; Elcio Abdalla

    2014-10-17T23:59:59.000Z

    We consider holographic superconductors in a rotating black string spacetime. In view of the mandatory introduction of the $A_\\varphi$ component of the vector potential we are left with three equations to be solved. Their solutions show that the effect of the rotating parameter $a$ influences the critical temperature $T_c$ and the conductivity $\\sigma$ in a simple but not trivial way.

  1. Comparison of Simulated and Observed Continental Tropical Anvil Clouds and Their Radiative Heating Profiles

    SciTech Connect (OSTI)

    Powell, Scott W.; Houze, R.; Kumar, Anil; McFarlane, Sally A.

    2012-09-06T23:59:59.000Z

    Vertically pointing millimeter-wavelength radar observations of anvil clouds extending from mesoscale convective systems (MCSs) that pass over an Atmospheric Radiation Measurement Program (ARM) field site in Niamey, Niger, are compared to anvil structures generated by the Weather Research and Forecasting (WRF) mesoscale model using six different microphysical schemes. The radar data provide the statistical distribution of the radar reflectivity values as a function of height and anvil thickness. These statistics are compared to the statistics of the modeled anvil cloud reflectivity at all altitudes. Requiring the model to be statistically accurate at all altitudes is a stringent test of the model performance. The typical vertical profile of radiative heating in the anvil clouds is computed from the radar observations. Variability of anvil structures from the different microphysical schemes provides an estimate of the inherent uncertainty in anvil radiative heating profiles. All schemes underestimate the optical thickness of thin anvils and cirrus, resulting in a bias of excessive net anvil heating in all of the simulations.

  2. A confirmed location in the Galactic halo for the high-velocity cloud 'chain A'

    E-Print Network [OSTI]

    Hugo van Woerden; Ulrich J. Schwarz; Reynier F. Peletier; Bart P. Wakker; Peter M. W. Kalberla

    1999-07-08T23:59:59.000Z

    The high-velocity clouds of atomic hydrogen, discovered about 35 years ago, have velocities inconsistent with simple Galactic rotation models that generally fit the stars and gas in the Milky Way disk. Their origins and role in Galactic evolution remain poorly understood, largely for lack of information on their distances. The high-velocity clouds might result from gas blown from the Milky Way disk into the halo by supernovae, in which case they would enrich the Galaxy with heavy elements as they fall back onto the disk. Alternatively, they may consist of metal-poor gas -- remnants of the era of galaxy formation, accreted by the Galaxy and reducing its metal abundance. Or they might be truly extragalactic objects in the Local Group of galaxies. Here we report a firm distance bracket for a large high-velocity cloud, Chain A, which places it in the Milky Way halo (2.5 to 7 kiloparsecs above the Galactic plane), rather than at an extragalactic distance, and constrains its gas mass to between 10^5 and 2 times 10^6 solar masses.

  3. A confirmed location in the Galactic halo for the high-velocity cloud "chain A"

    E-Print Network [OSTI]

    Van Woerden, H; Peletier, R F; Wakker, B P; Kalberla, P M W; Woerden, Hugo van; Schwarz, Ulrich J.; Peletier, Reynier F.; Wakker, Bart P.; Kalberla, Peter M.W.

    1999-01-01T23:59:59.000Z

    The high-velocity clouds of atomic hydrogen, discovered about 35 years ago, have velocities inconsistent with simple Galactic rotation models that generally fit the stars and gas in the Milky Way disk. Their origins and role in Galactic evolution remain poorly understood, largely for lack of information on their distances. The high-velocity clouds might result from gas blown from the Milky Way disk into the halo by supernovae, in which case they would enrich the Galaxy with heavy elements as they fall back onto the disk. Alternatively, they may consist of metal-poor gas -- remnants of the era of galaxy formation, accreted by the Galaxy and reducing its metal abundance. Or they might be truly extragalactic objects in the Local Group of galaxies. Here we report a firm distance bracket for a large high-velocity cloud, Chain A, which places it in the Milky Way halo (2.5 to 7 kiloparsecs above the Galactic plane), rather than at an extragalactic distance, and constrains its gas mass to between 10^5 and 2 times 10^...

  4. Modeling and control of thin film surface morphology: application to thin film solar cells

    E-Print Network [OSTI]

    Huang, Jianqiao

    2012-01-01T23:59:59.000Z

    of a p-i-n thin-film solar cell with front transparent con-for thin-film a-si:h solar cells. Progress in Photovoltaics,in thin-film silicon solar cells. Optics Communications,

  5. Fate of Acids in Clouds 1. Combination with bases dissolved in clouds: acids neutralized

    E-Print Network [OSTI]

    Schofield, Jeremy

    problems. E#11;ects of Acid Rain 1. Vegetation: SO 2 is toxic to plants #15; Leaves damaged below pH 3 rain { Athens and Rome cathedrals and statues: pollution leads to acid rain #15; SteelFate of Acids in Clouds 1. Combination with bases dissolved in clouds: acids neutralized NH 3 (g

  6. Cloud water contents and hydrometeor sizes during the FIRE Arctic Clouds Experiment

    E-Print Network [OSTI]

    Shupe, Matthew

    of radiometers at an ice station frozen into the drifting ice pack of the Arctic Ocean. The NASA/FIRE Arctic- dependent water contents and hydrometeor sizes for all-ice and all-liquid clouds. For the spring and early summer period, all-ice cloud retrievals showed a mean particle diameter of about 60 m and ice water

  7. X-1 ROEBELING ET AL.: SEVIRI & AVHRR CLOUD PROPERTY RETRIEVALS Cloud property retrievals for climate monitoring

    E-Print Network [OSTI]

    Stoffelen, Ad

    Generation (METEOSAT-8) and the Advanced Very High Resolution Radiometer (AVHRR) onboard the National Oceanic a consistent and high quality dataset of SEVIRI and AVHRR retrieved cloud properties for climate research studies. Clouds strongly modulate the energy balance of the Earth and its atmosphere through

  8. JP2.3 CLOUD RADIATIVE HEATING RATE FORCING FROM PROFILES OF RETRIEVED ARCTIC CLOUD MICROPHYSICS

    E-Print Network [OSTI]

    Shupe, Matthew

    JP2.3 CLOUD RADIATIVE HEATING RATE FORCING FROM PROFILES OF RETRIEVED ARCTIC CLOUD MICROPHYSICS surface. In 1997-1998, a large multi-agency effort made the Surface Heat Budget of the Arctic (SHEBA with the ice pack in the Beaufort and Chukchi Seas for one year. Surface-based remote sensors generated

  9. CloudCmp: Shopping for a Cloud Made Easy Ang Li Xiaowei Yang

    E-Print Network [OSTI]

    Zhang, Ming

    benchmarking results on three representative cloud providers. These results show that the performance and costs interfaces, and benchmarks the performance and costs of these services. It then expresses an applicationCmp and highlight the main technical chal- lenges. CloudCmp includes a set of benchmarking tools that compare

  10. Aircraft Observations of Sub-cloud Aerosol and Convective Cloud Physical Properties

    E-Print Network [OSTI]

    Axisa, Duncan

    2011-02-22T23:59:59.000Z

    This research focuses on aircraft observational studies of aerosol-cloud interactions in cumulus clouds. The data were collected in the summer of 2004, the spring of 2007 and the mid-winter and spring of 2008 in Texas, central Saudi Arabia...

  11. The Radiative, Cloud, and Thermodynamic Properties of the Major Tropical Western Pacific Cloud Regimes

    E-Print Network [OSTI]

    Jakob, Christian

    's surface. Other effects include the release and consumption of latent heat related to phase changes in the tropical western Pacific (TWP). A cluster analysis is applied to 2 yr of daytime-only data from the International Satellite Cloud Climatology Project (ISCCP) to identify four major cloud regimes in the TWP region

  12. Isolating signatures of major cloud-cloud collisions using position-velocity diagrams

    E-Print Network [OSTI]

    Haworth, T J; Fukui, Y; Torii, K; Dale, J E; Shima, K; Takahira, K; Habe, A; Hasegawa, K

    2015-01-01T23:59:59.000Z

    Collisions between giant molecular clouds are a potential mechanism for triggering the formation of massive stars, or even super star clusters. The trouble is identifying this process observationally and distinguishing it from other mechanisms. We produce synthetic position-velocity diagrams from models of: cloud-cloud collisions, non-interacting clouds along the line of sight, clouds with internal radiative feedback and a more complex cloud evolving in a galactic disc, to try and identify unique signatures of collision. We find that a broad bridge feature connecting two intensity peaks, spatially correlated but separated in velocity, is a signature of a high velocity cloud-cloud collision. We show that the broad bridge feature is resilient to the effects of radiative feedback, at least to around 2.5Myr after the formation of the first massive (ionising) star. However for a head on 10km/s collision we find that this will only be observable from 20-30 per cent of viewing angles. Such broad-bridge features have...

  13. Using a density-management design to develop thinning schedules for loblolly pine plantations. Forest Service research paper

    SciTech Connect (OSTI)

    Dean, T.J.; Baldwin, V.C.

    1993-08-01T23:59:59.000Z

    A method for developing thinning schedules using a density-management diagram is presented. A density-management diagram is a form of stocking chart based on patterns of natural stand development. The diagram allows rotation diameter and the upper and lower limits of growing stock to be easily transformed into before and after thinning densities. Site height lines on the diagram together with site index curves then allow the timing of thinnings to be specified. Intermediate and final harvest volumes are calculated with a growth and yield simulator capable of recovering the diameter distribution within the plantation. The development of thinning schedules by this method is illustrated for loblolly pine (Pinus taeda L.) plantations.

  14. Semiconductor sensor for optically measuring polarization rotation of optical wavefronts using rare earth iron garnets

    DOE Patents [OSTI]

    Duncan, Paul G. (8544 Electric Ave., Vienna, VA 22182)

    2002-01-01T23:59:59.000Z

    Described are the design of a rare earth iron garnet sensor element, optical methods of interrogating the sensor element, methods of coupling the optical sensor element to a waveguide, and an optical and electrical processing system for monitoring the polarization rotation of a linearly polarized wavefront undergoing external modulation due to magnetic field or electrical current fluctuation. The sensor element uses the Faraday effect, an intrinsic property of certain rare-earth iron garnet materials, to rotate the polarization state of light in the presence of a magnetic field. The sensor element may be coated with a thin-film mirror to effectively double the optical path length, providing twice the sensitivity for a given field strength or temperature change. A semiconductor sensor system using a rare earth iron garnet sensor element is described.

  15. Models of soft rotators and the theory of a harmonic rotator

    E-Print Network [OSTI]

    Zahid Zakir

    2012-12-12T23:59:59.000Z

    The states of a planar oscillator are separated to a vibrational mode, containing a zero-point energy, and a rotational mode without the zero-point energy, but having a conserved angular momentum. On the basis of the analysis of properties of models of rigid and semirigid rotators, the theory of soft rotators is formulated where the harmonic attractive force is balanced only by the centrifugal force. As examples a Coulomb rotator (the Bohr model) and a magneto-harmonic rotator (the Fock-Landau levels) are considered. Disappearance of the radial speed in the model of a magneto-harmonic rotator is taken as a defining property of a pure rotational motion in the harmonic potential. After the exception of energies of the magnetic and spin decompositions, specific to magnetic fields, one turns to a simple and general model of a planar harmonic rotator (circular oscillator without radial speed) where kinetic energy is reduced to the purely rotational energy. Energy levels of the harmonic rotator have the same frequency and are twice degenerate, the energy spectrum is equidistant. In the ground state there is no zero-point energy from rotational modes, and the zero-point energy of vibrational modes can be compensated by spin effects or symmetries of the system. In this case the operators of observables vanish the ground state, i.e. are "strongly" normally ordered. In a chain of harmonic rotators collective rotations around a common axis lead to transverse waves, at quantization of which there appear quasi-particles and holes carrying an angular momentum. In the chain SU(2) appears as a group of symmetry of a rotator.

  16. Pulsed electrodeposition of copper/nickel multilayers on a rotating disk electrode. 1: Galvanostatic deposition

    SciTech Connect (OSTI)

    Yang, C.C.; Cheh, H.Y. [Columbia Univ., New York, NY (United States). Dept. of Chemical Engineering and Applied Chemistry

    1995-09-01T23:59:59.000Z

    Thin Cu/Ni multilayers were deposited on a rotating disk electrode by square-wave galvanostatic pulses in one-third and full strength Watts nickel baths with 50 to 1,000 ppm Cu{sup 2+}. A theoretical model was developed to predict the copper content in the Ni layer. Factors affecting the deposition which include the mass-transfer rate, copper ion concentration, temperature, and applied current density were studied. The copper content in the Ni layer was analyzed experimentally by X-ray diffraction and potentiodynamic stripping. Theoretical predictions are in good agreement with experimental results.

  17. Flow Split Venturi, Axially-Rotated Valve

    DOE Patents [OSTI]

    Walrath, David E. (Laramie, WY); Lindberg, William R. (Laramie, WY); Burgess, Robert K. (Sheridan, WY); LaBelle, James (Murrieta, CA)

    2000-02-22T23:59:59.000Z

    The present invention provides an axially-rotated valve which permits increased flow rates and lower pressure drop (characterized by a lower loss coefficient) by using an axial eccentric split venturi with two portions where at least one portion is rotatable with respect to the other portion. The axially-rotated valve typically may be designed to avoid flow separation and/or cavitation at full flow under a variety of conditions. Similarly, the valve is designed, in some embodiments, to produce streamlined flow within the valve. An axially aligned outlet may also increase the flow efficiency. A typical cross section of the eccentric split venturi may be non-axisymmetric such as a semicircular cross section which may assist in both throttling capabilities and in maximum flow capacity using the design of the present invention. Such a design can include applications for freeze resistant axially-rotated valves and may be fully-opened and fully-closed in one-half of a complete rotation. An internal wide radius elbow typically connected to a rotatable portion of the eccentric venturi may assist in directing flow with lower friction losses. A valve actuator may actuate in an axial manner yet be uniquely located outside of the axial flow path to further reduce friction losses. A seal may be used between the two portions that may include a peripheral and diametrical seal in the same plane. A seal separator may increase the useful life of the seal between the fixed and rotatable portions.

  18. Triggered star formation in the Magellanic Clouds

    E-Print Network [OSTI]

    B. G. Elmegreen; J. Palous; Kenji Bekki

    2006-01-01T23:59:59.000Z

    Abstract. We discuss how tidal interaction between the Large Magellanic Cloud (LMC), the Small Magellanic Cloud (SMC), and the Galaxy triggers galaxy-wide star formation in the Clouds for the last ? 0.2 Gyr based on our chemodynamical simulations on the Clouds. Our simulations demonstrate that the tidal interaction induces the formation of asymmetric spiral arms with high gas densities and consequently triggers star formation within the arms in the LMC. Star formation rate in the present LMC is significantly enhanced just above the eastern edge of the LMC’s stellar bar owing to the tidal interaction. The location of the enhanced star formation is very similar to the observed location of 30 Doradus, which suggests that the formation of 30 Doradus is closely associated with the last Magellanic collision about 0.2 Gyr ago. The tidal interaction can dramatically compress gas initially within the outer part of the SMC so that new stars can be formed from the gas to become intergalactic young stars in the inter-Cloud region (e.g., the Magellanic Bridge). The metallicity distribution function of the newly formed stars in the Magellanic Bridge has a peak of [Fe/H] ? ?0.8, which is significantly lower than the stellar metallicity of the SMC.

  19. Study of Electron Cloud for MEIC

    SciTech Connect (OSTI)

    S. Ahmed, J.D. Dolph, G.A. Krafft, T. Satogata, B.C. Yunn

    2011-09-01T23:59:59.000Z

    The Medium Energy Electron Ion Collider (MEIC) at Jefferson Lab has been envisioned as a future high energy particle accelerator beyond the 12 GeV upgrade of the existing Continuous Electron Beam Accelerator Facility (CEBAF). Synchrotron radiation from the closely spaced proton bunches in MEIC can generate photoelectrons inside the vacuum chamber and cause secondary emission due to multipacting in the presence of beam's electric field. This phenomenon can lead to fast build up of electron density, known as electron cloud effect - resulting into beam instability coupled to multi-bunches in addition to a single bunch. For MEIC, the estimated threshold value of the electron-cloud density is approximately 5 x 10{sup 12} m{sup -3}. In this paper, we would like to report the self-consistent simulation studies of electron cloud formation for MEIC. The code has been benchmarked against the published data of electron cloud effects observed in LHC. Our first simulations predict increase of electron clouds with the increase of repetition rate. The detailed simulations are under progress and will be reported.

  20. Cloud Business Models and Sustainability: Impacts for businesses and e-Research Accepted by "Software Sustainability" Workshops

    E-Print Network [OSTI]

    by Mathematica. This leads to development of Cloud Sustainability Framework (CSF), which measures cloud business

  1. The multi-filter rotating shadowband radiometer (MFRSR) - precision infrared radiometer (PIR) platform in Fairbanks: Scientific objectives

    SciTech Connect (OSTI)

    Stamnes, K.; Leontieva, E. [Univ. of Alaska, Fairbanks (United States)

    1996-04-01T23:59:59.000Z

    The multi-filter rotating shadowband radiometer (MFRSR) and precision infrared radiometer (PIR) have been employed at the Geophysical Institute in Fairbanks to check their performance under arctic conditions. Drawing on the experience of the previous measurements in the Arctic, the PIR was equipped with a ventilator to prevent frost and moisture build-up. We adopted the Solar Infrared Observing Sytem (SIROS) concept from the Southern Great Plains Cloud and Radiation Testbed (CART) to allow implementation of the same data processing software for a set of radiation and meteorological instruments. To validate the level of performance of the whole SIROS prior to its incorporation into the North Slope of Alaska (NSA) Cloud and Radiation Testbed Site instrumental suite for flux radiatin measurements, the comparison between measurements and model predictions will be undertaken to assess the MFRSR-PIR Arctic data quality.

  2. Analysis of Rotational Structure in the High-Resolution Infrared...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rotational Structure in the High-Resolution Infrared Spectrum and Assignment of Vibrational Fundamentals of Analysis of Rotational Structure in the High-Resolution Infrared...

  3. Testing Oxygen Reduction Reaction Activity with the Rotating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique...

  4. Rotational Rehybridization and the High Temperature Phase of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rotational Rehybridization and the High Temperature Phase of UC2. Rotational Rehybridization and the High Temperature Phase of UC2. Abstract: The screened hybrid approximation...

  5. Vapor deposition of thin films

    DOE Patents [OSTI]

    Smith, David C. (Los Alamos, NM); Pattillo, Stevan G. (Los Alamos, NM); Laia, Jr., Joseph R. (Los Alamos, NM); Sattelberger, Alfred P. (Los Alamos, NM)

    1992-01-01T23:59:59.000Z

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl).sub.3, iridium(allyl).sub.3, molybdenum(allyl).sub.4, tungsten(allyl).sub.4, rhenium(allyl).sub.4, platinum(allyl).sub.2, or palladium(allyl).sub.2 are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  6. Electron Cloud observation in the LHC

    E-Print Network [OSTI]

    Rumolo, G; Baglin, V; Bartosik, H; Biancacci, N; Baudrenghien, P; Bregliozzi, G; Chiggiato, P; Claudet, S; De Maria, R; Esteban-Muller, J; Favier, M; Hansen, C; Höfle, W; Jimenez, J M; Kain, V; Lanza, G; Li, K S B; Maury Cuna, G H I; Métral, E; Papotti, G; Pieloni, T; Roncarolo, F; Salvant, B; Shaposhnikova, E N; Steinhagen, R J; Tavian, L J; Valuch, D; Venturini Delsolaro, W; Zimmermann, F; Iriso, U; Dominguez, O; Koukovini-Platia, E; Mounet, N; Zannini, C; Bhat, C M

    2011-01-01T23:59:59.000Z

    Operation of LHC with bunch trains at different spacings has revealed the formation of an electron cloud inside the machine. The main observations of electron cloud build up are the pressure rise measured at the vacuum gauges in the warm regions, as well as the increase of the beam screen temperature in the cold regions due to an additional heat load. The effects of the electron cloud were also visible as instability and emittance growth affecting the last bunches of longer trains, which could be improved running with higher chromaticity or larger transverse emittances. A summary of the 2010 and 2011 observations and measurements and a comparison with models will be presented. The efficiency of scrubbing to improve the machine running performance will be briefly discussed.

  7. High-velocity clouds: a diverse phenomenon

    E-Print Network [OSTI]

    B. P. Wakker

    2001-09-13T23:59:59.000Z

    In this contribution the current state of knowledge about the high-velocity clouds (HVCs) is summarized. Recent progress has shown that the HVCs are a diverse phenomenon. The intermediate-velocity clouds (IVCs) are likely to be part of a Galactic Fountain. The Magellanic Stream is a tidal remnant. HVC complex C (possibly complexes A and GCN) are low-metallicity clouds near the Galaxy; they could be remnants of the formation of the Galaxy or old tidal streams extracted from nearby dwarf galaxies. Having a substantial number of HI HVCs dispersed throughout the Local Group seems incompatible with the observed HI mass function of galaxies. Finally, FUSE finds high-velocity OVI, some of which is clearly associated with HI HVCs, but some which is not.

  8. Towards the Next Generation of Model-Driven Cloud Platforms

    E-Print Network [OSTI]

    Muńoz, Francesc

    Towards the Next Generation of Model-Driven Cloud Platforms Javier Esparza-Peidro, Francesc D. Mu~noz-Esco of Model-Driven Cloud Platforms Javier Esparza-Peidro, Francesc D. Mu~noz-Esco´i Institut Universitari Mixt

  9. CO and IRAS detection of an intermediate-velocity cloud

    SciTech Connect (OSTI)

    Desert, F.X.; Bazell, D.; Blitz, L. (Paris Observatoire, Meudon (France) Space Telescope Science Institute, Baltimore, MD (USA) Maryland Univ., College Park (USA))

    1990-06-01T23:59:59.000Z

    In the course of a radio survey of high-Galactic-latitude clouds, CO emission was detected at the position l = 210.8 deg and b = 63.1 deg with an LSR velocity of -39 km/sec. This molecular cloud constitutes the third one with an unusually large absolute velocity at these latitudes, as compared with the 5.4-km/sec cloud-to-cloud velocity dispersion of the high-latitude molecular clouds. The position is coincident with an H I intermediate-velocity cloud (GHL 11, Verschuur H, OLM 268) and the IR-excess cloud 306 in the list by Desert et al. (1988). This cloud is clearly detected at all four IRAS wavelengths and has warmer colors than the local ISM. 27 refs.

  10. Study of ice cloud properties using infrared spectral data

    E-Print Network [OSTI]

    Garrett, Kevin James

    2009-05-15T23:59:59.000Z

    The research presented in this thesis involves the study of ice cloud microphysical and optical properties using both hyperspectral and narrowband infrared spectral data. First, ice cloud models are developed for the Infrared Atmospheric Sounding...

  11. Cloud computing and its implications for organizational design and performance

    E-Print Network [OSTI]

    Farahani Rad, Ali

    2013-01-01T23:59:59.000Z

    Cloud computing has been at the center of attention for a while now. This attention is directed towards different aspects of this concept which concern different stakeholders from IT companies to cloud adopters to simple ...

  12. The study of cirrus clouds using airborne and satellite data 

    E-Print Network [OSTI]

    Meyer, Kerry Glynne

    2004-09-30T23:59:59.000Z

    (AVIRIS) and the Moderate-resolution Infrared Spectroradiometer (MODIS), scientists now have an unprecedented ability to study cirrus clouds. To aid in the understanding of such clouds, a significant study of cirrus radiative properties has been undertaken...

  13. Study of ice cloud properties using infrared spectral data 

    E-Print Network [OSTI]

    Garrett, Kevin James

    2009-05-15T23:59:59.000Z

    The research presented in this thesis involves the study of ice cloud microphysical and optical properties using both hyperspectral and narrowband infrared spectral data. First, ice cloud models are developed for the Infrared Atmospheric Sounding...

  14. arctic cloud experiment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    low-level Arctic clouds in cold seasons and have a significant impact on the surface energy budget. However, the treatment of mixed-phase clouds in most current climate models...

  15. Cloud computing adoption model for governments and large enterprises

    E-Print Network [OSTI]

    Trivedi, Hrishikesh

    2013-01-01T23:59:59.000Z

    Cloud Computing has held organizations across the globe spell bound with its promise. As it moves from being a buzz word and hype into adoption, organizations are faced with question of how to best adopt cloud. Existing ...

  16. Cloud computing : implications for enterprise software vendors (ESV)

    E-Print Network [OSTI]

    Francis, Leonard, S.M. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    'Cloud computing', is a broad concept and in general is a term used for internet-based computing resources that are in an unspecified remote location or locations and that are flexible and fungible. Clouds provide a wide ...

  17. Transition to cloud computing in healthcare information systems

    E-Print Network [OSTI]

    Ren, Haiying, S.M. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    This thesis is a study on the adoption of cloud computing in healthcare information technology industry. It provides a guideline for people who are trying to bring cloud computing into healthcare information systems through ...

  18. A Survey on Approaches for Interoperability and Portability of Cloud Computing Services

    E-Print Network [OSTI]

    Petrakis, Euripides G.M.

    A Survey on Approaches for Interoperability and Portability of Cloud Computing Services Kostas.sotiriadis, petrakis}@intelligence.tuc.gr Keywords: Cloud computing, cloud interoperability, cloud portability Abstract: Over the recent years, the rapid development of Cloud Computing has driven to a large market of cloud

  19. TGRS-2010-00092.R1 1 Abstract--Cloud properties were retrieved by applying the

    E-Print Network [OSTI]

    Dong, Xiquan

    cover (~59%) is divided equally between liquid and ice clouds. Global mean cloud effective heights , respectively, for liquid clouds and 8.3 km, 12.7, 52.2 µm, and 230 gm-2 for ice clouds. Cloud droplet effective radiation processes requires determination of cloud property distributions and the radiation budget

  20. Rotational hysteresis of exchange-spring magnets.

    SciTech Connect (OSTI)

    Jiang, J.S.; Bader, S.D.; Kaper, H.; Leaf, G.K.; Shull, R.D.; Shapiro, A.J.; Gornakov, V.S.; Nikitenko, V.I.; Platt, C.L.; Berkowitz, A.E.; David, S.; Fullerton, E.E.

    2002-03-27T23:59:59.000Z

    We highlight our experimental studies and micromagnetic simulations of the rotational hysteresis in exchange-spring magnets. Magneto-optical imaging and torque magnetometry measurements for SmCo/Fe exchange-spring films with uniaxial in-plane anisotropy show that the magnetization rotation created in the magnetically soft Fe layer by a rotating magnetic field is hysteretic. The rotational hysteresis is due to the reversal of the chirality of the spin spiral structure. Micromagnetic simulations reveal two reversal modes of the chirality, one at low fields due to an in-plane untwisting of the spiral, and the other, at high fields, due to an out-of-plane fanning of the spiral.

  1. On rotationally driven meridional flows in stars

    E-Print Network [OSTI]

    P. Garaud

    2002-03-21T23:59:59.000Z

    A quasi-steady state model of the consequences of rotation on the hydrodynamical structure of a stellar radiative zone is derived, by studying in particular the role of centrifugal and baroclinic driving of meridional motions in angular-momentum transport. This nonlinear problem is solved numerically assuming axisymmetry of the system, and within some limits, it is shown that there exist simple analytical solutions. The limit of slow rotation recovers Eddington-Sweet theory, whereas it is shown that in the limit of rapid rotation, the system settles into a geostrophic equilibrium. The behaviour of the system is found to be controlled by one parameter only, linked to the Prantl number, the stratification and the rotation rate of the star.

  2. Collisional quenching of highly rotationally excited HF

    E-Print Network [OSTI]

    Yang, Benhui; Forrey, R C; Stancil, P C; Balakrishnan, N

    2015-01-01T23:59:59.000Z

    Collisional excitation rate coefficients play an important role in the dynamics of energy transfer in the interstellar medium. In particular, accurate rotational excitation rates are needed to interpret microwave and infrared observations of the interstellar gas for nonlocal thermodynamic equilibrium line formation. Theoretical cross sections and rate coefficients for collisional deexcitation of rotationally excited HF in the vibrational ground state are reported. The quantum-mechanical close-coupling approach implemented in the nonreactive scattering code MOLSCAT was applied in the cross section and rate coefficient calculations on an accurate 2D HF-He potential energy surface. Estimates of rate coefficients for H and H$_2$ colliders were obtained from the HF-He collisional data with a reduced-potential scaling approach. The calculation of state-to-state rotational quenching cross sections for HF due to He with initial rotational levels up to $j=20$ were performed for kinetic energies from 10$^{-5}$ to 15000...

  3. Galactic Rotation and Large Scale Structures

    E-Print Network [OSTI]

    B. G. Sidharth

    1999-04-05T23:59:59.000Z

    On the basis of a recent cosmological model, the puzzle of galactic rotational velocities at their edges is explained without invoking dark matter. A rationale for the existence of structures like galaxies and superclusters is also obtained.

  4. ROTATIONAL DOPPLER BEAMING IN ECLIPSING BINARIES

    SciTech Connect (OSTI)

    Groot, Paul J., E-mail: pgroot@astro.ru.nl [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States)

    2012-01-20T23:59:59.000Z

    In eclipsing binaries the stellar rotation of the two components will cause a rotational Doppler beaming during eclipse ingress and egress when only part of the eclipsed component is covered. For eclipsing binaries with fast spinning components this photometric analog of the well-known spectroscopic Rossiter-McLaughlin effect can exceed the strength of the orbital effect. Example light curves are shown for a detached double white dwarf binary, a massive O-star binary and a transiting exoplanet case, similar to WASP-33b. Inclusion of the rotational Doppler beaming in eclipsing systems is a prerequisite for deriving the correct stellar parameters from fitting high-quality photometric light curves and can be used to determine stellar obliquities as well as, e.g., an independent measure of the rotational velocity in those systems that may be expected to be fully synchronized.

  5. Consider Steam Turbine Drives for Rotating Equipment

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on steam turbine drives for rotating equipment provides how-to advice for improving the system using low-cost, proven practices and technologies.

  6. 2012 MELLANOX TECHNOLOGIES 1 The Interconnect is the Cloud

    E-Print Network [OSTI]

    Schuster, Assaf

    IT costs from CAPEX to OPEX IT Efficiency and Business Agility Hybrid Cloud Compute and Storage Resource

  7. Information Security Management System for Microsoft's Cloud Infrastructure

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    Information Security Management System for Microsoft's Cloud Infrastructure Online Services ......................................................................................................................................................................................1 Information Security Management System.......................................................................................................................7 Information Security Management Forum

  8. Intrinsic Shapes of Molecular Cloud Cores

    E-Print Network [OSTI]

    C. E. Jones; Shantanu Basu; John Dubinski

    2001-01-08T23:59:59.000Z

    We conduct an analysis of the shapes of molecular cloud cores using recently compiled catalogs of observed axis ratios of individual cores mapped in ammonia or through optical selection. We apply both analytical and statistical techniques to deproject the observed axis ratios in order to determine the true distribution of cloud core shapes. We find that neither pure oblate nor pure prolate cores can account for the observed distribution of core shapes. Intrinsically triaxial cores produce distributions which agree with observations. The best-fit triaxial distribution contains cores which are more nearly oblate than prolate.

  9. Young stars and clouds in Camelopardalis

    E-Print Network [OSTI]

    V. Straizys; V. Laugalys

    2008-11-18T23:59:59.000Z

    Star formation in the Local spiral arm in the direction of the Galactic longitudes 132--158 deg is reviewed. Recent star-forming activity in this Milky Way direction is evidenced by the presence here of the Cam OB1 association and dense dust and molecular clouds containing H$\\alpha$ emission stars, young irregular variables and infrared stellar objects. The clouds of the Local arm concentrate in two layers at 150-300 pc and at about 900 pc from the Sun. The Perseus arm objects in this direction are at a distance of about 2 kpc.

  10. LIDAR, Point Clouds, and their Archaeological Applications

    SciTech Connect (OSTI)

    White, Devin A [ORNL

    2013-01-01T23:59:59.000Z

    It is common in contemporary archaeological literature, in papers at archaeological conferences, and in grant proposals to see heritage professionals use the term LIDAR to refer to high spatial resolution digital elevation models and the technology used to produce them. The goal of this chapter is to break that association and introduce archaeologists to the world of point clouds, in which LIDAR is only one member of a larger family of techniques to obtain, visualize, and analyze three-dimensional measurements of archaeological features. After describing how point clouds are constructed, there is a brief discussion on the currently available software and analytical techniques designed to make sense of them.

  11. Radion clouds around evaporating black holes

    E-Print Network [OSTI]

    J. R. Morris

    2009-09-03T23:59:59.000Z

    A Kaluza-Klein model, with a matter source associated with Hawking radiation from an evaporating black hole, is used to obtain a simple form for the radion effective potential. The environmental effect generally causes a matter-induced shift of the radion vacuum, resulting in the formation of a radion cloud around the hole. There is an albedo due to the radion cloud, with an energy dependent reflection coefficient that depends upon the size of the extra dimensions and the temperature of the hole.

  12. Thin film-coated polymer webs

    DOE Patents [OSTI]

    Wenz, Robert P. (Cottage Grove, MN); Weber, Michael F. (Shoreview, MN); Arudi, Ravindra L. (Woodbury, MN)

    1992-02-04T23:59:59.000Z

    The present invention relates to thin film-coated polymer webs, and more particularly to thin film electronic devices supported upon a polymer web, wherein the polymer web is treated with a purifying amount of electron beam radiation.

  13. Nanomechanical properties of hydrated organic thin films

    E-Print Network [OSTI]

    Choi, Jae Hyeok

    2007-01-01T23:59:59.000Z

    Hydrated organic thin films are biological or synthetic molecularly thin coatings which impart a particular functionality to an underlying substrate and which have discrete water molecules associated with them. Such films ...

  14. Low work function, stable thin films

    DOE Patents [OSTI]

    Dinh, Long N. (Concord, CA); McLean, II, William (Oakland, CA); Balooch, Mehdi (Berkeley, CA); Fehring, Jr., Edward J. (Dublin, CA); Schildbach, Marcus A. (Livermore, CA)

    2000-01-01T23:59:59.000Z

    Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

  15. Semiconductor-nanocrystal/conjugated polymer thin films

    DOE Patents [OSTI]

    Alivisatos, A. Paul (Oakland, CA); Dittmer, Janke J. (Munich, DE); Huynh, Wendy U. (Munich, DE); Milliron, Delia (Berkeley, CA)

    2010-08-17T23:59:59.000Z

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  16. Hydrogen atom in rotationally invariant noncommutative space

    E-Print Network [OSTI]

    Kh. P. Gnatenko; V. M. Tkachuk

    2014-11-03T23:59:59.000Z

    We consider the noncommutative algebra which is rotationally invariant. The hydrogen atom is studied in a rotationally invariant noncommutative space. We find the corrections to the energy levels of the hydrogen atom up to the second order in the parameter of noncommutativity. The upper bound of the parameter of noncommutativity is estimated on the basis of the experimental results for 1s-2s transition frequency.

  17. Rotation in an exact hydro model

    E-Print Network [OSTI]

    Csernai, L P; Csorgo, T

    2014-01-01T23:59:59.000Z

    We study an exact and extended solution of the fluid dynamical model of heavy ion reactions, and estimate the rate of slowing down of the rotation due to the longitudinal and transverse expansion of the system. The initial state parameters of the model are set on the basis of a realistic 3+1D fluid dynamical calculation at TeV energies, where the rotation is enhanced by the build up of the Kelvin Helmholtz Instability in the flow.

  18. Rotation in an exact hydro model

    E-Print Network [OSTI]

    L. P. Csernai; D. J. Wang; T. Csorgo

    2014-07-07T23:59:59.000Z

    We study an exact and extended solution of the fluid dynamical model of heavy ion reactions, and estimate the rate of slowing down of the rotation due to the longitudinal and transverse expansion of the system. The initial state parameters of the model are set on the basis of a realistic 3+1D fluid dynamical calculation at TeV energies, where the rotation is enhanced by the build up of the Kelvin Helmholtz Instability in the flow.

  19. Wavelet Analysis of Galactic Rotation Curves

    E-Print Network [OSTI]

    M. Kuassivi

    2011-04-28T23:59:59.000Z

    The spatial wavelet spectra of 73 published spiral galaxies's rotation curves are computed and their associated scaleograms are presented. Scaleograms are used to detect and isolate local features observed in spiral galaxies's rotation curves. Although wiggles and bumps are usually interpreted as signs of recent and on-going merging, the analysis of the scaleograms reveals regular patterns consistent with the presence of large-scale modes throughout the disk.

  20. Spin Rotation of Formalism for Spin Tracking

    SciTech Connect (OSTI)

    Luccio,A.

    2008-02-01T23:59:59.000Z

    The problem of which coefficients are adequate to correctly represent the spin rotation in vector spin tracking for polarized proton and deuteron beams in synchrotrons is here re-examined in the light of recent discussions. The main aim of this note is to show where some previous erroneous results originated and how to code spin rotation in a tracking code. Some analysis of a recent experiment is presented that confirm the correctness of the assumptions.

  1. Critical frequency in nuclear chiral rotation

    E-Print Network [OSTI]

    P. Olbratowski; J. Dobaczewski; J. Dudek

    2002-11-25T23:59:59.000Z

    Within the cranked Skyrme-Hartree-Fock approach the self-consistent solutions have been obtained for planar and chiral rotational bands in 132La. It turns out that the chiral band cannot exist below some critical rotational frequency which in the present case equals omega=0.6MeV. The appearance of the critical frequency is explained in terms of a simple classical model of two gyroscopes coupled to a triaxial rigid body.

  2. Split Venturi, Axially-Rotated Valve

    DOE Patents [OSTI]

    Walrath, David E. (Laramie, WY); Lindberg, William R. (Laramie, WY); Burgess, Robert K. (Sheridan, WY)

    2000-08-29T23:59:59.000Z

    The present invention provides an axially-rotated valve which permits increased flow rates and lower pressure drop (characterized by a lower loss coefficient) by using an axial eccentric split venturi with two portions where at least one portion is rotatable with respect to the other portion. The axially-rotated valve typically may be designed to avoid flow separation and/or cavitation at full flow under a variety of conditions. Similarly, the valve is designed, in some embodiments, to produce streamlined flow within the valve. A typical cross section of the eccentric split venturi may be non-axisymmetric such as a semicircular cross section which may assist in both throttling capabilities and in maximum flow capacity using the design of the present invention. Such a design can include applications for freeze resistant axially-rotated valves and may be fully-opened and fully-closed in one-half of a complete rotation. An internal wide radius elbow typically connected to a rotatable portion of the eccentric venturi may assist in directing flow with lower friction losses. A valve actuator may actuate in an axial manner yet be uniquely located outside of the axial flow path to further reduce friction losses. A seal may be used between the two portions that may include a peripheral and diametrical seal in the same plane.

  3. Dynamics of Finite Dust Clouds in a Magnetized Anodic Plasma

    SciTech Connect (OSTI)

    Piel, A.; Pilch, I.; Trottenberg, T. [Institute for Experimental and Applied Physics, Christian-Albrechts University, D-24098 Kiel (Germany); Koepke, M. E. [Department of Physics, West Virginia University, Morgantown, West Virginia 26505-6315 (United States)

    2008-09-07T23:59:59.000Z

    The response to an external modulation voltage of small dust clouds confined in an anodic plasma is studied. Dust density waves are excited when the cloud is larger than a wavelength, whereas a sloshing and stretching motion is found for smaller clouds. The wave dispersion shows similarities with waveguide modes.

  4. Modeling, Characterizing, and Enhancing User Experience in Cloud Mobile Rendering

    E-Print Network [OSTI]

    California at San Diego, University of

    Modeling, Characterizing, and Enhancing User Experience in Cloud Mobile Rendering Yao Liu, Shaoxuan of California, San Diego {yal019, shaoxuan, dey}@ece.ucsd.edu Abstract--Cloud Mobile Rendering (CMR), where compute intensive rendering is performed on cloud servers instead of on mobile devices, can be a promising

  5. Cloud Storage Standards Overview and Research Ideas Brainstorm

    E-Print Network [OSTI]

    Cloud Storage Standards Overview and Research Ideas Brainstorm Mark Carlson, SNIA TC and Sun Chair, SNIA Cloud Storage TWG CMU SDI Lecture ­ 12th November 2009 #12;Insert tutorial title in footer © 2009 Storage Networking Industry Association.All Rights Reserved. Abstract ! Cloud Storage is a new business

  6. A Survey of Mobile Cloud Computing Applications: Perspectives and Challenges

    E-Print Network [OSTI]

    Chen, Ing-Ray

    operating systems, configure computation environment, and develop software. The cloud provides a powerful from the marriage of powerful yet affordable mobile devices and cloud computing. In this paper we in the cloud. So users simply use the applications without concerning system configuration prob- lems

  7. 8, 42674308, 2008 3-D retrieval of cloud

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 8, 4267­4308, 2008 3-D retrieval of cloud particle profiles T. Zinner et al. Title Page.0 License. Atmospheric Chemistry and Physics Discussions Remote sensing of cloud sides of deep convection: towards a three-dimensional retrieval of cloud particle size profiles T. Zinner 1,2 , A. Marshak 1 , S

  8. CLOUD COVER REPORTING BIAS AT MAJOR AIRPORTS Richard Perez

    E-Print Network [OSTI]

    Perez, Richard R.

    CLOUD COVER REPORTING BIAS AT MAJOR AIRPORTS Richard Perez Joshua A. Bonaventura-Sparagna & Marek Kmiecik ASRC, SUNY, Albany, NY Ray George & David Renné NREL, Golden, CO ABSTRACT Cloud cover has been generated all or in part from cloud cover measurements [1,2]. This paper presents evidence

  9. Process-based Management of Cloud Computing Infrastructure

    E-Print Network [OSTI]

    Krause, Rolf

    Process-based Management of Cloud Computing Infrastructure Background Cloud Computing with minimal management effort. Examples of modern cloud computing solutions include (but are not limited to is an emerging computing capability that provides an abstraction between the computing resource and its

  10. Authorized Private Keyword Search over Encrypted Data in Cloud Computing

    E-Print Network [OSTI]

    Hou, Y. Thomas

    Authorized Private Keyword Search over Encrypted Data in Cloud Computing Ming Li, Shucheng Yu, Ning,ncao,wjlou}@ece.wpi.edu Dept. of CS, University of Arkansas at Little Rock, email: sxyu1@ualr.edu Abstract--In cloud computing In recent years, cloud computing is gaining much mo- mentum in the IT industry. Especially, we have seen

  11. Socially Optimal Pricing of Cloud Computing Resources Ishai Menache

    E-Print Network [OSTI]

    Shimkin, Nahum

    Socially Optimal Pricing of Cloud Computing Resources Ishai Menache Microsoft Research New England The cloud computing paradigm offers easily accessible com- puting resources of variable size and capabilities. We con- sider a cloud-computing facility that provides simultaneous service to a heterogeneous

  12. Special Publication 500-293 US Government Cloud Computing

    E-Print Network [OSTI]

    Special Publication 500-293 (Draft) US Government Cloud Computing Technology Roadmap Volume I Release 1.0 (Draft) High-Priority Requirements to Further USG Agency Cloud Computing Adoption Lee Badger Sokol, Jin Tong, Fred Whiteside and Dawn Leaf NIST Cloud Computing Program Information Technology

  13. Fuzzy Keyword Search over Encrypted Data in Cloud Computing

    E-Print Network [OSTI]

    Hou, Y. Thomas

    Fuzzy Keyword Search over Encrypted Data in Cloud Computing Jin Li, Qian Wang, Cong Wang, Ning Cao}@ece.wpi.edu Abstract--As Cloud Computing becomes prevalent, more and more sensitive information are being centralized in Cloud Computing as it greatly affects system usability, rendering user searching experiences very

  14. Special Publication 500-293 US Government Cloud Computing

    E-Print Network [OSTI]

    Special Publication 500-293 (Draft) US Government Cloud Computing Technology Roadmap Volume II and Dawn Leaf NIST Cloud Computing Program Information Technology Laboratory #12;This page left Publication 500-293 (Draft) US Government Cloud Computing Technology Roadmap Volume II Release 1.0 (Draft

  15. Coordination of Cloud Computing and Smart Power Grids

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    Coordination of Cloud Computing and Smart Power Grids Amir-Hamed Mohsenian-Rad and Alberto Leon.mohsenian.rad, alberto.leongarcia}@utoronto.ca Abstract--The emergence of cloud computing has established a trend towards increasing the load at locations where they are built. However, data centers and cloud computing also provide

  16. Controlling Data in the Cloud: Outsourcing Computation without Outsourcing Control

    E-Print Network [OSTI]

    Controlling Data in the Cloud: Outsourcing Computation without Outsourcing Control Richard Chow.fujitsu.com ABSTRACT Cloud computing is clearly one of today's most enticing technology areas due, at least in part, there are significant, persistent concerns about cloud computing that are impeding momentum and will eventually

  17. Adaptive Fault Tolerance in Real Time Cloud Computing Sheheryar Malik

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Adaptive Fault Tolerance in Real Time Cloud Computing Sheheryar Malik Research Team OASIS INRIA.huet@inria.fr Abstract -- With the increasing demand and benefits of cloud computing infrastructure, real time computing can be performed on cloud infrastructure. A real time system can take advantage of intensive computing

  18. Toward Secure and Dependable Storage Services in Cloud Computing

    E-Print Network [OSTI]

    Hou, Y. Thomas

    Toward Secure and Dependable Storage Services in Cloud Computing Cong Wang, Student Member, IEEE lightweight communication and computation cost. The auditing result not only ensures strong cloud storage, dependable distributed storage, error localization, data dynamics, cloud computing. Ç 1 INTRODUCTION SEVERAL

  19. Introduction to the IEEE Transactions on Cloud Computing

    E-Print Network [OSTI]

    Buyya, Rajkumar

    Introduction to the IEEE Transactions on Cloud Computing Rajkumar Buyya Welcome to the IEEE Transactions on Cloud Computing (TCC). It is my privilege and honor to serve as the inaugural Editor-in-Chief of TCC. I would like to thank the IEEE and the world-wide Cloud Computing community for giving me

  20. Efficient and Secure Data Storage Operations for Mobile Cloud Computing

    E-Print Network [OSTI]

    Efficient and Secure Data Storage Operations for Mobile Cloud Computing Zhibin Zhou and Dijiang Huang {zhibin.zhou,dijiang}@asu.edu Arizona State University Abstract--Cloud computing is a promising. With the development of wireless access technologies, cloud computing is expected to expand to mobile environments

  1. An Approach for Security Evaluation and Analysis in Cloud Computing

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    An Approach for Security Evaluation and Analysis in Cloud Computing T. Probst1,2 , E. Alata1,3 , M for security evaluation and analysis in cloud computing environments. The objective is to provide an automated way to evaluate the efficiency of security mechanisms aiming at protecting the cloud computing

  2. Towards a New Execution Model for HPC Clouds Thomas Sterling

    E-Print Network [OSTI]

    Lumsdaine, Andrew

    Towards a New Execution Model for HPC Clouds Thomas Sterling Center for Research in Extreme Scale an alternative paradigm for bringing Clouds more closely aligned to Science, Technology, Engineering Execution Model for HPC Clouds Thomas Sterling 1. Introduction Even as HPC is transiting the pan

  3. Summertime Arctic Clouds observed during SHEBA Paquita Zuidema

    E-Print Network [OSTI]

    Zuidema, Paquita

    understanding the underlying cloud processes (that impact the cloud optical depth). With the goal in mind consistently southerly and warm.The ice melt rate was directly measured to be 2.3-2.5 cm/day from gauges). The responsive surface melting during July suggests not only a high Sun angle,but also low cloud optical depths

  4. CLOUD DROPLET NUCLEATION AND ITS CONNECTION TO AEROSOL PROPERTIES

    E-Print Network [OSTI]

    of the uncertainty of the indirect effect arises from incomplete ability to describe changes in cloud properties. Keywords - Climate. aerosols. clouds, radiation INTRODUcnON In recent years awareness has increased of enhancement of scanering of radiation by aerosols in clear (cloud-free) air; a portion of the scattered

  5. Thin film polymeric gel electrolytes

    DOE Patents [OSTI]

    Derzon, Dora K. (1554 Rosalba St. NE., Albuquerque, Bernalillo County, NM 87112); Arnold, Jr., Charles (3436 Tahoe, NE., Albuquerque, Bernalillo County, NM 87111); Delnick, Frank M. (9700 Fleming Rd., Dexter, MI 48130)

    1996-01-01T23:59:59.000Z

    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  6. Thin film polymeric gel electrolytes

    DOE Patents [OSTI]

    Derzon, D.K.; Arnold, C. Jr.; Delnick, F.M.

    1996-12-31T23:59:59.000Z

    Novel hybrid thin film electrolytes, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1} cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

  7. be explained by the indirect aerosol cloud effect. The use of a parcel model to determine the cloud droplet number concentration

    E-Print Network [OSTI]

    Reiners, Peter W.

    cloud properties and their effect on the surface radiation budget: selected cases from FIRE ACE. Jbe explained by the indirect aerosol cloud effect. The use of a parcel model to determine the cloud droplet number concentration enables us to separate the effects of the cloud LWP and cloud droplet number

  8. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part II: Multi-layered cloud

    SciTech Connect (OSTI)

    Morrison, H; McCoy, R B; Klein, S A; Xie, S; Luo, Y; Avramov, A; Chen, M; Cole, J; Falk, M; Foster, M; Genio, A D; Harrington, J; Hoose, C; Khairoutdinov, M; Larson, V; Liu, X; McFarquhar, G; Poellot, M; Shipway, B; Shupe, M; Sud, Y; Turner, D; Veron, D; Walker, G; Wang, Z; Wolf, A; Xu, K; Yang, F; Zhang, G

    2008-02-27T23:59:59.000Z

    Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a deep, multi-layered, mixed-phase cloud system observed during the ARM Mixed-Phase Arctic Cloud Experiment. This cloud system was associated with strong surface turbulent sensible and latent heat fluxes as cold air flowed over the open Arctic Ocean, combined with a low pressure system that supplied moisture at mid-level. The simulations, performed by 13 single-column and 4 cloud-resolving models, generally overestimate the liquid water path and strongly underestimate the ice water path, although there is a large spread among the models. This finding is in contrast with results for the single-layer, low-level mixed-phase stratocumulus case in Part I of this study, as well as previous studies of shallow mixed-phase Arctic clouds, that showed an underprediction of liquid water path. The overestimate of liquid water path and underestimate of ice water path occur primarily when deeper mixed-phase clouds extending into the mid-troposphere were observed. These results suggest important differences in the ability of models to simulate Arctic mixed-phase clouds that are deep and multi-layered versus shallow and single-layered. In general, models with a more sophisticated, two-moment treatment of the cloud microphysics produce a somewhat smaller liquid water path that is closer to observations. The cloud-resolving models tend to produce a larger cloud fraction than the single-column models. The liquid water path and especially the cloud fraction have a large impact on the cloud radiative forcing at the surface, which is dominated by the longwave flux for this case.

  9. Cluster analysis of cloud properties : a method for diagnosing cloud-climate feedbacks

    E-Print Network [OSTI]

    Gordon, Neil D.

    2008-01-01T23:59:59.000Z

    to temperature. Thus a k-means clustering algorithm is usedto group cloud regimes. K-means is also an effective toollays out a method whereby a k-means clustering algorithm is

  10. Separating real and apparent effects of cloud, humidity, and dynamics on aerosol optical thickness near cloud edges

    E-Print Network [OSTI]

    Li, Zhanqing

    have reported correlations between AOT and cloud cover, pointing to potential cloud contamination of Energy's Atmospheric Radiation Measurement Program. It was found that aerosol humidification effects can explain about one fourth of the correlation between the cloud cover and AOT. New particle genesis

  11. Argonne's Magellan Cloud Computing Research Project

    ScienceCinema (OSTI)

    Beckman, Pete

    2013-04-19T23:59:59.000Z

    Pete Beckman, head of Argonne's Leadership Computing Facility (ALCF), discusses the Department of Energy's new $32-million Magellan project, which designed to test how cloud computing can be used for scientific research. More information: http://www.anl.gov/Media_Center/News/2009/news091014a.html

  12. Workshop on Distributed Cloud Computing Dresden, Germany

    E-Print Network [OSTI]

    Schmid, Stefan

    DCC 2013 Workshop on Distributed Cloud Computing Dresden, Germany December 9-12, 2013 (Submission Pan Hui, HKUST, Hong Kong Wolfgang Kellerer, TU Munich, Germany Ruben Montero, Uni Complutense de Waterloo, Canada Marco Canini, T-Labs & TU Berlin, Germany Paolo Costa, MSR & Imperial College, UK Xiaoming

  13. Laser transmissionbackscattering through inhomogeneous cirrus clouds

    E-Print Network [OSTI]

    Takano, Yoshihide

    of the transmission and backscattering of high-energy laser beams. The 2D extinction-coefficient and mean effective of cirrus clouds by use of the Advanced Very High Resolution Radiometer on board National Oceanic and backscattering of high-energy laser beams in realistic atmospheres. The results of laser direct transmission

  14. The Magellan Final Report on Cloud Computing

    SciTech Connect (OSTI)

    ,; Coghlan, Susan; Yelick, Katherine

    2011-12-21T23:59:59.000Z

    The goal of Magellan, a project funded through the U.S. Department of Energy (DOE) Office of Advanced Scientific Computing Research (ASCR), was to investigate the potential role of cloud computing in addressing the computing needs for the DOE Office of Science (SC), particularly related to serving the needs of mid- range computing and future data-intensive computing workloads. A set of research questions was formed to probe various aspects of cloud computing from performance, usability, and cost. To address these questions, a distributed testbed infrastructure was deployed at the Argonne Leadership Computing Facility (ALCF) and the National Energy Research Scientific Computing Center (NERSC). The testbed was designed to be flexible and capable enough to explore a variety of computing models and hardware design points in order to understand the impact for various scientific applications. During the project, the testbed also served as a valuable resource to application scientists. Applications from a diverse set of projects such as MG-RAST (a metagenomics analysis server), the Joint Genome Institute, the STAR experiment at the Relativistic Heavy Ion Collider, and the Laser Interferometer Gravitational Wave Observatory (LIGO), were used by the Magellan project for benchmarking within the cloud, but the project teams were also able to accomplish important production science utilizing the Magellan cloud resources.

  15. The Pion Cloud: Insights into Hadron Structure

    E-Print Network [OSTI]

    A. W. Thomas

    2007-11-14T23:59:59.000Z

    Modern nuclear theory presents a fascinating study in contrasting approaches to the structure of hadrons and nuclei. Nowhere is this more apparent than in the treatment of the pion cloud. As this discussion really begins with Yukawa, it is entirely appropriate that this invited lecture at the Yukawa Institute in Kyoto should deal with the issue.

  16. Proof of Concept: Cloud Condensation Nucleus Counter

    E-Print Network [OSTI]

    Delene, David J.

    North Dakota project. The solid circle is the mean value, the horizontal line is the 50th percentile Price High Price #12;Research Applications · One commercially available cloud condensation nuclei (CCN) counter. · Available since 2002 · Sold over 100 Units, Mostly Labs · Price is Approximately $70

  17. AIAA 20023642 Effect of Rotation on Flow in a

    E-Print Network [OSTI]

    Jacob, Jamey

    AIAA 2002­3642 Effect of Rotation on Flow in a Ribbed Rotating Turbine Blade Cooling Duct Model Propulsion Conference AIAA-2002-3642 Effect of Rotation on Flow in a Ribbed Rotating Turbine Blade Cooling experiments in turbine blade cooling have fo- cused primarily on both simple and complex channel flow

  18. Cloud Scavenging Effects on Aerosol Radiative and Cloud-nucleating Properties - Final Technical Report

    SciTech Connect (OSTI)

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2009-03-05T23:59:59.000Z

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  19. Properties of High-Redshift Lyman Alpha Clouds II. Statistical Properties of the Clouds

    E-Print Network [OSTI]

    William H. Press; George B. Rybicki

    1993-03-29T23:59:59.000Z

    Curve of growth analysis, applied to the Lyman series absorption ratios deduced in our previous paper, yields a measurement of the logarithmic slope of distribution of \\Lya\\ clouds in column density $N$. The observed exponential distribution of the clouds' equivalent widths $W$ is then shown to require a broad distribution of velocity parameters $b$, extending up to 80 km s$^{-1}$. We show how the exponential itself emerges in a natural way. An absolute normalization for the differential distribution of cloud numbers in $z$, $N$, and $b$ is obtained. By detailed analysis of absorption fluctuations along the line of sight we are able to put upper limits on the cloud-cloud correlation function $\\xi$ on several megaparsec length scales. We show that observed $b$ values, if thermal, are incompatible, in several different ways, with the hypothesis of equilibrium heating and ionization by a background UV flux. Either a significant component of $b$ is due to bulk motion (which we argue against on several grounds), or else the clouds are out of equilibrium, and hotter than is implied by their ionization state, a situation which could be indicative of recent adiabatic collapse.

  20. Control of molecular rotation in the limit of extreme rotational excitation

    E-Print Network [OSTI]

    V. Milner; J. W. Hepburn

    2015-01-12T23:59:59.000Z

    Laser control of molecular rotation is an area of active research. A number of recent studies has aimed at expanding the reach of rotational control to extreme, previously inaccessible rotational states, as well as controlling the directionality of molecular rotation. Dense ensembles of molecules undergoing ultrafast uni-directional rotation, known as molecular superrotors, are anticipated to exhibit unique properties, from spatially anisotropic diffusion and vortex formation to the creation of powerful acoustic waves and tuneable THz radiation. Here we describe our recent progress in controlling molecular rotation in the regime of high rotational excitation. We review two experimental techniques of producing uni-directional rotational wave packets with a "chiral train" of femtosecond pulses and an "optical centrifuge". Three complementary detection methods, enabling the direct observation, characterization and control of the superrotor states, are outlined: the one based on coherent Raman scattering, and two other methods employing both resonant and non-resonant multi-photon ionization. The capabilities of the described excitation and detection techniques are demonstrated with a few examples. The paper is concluded with an outlook for future developments.

  1. Heart - Shaped Nuclei: Condensation of Rotational Aligned Octupole Phonons

    E-Print Network [OSTI]

    S. Frauendorf

    2007-10-24T23:59:59.000Z

    The strong octupole correlations in the mass region $A\\approx 226$ are interpreted as rotation-induced condensation of octupole phonons having their angular momentum aligned with the rotational axis. Discrete phonon energy and parity conservation generate oscillations of the energy difference between the lowest rotational bands with positive and negative parity. Anharmonicities tend to synchronize the the rotation of the condensate and the quadrupole shape of the nucleus forming a rotating heart shape.

  2. pCloud: A Cloud-based Power Market Simulation Environment

    SciTech Connect (OSTI)

    Rudkevich, Aleksandr; Goldis, Evgeniy

    2012-12-02T23:59:59.000Z

    This research conducted by the Newton Energy Group, LLC (NEG) is dedicated to the development of pCloud: a Cloud-based Power Market Simulation Environment. pCloud is offering power industry stakeholders the capability to model electricity markets and is organized around the Software as a Service (SaaS) concept -- a software application delivery model in which software is centrally hosted and provided to many users via the internet. During the Phase I of this project NEG developed a prototype design for pCloud as a SaaS-based commercial service offering, system architecture supporting that design, ensured feasibility of key architecture's elements, formed technological partnerships and negotiated commercial agreements with partners, conducted market research and other related activities and secured funding for continue development of pCloud between the end of Phase I and beginning of Phase II, if awarded. Based on the results of Phase I activities, NEG has established that the development of a cloud-based power market simulation environment within the Windows Azure platform is technologically feasible, can be accomplished within the budget and timeframe available through the Phase II SBIR award with additional external funding. NEG believes that pCloud has the potential to become a game-changing technology for the modeling and analysis of electricity markets. This potential is due to the following critical advantages of pCloud over its competition: - Standardized access to advanced and proven power market simulators offered by third parties. - Automated parallelization of simulations and dynamic provisioning of computing resources on the cloud. This combination of automation and scalability dramatically reduces turn-around time while offering the capability to increase the number of analyzed scenarios by a factor of 10, 100 or even 1000. - Access to ready-to-use data and to cloud-based resources leading to a reduction in software, hardware, and IT costs. - Competitive pricing structure, which will make high-volume usage of simulation services affordable. - Availability and affordability of high quality power simulators, which presently only large corporate clients can afford, will level the playing field in developing regional energy policies, determining prudent cost recovery mechanisms and assuring just and reasonable rates to consumers. - Users that presently do not have the resources to internally maintain modeling capabilities will now be able to run simulations. This will invite more players into the industry, ultimately leading to more transparent and liquid power markets.

  3. High-resolution imaging of compact high-velocity clouds

    E-Print Network [OSTI]

    Robert Braun; Butler Burton

    1999-12-20T23:59:59.000Z

    Six examples of the compact, isolated high-velocity HI clouds (CHVCs) identified by Braun and Burton (1999) have been imaged with the WSRT. The 65 confirmed objects in this class define a dynamically cold system, with a global minimum for the velocity dispersion of only 70 km/s, found in the Local Group Standard of Rest, while in-falling at 100 km/s toward the LG barycenter. These objects have a characteristic morphology, in which several compact cores are embedded in a diffuse halo. The compact cores typically account for 40% of the HI line flux while covering some 15% of the source area. The cores are the cool condensed phase of HI, the CNM, with temp. near 100 K, while the halos appear to be a shielding column of warm diffuse HI, the WNM, with temp. near 8000 K. We detect a core with one of the narrowest HI emission lines ever observed, with intrinsic FWHM of 2 km/s and 75 K brightness. From a comparison of column and volume densities we derive a distance in the range 0.5 to 1 Mpc. We determine a metallicity for this same object of 0.04 to 0.07 solar. Comparably high distances are implied by demanding the stability of objects with multiple cores, which show relative velocities as large as 70 km/s on 30 arcmin scales. Many compact cores show systematic velocity gradients along the major axis of their elliptical extent which are consistent with circular rotation. Several of the derived rotation curves are well-fit by Navarro, Frenk, and White (1997) cold dark matter profiles. These kinematic signatures imply a high dark-to-visible mass ratio of 10-50, for D=0.7Mpc, which scales as 1/D. The implied dark matter halos dominate the mass volume density within the central 2 kpc (10 arcmin) of each source, providing a sufficent hydrostatic pressure to allow local CNM condensation. (abridged)

  4. Rotating Bose-Einstein condensates: Closing the gap between exact and mean-field solutions

    E-Print Network [OSTI]

    J. C. Cremon; A. D. Jackson; E. \\" O. Karabulut; G. M. Kavoulakis; B. R. Mottelson; S. M. Reimann

    2015-01-22T23:59:59.000Z

    When a Bose-Einstein condensed cloud of atoms is given some angular momentum, it forms vortices arranged in structures with a discrete rotational symmetry. For these vortex states, the Hilbert space of the exact solution separates into a "primary" space related to the mean-field Gross-Pitaevskii solution and a "complementary" space including the corrections beyond mean-field. Considering a weakly-interacting Bose-Einstein condensate of harmonically-trapped atoms, we demonstrate how this separation can be used to close the conceptual gap between exact solutions for systems with only a few atoms and the thermodynamic limit for which the mean-field is the correct leading-order approximation. Although we illustrate this approach for the case of weak interactions, it is expected to be more generally valid.

  5. Position, rotation, and intensity invariant recognizing method

    DOE Patents [OSTI]

    Ochoa, Ellen (Pleasanton, CA); Schils, George F. (San Ramon, CA); Sweeney, Donald W. (Alamo, CA)

    1989-01-01T23:59:59.000Z

    A method for recognizing the presence of a particular target in a field of view which is target position, rotation, and intensity invariant includes the preparing of a target-specific invariant filter from a combination of all eigen-modes of a pattern of the particular target. Coherent radiation from the field of view is then imaged into an optical correlator in which the invariant filter is located. The invariant filter is rotated in the frequency plane of the optical correlator in order to produce a constant-amplitude rotational response in a correlation output plane when the particular target is present in the field of view. Any constant response is thus detected in the output The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP00789 between the U.S. Department of Energy and AT&T Technologies, Inc.

  6. Controlling inertial focussing using rotational motion

    E-Print Network [OSTI]

    Prohm, Christopher; Stark, Holger

    2014-01-01T23:59:59.000Z

    In inertial microfluidics lift forces cause a particle to migrate across streamlines to specific positions in the cross section of a microchannel. We control the rotational motion of a particle and demonstrate that this allows to manipulate the lift-force profile and thereby the particle's equilibrium positions. We perform two-dimensional simulation studies using the method of multi-particle collision dynamics. Particles with unconstrained rotational motion occupy stable equilibrium positions in both halfs of the channel while the center is unstable. When an external torque is applied to the particle, two equilibrium positions annihilate by passing a saddle-node bifurcation and only one stable fixpoint remains so that all particles move to one side of the channel. In contrast, non-rotating particles accumulate in the center and are pushed into one half of the channel when the angular velocity is fixed to a non-zero value.

  7. LES Simulations of Roll Clouds Observed During Mixed- Phase Arctic Cloud Experiment

    SciTech Connect (OSTI)

    Greenberg, S.D.; Harrington, J.Y.; Prenni, A.; DeMott, P.

    2005-03-18T23:59:59.000Z

    Roll clouds, and associated roll convection, are fairly common features of the atmospheric boundary layer. While these organized cumuliform clouds are found over many regions of the planet, they are quite ubiquitous near the edge of the polar ice sheets. In particular, during periods of off-ice flow, when cold polar air flows from the ice pack over the relatively warm ocean water, strong boundary layer convection develops along with frequent rolls. According to Bruemmer and Pohlman (2000), most of the total cloud cover in the Arctic is due to roll clouds. In an effort to examine the influences of mixed-phase microphysics on the boundary layer evolution of roll clouds during off-ice flow, Olsson and Harrington (2000) used a 2D mesoscale model coupled to a bulk microphysical scheme (see Section 2). Their results showed that mixed-phase clouds produced more shallow boundary layers with weaker turbulence than liquid-phase cases. Furthermore, their results showed that because of th e reduced turbulent drag on the atmosphere in the mixed-phase case, regions of mesoscale divergence in the marginal ice-zone were significantly affected. A follow-up 2D study (Harrington and Olsson 2001) showed that the reduced turbulent intensity in mixed-phase cases was due to precipitation. Ice precipitation caused downdraft stabilization which fed back and caused a reduction in the surface heat fluxes. In this work, we extend the work of Olsson and Harrington (2000) and Harrington and Olsson (2001) by examining the impacts of ice microphysics on roll convection. We will present results that illustrate how microphysics alters roll cloud structure and dynamics.

  8. Cirrus clouds in a global climate model with a statistical cirrus cloud scheme

    SciTech Connect (OSTI)

    Wang, Minghuai; Penner, Joyce E.

    2010-06-21T23:59:59.000Z

    A statistical cirrus cloud scheme that accounts for mesoscale temperature perturbations is implemented in a coupled aerosol and atmospheric circulation model to better represent both subgrid-scale supersaturation and cloud formation. This new scheme treats the effects of aerosol on cloud formation and ice freezing in an improved manner, and both homogeneous freezing and heterogeneous freezing are included. The scheme is able to better simulate the observed probability distribution of relative humidity compared to the scheme that was implemented in an older version of the model. Heterogeneous ice nuclei (IN) are shown to decrease the frequency of occurrence of supersaturation, and improve the comparison with observations at 192 hPa. Homogeneous freezing alone can not reproduce observed ice crystal number concentrations at low temperatures (<205 K), but the addition of heterogeneous IN improves the comparison somewhat. Increases in heterogeneous IN affect both high level cirrus clouds and low level liquid clouds. Increases in cirrus clouds lead to a more cloudy and moist lower troposphere with less precipitation, effects which we associate with the decreased convective activity. The change in the net cloud forcing is not very sensitive to the change in ice crystal concentrations, but the change in the net radiative flux at the top of the atmosphere is still large because of changes in water vapor. Changes in the magnitude of the assumed mesoscale temperature perturbations by 25% alter the ice crystal number concentrations and the net radiative fluxes by an amount that is comparable to that from a factor of 10 change in the heterogeneous IN number concentrations. Further improvements on the representation of mesoscale temperature perturbations, heterogeneous IN and the competition between homogeneous freezing and heterogeneous freezing are needed.

  9. Measuring deflections in a rotating shaft

    E-Print Network [OSTI]

    Bailey, Edmond Ira

    1968-01-01T23:59:59.000Z

    . Short range telemetry (4, 5) involves placing a frequency modulated transmitter on the rotating member and locating a receiver in close proximity such that the data may be trans fered from the rotat1ng member to the stationary readout. l Numbers... was insignificant. The above is the situation for which the measuring system was to be disigned. The accuracy desired for the measuring system was speci fied as + 5L' by Mr. Alexander (6) as needed for his research. The approximate critical speed of the shaft...

  10. Vacuum coupling of rotating superconducting rotor

    DOE Patents [OSTI]

    Shoykhet, Boris A.; Zhang, Burt Xudong; Driscoll, David Infante

    2003-12-02T23:59:59.000Z

    A rotating coupling allows a vacuum chamber in the rotor of a superconducting electric motor to be continually pumped out. The coupling consists of at least two concentric portions, one of which is allowed to rotate and the other of which is stationary. The coupling is located on the non-drive end of the rotor and is connected to a coolant supply and a vacuum pump. The coupling is smaller in diameter than the shaft of the rotor so that the shaft can be increased in diameter without having to increase the size of the vacuum seal.

  11. A theoretical analysis of rotating cavitation in inducers

    SciTech Connect (OSTI)

    Tsujimoto, Y.; Kamijo, K. (National Aerospace Lab., Miyagi, (Japan)); Yoshida, Y. (Osaka Univ., Toyonaka, (Japan). Engineering Science)

    1993-03-01T23:59:59.000Z

    Rotating cavitation was analyzed using an actuator disk method. Quasi-steady pressure performance of the impeller, mass flow gain factor, and cavitation compliance of the cavity were taken into account. Three types of destabilizing modes were predicted: rotation cavitation propagating faster than the rotational speed of the impeller, rotating cavitation propagating in the direction opposite that of the impeller, and rotating stall propagating slower than the rotational speed of the impeller. It was shown that both types of rotating cavitation were caused by the positive mass flow gain factor, while the rotating stall was caused by the positive slope of the pressure performance. Stability and propagation velocity maps are presented for the two types of rotating cavitation in the mass flow gain factor-cavitation compliance place. The correlation between theoretical results and experimental observations is discussed.

  12. Nonlinear Hydromagnetic Wave Support of a Stratified Molecular Cloud

    E-Print Network [OSTI]

    T. Kudoh; S. Basu

    2003-06-23T23:59:59.000Z

    We perform numerical simulations of nonlinear MHD waves in a gravitationally stratified molecular cloud that is bounded by a hot and tenuous external medium. We study the relation between the strength of the turbulence and various global properties of a molecular cloud, within a 1.5-dimensional approximation. Under the influence of a driving source of Alfvenic disturbances, the cloud is lifted up by the pressure of MHD waves and reaches a steady-state characterized by oscillations about a new time-averaged equilibrium state. The nonlinear effect results in the generation of longitudinal motions and many shock waves; however, the wave kinetic energy remains predominantly in transverse, rather than longitudinal, motions. There is an approximate equipartition of energy between the transverse velocity and fluctuating magnetic field (aspredicted by small-amplitude theory) in the region of the stratified cloud which contains most of the mass; however, this relation breaks down in the outer regions, particularly near the cloud surface, where the motions have a standing-wave character. This means that the Chandrasekhar-Fermi formula applied to molecular clouds must be significantly modified in such regions. Models of an ensemble of clouds show that, for various strengths of the input energy, the velocity dispersion in the cloud $\\sigma \\propto Z^{0.5}$, where $Z$ is a characteristic size of the cloud.Furthermore, $\\sigma$ is always comparable to the mean Alfven velocity of the cloud, consistent with observational results.

  13. Intercomparison of the Cloud Water Phase among Global Climate Models

    SciTech Connect (OSTI)

    Komurcu, Muge; Storelvmo, Trude; Tan, Ivy; Lohmann, U.; Yun, Yuxing; Penner, Joyce E.; Wang, Yong; Liu, Xiaohong; Takemura, T.

    2014-03-27T23:59:59.000Z

    Mixed-phase clouds (clouds that consist of both cloud droplets and ice crystals) are frequently present in the Earth’s atmosphere and influence the Earth’s energy budget through their radiative properties, which are highly dependent on the cloud water phase. In this study, the phase partitioning of cloud water is compared among six global climate models (GCMs) and with Cloud and Aerosol Lidar with Orthogonal Polarization retrievals. It is found that the GCMs predict vastly different distributions of cloud phase for a given temperature, and none of them are capable of reproducing the spatial distribution or magnitude of the observed phase partitioning. While some GCMs produced liquid water paths comparable to satellite observations, they all failed to preserve sufficient liquid water at mixed-phase cloud temperatures. Our results suggest that validating GCMs using only the vertically integrated water contents could lead to amplified differences in cloud radiative feedback. The sensitivity of the simulated cloud phase in GCMs to the choice of heterogeneous ice nucleation parameterization is also investigated. The response to a change in ice nucleation is quite different for each GCM, and the implementation of the same ice nucleation parameterization in all models does not reduce the spread in simulated phase among GCMs. The results suggest that processes subsequent to ice nucleation are at least as important in determining phase and should be the focus of future studies aimed at understanding and reducing differences among the models.

  14. Dust Emission from the Perseus Molecular Cloud

    E-Print Network [OSTI]

    S. Schnee; J. Li; A. A. Goodman; A. I. Sargent

    2008-05-27T23:59:59.000Z

    Using far-infrared emission maps taken by IRAS and Spitzer and a near-infrared extinction map derived from 2MASS data, we have made dust temperature and column density maps of the Perseus molecular cloud. We show that the emission from transiently heated very small grains and the big grain dust emissivity vary as a function of extinction and dust temperature, with higher dust emissivities for colder grains. This variable emissivity can not be explained by temperature gradients along the line of sight or by noise in the emission maps, but is consistent with grain growth in the higher density and lower temperature regions. By accounting for the variations in the dust emissivity and VSG emission, we are able to map the temperature and column density of a nearby molecular cloud with better accuracy than has previously been possible.

  15. MAGIC: Marine ARM GPCI Investigation of Clouds

    SciTech Connect (OSTI)

    Lewis, ER; Wiscombe, WJ; Albrecht, BA; Bland, GL; Flagg, CN; Klein, SA; Kollias, P; Mace, G; Reynolds, RM; Schwartz, SE; Siebesma, AP; Teixeira, J; Wood, R; Zhang, M

    2012-10-03T23:59:59.000Z

    The second Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF2) will be deployed aboard the Horizon Lines cargo container ship merchant vessel (M/V) Spirit for MAGIC, the Marine ARM GPCI1 Investigation of Clouds. The Spirit will traverse the route between Los Angeles, California, and Honolulu, Hawaii, from October 2012 through September 2013 (except for a few months in the middle of this time period when the ship will be in dry dock). During this field campaign, AMF2 will observe and characterize the properties of clouds and precipitation, aerosols, and atmospheric radiation; standard meteorological and oceanographic variables; and atmospheric structure. There will also be two intensive observational periods (IOPs), one in January 2013 and one in July 2013, during which more detailed measurements of the atmospheric structure will be made.

  16. Tropical Cloud Properties and Radiative Heating Profiles

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mather, James

    We have generated a suite of products that includes merged soundings, cloud microphysics, and radiative fluxes and heating profiles. The cloud microphysics is strongly based on the ARM Microbase value added product (Miller et al., 2003). We have made a few changes to the microbase parameterizations to address issues we observed in our initial analysis of the tropical data. The merged sounding product is not directly related to the product developed by ARM but is similar in that it uses the microwave radiometer to scale the radiosonde column water vapor. The radiative fluxes also differ from the ARM BBHRP (Broadband Heating Rate Profile) product in terms of the radiative transfer model and the sampling interval.

  17. A Community Atmosphere Model with Superparameterized Clouds

    SciTech Connect (OSTI)

    Randall, David; Branson, Mark; Wang, Minghuai; Ghan, Steven J.; Craig, Cheryl; Gettelman, A.; Edwards, Jim

    2013-06-18T23:59:59.000Z

    In 1999, National Center for Atmospheric Research (NCAR) scientists Wojciech Grabowski and Piotr Smolarkiewicz created a "multiscale" atmospheric model in which the physical processes associated with clouds were represented by running a simple high-resolution model within each grid column of a lowresolution global model. In idealized experiments, they found that the multiscale model produced promising simulations of organized tropical convection, which other models had struggled to produce. Inspired by their results, Colorado State University (CSU) scientists Marat Khairoutdinov and David Randall created a multiscale version of the Community Atmosphere Model (CAM). They removed the cloud parameterizations of the CAM, and replaced them with Khairoutdinov's high-resolution cloud model. They dubbed the embedded cloud model a "super-parameterization," and the modified CAM is now called the "SP-CAM." Over the next several years, many scientists, from many institutions, have explored the ability of the SP-CAM to simulate tropical weather systems, the day-night changes of precipitation, the Asian and African monsoons, and a number of other climate processes. Cristiana Stan of the Center for Ocean-Land-Atmosphere Interactions found that the SP-CAM gives improved results when coupled to an ocean model, and follow-on studies have explored the SP-CAM's utility when used as the atmospheric component of the Community Earth System Model. Much of this research has been performed under the auspices of the Center for Multiscale Modeling of Atmospheric Processes, a National Science Foundation (NSF) Science and Technology Center for which the lead institution is CSU.

  18. How Common are the Magellanic Clouds

    SciTech Connect (OSTI)

    Liu, Lulu; Gerke, Brian F.; Wechsler, Risa H.; Behroozi, Peter S.; Busha, Michael T.; /KIPAC, Menlo Park /SLAC

    2011-05-20T23:59:59.000Z

    We introduce a probabilistic approach to the problem of counting dwarf satellites around host galaxies in databases with limited redshift information. This technique is used to investigate the occurrence of satellites with luminosities similar to the Magellanic Clouds around hosts with properties similar to the Milky Way in the object catalog of the Sloan Digital Sky Survey. Our analysis uses data from SDSS Data Release 7, selecting candidate Milky-Way-like hosts from the spectroscopic catalog and candidate analogs of the Magellanic Clouds from the photometric catalog. Our principal result is the probability for a Milky-Way-like galaxy to host N{sub sat} close satellites with luminosities similar to the Magellanic Clouds. We find that 81 percent of galaxies like the Milky Way have no such satellites within a radius of 150 kpc, 11 percent have one, and only 3.5 percent of hosts have two. The probabilities are robust to changes in host and satellite selection criteria, background-estimation technique, and survey depth. These results demonstrate that the Milky Way has significantly more satellites than a typical galaxy of its luminosity; this fact is useful for understanding the larger cosmological context of our home galaxy.

  19. Embracing the Cloud for Better Cyber Security

    SciTech Connect (OSTI)

    Shue, Craig A [ORNL; Lagesse, Brent J [ORNL

    2011-01-01T23:59:59.000Z

    The future of cyber security is inextricably tied to the future of computing. Organizational needs and economic factors will drive computing outcomes. Cyber security researchers and practitioners must recognize the path of computing evolution and position themselves to influence the process to incorporate security as an inherent property. The best way to predict future computing trends is to look at recent developments and their motivations. Organizations are moving towards outsourcing their data storage, computation, and even user desktop environments. This trend toward cloud computing has a direct impact on cyber security: rather than securing user machines, preventing malware access, and managing removable media, a cloud-based security scheme must focus on enabling secure communication with remote systems. This change in approach will have profound implications for cyber security research efforts. In this work, we highlight existing and emerging technologies and the limitations of cloud computing systems. We then discuss the cyber security efforts that would support these applications. Finally, we discuss the implications of these computing architecture changes, in particular with respect to malware and social engineering.

  20. A complex network approach to cloud computing

    E-Print Network [OSTI]

    Travieso, Gonzalo; Bruno, Odemir Martinez; Costa, Luciano da Fontoura

    2015-01-01T23:59:59.000Z

    Cloud computing has become an important means to speed up computing. One problem influencing heavily the performance of such systems is the choice of nodes as servers responsible for executing the users' tasks. In this article we report how complex networks can be used to model such a problem. More specifically, we investigate the performance of the processing respectively to cloud systems underlain by Erdos-Renyi and Barabasi-Albert topology containing two servers. Cloud networks involving two communities not necessarily of the same size are also considered in our analysis. The performance of each configuration is quantified in terms of two indices: the cost of communication between the user and the nearest server, and the balance of the distribution of tasks between the two servers. Regarding the latter index, the ER topology provides better performance than the BA case for smaller average degrees and opposite behavior for larger average degrees. With respect to the cost, smaller values are found in the BA ...

  1. Outflow Driven Turbulence in Molecular Clouds

    E-Print Network [OSTI]

    Jonathan J. Carroll; Adam Frank; Eric G. Blackman; Andrew J. Cunningham; Alice C. Quillen

    2008-05-30T23:59:59.000Z

    In this paper we explore the relationship between protostellar outflows and turbulence in molecular clouds. Using 3-D numerical simulations we focus on the hydrodynamics of multiple outflows interacting within a parsec scale volume. We explore the extent to which transient outflows injecting directed energy and momentum into a sub-volume of a molecular cloud can be converted into random turbulent motions. We show that turbulence can readily be sustained by these interactions and show that it is possible to broadly characterize an effective driving scale of the outflows. We compare the velocity spectrum obtained in our studies to that of isotropically forced hydrodynamic turbulence finding that in outflow driven turbulence a power law is indeed achieved. However we find a steeper spectrum (beta ~ 3) is obtained in outflow driven turbulence models than in isotropically forced simulations (beta ~ 2). We discuss possible physical mechanisms responsible for these results as well and their implications for turbulence in molecular clouds where outflows will act in concert with other processes such as gravitational collapse.

  2. An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA

    E-Print Network [OSTI]

    Shupe, Matthew

    distribution of cloud boundary heights, and occurrence of liquid phase in clouds are determined from radar-observed clouds containing liquid was 73% for the year. The least amount of liquid water phase was observed during-detected clouds. Liquid was distributed in a combination of all-liquid and mixed phase clouds, and was detected

  3. MISR Cloud Detection over Ice and Snow Based on Linear Correlation Matching

    E-Print Network [OSTI]

    Sekhon, Jasjeet S.

    MISR Cloud Detection over Ice and Snow Based on Linear Correlation Matching Tao Shi , Bin Yu , and Amy Braverman Abstract Cloud detection is a crucial step in any climate modelling or prediction data to retrieve or estimate the cloud height and hence cloud detection. However, cloud detection even

  4. Cloud frequency climatology at the Andes/Amazon transition: 1. Seasonal and diurnal cycles

    E-Print Network [OSTI]

    Malhi, Yadvinder

    Cloud frequency climatology at the Andes/Amazon transition: 1. Seasonal and diurnal cycles Kate-scale cloud patterns. We examine the cloud climatology of a tropical Andean montane region in the context Satellite Cloud Climatology Project) DX cloud product (1983­2008), MODIS (Moderate Resolution Imaging

  5. Using Open Standards for Interoperability Issues, Solutions, and Challenges facing Cloud Computing

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Using Open Standards for Interoperability Issues, Solutions, and Challenges facing Cloud Computing, a new era of computing has been ushered in, that of grids and clouds. With several commercial cloud and commercial work loads within the ambit of cloud computing. Cloud computing has come as a blessing for small

  6. Understanding biases in shortwave cloud radiative forcing in the National Center for Atmospheric Research Community Atmosphere

    E-Print Network [OSTI]

    Zhang, Guang Jun

    in response to El Nin~o warming. The vast cloud cover in the region leads to much stronger cloud greenhouse effect in longwave radiation (longwave cloud radiative forcing) and cloud shielding effect in shortwaveUnderstanding biases in shortwave cloud radiative forcing in the National Center for Atmospheric

  7. The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean

    E-Print Network [OSTI]

    Daniel, Rosenfeld

    radiation by aerosols, however, can reduce the cloud cover. The net aerosol effect on clouds is currently- induced cloud changes, and 1 3 is due to aerosol direct radiative effect. cloud cover cloud height understand the processes. The radiative effect at the top of the atmosphere incurred by the aerosol effect

  8. VALIDATION OF CLOUD LIQUID WATER PATH RETRIEVALS FROM SEVIRI ON METEOSAT-8 USING CLOUDNET OBSERVATIONS

    E-Print Network [OSTI]

    Haak, Hein

    on global cloud statistics and radiation budget #12;(Feijt et al., 2003). With the launch of Meteosat Second effective radius and Cloud Liquid Water Path (CLWP) over Europe. The CloudNET research project, supported forecast models. The radiative behavior of clouds depends predominantly on cloud properties

  9. (Revised May 22, 2012) Rotational Dynamics (Energy)

    E-Print Network [OSTI]

    Collins, Gary S.

    energy (the sum of kinetic and potential energies) to derive an expression for the moment of inertia that the expression for kinetic energy takes on this simple form. Experiment Set Up The apparatus consists of a Rotary. The rotating object has kinetic energy but we cannot write it in the familiar form ˝mv2 because the velocities

  10. STEPS IN SLOW FLAGELLAR MOTOR ROTATION

    E-Print Network [OSTI]

    Leake, Mark C.

    STEPS IN SLOW FLAGELLAR MOTOR ROTATION Alexander D. Rowe1 , Yoshiyuki Sowa2, Mark C. Leake1+ -specific motors. Torque is generated by the interaction between stator complexes and FliG proteins revolution. CHIMERIC MOTOR: The stator units comprising the flagellar motors of the YS34 strain - used

  11. Wave-particle Interactions In Rotating Mirrors

    SciTech Connect (OSTI)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-01-11T23:59:59.000Z

    Wave-particle interactions in E×B rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.

  12. Rotatable superconducting cyclotron adapted for medical use

    DOE Patents [OSTI]

    Blosser, Henry G. (East Lansing, MI); Johnson, David A. (Williamston, MI); Riedel, Jack (East Lansing, MI); Burleigh, Richard J. (Berkeley, CA)

    1985-01-01T23:59:59.000Z

    A superconducting cyclotron (10) rotatable on a support structure (11) in an arc of about 180.degree. around a pivot axis (A--A) and particularly adapted for medical use is described. The rotatable support structure (13, 15) is balanced by being counterweighted (14) so as to allow rotation of the cyclotron and a beam (12), such as a subparticle (neutron) or atomic particle beam, from the cyclotron in the arc around a patient. Flexible hose (25) is moveably attached to the support structure for providing a liquified gas which is supercooled to near 0.degree. K. to an inlet means (122) to a chamber (105) around superconducting coils (101, 102). The liquid (34) level in the cyclotron is maintained approximately half full so that rotation of the support structure and cyclotron through the 180.degree. can be accomplished without spilling the liquid from the cyclotron. With the coils vertically oriented, each turn of the winding is approximately half immersed in liquid (34) and half exposed to cold gas and adequate cooling to maintain superconducting temperatures in the section of coil above the liquid level is provided by the combination of cold gas/vapor and by the conductive flow of heat along each turn of the winding from the half above the liquid to the half below.

  13. Solar Dynamics, Rotation, Convection and Overshoot

    E-Print Network [OSTI]

    Hanasoge, S; Roth, M; Schou, J; Schuessler, M; Thompson, M J

    2015-01-01T23:59:59.000Z

    We discuss recent observational, theoretical and modeling progress made in understanding the Sun's internal dynamics, including its rotation, meridional flow, convection and overshoot. Over the past few decades, substantial theoretical and observational effort has gone into appreciating these aspects of solar dynamics. A review of these observations, related helioseismic methodology and inference and computational results in relation to these problems is undertaken here.

  14. Lateral displacement and rotational displacement sensor

    DOE Patents [OSTI]

    Duden, Thomas

    2014-04-22T23:59:59.000Z

    A position measuring sensor formed from opposing sets of capacitor plates measures both rotational displacement and lateral displacement from the changes in capacitances as overlapping areas of capacitors change. Capacitances are measured by a measuring circuit. The measured capacitances are provided to a calculating circuit that performs calculations to obtain angular and lateral displacement from the capacitances measured by the measuring circuit.

  15. On rigidly rotating perfect fluid cylinders

    E-Print Network [OSTI]

    B. V. Ivanov

    2002-05-07T23:59:59.000Z

    The gravitational field of a rigidly rotating perfect fluid cylinder with gamma- law equation of state is found analytically. The solution has two parameters and is physically realistic for gamma in the interval (1.41,2]. Closed timelike curves always appear at large distances.

  16. Rigidly rotating cylinders of charged dust

    E-Print Network [OSTI]

    B. V. Ivanov

    2002-07-02T23:59:59.000Z

    The gravitational field of a rigidly rotating cylinder of charged dust is found analytically. The general and all regular solutions are divided into three classes. The acceleration and the vorticity of the dust are given, as well as the conditions for the appearance of closed timelike curves.

  17. Spectroscopic observation of the rotational Doppler effect

    E-Print Network [OSTI]

    S. Barreiro; J. W. R. Tabosa; H. Failache; A. Lezama

    2006-07-26T23:59:59.000Z

    We report on the first spectroscopic observation of the rotational Doppler shift associated with light beams carrying orbital angular momentum. The effect is evidenced as the broadening of a Hanle/EIT coherence resonance on Rb vapor when the two incident Laguerre-Gaussian laser beams have opposite topological charges. The observations closely agree with theoretical predictions.

  18. Observation of Bloch oscillations in molecular rotation

    E-Print Network [OSTI]

    Johannes Floß; Andrei Kamalov; Ilya Sh. Averbukh; Philip H. Bucksbaum

    2015-04-26T23:59:59.000Z

    The periodically kicked quantum rotor is known for non-classical effects such as quantum localisation in angular momentum space or quantum resonances in rotational excitation. These phenomena have been studied in diverse systems mimicking the kicked rotor, such as cold atoms in optical lattices, or coupled photonic structures. Recently, it was predicted that several solid state quantum localisation phenomena - Anderson localisation, Bloch oscillations, and Tamm-Shockley surface states - may manifest themselves in the rotational dynamics of laser-kicked molecules. Here, we report the first observation of rotational Bloch oscillations in a gas of nitrogen molecules kicked by a periodic train of femtosecond laser pulses. A controllable detuning from the quantum resonance creates an effective accelerating potential in angular momentum space, inducing Bloch-like oscillations of the rotational excitation. These oscillations are measured via the temporal modulation of the refractive index of the gas. Our results introduce room-temperature laser-kicked molecules as a new laboratory for studies of localisation phenomena in quantum transport.

  19. Excitation system for rotating synchronous machines

    DOE Patents [OSTI]

    Umans, Stephen D. (Belmont, MA); Driscoll, David J. (South Euclid, OH)

    2002-01-01T23:59:59.000Z

    A system for providing DC current to a rotating superconducting winding is provided. The system receives current feedback from the superconducting winding and determines an error signal based on the current feedback and a reference signal. The system determines a control signal corresponding to the error signal and provides a positive and negative superconducting winding excitation voltage based on the control signal.

  20. Quantum Vacuum Instability Near Rotating Stars

    E-Print Network [OSTI]

    A L Matacz; A C Ottewill; P C W Davies

    1992-12-08T23:59:59.000Z

    We discuss the Starobinskii-Unruh process for the Kerr black hole. We show how this effect is related to the theory of squeezed states. We then consider a simple model for a highly relativistic rotating star and show that the Starobinskii-Unruh effect is absent.

  1. Convective heat transfer in rotating, circular channels

    E-Print Network [OSTI]

    Hogan, Brenna Elizabeth

    2012-01-01T23:59:59.000Z

    Nusselt number values for flow in a rotating reference frame are obtained through computational fluid dynamic (CFD) analysis for Rossby numbers Ro ~1-4 and Reynolds numbers Re ~1,000-2,000. The heat-transfer model is first ...

  2. A thin film transistor driven microchannel device

    E-Print Network [OSTI]

    Lee, Hyun Ho

    2005-02-17T23:59:59.000Z

    .1. Principle of Electrophoresis?????????????? 1.2. Capillary and Microchip Electrophoresis????????... 1.3. Electrophoresis of DNA???????????????.. 2. Plasma Thin Film Deposition Process???????????... 2.1. Fundamentals of Plasma?????????????.?? 2.2. Plasma... Phase Chemical Reactions???????????.. 2.3. Plasma Enhanced Chemical Vapor Deposition??????.. 2.4. PECVD Thin Film?????????????????.. 3. Thin Film Transistor??????????????????.. 7 7 12 17 20 20 23 24 25 29 III...

  3. Modeling and control of thin film surface morphology: application to thin film solar cells

    E-Print Network [OSTI]

    Huang, Jianqiao

    2012-01-01T23:59:59.000Z

    Solar Energy Materials and Solar Cells, 86:207–216, 2005. [silicon thin films and solar cells. Journal of Appliedof a p-i-n thin-film solar cell with front transparent con-

  4. Some general aspects of thin-shell wormholes with cylindrical symmetry

    E-Print Network [OSTI]

    Ernesto F. Eiroa; Claudio Simeone

    2014-07-15T23:59:59.000Z

    In this article we study a general class of non-rotating thin-shell wormholes with cylindrical symmetry. We consider two physically sound definitions of the flare-out condition and we show that the less restrictive one allows for the construction of wormholes with positive energy density at the throat. We also analyze the mechanical stability of these objects under perturbations preserving the symmetry, proving that previous results are particular cases of a general property. We present examples of wormholes corresponding to Einstein-Maxwell spacetimes.

  5. Generation of Multiple Circular Walls on a Thin Film of Nematic Liquid Crystal by Laser Scanning

    E-Print Network [OSTI]

    M. Kojima; J. Yamamoto; K. Sadakane; K. Yoshikawa

    2008-03-02T23:59:59.000Z

    We found that multiple circular walls (MCW) can be generated on a thin film of a nematic liquid crystal through a spiral scanning of a focused IR laser. The ratios between radii of adjacent rings of MCW were almost constant. These constant ratios can be explained theoretically by minimization of the Frank elastic free energy of nematic medium. The director field on a MCW exhibits chiral symmetry-breaking although the elastic free energies of both chiral MCWs are degenerated, i.e., the director on a MCW can rotate clockwise or counterclockwise along the radial direction.

  6. Atmospheric cloud water contains a diverse bacterial community

    SciTech Connect (OSTI)

    Kourtev, P. S.; Hill, Kimberly A.; Shepson, Paul B.; Konopka, Allan

    2011-06-15T23:59:59.000Z

    Atmospheric cloud water contains an active microbial community which can impact climate, human health and ecosystem processes in terrestrial and aquatic systems. Most studies on the composition of microbial communities in clouds have been performed with orographic clouds that are typically in direct contact with the ground. We collected water samples from cumulus clouds above the upper U.S. Midwest. The cloud water was analyzed for the diversity of bacterial phylotypes by denaturing gradient gel electrophoresis (DGGE) and sequencing of 16S rRNA gene amplicons. DGGE analyses of bacterial communities detected 17e21 bands per sample. Sequencing confirmed the presence of a diverse bacterial community; sequences from seven bacterial phyla were retrieved. Cloud water bacterial communities appeared to be dominated by members of the cyanobacteria, proteobacteria, actinobacteria and firmicutes.

  7. A General Systems Theory for Rain Formation in Warm Clouds

    E-Print Network [OSTI]

    A. M. Selvam

    2014-08-15T23:59:59.000Z

    A cumulus cloud model which can explain the observed characteristics of warm rain formation in monsoon clouds is presented. The model is based on classical statistical physical concepts and satisfies the principle of maximum entropy production. Atmospheric flows exhibit selfsimilar fractal fluctuations that are ubiquitous to all dynamical systems in nature, such as physical, chemical, social, etc and are characterized by inverse power law form for power (eddy energy) spectrum signifying long-range space-time correlations. A general systems theory model for atmospheric flows developed by the author is based on the concept that the large eddy energy is the integrated mean of enclosed turbulent (small scale) eddies. This model gives scale-free universal governing equations for cloud growth processes. The model predicted cloud parameters are in agreement with reported observations, in particular, the cloud dropsize distribution. Rain formation can occur in warm clouds within 30minutes lifetime under favourable conditions of moisture supply in the environment.

  8. Beam Measurements of a CLOUD (Cosmics Leaving OUtdoor Droplets) Chamber

    E-Print Network [OSTI]

    Kirkby, Jasper

    2001-01-01T23:59:59.000Z

    A striking correlation has recently been observed between global cloud cover and the flux of incident cosmic rays. The effect of natural variations in the cosmic ray flux is large, causing estimated changes in the Earth's energy radiation balance that are comparable to those attributed to greenhouse gases from the burning of fossil fuels since the Industrial Revolution. However a direct link between cosmic rays and cloud formation has not been unambiguously established. We therefore propose to experimentally measure cloud (water droplet) formation under controlled conditions in a test beam at CERN with a CLOUD chamber, duplicating the conditions prevailing in the troposphere. These data, which have never been previously obtained, will allow a detailed understanding of the possible effects of cosmic rays on clouds and confirm, or otherwise, a direct link between cosmic rays, global cloud cover and the Earth's climate. The measurements will, in turn, allow more reliable calculations to be made of the residual e...

  9. Residual Stress Measurements in Thin Coatings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on steel Accomplishments Adhesion Energy Measurements Using Indentation (Kim et al., Thin Solid Films 441 (2003) 172-179) * Hard brittle coating on relatively ductile...

  10. Three-dimensional rotating stall inception and effects of rotating tip clearance asymmetry in axial compressors

    E-Print Network [OSTI]

    Gordon, Kenneth A. (Kenneth Andrew), 1970-

    1999-01-01T23:59:59.000Z

    The effects of two types of flow nonuniformity on stall inception behavior were assessed with linearized stability analyses of two compressor flow models. Response to rotating tip clearance asymmetries induced by a whirling ...

  11. Film cooling effectiveness measurements on rotating and non-rotating turbine components

    E-Print Network [OSTI]

    Ahn, Jaeyong

    2007-04-25T23:59:59.000Z

    have significant effects on surface static pressure and film-cooling effectiveness. Same technique was applied to the rotating turbine blade leading edge region. Tests were conducted on the first stage rotor of a 3-stage axial turbine. The Reynolds...

  12. Thin film buried anode battery

    DOE Patents [OSTI]

    Lee, Se-Hee (Lakewood, CO); Tracy, C. Edwin (Golden, CO); Liu, Ping (Denver, CO)

    2009-12-15T23:59:59.000Z

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  13. Thin film solar energy collector

    DOE Patents [OSTI]

    Aykan, Kamran (Monmouth Beach, NJ); Farrauto, Robert J. (Westfield, NJ); Jefferson, Clinton F. (Millburn, NJ); Lanam, Richard D. (Westfield, NJ)

    1983-11-22T23:59:59.000Z

    A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.

  14. Low surface brightness galaxies rotation curves in the low energy limit of $R^n$ gravity : no need for dark matter?

    E-Print Network [OSTI]

    S. Capozziello; V. F. Cardone; A. - Troisi

    2006-12-13T23:59:59.000Z

    We investigate the possibility that the observed flatness of the rotation curves of spiral galaxies is not an evidence for the existence of dark matter haloes, but rather a signal of the breakdown of General Relativity. To this aim, we consider power - law fourth order theories of gravity obtained by replacing the scalar curvature $R$ with $f(R) = f_0 R^n$ in the gravity Lagrangian. We show that, in the low energy limit, the gravitational potential generated by a pointlike source may be written as $\\Phi(r) \\propto r^{-1} \\left [ 1 + (r/r_c)^{\\beta} \\right ]$ with $\\beta$ a function of the slope $n$ of the gravity Lagrangian and $r_c$ a scalelength depending on the gravitating system properties. In order to apply the model to realistic systems, we compute the modified potential and the rotation curve for spherically symmetric and for thin disk mass distributions. It turns out that the potential is still asymptotically decreasing, but the corrected rotation curve, although not flat, is higher than the Newtonian one thus offering the possibility to fit rotation curves without dark matter. To test the viability of the model, we consider a sample of 15 low surface brightness (LSB) galaxies with combined HI and H$\\alpha$ measurements of the rotation curve extending in the putative dark matter dominated region. We find a very good agreement between the theoretical rotation curve and the data using only stellar disk and interstellar gas.

  15. Extended rotations and culmination age of coast douglas-fir: Old studies speak to current issues. Forest Service research paper

    SciTech Connect (OSTI)

    Curtis, R.O.

    1995-11-01T23:59:59.000Z

    Trends of mean annual increment and periodic annual increment were examined in 17 long-term thinning studies in Douglas-fir (Pseuditsuga menziesii var. menziesii (Mirb.) Franco) in western Washington, western Oregon, and British Columbia. Problems in evaluating growth trends and culmination ages are discussed. None of the stands had clearly reached culmination of mean annual increment, although some seemed close. The observed trends seem generally consistent with some other recent comparisons. These comparisons indicate that rotations can be considerably extended without reducing long-term timber production; value production probably would increase. A major problem in such a strategy is design of thinning regimes that can maintain a reasonable level of timber flow during the transition period while producing stand conditions compatible with other management objectives. The continuing value of long-term permanent plot studies is emphasized.

  16. In-situ study of electromigration-induced grain rotation in Pb-free solder joint by synchrotron microdiffraction

    SciTech Connect (OSTI)

    Chen, Kai; Tamura, Nobumichi; Tu, King-Ning

    2008-10-31T23:59:59.000Z

    The rotation of Sn grains in Pb-free flip chip solder joints hasn't been reported in literature so far although it has been observed in Sn strips. In this letter, we report the detailed study of the grain orientation evolution induced by electromigration by synchrotron based white beam X-ray microdiffraction. It is found that the grains in solder joint rotate more slowly than in Sn strip even under higher current density. On the other hand, based on our estimation, the reorientation of the grains in solder joints also results in the reduction of electric resistivity, similar to the case of Sn strip. We will also discuss the reason why the electric resistance decreases much more in strips than in the Sn-based solders, and the different driving force for the grain growth in solder joint and in thin film interconnect lines.

  17. Can Cloud Computing Address the Scientific Computing Requirements...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for meeting the ever-increasing computational needs of scientists, Department of Energy researchers have issued a report stating that the cloud computing model is useful, but...

  18. Unlocking the Secrets of Clouds | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    predictions. They cool by reflecting sunlight back into space and warm by reflecting infrared radiation back to earth. But their behavior is still poorly understood, making clouds...

  19. Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shupe, Matthew

    Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.

  20. Global Mainframe As A Cloud Machine Market Size, Share, Growth...

    Open Energy Info (EERE)

    and plan, Mainframe As A Cloud Machine product specification, manufacturing process, cost structure etc. Then we deeply analyzed the world's main region market conditions that...