National Library of Energy BETA

Sample records for thickness porosity carbon

  1. Robust carbon monolith having hierarchical porosity

    DOE Patents [OSTI]

    Dai, Sheng; Guiochon, Georges A; Liang, Chengdu

    2014-01-14

    A carbon monolith includes a robust carbon monolith characterized by a skeleton size of at least 100 nm, and a hierarchical pore structure having macropores and mesopores.

  2. Robust carbon monolith having hierarchical porosity

    DOE Patents [OSTI]

    Dai, Sheng; Guiohon, Georges A; Liang, Chengdu

    2013-02-05

    A carbon monolith includes a robust carbon monolith characterized by a skeleton size of at least 100 nm, and a hierarchical pore structure having macropores and mesopores.

  3. Carbon composition with hierarchical porosity, and methods of preparation

    DOE Patents [OSTI]

    Mayes, Richard T; Dai, Sheng

    2014-10-21

    A method for fabricating a porous carbon material possessing a hierarchical porosity, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic component, (iii) a dione component in which carbonyl groups are adjacent, and (iv) an acidic component, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a carbon material possessing a hierarchical porosity comprised of mesopores and macropores. Also described are the resulting hierarchical porous carbon material, a capacitive deionization device in which the porous carbon material is incorporated, as well as methods for desalinating water by use of said capacitive deionization device.

  4. Well-log interpretation of carbonate reservoirs with bimodal porosity 

    E-Print Network [OSTI]

    Tandircioglu, Ahmet

    1990-01-01

    ) in the flushed zone. The difference between the two was an INDUCTION RESISTIVITY SP-R-2 5 MV 9750 GAS EFFECT 4t W Run I SONIC g SW 26 58% 22 65% st Run 2 Figure 4-%ell-log responses from a Frio sandstone with bimodal porosity, Nueces County, Texas... ~ ~ ~ ' ~ ~ 23 Ol LIPF 5 OAMM* RAY SHIRE' IA POROSITY 55 15 OAL O 0 PORE ~ PERF Figure 9-Gamma-ray (GR), caliper(CAL), density porosity (gD), and neutron porosity (9N) logs through the Smackover in the Shirey 1A well, Claiborne Parish, Louisiana...

  5. Closeout of Advanced Boron and Metal Loaded High Porosity Carbons.

    SciTech Connect (OSTI)

    Peter C. Eklund (deceased); T. C. Mike Chung; Henry C. Foley; Vincent H. Crespi

    2011-05-01

    The Penn State effort explored the development of new high-surface-area materials for hydrogen storage, materials that could offer enhancement in the hydrogen binding energy through a direct chemical modification of the framework in high specific-surface-area platforms. The team chemically substituted boron into the hexagonal sp2 carbon framework, dispersed metal atoms bound to the boro-carbon structure, and generated the theory of novel nanoscale geometries that can enhance storage through chemical frustration, sheet curvature, electron deficiency, large local fields and mixed hybridization states. New boro-carbon materials were synthesized by high temperature plasma, pyrolysis of boron-carbon precursor molecules, and post-synthesis modification of carbons. Hydrogen uptake has been assessed, and several promising leads have been identified, with the requirement to simultaneously optimize total surface area while maintaining the enhanced hydrogen binding energies already demonstrated.

  6. Predicting porosity in a Saudi Arabian carbonate reservoir using geologic constraints integrated with 3-D seismic and well data

    SciTech Connect (OSTI)

    Jeffery, R.; Thomsen, M. [Saudi Aramco, Dhahran (Saudi Arabia)

    1995-08-01

    A method for predicting lateral changes in reservoir porosity using 3-D seismic Aptitudes, calibrated against the amplitude response versus porosity measured at a select number of wells, was implemented and applied to produce a porosity map of a Saudi Arabian carbonate reservoir. The technique relies on the uniform lithologic seismic response of an overlying anhydrite, and thus assigns variations in amplitudes at the reservoir level to changes in reservoir average porosity. Throughout the study area, reservoir porosity and acoustic impedance logs exhibit a firm linear relationship. As reservoir porosity increases, its acoustic impedance decreases, and the greater contrast with the overlying anhydrite translates into larger seismic amplitudes. Thus, we expect the reservoir`s relative amplitude response to also increase linearly with increasing porosity. A check on this hypothesis was provided by computing synthetic seismograms at several wells, and measuring the reservoir`s theoretical amplitude response versus porosity averaged over the producing zone within the reservoir. This trend supported a linear seismic amplitude to porosity transform. Upon verification of the technique`s applicability, the reservoirs amplitude response was extracted from the 3-D seismic volume in the vicinity of several wells. These were used in conjunction with porosities averaged ever the reservoir to derive the amplitude to porosity transform. This transform was used in converting the mapped reservoir amplitudes into variations in average porosities. The success ratio for predicting porosities in wells not used in the analysis was nearly perfect, and the map continues to correctly predict porosities in subsequently drilled wells.

  7. Controlling porosity in lignin-derived nanoporous carbon for supercapacitor applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jeon, Ju-Won; Zhang, Libing; Lutkenhaus, Jodie L.; Laskar, Dhrubojyoti D.; Lemmon, John P.; Choi, Daiwon; Nandasiri, Manjula I.; Hashmi, Ali; Xu, Jie; Motkuri, Radha K.; et al

    2015-02-01

    Low-cost renewable lignin has been used as a precursor to produce porous carbons. However, to date, it has not been easy to obtain high surface area porous carbon without activation processes or templating agents. Here, we demonstrate that low molecular weight lignin yields highly porous carbon (1092 m˛ g?ą) with more graphitization through direct carbonization without additional activation processes or templating agents. We found that molecular weight and oxygen consumption during carbonization are critical factors to obtain high surface area, graphitized porous carbons. This highly porous carbon from low-cost renewable lignin sources is a good candidate for supercapacitor electrode materials.

  8. Diagenetic controls on porosity and permeability in Miocene carbonates, La Molata, Spain

    E-Print Network [OSTI]

    Li, Zhaoqi

    2012-05-31

    and evaporated seawater (43 ppt). The distribution of carbon and oxygen isotopes on the platform, and the Sr data indicate vertical flow of freshwater into the carbonate system. Thus, dolomitization is due to ascending freshwater-mesohaline mixing. This mechanism...

  9. Carbide-Derived Carbons with Tunable Porosity Optimized for Hydrogen Storage

    SciTech Connect (OSTI)

    Fisher, John E.; Gogotsi, Yury; Yildirim, Taner

    2010-01-07

    On-board hydrogen storage is a key requirement for fuel cell-powered cars and trucks. Porous carbon-based materials can in principle adsorb more hydrogen per unit weight at room temperature than liquid hydrogen at -176 oC. Achieving this goal requires interconnected pores with very high internal surface area, and binding energies between hydrogen and carbon significantly enhanced relative to H2 on graphite. In this project a systematic study of carbide-derived carbons, a novel form of porous carbon, was carried out to discover a high-performance hydrogen sorption material to meet the goal. In the event we were unable to improve on the state of the art in terms of stored hydrogen per unit weight, having encountered the same fundamental limit of all porous carbons: the very weak interaction between H2 and the carbon surface. On the other hand we did discover several strategies to improve storage capacity on a volume basis, which should be applicable to other forms of porous carbon. Further discoveries with potentially broader impacts include • Proof that storage performance is not directly related to pore surface area, as had been previously claimed. Small pores (< 1.5 nm) are much more effective in storing hydrogen than larger ones, such that many materials with large total surface areas are sub-par performers. • Established that the distribution of pore sizes can be controlled during CDC synthesis, which opens the possibility of developing high performance materials within a common family while targeting widely disparate applications. Examples being actively pursued with other funding sources include methane storage, electrode materials for batteries and supercapacitors with record high specific capacitance, and perm-selective membranes which bind cytokines for control of infections and possibly hemodialysis filters.

  10. Growth Termination of Carbon Nanotubes at Millimeter Thickness Due to Structural Change in Catalyst

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Growth Termination of Carbon Nanotubes at Millimeter Thickness Due to Structural Change in Catalyst, it is reported that "supergrowth" rate decreases with reaction time and finally the growth terminates [2]. Our group recently reproduced "supergrowth" [3] and observed similar "supergrowth" termination within a few

  11. Effects of catalyst film thickness on plasma-enhanced carbon nanotube growth

    SciTech Connect (OSTI)

    Hofmann, S.; Cantoro, M.; Kleinsorge, B.; Casiraghi, C.; Parvez, A.; Robertson, J.; Ducati, C.

    2005-08-01

    A systematic study is presented of the influence of catalyst film thickness on carbon nanostructures grown by plasma-enhanced chemical-vapor deposition from acetylene and ammonia mixtures. We show that reducing the Fe/Co catalyst film thickness below 3 nm causes a transition from larger diameter (>40 nm), bamboolike carbon nanofibers to small diameter ({approx}5 nm) multiwalled nanotubes with two to five walls. This is accompanied by a more than 50 times faster growth rate and a faster catalyst poisoning. Thin Ni catalyst films only trigger such a growth transition when pretreated with an ammonia plasma. We observe a limited correlation between this growth transition and the coarsening of the catalyst film before deposition. For a growth temperature of {<=}550 deg. C, all catalysts showed mainly a tip growth regime and a similar activity on untreated silicon, oxidized silicon, and silicon nitride support.

  12. Dual-porosity ribbed fuel cell cathode

    DOE Patents [OSTI]

    Johnsen, Richard; Yuh, Chao-Yi; Alexander, Michael

    2005-05-10

    A fuel cell cathode comprising a cathode body having rib regions and base regions which connect the rib regions, the rib regions being of greater thickness and of less porosity than the base regions.

  13. Porosity reduction in Monterey Formation, California

    SciTech Connect (OSTI)

    Compton, J.S.

    1987-05-01

    Porosity and grain density were determined for different lithologies from throughout a 1.2-km thick section of the Monterey and Sisquoc formations in the Santa Maria basin area, California. Porosity reduction by physical and chemical compaction in the predominantly siliceous sediment is controlled largely by the bulk sediment composition and silica phase transformations. Physical compaction of sediment grains from increasing overburden pressure is responsible for most of the gradual porosity reduction with increasing burial depth in opal-A siliceous ooze and diatomite. The porous, incompressible diatom frustule maintains a high porosity relative to clayey and calcareous sediment. Therefore, a positive correlation exists between porosity and biogenic silica (diatom) content of the sediment. During the opal-A to opal-CT silica phase transformation, solution of the porous diatom frustule and precipitation of cryptocrystalline opal-CT results in a porosity reduction that roughly correlates with the biogenic silica content of the sediment. Local porosity reduction occurs in pore-filling dolomite and chert nodules. Dry bulk density as well as porosity reduction tend to increase with sediment depth. Dolomite and organic matter have the most significant influence on the bulk density because of their respective high and low density. The maximum burial depth of the uplifted and eroded section is estimated by overlapping the porosity-depth relation of average deep-sea siliceous ooze.

  14. Enhanced Tissue Adhesion by Increased Porosity and Surface Roughness...

    Office of Scientific and Technical Information (OSTI)

    Enhanced Tissue Adhesion by Increased Porosity and Surface Roughness of Carbon Based Biomaterials Citation Details In-Document Search Title: Enhanced Tissue Adhesion by Increased...

  15. Porosity in hybrid materials

    SciTech Connect (OSTI)

    Schaefer, D.W.; Beaucage, G.; Loy, D. [Sandia National Labs., Albuquerque, NM (United States)

    1995-12-31

    Multicomponent, or hybrid composites are emerging as precursors to porous materials. Sacrifice of an ephemeral phase can be used to generate porosity, the nature of which depends on precursor structure. Retention of an organic constituent, on the other hand, can add desirable toughness to an otherwise brittle ceramic. We use small-angle x-ray and neutron scattering to examine porosity in both simple and hybrid materials. We find that microphase separation controls porosity in almost all systems studied. Pore distributions are controlled by the detailed bonding within and between phases as well as the flexibility of polymeric constituents. Thus hybridization opens new regions of pore distributions not available in simple systems. We look at several sacrificial concepts and show that it is possible to generate multimodal pore size distributions due to the complicated phase structure in the precursor.

  16. Microparticles with hierarchical porosity

    DOE Patents [OSTI]

    Petsev, Dimiter N; Atanassov, Plamen; Pylypenko, Svitlana; Carroll, Nick; Olson, Tim

    2012-12-18

    The present disclosure provides oxide microparticles with engineered hierarchical porosity and methods of manufacturing the same. Also described are structures that are formed by templating, impregnating, and/or precipitating the oxide microparticles and method for forming the same. Suitable applications include catalysts, electrocatalysts, electrocatalysts support materials, capacitors, drug delivery systems, sensors and chromatography.

  17. Dual-porosity reservoir modeling of the fractured Hanifa reservoir, Abqaiq Field, Saudi Arabia

    SciTech Connect (OSTI)

    Luthy, S.T. [Saudi Aramco, Dhahran (Saudi Arabia)

    1995-08-01

    Fractures play a significant role in the transmissibility of the Hanifa reservoir at Abqaiq Field. The Hanifa is a Type 2 fractured reservoir characterized by a finely-crystalline carbonate matrix which contains most of the reservoir storage porosity, and a stylolitic fracture system which provides essential permeability. Integration of borehole imaging data with available open-hole log, core, and well-test data from horizontal and vertical wells allowed for the distribution of fracture parameters, including fracture density, aperture, porosity, and permeability throughout a geocellular model. Analysis of over 5000 fractures showed that changes in lithology, grain size, and/or bed thickness do not correlate with changes in fracture densities. Review of P- and S-wave log data showed that porosity is negatively correlated with fracture density and mechanical rock strength. From these relationships, it was possible to utilize additional wells where porosity log data was available to calculate fracture densities. These wells were used to generate matrix porosity and permeability as well as fracture density attributes in a 12-sequence, 29-layer geocellular model. Fracture permeabilities compare favorably with well-test derived productivity indices. Three-dimensional visualization of model attributes showed that a monotonous and low (<10 md) distribution of matrix- related permeability contrasts sharply with highly variable and relatively high (ER 50 md) permeabilities of the fracture system. Reliability of the geocellular model to predict fracture densities and associated permeabilities has been confirmed by subsequent drilling of high cost horizontal wells, and is being used in reservoir engineering and development drilling planning efforts.

  18. Porosity in polysilsesquioxane xerogels

    SciTech Connect (OSTI)

    LOY,DOUGLAS A.; SCHNEIDER,DUANE A.; BAUGHER,BRIGITTA M.; RAHIMIAN,KAMYAR

    2000-05-09

    Polysilsesquioxanes, [RSiO{sub 1.5}]{sub n} are a class of hybrid organic-inorganic materials in which silicon atoms are linked with up to three siloxane bonds to other monomer units in the polymer and the organic group is a pendent functionality. Polysilsesquioxanes are prepared by the hydrolysis and condensation of organotrialkoxysilanes (Scheme l). Organotrialkoxysilanes RSi(OR{prime}){sub 3}, have been extensively used as coupling agents for composites or surface treatments for materials. Polysilsesquioxanes have become increasingly popular for generating specialty coatings such as low k dielectric materials for microelectronic applications. While there is extensive information on the formation of polysilsesquioxanes, there has not been a survey of the ability of organotrialkoxysilanes to form gels until recently. The formation of polysilsesquioxanes gels has been shown to be very sensitive to the nature of the organic group. Many monomers will only form soluble oligomers or polymers upon hydrolysis and condensation, even when the reaction is conducted solvent-free with neat monomer and aqueous catalyst. Furthermore, there is little information concerning the influence of the organic group, R, on the porosity of the polysilsesquioxanes gels that are formed. In this paper the authors describe the preparation of polysilsesquioxane gels where R = H, methyl, ethyl, cyanoethyl, vinyl, dodecyl, hexadecyl, octadecyl, chloromethyl, and chloromethylphenyl, and the characterization of the porosity of the respective xerogels. Gels were prepared from the hydrolysis and condensation of organotrimethoxysilanes, RSi(OEt){sub 3}, and organotriethoxy-silanes, RSi(OEt){sub 3}.

  19. Porosity in Polysilsesquioxane Xerolgels

    SciTech Connect (OSTI)

    Baugher, B.M.; Loy, D.A.; Rahimian, K.

    1999-08-17

    Polymerization of organotrialkoxysilanes is a convenient method for introducing organic functionality into hybrid organic-inorganic materials. However, not much is known about the effects of the organic substituent on the porosity of the resulting xerogels. In this study, we prepared a series of polysilsesquioxane xerogels from organotrialkoxysilanes, RSi(OR{sup 1}){sub 3}, with different organic groups (R = H, Me, Et dodecyl, hexadecyl, octadecyl, vinyl, chloromethyl, (p-chloromethyl) phenyl, cyanoethyl). Polymerizations of the monomers were carried out under a variety of conditions, varying monomer concentration, type of catalyst, and alkoxide substituent. The effect of the organic substituent on the sol-gel process was often dramatic. In many cases, gels were formed only at very high monomer concentration and/or with only one type of catalyst. All of the gels were processed as xerogels and characterized by scanning electron microscopy and nitrogen sorption porosimetry to evaluate their pore structure.

  20. Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska

    SciTech Connect (OSTI)

    Genet, Helene [Institute of Arctic Biology (IAB), University of Alaska, Fairbanks (UAF)] [Institute of Arctic Biology (IAB), University of Alaska, Fairbanks (UAF); McGuire, A. David [University of Alaska] [University of Alaska; Barrett, K. [USGS Alaska Science Center] [USGS Alaska Science Center; Breen, Amy [International Arctic Research Center, SNAP, University of Alaska, Fairbanks (UAF)] [International Arctic Research Center, SNAP, University of Alaska, Fairbanks (UAF); Euskirchen, Eugenie S [University of Alaska] [University of Alaska; Johnstone, J. F. [University of Saskatchewan] [University of Saskatchewan; Kasischke, Eric S. [University of Maryland, College Park] [University of Maryland, College Park; Melvin, A. M. [University of Florida, Gainesville] [University of Florida, Gainesville; Bennett, A. [International Arctic Research Center, SNAP, University of Alaska, Fairbanks (UAF)] [International Arctic Research Center, SNAP, University of Alaska, Fairbanks (UAF); Mack, M. C. [University of Florida, Gainesville] [University of Florida, Gainesville; Rupp, Scott T. [International Arctic Research Center, SNAP, University of Alaska, Fairbanks (UAF)] [International Arctic Research Center, SNAP, University of Alaska, Fairbanks (UAF); Schuur, Edward [University of Florida] [University of Florida; Turetsky, M. R. [University of Guelph, Canada] [University of Guelph, Canada; Yuan, Fengming [ORNL] [ORNL

    2013-01-01

    There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layercaused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness of 1.1 m on average by 2100. The combination of warming and fire led to a simulated cumulative loss of 9.6 kgC m 2 on average by 2100. Our analysis suggests that ecosystem carbon storage in boreal forests in interior Alaska is particularly vulnerable, primarily due to the combustion of organic layer thickness in fire and the related increase in active layer thickness that exposes previously protected permafrost soil carbon to decomposition.

  1. Processing and characterization of high porosity aerogel films

    SciTech Connect (OSTI)

    Hrubesh, L.W.; Poco, J.F.

    1994-11-22

    Aerogels are highly porous solids having unique morphology among materials because both the pores and particles making up the material have sizes less than wavelengths of visible light. Such a unique morphology modifies the normal molecular transport mechanisms within the material, resulting in exceptional thermal, acoustical, mechanical, and electrical properties. For example, aerogels have the lowest measured thermal conductivity and dielectric constant for any solid material. Special methods are required to make aerogel films with high porosity. In this paper, we discuss the special conditions needed to fabricate aerogel films having porosities greater than 75% and we describe methods of processing inorganic aerogel films having controllable thicknesses in the range 0.5 to 200 micrometers. We report methods and results of characterizing the films including thickness, refractive index, density (porosity), and dielectric constant. We also discuss results of metallization and patterning on the aerogel films for applications involving microminiature electronics and thermal detectors.

  2. Thermoelectric materials having porosity

    DOE Patents [OSTI]

    Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

    2014-08-05

    A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

  3. Dual porosity gas evolving electrode

    DOE Patents [OSTI]

    Townsend, C.W.

    1994-11-15

    A dual porosity electrode is described for use in thermoelectrochemical systems where simultaneous transport of gas and liquid into and/or out of the electrode is required. The electrode includes catalytic electrode particles having diameters ranging from about 25 to 100 angstroms. The catalytic electrode particles are anchored to a support network in clusters which have internal pores ranging in size from 25 to 100 angstroms. The pores between the clusters range in size from between about 1 to 20 microns. A method for making the dual porosity electrodes is also disclosed.

  4. Method and apparatus for detecting the presence and thickness of carbon and oxide layers on EUV reflective surfaces

    DOE Patents [OSTI]

    Malinowski, Michael E.

    2005-01-25

    The characteristics of radiation that is reflected from carbon deposits and oxidation formations on highly reflective surfaces such as Mo/Si mirrors can be quantified and employed to detect and measure the presence of such impurities on optics. Specifically, it has been shown that carbon deposits on a Mo/Si multilayer mirror decreases the intensity of reflected HeNe laser (632.8 nm) light. In contrast, oxide layers formed on the mirror should cause an increase in HeNe power reflection. Both static measurements and real-time monitoring of carbon and oxide surface impurities on optical elements in lithography tools should be achievable.

  5. Mixing-induced precipitation and porosity evolution in porous media Simon Emmanuel, Brian Berkowitz *

    E-Print Network [OSTI]

    Simon, Emmanuel

    remain. Such deposi- tional patterns are commonly observed in fractured and high porosity carbonate precipitation in geological formations, the physical parameters that characterize the porous matrix. All rights reserved. Keywords: Reactive transport; Fractures; Specific surface area 1. Introduction

  6. Statistical Correlation and Modelling of Carbonate Heterogeneity 

    E-Print Network [OSTI]

    Price, David P

    2009-01-01

    In many carbonate reservoirs, much of the porosity is in the form of micropores (with diameter 1-10 microns). This porosity lies far below the resolution of any conventional wireline logging tools and can only be observed ...

  7. Optimal Porosity Distribution for Minimized Ohmic Drop across a Porous Electrode

    E-Print Network [OSTI]

    electrode made of lithium cobalt oxide, which is commonly used in lithium-ion batteries for various been used to optimize the electrode thickness or spatially uniform porosity in lithium-ion battery can provide analyti- cal expressions to describe the discharge of rechargeable lithium-ion batteries

  8. Advanced High Porosity Ceramic Honeycomb Wall Flow Filters |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Porosity Ceramic Honeycomb Wall Flow Filters Advanced High Porosity Ceramic Honeycomb Wall Flow Filters 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007)....

  9. Fabrication of dual porosity electrode structure

    DOE Patents [OSTI]

    Smith, James L. (Lemont, IL); Kucera, Eugenia H. (Downers Grove, IL)

    1991-01-01

    A substantially entirely fibrous ceramic which may have dual porosity of both micro and macro pores. Total porosity may be 60-75% by volume. A method of spraying a slurry perpendicularly to an ambient stream of air is disclosed along with a method of removing binders without altering the fiber morphology. Adding fine ceramic particulates to the green ceramic fibers enhances the sintering characteristics of the fibers.

  10. Fabrication of dual porosity electrode structure

    DOE Patents [OSTI]

    Smith, J.L.; Kucera, E.H.

    1991-02-12

    A substantially entirely fibrous ceramic is described which may have dual porosity of both micro and macro pores. Total porosity may be 60-75% by volume. A method of spraying a slurry perpendicularly to an ambient stream of air is disclosed along with a method of removing binders without altering the fiber morphology. Adding fine ceramic particulates to the green ceramic fibers enhances the sintering characteristics of the fibers. 3 figures.

  11. Critical porosity: The key to relating physical properties to porosity in rocks

    SciTech Connect (OSTI)

    Nur, A.M.; Mavko, G.; Dvorkin, J.; Gal, D.

    1995-12-31

    Many classes of rock such as sandstones, dolomites, chalks, and cracked igneous rocks have each a distinct characteristic porosity above which the material behaves as s suspension. The porosity at which this system changes, or transforms from isostress to solid load-bearing is defined here as the critical porosity {phi}{sub c}. It is easy to envision that at {phi}{sub c} not only the mechanical moduli, but also other properties such as strength and electrical conductivity, may also undergo transformations. Consequently, the critical porosity must be a fundamental property of a given porous system, not just of one of its physical properties. The observed values of {phi}{sub c} range from .005 for cracked granites to .30 or .40 for limestones, dolomites and sandstones, .60 for chalks and .90 for volcanic glasses. The data suggest that (1) A critical porosity value {phi}{sub c} exists which is typical of a given class of porous materials. Each class is defined on the basis of its common mineralogy or diagenetic porosity reduction processes. (2) Given {phi}{sub c} it may be possible to closely approximate the relation between porosity and velocity, over the entire range of porosity, with a modified mixture relation, in which the mixed components are the pure solid on one end, and a critical suspension on the other. (3) Without {phi}{sub c}, theory cannot yield reliable or useful velocity-porosity relations.

  12. The development of MRI for the determination of porosity distribution in reservoir core samples 

    E-Print Network [OSTI]

    Shivers, Jon Blake

    1991-01-01

    , was calculated in each of these directions to determine the distance between correlated and uncorrelated porosity values. The results show that the German Sandstone is correlated for about 5 mm in all three directions considered. In the Austin Chalk, porosity..., Y-I WRITE(7, *) A(H), C(H), G(H) 60 CO~ STOP 72 APPENDIX D CORE SAMPLE GEOLOGY The Austin Chalk is best characterized as a very fine- grained carbonate mud containing coarser skeletal tests and fragments. The grain size of the chalk...

  13. Coatings with controlled porosity and chemical properties

    DOE Patents [OSTI]

    Frye, G.C.; Brinker, C.J.; Doughty, D.H.; Bein, T.; Moller, K.

    1993-07-06

    Coatings and sensors are described having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

  14. CONSTRAINTS ON POROSITY AND MASS LOSS IN O-STAR WINDS FROM THE MODELING OF X-RAY EMISSION LINE PROFILE SHAPES

    SciTech Connect (OSTI)

    Leutenegger, Maurice A.; Sundqvist, Jon O.; Owocki, Stanley P.

    2013-06-10

    We fit X-ray emission line profiles in high resolution XMM-Newton and Chandra grating spectra of the early O supergiant {zeta} Pup with models that include the effects of porosity in the stellar wind. We explore the effects of porosity due to both spherical and flattened clumps. We find that porosity models with flattened clumps oriented parallel to the photosphere provide poor fits to observed line shapes. However, porosity models with isotropic clumps can provide acceptable fits to observed line shapes, but only if the porosity effect is moderate. We quantify the degeneracy between porosity effects from isotropic clumps and the mass-loss rate inferred from the X-ray line shapes, and we show that only modest increases in the mass-loss rate ({approx}< 40%) are allowed if moderate porosity effects (h{sub {infinity}} {approx}< R{sub *}) are assumed to be important. Large porosity lengths, and thus strong porosity effects, are ruled out regardless of assumptions about clump shape. Thus, X-ray mass-loss rate estimates are relatively insensitive to both optically thin and optically thick clumping. This supports the use of X-ray spectroscopy as a mass-loss rate calibration for bright, nearby O stars.

  15. Dual-porosity reservoir modeling of the fractured Hanifa reservoir, Abqaiq Field, Saudi Arabia

    SciTech Connect (OSTI)

    Luthy, S.T. [Saudi Aramco, Dhahran (Saudi Arabia)

    1996-12-31

    Fractures play a significant role in the transmissibility of the Hanifa reservoir at Abqaiq Field. The Hanifa is a Type 2 fractured reservoir characterized by a finely-crystalline carbonate matrix which contains most of the reservoir storage porosity, and a stylolitic fracture system which provides essential permeability. Comparisons of over 5000 fractures identified from core and borehole image data with open-hole log data showed that porosity is negatively correlated with fracture density and mechanical rock strength. From these relationships, it was possible to utilize additional wells where porosity log data was available to calculate fracture densities. These wells were used to generate matrix porosity and permeability as well as fracture density attributes in a 12-sequence, 29-layer geocellular model. The effect of structural curvature on fracture intensity in the reservoir was estimated by mapping the derivative of structural dip. Incorporation of structural curvature explained variations in well test behavior not predicted by initial estimates of fracture density from porosity alone. Resultant fracture permeabilities compared favorably with well-test derived productivity indices. Three-dimensional visualization of model attributes showed that a monotonous and low (<10 md) distribution of matrix-related permeability contrasts sharply with highly variable and relatively high (>50 md) permeabilities of the fracture system. Reliability of the geocellular model to predict fracture densities and associated permeabilities has been confirmed by subsequent drilling of high cost horizontal wells, and is being used in reservoir engineering and development drilling planning efforts.

  16. Dual-porosity reservoir modeling of the fractured Hanifa reservoir, Abqaiq Field, Saudi Arabia

    SciTech Connect (OSTI)

    Luthy, S.T. (Saudi Aramco, Dhahran (Saudi Arabia))

    1996-01-01

    Fractures play a significant role in the transmissibility of the Hanifa reservoir at Abqaiq Field. The Hanifa is a Type 2 fractured reservoir characterized by a finely-crystalline carbonate matrix which contains most of the reservoir storage porosity, and a stylolitic fracture system which provides essential permeability. Comparisons of over 5000 fractures identified from core and borehole image data with open-hole log data showed that porosity is negatively correlated with fracture density and mechanical rock strength. From these relationships, it was possible to utilize additional wells where porosity log data was available to calculate fracture densities. These wells were used to generate matrix porosity and permeability as well as fracture density attributes in a 12-sequence, 29-layer geocellular model. The effect of structural curvature on fracture intensity in the reservoir was estimated by mapping the derivative of structural dip. Incorporation of structural curvature explained variations in well test behavior not predicted by initial estimates of fracture density from porosity alone. Resultant fracture permeabilities compared favorably with well-test derived productivity indices. Three-dimensional visualization of model attributes showed that a monotonous and low (<10 md) distribution of matrix-related permeability contrasts sharply with highly variable and relatively high (>50 md) permeabilities of the fracture system. Reliability of the geocellular model to predict fracture densities and associated permeabilities has been confirmed by subsequent drilling of high cost horizontal wells, and is being used in reservoir engineering and development drilling planning efforts.

  17. A Triple-Porosity Model for Fractured Horizontal Wells 

    E-Print Network [OSTI]

    Alahmadi, Hasan Ali H.

    2010-10-12

    .................................................................................. 11 3.2 Linear Flow Solutions for Linear Fractured Reservoirs .............. 12 3.3 Derivations of the Triple-porosity Analytical Solutions .............. 12 3.3.1 Model Assumptions...-porosity Model ....................... 19 3.3.7 Triple-porosity Solutions Comparison............................... 20 3.4 Mathematical Consistency of the Analytical Solutions ............... 21 3.5 Flow Regions Based on the Analytical Solution...

  18. Porosity, permeability and fluid flow in the YellowstoneGeothermal System, Wyoming

    SciTech Connect (OSTI)

    Dobson, Patrick F.; Kneafsey, Timothy J.; Hulen, Jeffrey; Simmons, Ardyth

    2002-03-29

    Cores from two of 13 U.S. Geological Survey (USGS) research holes at Yellowstone National Park (Y-5 and Y-8) were evaluated to characterize lithology, texture, alteration, and the degree and nature of fracturing and veining. Porosity and matrix permeability measurements and petrographic examination of the cores were used to evaluate the effects of lithology and hydrothermal alteration on porosity and permeability. The intervals studied in these two core holes span the conductive zone and the upper portion of the convective geothermal reservoir. Variations in porosity and matrix permeability observed in the Y-5 and Y-8 cores are primarily controlled by lithology. Y-8 intersects three distinct lithologies: volcaniclastic sandstone, perlitic rhyolitic lava, and nonwelded pumiceous ash-flow tuff. The sandstone typically has high permeability and porosity, and the tuff has very high porosity and moderate permeability, while the perlitic lava has very low porosity and is essentially impermeable. Hydrothermal self-sealing appears to have generated localized permeability barriers within the reservoir. Changes in pressure and temperature in Y-8 correspond to a zone of silicification in the volcaniclastic sandstone just above the contact with the perlitic rhyolite; this silicification has significantly reduced porosity and permeability. In rocks with inherently low matrix permeability (such as densely welded ash-flow tuff), fluid flow is controlled by the fracture network. The Y-5 core hole penetrates a thick intracaldera section of the0.6 Ma Lava Creek ash-flow tuff. In this core, the degree of welding appears to be responsible for most of the variations in porosity, matrix permeability, and the frequency of fractures and veins. Fractures are most abundant within the more densely welded sections of the tuff. However, the most prominent zones of fracturing and mineralization are associated with hydrothermal breccias within densely welded portions of the tuff. These breccia zones represent transient conduits of high fluid flow that formed by the explosive release of overpressure in the underlying geothermal reservoir and that were subsequently sealed by supersaturated geothermal fluids. In addition to this fracture sealing, hydrothermal alteration at Yellowstone appears generally to reduce matrix permeability and focus flow along fractures, where multiple pulses of fluid flow and self-sealing have occurred.

  19. Porosity in plasma sprayed alumina coatings

    SciTech Connect (OSTI)

    Ilavsky, J.; Herman, H.; Berndt, C.C.; Goland, A.N.; Long, G.G.; Krueger, S.; Allen, A.J.

    1994-03-01

    Small-angle neutron scattering (SANS) was used to study the porosity of plasma sprayed deposits of alumina in as-sprayed and heat-treated conditions. SANS results were compared with mercury intrusion porosimetry (MIP) and water immersion techniques. Multiple small-angle neutron scattering yields a volume-weighted effective pore radius (R{sub eff}), for pores with sizes between 0.08 and 10{mu}m, the pore volume in this size region, and from the Porod region, the surface area of pores of all sizes.

  20. Synthesis of high porosity, monolithic alumina aerogels

    SciTech Connect (OSTI)

    Poco, J F; Satcher, J H; Hrubesh, L W

    2000-09-20

    Many non-silica aerogels are notably weak and fragile in monolithic form. Particularly, few monolithic aerogels with densities less than 50kg/m3 have any significant strength. It is especially difficult to prepare uncracked monoliths of pure alumina aerogels that are robust and moisture stable. In this paper, we discuss the synthesis of strong, stable, monolithic, high porosity (>98% porous) alumina aerogels, using a two-step sol-gel process. The alumina aerogels have a polycrystalline morphology that results in enhanced physical properties. Most of the measured physical properties of the alumina aerogels are superior to those for silica aerogels for equivalent densities.

  1. Porosity and mechanical properties of zirconium ceramics

    SciTech Connect (OSTI)

    Kalatur, Ekaterina Narikovich, Anton; Buyakova, Svetlana E-mail: kulkov@ispms.tsc.ru; Kulkov, Sergey E-mail: kulkov@ispms.tsc.ru

    2014-11-14

    The article studies the porous ceramics consisting of ultra-fine ZrO{sub 2} powders. The porosity of ceramic samples varied from 15% to 80%. The structure of the ceramic materials had a cellular configuration. The distinctive feature of all experimentally obtained strain diagrams is their nonlinearity at low deformations characterized by the parabolic law. It was shown that the observed nonlinear elasticity for low deformations shown in strain diagrams is due to the mechanical instability of cellular elements of the ceramic framework.

  2. Modeling Ozone Removal to Indoor Materials, Including the Effects of Porosity, Pore Diameter, and Thickness

    E-Print Network [OSTI]

    Gall, Elliott T; Siegel, Jeffrey A; Corsi, Richard L

    2015-01-01

    of healthy young volunteers to ozone causes cardiovasculareffects of five common ozone-initiated terpene reactiondecay rates, and removal of ozone and their relation to

  3. Modeling Ozone Removal to Indoor Materials, Including the Effects of Porosity, Pore Diameter, and Thickness

    E-Print Network [OSTI]

    Gall, Elliott T; Siegel, Jeffrey A; Corsi, Richard L

    2015-01-01

    C. Ozone deposition velocities, reaction probabilities andreaction phenomena described by a single parameter, the ozone deposition velocity,velocity, v t (m h ?1 ), a characteristic of the ?uid mechanics of a space, and the reaction

  4. EFFECTIVE POROSITY IMPLIES EFFECTIVE BULK DENSITY IN SORBING SOLUTE TRANSPORT

    SciTech Connect (OSTI)

    Flach, G.

    2012-02-27

    The concept of an effective porosity is widely used in solute transport modeling to account for the presence of a fraction of the medium that effectively does not influence solute migration, apart from taking up space. This non-participating volume or ineffective porosity plays the same role as the gas phase in single-phase liquid unsaturated transport: it increases pore velocity, which is useful towards reproducing observed solute travel times. The prevalent use of the effective porosity concept is reflected by its prominent inclusion in popular texts, e.g., de Marsily (1986), Fetter (1988, 1993) and Zheng and Bennett (2002). The purpose of this commentary is to point out that proper application of the concept for sorbing solutes requires more than simply reducing porosity while leaving other material properties unchanged. More specifically, effective porosity implies the corresponding need for an effective bulk density in a conventional single-porosity model. The reason is that the designated non-participating volume is composed of both solid and fluid phases, both of which must be neglected for consistency. Said another way, if solute does not enter the ineffective porosity then it also cannot contact the adjoining solid. Conceptually neglecting the fluid portion of the non-participating volume leads to a lower (effective) porosity. Likewise, discarding the solid portion of the non-participating volume inherently leads to a lower or effective bulk density. In the author's experience, practitioners virtually never adjust bulk density when adopting the effective porosity approach.

  5. LIFE CYCLE ASSESSMENT OF A HEMP CONCRETE WALL: IMPACT OF THICKNESS AND COATING.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    to reduce climate change as photosynthesis-mediated carbon sequestration and carbonation serve to reduce sequestration and carbonation. Moreover the increase in the wall's thermal resistance with wall thickness atmospheric carbon dioxide. A sensitivity analysis is performed on three criteria: wall thickness, renewal

  6. Casting Porosity-Free Grain Refined Magnesium Alloys

    SciTech Connect (OSTI)

    Schwam, David

    2013-08-12

    The objective of this project was to identify the root causes for micro-porosity in magnesium alloy castings and recommend remedies that can be implemented in production. The findings confirm the key role played by utilizing optimal gating and risering practices in minimizing porosity in magnesium castings.?

  7. MODELING OF POROSITY FORMATION AND FEEDING FLOW IN STEEL CASTING

    E-Print Network [OSTI]

    Beckermann, Christoph

    , or even larger shrinkage cavities found in inadequately fed cast sections. Microporosity can cause leaksMODELING OF POROSITY FORMATION AND FEEDING FLOW IN STEEL CASTING Kent D. Carlson, Zhiping Lin pressure, feeding flow, and porosity formation and growth in steel castings during solidification

  8. Hydroxyapatite based hybrid dental materials with controlled porosity and improved

    E-Print Network [OSTI]

    North Texas, University of

    Dental obturation materials are perhaps the simplest biomaterials introduced into the human body becauseHydroxyapatite based hybrid dental materials with controlled porosity and improved tribological Lobland2 and J. R. Rodriguez1 Hybrid dental materials were designed with controlled porosity and improved

  9. Diagenetic history and the evolution of porosity in the Cotton Valley Limestone, Teague Townsite Field, Freestone County, Texas 

    E-Print Network [OSTI]

    Steffensen, Carl Kristian

    1982-01-01

    of Porosity in the Cotton Valley Limestone, Teague Townsite Field, Freestone County, Texas (December, 1982) Carl Kristian Steffensen, B. S. , University of Illinois Chairman of Advisory Committee: Dr. Wayne M. Ahr The Cotton Valey Lime was deposited... during a regressive phase of the Late Jurassic, in a shallow sea with an exten- sive platform. Mild salt tectonism has modified depositional and diagenetic environments through time. The Cotton Valley Lime is composed of thick, massive, oolitic...

  10. Data Qualification Report: Calculated Porosity and Porosity-Derived Values for Lithostratigraphic Units for use on the Yucca Mountain Project

    SciTech Connect (OSTI)

    P. Sanchez

    2001-05-30

    The qualification is being completed in accordance with the Data Qualification Plan DQP-NBS-GS-000006, Rev. 00 (CRWMS M&O 2001). The purpose of this data qualification activity is to evaluate for qualification the unqualified developed input and porosity output included in Data Tracking Number (DTN) M09910POROCALC.000. The main output of the analyses documented in DTN M09910POROCALC.000 is the calculated total porosity and effective porosity for 40 Yucca Mountain Project boreholes. The porosity data are used as input to Analysis Model Report (AMR) 10040, ''Rock Properties Model'' (MDL-NBS-GS-000004, Rev. 00), Interim Change Notice [ICN] 02 (CRWMS M&O 2000b). The output from the rock properties model is used as input to numerical physical-process modeling within the context of a relationship developed in the AMR between hydraulic conductivity, bound water and zeolitic zones for use in the unsaturated zone model. In accordance with procedure AP-3.15Q, the porosity output is not used in the direct calculation of Principal Factors for post-closure safety or disruptive events. The original source for DTN M09910POROCALC.000 is a Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) report, ''Combined Porosity from Geophysical Logs'' (CRWMS M&O 1999a and hereafter referred to as Rael 1999). That report recalculated porosity results for both the historical boreholes covered in Nelson (1996), and the modern boreholes reported in CRWMS M&O (1996a,b). The porosity computations in Rael (1999) are based on density-porosity mathematical relationships requiring various input parameters, including bulk density, matrix density and air and/or fluid density and volumetric water content. The main output is computed total porosity and effective porosity reported on a foot-by-foot basis for each borehole, although volumetric water content is derived from neutron data as an interim output. This qualification report uses technical assessment and corroboration to evaluate the original subject DTN. Rael (1999) provides many technical details of the technical assessment and corroboration methods and partially satisfies the intent of the qualification plan for this analysis. Rael presents a modified method based on Nelson (1996) to recompute porosity and porosity-derived values and uses some of the same inputs. Rael's (1999) intended purpose was to document porosity output relatively free of biases introduced by differing computational methods or parameter selections used for different boreholes. The qualification report necessarily evaluates the soundness of the pre-Process Validation and Re-engineering (PVAR) analyses and methodology, as reported in Rael (1999).

  11. Porosity in collapsible Ball Grid Array solder joints

    SciTech Connect (OSTI)

    Gonzalez, C.A. |

    1998-05-01

    Ball Grid Array (BGA) technology has taken off in recent years due to the increased need for high interconnect density. Opposite to all the advantages BGA packages offer, porosity in collapsible BGA solder joints is often a major concern in the reliability of such packages. The effect of pores on the strength of collapsible BGA solder-joints was studied by manufacturing samples with different degrees of porosity and testing them under a shear load. It was found that the shear strength of the solder joints decreased in a linear fashion with increasing porosity. Failure occurred by internal necking of the interpore matrix. It was confirmed that entrapment of flux residues leads to porosity by manufacturing fluxless samples in a specially made furnace, and comparing them with samples assembled using flux. Also, contamination of Au electrodeposits (in substrate metallization) was determined to cause significant porosity. It was found that hard-Au (Co hardened Au) electrodeposits produce high degrees of porosity even in the absence of flux. Finally, increasing the time the solder spends in the molten state was proven to successfully decrease porosity.

  12. Deep porosity preservation in the Norphlet Formation, Mobil Bay, Alabama

    SciTech Connect (OSTI)

    Ajdukiewicz, J.M.; Paxton, S.T.; Szabvo, J.O. )

    1991-03-01

    Compaction and pressure solution have commonly been assumed to destroy primary intergranular porosity in deeply buried sandstones. However, primary porosities of up to 20% are preserved at depths greater than 20,000 feet in the Norphlet Formation of Mobile Bay. Previous workers have called upon a number of mechanisms to preserve these high porosities in the Norphlet, specifically chlorite rim cements, gas emplacement, overpressuring, and decementation. In contrast, our study of data from 23 Norphlet wells, including 450 thin sections, indicates that these suggested mechanisms are not the primary cause of porosity preservation in the Norphlet. The authors propose an alternative interpretation: that in the Norphlet, as in other well-sorted, ductile-grain-poor sandstones, porosity loss from compaction did not go to completion under reservoir (premetamorphic) conditions, but stabilized at depths of about 5,000-8,000 feet and porosity values of about 26%. Porosity loss below these values is due to cementation. For cementation to occur, both an adequate source of cement and geochemical conditions favoring cement precipitation must be present. Computer simulations of Norphlet burial history, including post-depositional fluid-flow patterns, suggest that conditions favorable to quartz cementation never occurred in the bulk of the Norphlet because of the formation's stratigraphic position and isolation from a basinward source of silica-saturated fluids.

  13. Thick film hydrogen sensor

    DOE Patents [OSTI]

    Hoffheins, B.S.; Lauf, R.J.

    1995-09-19

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors. 8 figs.

  14. Thick film hydrogen sensor

    DOE Patents [OSTI]

    Hoffheins, Barbara S. (Knoxville, TN); Lauf, Robert J. (Oak Ridge, TN)

    1995-01-01

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  15. Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal...

    Open Energy Info (EERE)

    section of the 0.6-Ma Lava Creek ash-flow tuff. In this core, the degree of welding appears to be responsible for most of the variations in porosity, matrix...

  16. Engineering Strength, Porosity, and Emission Intensity of Nanostructur...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Strength, Porosity, and Emission Intensity of Nanostructured CdSe Networks by Altering the Building-Block Shape Home Author: H. Yu, R. Bellair, R. M. Kannan, S. L....

  17. Properties of Bulk Sintered Silver As a Function of Porosity

    SciTech Connect (OSTI)

    Wereszczak, Andrew A; Vuono, Daniel J; Wang, Hsin; Ferber, Mattison K; Liang, Zhenxian

    2012-06-01

    This report summarizes a study where various properties of bulk-sintered silver were investigated over a range of porosity. This work was conducted within the National Transportation Research Center's Power Device Packaging project that is part of the DOE Vehicle Technologies Advanced Power Electronics and Electric Motors Program. Sintered silver, as an interconnect material in power electronics, inherently has porosity in its produced structure because of the way it is made. Therefore, interest existed in this study to examine if that porosity affected electrical properties, thermal properties, and mechanical properties because any dependencies could affect the intended function (e.g., thermal transfer, mechanical stress relief, etc.) or reliability of that interconnect layer and alter how its performance is modeled. Disks of bulk-sintered silver were fabricated using different starting silver pastes and different sintering conditions to promote different amounts of porosity. Test coupons were harvested out of the disks to measure electrical resistivity and electrical conductivity, thermal conductivity, coefficient of thermal expansion, elastic modulus, Poisson's ratio, and yield stress. The authors fully recognize that the microstructure of processed bulk silver coupons may indeed not be identical to the microstructure produced in thin (20-50 microns) layers of sintered silver. However, measuring these same properties with such a thin actual structure is very difficult, requires very specialized specimen preparation and unique testing instrumentation, is expensive, and has experimental shortfalls of its own, so the authors concluded that the herein measured responses using processed bulk sintered silver coupons would be sufficient to determine acceptable values of those properties. Almost all the investigated properties of bulk sintered silver changed with porosity content within a range of 3-38% porosity. Electrical resistivity, electrical conductivity, thermal conductivity, elastic modulus, Poisson's ratio, and yield stress all depended on the porosity content in bulk-sintered silver. The only investigated property that was independent of porosity in that range was coefficient of thermal expansion.

  18. Double porosity modeling in elastic wave propagation for reservoir characterization

    SciTech Connect (OSTI)

    Berryman, J. G., LLNL

    1998-06-01

    Phenomenological equations for the poroelastic behavior of a double porosity medium have been formulated and the coefficients in these linear equations identified. The generalization from a single porosity model increases the number of independent coefficients from three to six for an isotropic applied stress. In a quasistatic analysis, the physical interpretations are based upon considerations of extremes in both spatial and temporal scales. The limit of very short times is the one most relevant for wave propagation, and in this case both matrix porosity and fractures behave in an undrained fashion. For the very long times more relevant for reservoir drawdown,the double porosity medium behaves as an equivalent single porosity medium At the macroscopic spatial level, the pertinent parameters (such as the total compressibility) may be determined by appropriate field tests. At the mesoscopic scale pertinent parameters of the rock matrix can be determined directly through laboratory measurements on core, and the compressibility can be measured for a single fracture. We show explicitly how to generalize the quasistatic results to incorporate wave propagation effects and how effects that are usually attributed to squirt flow under partially saturated conditions can be explained alternatively in terms of the double-porosity model. The result is therefore a theory that generalizes, but is completely consistent with, Biot`s theory of poroelasticity and is valid for analysis of elastic wave data from highly fractured reservoirs.

  19. Porosity Characterization Utilizing Petrographic Image Analysis: Implications for Identifying and Ranking Reservoir Flow Units, Happy Spraberry Field, Garza County, Texas. 

    E-Print Network [OSTI]

    Layman, John Morgan, II

    2004-09-30

    The Spraberry Formation is traditionally thought of as deep-water turbidites in the central Midland Basin. At Happy Spraberry field, Garza County, Texas, however, production is from a carbonate interval about 100 feet thick that has been correlated...

  20. Determining the Porosity and Saturated Hydraulic Conductivity of Binary Mixtures

    SciTech Connect (OSTI)

    Zhang, Z. F.; Ward, Anderson L.; Keller, Jason M.

    2009-09-27

    Gravels and coarse sands make up significant portions of some environmentally important sediments, while the hydraulic properties of the sediments are typically obtained in the laboratory using only the fine fraction (e.g., <2 mm or 4.75 mm). Researchers have found that the content of gravel has significant impacts on the hydraulic properties of the bulk soils. Laboratory experiments were conducted to measure the porosity and the saturated hydraulic conductivity of binary mixtures with different fractions of coarse and fine components. We proposed a mixing-coefficient model to estimate the porosity and a power-averaging method to determine the effective particle diameter and further to predict the saturated hydraulic conductivity of binary mixtures. The proposed methods could well estimate the porosity and saturated hydraulic conductivity of the binary mixtures for the full range of gravel contents and was successfully applied to two data sets in the literature.

  1. Compacted carbon for electrochemical cells

    DOE Patents [OSTI]

    Greinke, R.A.; Lewis, I.C.

    1997-10-14

    This invention provides compacted carbon that is useful in the electrode of an alkali metal/carbon electrochemical cell of improved capacity selected from the group consisting of: (a) coke having the following properties: (1) an x-ray density of at least 2.00 grams per cubic centimeters, (2) a closed porosity of no greater than 5%, and (3) an open porosity of no greater than 47%; and (b) graphite having the following properties: (1) an x-ray density of at least 2.20 grams per cubic centimeters, (2) a closed porosity of no greater than 5%, and (3) an open porosity of no greater than 25%. This invention also relates to an electrode for an alkali metal/carbon electrochemical cell comprising compacted carbon as described above and a binder. This invention further provides an alkali metal/carbon electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrolytically conductive salt and an alkali metal, and (c) a counter electrode. 10 figs.

  2. Critical thickness in silicone thermosets

    E-Print Network [OSTI]

    Deopura, Manish, 1975-

    2005-01-01

    Critical thickness effects are utilized to achieve high fracture toughness in brittle polymers. The postulate of critical thickness, which is: "Macroscopically brittle polymers deform in a ductile fashion below a critical ...

  3. Incorporation of Catalytic Compounds in the Porosity of SiC Wall...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Incorporation of Catalytic Compounds in the Porosity of SiC Wall Flow Filters - 4 Way Catalyst and DeNOx Application examples Incorporation of Catalytic Compounds in the Porosity...

  4. SIMULATION OF POROSITY AND HOT TEARS IN A SQUEEZE CAST MAGNESIUM CONTROL ARM

    E-Print Network [OSTI]

    Beckermann, Christoph

    : Magnesium Alloys, Casting, Shrinkage Porosity, Hot Tears, Modeling Abstract Simulations are performed within commercial casting simulation software to predict shrinkage porosity and hot tears changes are introduced to mitigate the shrinkage and hot tear problems in these castings. The comparisons

  5. Geophysical Prospecting, 2006, 54, 565573 Influence of pore pressure on velocity in low-porosity sandstone

    E-Print Network [OSTI]

    -porosity sandstone: Implications for time-lapse feasibility and pore-pressure study Xiaoxia Xu, Ronny Hofmann (about 3000 psi) for a low-porosity sandstone. Thus, in pore-pressure inversion, an assumption of n = 1

  6. Constitutive Theory for Velocity Dispersion in Rock with Dual Porosity

    SciTech Connect (OSTI)

    Wang, H F; Berryman, J G

    2002-03-28

    The high frequency behavior of the bulk modulus of fluid-saturated rock can be obtained from a double-porosity constitutive model, which is a direct conceptual extension of Biot's (1941) constitutive equations and which provides additional stiffening due to unrelaxed induced pore pressures in the soft porosity phase. Modeling the stiffening of the shear modulus at high frequency requires an effective medium average over the unequal induced pore pressures in cracks of different orientations. The implicit assumptions are that pore fluid equilibration does not occur between cracks of different orientations and between cracks and porous matrix. The correspondence between the constitutive equations of Berryman and Wang (1995) and Mavko and Jizba (1991) is explicitly noted.

  7. Origin of porosity in arylene-bridged polysilsesquioxanes

    SciTech Connect (OSTI)

    Schaefer, D.W.; Loy, D.A.; Ulibarri, T.A.; Black, E.; Buss, R.J. [Sandia National Labs., Albuquerque, NM (United States); Beaucage, G.B. [Univ. of Cincinnati, OH (United States). Materials Science and Engineering; Shea, K.J. [Univ. of California, Irvine, CA (United States). Dept. of Chemistry

    1996-12-31

    The authors investigate the porosity of a series of xerogels prepared from arylene-bridged silsesquioxane xerogels as a function of organic bridging group, condensation catalyst and post-synthesis plasma treatment to remove the organic functionalities. They conclude that porosity is controlled by polymer-solvent phase separation in the solution with no evidence of organic-inorganic phase separation. As the polymer grows and crosslinks, it becomes increasingly incompatible with the solvent and eventually microphase separates. The domain structure is controlled by a balance of network elasticity and non-bonding polymer-solvent interactions. The bridging organic groups serve to ameliorate polymer-solvent incompatibility. As a result, when the polymer does eventually phase separate, the rather tightly crosslinked network limits domain size to tens of angstroms, substantially smaller than that observed in xerogels obtained from purely inorganic precursors where incompatibility drives phase separation earlier in the gelation sequence.

  8. Petrophysical and Geochemical Properties of Columbia River Flood Basalt: Implications for Carbon Sequestration

    SciTech Connect (OSTI)

    Zakharova, Natalia V.; Goldberg, David S.; Sullivan, E. C.; Herron, Michael M.; Grau, Jim A.

    2012-11-02

    Abstract This study presents borehole geophysical data and sidewall core chemistry from the Wallula Pilot Sequestration Project in the Columbia River flood basalt. The wireline logging data were reprocessed, core-calibrated and interpreted in the framework of reservoir and seal characterization for carbon dioxide storage. Particular attention is paid to the capabilities and limitations of borehole spectroscopy for chemical characterization of basalt. Neutron capture spectroscopy logging is shown to provide accurate concentrations for up to 8 major and minor elements but has limited sensitivity to natural alteration in fresh-water basaltic reservoirs. The Wallula borehole intersected 26 flows from 7 members of the Grande Ronde formation. The logging data demonstrate a cyclic pattern of sequential basalt flows with alternating porous flow tops (potential reservoirs) and massive flow interiors (potential caprock). The log-derived apparent porosity is extremely high in the flow tops (20%-45%), and considerably overestimates effective porosity obtained from hydraulic testing. The flow interiors are characterized by low apparent porosity (0-8%) but appear pervasively fractured in borehole images. Electrical resistivity images show diverse volcanic textures and provide an excellent tool for fracture analysis, but neither fracture density nor log-derived porosity uniquely correlate with hydraulic properties of the Grande Ronde formation. While porous flow tops in these deep flood basalts may offer reservoirs with high mineralization rates, long leakage migration paths, and thick sections of caprock for CO2 storage, a more extensive multi- well characterization would be necessary to assess lateral variations and establish sequestration capacity in this reservoir.

  9. Modeling of Seismic Signatures of Carbonate Rock Types 

    E-Print Network [OSTI]

    Jan, Badr H.

    2011-02-22

    Carbonate reservoirs of different rock types have wide ranges of porosity and permeability, creating zones with different reservoir quality and flow properties. This research addresses how seismic technology can be used to identify different...

  10. FATIGUE OF 8630 CAST STEEL IN THE PRESENCE OF SHRINKAGE POROSITY

    E-Print Network [OSTI]

    Beckermann, Christoph

    FATIGUE OF 8630 CAST STEEL IN THE PRESENCE OF SHRINKAGE POROSITY K.M. Sigl1 , R.A. Hardin2 , R of shrinkage porosity on the mechanical performance of the cast steel. Axial fatigue tests were conducted under.I., and Beckermann, C., "Fatigue of 8630 Cast Steel in the Presence of Shrinkage Porosity," in Proceedings of the 57

  11. EFFECT OF POROSITY ON DEFORMATION, DAMAGE, AND FRACTURE OF CAST STEEL

    E-Print Network [OSTI]

    Beckermann, Christoph

    EFFECT OF POROSITY ON DEFORMATION, DAMAGE, AND FRACTURE OF CAST STEEL Richard Hardin1 , Christoph 52242-1527 Keywords: Casting, Porosity, Tensile Properties, Damage, Fracture Abstract A combined experimental and computational study is performed to investigate the effect of internal shrinkage porosity

  12. Effect of Porosity on Deformation, Damage, and Fracture of Cast Steel

    E-Print Network [OSTI]

    Beckermann, Christoph

    shrinkage porosity on deformation, damage, and fracture of cast steel under tensile testing. Steel plates containing shrinkage porosity are cast in sand molds, machined into test coupons, and tensile testedEffect of Porosity on Deformation, Damage, and Fracture of Cast Steel R.A. HARDIN and C. BECKERMANN

  13. Process of making porous ceramic materials with controlled porosity

    DOE Patents [OSTI]

    Anderson, Marc A. (Madison, WI); Ku, Qunyin (Madison, WI)

    1993-01-01

    A method of making metal oxide ceramic material is disclosed by which the porosity of the resulting material can be selectively controlled by manipulating the sol used to make the material. The method can be used to make a variety of metal oxide ceramic bodies, including membranes, but also pellets, plugs or other bodies. It has also been found that viscous sol materials can readily be shaped by extrusion into shapes typical of catalytic or adsorbent bodies used in industry, to facilitate the application of such materials for catalytic and adsorbent applications.

  14. Differential effective medium modeling of rock elastic moduli with critical porosity constraints

    SciTech Connect (OSTI)

    Mukerji, T.; Mavko, G. [Stanford Univ. CA (United States)] [Stanford Univ. CA (United States); Berryman, J.; Berge, P. [Lawrence Livermore National Lab., CA (United States)] [Lawrence Livermore National Lab., CA (United States)

    1995-03-01

    Rocks generally have a percolation porosity at which they lose rigidity and fall apart. Percolation behaviour is a purely geometrical property, independent of any physical properties, and is a powerful constraint on any valid velocity-porosity relation. The authors show how the conventional Differential Effective Medium (DEM) theory can be modified to incorporate percolation of elastic moduli in rocks by taking the material at the critical porosity as one of the constituents of a two-phase composite. Any desired percolation porosity can be specified as an input. In contrast, the conventional DEM model always predicts percolation at a porosity of either 0 or 100 percent. Most sedimentary rocks however have intermediate percolation porosities and are therefore not well represented by the conventional theory. The modified DEM model incorporates percolation behavior, and at the same time is always consistent with the Hashin-Shtrikman bounds. The predictions compare favorably with laboratory sandstone data. 24 refs., 3 figs.

  15. Laser detection of material thickness

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM)

    2002-01-01

    There is provided a method for measuring material thickness comprising: (a) contacting a surface of a material to be measured with a high intensity short duration laser pulse at a light wavelength which heats the area of contact with the material, thereby creating an acoustical pulse within the material: (b) timing the intervals between deflections in the contacted surface caused by the reverberation of acoustical pulses between the contacted surface and the opposite surface of the material: and (c) determining the thickness of the material by calculating the proportion of the thickness of the material to the measured time intervals between deflections of the contacted surface.

  16. ASTROMETRIC MASSES OF 26 ASTEROIDS AND OBSERVATIONS ON ASTEROID POROSITY

    SciTech Connect (OSTI)

    Baer, James [James Cook University, School of Engineering and Physical Sciences, Townsville, QLD 4811 (Australia); Chesley, Steven R. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Matson, Robert D., E-mail: jimbaer1@earthlink.net, E-mail: steve.chesley@jpl.nasa.gov [Science Applications International Corporation, 3030 Old Ranch Pkwy., Ste. 250, Seal Beach, CA 90740 (United States)

    2011-05-15

    As an application of our recent observational error model, we present the astrometric masses of 26 main-belt asteroids. We also present an integrated ephemeris of 300 large asteroids, which was used in the mass determination algorithm to model significant perturbations from the rest of the main belt. After combining our mass estimates with those of other authors, we study the bulk porosities of over 50 main-belt asteroids and observe that asteroids as large as 300 km in diameter may be loose aggregates. This finding may place specific constraints on models of main-belt collisional evolution. Additionally, we observe that C-group asteroids tend to have significantly higher macroporosity than S-group asteroids.

  17. Discrimination of porosity and fluid saturation using seismic velocity analysis

    DOE Patents [OSTI]

    Berryman, James G. (Danville, CA)

    2001-01-01

    The method of the invention is employed for determining the state of saturation in a subterranean formation using only seismic velocity measurements (e.g., shear and compressional wave velocity data). Seismic velocity data collected from a region of the formation of like solid material properties can provide relatively accurate partial saturation data derived from a well-defined triangle plotted in a (.rho./.mu., .lambda./.mu.)-plane. When the seismic velocity data are collected over a large region of a formation having both like and unlike materials, the method first distinguishes the like materials by initially plotting the seismic velocity data in a (.rho./.lambda., .mu./.lambda.)-plane to determine regions of the formation having like solid material properties and porosity.

  18. Controlling porosity in bridged polysilsesquioxanes through elimination reactions

    SciTech Connect (OSTI)

    McClain, M.D.; Loy, D.A. [Sandia National Labs., Albuquerque, NM (United States); Prabakar, S. [Univ. of New Mexico, Albuquerque, NM (United States). Advanced Materials Lab.

    1996-06-01

    The retro Diels-Alder reaction was used to modify porosity in hydrocarbon-bridged polysilsesquioxane gels. Microporous polysilsesquioxanes incorporating a thermally labile Diels-Alder adduct as the hydrocarbon bridging group were prepared by sol-gel polymerization of trans-2,3-bis(triethoxysilyl)norbornene. Upon heating the 2,3-norbornenylene-bridges polymers at temperatures above 250 C, the norbornenylene-bridging group underwent a retro Diels-Alder reaction losing cyclopentadiene and leaving behind a ethenylene-bridged polysilsesquioxane. Less than theoretical quantities of cyclopentadiene were volatilized indicating that some of the diene was either reacting with the silanol and olefinic rich material or undergoing oligomerization. Both scanning electron microscopy and nitrogen sorption porosimetry revealed net coarsening of pores (and reduction of surface area) in the materials with thermolysis.

  19. Porosity in hexylene-bridged polysilsesquioxanes: Effects of monomer concentration

    SciTech Connect (OSTI)

    Baugher, B.; Loy, D.A.; Assink, R.A. [Sandia National Labs., Albuquerque, NM (United States); Prabakar, S. [Advanced Materials Lab., Albuquerque, NM (United States); Shea, K.J.; Oviatt, H. [California Univ., Irvine, CA (United States). Dept. of Chemistry

    1994-12-31

    Hexylene-bridged polysilsesquioxanes can be prepared as mesoporous or non-porous xerogels simply by switching from basic to acidic polymerization conditions. In this study, we looked at the effect of monomer concentration on porosity of hexylene-bridged xerogels prepared under acidic and basic conditions. 1, 6-Hexylene-bridged polysilsesquioxanes were prepared by sol-gel polymerizations of 1, 6-bis(triethoxysilyl)hexane 1 with concentrations between 0. 1 to 1.2 M in ethanol. Gelation times ranged from seconds for 1.2 M concentration to months for 0.2 M. The gels were processed into xerogels by an aqueous work-up and the dry gels characterized by scanning electron microscopy (SEM), solid state {sup 13}C and {sup 29}Si CP MAS NMR spectroscopy, and gas sorption porosimetry.

  20. XP-SiC: An Innovative Substrate for Future Applications with Low Weight and High Porosity

    Broader source: Energy.gov [DOE]

    4To develop a substrate with high porosity, low weight and low cost to fulfill the requirements and challenges for current and future soot emission legislations

  1. Activated carbon aerogels

    SciTech Connect (OSTI)

    Hanzawa, Y.; Kaneko, K. [Chiba Univ. (Japan)] [Chiba Univ. (Japan); Pekala, R.W. [Lawrence Livermore National Lab., CA (United States)] [Lawrence Livermore National Lab., CA (United States); Dresselhaus, M.S. [Massachusetts Inst. of Technology, Cambridge, MA (United States)] [Massachusetts Inst. of Technology, Cambridge, MA (United States)

    1996-12-25

    Activated carbon aerogels were obtained from the CO{sub 2} activation of the carbon aerogels. The adsorption isotherms of nitrogen on activated carbon aerogels at 77 K were measured and analyzed by the high-resolution {alpha}{sub s} plot to evaluate their porosities. The {alpha}{sub s} plot showed an upward deviation from linearity below {alpha}{sub s} = 0.5, suggesting that the presence of micropores becomes more predominant with the extent of the activation. Activation increased noticeably the pore volume and the surface area (the maximum value: 2600 m{sup 2}.g{sup -1}) without change of the basic network structure of primary particles. Activated carbon aerogels had a bimodal pore size distribution of uniform micropores and mesopores. 16 refs., 2 figs., 1 tab.

  2. Laser-Arc Hybrid Welding of Thick Section Ni-base Alloys – Advanced Modeling and Experiments

    SciTech Connect (OSTI)

    Debroy, Tarasankar; Palmer, Todd; Zhang, Wei

    2015-05-21

    Hybrid laser-arc welding of nickel-base alloys can increase productivity and decrease costs during construction and repair of critical components in nuclear power plants. However, laser and hybrid welding of nickel-base alloys is not well understood. This project sought to understand the physical processes during hybrid welding necessary to fabricate quality joints in Alloy 690, a Ni- Cr-Fe alloy. This document presents a summary of the data and results collected over the course of the project. The supporting documents are a collection of the research that has been or will be published in peer-reviewed journals along with a report from the partner at the national lab. Understanding the solidification behavior of Alloy 690 is important for knowing the final properties of the weldment. A study was undertaken to calculate the solidification parameters, such as temperature gradient, solidification rate, and cooling rate in Alloy 690 welds. With this information and measured cell and dendrite arm spacings, an Alloy 690 map was constructed to guide process parameter development and interpret fusion zones in later hybrid welds. This research is contained in “Solidification Map of a Nickel Base Alloy.” The keyhole formed under high laser intensity gives the hybrid welding technique the greater penetration depths compared to arc welding. However, keyhole behavior can form defects in the material, so knowing transient keyhole characteristics is important. With international collaborators, a study was undertaken to validate a new process monitoring tool known as inline coherent imaging (ICI), which is able to measure the keyhole depth with spatial and temporal resolutions on the order of 10 microns and 10 microseconds. ICI was validated for five alloy systems, including Alloy 690. Additionally, the keyhole growth rates at the start of welding were measured with unprecedented accuracy. This research is contained in “Real Time Monitoring of Laser Beam Welding Keyhole Depth by Laser Interferometry.” During full penetration welding of thick sections, root defects can form, which result in unacceptable weld quality. A study was undertaken to determine the competing forces in root defect formation by independently changing the weight forces and surface tension forces. The weight force was altered by changing the plate thickness, and the surface tension force was altered by changing the surface condition at the bottom surface. Root defects do depend on these two forces. This research is contained in “Mitigation of Root Defect in Laser and Hybrid Laser-Arc Welding.” Validation of the hybrid laser-arc model is necessary to properly model heat and mass transfer and fluid flow in Alloy 690 hybrid welds. Therefore, the developed model was validated for low carbon steel. Temperatures calculated by the model were included into a microstructural model in order to calculate the phase fractions. Process maps were developed for the selection of welding parameters to avoid martensite formation. This research is contained in “Fusion Zone Microstructure in Full Penetration Laser-Arc Hybrid Welding of Low Alloy Steel.” Alloy 690 suffers from ductility dip cracking, a form of hot cracking. This type of cracking inhibits the use of multipass welding to join Alloy 690. Our partners at ORNL performed some hot ductility testing with Alloy 690 samples using digital image correlation. The results of this work is contained in the report “Summary of 690 ductility dip cracking testing using Gleeble and digital image correlation.” Macro-porosity is a limiting factor in the widespread deployment of laser and hybrid laser-arc welding for construction and repair of nuclear power plant components. Keyhole instability and fluctuation results in the formation of large bubbles, which become trapped at the advancing solid- liquid interface as pores. Laser and hybrid laser-arc welds were fabricated for a range of conditions. Porosity levels in the welds were measured in X-ray computed tomography (CT), which provides very detailed data on the size and lo

  3. Rock Physics-Based Carbonate Reservoir Pore Type Evaluation by Combining Geological, Petrophysical and Seismic Data 

    E-Print Network [OSTI]

    Dou, Qifeng

    2012-07-16

    Pore type variations account for complex velocity-porosity relationship and intensive permeability heterogeneity and consequently low oil and gas recovery in carbonate reservoir. However, it is a challenge for geologist ...

  4. Simulation of the Mechanical Performance of Cast Steel with Porosity: Static Properties

    E-Print Network [OSTI]

    Beckermann, Christoph

    Simulation of the Mechanical Performance of Cast Steel with Porosity: Static Properties R.A. Hardin.A., and Beckermann, C., "Simulation of the Mechanical Performance of Cast Steel with Porosity: Static Properties1 and C. Beckermann2 1 Research Engineer, Mechanical and Industrial Engineering Dept. The University

  5. Prediction of the Fatigue Life of Cast Steel Containing Shrinkage Porosity

    E-Print Network [OSTI]

    Beckermann, Christoph

    Prediction of the Fatigue Life of Cast Steel Containing Shrinkage Porosity RICHARD A. HARDIN and CHRISTOPH BECKERMANN A simulation methodology for predicting the fatigue life of cast steel components with shrinkage porosity is developed and validated through comparison with previously performed measure- ments

  6. Modeling the Effect of Finite-Rate Hydrogen Diffusion on Porosity Formation in Aluminum Alloys

    E-Print Network [OSTI]

    Beckermann, Christoph

    in the casting industry. They are typically caused by a lack of feeding of the shrinkage that occurs during from gas to shrinkage dominated porosity and the effects of different solubilities of hydrogen 2007 I. INTRODUCTION POROSITY-RELATED defects are a major cause of casting rejection and rework

  7. MODELING OF POROSITY FORMATION IN ALUMINUM ALLOYS Kent D. Carlson1

    E-Print Network [OSTI]

    Beckermann, Christoph

    that each volume element in the casting is composed of some combination of solid metal (s), liquid metal (l alloys. The model predicts the amount and size of the porosity in a solidified casting. Computation correspondence. Introduction Porosity-related defects are a major cause of casting rejection and re

  8. A conceptual model for the origin of fault damage zone structures in high-porosity sandstone

    E-Print Network [OSTI]

    Cowie, Patience

    A conceptual model for the origin of fault damage zone structures in high-porosity sandstone Zoe K-porosity sandstones. Damage zone deformation has been particularly well constrained for two 4-km-long normal faults formed in the Navajo Sandstone of central Utah, USA. For these faults the width of the damage zone

  9. System for measuring film thickness

    DOE Patents [OSTI]

    Batishko, Charles R. (West Richland, WA); Kirihara, Leslie J. (Richland, WA); Peters, Timothy J. (Richland, WA); Rasmussen, Donald E. (Richland, WA)

    1990-01-01

    A system for determining the thicknesses of thin films of materials exhibiting fluorescence in response to exposure to excitation energy from a suitable source of such energy. A section of film is illuminated with a fixed level of excitation energy from a source such as an argon ion laser emitting blue-green light. The amount of fluorescent light produced by the film over a limited area within the section so illuminated is then measured using a detector such as a photomultiplier tube. Since the amount of fluorescent light produced is a function of the thicknesses of thin films, the thickness of a specific film can be determined by comparing the intensity of fluorescent light produced by this film with the intensity of light produced by similar films of known thicknesses in response to the same amount of excitation energy. The preferred embodiment of the invention uses fiber optic probes in measuring the thicknesses of oil films on the operational components of machinery which are ordinarily obscured from view.

  10. Characterization of single wall carbon nanotubes by nonane preadsorption

    E-Print Network [OSTI]

    Liu, Jie

    Characterization of single wall carbon nanotubes by nonane preadsorption Oleg Byl a , Jie Liu b for nanotube porosity characterization. Ó 2006 Elsevier Ltd. All rights reserved. Keywords: Carbon nanotubes decades for sorbent characterization. A number of methods have been developed for N2 isotherm analysis

  11. Oxide Film and Porosity Defects in Magnesium Alloy AZ91

    SciTech Connect (OSTI)

    Wang, Liang [Mississippi State University (MSU); Rhee, Hongjoo [Mississippi State University (MSU); Felicelli, Sergio D. [Mississippi State University (MSU); Sabau, Adrian S [ORNL; Berry, John T. [Mississippi State University (MSU)

    2009-01-01

    Porosity is a major concern in the production of light metal parts. This work aims to identify some of the mechanisms of microporosity formation in magnesium alloy AZ91. Microstructure analysis was performed on several samples obtained from gravity-poured ingots in graphite plate molds. Temperature data during cooling was acquired with type K thermocouples at 60 Hz at three locations of each casting. The microstructure of samples extracted from the regions of measured temperature was then characterized with optical metallography. Tensile tests and conventional four point bend tests were also conducted on specimens cut from the cast plates. Scanning electron microscopy was then used to observe the microstructure on the fracture surface of the specimens. The results of this study revealed the existence of abundant oxide film defects, similar to those observed in aluminum alloys. Remnants of oxide films were detected on some pore surfaces, and folded oxides were observed in fracture surfaces indicating the presence of double oxides entrained during pouring.

  12. Impedance-based study of capacitive porous carbon electrodes with hierarchical and bimodal porosity

    E-Print Network [OSTI]

    Santiago, Juan G.

    c , Michael Stadermann b,*, Juan G. Santiago a,* a Department of Mechanical Engineering, 440 energy of sea and river water through mechanisms such as EDL expansion/contraction or by leveraging

  13. R tuart Haszeldine, University of Edinburgh, Edinburgh, United Kingdom Oil Charge Preserves Deep-Burial Porosity in Sandstones and Limestones

    E-Print Network [OSTI]

    Haszeldine, Stuart

    -Burial Porosity in Sandstones and Limestones Debate since 1920, has equivocated over the effects of oil charge on reservoir quality. Regional information and local case-studies from the North Sea, shows sandstones from. As with sandstones, two types of reservoirs exist, those with regional porosity decline and those with raid porosity

  14. GEOLOGIC CHARACTERIZATION AND CARBON STORAGE RESOURCE ESTIMATES FOR THE KNOX GROUP, ILLINOIS BASIN, ILLINOIS, INDIANA, AND KENTUCKY

    SciTech Connect (OSTI)

    Harris, David; Ellett, Kevin; Rupp, John; Leetaru, Hannes

    2014-09-30

    Research documented in this report includes (1) refinement and standardization of regional stratigraphy across the 3-state study area in Illinois, Indiana, and Kentucky, (2) detailed core description and sedimentological interpretion of Knox cores from five wells in western Kentucky, and (3) a detailed calculation of carbon storage volumetrics for the Knox using three different methodologies. Seven regional cross sections document Knox formation distribution and thickness. Uniform stratigraphic nomenclature for all three states helps to resolve state-to-state differences that previously made it difficult to evaluate the Knox on a basin-wide scale. Correlations have also refined the interpretation of an important sandstone reservoir interval in southern Indiana and western Kentucky. This sandstone, a CO2 injection zone in the KGS 1 Blan well, is correlated with the New Richmond Sandstone of Illinois. This sandstone is over 350 ft (107 m) thick in parts of southern Indiana. It has excellent porosity and permeability at sufficient depths, and provides an additional sequestration target in the Knox. The New Richmond sandstone interval has higher predictability than vuggy and fractured carbonates, and will be easier to model and monitor CO2 movement after injection.

  15. Identification of pore type and origin in a Lower Cretaceous carbonate reservoir using NMR T2 relaxation times 

    E-Print Network [OSTI]

    Lodola, Domenico Domenico

    2004-09-30

    Determining the distribution of porosity and permeability is one of the main challenges in carbonate petroleum reservoir characterization and requires a thorough understanding of pore type and origin, as well as their ...

  16. Percolating porosity in ultrafine grained copper processed by High Pressure Torsion

    SciTech Connect (OSTI)

    Wegner, Matthias Leuthold, Jörn; Peterlechner, Martin; Divinski, Sergiy V. Wilde, Gerhard; Setman, Daria; Zehetbauer, Michael; Pippan, Reinhard

    2013-11-14

    Defect structures in copper of different purity (nominally 99.99 and 99.999?wt.?%) deformed via High Pressure Torsion (HPT) with varying processing parameters are investigated utilizing the radiotracer diffusion technique. While the degree of deformation is kept constant, the effects of applied quasi-hydrostatic pressure, processing temperature, post-deformation annealing treatments, and of the impurity concentration on the deformed samples are analyzed in terms of the formation of interconnected internal porosity. Furthermore, the anisotropy of the developing porosity network is examined. The porosity channels occurred to be interconnected along the direction parallel to the surface normal with a volume fraction of the order of a few ppm while no long-range penetration along the internal porosity could be detected when measured along the azimuthal or radial directions of a HPT processed sample.

  17. A Novel Approach For the Simulation of Multiple Flow Mechanisms and Porosities in Shale Gas Reservoirs 

    E-Print Network [OSTI]

    Yan, Bicheng

    2013-07-15

    The state of the art of modeling fluid flow in shale gas reservoirs is dominated by dual porosity models that divide the reservoirs into matrix blocks that significantly contribute to fluid storage and fracture networks which principally control...

  18. Geological Carbon Sequestration Storage Resource Estimates for the Ordovician St. Peter Sandstone, Illinois and Michigan Basins, USA

    SciTech Connect (OSTI)

    Barnes, David; Ellett, Kevin; Leetaru, Hannes

    2014-09-30

    The Cambro-Ordovician strata of the Midwest of the United States is a primary target for potential geological storage of CO2 in deep saline formations. The objective of this project is to develop a comprehensive evaluation of the Cambro-Ordovician strata in the Illinois and Michigan Basins above the basal Mount Simon Sandstone since the Mount Simon is the subject of other investigations including a demonstration-scale injection at the Illinois Basin Decatur Project. The primary reservoir targets investigated in this study are the middle Ordovician St Peter Sandstone and the late Cambrian to early Ordovician Knox Group carbonates. The topic of this report is a regional-scale evaluation of the geologic storage resource potential of the St Peter Sandstone in both the Illinois and Michigan Basins. Multiple deterministic-based approaches were used in conjunction with the probabilistic-based storage efficiency factors published in the DOE methodology to estimate the carbon storage resource of the formation. Extensive data sets of core analyses and wireline logs were compiled to develop the necessary inputs for volumetric calculations. Results demonstrate how the range in uncertainty of storage resource estimates varies as a function of data availability and quality, and the underlying assumptions used in the different approaches. In the simplest approach, storage resource estimates were calculated from mapping the gross thickness of the formation and applying a single estimate of the effective mean porosity of the formation. Results from this approach led to storage resource estimates ranging from 3.3 to 35.1 Gt in the Michigan Basin, and 1.0 to 11.0 Gt in the Illinois Basin at the P10 and P90 probability level, respectively. The second approach involved consideration of the diagenetic history of the formation throughout the two basins and used depth-dependent functions of porosity to derive a more realistic spatially variable model of porosity rather than applying a single estimate of porosity throughout the entire potential reservoir domains. The second approach resulted in storage resource estimates of 3.0 to 31.6 Gt in the Michigan Basin, and 0.6 to 6.1 Gt in the Illinois Basin. The third approach attempted to account for the local-scale variability in reservoir quality as a function of both porosity and permeability by using core and log analyses to calculate explicitly the net effective porosity at multiple well locations, and interpolate those results throughout the two basins. This approach resulted in storage resource estimates of 10.7 to 34.7 Gt in the Michigan Basin, and 11.2 to 36.4 Gt in the Illinois Basin. A final approach used advanced reservoir characterization as the most sophisticated means to estimating storage resource by defining reservoir properties for multiple facies within the St Peter formation. This approach was limited to the Michigan Basin since the Illinois Basin data set did not have the requisite level of data quality and sampling density to support such an analysis. Results from this approach led to storage resource estimates of 15.4 Gt to 50.1 Gt for the Michigan Basin. The observed variability in results from the four different approaches is evaluated in the context of data and methodological constraints, leading to the conclusion that the storage resource estimates from the first two approaches may be conservative, whereas the net porosity based approaches may over-estimate the resource.

  19. Effect of the porosity on the fracture surface roughness of sintered materials: From anisotropic to isotropic self-affine scaling

    E-Print Network [OSTI]

    Tristan Cambonie; Jonathan Bares; Lamine Hattali; Daniel Bonamy; Véronique Lazarus; Harold Auradou

    2015-01-16

    To unravel how the microstructure affects the fracture surface roughness in heterogeneous brittle solids like rocks or ceramics, we characterized the roughness statistics of post-mortem fracture surfaces in home-made materials of adjustable microstructure length-scale and porosity, obtained by sintering monodisperse polystyrene beads. Beyond the characteristic size of disorder, the roughness profiles are found to exhibit self-affine scaling features evolving with porosity. Starting from a null value and increasing the porosity, we quantitatively modify the self-affine scaling properties from anisotropic (at low porosity) to isotropic (for porosity larger than 10 %).

  20. The effect of velocity and porosity profiles on the performance of fixed bed reactors 

    E-Print Network [OSTI]

    Amin, Kaushik

    1983-01-01

    (m r) R. H. Loeppert (member) C. D. 1 and (Head of the Dept. ) December 1983 ABSTRACT THE Effect of Velocity and Porosity Profiles on the Performance of Fixed Bed Reactors (December 1983) Kaushik Amin, B. S. , M. S. University of Barcda... and velocity profiles in the modeling of fixed bed reactors. The first attempt accounting for the porosity profile in the reactor mcdel was made by Xondelik et al. (1969). They used a one dimensional parallel channel model to predict overall conversion...

  1. Experimental Study of Multi-type Macromolecule Porosity Moisture-Conditioned Material 

    E-Print Network [OSTI]

    Huang, X.; Fan, Y.; Di, Y.

    2006-01-01

    , Passive technology, Solar energy 1. INTRODUCTION Large numbers of Chinese existing housing. Urban construction area of china rapid increase from 1996 to date, end of 2003, total area amounted to 1.4091 billion square meters. At the same time... and evaporative cooling effect of the porosity moisture conditioned material is remarkable, and could effectively reduce the cooling load of buildings. Keywords? Passive evaporative, Porosity moisture conditioned material, Energy efficiency in buildings...

  2. Enhanced Tissue Adhesion by Increased Porosity and Surface Roughness of

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) | SciTech(Journal(Patent) |(Journal Article) | SciTechCarbon Based

  3. Cathode for molten carbonate fuel cell

    DOE Patents [OSTI]

    Kaun, Thomas D. (New Lenox, IL); Mrazek, Franklin C. (Hickory Hills, IL)

    1990-01-01

    A porous sintered cathode for a molten carbonate fuel cell and method of making same, the cathode including a skeletal structure of a first electronically conductive material slightly soluble in the electrolyte present in the molten carbonate fuel cell covered by fine particles of a second material of possibly lesser electronic conductivity insoluble in the electrolyte present in the molten carbonate fuel cell, the cathode having a porosity in the range of from about 60% to about 70% at steady-state cell operating conditions consisting of both macro-pores and micro-pores.

  4. Self-Assembling Sup-porosity: The Effect On Fluid Flow And Seismic Wave Propagation

    SciTech Connect (OSTI)

    Pyrak-Nolte, Laura J.

    2013-04-27

    Fractures and joints in the field often contain debris within the void spaces. Debris originates from many different mechanisms: organic and/or inorganic chemical reactions/mineralization, sediment transport, formation of a fracture, mechanical weathering or combinations of these processes. In many cases, the presence of debris forms a â??sub-porosityâ?ť within the fracture void space. This sub-porosity often is composed of material that differs from the fracture walls in mineralogy and morphology. The â??sub-porosityâ?ť may partially fill voids that are on the order of hundreds of microns and thereby reduce the local porosity to lengths scales on the order of sub-microns to tens of microns. It is quite clear that a sub-porosity affects fracture porosity, permeability and storativity. What is not known is how the existence/formation of a sub-porosity affects seismic wave propagation and consequently our ability to probe changes in the subsurface caused by the formation or alteration of a sub-porosity. If seismic techniques are to be developed to monitor the injection and containment of phases in sequestration reservoirs or the propping of hydraulically induced fracture to enhance oil & gas production, it is important to understand how a sub-porosity within a fracture affects macroscopic seismic and hydraulic measurements. A sub-porosity will directly affect the interrelationship between the seismic and hydraulic properties of a fracture. This reports contains the results of the three main topics of research that were performed (1) to determine the effect of a sub-porosity composed of spherical grains on seismic wave propagation across fractures, (2) to determine the effect of biofilm growth in pores and between grains on seismic wave propagation in sediment, and (3) to determine the effect of the scale of observation (field-of-view) on monitoring alteration the pore space within a fracture caused by reactive flow. A brief summary of the results for each topic is contained in the report and the full details of the research and approach are contained in the publications found in the Attachment section of this report. A list of presentation and publications of all work associated with this grant is also provided.

  5. Causal Factors of Weld Porosity in Gas Tungsten Arc Welding of Powder Metallurgy Produced Titanium Alloys

    SciTech Connect (OSTI)

    Muth, Thomas R [ORNL; Yamamoto, Yukinori [ORNL; Frederick, David Alan [ORNL; Contescu, Cristian I [ORNL; Chen, Wei [ORNL; Lim, Yong Chae [ORNL; Peter, William H [ORNL; Feng, Zhili [ORNL

    2013-01-01

    ORNL undertook an investigation using gas tungsten arc (GTA) welding on consolidated powder metallurgy (PM) titanium (Ti) plate, to identify the causal factors behind observed porosity in fusion welding. Tramp element compounds of sodium and magnesium, residual from the metallothermic reduction of titanium chloride used to produce the titanium, were remnant in the starting powder and were identified as gas forming species. PM-titanium made from revert scrap where sodium and magnesium were absent, showed fusion weld porosity, although to a lesser degree. We show that porosity was attributable to hydrogen from adsorbed water on the surface of the powders prior to consolidation. The removal / minimization of both adsorbed water on the surface of titanium powder and the residues from the reduction process prior to consolidation of titanium powders, are critical to achieve equivalent fusion welding success similar to that seen in wrought titanium produced via the Kroll process.

  6. Comparative Study for the Interpretation of Mineral Concentrations, Total Porosity, and TOC in Hydrocarbon-Bearing Shale from Conventional Well

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    of SPE copyright. Abstract The estimation of porosity, water saturation, kerogen concentration, water saturation, and kerogen content determine the amount of hydrocarbon-in-place while mineral

  7. Knudsen-Hydrodynamic Crossover in Liquid 3He in High Porosity Aerogel

    E-Print Network [OSTI]

    Takeuchi, H; Nagai, K; Choi, H C; Moon, B H; Masuhara, N; Meisel, M W; Lee, Y; Mulders, N

    2012-01-01

    We present a combined experimental and theoretical study of the drag force acting on a high porosity aerogel immersed in liquid ${}^3$He and its effect on sound propagation. The drag force is characterized by the Knudsen number, which is defined as the ratio of the quasiparticle mean free path to the radius of an aerogel strand. Evidence of the Knudsen-hydrodynamic crossover is clearly demonstrated by a drastic change in the temperature dependence of ultrasound attenuation in 98% porosity aerogel. Our theoretical analysis shows that the frictional sound damping caused by the drag force is governed by distinct laws in the two regimes, providing excellent agreement with the experimental observation.

  8. WESTCARB Carbon Atlas

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The West Coast Regional Carbon Sequestration Partnership (known as WESTCARB) was established in Fall 2003. It is one of seven research partnerships co-funded by DOE to characterize regional carbon sequestration opportunities and conduct pilot-scale validation tests. The California Energy Commission manages WESTCARB and is a major co-funder. WESTCARB is characterizing the extent and capacity of geologic formations capable of storing CO2, known as sinks. Results are entered into a geographic information system (GIS) database, along with the location of major CO2-emitting point sources in each of the six WESTCARB states, enabling researchers and the public to gauge the proximity of candidate CO2 storage sites to emission sources and the feasibility of linking them via pipelines. Specifically, the WESTCARB GIS database (also known as the carbon atlas) stores layers of geologic information about potential underground storage sites, such as porosity and nearby fault-lines and aquifers. Researchers use these data, along with interpreted geophysical data and available oil and gas well logs to estimate the region's potential geologic storage capacity. The database also depicts existing pipeline routes and rights-of-way and lands that could be off-limits, which can aid the development of a regional carbon management strategy. The WESTCARB Carbon Atlas, which is accessible to the public, provides a resource for public discourse on practical solutions for regional CO2 management. A key WESTCARB partner, the Utah Automated Geographic Reference Center, has developed data serving procedures to enable the WESTCARB Carbon Atlas to be integrated with those from other regional partnerships, thereby supporting the U.S. Department of Energy's national carbon atlas, NATCARB

  9. Ice thickness measurements by Raman scattering

    E-Print Network [OSTI]

    Pershin, Sergey M; Klinkov, Vladimir K; Yulmetov, Renat N; Bunkin, Alexey F

    2014-01-01

    A compact Raman LIDAR system with a spectrograph was used for express ice thickness measurements. The difference between the Raman spectra of ice and liquid water is employed to locate the ice-water interface while elastic scattering was used for air-ice surface detection. This approach yields an error of only 2 mm for an 80-mm-thick ice sample, indicating that it is promising express noncontact thickness measurements technique in field experiments.

  10. Method for depositing a uniform layer of particulate material on the surface of an article having interconnected porosity

    DOE Patents [OSTI]

    Wrenn, G.E. Jr.; Lewis, J. Jr.

    1982-09-29

    The invention is a method for depositing liquid-suspended particles on an immersed porous article characterized by interconnected porosity. In one form of the invention, coating is conducted in a vessel containing an organic liquid supporting a colloidal dispersion of graphite sized to lodge in surface pores of the article. The liquid comprises a first volatile component (e.g., acetone) and a second less-volatile component (e.g., toluene) containing a dissolved organic graphite-bonding agent. The liquid also contains an organic agent (e.g., cellulose gum) for maintaining the particles in suspension. A porous carbon article to be coated is immersed in the liquid so that it is permeated therewith. While the liquid is stirred to maintain a uniform blend, the vessel headspace is evacuated to effect flashing-off of the first component from the interior of the article. This causes particle-laden liquid exterior of the article to flow inwardly through its surface pores, lodging particles in these pores and forming a continuous graphite coating. The coated article is retrieved and heated to resin-bond the graphite. The method can be used to form a smooth, adherent, continuous coating of various materials on various porous articles. The method is rapid and reproducible.

  11. EVOLUTION OF POROSITY AND TEXTURE IN THERMAL BARRIER COATINGS GROWN BY EB-PVD

    E-Print Network [OSTI]

    Clarke, David R.

    coatings (TBCs) have emerged as arguably the most critical materials issue for the next generation of gas of nearly three decades of service in gas turbines, full realization of the TBC potential remains hinderedEVOLUTION OF POROSITY AND TEXTURE IN THERMAL BARRIER COATINGS GROWN BY EB-PVD Scott G. Terry

  12. POROSITY MIGRATION IN RTM 1 W K Chui, J Glimm and F M Tangerman

    E-Print Network [OSTI]

    New York at Stoney Brook, State University of

    on the mold filling time as well as on the potential for large­scale process defects. The modeling has mostly of reliable composite components. In the Resin Transfer Mold­ ing (RTM) process, porosity results from molding (RTM) is one particularly attractive technique for many applications since it com­ bines cost

  13. A nanotubular metal-organic framework with permanent porosity : structure analysis and gas sorption studies.

    SciTech Connect (OSTI)

    Ma, S.; Simmons, J. M.; Li, J. R.; Yuan, D.; Weng, W.; Liu, D. J.; Zhou, H. C.; Chemical Sciences and Engineering Division; Texas A&M Univ.; NIST

    2009-01-01

    A nanotubular metal-organic framework, PCN-19, was constructed based on a micro3-oxo-trinickel basic carboxylate secondary building unit (SBU) and the 9,10-anthracenedicarboxylate ligand; its permanent porosity was confirmed by N2 adsorption isotherms, and its H2 storage performances were evaluated under both low and high pressures at 77 K.

  14. OCTOBER1997 THE LEADING EDGE 1429 Tight, low-porosity reservoirs can produce significant

    E-Print Network [OSTI]

    Tsvankin, Ilya

    reservoirs using surface seismic data is an important exploration problem that has attracted much attention impor- tant to obtain more information about fractured reser- voirs from 3-D P-wave data. AmpliOCTOBER1997 THE LEADING EDGE 1429 Tight, low-porosity reservoirs can produce significant amounts

  15. Fusion Engineering and Design 81 (2006) 455460 Breeder foam: an innovative low porosity solid breeder material

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    2006-01-01

    Fusion Engineering and Design 81 (2006) 455­460 Breeder foam: an innovative low porosity solid@ucla.edu (S. Sharafat). breeder pebble beds remains a field of intense R&D for fusion power reactor B.V. All rights reserved. doi:10.1016/j.fusengdes.2005.06.374 #12;456 S. Sharafat et al. / Fusion

  16. Integration of Geology, Rock-Physics, Logs, and Pre-stack Seismic for Reservoir Porosity Estimation

    E-Print Network [OSTI]

    Al Muhaidib, Abdulaziz

    2011-01-01

    The main objective of this paper is to obtain reservoir properties, such as porosity, both at the well locations and in the inter-well regions from seismic data and well logs. The seismic and well-log datasets are from an ...

  17. NUMERICAL MODELING OF THE COAGULATION AND POROSITY EVOLUTION OF DUST AGGREGATES

    SciTech Connect (OSTI)

    Okuzumi, Satoshi; Sakagami, Masa-aki [Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Tanaka, Hidekazu, E-mail: satoshi.okuzumi@ax2.ecs.kyoto-u.ac.j [Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819 (Japan)

    2009-12-20

    Porosity evolution of dust aggregates is crucial in understanding dust evolution in protoplanetary disks. In this study, we present useful tools to study the coagulation and porosity evolution of dust aggregates. First, we present a new numerical method for simulating dust coagulation and porosity evolution as an extension of the conventional Smoluchowski equation. This method follows the evolution of the mean porosity for each aggregate mass simultaneously with the evolution of the mass distribution function. This method reproduces the results of previous Monte Carlo simulations with much less computational expense. Second, we propose a new collision model for porous dust aggregates on the basis of our N-body experiments on aggregate collisions. As the first step, we focus on 'hit-and-stick' collisions, which involve neither compression nor fragmentation of aggregates. We first obtain empirical data on porosity changes between the classical limits of ballistic cluster-cluster and particle-cluster aggregation. Using the data, we construct a recipe for the porosity change due to general hit-and-stick collisions as well as formulae for the aerodynamical and collisional cross sections. Our collision model is thus more realistic than a previous model of Ormel et al. based on the classical aggregation limits only. Simple coagulation simulations using the extended Smoluchowski method show that our collision model explains the fractal dimensions of porous aggregates observed in a full N-body simulation and a laboratory experiment. By contrast, similar simulations using the collision model of Ormel et al. result in much less porous aggregates, meaning that this model underestimates the porosity increase upon unequal-sized collisions. Besides, we discover that aggregates at the high-mass end of the distribution can have a considerably small aerodynamical cross section per unit mass compared with aggregates of lower masses. This occurs when aggregates drift under uniform acceleration (e.g., gravity) and their collision is induced by the difference in their terminal velocities. We point out an important implication of this discovery for dust growth in protoplanetary disks.

  18. Gas permeability of carbon aerogels

    SciTech Connect (OSTI)

    Kong, F.; LeMay, J.D.; Hulsey, S.S.; Alviso, C.T.; Pekala, R.W. (Chemistry and Materials Science Department, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States))

    1993-12-01

    Carbon aerogels are synthesized via the aqueous polycondensation of resorcinol with formaldehyde, followed by supercritical drying and subsequent pyrolysis at 1050 [degree]C. As a result of their interconnected porosity, ultrafine cell/pore size, and high surface area, carbon aerogels have many potential applications such as supercapacitors, battery electrodes, catalyst supports, and gas filters. The performance of carbon aerogels in the latter two applications depends on the permeability or gas flow conductance in these materials. By measuring the pressure differential across a thin specimen and the nitrogen gas flow rate in the viscous regime, the permeability of carbon aerogels was calculated from equations based upon Darcy's law. Our measurements show that carbon aerogels have permeabilities on the order of 10[sup [minus]12] to 10[sup [minus]10] cm[sup 2] over the density range from 0.05--0.44 g/cm[sup 3]. Like many other aerogel properties, the permeability of carbon aerogels follows a power law relationship with density, reflecting differences in the average mesopore size. Comparing the results from this study with the permeability of silica aerogels reported by other workers, we found that the permeability of aerogels is governed by a simple universal flow equation. This paper discusses the relationship between permeability, pore size, and density in carbon aerogels.

  19. Sound speed and attenuation in water-saturated glass beads as a function of frequency and porosity

    E-Print Network [OSTI]

    the frequency and porosity dependency. To begin to address this deficiency, a fluidized bed technique was used meaningful comparisons to various models of sound propagation. Towards this end, a fluidized bed apparatus and then al- lowed to rest overnight to dissolve trapped gas bubbles. Sediment porosity was controlled

  20. Pore-Level Analysis of the Relationship Between Porosity, Irreducible Water Saturation, and Permeability of Clastic Rocks

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    SPE 109878 Pore-Level Analysis of the Relationship Between Porosity, Irreducible Water Saturation permeability from well- log calculations of porosity and irreducible water satura- tion. However, these models of compaction, cementation, and distribution of dispersed hydrated clay minerals. Irreducible water

  1. Oil shale ash-layer thickness and char combustion kinetics

    SciTech Connect (OSTI)

    Aldis, D.F.; Singleton, M.F.; Watkins, B.E.; Thorsness, C.B.; Cena, R.J.

    1992-04-15

    A Hot-Recycled-Solids (HRS) oil shale retort is being studied at Lawrence Livermore National Laboratory. In the HRS process, raw shale is heated by mixing it with burnt retorted shale. Retorted shale is oil shale which has been heated in an oxygen deficient atmosphere to pyrolyze organic carbon, as kerogen into oil, gas, and a nonvolatile carbon rich residue, char. In the HRS retort process, the char in the spent shale is subsequently exposed to an oxygen environment. Some of the char, starting on the outer surface of the shale particle, is burned, liberating heat. In the HRS retort, the endothermic pyrolysis step is supported by heat from the exothermic char combustion step. The rate of char combustion is controlled by three resistances; the resistance of oxygen mass transfer through the gas film surrounding the solid particle, resistance to mass transfer through a ash layer which forms on the outside of the solid particles as the char is oxidized and the resistance due to the intrinsic chemical reaction rate of char and oxygen. In order to estimate the rate of combustion of the char in a typical oil shale particle, each of these resistances must be accurately estimated. We begin by modeling the influence of ash layer thickness on the over all combustion rate of oil shale char. We then present our experimental measurements of the ash layer thickness of oil shale which has been processed in the HRS retort.

  2. Thick Pb(Zr,Ti)O{sub 3} film without substrate

    SciTech Connect (OSTI)

    Lee, Jae-Wung; Park, Chee-Sung; Jo, Ji-Hoon; Kim, Hyoun-Ee [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2007-08-13

    In order to fabricate thick PbZr{sub x}Ti{sub 1-x}O{sub 3} (PZT) films for microelectromechanical system applications, the authors introduce a concept of freestanding film without a substrate. PZT films with a thickness of up to 20 {mu}m were deposited on a very thin Pt layer without a substrate by the rf-magnetron sputtering method using a single oxide target. The Pt layer (thickness <1 {mu}m) was obtained by sputtering the Pt on a Si substrate with a carbon layer between them, and subsequently removing the carbon layer by oxidation in air at 400 deg. C. Piezoelectric properties of the film were comparable to those of bulk PZT as a result of the removal of clamping effect of the substrate.

  3. Turbine airfoil with outer wall thickness indicators

    DOE Patents [OSTI]

    Marra, John J; James, Allister W; Merrill, Gary B

    2013-08-06

    A turbine airfoil usable in a turbine engine and including a depth indicator for determining outer wall blade thickness. The airfoil may include an outer wall having a plurality of grooves in the outer surface of the outer wall. The grooves may have a depth that represents a desired outer surface and wall thickness of the outer wall. The material forming an outer surface of the outer wall may be removed to be flush with an innermost point in each groove, thereby reducing the wall thickness and increasing efficiency. The plurality of grooves may be positioned in a radially outer region of the airfoil proximate to the tip.

  4. Electrochemical Performance of Graphene as Effected by Electrode Porosity and Graphene Functionalization

    SciTech Connect (OSTI)

    Punckt, Christian; Pope, Michael A.; Liu, Jun; Lin, Yuehe; Aksay, Ilhan A.

    2010-11-01

    Graphene-based electrodes have recently gained popularity due to their superior electrochemical properties. However, the exact mechanisms of electrochemical activity are not yet understood. Here, we present data from NADH oxidation and ferri/ferrocyanide redox probe experiments to demonstrate that both (i) the porosity of the graphene electrodes, as effected by the packing morphology, and (ii) the functional group and the lattice defect concentration play a significant role on their electrochemical performance.

  5. Electrochemical Performance of Graphene as Effected by Electrode Porosity and Graphene Functionalization

    SciTech Connect (OSTI)

    Punckt, Christian; Pope, Michael A.; Liu, Jun; Lin, Yuehe; Aksay, Ilhan A.

    2010-12-01

    Graphene-based electrodes have recently gained popularity due to their superior electrochemical properties. However, the exact mechanisms of electrochemical activity are not yet understood. Here, we present data from NADH oxidation and ferri/ferrocyanide redox probe experiments to demonstrate that both (i) the porosity of the graphene electrodes, as effected by the packing morphology, and (ii) the functional group and the lattice defect concentration play a significant role on their electrochemical performance.

  6. The characterization of porous media by porosity, permeability, formation factor, and mercury injection capillary 

    E-Print Network [OSTI]

    McLallen, Dewitt Liggett

    1959-01-01

    , foraetion factor, ead the aercury injection capillary pressure - seturatioa relstioaship. Such correlstioas are of interest not only ia the charecterisetioa of porous asdie froa a theoretical steadpoiat, but else as sa eid ia the iater- pretetion..., it is possible to derive reletioas betweea porosity, poraeebility, foraetioa factor, ead s capillary pressure persaeter. These ideal relstioas differ frca thosecccurring iu actual porous uedia by a faster, er factors, depeudiug ou the deviatiou of the pere...

  7. Ultrasonic thickness testing of aging offshore structures 

    E-Print Network [OSTI]

    Ellison, Brian Kirk

    1999-01-01

    The objectives of this thesis concern the use of ultrasonic thickness (UT) testing for use in the offshore industry. Evidence from prior studies conducted at Texas A&M University suggests that the corrosion on the surface ...

  8. Relationship between mineralogy and porosity in seals relevant to geologic CO2 Sequestration

    SciTech Connect (OSTI)

    Swift, Alexander [The Ohio State University] [The Ohio State University; Anovitz, Lawrence {Larry} M [ORNL; Sheets, Julia [The Ohio State University] [The Ohio State University; Cole, David R [ORNL] [ORNL; Welch, Susan P [ORNL] [ORNL; Rother, Gernot [ORNL] [ORNL

    2014-01-01

    Porosity and permeability are key petrophysical variables that link the thermal, hydrological, geochemical, and geomechanical properties of subsurface formations. The size, shape, distribution, and connectivity of rock pores dictate how fluids migrate into and through micro- and nano-environments, then wet and react with accessible solids. Three representative samples of cap rock from the Eau Claire Formation, the prospective sealing unit that overlies the Mount Simon Sandstone, a potential CO 2 storage formation, were interrogated with an array of complementary methods. neutron scattering, backscattered-electron imaging, energydispersive spectroscopy, and mercury porosimetry. Results are presented that detail variations between lithologic types in total and connected nano- to microporosity across more than five orders of magnitude. Pore types are identified and then characterized according to presence in each rock type, relative abundance, and surface area of adjacent minerals, pore and pore-throat diameters, and degree of connectivity. We observe a bimodal distribution of porosity as a function of both pore diameter and pore-throat diameter. The contribution of pores at the nano- and microscales to the total and the connected porosity is a distinguishing feature of each lithology observed. Pore:pore-throat ratios at each of these two scales diverge markedly, being almost unity at the nanoscale regime (dominated by illitic clay and micas), and varying by one and a half orders of magnitude at the microscale within a clastic mudstone.

  9. Mineral Dissolution and Secondary Precipitation on Quartz Sand in Simulated Hanford Tank Solutions Affecting Subsurface Porosity

    SciTech Connect (OSTI)

    Wang, Guohui; Um, Wooyong

    2012-11-23

    Highly alkaline nuclear waste solutions have been released from underground nuclear waste storage tanks and pipelines into the vadose zone at the U.S. Department of Energy’s Hanford Site in Washington, causing mineral dissolution and re-precipitation upon contact with subsurface sediments. High pH caustic NaNO3 solutions with and without dissolved Al were reacted with quartz sand through flow-through columns stepwise at 45, 51, and 89°C to simulate possible reactions between leaked nuclear waste solution and primary subsurface mineral. Upon reaction, Si was released from the dissolution of quartz sand, and nitrate-cancrinite [Na8Si6Al6O24(NO3)2] precipitated on the quartz surface as a secondary mineral phase. Both steady-state dissolution and precipitation kinetics were quantified, and quartz dissolution apparent activation energy was determined. Mineral alteration through dissolution and precipitation processes results in pore volume and structure changes in the subsurface porous media. In this study, the column porosity increased up to 40.3% in the pure dissolution column when no dissolved Al was present in the leachate, whereas up to a 26.5% porosity decrease was found in columns where both dissolution and precipitation were observed because of the presence of Al in the input solution. The porosity change was also confirmed by calculation using the dissolution and precipitation rates and mineral volume changes.

  10. Variations of chlorites and illites and porosity in Mississippian sandstone reservoirs in the Illinois basin

    SciTech Connect (OSTI)

    Moore, D.M.; Hughes, R.E. (Illinois State Geological Survey, Champaign (United States))

    1991-03-01

    Shallow marine, Mississippian, siliclastics in the Illinois basin, although predominantly quartz, contain other minerals that directly influence the porosity and permeability of these reservoir rocks. These sandstones contain more chlorite and kaolinite, relative to illite, than the authors have observed for shales from other Chesterian and Valmeyeran strata. Clay mineral suites in reservoirs appear to be diagenetic. The Aux Vases Sandstone contains illite, illite/smectite, and chlorite; kaolinite is absent. The Cypress Sandstone contains illite, illite/smectite, chlorite, and kaolinite. Chlorite in the Aux Vases Sandstone varies from moderately Fe-rich to Mg-rich, whereas the chlorite in the Cypress Sandstone is uniformly Fe-rich. As the percentage of clay minerals in these rocks decreases, the proportion of chlorite to other clay minerals increases. In some chlorites, the width of the 003 and 005 peaks at half-height is greater than that of the 002 and 004 peaks. This suggests an interlayering of a 7{angstrom} mineral, probably berthierine- or serpentine-like. SEM photos show chlorite coating quartz grains. In some samples there are quartz overgrowths in spite of the presence of a coating of chlorite; in others, chlorite interlayered with the 7{angstrom} phase seems to have interfered with or suppressed overgrowths. Correspondingly, there is a correlation between the 7{angstrom} phase/chlorite and porosity. Therefore, identification of the type of chlorite in a potential reservoir may be an indicator of porosity, as well as a guide for selecting completion and stimulation treatments.

  11. MonolayerThickness of Block Copolymer Films

    E-Print Network [OSTI]

    Petta, Jason

    .47 · Index of ref. for PS-PEHMA 1.51 #12;Annealing the films · Tg 22nm 24nm Height Images #12;AFM 12-33 26nm 28nm 30nm Bi-continuous #12;12-33Area% 13.08 31.55 41 Area % Thickness (nm) Monolayer: 18.86nm Bilayer: 37.72nm #12;Monolayer thickness 12

  12. Structural annealing of carbon coated aligned multi-walled carbon nanotube sheets

    E-Print Network [OSTI]

    Zhu, Yuntian T.

    nanotubes (AMWCNTs) were used to study the structural annealing of pyrolytic carbon (PyC) coatings with various thicknesses on MWCNTs. PyC was deposited using chemical vapor infiltration and the thickness was con- trolled via the infiltration time. Structural annealing of the PyC coated AMWCNT (AMWCNT

  13. Solid hydrocarbon: a migration-of-fines problem in carbonate reservoirs

    SciTech Connect (OSTI)

    Lomando, A.J.

    1986-05-01

    The most familiar example of a migration-of-fines problem is authigenic kaolinite, which can detach, migrate through a pore system, and bridge pore throats, thus reducing permeability. under certain conditions, a similar problem is caused by solid hydrocarbon, independent of a mode of origin, which has precipitated in carbonate pore systems. Cores from several reservoirs in the Lower Cretaceous of east Texas were used as the data base in this study. Three morphotypes of solid hydrocarbon have been identified from thin-section and scanning electron microscope observations: droplets, peanut brittle, and carpets. Droplets are small, individual, rounded particles scattered on pore walls. Peanut brittle ranges from a continuous to discontinuous thin coating with random rounded lumps that probably have droplet precursors. Carpets are thick, continuous coatings and, at the extreme, can effectively occlude whole pores. Initially, solid hydrocarbon reduces permeability without necessarily decreasing porosity significantly. Likewise, solid hydrocarbon cannot be detected directly from wireline logs. Acidizing to enhance communication to the well bore is a common completion procedure in limestone and calcareous sandstone reservoirs. In reservoirs containing solid hydrocarbon, acid etches the substrate and releases solid hydrocarbon, which migrates in the pore system and bridges pore throats. Differential well-bore pressure also may cause solid hydrocarbon to migrate. Therefore, wettability, which controls hydrocarbon adhesion to the pore walls, and the dominant morphotype are important factors in the extent of reservoir damage.

  14. Carbon sequestration

    E-Print Network [OSTI]

    Carbon sequestration is the process of capture and long-term storage of atmospheric carbon dioxide (CO 2).[1] Carbon sequestration describes long-term storage of carbon dioxide or other forms of carbon to either mitigate or defer global warming and avoid ...

  15. Effect of quartz overgrowth precipitation on the multiscale porosity of sandstone: A (U)SANS and imaging analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Anovitz, Lawrence M.; Cole, David R.; Jackson, Andrew J.; Rother, Gernot; Littrell, Kenneth C.; Allard, Lawrence F.; Pollington, Anthony D.; Wesolowski, David J.

    2015-06-01

    We have performed a series of experiments to understand the effects of quartz overgrowths on nanometer to centimeter scale pore structures of sandstones. Blocks from two samples of St. Peter Sandstone with different initial porosities (5.8 and 18.3%) were reacted from 3 days to 7.5 months at 100 and 200 °C in aqueous solutions supersaturated with respect to quartz by reaction with amorphous silica. Porosity in the resultant samples was analyzed using small and ultrasmall angle neutron scattering and scanning electron microscope/backscattered electron (SEM/BSE)-based image-scale processing techniques.Significant changes were observed in the multiscale pore structures. By three days much ofmore »the overgrowth in the low-porosity sample dissolved away. The reason for this is uncertain, but the overgrowths can be clearly distinguished from the original core grains in the BSE images. At longer times the larger pores are observed to fill with plate-like precipitates. As with the unreacted sandstones, porosity is a step function of size. Grain boundaries are typically fractal, but no evidence of mass fractal or fuzzy interface behavior was observed suggesting a structural difference between chemical and clastic sediments. After the initial loss of the overgrowths, image scale porosity (>~1 cm) decreases with time. Submicron porosity (typically ~25% of the total) is relatively constant or slightly decreasing in absolute terms, but the percent change is significant. Fractal dimensions decrease at larger scales, and increase at smaller scales with increased precipitation.« less

  16. Understanding and engineering interfacial charge transfer of carbon nanotubes and graphene for energy and sensing applications

    E-Print Network [OSTI]

    Paulus, Geraldine L. C. (Geraldine Laura Caroline)

    2013-01-01

    Graphene is a one-atom thick planar monolayer of sp2 -bonded carbon atoms organized in a hexagonal crystal lattice. A single walled carbon nanotube (SWCNT) can be thought of as a graphene sheet rolled up into a seamless ...

  17. Pd conductor for thick film hydrogen sensor

    SciTech Connect (OSTI)

    Felten, J.J. [DuPont Electronics, Research Triangle Park, NC (United States); Hoffheins, B.S.; Lauf, R.J. [Oak Ridge National Lab., TN (United States)

    1996-12-31

    Cooperation between a materials developer and sensor designers has resulted in a palladium conductor used ro design and build a new hydrogen sensor that has superior performance characteristics and is also inexpensive to manufacture. Material characteristics give it faster response time and greater thermal/mechanical stability. The thick film palladium conductor paste, which can be fired at 850{degrees}C-950{degrees}C, has provided device designers a practical conductor paste with which to produce the improved sensor. The conductor uses a high surface area Pd powder combined with a binder glass that is chemically very inert, which combination produces a porous conductor that has good adhesion and chemical resistance. The current sensor design consists of three or four thick film Layers. Because of the flexibility of thick film techniques, the sensor element can be configured to any desired size and shape for specific instrument needs.

  18. Wall thickness measuring method and apparatus

    DOE Patents [OSTI]

    Salzer, L.J.; Bergren, D.A.

    1987-10-06

    An apparatus for measuring the wall thickness of a nonmagnetic article having a housing supporting a magnet and a contiguous supporting surface. The tubular article and the housing are releasably secured to the supporting surface and a support member of an optical comparator, respectively. To determine the wall thickness of the article at a selected point, a magnetically responsive ball is positioned within the tubular article over said point and retained therein by means of a magnetic field produced by the magnet. Thereafter, an optical comparator is employed to project a magnified image of the ball on a screen and the wall thickness at the selected point is calculated by using a ball surface measurement taken with the comparator in conjunction with a previously determined base line measurement.

  19. Gas turbine bucket wall thickness control

    DOE Patents [OSTI]

    Stathopoulos, Dimitrios (Glenmont, NY); Xu, Liming (Greenville, SC); Lewis, Doyle C. (Greer, SC)

    2002-01-01

    A core for use in casting a turbine bucket including serpentine cooling passages is divided into two pieces including a leading edge core section and a trailing edge core section. Wall thicknesses at the leading edge and the trailing edge of the turbine bucket can be controlled independent of each other by separately positioning the leading edge core section and the trailing edge core section in the casting die. The controlled leading and trailing edge thicknesses can thus be optimized for efficient cooling, resulting in more efficient turbine operation.

  20. Method to produce alumina aerogels having porosities greater than 80 percent

    DOE Patents [OSTI]

    Poco, John F.; Hrubesh, Lawrence W.

    2003-09-16

    A two-step method for producing monolithic alumina aerogels having porosities of greater than 80 percent. Very strong, very low density alumina aerogel monoliths are prepared using the two-step sol-gel process. The method of preparing pure alumina aerogel modifies the prior known sol method by combining the use of substoichiometric water for hydrolysis, the use of acetic acid to control hydrolysis/condensation, and high temperature supercritical drying, all of which contribute to the formation of a polycrystalline aerogel microstructure. This structure provides exceptional mechanical properties of the alumina aerogel, as well as enhanced thermal resistance and high temperature stability.

  1. Porosity in millimeter-scale welds of stainless steel : three-dimensional characterization.

    SciTech Connect (OSTI)

    Aagesen, Larry K.; Madison, Jonathan D.

    2012-05-01

    A variety of edge joints utilizing a continuous wave Nd:YAG laser have been produced and examined in a 304-L stainless steel to advance fundamental understanding of the linkage between processing and resultant microstructure in high-rate solidification events. Acquisition of three-dimensional reconstructions via micro-computed tomography combined with traditional metallography has allowed for qualitative and quantitative characterization of weld joints in a material system of wide use and broad applicability. The presence, variability and distribution of porosity, has been examined for average values, spatial distributions and morphology and then related back to fundamental processing parameters such as weld speed, weld power and laser focal length.

  2. Coating thickness and coverage effects on the forces between...

    Office of Scientific and Technical Information (OSTI)

    Coating thickness and coverage effects on the forces between silica nanoparticles in water. Citation Details In-Document Search Title: Coating thickness and coverage effects on the...

  3. Free Energy of thick Center Vortices

    E-Print Network [OSTI]

    Ch. Korn; H. Reinhardt; T. Tok

    2005-08-05

    The free energy of thick center vortices is calculated in continuum Yang-Mills theory in one-loop approximation using the proper time regularization. The vortices are represented by Abelian gauge field configurations on the torus which satisfy twisted boundary conditions.

  4. Thick beryllium coatings by magnetron sputtering

    SciTech Connect (OSTI)

    Wu, H; Nikroo, A; Youngblood, K; Moreno, K; Wu, D; Fuller, T; Alford, C; Hayes, J; Detor, A; Wong, M; Hamza, A; van Buuren, T; Chason, E

    2011-04-14

    Thick (>150 {micro}m) beryllium coatings are studied as an ablator material of interest for fusion fuel capsules for the National Ignition Facility (NIF). As an added complication, the coatings are deposited on mm-scale spherical substrates, as opposed to flats. DC magnetron sputtering is used because of the relative controllability of the processing temperature and energy of the deposits. We used ultra small angle x-ray spectroscopy (USAXS) to characterize the void fraction and distribution along the spherical surface. We investigated the void structure using a combination focused ion beam (FIB) and scanning electron microscope (SEM), along with transmission electron microscopy (TEM). Our results show a few volume percent of voids and a typical void diameter of less than two hundred nanometers. Understanding how the stresses in the deposited material develop with thickness is important so that we can minimize film cracking and delamination. To that end, an in-situ multiple optical beam stress sensor (MOSS) was used to measure the stress behavior of thick Beryllium coatings on flat substrates as the material was being deposited. We will show how the film stress saturates with thickness and changes with pressure.

  5. Depositional environments, diagenesis, and porosity development of Mississippian Chappel carbonates at Thrash and Quanah SE Fields, Hardeman County, Texas 

    E-Print Network [OSTI]

    He, Shiliang T.

    1989-01-01

    /mudstone microfacies (Thrash Field) 5) Argillaceous, spiculitic, crinoid ? bryozoan mudstone/ 32 wackestone micro facies (Quanah SE Field) 6) Dolomitic, spiculiferous, silt ? sized wackestone/mudstone microfacies (Quanah SE Field) 7) Dolomitic, cherty floatstone... crinoi. d-bryozoan mudstona/wackestone Dolomitic, spiculiferous silty wackestone/muc(ALone Well Well to morleratc Pine to medium (0. 007 mm to 0. 00 ~) silty to I'ine to 0. 00 mm) Dul row Discontinuous, p&. anar, thin, laminae Micro(null inn...

  6. DE-SC0004118 (Wong & Lindquist). Final Report: Changes of Porosity, Permeability and Mechanical Strength Induced by Carbon Dioxide Sequestration.

    SciTech Connect (OSTI)

    WONG, TENG-FONG; Lindquist, Brent

    2014-09-22

    In the context of CO{sub 2} sequestration, the overall objective of this project is to conduct a systematic investigation of how the flow of the acidic, CO{sub 2} saturated, single phase component of the injected/sequestered fluid changes the microstructure, permeability and strength of sedimentary rocks, specifically limestone and sandstone samples. Hydromechanical experiments, microstructural observations and theoretical modeling on multiple scales were conducted.

  7. Porosity of coal and shale: Insights from gas adsorption and SANS/USANS techniques

    SciTech Connect (OSTI)

    Mastalerz, Maria; He, Lilin; Melnichenko, Yuri B; Rupp, John A

    2012-01-01

    Two Pennsylvanian coal samples (Spr326 and Spr879-IN1) and two Upper Devonian-Mississippian shale samples (MM1 and MM3) from the Illinois Basin were studied with regard to their porosity and pore accessibility. Shale samples are early mature stage as indicated by vitrinite reflectance (R{sub o}) values of 0.55% for MM1 and 0.62% for MM3. The coal samples studied are of comparable maturity to the shale samples, having vitrinite reflectance of 0.52% (Spr326) and 0.62% (Spr879-IN1). Gas (N{sub 2} and CO{sub 2}) adsorption and small-angle and ultrasmall-angle neutron scattering techniques (SANS/USANS) were used to understand differences in the porosity characteristics of the samples. The results demonstrate that there is a major difference in mesopore (2-50 nm) size distribution between the coal and shale samples, while there was a close similarity in micropore (<2 nm) size distribution. Micropore and mesopore volumes correlate with organic matter content in the samples. Accessibility of pores in coal is pore-size specific and can vary significantly between coal samples; also, higher accessibility corresponds to higher adsorption capacity. Accessibility of pores in shale samples is low.

  8. Estimates of frequency-dependent compressibility from a quasistatic double-porosity model

    SciTech Connect (OSTI)

    Berryman, J. G.; Wang, H. F.

    1998-09-16

    Gassmann's relationship between the drained and undrained bulk modulus of a porous medium is often used to relate the dry bulk modulus to the saturated bulk modulus for elastic waves, because the compressibility of air is considered so high that the dry rock behaves in a drained fashion and the frequency of elastic waves is considered so high that the saturated rock behaves in an undrained fashion. The bulk modulus calculated from ultrasonic velocities, however, often does not match the Gassmann prediction. Mavko and Jizba examined how local flow effects and unequilibrated pore pressures can lead to greater stiffnesses. Their conceptual model consists of a distribution of porosities obtained from the strain-versus-confining-pressure behavior. Stiff pores that close at higher confining pressures are considered to remain undrained (unrelaxed) while soft pores drain even for high-frequency stress changes. If the pore shape distribution is bimodal, then the rock approximately satisfies the assumptions of a double-porosity, poroelastic material. Berryman and Wang [1995] established linear constitutive equations and identified four different time scales of ow behavior: (1) totally drained, (2) soft pores are drained but stiff pores are undrained, (3) soft and stiff pores are locally equilibrated, but undrained beyond the grain scale, and (4) both soft and stiff pores are undrained. The relative magnitudes of the four associated bulk moduli will be examined for all four moduli and illustrated for several sandstones.

  9. Carbon Smackdown: Carbon Capture

    SciTech Connect (OSTI)

    Jeffrey Long

    2010-07-12

    In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

  10. Carbon Smackdown: Carbon Capture

    ScienceCinema (OSTI)

    Jeffrey Long

    2010-09-01

    In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

  11. Thickness-dependent secondary structure formation of tubelike polymers

    E-Print Network [OSTI]

    Janke, Wolfhard

    OFFPRINT Thickness-dependent secondary structure formation of tubelike polymers T. Vogel, T.epljournal.org doi: 10.1209/0295-5075/85/10003 Thickness-dependent secondary structure formation of tubelike polymers the conformational phase diagram of a simple model for flexible polymers with explicit thickness. The thickness

  12. Late Neoproterozoic cap carbonates: Mackenzie Mountains, northwestern Canada: precipitation

    E-Print Network [OSTI]

    Narbonne, Guy

    and global glacial meltdown Noel P. James, Guy M. Narbonne, T. Kurtis Kyser Abstract: The 3­27 m-thick cap carbonate is thus interpreted to have formed in two steps: (1) during initial marine ice melting accompanied

  13. The Consistent Kinetics Porosity (CKP) Model: A Theory for the Mechanical Behavior of Moderately Porous Solids

    SciTech Connect (OSTI)

    BRANNON,REBECCA M.

    2000-11-01

    A theory is developed for the response of moderately porous solids (no more than {approximately}20% void space) to high-strain-rate deformations. The model is consistent because each feature is incorporated in a manner that is mathematically compatible with the other features. Unlike simple p-{alpha} models, the onset of pore collapse depends on the amount of shear present. The user-specifiable yield function depends on pressure, effective shear stress, and porosity. The elastic part of the strain rate is linearly related to the stress rate, with nonlinear corrections from changes in the elastic moduli due to pore collapse. Plastically incompressible flow of the matrix material allows pore collapse and an associated macroscopic plastic volume change. The plastic strain rate due to pore collapse/growth is taken normal to the yield surface. If phase transformation and/or pore nucleation are simultaneously occurring, the inelastic strain rate will be non-normal to the yield surface. To permit hardening, the yield stress of matrix material is treated as an internal state variable. Changes in porosity and matrix yield stress naturally cause the yield surface to evolve. The stress, porosity, and all other state variables vary in a consistent manner so that the stress remains on the yield surface throughout any quasistatic interval of plastic deformation. Dynamic loading allows the stress to exceed the yield surface via an overstress ordinary differential equation that is solved in closed form for better numerical accuracy. The part of the stress rate that causes no plastic work (i.e-, the part that has a zero inner product with the stress deviator and the identity tensor) is given by the projection of the elastic stressrate orthogonal to the span of the stress deviator and the identity tensor.The model, which has been numerically implemented in MIG format, has been exercised under a wide array of extremal loading and unloading paths. As will be discussed in a companion sequel report, the CKP model is capable of closely matching plate impact measurements for porous materials.

  14. Use of a Naphthalene-Based Binder in Injection Molding Net-Shape Titanium Components of Controlled Porosity

    SciTech Connect (OSTI)

    Weil, K. Scott; Nyberg, Eric A.; Simmons, Kevin L.

    2005-07-01

    We have recently developed a naphthalene-based binder system for use in powder injection molding (PIM) of ceramic and metallic materials. The use of a binder that can be removed via sublimation offers several unique advantages relative to the typical thermoplastic and/or thermoset binders employed in PIM. One of these is that essentially no volume change takes place during debindering. This offers a relatively facile method of introducing porosity into a net-shape part of potentially complex geometry. In the study described in this paper, the effects of powder loading and subsequent isostatic compaction on the size and amount of porosity in the components produced by this technique were investigated. In general, it was found that the amount of porosity is inversely proportional to the initial concentration of metal powder in the PIM feedstock. Likewise, average pore size displays a similar relationship with powder loading.

  15. Three-Dimensional Reconstruction and Microstructure Modeling of Porosity-Graded Cathode Using Focused Ion Beam and Homogenization Techniques

    SciTech Connect (OSTI)

    Hamedani, Amani; Baniassadi, Majid; Sheidaei, A.; Pourboghrat, F.; Remond, Y.; Khaleel, Mohammad A.; Garmestani, Hamid

    2014-02-28

    In this study, microstructure of a porosity-graded lanthanum strontium manganite (LSM) cathode of solid oxide fuel cells (SOFCs) has been characterized using focused ion beam (FIB) and scanning electron microscopy(SEM) combined with image processing. Two-point correlation functions of the two-dimensional (2D) images taken along the direction of porosity gradient are used to reconstruct a three-dimensional (3D) microstructure. The effective elastic modulus of the two-phase porosity-graded cathode is predicted using strong contrast (SC) and composite inclusion (CI) homogenization techniques. The effectiveness of the two methods in predicting the effective elastic properties of the porositygraded LSM cathode is investigated in comparison with the results obtained from the finite element model (FEM).

  16. Evaluating the Influence of Pore Architecture and Initial Saturation on Wettability and Relative Permeability in Heterogeneous, Shallow-Shelf Carbonates

    SciTech Connect (OSTI)

    Alan P. Byrnes; Saibal Bhattacharya; John Victorine; Ken Stalder

    2007-09-30

    Thin (3-40 ft thick), heterogeneous, limestone and dolomite reservoirs, deposited in shallow-shelf environments, represent a significant fraction of the reservoirs in the U.S. midcontinent and worldwide. In Kansas, reservoirs of the Arbuckle, Mississippian, and Lansing-Kansas City formations account for over 73% of the 6.3 BBO cumulative oil produced over the last century. For these reservoirs basic petrophysical properties (e.g., porosity, absolute permeability, capillary pressure, residual oil saturation to waterflood, resistivity, and relative permeability) vary significantly horizontally, vertically, and with scale of measurement. Many of these reservoirs produce from structures of less than 30-60 ft, and being located in the capillary pressure transition zone, exhibit vertically variable initial saturations and relative permeability properties. Rather than being simpler to model because of their small size, these reservoirs challenge characterization and simulation methodology and illustrate issues that are less apparent in larger reservoirs where transition zone effects are minor and most of the reservoir is at saturations near S{sub wirr}. These issues are further augmented by the presence of variable moldic porosity and possible intermediate to mixed wettability and the influence of these on capillary pressure and relative permeability. Understanding how capillary-pressure properties change with rock lithology and, in turn, within transition zones, and how relative permeability and residual oil saturation to waterflood change through the transition zone is critical to successful reservoir management and as advanced waterflood and improved and enhanced recovery methods are planned and implemented. Major aspects of the proposed study involve a series of tasks to measure data to reveal the nature of how wettability and drainage and imbibition oil-water relative permeability change with pore architecture and initial water saturation. Focus is placed on carbonate reservoirs of widely varying moldic pore systems that represent the major of reservoirs in Kansas and are important nationally and worldwide. A goal of the project is to measure wettability, using representative oils from Kansas fields, on a wide range of moldic-porosity lithofacies that are representative of Kansas and midcontinent shallow-shelf carbonate reservoirs. This investigation will discern the relative influence of wetting and pore architecture. In the midcontinent, reservoir water saturations are frequently greater than 'irreducible' because many reservoirs are largely in the capillary transition zone. This can change the imbibition oil-water relative permeability relations. Ignoring wettability and transition-zone relative permeabilities in reservoir modeling can lead to over- and under-prediction of oil recovery and recovery rates, and less effective improved recovery management. A goal of this project is to measure drainage and imbibition oil-water relative permeabilities for a large representative range of lithofacies at differ ent initial water saturations to obtain relations that can be applied everywhere in the reservoir. The practical importance of these relative permeability and wettability models will be demonstrated by using reservoir simulation studies on theoretical/generic and actual reservoir architectures. The project further seeks to evaluate how input of these new models affects reservoir simulation results at varying scales. A principal goal is to obtain data that will allow us to create models that will show how to accurately simulate flow in the shallow-structure, complex carbonate reservoirs that lie in the transition zone. Tasks involved to meet the project objectives include collection and consolidation of available data into a publicly accessible relational digital database and collection of oil and rock samples from carbonate fields around the state (Task 1). Basic properties of these rocks and oils will be measured and used in wettability tests. Comparison will be performed between crude and synthetic oil wettability and

  17. Experimental study of the relationship between formation factor, porosity, and cementation

    SciTech Connect (OSTI)

    Harig, M.D.; Chaney, R.C.

    1999-07-01

    Cemented granular soils are classified based on the size and distribution of the individual grains and qualitatively on the basis of cementation. To uniquely classify these types of soils, information about the fabric (pore geometry and/or level of cementation) of the specimen needs to be quantified. Electrical resistivity, or its reciprocal, conductivity, methods have been extensively used both in situ and in the laboratory to provide a means for determining a variety of soil index, structural, erosional, and cyclic properties. The objective of this study was to determine the relationship between formation factor (F), porosity (n), and cementation factor (m) of remolded sand-cement specimens. This relationship is shown to provide a mechanism for estimating the level of cementation in undisturbed specimens. The formation factor is the ratio of the electrical resistivity of the sand-water-cement mixture to that of the interstitial water.

  18. Volume and porosity thermal regulation in lipid mesophases by coupling mobile ligands to soft membranes

    E-Print Network [OSTI]

    Lucia Parolini; Bortolo M. Mognetti; Jurij Kotar; Erika Eiser; Pietro Cicuta; Lorenzo Di Michele

    2015-01-09

    Short DNA linkers are increasingly being exploited for driving specific self-assembly of Brownian objects. DNA-functionalised colloids can assemble into ordered or amorphous materials with tailored morphology. Recently, the same approach has been applied to compliant units, including emulsion droplets and lipid vesicles. The liquid structure of these substrates introduces new degrees of freedom: the tethers can diffuse and rearrange, radically changing the physics of the interactions. Unlike droplets, vesicles are extremely deformable and DNA-mediated adhesion causes significant shape adjustments. We investigate experimentally the thermal response of pairs and networks of DNA-tethered liposomes and observe two intriguing and possibly useful collective properties: negative thermal expansion and tuneable porosity of the liposome networks. A model providing a thorough understanding of this unexpected phenomenon is developed, explaining the emergent properties out of the interplay between the temperature-dependent deformability of the vesicles and the DNA-mediated adhesive forces.

  19. The role and importance of porosity in the deflagration rates of HMX-based materials

    SciTech Connect (OSTI)

    Glascoe, E A; Hsu, P C; Springer, H K

    2011-03-15

    The deflagration behavior of thermally damaged HMX-based materials will be discussed. Strands of material were burned at pressures ranging from 10-300 MPa using the LLNL high pressure strand burner. Strands were heated in-situ and burned while still hot; temperatures range from 90-200 C and were chosen in order to allow for thermal damage of the material without significant decomposition of the HMX. The results indicate that multiple variables affect the burn rate but the most important are the polymorph of HMX and the nature and thermal stability of the non-HE portion of the material. Characterization of the strands indicate that the thermal soak produces significant porosity and permeability in the sample allowing for significantly faster burning due to the increased surface area and new pathways for flame spread into the material. Specifically, the deflagration rates of heated PBXN-9, LX-10, and PBX-9501 will be discussed and compared.

  20. Engineering of porosity in amorphous materials. Plasma oxidation of hydrocarbon templates in polysilsesquioxanes

    SciTech Connect (OSTI)

    Loy, D.A.; Buss, R.J.; Assink, R.A. [Sandia National Labs., Albuquerque, NM (United States); Shea, K.J.; Oviatt, H. [Univ. of California, Irvine, CA (United States)

    1994-12-31

    Arylene- and alkylene-bridged polysilsesquioxanes were prepared by sol-gel processing of bis(triethoxysilyl)-arylene monomers 1--4, and alkylene monomers 5--9. The arylene polysilsesquioxanes were porous materials with surface areas as high as 830 m{sup 2}/g (BET). Treatment with an inductively coupled oxygen plasma resulted in the near quantitative removal of the arylene bridging groups and a coarsening of the pore structure. Solid state {sup 29}Si NMR was used to confirm the conversion of the sesquioxane silicons (T) to silica (Q). The alkylene-bridged polysilsesquioxanes were non-porous. Oxygen plasma treatment afforded silica gels with mesoporosity. The porosity in the silica gels appears to arise entirely from the oxidation of the alkylene spacers.

  1. Skin thickness effects on in vivo LXRF

    SciTech Connect (OSTI)

    Preiss, I.L.; Washington, W. II

    1995-12-31

    The analysis of lead concentration in bone utilizing LXRF can be adversely effected by overlying issue. A quantitative measure of the attenuation of the 10.5 keV Pb L a x-ray signal by skin and skin equivalent plastic has been conducted. Concentration ranges in plaster of Paris and goat bone from 7 to 90 ppm with attenuators of Lucite{reg_sign} and pig skin were examined. It is concluded that no quantitative or semi quantitative analysis can be achieved if overlying sue thickness exceeds 3 mm for Ph concentrations of less than 30 porn Ph in bone.

  2. Carbon cloth supported electrode

    DOE Patents [OSTI]

    Lu, Wen-Tong P. (Upper St. Clair, PA); Ammon, Robert L. (Baldwin both of, PA)

    1982-01-01

    A flow-by anode is disclosed made by preparing a liquid suspension of about to about 18% by weight solids, the solids comprising about 3.5 to about 8% of a powdered catalyst of platinum, palladium, palladium oxide, or mixtures thereof; about 60 to about 76% carbon powder (support) having a particle size less than about 20 m.mu.m and about 20 to about 33% of an inert binder having a particle size of less than about 500 m.mu.m. A sufficient amount of the suspension is poured over a carbon cloth to form a layer of solids about 0.01 to about 0.05 cm thick on the carbon cloth when the electrode is completed. A vacuum was applied to the opposite side of the carbon cloth to remove the liquid and the catalyst layer/cloth assembly is dried and compressed at about 10 to about 50 MPa's. The binder is then sintered in an inert atmosphere to complete the electrode. The electrode is used for the oxidation of sulfur dioxide in a sulfur based hybrid cycle for the decomposition of water.

  3. Evaluation of a permeability-porosity relationship in a low permeability creeping material using a single transient test

    E-Print Network [OSTI]

    Ghabezloo, Siavash; Saint-Marc, Jérémie; 10.1016/j.ijrmms.2008.10.003

    2008-01-01

    A method is presented for the evaluation of the permeability-porosity relationship in a low-permeability porous material using the results of a single transient test. This method accounts for both elastic and non-elastic deformations of the sample during the test and is applied to a hardened class G oil well cement paste. An initial hydrostatic undrained loading is applied to the sample. The generated excess pore pressure is then released at one end of the sample while monitoring the pore pressure at the other end and the radial strain in the middle of the sample during the dissipation of the pore pressure. These measurements are back analysed to evaluate the permeability and its evolution with porosity change. The effect of creep of the sample during the test on the measured pore pressure and volume change is taken into account in the analysis. This approach permits to calibrate a power law permeability-porosity relationship for the tested hardened cement paste. The porosity sensitivity exponent of the power...

  4. Nanorod PEM Fuel Cell Cathodes with Controlled Porosity M. D. Gasda, G. A. Eisman,* and D. Gallz

    E-Print Network [OSTI]

    Gall, Daniel

    Nanorod PEM Fuel Cell Cathodes with Controlled Porosity M. D. Gasda, G. A. Eisman,* and D. Gallz as cathode electrodes in proton exchange membrane PEM fuel cells. Deposition on flat substrates yields February 4, 2010. Proton exchange membrane PEM fuel cells are promising for future automotive applications

  5. Radiation phantom with humanoid shape and adjustable thickness

    DOE Patents [OSTI]

    Lehmann, Joerg (Pleasanton, CA); Levy, Joshua (Salem, NY); Stern, Robin L. (Lodi, CA); Siantar, Christine Hartmann (Livermore, CA); Goldberg, Zelanna (Carmichael, CA)

    2006-12-19

    A radiation phantom comprising a body with a general humanoid shape and at least a portion having an adjustable thickness. In one embodiment, the portion with an adjustable thickness comprises at least one tissue-equivalent slice.

  6. Integrated design of castings: effect of porosity on mechanical performance This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Beckermann, Christoph

    Integrated design of castings: effect of porosity on mechanical performance This article has been Contact us My IOPscience #12;Integrated design of castings: effect of porosity on mechanical performance R A Hardin and C Beckermann Department of Mechanical and Industrial Engineering, University of Iowa, Iowa

  7. Effect of Porosity on the Capacity Fade of a Lithium-Ion Godfrey Sikha,* Branko N. Popov,** and Ralph E. White***,z

    E-Print Network [OSTI]

    Effect of Porosity on the Capacity Fade of a Lithium-Ion Battery Theory Godfrey Sikha,* Branko N of a lithium-ion battery. It includes the changes in the porosity of the material due to the reversible the capacity fade in a lithium-ion battery based on the unwanted parasitic reaction that consumes Li along

  8. A Heat Kernel based Cortical Thickness Estimation Algorithm

    E-Print Network [OSTI]

    Wang, Yalin

    thickness, Heat Kernel, Tetrahedral Mesh, Streamline, False Discovery Rate 1 Introduction AlzheimerA Heat Kernel based Cortical Thickness Estimation Algorithm Gang Wang1,2 , Xiaofeng Zhang1.R.China Abstract. Cortical thickness estimation in magnetic resonance imag- ing (MRI) is an important technique

  9. Global Sediment Thickness Dataset updated for the Australian-Antarctic

    E-Print Network [OSTI]

    Müller, Dietmar

    Global Sediment Thickness Dataset updated for the Australian-Antarctic Southern Ocean Joanne author: jo.whittaker@utas.edu.au Key Points - Global minimum sediment thickness compilation updated for Australia Antarctica - Sediment thicknesses computed from seismic reflection and refraction data - Sediment

  10. Sequence stratigraphic-based reservoir architecture in late Jurrassic outer-ramp carbonates, Hanifa Formation, Saudi Arabia

    SciTech Connect (OSTI)

    Markello, J.R.; Stockton, M.L. (Mobile E P Technical Center, Dallas, TX (United States)); McGuire, M.; Al'Shammery, M.J.; Al'Amoudi M.O. (Saudi Aramco, Dhahran (Saudi Arabia))

    1996-01-01

    The Hanifa Formation (135-160m tk; Kimmeridgian age), in our study area, comprises one 3rd-order, coarsening-upward, type 2 stratigraphic sequence. Sediments formed in outer ramp, ramp-margin and basinal environments defining a transition between the Rimthan Arch carbonate platform and adjacent Arabian intrashelf basin. Quantification of Hanifa reservoir architecture for simulation involved development of field-scale geologic models based on sequence stratigraphic principles. No seismic and biostratigraphic data were available. Sequence interpretations were based on regional facies and parasequence analysis from 32 cores and 142 gamma-ray/porosity logs. In the study area, the Hanifa Formation has basinward-thinning tabular geometry, and contains (1) a lower member of organic-rich muddy carbonates and (2) an upper reservoir member of thick, medium to coarse-grained skeletal packstones, skeletal peloidal grainstones, skeletal intraclast conglomerates, and stromatoporoid boundstones. The Hanifa reservoir consists of, from oldest to youngest: (1) a highstand systems tract: aggrading and prograding, sigmoidal-shaped parasequences and parasequence sets of grainstrines, conglomerates and boundstones, capped by a subaqueous, type 2 sequence boundary; (2) a shelf margin wedge: prograding to aggrading, sigmoidal to tabular-shaped parasequences and parasequence sets of skeletal packstones, grainstones and local boundstones showing maximum basinward progradation; and (3) a transgressive systems tract: backstepping tabular-shaped parasequences of grainstones capped by a drowning surface. All facies are interpreted to have formed in subtidal settings of water depths from 5 to 150m. No evidence was found for shoal-water bank, lagoonal or peritidal deposition or for subaerial exposure in any facies.

  11. Sequence stratigraphic-based reservoir architecture in late Jurrassic outer-ramp carbonates, Hanifa Formation, Saudi Arabia

    SciTech Connect (OSTI)

    Markello, J.R.; Stockton, M.L. [Mobile E & P Technical Center, Dallas, TX (United States); McGuire, M.; Al`Shammery, M.J.; Al`Amoudi M.O. [Saudi Aramco, Dhahran (Saudi Arabia)

    1996-12-31

    The Hanifa Formation (135-160m tk; Kimmeridgian age), in our study area, comprises one 3rd-order, coarsening-upward, type 2 stratigraphic sequence. Sediments formed in outer ramp, ramp-margin and basinal environments defining a transition between the Rimthan Arch carbonate platform and adjacent Arabian intrashelf basin. Quantification of Hanifa reservoir architecture for simulation involved development of field-scale geologic models based on sequence stratigraphic principles. No seismic and biostratigraphic data were available. Sequence interpretations were based on regional facies and parasequence analysis from 32 cores and 142 gamma-ray/porosity logs. In the study area, the Hanifa Formation has basinward-thinning tabular geometry, and contains (1) a lower member of organic-rich muddy carbonates and (2) an upper reservoir member of thick, medium to coarse-grained skeletal packstones, skeletal peloidal grainstones, skeletal intraclast conglomerates, and stromatoporoid boundstones. The Hanifa reservoir consists of, from oldest to youngest: (1) a highstand systems tract: aggrading and prograding, sigmoidal-shaped parasequences and parasequence sets of grainstrines, conglomerates and boundstones, capped by a subaqueous, type 2 sequence boundary; (2) a shelf margin wedge: prograding to aggrading, sigmoidal to tabular-shaped parasequences and parasequence sets of skeletal packstones, grainstones and local boundstones showing maximum basinward progradation; and (3) a transgressive systems tract: backstepping tabular-shaped parasequences of grainstones capped by a drowning surface. All facies are interpreted to have formed in subtidal settings of water depths from 5 to 150m. No evidence was found for shoal-water bank, lagoonal or peritidal deposition or for subaerial exposure in any facies.

  12. Pyrolysis of tire rubber: Porosity and adsorption characteristics of the pyrolytic chars

    SciTech Connect (OSTI)

    Miguel, G.S.; Fowler, G.D.; Sollars, C.J.

    1998-06-01

    Tire rubber has been pyrolyzed at various temperatures under a nitrogen atmosphere. The resulting chars have been analyzed for their porosity using nitrogen gas adsorption and for their aqueous adsorption characteristics using phenol, methylene blue, and the reactive dyes Procion Turquoise H-A and Procion Red H-E3B. Nitrogen adsorption isotherms were modeled to the BET and Dubinin-Astakhov (DA) equations to determine effective surface areas, mesopore volumes, and micropore volumes. Results showed that pyrolysis of tire rubber was essentially complete at 500 C and resulted in a char yield of approximately 42 wt%. Pyrolytic chars exhibited BET surface areas up to 85 m{sup 2}/g and micropore volumes up to 0.04 mL/g. Owing to their poorly developed micropore structure, the pyrolytic chars exhibited limited aqueous adsorption capacity for compounds of small molecular weight, such as phenol. However, the chars possessed significantly greater adsorption capacity for species of large molecular weight which was attributed to the presence of large mesopore volumes (up to 0.19 mL/g).

  13. Method and apparatus for in situ determination of permeability and porosity

    DOE Patents [OSTI]

    Lagus, Peter L. (Olivehain, CA); Peterson, Edward W. (Del Mar, CA)

    1982-10-12

    A method and apparatus for in situ measurement of flow characteristics in boreholes or the like is disclosed for determining various formation characteristics such as permeability, particularly in the range of approximately 100-1,000 microdarcies and lower. One embodiment of the method and apparatus contemplates formation of a test interval in the borehole by a pair of expandable packers, additional guard zones being formed in the borehole at either end of the test interval by two additional guard packers, suitable flow conditions being simultaneously and separately measured within the test interval and each of the guard zones in order to permit determination of multidirectional components of permeability, porosity and other characteristics of the particular formation. Another embodiment contemplates whole hole testing where similar data is developed for a test interval formed between a single packer and the end of the borehole and one guard zone formed by a single additional guard packer. The method and apparatus of this invention are particularly contemplated for obtaining unambiguous measurements of multidirectional flow in low permeability formations.

  14. Elements of fractal generalization of dual-porosity model for solute transport in unsaturated fractured rocks

    SciTech Connect (OSTI)

    Bolshov, L.; Kondratenko, P.; Matveev, L.; Pruess, K.

    2008-09-01

    In this study, new elements were developed to generalize the dual-porosity model for moisture infiltration on and solute transport in unsaturated rocks, taking into account fractal aspects of the percolation process. Random advection was considered as a basic mechanism of solute transport in self-similar fracture systems. In addition to spatial variations in the infiltration velocity field, temporal fluctuations were also taken into account. The rock matrix, a low-permeability component of the heterogeneous geologic medium, acts as a trap for solute particles and moisture. Scaling relations were derived for the moisture infiltration flux, the velocity correlation length, the average velocity of infiltration, and the velocity correlation function. The effect of temporal variations in precipitation intensity on the infiltration processes was analyzed. It showed that the mode of solute transport is determined by the power exponent in the advection velocity correlation function and the dimensionality of the trapping system, both of which may change with time. Therefore, depending on time, various transport regimes may be realized: superdiffusion, subdiffusion, or classical diffusion. The complex structure of breakthrough curves from changes in the transport regimes was also examined. A renormalization of the solute source strength due to characteristic fluctuations of highly disordered media was established.

  15. Ultrasonic thickness measuring and imaging system and method

    DOE Patents [OSTI]

    Bylenok, Paul J. (Clifton Park, NY); Patmos, William M. (Schenectady, NY); Wagner, Thomas A. (Bronswick, NY); Martin, Francis H. (Melrose, NY)

    1992-01-01

    An ultrasonic thickness measuring and imaging system uses an ultrasonic fsed beam probe for measuring thickness of an object, such as a wall of a tube, a computer for controlling movement of the probe in a scanning pattern within the tube and processing an analog signal produced by the probe which is proportional to the tube wall thickness in the scanning pattern, and a line scan recorder for producing a record of the tube wall thicknesses measured by the probe in the scanning pattern. The probe is moved in the scanning pattern to sequentially scan circumferentially the interior tube wall at spaced apart adjacent axial locations. The computer processes the analog signal by converting it to a digital signal and then quantifies the digital signal into a multiplicity of thickness points with each falling in one of a plurality of thickness ranges corresponding to one of a plurality of shades of grey. From the multiplicity of quantified thickness points, a line scan recorder connected to the computer generates a pictorial map of tube wall thicknesses with each quantified thickness point thus being obtained from a minute area, e.g. 0.010 inch by 0.010 inch, of tube wall and representing one pixel of the pictorial map. In the pictorial map of tube wall thicknesses, the pixels represent different wall thicknesses having different shades of grey.

  16. Carbon nanotube formation by laser direct writing

    SciTech Connect (OSTI)

    Wu, Y.-T.; Su, H.-C.; Tsai, C.-M.; Liu, K.-L.; Chen, G.-D.; Huang, R.-H.; Yew, T.-R.

    2008-07-14

    This letter presents carbon nanotube (CNT) formation by laser direct writing using 248 nm KrF excimer pulsed laser in air at room temperature, which was applied to irradiate amorphous carbon (a-C) assisted by Ni catalysts underneath for the transformation of carbon species into CNTs. The CNTs were synthesized under appropriate combination of laser energy density and a-C thickness. The growth mechanism and key parameters to determine the success of CNT formation were also discussed. The demonstration of the CNT growth by laser direct writing in air at room temperature opens an opportunity of in-position CNT formation at low temperatures.

  17. Cladding Attachment Over Thick Exterior Insulating Sheathing

    SciTech Connect (OSTI)

    Baker, P.; Eng, P.; Lepage, R.

    2014-01-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location (Straube and Smegal 2009, Pettit 2009, Joyce 2009, Ueno 2010). The research presented in this report is intended to help develop a better understanding of the system mechanics involved and the potential for environmental exposure induced movement between the furring strip and the framing. BSC sought to address the following research questions: 1. What are the relative roles of the mechanisms and the magnitudes of the force that influence the vertical displacement resistance of the system? 2. Can the capacity at a specified deflection be reliably calculated using mechanics based equations? 3. What are the impacts of environmental exposure on the vertical displacement of furring strips attached directly through insulation back to a wood structure?

  18. Cladding Attachment Over Thick Exterior Insulating Sheathing

    SciTech Connect (OSTI)

    Baker, P.; Eng, P.; Lepage, R.

    2014-01-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location (Straube and Smegal 2009, Pettit 2009, Joyce 2009, Ueno 2010). The research presented in this report is intended to help develop a better understanding of the system mechanics involved and the potential for environmental exposure induced movement between the furring strip and the framing. BSC sought to address the following research questions: 1.What are the relative roles of the mechanisms and the magnitudes of the force that influence the vertical displacement resistance of the system? 2.Can the capacity at a specified deflection be reliably calculated using mechanics based equations? 3.What are the impacts of environmental exposure on the vertical displacement of furring strips attached directly through insulation back to a wood structure?

  19. 1-nm-thick graphene tri-layer as the ultimate copper diffusion barrier

    SciTech Connect (OSTI)

    Nguyen, Ba-Son [Department of Mechanical Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Lin, Jen-Fin [Department of Mechanical Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Perng, Dung-Ching, E-mail: dcperng@ee.ncku.edu.tw [Institute of Microelectronics and Electrical Engineering Department, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China)

    2014-02-24

    We demonstrate the thinnest ever reported Cu diffusion barrier, a 1-nm-thick graphene tri-layer. X-ray diffraction patterns and Raman spectra show that the graphene is thermally stable at up to 750?°C against Cu diffusion. Transmission electron microscopy images show that there was no inter-diffusion in the Cu/graphene/Si structure. Raman analyses indicate that the graphene may have degraded into a nanocrystalline structure at 750?°C. At 800?°C, the perfect carbon structure was damaged, and thus the barrier failed. The results of this study suggest that graphene could be the ultimate Cu interconnect diffusion barrier.

  20. Expanded Prussian Blue Analogues Incorporating [Re6Se8(CN)6]3-/4-Clusters: Adjusting Porosity via Charge Balance

    E-Print Network [OSTI]

    Shores, Matthew P.

    Expanded Prussian Blue Analogues Incorporating [Re6Se8(CN)6]3-/4- Clusters: Adjusting Porosity via of octahedral [M(CN)6]3-/4- complexes for the synthesis of microporous Prussian blue type solids with adjustable to be a direct expansion of Prussian blue (Fe4[Fe(CN)6]3,14H2O), with [Re6Se8(CN)6]4- clusters connected through

  1. The nature of the alkoxide group, solvent, catalyst, and concentration on the gelation and porosity of hexylene-bridged polysilsesquioxanes

    SciTech Connect (OSTI)

    Loy, D. A. (Douglas A.); Small, J. H. (James H.)

    2004-01-01

    Hexylene-bridged polysilsesquioxanes are hybrid organic-inorganic materials prepared by the sol-gel polymerization of 1,6-bis(trialkoxysilyl)hexane monomers: (1) R = Methyl; (2) R = Ethyl; and (3) R = n-Propyl. Previous studies showed that high surface area xerogels could be prepared from 2 with base catalyzed polymerizations while non-porous xerogels could be prepared with acidic catalysts. The object of this study was to ascertain the influences of monomer alkoxide group, solvent, catalyst, and monomer concentration on gelation time, and the properties of the resulting xerogels.This study has provided some insight into the chemical parameters that affect the ultimate structure in bridged polysilsesquioxanes. First, gelation times do not necessarily directly reflect the hydrolysis and condensation rates expected for different alkoxide groups. The collapse of porosity during the drying of hexylene-bridged polysilsesquioxanes occurs in nearly all acid-catalyzed samples, save those that form quickly due to concentration or from the methoxide monomer 1 in methanolic solution. This suggests that there may be a kinetic contribution to creating porosity in addition to the network compliance model. It would also appear that syneresis of gels during aging may be the symptom of changes resulting in increased porosity. Whatever these changes may be due to, they do not appear to significantly alter the structural composition. Experiments are underway to provide more information and test some of these hypotheses.

  2. Anomalous porosity preservation and preferential accumulation of gas hydrate in the Andaman accretionary wedge, NGHP-01 site 17A

    SciTech Connect (OSTI)

    Rose, Kelly K.; Johnson, Joel E.; Torres, Marta E.; Hong, WeiLi; Giosan, Liviu; Solomon, E.; Kastner, Miriam; Cawthern, Thomas; Long, Philip E.; Schaef, Herbert T.

    2014-12-01

    In addition to well established properties that control the presence or absence of the hydrate stability zone, such as pressure, temperature, and salinity, additional parameters appear to influence the concentration of gas hydrate in host sediments. The stratigraphic record at Site 17A in the Andaman Sea, eastern Indian Ocean, illustrates the need to better understand the role pore-scale phenomena play in the distribution and presence of marine gas hydrates in a variety of subsurface settings. In this paper we integrate field-generated datasets with newly acquired sedimentology, physical property, imaging and geochemical data with mineral saturation and ion activity products of key mineral phases such as amorphous silica and calcite, to document the presence and nature of secondary precipitates that contributed to anomalous porosity preservation at Site 17A in the Andaman Sea. This study demonstrates the importance of grain-scale subsurface heterogeneities in controlling the occurrence and distribution of concentrated gas hydrate accumulations in marine sediments, and document the importance that increased permeability and enhanced porosity play in supporting gas concentrations sufficient to support gas hydrate formation. The grain scale relationships between porosity, permeability, and gas hydrate saturation documented at Site 17A likely offer insights into what may control the occurrence and distribution of gas hydrate in other sedimentary settings.

  3. The Galactic thick and thin disks: differences in evolution

    E-Print Network [OSTI]

    T. V. Nykytyuk; T. V. Mishenina

    2006-05-26

    Recent observations demonstrate that the thin and thick disks of the Galaxy have different chemical abundance trends and evolution timescales. The relative abundances of $\\alpha$-elements in the thick Galactic disk are increased relative to the thin disk. Our goal is to investigate the cause of such differences in thick and thin disk abundances. We investigate the chemical evolution of the Galactic disk in the framework of the open two-zone model with gas inflow. The Galactic abundance trends for $\\alpha$-elements (Mg, Si, O) and Fe are predicted for the thin and thick Galactic disks. The star formation histories of the thin and thick disks must have been different and the gas infall must have been more intense during the thick disk evolution that the thin disk evolution.

  4. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica

    E-Print Network [OSTI]

    2013-01-01

    Surface configuration, ice thick- ness, volume and bedrockconstruction of the ice thick- ness grids. between flightof the physical ice thick- ness, rather than an “ice-

  5. Variable Crustal Thickness In The Western Great Basin- A Compilation...

    Open Energy Info (EERE)

    php?titleVariableCrustalThicknessInTheWesternGreatBasin-ACompilationOfOldAndNewRefractionData&oldid793047" Categories: Missing Required Information Reference...

  6. Effects of Volcanism, Crustal Thickness, and Large Scale Faulting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effects of Volcanism, Crustal Thickness, and Large Scale Faulting on the Development and Evolution of Geothermal Systems: Collaborative Project in Chile Effects of Volcanism,...

  7. Carbon Fiber

    SciTech Connect (OSTI)

    McGetrick, Lee

    2014-04-17

    Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

  8. Carbon Fiber

    ScienceCinema (OSTI)

    McGetrick, Lee

    2014-07-23

    Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

  9. Carbon Sequestration

    SciTech Connect (OSTI)

    2013-05-06

    Carbon Sequestration- the process of capturing the CO2 released by the burning of fossil fuels and storing it deep withing the Earth, trapped by a non-porous layer of rock.

  10. Dictyostelium Myosin Bipolar Thick Filament Formation: Importance of Charge

    E-Print Network [OSTI]

    Spudich, James A.

    Dictyostelium Myosin Bipolar Thick Filament Formation: Importance of Charge and Specific Domains and Molecular Biology, Northwestern University, Chicago, Illinois, United States of America, 3 UNC of America Myosin-II thick filament formation in Dictyostelium is an excellent system for investigating

  11. Measurement of Paint Layer Thickness with Photothermal Infrared Radiometry

    E-Print Network [OSTI]

    Louis, Alfred K.

    Measurement of Paint Layer Thickness with Photothermal Infrared Radiometry P. Dorr, A. K. Louis-physical, optical and geometrical properties of multi-layered samples of paint on a metalic substrate. A special infrared radiometry, paint-#12;lm-thickness is measured using lock-in ampli#12;ers. The phase-di#11;erence

  12. Characterization of Porous Carbon Fibers and Related Materials

    SciTech Connect (OSTI)

    Fuller, E.L., Jr.

    1993-01-01

    A one-year subcontract sponsored by the Carbon Materials Technology Group of the Oak Ridge National Laboratory (ORNL) with the Department of Geological Sciences, University Of Tennessee, has been completed. A volumetric sorption system has been upgraded, in cooperation with commercial vendor, to allow the acquisition of data relevant to the program for the production of activated carbon molecular fiber sieves (ACFMS). The equipment and experimental techniques have been developed to determine the pore structure and porosity of reference materials and materials produced at ORNL as part of the development of methods for the activation of carbon fibers by various etching agents. Commercial activated coconut shell charcoal (ACSC) has been studied to verify instrument performance and to develop methodology for deducing cause and effects in the activation processes and to better understand the industrial processes (gas separation, natural gas storage, etc.). Operating personnel have been trained, standard operating procedures have been established, and quality assurance procedures have been developed and put in place. Carbon dioxide and methane sorption have been measured over a temperature range 0 to 200 C for both ACFMS and ACSC and similarities and differences related to the respective structures and mechanisms of interaction with the sorbed components. Nitrogen sorption (at 77 K) has been used to evaluate ''surface area'' and ''porosity'' for comparison with the large data base that exists for other activated carbons and related materials. The preliminary data base reveals that techniques and theories currently used to evaluate activated carbons may be somewhat erroneous and misleading. Alternate thermochemical and structural analyses have been developed that show promise in providing useful information related both to the activation process and to industrial applications of interest in the efficient and economical utilization of fossil fuels in a manner that is friendly to the earth's environment.

  13. Tribological and Mechanical Characterization of Carbon-Coated Sliders and Disks

    E-Print Network [OSTI]

    Brunner, R.; Talke, F. E.

    2010-01-01

    ying height of 3 nm, and a lubricant thickness of 1 nm, thethe carbon ?lm and the lubricant ?lm are also of importancedip-coated with a thin lubricant layer. Sputtering, chemical

  14. Production and characterization of activated carbons from cereal grains

    SciTech Connect (OSTI)

    Venkatraman, A.; Walawender, W.P.; Fan, L.T. [Kansas State Univ., Manhattan, KS (United States)

    1996-12-31

    The term, activated carbon, is a generic name for a family of carbonaceous materials with well-developed porosities and consequently, large adsorptive capacities. Activated carbons are increasingly being consumed worldwide for environmental applications such as separation of volatiles from bulk gases and purification of water and waste-water streams. The global annual production is estimated to be around 300 million kilograms, with a rate of increase of 7% each year. Activated carbons can be prepared from a variety of raw materials. Approximately, 60% of the activated carbons generated in the United States is produced from coal; 20%, from coconut shells; and the remaining 20% from wood and other sources of biomass. The pore structure and properties of activated carbons are influenced by the nature of the starting material and the initial physical and chemical conditioning as well as the process conditions involved in its manufacture. The porous structures of charcoals and activated carbons obtained by the carbonization of kernels have been characterized.

  15. Method for fabricating thin films of pyrolytic carbon

    DOE Patents [OSTI]

    Brassell, G.W.; Lewis, J. Jr.; Weber, G.W.

    1980-03-13

    The present invention relates to a method for fabricating ultrathin films of pyrolytic carbon. Pyrolytic carbon is vapor deposited onto a concave surface of a heated substrate to a total uniform thickness in the range of about 0.1 to 1.0 micrometer. The carbon film on the substrate is provided with a layer of adherent polymeric resin. The resulting composite film of pyrolytic carbon and polymeric resin is then easily separated from the substrate by shrinking the 10 polymeric resin coating with thermally induced forces.

  16. Experimental study of potential wellbore cement carbonation by various phases of carbon dioxide during geologic carbon sequestration

    SciTech Connect (OSTI)

    Jung, Hun Bok; Um, Wooyong

    2013-08-16

    Hydrated Portland cement was reacted with carbon dioxide (CO2) in supercritical, gaseous, and aqueous phases to understand the potential cement alteration processes along the length of a wellbore, extending from deep CO2 storage reservoir to the shallow subsurface during geologic carbon sequestration. The 3-D X-ray microtomography (XMT) images displayed that the cement alteration was significantly more extensive by CO2-saturated synthetic groundwater than dry or wet supercritical CO2 at high P (10 MPa)-T (50°C) conditions. Scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) analysis also exhibited a systematic Ca depletion and C enrichment in cement matrix exposed to CO2-saturated groundwater. Integrated XMT, XRD, and SEM-EDS analyses identified the formation of extensive carbonated zone filled with CaCO3(s), as well as the porous degradation front and the outermost silica-rich zone in cement after exposure to CO2-saturated groundwater. The cement alteration by CO2-saturated groundwater for 2-8 months overall decreased the porosity from 31% to 22% and the permeability by an order of magnitude. Cement alteration by dry or wet supercritical CO2 was slow and minor compared to CO2-saturated groundwater. A thin single carbonation zone was formed in cement after exposure to wet supercritical CO2 for 8 months or dry supercritical CO2 for 15 months. Extensive calcite coating was formed on the outside surface of a cement sample after exposure to wet gaseous CO2 for 1-3 months. The chemical-physical characterization of hydrated Portland cement after exposure to various phases of carbon dioxide indicates that the extent of cement carbonation can be significantly heterogeneous depending on CO2 phase present in the wellbore environment. Both experimental and geochemical modeling results suggest that wellbore cement exposure to supercritical, gaseous, and aqueous phases of CO2 during geologic carbon sequestration is unlikely to damage the wellbore integrity because cement alteration by all phases of CO2 is dominated by carbonation reaction. This is consistent with previous field studies of wellbore cement with extensive carbonation after exposure to CO2 for 3 decades. However, XMT imaging indicates that preferential cement alteration by supercritical CO2 or CO2-saturated groundwater can occur along the cement-steel or cement-rock interfaces. This highlights the importance of further investigation of cement degradation along the interfaces of wellbore materials to ensure permanent geologic carbon storage.

  17. Apparatus and method for measuring the thickness of a coating

    DOE Patents [OSTI]

    Carlson, Nancy M. (Idaho Falls, ID); Johnson, John A. (Idaho Falls, ID); Tow, David M. (Idaho Falls, ID); Walter, John B (Idaho Falls, ID)

    2002-01-01

    An apparatus and method for measuring the thickness of a coating adhered to a substrate. An electromagnetic acoustic transducer is used to induce surface waves into the coating. The surface waves have a selected frequency and a fixed wavelength. Interpolation is used to determine the frequency of surface waves that propagate through the coating with the least attenuation. The phase velocity of the surface waves having this frequency is then calculated. The phase velocity is compared to known phase velocity/thickness tables to determine the thickness of the coating.

  18. Simultaneous orientation and thickness mapping in transmission electron microscopy

    SciTech Connect (OSTI)

    Tyutyunnikov, Dmitry; Özdöl, V. Burak; Koch, Christoph T.

    2014-12-04

    In this paper we introduce an approach for simultaneous thickness and orientation mapping of crystalline samples by means of transmission electron microscopy. We show that local thickness and orientation values can be extracted from experimental dark-field (DF) image data acquired at different specimen tilts. The method has been implemented to automatically acquire the necessary data and then map thickness and crystal orientation for a given region of interest. We have applied this technique to a specimen prepared from a commercial semiconductor device, containing multiple 22 nm technology transistor structures. The performance and limitations of our method are discussed and compared to those of other techniques available.

  19. Control for monitoring thickness of high temperature refractory

    DOE Patents [OSTI]

    Caines, M.J.

    1982-11-23

    This invention teaches an improved monitoring device for detecting the changes in thickness of high-temperature refractory, the device consists of a probe having at least two electrically conductive generally parallel elements separated by a dielectric material. The probe is implanted or embedded directly in the refractory and is elongated to extend in line with the refractory thickness to be measured. Electrical inputs to the conductive elements provide that either or both the electrical conductance or capacitance can be found, so that charges over lapsed time periods can be compared in order to detect changes in the thickness of the refractory.

  20. Simultaneous orientation and thickness mapping in transmission electron microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tyutyunnikov, Dmitry; Özdöl, V. Burak; Koch, Christoph T.

    2014-12-04

    In this paper we introduce an approach for simultaneous thickness and orientation mapping of crystalline samples by means of transmission electron microscopy. We show that local thickness and orientation values can be extracted from experimental dark-field (DF) image data acquired at different specimen tilts. The method has been implemented to automatically acquire the necessary data and then map thickness and crystal orientation for a given region of interest. We have applied this technique to a specimen prepared from a commercial semiconductor device, containing multiple 22 nm technology transistor structures. The performance and limitations of our method are discussed and comparedmore »to those of other techniques available.« less

  1. Carbon particles

    DOE Patents [OSTI]

    Hunt, Arlon J. (Oakland, CA)

    1984-01-01

    A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

  2. Carbon supercapacitors

    SciTech Connect (OSTI)

    Delnick, F.M.

    1993-11-01

    Carbon supercapacitors are represented as distributed RC networks with transmission line equivalent circuits. At low charge/discharge rates and low frequencies these networks approximate a simple series R{sub ESR}C circuit. The energy efficiency of the supercapacitor is limited by the voltage drop across the ESR. The pore structure of the carbon electrode defines the electrochemically active surface area which in turn establishes the volume specific capacitance of the carbon material. To date, the highest volume specific capacitance reported for a supercapacitor electrode is 220F/cm{sup 3} in aqueous H{sub 2}SO{sub 4} (10) and {approximately}60 F/cm{sup 3} in nonaqueous electrolyte (8).

  3. Delamination at Thick Ply Drops in Carbon and Glass Fiber Laminates Under Fatigue Loading

    E-Print Network [OSTI]

    literature, for the wind turbine blade application the effects of thicker plies and lower cost processing resin system, containing various ply drop geometries, and using thicker plies typical of wind turbine used for glass fibers in wind turbine blades. Introduction The primary structural elements in most wind

  4. Growth window and possible mechanism of millimeter-thick single-walled carbon nanotube forests

    E-Print Network [OSTI]

    Maruyama, Shigeo

    the SWNT growth rate and quality. Because Al2O3 catalyzes hydrocarbon reforming, Al2O3 support possibly is essential, and various catalytic chemical vapor deposition (CCVD) methods have been developed to achieve catalytic CCVD (ACCVD).3 VA-SWNTs have now been achieved using several CVD methods and conditions.4

  5. Crustal thickness and support of topography on Venus

    E-Print Network [OSTI]

    James, Peter Benjamin

    The topography of a terrestrial planet can be supported by several mechanisms: (1) crustal thickness variations, (2) density variations in the crust and mantle, (3) dynamic support, and (4) lithospheric stresses. Each of ...

  6. Reactor physics assessment of thick silicon carbide clad PWR fuels

    E-Print Network [OSTI]

    Bloore, David A. (David Allan)

    2013-01-01

    High temperature tolerance, chemical stability and low neutron affinity make silicon carbide (SiC) a potential fuel cladding material that may improve the economics and safety of light water reactors (LWRs). "Thick" SiC ...

  7. Gender Effects on Cortical Thickness , Thompson PM1

    E-Print Network [OSTI]

    Thompson, Paul

    thickness was estimated voxel by voxel and projected as a local value (mm) onto the cortical surface, where brains that appears to involve the architecture of the cortical mantle. We detected significantly greater

  8. Thickness trends and sequence stratigraphy of the Middle

    E-Print Network [OSTI]

    Engelder, Terry

    Thickness trends and sequence stratigraphy of the Middle Devonian Marcellus Formation, Appalachian to the lithostratigraphy and sequence stratigraphy of the Middle and Upper Devonian shale succession of the Appalachian

  9. A comparison of thick film and thin film traffic stripes 

    E-Print Network [OSTI]

    Keese, Charles J

    1952-01-01

    of this thesis. CONTESTS Introduction ~ ~ ~ ~ ~ 1 Scope and Obfectives Method of Conducting Road Service Tests ~ ~ ~ ~ ~ ~ ~ ~ 7 ~ ~ ~ ~ ~ ~ ~ ~ ~ 8 PART I A Comparison of Paint Films of Various Thicknesses . . . . . . . . ~ ~, ~, ~ 72 App1ioation... of Test Stripes . Results of Thiokness Tests . 13 19 Conclusions 2$ PART II A Comparison of Various Thick Film and Thin Film Traffic Stripes. 26 Paint Stripes Over Adhesive Films Rosin Striping Compounds. . . + ~ . , ~ 29 ~ ~ ~ Preforsmd Plastic...

  10. Microfluidic devices with thick-film electrochemical detection

    DOE Patents [OSTI]

    Wang, Joseph; Tian, Baomin; Sahlin, Eskil

    2005-04-12

    An apparatus for conducting a microfluidic process and analysis, including at least one elongated microfluidic channel, fluidic transport means for transport of fluids through the microfluidic channel, and at least one thick-film electrode in fluidic connection with the outlet end of the microfluidic channel. The present invention includes an integrated on-chip combination reaction, separation and thick-film electrochemical detection microsystem, for use in detection of a wide range of analytes, and methods for the use thereof.

  11. Ionospheric slab thickness in middle and low latitudes

    SciTech Connect (OSTI)

    Davies, K.; Liu, X.M. (NOAA, Space Environment Laboratory, Boulder, CO (United States))

    1991-08-01

    The equivalent slab thickness of the ionosphere at 15 stations in middle and low latitudes was studied to determine its dependence on solar cycle and location. The data were grouped by season. The following are the major conclusions. There appears to be little or no geographical, or geomagnetic, dependence. The slab thickness varies approximately linearly with the 12-month smoothed values of the 10.7-cm solar radio flux. In middle latitudes the winter midnight thickness is essentially independent of the flux, whereas in summer and equinox the midnight thickness increases with increase of solar flux. The noon thickness increases with increase of solar flux in all seasons. The zero-order Fourier coeffficients for the diurnal curves at all 15 stations were expressed as linear functions of the 10.7-cm flux. The higher harmonic coefficients showed no appreciable dependence on solar flux. The pronounced predawn increase in slab thickness is caused by low values of the maximum electron density, not by increase of total electron content. 10 refs.

  12. Order in vertically aligned carbon nanotube arrays

    SciTech Connect (OSTI)

    Wang, Hsin [ORNL; Xu, Z [Michigan State University, East Lansing; Eres, Gyula [ORNL

    2006-01-01

    We report the direct measurements on the bulk morphology of vertically aligned multiwalled carbon nanotube (CNT) arrays using small angle neutron scattering (SANS). SANS measurements at different heights of CNT arrays corresponding to different stages of the growth reveal increasing alignment order along the thickness and two distinctly different CNT morphologies. The observations suggest that the evolution of the macroscopic CNT morphologies be driven by competing collective growth and spatial constraints.

  13. Fly Ash Characteristics and Carbon Sequestration Potential

    SciTech Connect (OSTI)

    Palumbo, Anthony V.; Amonette, James E.; Tarver, Jana R.; Fagan, Lisa A.; McNeilly, Meghan S.; Daniels, William L.

    2007-07-20

    Concerns for the effects of global warming have lead to an interest in the potential for inexpensive methods to sequester carbon dioxide (CO2). One of the proposed methods is the sequestration of carbon in soil though the growth of crops or forests.4,6 If there is an economic value placed on sequestration of carbon dioxide in soil there may be an an opportunity and funding to utilize fly ash in the reclamation of mine soils and other degraded lands. However, concerns associated with the use of fly ash must be addressed before this practice can be widely adopted. There is a vast extent of degraded lands across the world that has some degree of potential for use in carbon sequestration. Degraded lands comprise nearly 2 X 109 ha of land throughout the world.7 Although the potential is obviously smaller in the United States, there are still approximately 4 X 106 ha of degraded lands that previously resulted from mining operations14 and an additional 1.4 X 108 ha of poorly managed lands. Thus, according to Lal and others the potential is to sequester approximately 11 Pg of carbon over the next 50 years.1,10 The realization of this potential will likely be dependent on economic incentives and the use of soil amendments such as fly ash. There are many potential benefits documented for the use of fly ash as a soil amendment. For example, fly ash has been shown to increase porosity, water-holding capacity, pH, conductivity, and dissolved SO42-, CO32-, HCO3-, Cl- and basic cations, although some effects are notably decreased in high-clay soils.8,13,9 The potential is that these effects will promote increased growth of plants (either trees or grasses) and result in greater carbon accumulation in the soil than in untreated degraded soils. This paper addresses the potential for carbon sequestration in soils amended with fly ash and examines some of the issues that should be considered in planning this option. We describe retrospective studies of soil carbon accumulation on reclaimed mine lands, leaching studies of fly ash and carbon sorption studies of fly ash.

  14. In situ measurement of the bonded film thickness of Z-Tetraol lubricant on magnetic recording media

    SciTech Connect (OSTI)

    Zhu Lei; Li Feng

    2010-10-15

    Currently, the bonded film thickness of perfluoropolyether lubricant on top of magnetic recording media is measured by a two-step process. First, the media disk has to be rinsed thoroughly using a fluorocarbon solvent (for instance, Vetrel) to remove the mobile lubricant. Second, the thickness of the remaining lubricant on the media surface which is regarded as the bonded lubricant thickness is then measured either by Fourier transform infrared spectroscopy (FTIR) or electron spectroscopy for chemical analysis. As the total lubricant thickness approaches single molecular dimension ({approx}10 A), current methods face tremendous challenge on the accuracy and sensitivity of the measurement. We studied the spectral characteristics responding to the lubricant bonding with the carbon overcoat by the time-of-flight secondary ion mass spectra and proposed to use the peak area ratio (C{sub 3}H{sub 2}F/C{sub 3}H{sub 5}O and C{sub 4}H{sub 10}O/C{sub 3}H{sub 6}O{sub 2}) to characterize the bonded Z-Tetraol lubricant that produces a direct bonded lubricant thickness measurement without the need to remove the mobile lubricant with a solvent. After taking the background signal of disks prior to bonding by UV irradiation into account, this method becomes independent of the total lubricant thickness as well as shows good correlation linearity (R{sup 2{approx}}87%) with the current FTIR method for the ratio of C{sub 4}H{sub 10}O/C{sub 3}H{sub 6}O{sub 2}.

  15. Studies on Supercapacitor Electrode Material from Activated Lignin-Derived Mesoporous Carbon

    SciTech Connect (OSTI)

    Saha, Dipendu; Li, Yunchao; Bi, Zhonghe; Chen, Jihua; Keum, Jong Kahk; Hensley, Dale K; Grappe, Hippolyte A.; Meyer III, Harry M; Dai, Sheng; Paranthaman, Mariappan Parans; Naskar, Amit K

    2014-01-01

    We synthesized mesoporous carbon from pre-cross-linked lignin gel impregnated with a surfactant as the pore-forming agent, and then activated the carbon through physical and chemical methods to obtain activated mesoporous carbon. The activated mesoporous carbons exhibited 1.5- to 6-fold increases in porosity with a maximum BET specific surface area of 1148 m2/g and a pore volume of 1.0 cm3/g. Slow physical activation helped retain dominant mesoporosity; however, aggressive chemical activation caused some loss of the mesopore volume fraction. Plots of cyclic voltammetric data with the capacitor electrode made from these carbons showed an almost rectangular curve depicting the behavior of ideal double-layer capacitance. Although the pristine mesoporous carbon exhibited the same range of surface-area-based capacitance as that of other known carbon-based supercapacitors, activation decreased the surface-area-based specific capacitance and increased the gravimetric-specific capacitance of the mesoporous carbons. Surface activation lowered bulk density and electrical conductivity. Warburg impedance as a vertical tail in the lower frequency domain of Nyquist plots supported good supercapacitor behavior for the activated mesoporous carbons. Our work demonstrated that biomass-derived mesoporous carbon materials continue to show potential for use in specific electrochemical applications.

  16. Method and system for producing sputtered thin films with sub-angstrom thickness uniformity or custom thickness gradients

    DOE Patents [OSTI]

    Folta, James A. (2262 Hampton Rd., Livermore, CA 94550); Montcalm, Claude (14 Jami St., Livermore, CA 94550); Walton, Christopher (2927 Lorina St., #2, Berkeley, CA 94705-1852)

    2003-01-01

    A method and system for producing a thin film with highly uniform (or highly accurate custom graded) thickness on a flat or graded substrate (such as concave or convex optics), by sweeping the substrate across a vapor deposition source with controlled (and generally, time-varying) velocity. In preferred embodiments, the method includes the steps of measuring the source flux distribution (using a test piece that is held stationary while exposed to the source), calculating a set of predicted film thickness profiles, each film thickness profile assuming the measured flux distribution and a different one of a set of sweep velocity modulation recipes, and determining from the predicted film thickness profiles a sweep velocity modulation recipe which is adequate to achieve a predetermined thickness profile. Aspects of the invention include a practical method of accurately measuring source flux distribution, and a computer-implemented method employing a graphical user interface to facilitate convenient selection of an optimal or nearly optimal sweep velocity modulation recipe to achieve a desired thickness profile on a substrate. Preferably, the computer implements an algorithm in which many sweep velocity function parameters (for example, the speed at which each substrate spins about its center as it sweeps across the source) can be varied or set to zero.

  17. Carbon investment funds

    SciTech Connect (OSTI)

    2007-01-15

    The report is a study of the development of funds to invest in the purchase of carbon credits. It takes a look at the growing market for carbon credits, the rise of carbon investment funds, and the current state of carbon investing. Topics covered in the report include: Overview of climate change, greenhouse gases, and the Kyoto Protocols. Analysis of the alternatives for reducing carbon emissions including nitrous oxide reduction, coal mine methane capture and carbon capture and storage; Discussion of the different types of carbon credits; Discussion of the basics of carbon trading; Evaluation of the current status of carbon investing; and Profiles of 37 major carbon investment funds worldwide.

  18. Exploiting Metal Coating of Carbon Nanotubes for Scanning Tunneling Microscopy Probes Yuya MURATA1

    E-Print Network [OSTI]

    Hasegawa, Shuji

    Exploiting Metal Coating of Carbon Nanotubes for Scanning Tunneling Microscopy Probes Yuya MURATA1, 2005; published July 26, 2005) By exploiting the metal coating of carbon nanotube (CNT) tips for electrical nanoprobes. A CNT glued to a W tip was uniformly coated with a thin W layer 3­6 nm thick. Using

  19. The use of a macroscopic formulation describing the effects of dynamic compaction and porosity on plasma sprayed copper

    SciTech Connect (OSTI)

    Arrigoni, M.; Boustie, M. [Laboratoire de Combustion et de Detonique (LCD UPR CNRS 9028), ENSMA, BP 40109, 86961 Futuroscope Chasseneuil Cedex (France); Bolis, C.; Berthe, L. [Laboratoire d'Application des Lasers de Puissance (LALP UPR CNRS 1576), 16 bis Av Prieur de la Cote d'Or, 94114 Arcueil Cedex (France); Barradas, S.; Jeandin, M. [Ecole des Mines de Paris/C2P-Centre de Projection Plasma, BP 87, 91003 Evry Cedex (France)

    2008-04-15

    Coatings processed by thermal deposition techniques involve porosity. The Laser adhesion test developed for testing bond strength of a coating on its substrate requires a good knowledge of shock wave propagation in such media. Experiments carried out on plasma sprayed copper samples, about 14% porous, with velocity interferometer system for any reflector measurements display the discrepancy of previously used models. Hence, a one-dimensional formulation of the compaction process, based on a simple P-{alpha} model, is proposed to improve the correlation between experimental and computed data signals obtained on a plasma sprayed copper under dynamic loading. Besides, this improvement allows the estimation of the bond strength of a plasma sprayed copper on aluminum substrate.

  20. Thermal spray and cold spray analysis of density, porosity, and tensile Specimens for use with LIGA applications

    SciTech Connect (OSTI)

    DECKER,MERLIN K.; SMITH,MARK F.

    2000-02-01

    This analysis provides a preliminary investigation into using Twin-Wire Arc Thermal Spray and Cold Spray as material deposition processes for LIGA applications. These spray material processes were studied to make an initial determination of their potential as alternatives to producing mechanical parts via the electroplating process. Three materials, UltraMachinable{reg_sign} Stainless Steel, BondArc{reg_sign}, and aluminum, were sprayed using Thermal Spray. Only aluminum was sprayed using the Cold Spray process. Following the spray procedure, the test specimens were released from a copper mold and then tested. Three tests, density, tensile strength, and porosity, were performed on the specimens to determine the spray effect on material properties. Twin-Wire Arc Thermal Spray did not demonstrate adequate deposition properties and does not appear to be a good process candidate for LIGA. However, Cold Spray yielded better density results and warrants further investigation to analyze the minimum feature size produced by the process.

  1. Sensitivity of injection costs to input petrophysical parameters in numerical geologic carbon sequestration models

    SciTech Connect (OSTI)

    Cheng, C. L.; Gragg, M. J.; Perfect, E.; White, Mark D.; Lemiszki, P. J.; McKay, L. D.

    2013-08-24

    Numerical simulations are widely used in feasibility studies for geologic carbon sequestration. Accurate estimates of petrophysical parameters are needed as inputs for these simulations. However, relatively few experimental values are available for CO2-brine systems. Hence, a sensitivity analysis was performed using the STOMP numerical code for supercritical CO2 injected into a model confined deep saline aquifer. The intrinsic permeability, porosity, pore compressibility, and capillary pressure-saturation/relative permeability parameters (residual liquid saturation, residual gas saturation, and van Genuchten alpha and m values) were varied independently. Their influence on CO2 injection rates and costs were determined and the parameters were ranked based on normalized coefficients of variation. The simulations resulted in differences of up to tens of millions of dollars over the life of the project (i.e., the time taken to inject 10.8 million metric tons of CO2). The two most influential parameters were the intrinsic permeability and the van Genuchten m value. Two other parameters, the residual gas saturation and the residual liquid saturation, ranked above the porosity. These results highlight the need for accurate estimates of capillary pressure-saturation/relative permeability parameters for geologic carbon sequestration simulations in addition to measurements of porosity and intrinsic permeability.

  2. Advances in potassium catalyzed NOx reduction by carbon materials: An overview

    SciTech Connect (OSTI)

    Bueno-Lopez, A.; Garcia-Garcia, A.; Illan-Gomez, M.J.; Linares-Solano, A.; de Lecea, C.S.M. [University of Alicante, Alicante (Spain). Dept. of Inorganic Chemistry

    2007-06-15

    The research work conducted in our group concerning the study of the potassium-catalyzed NOx reduction by carbon materials is presented. The importance of the different variables affecting the NOx-carbon reactions is discussed, e.g. carbon porosity, coal rank, potassium loading, influence of the binder used, and effect of the gas composition. The catalyst loading is the main feature affecting the selectivity for NOx reduction against O{sub 2} combustion. The NOx reduction without important combustion in O{sub 2} occurs between 350 and 475{sup o}C in the presence of the catalyst. The presence of H{sub 2}O in the gas mixture enhances NOx reduction at low carbon conversions, but as the reaction proceeds, it decreases as the selectivity does. The presence of CO{sub 2} diminishes the activity and selectivity of the catalyst. SO{sub 2} completely inhibits the catalytic activity of potassium due to sulfate formation.

  3. Carbon-Optimal and Carbon-Neutral Supply Chains

    E-Print Network [OSTI]

    Caro, F.; Corbett, C. J.; Tan, T.; Zuidwijk, R.

    2011-01-01

    Li, M. Daskin. 2009. Carbon Footprint and the Management ofThe Importance of Carbon Footprint Estimation Boundaries.Carbon accounting and carbon footprint - more than just

  4. Public Review Draft: A Method for Assessing Carbon Stocks, Carbon

    E-Print Network [OSTI]

    Public Review Draft: A Method for Assessing Carbon Stocks, Carbon Sequestration, and Greenhouse, and Zhu, Zhiliang, 2010, Public review draft; A method for assessing carbon stocks, carbon sequestration

  5. Measurement of sheath thickness at a floating potential

    SciTech Connect (OSTI)

    Han, Hyung-Sik; Lee, Hyo-Chang; Oh, Se-Jin; Chung, Chin-Wook, E-mail: joykang@hanyang.ac.kr [Department of Electrical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of)] [Department of Electrical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2014-02-15

    In a cylindrical Langmuir probe measurement, ion current is collected from the surface of the sheath surrounded at probe tip, not at the surface of the probe tip. By using this, the sheath thickness can be obtained, if we know some unknown parameters, such as ion current, plasma density, and electron temperature. In this paper, we present a method to measure sheath thickness by using a wave cutoff method and a floating harmonic method. The measured result is in a good agreement with Allen-Boyd-Reynolds theory.

  6. Method and apparatus for thickness measurement using microwaves

    DOE Patents [OSTI]

    Woskov, Paul (Bedford, MA) [Bedford, MA; Lamar, David A. (West Richland, WA) [West Richland, WA

    2001-01-01

    The method for measuring the thickness of a material which transmits a detectable amount of microwave radiation includes irradiating the material with coherent microwave radiation tuned over a frequency range. Reflected microwave radiation is detected, the reflected radiation having maxima and minima over the frequency range as a result of coherent interference of microwaves reflected from reflecting surfaces of the material. The thickness of the material is determined from the period of the maxima and minima along with knowledge of the index of refraction of the material.

  7. Process for manufacture of thick film hydrogen sensors

    DOE Patents [OSTI]

    Perdieu, Louisa H. (Overland Park, KS)

    2000-09-09

    A thick film process for producing hydrogen sensors capable of sensing down to a one percent concentration of hydrogen in carrier gasses such as argon, nitrogen, and air. The sensor is also suitable to detect hydrogen gas while immersed in transformer oil. The sensor includes a palladium resistance network thick film printed on a substrate, a portion of which network is coated with a protective hydrogen barrier. The process utilizes a sequence of printing of the requisite materials on a non-conductive substrate with firing temperatures at each step which are less than or equal to the temperature at the previous step.

  8. Quantum rings of non-uniform thickness in magnetic field

    SciTech Connect (OSTI)

    Rodríguez-Prada, F. A.; García, L. F.; Mikhailov, I. D.

    2014-05-15

    We consider a model of crater-shaped quantum dot in form of a thin layer whose thickness linearly increases with the distance from the axis. We show that one-particle wave equation for the electron confined in such structure can be completely separated in the adiabatic limit when the quantum dot thickness is much smaller than its lateral dimension. Analytical solutions found for this model has been used as base functions for analysing the effect of non-homogeneity on the electronic spectrum in the framework of the exact diagonalization method.

  9. Carbon Nanosheets and Nanostructured Electrodes in Organic Photovoltaic Devices: Cooperative Research and Development Final Report, CRADA Number CRD-08-321

    SciTech Connect (OSTI)

    Olson, D.

    2012-04-01

    Carbon nanosheet thin films were employed as nanostructured electrodes in organic solar cells. Due to the nanostructured texture of the carbon nanosheet electrodes, there was an increase in performance over standard ITO electrodes with very thick active layers. ZnO deposited via atomic layer deposition (ALD) was used as a hole blocking layer to provide for carrier selectivity of the carbon nanosheets.

  10. Carbon Fiber Consortium | Partnerships | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Fiber Consortium SHARE Carbon Fiber Consortium Oak Ridge Carbon Fiber Composites Consortium The Oak Ridge Carbon Fiber Composites Consortium was established in 2011 to...

  11. Growth of graphene films from non-gaseous carbon sources

    DOE Patents [OSTI]

    Tour, James; Sun, Zhengzong; Yan, Zheng; Ruan, Gedeng; Peng, Zhiwei

    2015-08-04

    In various embodiments, the present disclosure provides methods of forming graphene films by: (1) depositing a non-gaseous carbon source onto a catalyst surface; (2) exposing the non-gaseous carbon source to at least one gas with a flow rate; and (3) initiating the conversion of the non-gaseous carbon source to the graphene film, where the thickness of the graphene film is controllable by the gas flow rate. Additional embodiments of the present disclosure pertain to graphene films made in accordance with the methods of the present disclosure.

  12. Sensing roller for in-process thickness measurement

    DOE Patents [OSTI]

    Novak, J.L.

    1996-07-16

    An apparatus and method are disclosed for processing materials by sensing roller, in which the sensing roller has a plurality of conductive rings (electrodes) separated by rings of dielectric material. Sensing capacitances or impedances between the electrodes provides information on thicknesses of the materials being processed, location of wires therein, and other like characteristics of the materials. 6 figs.

  13. Very thick holographic nonspatial filtering of laser beams

    E-Print Network [OSTI]

    Shahriar, Selim

    of a thick photo- polymer with diffusion amplification (PDA). We report results of holo- graphic nonspatial Society of Photo-Optical In- strumentation Engineers. [S0091-3286(97)01606-1] Subject terms: holography information if the input laser beam has an intensity minimum at a critical feature location. It is also

  14. Photophysics of carbon nanotubes

    E-Print Network [OSTI]

    Samsonidze, Georgii G

    2007-01-01

    This thesis reviews the recent advances made in optical studies of single-wall carbon nanotubes. Studying the electronic and vibrational properties of carbon nanotubes, we find that carbon nanotubes less than 1 nm in ...

  15. Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production

    E-Print Network [OSTI]

    Narasayya, Vivek

    #12;Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward

  16. TOC Total organic carbon MBC Microbial biomass carbon

    E-Print Network [OSTI]

    Virginia Tech

    C Carbon TOC Total organic carbon MBC Microbial biomass carbon Active C Pool Indicated by Light, the relationship between carbon dynamics including total organic carbon (TOC) storage, microbial biomass carbon and microbial biomass carbon in subsoil 4 years after rehabilitation · Microbial biomass carbon had a positive

  17. Method of making carbon-carbon composites

    DOE Patents [OSTI]

    Engle, Glen B. (16716 Martincoit Rd., Poway, CA 92064)

    1993-01-01

    A process for making 2D and 3D carbon-carbon composites having a combined high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizible woven cloth are infiltrated with carbon material to form green composites. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnant step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3100.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. C. to 1300.degree. C. at a reduced. pressure.

  18. Carbon Capture (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    Smit, Berend

    2011-06-08

    Berend Smit speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  19. Determination of the permeability of carbon aerogels by gas flow measurements

    SciTech Connect (OSTI)

    Kong, F.M.; Hulsey, S.S.; Alviso, C.T.; Pekala, R.W.

    1992-04-01

    Carbon aerogels are synthesized via the polycondensation of resorcinol and formaldehyde, followed by supercritical drying and pyrolysis at 1050{degree}C in nitrogen. Because of their interconnected porosity, ultrafine cell structure and high surface area, carbon aerogels have many potential applications, such as in supercapacitors, battery electrodes, catalyst supports, and gas filters. The performance of carbon aerogels in the latter two applications depends on the permeability or gas flow conductance in these materials. By measuring the pressure differential across a thin specimen and the nitrogen gas flow rate in the viscous regime, we calculated the permeability of carbon aerogels from equations based upon Darcy's law. Our measurements show that carbon aerogels have apparent permeabilities on the order of 10{sup {minus}12}to 10{sup {minus}10} cm{sup 2} for densities ranging from 0.44 to 0.05 g/cm{sup 3}. Like their mechanical properties, the permeability of carbon aerogels follows a power law relationship with density and average pore size. Such findings help us to estimate the average pore sizes of carbon aerogels once their densities are known. This paper reveals the relationships among permeability, pore size and density in carbon aerogels.

  20. Determination of the permeability of carbon aerogels by gas flow measurements

    SciTech Connect (OSTI)

    Kong, F.M.; Hulsey, S.S.; Alviso, C.T.; Pekala, R.W.

    1992-04-01

    Carbon aerogels are synthesized via the polycondensation of resorcinol and formaldehyde, followed by supercritical drying and pyrolysis at 1050{degree}C in nitrogen. Because of their interconnected porosity, ultrafine cell structure and high surface area, carbon aerogels have many potential applications, such as in supercapacitors, battery electrodes, catalyst supports, and gas filters. The performance of carbon aerogels in the latter two applications depends on the permeability or gas flow conductance in these materials. By measuring the pressure differential across a thin specimen and the nitrogen gas flow rate in the viscous regime, we calculated the permeability of carbon aerogels from equations based upon Darcy`s law. Our measurements show that carbon aerogels have apparent permeabilities on the order of 10{sup {minus}12}to 10{sup {minus}10} cm{sup 2} for densities ranging from 0.44 to 0.05 g/cm{sup 3}. Like their mechanical properties, the permeability of carbon aerogels follows a power law relationship with density and average pore size. Such findings help us to estimate the average pore sizes of carbon aerogels once their densities are known. This paper reveals the relationships among permeability, pore size and density in carbon aerogels.

  1. ARM: 10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    1998-03-01

    10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  2. ARM: 1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    2004-10-01

    1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  3. ARM: 10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  4. ARM: 1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  5. Numerical simulations of welds of thick steel pieces of interest for the thermonuclear fusion ITER machine

    E-Print Network [OSTI]

    Carmignani, B

    2005-01-01

    Numerical simulations of welds of thick steel pieces of interest for the thermonuclear fusion ITER machine

  6. Composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    1997-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  7. Composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1997-05-06

    Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  8. Thick, low-stress films, and coated substrates formed therefrom

    DOE Patents [OSTI]

    Henager, Jr., Charles H. (Kennewick, WA); Knoll, Robert W. (Menomonee Falls, WI)

    1991-01-01

    Stress-induced deformation, and the damage resulting therefrom, increases with film thickness. The overcoming of excessive stress by the use of the film material of the present invention, permits the formation of thick films that are necessary for certain of the above described applications. The most likely use for the subject film materials, other than their specialized views as an optical film, is for microelectronic packaging of components on silicon substrates. In general, the subject Si-Al-O-N films have excellent adherence to the underlying substrate, a high degree of hardness and durability, and are excellent insulators. Prior art elevated temperature deposition processes cannot meet the microelectronic packaging temperature formation constraints. The process of the present invention is conducted under non-elevated temperature conditions, typically 500# C. or less.

  9. Probing the neutron skin thickness in collective modes of excitation

    E-Print Network [OSTI]

    Nils Paar; Andrea Horvat

    2014-01-13

    Nuclear collective motion provides valuable constraint on the size of neutron-skin thickness and the properties of nuclear matter symmetry energy. By employing relativistic nuclear energy density functional (RNEDF) and covariance analysis related to $\\chi^2$ fitting of the model parameters, relevant observables are identified for dipole excitations, which strongly correlate with the neutron-skin thickness $(r_{np})$, symmetry energy at saturation density $(J)$ and slope of the symmetry energy $(L)$. Using the RNEDF framework and experimental data on pygmy dipole strength ($^{68}$Ni, $^{132}$Sn, $^{208}$Pb) and dipole polarizability ($^{208}$Pb), it is shown how the values of $J$, and $L$, and $r_{np}$ are constrained. The isotopic dependence of moments associated to dipole excitations in $^{116-136}$Sn shows that the low-energy dipole strength and polarizability in neutron-rich nuclei display strong sensitivity to the symmetry energy parameter $J$, more pronounced than in isotopes with moderate neutron-to-proton number ratios.

  10. Method for making thick and/or thin film

    DOE Patents [OSTI]

    Pham, Ai Quoc; Glass, Robert S.

    2004-11-02

    A method to make thick or thin films a very low cost. The method is generally similar to the conventional tape casting techniques while being more flexible and versatile. The invention involves preparing a slip (solution) of desired material and including solvents such as ethanol and an appropriate dispersant to prevent agglomeration. The slip is then sprayed on a substrate to be coated using an atomizer which spreads the slip in a fine mist. Upon hitting the substrate, the solvent evaporates, leaving a green tape containing the powder and other additives, whereafter the tape may be punctured, cut, and heated for the desired application. The tape thickness can vary from about 1 .mu.m upward.

  11. Lithological influence of aggregate in the alkali-carbonate reaction

    SciTech Connect (OSTI)

    Lopez-Buendia, A.M. . E-mail: angel.lopez@aidico.es; Climent, V. . E-mail: vcliment@grupogla.com; Verdu, P.

    2006-08-15

    The reactivity of carbonate rock with the alkali content of cement, commonly called alkali-carbonate reaction (ACR), has been investigated. Alkali-silica reaction (ASR) can also contribute in the alkali-aggregate reaction (AAR) in carbonate rock, mainly due to micro- and crypto-crystalline quartz or clay content in carbonate aggregate. Both ACR and ASR can occur in the same system, as has been also evidenced on this paper. Carbonate aggregate samples were selected using lithological reactivity criteria, taking into account the presence of dedolomitization, partial dolomitization, micro- and crypto-crystalline quartz. Selected rocks include calcitic dolostone with chert (CDX), calcitic dolostone with dedolomitization (CDD), limestone with chert (LX), marly calcitic dolostone with partial dolomitization (CD), high-porosity ferric dolostone with clays (FD). To evaluate the reactivity, aggregates were studied using expansion tests following RILEM AAR-2, AAR-5, a modification using LiOH AAR-5Li was also tested. A complementary study was done using petrographic monitoring with polarised light microscopy on aggregates immersed in NaOH and LiOH solutions after different ages. SEM-EDAX has been used to identify the presence of brucite as a product of dedolomitization. An ACR reaction showed shrinkage of the mortar bars in alkaline solutions explained by induced dedolomitization, while an ASR process typically displayed expansion. Neither shrinkage nor expansion was observed when mortar bars were immersed in solutions of lithium hydroxide. Carbonate aggregate classification with AAR pathology risk has been elaborated based on mechanical behaviours by expansion and shrinkage. It is proposed to be used as a petrographic method for AAR diagnosis to complement the RILEM AAR1 specifically for carbonate aggregate. Aggregate materials can be classified as I (non-reactive), II (potentially reactive), and III (probably reactive), considering induced dedolomitization ACR (dedolomitization degree) and ASR.

  12. Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE energy storage systems program (FY11 Quarter 3: April through June 2011).

    SciTech Connect (OSTI)

    Ferreira, Summer Rhodes; Shane, Rodney (East Penn Manufacturing, Lyon Station, PA); Enos, David George

    2011-09-01

    This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 3 Milestone was completed on time. The milestone entails an ex situ analysis of a control as well as three carbon-containing negative plates in the raw, as cast form as well as after formation. The morphology, porosity, and porosity distribution within each plate was evaluated. In addition, baseline electrochemical measurements were performed on each battery to establish their initial performance. These measurements included capacity, internal resistance, and float current. The results obtained for the electrochemical testing were in agreement with previous evaluations performed at East Penn manufacturing. Cycling on a subset of the received East Penn cells containing different carbons (and a control) has been initiated.

  13. Turbine blade having a constant thickness airfoil skin

    DOE Patents [OSTI]

    Marra, John J

    2012-10-23

    A turbine blade is provided for a gas turbine comprising: a support structure comprising a base defining a root of the blade and a framework extending radially outwardly from the base, and an outer skin coupled to the support structure framework. The skin has a generally constant thickness along substantially the entire radial extent thereof. The framework and the skin define an airfoil of the blade.

  14. Hollow cylindrical plasma filament waveguide with discontinuous finite thickness cladding

    SciTech Connect (OSTI)

    Alshershby, Mostafa; Hao Zuoqiang; Lin Jingquan

    2013-01-15

    We have explored here a hollow cylindrical laser plasma multifilament waveguide with discontinuous finite thickness cladding, in which the separation between individual filaments is in the range of several millimeters and the waveguide cladding thickness is in the order of the microwave penetration depth. Such parameters give a closer representation of a realistic laser filament waveguide sustained by a long stable propagation of femtosecond (fs) laser pulses. We report how the waveguide losses depend on structural parameters like normalized plasma filament spacing, filament to filament distance or pitch, normal spatial frequency, and radius of the plasma filament. We found that for typical plasma parameters, the proposed waveguide can support guided modes of microwaves in extremely high frequency even with a cladding consisting of only one ring of plasma filaments. The loss of the microwave radiation is mainly caused by tunneling through the discontinuous finite cladding, i.e., confinement loss, and is weakly dependent on the plasma absorption. In addition, the analysis indicates that the propagation loss is fairly large compared with the loss of a plasma waveguide with a continuous infinite thickness cladding, while they are comparable when using a cladding contains more than one ring. Compared to free space propagation, this waveguide still presents a superior microwave transmission to some distance in the order of the filamentation length; thus, the laser plasma filaments waveguide may be a potential channel for transporting pulsed-modulated microwaves if ensuring a long and stable propagation of fs laser pulses.

  15. On the physical adsorption of vapors by microporous carbons

    SciTech Connect (OSTI)

    Bradley, R.H. (Univ. of Technology, Loughborough (United Kingdom). Inst. of Surface Science and Technology); Rand, B. (Univ. of Leeds (United Kingdom). Division of Ceramics)

    1995-01-01

    The physical adsorption of nonpolar and polar vapors by active carbons is discussed in relation to pore structure and pore wall chemistry. For nonpolar vapors the Dubinin-Radushkevich equation is used to derive micropore volumes (W[sub 0]), average adsorption energies (E[sub 0]), and micropore widths (L) for a number of systems. These parameters are used to interpret the adsorption behavior of nitrogen which, because it is a relatively small molecule, is frequently used at 77 K to probe porosity and surface area. Results are presented for three carbons from differing precursors, namely, coal, coconut shells, and polyvinylidene chloride (PVDC) to illustrate the applicability of the technique. For the latter carbon increases in micropore size, induced by activation in carbon dioxide, and reductions in accessible pore volume caused by heat treatment in argon are also characterized and related to structural changes. The approach is then extended to the adsorption of larger hydrogen vapors, where the resulting W[sub 0] values may require correction for molecular packing effects which occur in the lower relative pressure regions of the isotherms, i.e., during the filling of ultramicropores. These packing effects are shown to limit the use of the Polanyi characteristic curve for correlating isotherm data for several vapors, of differing molecular size, by one adsorbent. Data for the adsorption of water, which is a strongly polar liquid, have been interpreted using the Dubinin-Serpinsky equation.

  16. Acetylenic carbon allotrope

    DOE Patents [OSTI]

    Lagow, Richard J. (6204 Shadow Mountain Dr., Austin, TX 78731)

    1998-01-01

    A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein.

  17. Acetylenic carbon allotrope

    DOE Patents [OSTI]

    Lagow, Richard J. (6204 Shadow Mountain Dr., Austin, TX 78731)

    1999-01-01

    A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein.

  18. Carbon Nanotube Based Sensors

    SciTech Connect (OSTI)

    Jiang, Mian; Lin, Yuehe

    2006-11-01

    This review article provides a comprehensive review on sensors and biosensors based on functionalized carbon nanotubes.

  19. Acetylenic carbon allotrope

    DOE Patents [OSTI]

    Lagow, R.J.

    1998-02-10

    A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein. 17 figs.

  20. Carbon Monoxide Environmental Public

    E-Print Network [OSTI]

    The National Workgroup on Carbon Monoxide Surveillance Formed in April 2005 Membership: EPHT grantees Academic

  1. Pyrolysis of scrap tires and conversion of chars to activated carbon

    SciTech Connect (OSTI)

    Merchant, A.A.; Petrich, M.A. . Dept. of Chemical Engineering)

    1993-08-01

    The primary objective of this work was to demonstrate the conversion of scrap tires to activated carbon. The authors have been successful in this endeavor, producing carbons with surface areas greater than 500 m[sup 2]/g and significant micropore volumes. Tire shreddings were pyrolyzed in batch reactors, and the pyrolysis chars activated by reaction with superheated steam. Solid products of pyrolysis and activation were studied with nitrogen adsorption techniques. They find that the porosity development during steam activation of tire pyrolysis char is similar to that reported for various other chars. A maximum in micropore volume is observed as a function of conversion, but the total surface area increases monotonically with conversion. They suggest that the activation process consists of micropore formation, followed by pore enlargement. The process conditions used in this study are a good starting point from which to optimize a process to convert tires to activated carbon.

  2. Physicochemical investigations of carbon nanofiber supported Cu/ZrO{sub 2} catalyst

    SciTech Connect (OSTI)

    Din, Israf Ud E-mail: maizats@petronas.com.my; Shaharun, Maizatul S. E-mail: maizats@petronas.com.my; Subbarao, Duvvuri; Naeem, A.

    2014-10-24

    Zirconia-promoted copper/carbon nanofiber catalysts (Cu?ZrO{sub 2}/CNF) were prepared by the sequential deposition precipitation method. The Herringbone type of carbon nanofiber GNF-100 (Graphite nanofiber) was used as a catalyst support. Carbon nanofiber was oxidized to (CNF-O) with 5% and 65 % concentration of nitric acid (HNO{sub 3}). The CNF activated with 5% HNO{sub 3} produced higher surface area which is 155 m{sup 2}/g. The catalyst was characterized by X-ray Diffraction (XRD), Fourier Transform Infra-Red (FTIR) and N{sub 2} adsorption-desorption. The results showed that increase of HNO{sub 3} concentration reduced the surface area and porosity of the catalyst.

  3. Single walled carbon nanotube network—Tetrahedral amorphous carbon composite film

    SciTech Connect (OSTI)

    Iyer, Ajai Liu, Xuwen; Koskinen, Jari; Kaskela, Antti; Kauppinen, Esko I.; Johansson, Leena-Sisko

    2015-06-14

    Single walled carbon nanotube network (SWCNTN) was coated by tetrahedral amorphous carbon (ta-C) using a pulsed Filtered Cathodic Vacuum Arc system to form a SWCNTN—ta-C composite film. The effects of SWCNTN areal coverage density and ta-C coating thickness on the composite film properties were investigated. X-Ray photoelectron spectroscopy measurements prove the presence of high quality sp{sup 3} bonded ta-C coating on the SWCNTN. Raman spectroscopy suggests that the single wall carbon nanotubes (SWCNTs) forming the network survived encapsulation in the ta-C coating. Nano-mechanical testing suggests that the ta-C coated SWCNTN has superior wear performance compared to uncoated SWCNTN.

  4. Strontium and carbon isotope stratigraphy of the Late Jurassic shallow marine limestone in western Palaeo-Pacific, northwest Borneo

    E-Print Network [OSTI]

    Gilli, Adrian

    Strontium and carbon isotope stratigraphy of the Late Jurassic shallow marine limestone in western-Pacific a b s t r a c t Strontium and carbon isotope stratigraphy was applied to a 202 m-thick shallow marine al., 2002; Philip, 2003). The stratigraphy and palaeontology of Upper Jurassic limestones have been

  5. Mesoporous carbon materials

    DOE Patents [OSTI]

    Dai, Sheng; Fulvio, Pasquale Fernando; Mayes, Richard T.; Wang, Xiqing; Sun, Xiao-Guang; Guo, Bingkun

    2014-09-09

    A conductive mesoporous carbon composite comprising conductive carbon nanoparticles contained within a mesoporous carbon matrix, wherein the conductive mesoporous carbon composite possesses at least a portion of mesopores having a pore size of at least 10 nm and up to 50 nm, and wherein the mesopores are either within the mesoporous carbon matrix, or are spacings delineated by surfaces of said conductive carbon nanoparticles when said conductive carbon nanoparticles are fused with each other, or both. Methods for producing the above-described composite, devices incorporating them (e.g., lithium batteries), and methods of using them, are also described.

  6. Dialkylene carbonate-bridged polysilsesquioxanes. Hybrid organic-inorganic sol-gels with a thermally labile bridging group

    SciTech Connect (OSTI)

    Loy, D.A.; Beach, J.V.; Baugher, B.M.; Assink, R.A.; Shea, K.J.; Tran, J.; Small, J.H.

    1999-11-01

    In this paper, the authors introduce a new approach for altering the properties of bridged polysilsesquioxane xerogels using postprocessing modification of the polymeric network. The bridging organic group contains latent functionalities that can be liberated thermally, photochemically, or chemically after the gel has been processed to a xerogel. These modifications can produce changes in density, solubility, porosity, and or chemical properties of the material. Since every monomer possesses two latent functional groups, the technique allows for the introduction of high levels of functionality in hybrid organic-inorganic materials. Dialkylene carbonate-bridged polysilsesquioxane gels were prepared by the sol-gel polymerization of bis(triethoxysilylpropyl) carbonate and bis(triethoxysilylisobutyl) carbonate. Thermal treatment of the resulting nonporous xerogels and aerogels at 300--350 C resulted in quantitative decarboxylation of the dialkylene carbonate bridging groups to give new hydroxyalkyl and olefinic substituted polysilsesquioxane monolithic xerogels and aerogels that cannot be directly prepared through direct sol-gel polymerization of organotrialkoxysilanes.

  7. Appendix PORSURF: Porosity Surface

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D SFederal Facility Agreement andMON-2014 WIPP for

  8. Stratigraphic and diagenetic controls on the occurrence of porosity in the Mississippian Mission Canyon Formation in the Billings Nose Area, North Dakota 

    E-Print Network [OSTI]

    Beaber, Daniel Edward

    1989-01-01

    , intercrystalline and dissolution, were identified. Intercrystalline porosity formed as the result of partial dolomitization of the dominantly lime mud matrix. Dissolution preferentially removed the limestone grains. Depositional facies controlled... the distribution of grains and, therefore, the distribution of dissolution to some extent. Stratigraphic location controlled the degree of dolomitization. The stratigraphically higher A and B zones were in closer proximity to the dolomitizing fluids from...

  9. Fabrication of catalytic electrodes for molten carbonate fuel cells

    DOE Patents [OSTI]

    Smith, James L. (Lemont, IL)

    1988-01-01

    A porous layer of catalyst material suitable for use as an electrode in a molten carbonate fuel cell includes elongated pores substantially extending across the layer thickness. The catalyst layer is prepared by depositing particulate catalyst material into polymeric flocking on a substrate surface by a procedure such as tape casting. The loaded substrate is heated in a series of steps with rising temperatures to set the tape, thermally decompose the substrate with flocking and sinter bond the catalyst particles into a porous catalytic layer with elongated pores across its thickness. Employed as an electrode, the elongated pores provide distribution of reactant gas into contact with catalyst particles wetted by molten electrolyte.

  10. Ultralight carbon aerogel from nanocellulose as a highly selective oil absorption material

    SciTech Connect (OSTI)

    Meng, Yujie; Yang, Timothy M; Peizhi, Liu; Contescu, Cristian I; Biao, Huang; Siqun, Wang

    2015-01-01

    The synthesis of a sponge-like carbon aerogel from microfibril cellulose (MFC), with high porosity (99%), ultra-low density (0.01 g/cm3), hydrophobic properties (149 static contact angle) and reusability is reported in this paper. The physical properties, internal morphology, thermal properties, and chemical properties of carbon aerogels heat-treated at 700 and 900 oC (Samples C-700 and C-900) were examined. Stabilization and carbonization parameters were optimized in terms of residual carbon yield. The BET surface area of Sample C-700 (521 m2 /g) was significantly higher than of Sample C-950 (149 m2 /g). Graphitic-like domains were observed in C-950. The highest normalized sorption capacity (86 g/g) for paraffin oil was observed in sample C-700. The removal of hydrophilic function groups during carbonization causes carbon aerogel to present highly hydrophobic properties. Carbon aerogel s ability to absorb oil is enhanced by its highly porous 3D network structure with interconnected cellulose nanofibrils.

  11. Lyman alpha Transfer in a thick, dusty, and static medium

    E-Print Network [OSTI]

    Sang-Hyeon Ahn; Hee-Won Lee; Hyung-Mok Lee

    2000-06-13

    We developed a Monte Carlo code that describes the resonant Lyman alpha line transfer in an optically thick, dusty, and static medium. The code was tested against the analytic formula derived by Neufeld (1990). We explain the line transfer mechanism for a wide range of line center optical depths by tracing histories of photons in the medium. We find that photons escape from the medium by a series of wing scatterings, during which polarization may develop. We applied our code to examine the amount of dust extinction around the Lyman alpha in primeval galaxies. Brief discussions on the astrophysical application of our work are presented.

  12. DYNAMIC DELAMINATION IN THROUGH-THICKNESS REINFORCED DCB SPECIMEN

    SciTech Connect (OSTI)

    N. SRIDHAR; ET AL

    2001-02-01

    Bridged crack models using beam theory formulation have proved to be effective in the modeling of quasistatic delamination crack growth in through thickness reinforced structures. In this paper, we model dynamic crack propagation in these structures with the beam theory formulation. Steady state crack propagation characteristics unique to the dynamic case are first identified. Dynamic crack propagation and the energetics of steady state dynamic crack growth for a Double Cantilever beam (DCB) configuration loaded with a flying wedge is examined next. We find that steady state crack growth is attainable for this loading configuration provided certain conditions are satisfied.

  13. Carbon fuel cells with carbon corrosion suppression

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA)

    2012-04-10

    An electrochemical cell apparatus that can operate as either a fuel cell or a battery includes a cathode compartment, an anode compartment operatively connected to the cathode compartment, and a carbon fuel cell section connected to the anode compartment and the cathode compartment. An effusion plate is operatively positioned adjacent the anode compartment or the cathode compartment. The effusion plate allows passage of carbon dioxide. Carbon dioxide exhaust channels are operatively positioned in the electrochemical cell to direct the carbon dioxide from the electrochemical cell.

  14. Carbon Nanostructure-Based Sensors

    E-Print Network [OSTI]

    Sarkar, Tapan

    2012-01-01

    Control of Single-Walled Carbon Nanotube Functionalization.M. S. Characterizing carbon nanotube samples with resonancewith a Single-Walled Carbon Nanotube Capacitor. Science

  15. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Large Magnetization at Carbon Surfaces Print Wednesday, 31 August 2011 00:00 From organic matter to pencil lead, carbon is a versatile...

  16. Metallic carbon materials

    DOE Patents [OSTI]

    Cohen, Marvin Lou (Berkeley, CA); Crespi, Vincent Henry (Darien, IL); Louie, Steven Gwon Sheng (Berkeley, CA); Zettl, Alexander Karlwalter (Kensington, CA)

    1999-01-01

    Novel metallic forms of planar carbon are described, as well as methods of designing and making them. Nonhexagonal arrangements of carbon are introduced into a graphite carbon network essentially without destroying the planar structure. Specifically a form of carbon comprising primarily pentagons and heptagons, and having a large density of states at the Fermi level is described. Other arrangements of pentagons and heptagons that include some hexagons, and structures incorporating squares and octagons are additionally disclosed. Reducing the bond angle symmetry associated with a hexagonal arrangement of carbons increases the likelihood that the carbon material will have a metallic electron structure.

  17. Dynamic Evolution of Cement Composition and Transport Properties under Conditions Relevant to Geological Carbon Sequestration

    SciTech Connect (OSTI)

    Brunet, Jean-Patrick Leopold; Li, Li; Karpyn, Zuleima T.; Strazisar, Brian; Bromhal Grant

    2013-08-01

    Assessing the possibility of CO{sub 2} leakage is one of the major challenges for geological carbon sequestration. Injected CO{sub 2} can react with wellbore cement, which can potentially change cement composition and transport properties. In this work, we develop a reactive transport model based on experimental observations to understand and predict the property evolution of cement in direct contact with CO{sub 2}-saturated brine under diffusion-controlled conditions. The model reproduced the observed zones of portlandite depletion and calcite formation. Cement alteration is initially fast and slows down at later times. This work also quantified the role of initial cement properties, in particular the ratio of the initial portlandite content to porosity (defined here as ?), in determining the evolution of cement properties. Portlandite-rich cement with large ? values results in a localized “sharp” reactive diffusive front characterized by calcite precipitation, leading to significant porosity reduction, which eventually clogs the pore space and prevents further acid penetration. Severe degradation occurs at the cement–brine interface with large ? values. This alteration increases effective permeability by orders of magnitude for fluids that preferentially flow through the degraded zone. The significant porosity decrease in the calcite zone also leads to orders of magnitude decrease in effective permeability, where fluids flow through the low-permeability calcite zone. The developed reactive transport model provides a valuable tool to link cement–CO{sub 2} reactions with the evolution of porosity and permeability. It can be used to quantify and predict long-term wellbore cement behavior and can facilitate the risk assessment associated with geological CO{sub 2} sequestration.

  18. Carbon-based Supercapacitors Produced by Activation of Graphene

    SciTech Connect (OSTI)

    Y Zhu; S Murali; M Stoller; K Ganesh; W Cai; P Ferreira; A Pirkle; R Wallace; K Cychosz; et al.

    2011-12-31

    Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp{sup 2}-bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.

  19. Carbon-Based Supercapacitors Produced by Activation of Graphene

    SciTech Connect (OSTI)

    Zhu, Y.; Su, D.; Murali, S.; Stoller, M.D.; Ganesh, K.J.; Cai, W.; Ferreira, P.J.; Pirkle, A.; Wallace, R.M.; Cychosz, K.A., Thommes, M.; Stach, E.A.; Ruoff, R.S.

    2011-06-24

    Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp{sup 2}-bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.

  20. Mass gap for gravity localized on Weyl thick branes

    SciTech Connect (OSTI)

    Barbosa-Cendejas, N.; Santos, M. A. Reyes; Herrera-Aguilar, A.; Schubert, C.

    2008-06-15

    We consider thick brane configurations in a pure geometric Weyl integrable 5D space-time, a non-Riemannian generalization of Kaluza-Klein (KK) theory involving a geometric scalar field. Thus, the 5D theory describes gravity coupled to a self-interacting scalar field which gives rise to the structure of the thick branes. We continue the study of the properties of a previously found family of solutions which is smooth at the position of the brane but involves naked singularities in the fifth dimension. Analyzing their graviton spectrum, we find that a particularly interesting situation arises for a special case in which the 4D graviton is separated from the KK gravitons by a mass gap. The corresponding effective Schroedinger equation has a modified Poeschl-Teller potential and can be solved exactly. Apart from the massless 4D graviton, it contains one massive KK bound state, and the continuum spectrum of delocalized KK modes. We also discuss the mass hierarchy problem, and explicitly compute the corrections to Newton's law in the thin brane limit.

  1. Lithospheric Thickness Modeled from Long Period Surface Wave Dispersion

    SciTech Connect (OSTI)

    Pasyanos, M E

    2008-05-15

    The behavior of surface waves at long periods is indicative of subcrustal velocity structure. Using recently published dispersion models, we invert surface wave group velocities for lithospheric structure, including lithospheric thickness, over much of the Eastern Hemisphere, encompassing Eurasia, Africa, and the Indian Ocean. Thicker lithosphere under Precambrian shields and platforms are clearly observed, not only under the large cratons (West Africa, Congo, Baltic, Russia, Siberia, India), but also under smaller blocks like the Tarim Basin and Yangtze craton. In contrast, it is found that remobilized Precambrian structures like the Saharan Shield and Sino-Korean Paraplatform do not have well-established lithospheric keels. The thinnest lithospheric thickness is found under oceanic and continental rifts, as well as along convergence zones. We compare our results to thermal models of continental lithosphere, lithospheric cooling models of oceanic lithosphere, lithosphere-asthenosphere boundary (LAB) estimates from S-wave receiver functions, and velocity variations of global tomography models. In addition to comparing results for the broad region, we examine in detail the regions of Central Africa, Siberia, and Tibet. While there are clear differences in the various estimates, overall the results are generally consistent. Inconsistencies between the estimates may be due to a variety of reasons including lateral and depth resolution differences and the comparison of what may be different lithospheric features.

  2. Depositional environments, diagenetic history, and porosity development, of the Permian San Andres Formation, Vacuum Field, Lea County, New Mexico 

    E-Print Network [OSTI]

    Robertson, Jeffrey Woolf

    1989-01-01

    in the form of intergranular pores and minor amounts of intragranular pores in fusulinid tests. Diagenetic pore types include intercrystalline pores in the dolomitized lime mud and moldic pores after leaching of pelletoids, oolites, and algal debris. Dark... of preexisting carbonate grains (Kerr and Thomson, 1963). Nodules are common; they may have displaced surrounding lime mud and may be associated with organic material (Ramondetta, 1982). Pore-filling anhydrite is described by Ramondetta as coarse, clear...

  3. Metal-Containing Organic and Carbon Aerogels for Hydrogen Storage

    SciTech Connect (OSTI)

    Satcher, Jr., J H; Baumann, T F; Herberg, J L

    2005-01-10

    This document and the accompanying manuscript summarize the technical accomplishments of our one-year LDRD-ER effort. Hydrogen storage and hydrogen fuel cells are important components of the 2003 Hydrogen Fuel Initiative focused on the reduction of America's dependence on oil. To compete with oil as an energy source, however, one must be able to transport and utilize hydrogen at or above the target set by DOE (6 wt.% H{sub 2}) for the transportation sector. Other than liquid hydrogen, current technology falls well short of this DOE target. As a result, a variety of materials have recently been investigated to address this issue. Carbon nanostructures have received significant attention as hydrogen storage materials due to their low molecular weight, tunable microporosity and high specific surface areas. For example, the National Renewable Energy Laboratory (NREL) achieved 5 to 10 wt.% H{sub 2} storage using metal-doped carbon nanotubes. That study showed that the intimate mix of metal nanoparticles with graphitic carbon resulted in the unanticipated hydrogen adsorption at near ambient conditions. The focus of our LDRD effort was the investigation of metal-doped carbon aerogels (MDCAs) as hydrogen storage materials. In addition to their low mass densities, continuous porosities and high surface areas, these materials are promising candidates for hydrogen storage because MDCAs contain a nanometric mix of metal nanoparticles and graphitic nanostructures. For FY04, our goals were to: (1) prepare a variety of metal-doped CAs (where the metal is cobalt, nickel or iron) at different densities and carbonization temperatures, (2) characterize the microstructure of these materials and (3) initiate hydrogen adsorption/desorption studies to determine H2 storage properties of these materials. Since the start of this effort, we have successfully prepared and characterized Ni- and Co-doped carbon aerogels at different densities and carbonization temperatures. The bulk of this work is described in the attached manuscript entitled 'Formation of Carbon Nanostructures in Cobalt- and Nickel- Doped Carbon Aerogels'. This one-year effort has lead to our incorporation into the DOE Carbon-based Hydrogen Storage Center of Excellence at NREL, with funding from DOE's Energy Efficiency and Renewable Energy (EERE) Program starting in FY05.

  4. Carbon nanotube nanoelectrode arrays

    DOE Patents [OSTI]

    Ren, Zhifeng (Newton, MA); Lin, Yuehe (Richland, WA); Yantasee, Wassana (Richland, WA); Liu, Guodong (Fargo, ND); Lu, Fang (Burlingame, CA); Tu, Yi (Camarillo, CA)

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  5. Effects of Membrane- and Catalyst-layer-thickness Nonuniformities in Polymer-electrolyte Fuel Cells

    E-Print Network [OSTI]

    Weber, Adam Z.; Newman, John

    2006-01-01

    from various parts of a PEFC, thickness distributions can beour previously developed PEFC models. 4,5 The simulations

  6. ESM 271 Carbon Footprints and Carbon Accounting Instructor: Sangwon Suh

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    1 ESM 271 Carbon Footprints and Carbon Accounting Instructor: Sangwon Suh Bren hall 3422, suh Week 1: Introduction to carbon footprint and carbon account - Background: carbon awareness, major out a report or a web site about carbon footprint results of a product or of a company. Write a two

  7. Big Sky Carbon Atlas

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    (Acknowledgment to the Big Sky Carbon Sequestration Partnership (BSCSP); see home page at http://www.bigskyco2.org/)

  8. Metal filled porous carbon

    DOE Patents [OSTI]

    Gross, Adam F. (Los Angeles, CA); Vajo, John J. (West Hills, CA); Cumberland, Robert W. (Malibu, CA); Liu, Ping (Irvine, CA); Salguero, Tina T. (Encino, CA)

    2011-03-22

    A porous carbon scaffold with a surface and pores, the porous carbon scaffold containing a primary metal and a secondary metal, where the primary metal is a metal that does not wet the surface of the pores of the carbon scaffold but wets the surface of the secondary metal, and the secondary metal is interspersed between the surface of the pores of the carbon scaffold and the primary metal.

  9. The effect of film thickness on the failure strain of polymer-supported metal films

    E-Print Network [OSTI]

    Suo, Zhigang

    The effect of film thickness on the failure strain of polymer-supported metal films Nanshu Lu-supported copper films with a strong (1 1 1) fiber texture and with thicknesses varying from 50 nm to 1 lm. Films with thicknesses below 200 nm fail by intergranular fracture at elongations of only a few percent. Thicker films

  10. Thick Filament Length and Isoform Composition Determine Self-Organized Contractile Units in Actomyosin Bundles

    E-Print Network [OSTI]

    Gardel, Margaret

    Thick Filament Length and Isoform Composition Determine Self-Organized Contractile Units motors are clustered into thick filaments. Although the role of mechanochemistry is well appreciated, the extent to which thick filament length regulates actomyosin contractility is unknown. Here, we study

  11. Bilayer thickness effects on nanoindentation behavior of Ag/Ni multilayers

    E-Print Network [OSTI]

    Hong, Soon Hyung

    by nanoindentation hardness and creep tests. The hardness increased with decreasing bilayer thickness, although of nanoindentation creep tests on Ag/Ni nanomultilayers with various bilayer thicknesses. Multilayered Ag/Ni films thickness. A nanoindentation creep test was used to study the creep behavior of nano- scale multilayers

  12. Effect of surface roughness on magnetic domain wall thickness, domain size, and coercivity

    E-Print Network [OSTI]

    Wang, Gwo-Ching

    , Rensselaer Polytechnic Institute, Troy, New York 12180-3590 G. Palasantzas and J. Th. M. De Hosson Department nm thick deposited on plasma etched Si 100 substrates showed that, by increasing surface rough- ness nearly linearly with film thickness. Such an increase of the thickness fluctuations5 was attributed

  13. Carbon Footprint Towson University

    E-Print Network [OSTI]

    Fath, Brian D.

    Carbon Footprint Towson University GHG Inventory for Educational Institutes Getting Starting.TM The Carbon Footprint 8 The Constellation Experience A Broad Inventory 1. Scope I-Direct Emissions works.TM The Carbon Footprint 10 The Constellation Experience A Broad Inventory 3. Scope III

  14. Intro to Carbon Sequestration

    ScienceCinema (OSTI)

    None

    2010-01-08

    NETL's Carbon Sequestration Program is helping to develop technologies to capture, purify, and store carbon dioxide (CO2) in order to reduce greenhouse gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO2 that would otherwise reside in the atmosphere for long periods of time.

  15. Intro to Carbon Sequestration

    SciTech Connect (OSTI)

    2008-03-06

    NETL's Carbon Sequestration Program is helping to develop technologies to capture, purify, and store carbon dioxide (CO2) in order to reduce greenhouse gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO2 that would otherwise reside in the atmosphere for long periods of time.

  16. Relationships between observed pore and pore-throat geometries, measured porosity and permeability, and indirect measures of pore volume by nuclear magnetic resonance 

    E-Print Network [OSTI]

    Adams, Aaron J.

    2007-04-25

    Carbonate reservoirs are a network of pores and connecting pore-throats that contain at least half of the world's oil. Genetic classification of carbonate pores enables one to map the pore types that have greatest influence ...

  17. Test of CZT Detectors with Different Pixel Pitches and Thicknesses

    E-Print Network [OSTI]

    Qiang Li; Alfred III Garson; Ira Jung; Michael Groza; Paul Dowkontt; Richard Bose; Garry Simburger; Arnold Burger; Henric Krawczynski

    2007-12-08

    The Modified Horizontal Bridgman (MHB) process produces Cadmium Zinc Telluride (CZT) crystals with high yield and excellent homogeneity. Various groups,including our own, previously reported on the test of 2x2x0.5 cm3 MHB CZT detectors grown by the company Orbotech and read out with 8x8 pixels. In this contribution, we describe the optimization of the photolithographic process used for contacting the CZT detector with pixel contacts. The optimized process gives a high yield of good pixels down to pixel diameters/pitches of 50 microns. Furthermore, we discuss the performance of 0.5 cm and 0.75 cm thick detectors contacted with 64 and 225 pixel read out with the RENA-3 ASICs from the company NOVA R&D.

  18. Thick Pixelated CZT Detectors With Isolated Steering Grids

    E-Print Network [OSTI]

    I. Jung; A. B. Garson; J. S. Perkins; H. Krawczynski; J. Matteson; R. T. Skelton; A. Burger; M. Groza

    2005-11-18

    We explore the possibility to improve the performance of 0.5 cm thick Cadmium Zinc Telluride (CZT) detectors with the help of steering grids on the anode side of the detectors. Steering grids can improve the energy resolution of CZT detectors by enhancing the small pixel effect; furthermore, they can increase their detection efficiency by steering electrons to the anode pixels which otherwise would drift to the area between pixels. Previously, the benefit of steering grids had been compromised by additional noise associated with currents between the steering grids and the anode pixels. We use thin film deposition techniques to isolate the steering grid from the CZT substrate by a 150 nm thick layer of the isolator Aluminiumoxide. While the thin layer does not affect the beneficial effect of the steering grid on the weighting potentials and the electric field inside the detector, it suppresses the currents between the steering grid and the anode pixels. In this contribution, we present first results from a 2 x 2 x 0.5 cm CZT detector with 8 x 8 pixels that we tested before and after deposition of an isolated steering grid. The steering grid improves the 662 keV energy resolution of the detector by a factor of 1.3 (from about 2% to about 1.5%), while not reducing the detection efficiency. To gain further insights into the detector response in the region between pixels, we measured energy spectra with a collimated Cs137 source. The collimator measurements can be used to enhance our understanding of energy spectra measured under flood illumination of the detectors.

  19. Fringe biasing: A variance reduction technique for optically thick meshes

    SciTech Connect (OSTI)

    Smedley-Stevenson, R. P.

    2013-07-01

    Fringe biasing is a stratified sampling scheme applicable to Monte Carlo thermal radiation transport codes. The thermal emission source in optically thick cells is partitioned into separate contributions from the cell interiors (where the likelihood of the particles escaping the cells is virtually zero) and the 'fringe' regions close to the cell boundaries. Thermal emission in the cell interiors can now be modelled with fewer particles, the remaining particles being concentrated in the fringes so that they are more likely to contribute to the energy exchange between cells. Unlike other techniques for improving the efficiency in optically thick regions (such as random walk and discrete diffusion treatments), fringe biasing has the benefit of simplicity, as the associated changes are restricted to the sourcing routines with the particle tracking routines being unaffected. This paper presents an analysis of the potential for variance reduction achieved from employing the fringe biasing technique. The aim of this analysis is to guide the implementation of this technique in Monte Carlo thermal radiation codes, specifically in order to aid the choice of the fringe width and the proportion of particles allocated to the fringe (which are interrelated) in multi-dimensional simulations, and to confirm that the significant levels of variance reduction achieved in simulations can be understood by studying the behaviour for simple test cases. The variance reduction properties are studied for a single cell in a slab geometry purely absorbing medium, investigating the accuracy of the scalar flux and current tallies on one of the interfaces with the surrounding medium. (authors)

  20. Exploring an Unstructured Lattice Representation for Carbonate Reservoir Characterization 

    E-Print Network [OSTI]

    Pasumarti, Lakshmi

    2014-05-19

    -volume. ...................................................................................... 98 Figure 53 – Shows the permeability evaluated at each time, assuming spherical flow. Between the time after node-storage effects and the critical sub- volume is reached, the permeability appears to be around 0.5 – 1 Darcy. The nodes... for Carbonate Reservoirs” (Project Number: B648A) and Dr. Anuj Gupta’s research group at Texas A&M University, Qatar (TAMUQ) is acknowledged. vi NOMENCLATURE ct Total compressibility; psi -1; h Thickness; ft; k Permeability; md; ? ? Permeability...

  1. Method and system using power modulation and velocity modulation producing sputtered thin films with sub-angstrom thickness uniformity or custom thickness gradients

    DOE Patents [OSTI]

    Montcalm, Claude (Livermore, CA); Folta, James Allen (Livermore, CA); Walton, Christopher Charles (Berkeley, CA)

    2003-12-23

    A method and system for determining a source flux modulation recipe for achieving a selected thickness profile of a film to be deposited (e.g., with highly uniform or highly accurate custom graded thickness) over a flat or curved substrate (such as concave or convex optics) by exposing the substrate to a vapor deposition source operated with time-varying flux distribution as a function of time. Preferably, the source is operated with time-varying power applied thereto during each sweep of the substrate to achieve the time-varying flux distribution as a function of time. Preferably, the method includes the steps of measuring the source flux distribution (using a test piece held stationary while exposed to the source with the source operated at each of a number of different applied power levels), calculating a set of predicted film thickness profiles, each film thickness profile assuming the measured flux distribution and a different one of a set of source flux modulation recipes, and determining from the predicted film thickness profiles a source flux modulation recipe which is adequate to achieve a predetermined thickness profile. Aspects of the invention include a computer-implemented method employing a graphical user interface to facilitate convenient selection of an optimal or nearly optimal source flux modulation recipe to achieve a desired thickness profile on a substrate. The method enables precise modulation of the deposition flux to which a substrate is exposed to provide a desired coating thickness distribution.

  2. Apparatus and methods for determining gas saturation and porosity of a formation penetrated by a gas filled or liquid filled borehole

    DOE Patents [OSTI]

    Wilson, Robert D. (477 W. Scenic Dr., Grand Junction, CO 81503)

    2001-03-27

    Methods and apparatus are disclosed for determining gas saturation, liquid saturation, porosity and density of earth formations penetrated by a well borehole. Determinations are made from measures of fast neutron and inelastic scatter gamma radiation induced by a pulsed, fast neutron source. The system preferably uses two detectors axially spaced from the neutron source. One detector is preferably a scintillation detector responsive to gamma radiation, and a second detector is preferably an organic scintillator responsive to both neutron and gamma radiation. The system can be operated in cased boreholes which are filled with either gas or liquid. Techniques for correcting all measurements for borehole conditions are disclosed.

  3. Three-dimensional carbon fibers and method and apparatus for their production

    DOE Patents [OSTI]

    Muradov, Nazim Z. (Melbourne, FL)

    2012-02-21

    This invention relates to novel three-dimensional (3D) carbon fibers which are original (or primary) carbon fibers (OCF) with secondary carbon filaments (SCF) grown thereon, and, if desired, tertiary carbon filaments (TCF) are grown from the surface of SCF forming a filamentous carbon network with high surface area. The methods and apparatus are provided for growing SCF on the OCF by thermal decomposition of carbonaceous gases (CG) over the hot surface of the OCF without use of metal-based catalysts. The thickness and length of SCF can be controlled by varying operational conditions of the process, e.g., the nature of CG, temperature, residence time, etc. The optional activation step enables one to produce 3D activated carbon fibers with high surface area. The method and apparatus are provided for growing TCF on the SCF by thermal decomposition of carbonaceous gases over the hot surface of the SCF using metal catalyst particles.

  4. Mineral Sequestration of Carbon Dixoide in a Sandstone-Shale System

    SciTech Connect (OSTI)

    Xu, Tianfu; Apps, John A.; Pruess, Karsten

    2004-07-09

    A conceptual model of CO2 injection in bedded sandstone-shale sequences has been developed using hydrogeologic properties and mineral compositions commonly encountered in Gulf Coast sediments. Numerical simulations were performed with the reactive fluid flow and geochemical transport code TOUGHREACT to analyze mass transfer between sandstone and shale layers and CO2 immobilization through carbonate precipitation. Results indicate that most CO2 sequestration occurs in the sandstone. The major CO2 trapping minerals are dawsonite and ankerite. The CO2 mineral-trapping capacity after 100,000 years reaches about 90 kg per cubic meter of the medium. The CO2 trapping capacity depends on primary mineral composition. Precipitation of siderite and ankerite requires Fe+2 supplied mainly by chlorite and some by hematite dissolution and reduction. Precipitation of dawsonite requires Na+ provided by oligoclase dissolution. The initial abundance of chlorite and oligoclase therefore affects the CO2 mineral trapping capacity. The sequestration time required depends on the kinetic rate of mineral dissolution and precipitation. Dawsonite reaction kinetics is not well understood, and sensitivity regarding the precipitation rate was examined. The addition of CO2 as secondary carbonates results in decreased porosity. The leaching of chemical constituents from the interior of the shale causes slightly increased porosity. The limited information currently available for the mineralogy of natural high-pressure CO2 gas reservoirs is also generally consistent with our simulation. The ''numerical experiments'' give a detailed understanding of the dynamic evolution of a sandstone-shale geochemical system.

  5. Using Phased Array Ultrasonic Testing in Lieu of Radiography for Acceptance of Carbon Steel Piping Welds

    SciTech Connect (OSTI)

    Moran, Traci L.; Anderson, Michael T.; Cinson, Anthony D.; Crawford, Susan L.; Nove, Carol A.

    2014-08-01

    The Pacific Northwest National Laboratory (PNNL) is conducting studies for the U.S. Nuclear Regulatory Commission (NRC) to assess the capability, effectiveness, and reliability of ultrasonic testing (UT) as a replacement method for radiographic testing (RT) for volumetric examination of nuclear power plant (NPP) components. This particular study focused on evaluating the use of UT on carbon steel plate welds. Welding fabrication flaws included a combination of planar and volumetric types, e.g., incomplete fusion, lack of penetration, cracks, porosity, and slag inclusions. The examinations were conducted using phased-array (PA) UT techniques applied primarily for detection and flaw type characterization. This paper will discuss the results of using UT in lieu of RT for detection and classification of fabrication flaws in carbon steel plate welds.

  6. Carbon dioxide sensor

    DOE Patents [OSTI]

    Dutta, Prabir K. (Worthington, OH); Lee, Inhee (Columbus, OH); Akbar, Sheikh A. (Hilliard, OH)

    2011-11-15

    The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

  7. Assessment of Nuclear Fuels using Radiographic Thickness Measurement Method

    SciTech Connect (OSTI)

    Muhammad Abir; Fahima Islam; Hyoung Koo Lee; Daniel Wachs

    2014-11-01

    The Convert branch of the National Nuclear Security Administration (NNSA) Global Threat Reduction Initiative (GTRI) focuses on the development of high uranium density fuels for research and test reactors for nonproliferation. This fuel is aimed to convert low density high enriched uranium (HEU) based fuel to high density low enriched uranium (LEU) based fuel for high performance research reactors (HPRR). There are five U.S. reactors that fall under the HPRR category, including: the Massachusetts Institute of Technology Reactor (MITR), the National Bureau of Standards Reactor (NBSR), the Missouri University Research Reactor (UMRR), the Advanced Test Reactor (ATR), and the High Flux Isotope Reactor (HFIR). U-Mo alloy fuel phase in the form of either monolithic or dispersion foil type fuels, such as ATR Full-size In center flux trap Position (AFIP) and Reduced Enrichment for Research and Test Reactor (RERTR), are being designed for this purpose. The fabrication process1 of RERTR is susceptible to introducing a variety of fuel defects. A dependable quality control method is required during fabrication of RERTR miniplates to maintain the allowable design tolerances, therefore evaluating and analytically verifying the fabricated miniplates for maintaining quality standards as well as safety. The purpose of this work is to analyze the thickness of the fabricated RERTR-12 miniplates using non-destructive technique to meet the fuel plate specification for RERTR fuel to be used in the ATR.

  8. Rotary union for use with ultrasonic thickness measuring probe

    DOE Patents [OSTI]

    Nachbar, H.D.

    1992-09-15

    A rotary union for rotatably supporting an ultrasonic probe operable to nondestructively measure the thickness of steam generator tubes to determine the amount of corrosion experienced by the tubes includes a stationary body having a bore therethrough and an outlet drain, and a fitting rotatably mounted within the upper end of the body. The fitting has a bore aligned with the bore of the body. An electrical cable positioned within a water supply tube in an annular arrangement passes through the bore of the body and the bore of the fitting. This annular arrangement, in turn, is positioned within a connector element which extends outwardly from the fitting bore and is connected to the ultrasonic probe. An elastomeric lower bushing seals the annular arrangement to the lower end of the rotary union body and an elastomeric upper bushing seals the connector element to the fitting to permit the connector element and the ultrasonic probe connected thereto to rotate with the fitting relative to the body. The lower and upper bushings permit water to be passed through the annular arrangement and into the ultrasonic probe and thereafter discharged between the annular arrangement and the connector element to the outlet drain of the rotary union body. 5 figs.

  9. Rotary union for use with ultrasonic thickness measuring probe

    DOE Patents [OSTI]

    Nachbar, Henry D. (Schenectady, NY)

    1992-01-01

    A rotary union for rotatably supporting an ultrasonic probe operable to nondestructively measure the thickness of steam generator tubes to determine the amount of corrosion experienced by the tubes includes a stationary body having a bore therethrough and an outlet drain, and a fitting rotatably mounted within the upper end of the body. The fitting has a bore aligned with the bore of the body. An electrical cable positioned within a water supply tube in an annular arrangement passes through the bore of the body and the bore of the fitting. This annular arrangement, in turn, is positioned within a connector element which extends outwardly from the fitting bore and is connected to the ultrasonic probe. An elastomeric lower bushing seals the annular arrangement to the lower end of the rotary union body and an elastomeric upper bushing seals the connector element to the fitting to permit the connector element and the ultrasonic probe connected thereto to rotate with the fitting relative to the body. The lower and upper bushings permit water to be passed through the annular arrangement and into the ultrasonic probe and thereafter discharged between the annular arrangement and the connector element to the outlet drain of the rotary union body.

  10. Cladding Attachment Over Thick Exterior Insulating Sheathing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of wood-framed walls and mass masonry wall assemblies. The location of the insulation on the exterior of the structure has many direct benefits, including better effective R-value from reduced thermal bridging, better condensation resistance, reduced thermal stress on the structure, as well as other commonly associated improvements such as increased airtightness and improved water management. For thick layers of exterior insulation (more than 1.5 in.), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location. Although the approach has proven effective, there is significant resistance to its widespread implementation due to a lack of research and understanding of the mechanisms involved in the development of the vertical displacement resistance capacity. In addition, the long-term in-service performance of the system has been questioned due to potential creep effects of the assembly under the sustained dead load of the cladding and effects of varying environmental conditions. In addition, the current International Building Code (IBC) and International Residential Code (IRC) do not have a provision that specifically allows this assembly.

  11. Super-spinning compact objects generated by thick accretion disks

    SciTech Connect (OSTI)

    Li, Zilong; Bambi, Cosimo, E-mail: zilongli@fudan.edu.cn, E-mail: bambi@fudan.edu.cn [Center for Field Theory and Particle Physics and Department of Physics, Fudan University, 220 Handan Road, 200433 Shanghai (China)

    2013-03-01

    If astrophysical black hole candidates are the Kerr black holes predicted by General Relativity, the value of their spin parameter must be subject to the theoretical bound |a{sub *}| ? 1. In this work, we consider the possibility that these objects are either non-Kerr black holes in an alternative theory of gravity or exotic compact objects in General Relativity. We study the accretion process when their accretion disk is geometrically thick with a simple version of the Polish doughnut model. The picture of the accretion process may be qualitatively different from the one around a Kerr black hole. The inner edge of the disk may not have the typical cusp on the equatorial plane any more, but there may be two cusps, respectively above and below the equatorial plane. We extend previous work on the evolution of the spin parameter and we estimate the maximum value of a{sub *} for the super-massive black hole candidates in galactic nuclei. Since measurements of the mean radiative efficiency of AGNs require ? > 0.15, we infer the ''observational'' bound |a{sub *}|?<1.3, which seems to be quite independent of the exact nature of these objects. Such a bound is only slightly weaker than |a{sub *}|?<1.2 found in previous work for thin disks.

  12. Digenetic Changes in Macro- to Nano-Scale Porosity in the St. Peter Sandstone:L An (Ultra) Small Angle Neutron Scattering and Backscattered Electron Imagining Analysis

    SciTech Connect (OSTI)

    Anovitz, Lawrence {Larry} M [ORNL; Cole, David [Ohio State University; Rother, Gernot [ORNL; Allard Jr, Lawrence Frederick [ORNL; Jackson, Andrew [NIST Center for Neutron Research (NCRN), Gaithersburg, MD; Littrell, Ken [ORNL

    2013-01-01

    Small- and Ultra-Small Angle Neutron Scattering (SANS and USANS) provide powerful tools for quantitative analysis of porous rocks, yielding bulk statistical information over a wide range of length scales. This study utilized (U)SANS to characterize shallowly buried quartz arenites from the St. Peter Sandstone. Backscattered electron imaging was also used to extend the data to larger scales. These samples contain significant volumes of large-scale porosity, modified by quartz overgrowths, and neutron scattering results show significant sub-micron porosity. While previous scattering data from sandstones suggest scattering is dominated by surface fractal behavior over many orders of magnitude, careful analysis of our data shows both fractal and pseudo-fractal behavior. The scattering curves are composed of subtle steps, modeled as polydispersed assemblages of pores with log-normal distributions. However, in some samples an additional surface-fractal overprint is present, while in others there is no such structure, and scattering can be explained by summation of non-fractal structures. Combined with our work on other rock-types, these data suggest that microporosity is more prevalent, and may play a much more important role than previously thought in fluid/rock interactions.

  13. Where fast weathering creates thin regolith and slow weathering creates thick regolith

    SciTech Connect (OSTI)

    Bazilevskaya, Ekaterina [Pennsylvania State University, University Park, PA; Lebedeva, Marina [Pennsylvania State University, University Park, PA; Pavich, Milan [U.S. Geological Survey, Reston, VA; Rother, Gernot [ORNL; Parkinson, D. Y. [Advanced Light Source, LBNL; Cole, David [Ohio State University; Brantley, S. L. [Pennsylvania State University, University Park, PA

    2012-01-01

    Weathering disaggregates rock into regolith the fractured or granular earthmaterial that sustains life on the continental land surface. Here, we investigate what controls the depth of regolith formed on ridges of two rock compositions with similar initial porosities in Virginia (USA).A priori, we predicted that the regolith on diabasewould be thicker than on granite because the dominant mineral (feldspar) in the diabase weathers faster than its granitic counterpart. However, weathering advanced 20deeper into the granite than the diabase. The 20-thicker regolith is attributed mainly to connected micron-sized pores, microfractures formed around oxidizing biotite at 20m depth, and the lower iron (Fe) content in the felsic rock. Such porosity allows pervasive advection and deep oxidation in the granite. These observations may explainwhy regolithworldwide is thicker on felsic compared tomafic rock under similar conditions. To understand regolith formationwill require better understanding of such deep oxidation reactions and how they impact fluid flow during weathering.

  14. Organic carbon burial forcing of the carbon cycle from

    E-Print Network [OSTI]

    Derry, Louis A.

    Organic carbon burial forcing of the carbon cycle from Himalayan erosion Christian France . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Weathering and erosion can affect the long-term ocean­atmo- sphere budget of carbon dioxide both through of Neogene Himalayan erosion on the carbon cycle is an increase in the amount of organic carbon

  15. CARBON EMISSIONS AND CARBON FIXING FROM AN ECONOMIC PERSPECTIVE

    E-Print Network [OSTI]

    Bateman, Ian J.

    constraint to these relationships, with the carbon dioxide emissions from fossil fuel consumption pressingCARBON EMISSIONS AND CARBON FIXING FROM AN ECONOMIC PERSPECTIVE by Dennis Anderson CSERGE GEC Working Paper 92-28 #12;CARBON EMISSIONS AND CARBON FIXING FROM AN ECONOMIC PERSPECTIVE by Dennis Anderson

  16. Carbon Code Requirements for voluntary carbon sequestration projects

    E-Print Network [OSTI]

    and individuals wishing to reduce their carbon footprint while also delivering a range of other environmentalWoodland Carbon Code Requirements for voluntary carbon sequestration projects ® Version 1.2 July of group schemes 8 2.6 Monitoring 9 2.7 Carbon statements and reporting 9 2.8 Woodland Carbon Code

  17. Carbon RRLs Carbon RRLs towards Ultra-compact HII Regions

    E-Print Network [OSTI]

    Balser, Dana S.

    Carbon RRLs Carbon RRLs towards Ultra-compact HII Regions Dana S. Balser D. Anish Roshi (Raman (Agnes Scott College) #12;Carbon RRLs Carbon Radio Recombination Lines (RRLs) NGC 2024 (Orion B) IC 1795 (W3) Palmer et al. (1967) #12;Carbon RRLs Photodissociation Regions (PDRs) Hollenbach & Tielens (1997

  18. Carbon Sequestration via Mineral Carbonation: Overview and Assessment

    E-Print Network [OSTI]

    1 Carbon Sequestration via Mineral Carbonation: Overview and Assessment 14 March 2002 Howard Herzog overview and assessment of carbon sequestration by mineral carbonation (referred to as "mineral sequestration R&D. The first is that carbonates have a lower energy state than CO2. Therefore, at least

  19. Project Profile: Carbon Dioxide Shuttling Thermochemical Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Profile: Carbon Dioxide Shuttling Thermochemical Storage Using Strontium Carbonate Project Profile: Carbon Dioxide Shuttling Thermochemical Storage Using Strontium...

  20. Microwave shielding of transparent and conducting single-walled carbon nanotube films

    E-Print Network [OSTI]

    Gruner, George

    Microwave shielding of transparent and conducting single-walled carbon nanotube films Hua Xu, they calculated the shielding effectiveness for various film thicknesses. Shielding effectiveness of 43 dB at 10 films are promising as a type of transparent microwave shielding material. By combining their data

  1. Effects of palladium coating on field-emission properties of carbon nanofibers in a hydrogen plasma

    E-Print Network [OSTI]

    Javey, Ali

    Effects of palladium coating on field-emission properties of carbon nanofibers in a hydrogen plasma not compromised when a protective coating consisting of a layer of palladium of 5 and 30 nm thickness was applied. Following exposure to a hydrogen plasma for sev- eral hours we find that the coatings impede plasma damage

  2. Mesoporous carbon materials

    DOE Patents [OSTI]

    Dai, Sheng (Knoxville, TN); Wang, Xiqing (Oak Ridge, TN)

    2012-02-14

    The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than -2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.

  3. Mesoporous carbon materials

    DOE Patents [OSTI]

    Dai, Sheng; Wang, Xiqing

    2013-08-20

    The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than -2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.

  4. Geoscience Perspectives in Carbon Sequestration - Educational Training and Research Through Classroom, Field, and Laboratory Investigations

    SciTech Connect (OSTI)

    Wronkiewicz, David; Paul, Varum; Abousif, Alsedik; Ryback, Kyle

    2013-09-30

    The most effective mechanism to limit CO{sub 2} release from underground Geologic Carbon Sequestration (GCS) sites over multi-century time scales will be to convert the CO{sub 2} into solid carbonate minerals. This report describes the results from four independent research investigations on carbonate mineralization: 1) Colloidal calcite particles forming in Maramec Spring, Missouri, provide a natural analog to evaluate reactions that may occur in a leaking GCS site. The calcite crystals form as a result of physiochemical changes that occur as the spring water rises from a depth of more than 190'?. The resultant pressure decrease induces a loss of CO{sub 2} from the water, rise in pH, lowering of the solubility of Ca{sup 2+} and CO{sub 3}{sup 2-}, and calcite precipitation. Equilibrium modelling of the spring water resulted in a calculated undersaturated state with respect to calcite. The discontinuity between the observed occurrence of calcite and the model result predicting undersaturated conditions can be explained if bicarbonate ions (HCO{sub 3}{sup -}) are directly involved in precipitation process rather than just carbonate ions (CO{sub 3}{sup 2-}). 2) Sedimentary rocks in the Oronto Group of the Midcontinent Rift (MCR) system contain an abundance of labile Ca-, Mg-, and Fe-silicate minerals that will neutralize carbonic acid and provide alkaline earth ions for carbonate mineralization. One of the challenges in using MCR rocks for GCS results from their low porosity and permeability. Oronto Group samples were reacted with both CO{sub 2}-saturated deionized water at 90°C, and a mildly acidic leachant solution in flow-through core-flooding reactor vessels at room temperature. Resulting leachate solutions often exceeded the saturation limit for calcite. Carbonate crystals were also detected in as little as six days of reaction with Oronto Group rocks at 90oC, as well as experiments with forsterite-olivine and augite, both being common minerals this sequence. The Oronto Group samples have poor reservoir rock characteristics, none ever exceeded a permeability value of 2.0 mD even after extensive dissolution of calcite cement during the experiments. The overlying Bayfield Group – Jacobsville Formation sandstones averaged 13.4 ± 4.3% porosity and a single sample tested by core-flooding revealed a permeability of ~340 mD. The high porosity-permeability characteristics of these sandstones will allow them to be used for GCS as a continuous aquifer unit with the overlying Mt. Simon Formation. 3) Anaerobic sulfate reducing bacteria (SRB) can enhance the conversion rate of CO{sub 2} into solid minerals and thereby improve long-term storage. SRB accelerated carbonate mineralization reactions between pCO{sub 2} values of 0.0059 and 14.7 psi. Hydrogen, lactate and formate served as suitable electron donors for SRB metabolism. The use of a {sup 13}CO{sub 2} spiked gas source also produced carbonate minerals with ~53% of the carbon being derived from the gas phase. The sulfate reducing activity of the microbial community was limited, however, at 20 psi pCO{sub 2} and carbonate mineralization did not occur. Inhibition of bacterial metabolism may have resulted from the acidic conditions or CO{sub 2} toxicity. 4) Microbialite communities forming in the high turbidity and hypersaline water of Storrs’ Lake, San Salvador Island, The Bahamas, were investigated for their distribution, mineralogy and microbial diversity. Molecular analysis of the organic mats on the microbialites indicate only a trace amount of cyanobacteria, while anaerobic and photosynthetic non-sulfur bacteria of the phyla Chloroflexi and purple sulfur bacteria of class Gammaproteobacteria were abundant.

  5. Calibration of NMR well logs from carbonate reservoirs with laboratory NMR measurements and ?XRCT

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mason, Harris E.; Smith, Megan M.; Hao, Yue; Carroll, Susan A.

    2014-12-31

    The use of nuclear magnetic resonance (NMR) well log data has the potential to provide in-situ porosity, pore size distributions, and permeability of target carbonate CO? storage reservoirs. However, these methods which have been successfully applied to sandstones have yet to be completely validated for carbonate reservoirs. Here, we have taken an approach to validate NMR measurements of carbonate rock cores with independent measurements of permeability and pore surface area to volume (S/V) distributions using differential pressure measurements and micro X-ray computed tomography (?XRCT) imaging methods, respectively. We observe that using standard methods for determining permeability from NMR data incorrectlymore »predicts these values by orders of magnitude. However, we do observe promise that NMR measurements provide reasonable estimates of pore S/V distributions, and with further independent measurements of the carbonate rock properties that universally applicable relationships between NMR measured properties may be developed for in-situ well logging applications of carbonate reservoirs.« less

  6. SURFACE MORPHOLOGY OF CARBON FIBER POLYMER COMPOSITES AFTER LASER STRUCTURING

    SciTech Connect (OSTI)

    Sabau, Adrian S; Chen, Jian; Jones, Jonaaron F.; Alexandra, Hackett; Jellison Jr, Gerald Earle; Daniel, Claus; Warren, Charles David; Rehkopf, Jackie D.

    2015-01-01

    The increasing use of Carbon Fiber Polymer Composite (CFPC) as a lightweight material in automotive and aerospace industries requires the control of surface morphology. In this study, the composites surface was prepared by ablating the resin in the top fiber layer of the composite using an Nd:YAG laser. The CFPC specimens with T700S carbon fiber and Prepreg - T83 resin (epoxy) were supplied by Plasan Carbon Composites, Inc. as 4 ply thick, 0/90o plaques. The effect of laser fluence, scanning speed, and wavelength was investigated to remove resin without an excessive damage of the fibers. In addition, resin ablation due to the power variation created by a laser interference technique is presented. Optical property measurements, optical micrographs, 3D imaging, and high-resolution optical profiler images were used to study the effect of the laser processing on the surface morphology.

  7. Activated Carbon Injection

    ScienceCinema (OSTI)

    None

    2014-07-22

    History of the Clean Air Act and how the injection of carbon into a coal power plant's flu smoke can reduce the amount of mercury in the smoke.

  8. Activated Carbon Injection

    SciTech Connect (OSTI)

    2014-07-16

    History of the Clean Air Act and how the injection of carbon into a coal power plant's flu smoke can reduce the amount of mercury in the smoke.

  9. Thick Concrete Specimen Construction, Testing, and Preliminary Analysis

    SciTech Connect (OSTI)

    Clayton, Dwight A.; Hoegh, Kyle; Khazanovich, Lev

    2015-03-01

    The purpose of the U.S. Department of Energy Office of Nuclear Energy’s Light Water Reactor Sustainability (LWRS) Program is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the operating lifetimes of nuclear power plants (NPPs) beyond 60 years. Since many important safety structures in an NPP are constructed of concrete, inspection techniques must be developed and tested to evaluate the internal condition. In-service containment structures generally do not allow for the destructive measures necessary to validate the accuracy of these inspection techniques. This creates a need for comparative testing of the various nondestructive evaluation (NDE) measurement techniques on concrete specimens with known material properties, voids, internal microstructure flaws, and reinforcement locations. A preliminary report detailed some of the challenges associated with thick reinforced concrete sections and prioritized conceptual designs of specimens that could be fabricated to represent NPP concrete structures for using in NDE evaluation comparisons. This led to the construction of the concrete specimen presented in this report, which has sufficient reinforcement density and cross-sectional size to represent an NPP containment wall. Details on how a suitably thick concrete specimen was constructed are presented, including the construction materials, final nominal design schematic, as well as formwork and rigging required to safely meet the desired dimensions of the concrete structure. The report also details the type and methods of forming the concrete specimen as well as information on how the rebar and simulated defects were embedded. Details on how the resulting specimen was transported, safely anchored, and marked to allow access for systematic comparative NDE testing of defects in a representative NPP containment wall concrete specimen are also given. Data collection using the MIRA Ultrasonic NDE equipment and initial results are also presented along with a discussion of the preliminary findings. Comparative NDE of various defects in reinforced concrete specimens is a key component in identifying the most promising techniques and directing the research and development efforts needed to characterize concrete degradation in commercial NPPs. This requires access to the specimens for data collection using state-of-the-art technology. The construction of the specimen detailed in this report allows for an evaluation of how different NDE techniques may interact with the size and complexities of NPP concrete structures. These factors were taken into account when determining specimen size and features to ensure a realistic design. The lateral dimensions of the specimen were also chosen to mitigate unrealistic boundary effects that would not affect the results of field NPP concrete testing. Preliminary results show that, while the current methods are able to identify some of the deeper defects, improvements in data processing or hardware are necessary to be able to achieve the precision and reliability achieved in evaluating thinner and less heavily reinforced concrete structures.

  10. Thin-thick hydrogen target for nuclear physics

    SciTech Connect (OSTI)

    Gheller, J.-M.; Juster, F.-P.; Authelet, G. [CEA Saclay, Irfu/SACM, F-91191 Gif-Sur-Yvette cedex (France); Vinyar, I. [PELIN Limited Liability Company 27 A, Gzhatskaya Str, office 103 St. Petersbourg 195220 (Russian Federation); Relland, J. [CEA Saclay, Irfu/SIS, F-91191 Gif-Sur-Yvette cedex (France); Commeaux, C. [Institut de Physique Nucléaire, campus Universitaire-Bat 103, 91406 Orsay cedex (France)

    2014-01-29

    In spectroscopic studies of unstable nuclei, hydrogen targets are of key importance. The CHyMENE Project aims to provide to the nuclear physics community a thin and pure solid windowless hydrogen or deuterium target. CHyMENE project must respond to this request for the production of solid Hydrogen. The solid hydrogen target is produced in a continuous flow (1 cm/s) by an extrusion technique (developed with the PELIN laboratory) in a vacuum chamber. The shape of the target is determined by the design of the nozzle at the extrusion process. For the purpose, the choice is a rectangular shape with a width of 10 mm and a thickness in the range of 30-50 microns necessary for the physics objectives. The cryostat is equipped with a GM Cryocooler with sufficient power for the solidification of the hydrogen in the lower portion of the extruder. In the higher part of the cryostat, the hydrogen gas is first liquefied and partially solidified. It is then compressed at 100 bars in the cooled extruder before expulsion of the film through the nozzle at the center of the reaction vacuum chamber. After the previous step, the solid hydrogen ribbon falls by gravity into a dedicated chamber where it sublimes and the gas is pumped and evacuated in a exhaust line. This paper deals with the design of the cryostat with its equipment, with the sizing of the thermal bridge (Aluminum and copper), with the results regarding the contact resistance as well as with the vacuum computations of the reaction and recovery hydrogen gas chambers.

  11. Optimization of Nano-Carbon Materials for Hydrogen Sorption

    SciTech Connect (OSTI)

    Yakobson, Boris I [Rice University

    2013-08-02

    Research undertaken has added to the understanding of several critical areas, by providing both negative answers (and therefore eliminating expensive further studies of unfeasible paths) and positive feasible options for storage. Theoretical evaluation of the early hypothesis of storage on pure carbon single wall nanotubes (SWNT) has been scrutinized with the use of comprehensive computational methods (and experimental tests by the Center partners), and demonstrated that the fundamentally weak binding energy of hydrogen is not sufficiently enhanced by the SWNT curvature or even defects, which renders carbon nanotubes not practical media. More promising direction taken was towards 3-dimensional architectures of high porosity where concurrent attraction of H2 molecule to surrounding walls of nano-scale cavities can double or even triple the binding energy and therefore make hydrogen storage feasible even at ambient or somewhat lower temperatures. An efficient computational tool has been developed for the rapid capacity assessment combining (i) carbon-foam structure generation, (ii) accurate empirical force fields, with quantum corrections for the lightweight H2, and (iii) grand canonical Monte Carlo simulation. This made it possible to suggest optimal designs for carbon nanofoams, obtainable via welding techniques from SWNT or by growth on template-zeolites. As a precursor for 3D-foams, we have investigated experimentally the synthesis of VANTA (Vertically Aligned NanoTube Arrays). This can be used for producing nano-foams. On the other hand, fluorination of VANTA did not show promising increase of hydrogen sorption in several tests and may require further investigation and improvements. Another significant result of this project was in developing a fundamental understanding of the elements of hydrogen spillover mechanisms. The benefit of developed models is the ability to foresee possible directions for further improvement of the spillover mechanism.

  12. Carbon-Optimal and Carbon-Neutral Supply Chains

    E-Print Network [OSTI]

    Caro, F.; Corbett, C. J.; Tan, T.; Zuidwijk, R.

    2011-01-01

    Y. Li, M. Daskin. 2009. Carbon Footprint and the ManagementJ. van Houtum. 2011. E?ect of carbon emission regulations onStreamlined Enterprise Carbon Footprinting. Environmental

  13. An Overview of Geologic Carbon Sequestration Potential in California

    SciTech Connect (OSTI)

    Cameron Downey; John Clinkenbeard

    2005-10-01

    As part of the West Coast Regional Carbon Sequestration Partnership (WESTCARB), the California Geological Survey (CGS) conducted an assessment of geologic carbon sequestration potential in California. An inventory of sedimentary basins was screened for preliminary suitability for carbon sequestration. Criteria included porous and permeable strata, seals, and depth sufficient for critical state carbon dioxide (CO{sub 2}) injection. Of 104 basins inventoried, 27 met the criteria for further assessment. Petrophysical and fluid data from oil and gas reservoirs was used to characterize both saline aquifers and hydrocarbon reservoirs. Where available, well log or geophysical information was used to prepare basin-wide maps showing depth-to-basement and gross sand distribution. California's Cenozoic marine basins were determined to possess the most potential for geologic sequestration. These basins contain thick sedimentary sections, multiple saline aquifers and oil and gas reservoirs, widespread shale seals, and significant petrophysical data from oil and gas operations. Potential sequestration areas include the San Joaquin, Sacramento, Ventura, Los Angeles, and Eel River basins, followed by the smaller Salinas, La Honda, Cuyama, Livermore, Orinda, and Sonoma marine basins. California's terrestrial basins are generally too shallow for carbon sequestration. However, the Salton Trough and several smaller basins may offer opportunities for localized carbon sequestration.

  14. SU-E-T-319: The Effect of Slice Thickness On IMRT Planning

    SciTech Connect (OSTI)

    Srivastava, S; Das, I; Cheng, C

    2014-06-01

    Purpose: The accuracy of volume estimated of a treatment planning system is investigated in this study. In addition, the effect of slice thickness on IMRT planning is also studied. Methods: The accuracy in volume determination was investigated using a water phantom containing various objects with known volumes ranging from 1–100cm{sup 3}. The phantom was scanned with different slice thickness (1–10 mm). The CT data sets were sent to Eclipse TPS for contour delineation and volume calculation. The effect of slice thickness on IMRT planning was studied using a commercial phantom containing four different shaped objects. The phantom was scanned with different slice thickness (1–5 mm). IMRT plans were generated for the different CT datasets to calculate TCP, homogeneity (HI) and conformity indices (CI). Results: The variability of volumes with CT slice thickness was significant especially for small volume structures. The minimum and maximum error in the volume estimation is in the range of ?2.3% to 92%. On the other hand, with increasing slice thickness, the PTV mean dose and TCP values decreases. Maximum variation of ?5% was observed in mean dose and ?2% in TCP with slice thickness change from 1–5 mm. The relative decrease in target volume receiving 95% of prescribed dose is ?5% slice thickness change from 1–5 mm. HI increases up to 163% and CI decreases by 4% between 1–5 mm slice thickness change, producing highly inhomogeneous and least conformal plan. Conclusion: Accuracy of volume estimation is dependent on CT slice thickness and the contouring algorithm in a TPS. During TPS commissioning and for all clinical protocols, evaluation of volume should be included to provide the limit of accuracy in DVH calculation. A smaller slice thickness provides superior dosimetry with improved TCP values. Thus, the smallest possible slice thickness should be used for IMRT planning.

  15. Neutralizing Carbonic Acid in Deep Carbonate Strata below the North Atlantic

    SciTech Connect (OSTI)

    Klaus Lackner; Charles Harvey; Bruce Watson

    2008-01-14

    Carbon dioxide injection into deep sea sediments below 2700 m water depth and a few hundred meters to fifteen hundred meters deep in the sediment column may provide permanent geologic storage by gravitational trapping. At high pressures and low temperatures common in deep sea sediments a few hundred meters below sea floor, CO{sub 2} will be in its liquid phase and will be denser than the overlying pore fluid. The lower density of the pore fluid provides a cap to the denser CO{sub 2} and ensures gravitational trapping in the short term. The overall storage capacity for CO{sub 2} in such deep sea formations below the ocean floor is primarily determined by the permeability, and will vary with seafloor depth, geothermal gradient, porosity, and pore water salinity. Furthermore, the dissemination of the injected CO{sub 2} in the sediments and potential chemical reactions between CO{sub 2}, pore fluid and sediments will define its fate in the storage reservoir. The main objectives of our research was to evaluate the potential for sub-seabed CO{sub 2} storage in deep sea sediments using a range of approaches including experiments, permeability analysis, and modeling. Over the course of the three-year award, our results support an important role for sub-seabed storage in a diverse portfolio of carbons sequestration options. Our analysis has shown the feasibility of this type of storage, and also emphasizes that escape or leakage from such sites would be negligible. The most difficult challenge is to overcome the low permeability of typical deep-sea sediments, and a variety of approaches are suggested for future research.

  16. Thick-Target Neutron Yield from the 19F(alpha,n) Reaction

    E-Print Network [OSTI]

    E. B. Norman; T. E. Chupp; K. T. Lesko; G. L. Woodruff; P. J. Grant

    2015-01-10

    Thick-target neutron yields from the 19F(alpha,n) reaction are reported for E(alpha) = 3.5 - 10.0 MeV.

  17. Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor

    SciTech Connect (OSTI)

    Lin, Jerry

    2014-09-30

    This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 ?m to 1.5 mm, show CO2 permeance in the range of 0.5-5×10-7 mol·m-2·s-1·Pa-1 in 500-900oC and measured CO2/N2 selectivity of up to 3000. CO2 permeation mechanism and factors that affect CO2 permeation through the dual-phase membranes have been identified. A reliable CO2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO2 stream of >95% purity, with 90% CO2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a membrane tube of given dimensions that would treat coal syngas with targeted performance. The calculation results show that the dual-phase membrane reactor could improve IGCC process efficiency but the cost of the membrane reactor with membranes having current CO2 permeance is high. Further research should be directed towards improving the performance of the membranes and developing cost-effective, scalable methods for fabrication of dual-phase membranes and membrane reactors.

  18. A Monte Carlo study of reflection electron energy loss spectroscopy spectrum of a carbon contaminated surface

    SciTech Connect (OSTI)

    Da, B.; Li, Z. Y.; Chang, H. C.; Ding, Z. J.; Mao, S. F.

    2014-09-28

    It has been experimentally found that the carbon surface contamination influences strongly the spectrum signals in reflection electron energy loss spectroscopy (REELS) especially at low primary electron energy. However, there is still little theoretical work dealing with the carbon contamination effect in REELS. Such a work is required to predict REELS spectrum for layered structural sample, providing an understanding of the experimental phenomena observed. In this study, we present a numerical calculation result on the spatially varying differential inelastic mean free path for a sample made of a carbon contamination layer of varied thickness on a SrTiO{sub 3} substrate. A Monte Carlo simulation model for electron interaction with a layered structural sample is built by combining this inelastic scattering cross-section with the Mott's cross-section for electron elastic scattering. The simulation results have clearly shown that the contribution of the electron energy loss from carbon surface contamination increases with decreasing primary energy due to increased individual scattering processes along trajectory parts carbon contamination layer. Comparison of the simulated spectra for different thicknesses of the carbon contamination layer and for different primary electron energies with experimental spectra clearly identifies that the carbon contamination in the measured sample was in the form of discontinuous islands other than the uniform film.

  19. Transformation from hollow carbon octahedra to compressed octahedra and their use in lithium-ion batteries

    SciTech Connect (OSTI)

    Mei, Tao; Li, Na; Li, Qianwen; Xing, Zheng; Tang, Kaibin; Zhu, Yongchun [Hefei National Laboratory for Physical Science at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China)] [Hefei National Laboratory for Physical Science at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Qian, Yitai, E-mail: ytqian@ustc.edu.cn [Hefei National Laboratory for Physical Science at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China) [Hefei National Laboratory for Physical Science at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Shen, Xiaoyan [Jiangsu Highstar Battery Manufacturing CO., LTD (China)] [Jiangsu Highstar Battery Manufacturing CO., LTD (China)

    2012-06-15

    Graphical abstract: Schematic illustration of the transformation process from hollow carbon octahedra into deflated balloon-like compressed hollow carbon octahedra ?. Highlights: ? We demonstrate the in situ template synthesis of hollow carbon octahedra. ? The shell thickness of hollow carbon octahedra is only 2.5 nm. ? Morphology transformation could be realized by extending of reaction time. ? The hollow structures show reversible capacity as 353 mAh g{sup ?1} after 100 cycles. -- Abstract: Hollow carbon octahedra with an average size of 300 nm and a shell thickness of 2.5 nm were prepared by a reaction starting from ferrocene and Mg(CH{sub 3}COO){sub 2}·4H{sub 2}O at 700 °C for 10 h. They became compressed and turned into deflated balloon-like octahedra when the reaction time was increased to 16 h. It was proposed that the gas pressure generated during the reaction process induced the transformation from broken carbon hollow octahedra into deflated balloon-like compressed octahedra. X-ray powder diffraction and Raman spectroscopy indicate that the as-obtained carbon products possess a graphitic structure and high-resolution transmission electron microscopy images indicate that they have low crystallinity. Their application as an electrode shows reversible capacity of 353 mAh g{sup ?1} after 100 cycles in the charge/discharge experiments of secondary lithium ion batteries.

  20. Carbon Park Environmental Impact Assessment

    E-Print Network [OSTI]

    of offsetting the University's carbon footprint, promoting biodiversity and establishing easily maintained Carbon Park Environmental Impact Assessment A B.E.S.T. Project By, Adam Bond 2011 #12; Bishop's University Carbon Park

  1. First Proof of Ferromagnetic Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proof of Ferromagnetic Carbon First Proof of Ferromagnetic Carbon Print Wednesday, 25 July 2007 00:00 Although it has long been suspected that carbon belongs on the short list of...

  2. Carbon Dioxide & Global Warming

    E-Print Network [OSTI]

    Miami, University of

    Carbon Dioxide & Global Warming University of MiaMi rosenstiel sChool of Marine anD atMospheriC s , organic carbon, and other chemicals that contribute to global warming in a variety of studies. DownCienCe 4600 rickenbacker Causeway Miami, florida 33149 http://www.rsmas.miami.edu the Chemistry of Global

  3. Lead carbonate scintillator materials

    DOE Patents [OSTI]

    Derenzo, Stephen E. (Pinole, CA); Moses, William W. (Berkeley, CA)

    1991-01-01

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses.

  4. Fly ash carbon passivation

    DOE Patents [OSTI]

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  5. ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    2010-12-15

    10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  6. ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  7. CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA

    E-Print Network [OSTI]

    GEOLOGIC CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA: REPORT TO THE LEGISLATURE Regional Carbon Sequestration Partnership (WESTCARB) studies that we used, including Cameron Downey

  8. Porosity and biocompatibility study of ceramic implants based on ZrO{sub 2} and Al{sub 2}O{sub 3}

    SciTech Connect (OSTI)

    Litvinova, Larisa E-mail: vshupletsova@mail.ru Shupletsova, Valeria E-mail: vshupletsova@mail.ru Leitsin, Vladimir E-mail: vshupletsova@mail.ru; Vasyliev, Roman E-mail: zoubov77@yahoo.com; Zubov, Dmitry E-mail: zoubov77@yahoo.com; Buyakov, Ales E-mail: kulkov@ms.tsc.ru; Kulkov, Sergey E-mail: kulkov@ms.tsc.ru

    2014-11-14

    The work studies ZrO{sub 2}(Me{sub x}O{sub y})-based porous ceramics produced from the powders consisting of hollow spherical particles. It was shown that the structure is represented by a cellular framework with bimodal porosity consisting of sphere-like large pores and pores that were not filled with the powder particles during the compaction. For such ceramics, the increase of pore volume is accompanied by the increased strain in an elastic area. It was also shown that the porous ZrO{sub 2} ceramics had no acute or chronic cytotoxicity. At the same time, ceramics possess the following osteoconductive properties: adhesion support, spreading, proliferation and osteogenic differentiation of MSCs.

  9. Radiation and porosity effects on the magnetohydrodynamic flow near a vertical plate that applies shear stress to the fluid with mass diffusion

    SciTech Connect (OSTI)

    Khan, Arshad; Khan, Ilyas; Shafie, Sharidan [Faculty of Science, Universiti Teknologi Malaysia (Malaysia)

    2014-06-19

    This article studies the radiation and porosity effects on the unsteady magnetohydrodynamic free convection flow of an incompressible viscous fluid past an infinite vertical plate that applies a shear stress f(t) to the fluid. Conjugate phenomenon of heat and mass transfer is considered. General solutions of the dimensionless governing equations along with imposed initial and boundary conditions are determined using Laplace transform technique. The solution of velocity is presented as a sum of mechanical and non mechanical parts. These solutions satisfy all imposed initial and boundary conditions and reduce to some known solutions from the literature as special cases. The results for embedded parameters are shown graphically. Numerical results for skin friction, Nusselt number and Sherwood number are computed and presented in tabular forms.

  10. PANGEA n 41/42 COMMUNICATIONS Juin / Dcembre 2004 Abdelouahed Ben Mlih et al.

    E-Print Network [OSTI]

    Boyer, Edmond

    by an im- portant carbonate diagenesis. This carbonate epigenesis has strongly reduced the porosity. Facies

  11. Polyimide-Based Processes for the Fabrication of Thick Electroplated Microstructures

    E-Print Network [OSTI]

    Polyimide-Based Processes for the Fabrication of Thick Electroplated Microstructures Mark G. Allen of polyimide as an electroplating mold for thick electroplated microstructures is discussed. Polyimide of the polyimide material can be performed in a conventional manner, and since the polyimide when cured

  12. DC WRRC Report No. 178 AN EXPERIMENTAL STUDY OF THE OPTIMAL THICKNESS OF A SAND

    E-Print Network [OSTI]

    District of Columbia, University of the

    FILTER WATER QUALITY STRUCTURE July 1994 D.C. Water Resources Research Center University of the District OF THE OPTIMAL THICKNESS OF A SAND LAYER IN A SAND FILTER WATER QUALITY STRUCTURE Submitted by: Farshad Amini THICKNESS OF A SAND LAYER IN A SAND FILTER WATER QUALITY STRUCTURE July 1994 D.C. Water Resources Research

  13. 2009 ASME WIND ENERGY SYMPOSIUM Static and Fatigue Testing of Thick Adhesive Joints for

    E-Print Network [OSTI]

    1 2009 ASME WIND ENERGY SYMPOSIUM Static and Fatigue Testing of Thick Adhesive Joints for Wind as wind blade size has increased. Typical blade joints use paste adhesives several millimeters thick aircraft, which are also of relevance to wind blades in many instances. The strengths of lap-shear and many

  14. Parabolic equation solution of seismo-acoustics problems involving variations in bathymetry and sediment thickness

    E-Print Network [OSTI]

    and sediment thickness Jon M. Collisa and William L. Siegmann Rensselaer Polytechnic Institute110 8th Street within elastic sediment layers. When these methods are implemented together, the parabolic equation method can be applied to problems involving variations in bathymetry and the thickness of sediment layers

  15. Evaluation of Arctic sea ice thickness simulated by Arctic Ocean Model Intercomparison Project models

    E-Print Network [OSTI]

    Zhang, Jinlun

    Evaluation of Arctic sea ice thickness simulated by Arctic Ocean Model Intercomparison Project March 2012. [1] Six Arctic Ocean Model Intercomparison Project model simulations are compared and Assimilation System models. Citation: Johnson, M., et al. (2012), Evaluation of Arctic sea ice thickness

  16. Finite Ground Coplanar Lines on CMOS Grade Silicon with a Thick Embedded Silicon Oxide Layer Using

    E-Print Network [OSTI]

    Tentzeris, Manos

    Finite Ground Coplanar Lines on CMOS Grade Silicon with a Thick Embedded Silicon Oxide Layer Using grade silicon wafer (poxide layer have been developed using on a CMOS grade silicon substrate ( ~ 4 . 0 1Cl-cm) with an embedded thick silicon oxide layer using

  17. PROCESS ANALYSIS AND SYNTHESIS OF LASER FORMING OF VARYING THICKNESS PLATE

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    of LF varying thickness plate are conducted in this paper. In this paper, the bending mechanism. An analytical model was proposed to predict the bending deformation. A strategy of LF process synthesis-aging the in-plane strain and bending strain. A thickness-dependent da- tabase is established to determine

  18. An Affordable Approach for Robust Design of Thick Laminated Composite Structure

    E-Print Network [OSTI]

    Chen, Wei

    An Affordable Approach for Robust Design of Thick Laminated Composite Structure Wei Chen* Assistant, composite structure design, hip implant #12;3 1. Introduction With a thick laminated composite structure design freedom and the heterogeneous anisotropic nature of structures, composite structures are much more

  19. A modular process for integrating thick polysilicon MEMS devices with sub-micron CMOS

    E-Print Network [OSTI]

    Afshari, Ehsan

    A modular process for integrating thick polysilicon MEMS devices with sub-micron CMOS John-1774 ABSTRACT A new MEMS process module, called Mod MEMS, has been developed to monolithically integrate thick (5-10um), multilayer polysilicon MEMS structures with sub-micron CMOS. This process is particularly

  20. Coating of a stainless steel tube-wall catalytic reactor with thermally treated polysiloxane thick films

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Coating of a stainless steel tube-wall catalytic reactor with thermally treated polysiloxane thick stainless steel by plasma assisted chemical vapour deposition process. Thicknesses up to 10µm were developed barrier. Key-words: PACVD, TDMS, stainless steel, surface passivity. 1. Introduction The use of tube

  1. Density dependence of the symmetry energy from neutron skin thickness in finite nuclei

    SciTech Connect (OSTI)

    Vinas, X.; Centelles, M.; Roca-Maza, X.; Warda, M.

    2012-10-20

    The density dependence of the symmetry energy, characterized by the parameter L, is studied using information provided by the neutron skin thickness in finite nuclei. An estimate of L is obtained from experimental data of antiprotonic atoms. We also discuss the ability of parity violating electron scatering to obtain information about the neutron skin thickness in {sup 208}Pb.

  2. Trading Water for Carbon with Biological Carbon Sequestration

    E-Print Network [OSTI]

    Jackson, Robert B.

    Trading Water for Carbon with Biological Carbon Sequestration Robert B. Jackson,1 * Esteban G. Farley,1 David C. le Maitre,5 Bruce A. McCarl,6 Brian C. Murray7 Carbon sequestration strategies plantations feature prominently among tools for carbon sequestration (1­8). Plantations typi- cally combine

  3. Wettability and Oil Recovery by Imbibition and Viscous Displacement from Fractured and Heterogeneous Carbonates

    SciTech Connect (OSTI)

    Norman R. Morrow; Jill Buckley

    2006-04-01

    About one-half of U.S. oil reserves are held in carbonate formations. The remaining oil in carbonate reservoirs is regarded as the major domestic target for improved oil recovery. Carbonate reservoirs are often fractured and have great complexity even at the core scale. Formation evaluation and prediction is often subject to great uncertainty. This study addresses quantification of crude oil/brine/rock interactions and the impact of reservoir heterogeneity on oil recovery by spontaneous imbibition and viscous displacement from pore to field scale. Wettability-alteration characteristics of crude oils were measured at calcite and dolomite surfaces and related to the properties of the crude oils through asphaltene content, acid and base numbers, and refractive index. Oil recovery was investigated for a selection of limestones and dolomites that cover over three orders of magnitude in permeability and a factor of four variation in porosity. Wettability control was achieved by adsorption from crude oils obtained from producing carbonate reservoirs. The induced wettability states were compared with those measured for reservoir cores. The prepared cores were used to investigate oil recovery by spontaneous imbibition and viscous displacement. The results of imbibition tests were used in wettability characterization and to develop mass transfer functions for application in reservoir simulation of fractured carbonates. Studies of viscous displacement in carbonates focused on the unexpected but repeatedly observed sensitivity of oil recovery to injection rate. The main variables were pore structure, mobility ratio, and wettability. The potential for improved oil recovery from rate-sensitive carbonate reservoirs by increased injection pressure, increased injectivity, decreased well spacing or reduction of interfacial tension was evaluated.

  4. IMPACCT: Carbon Capture Technology

    SciTech Connect (OSTI)

    2012-01-01

    IMPACCT Project: IMPACCT’s 15 projects seek to develop technologies for existing coal-fired power plants that will lower the cost of carbon capture. Short for “Innovative Materials and Processes for Advanced Carbon Capture Technologies,” the IMPACCT Project is geared toward minimizing the cost of removing carbon dioxide (CO2) from coal-fired power plant exhaust by developing materials and processes that have never before been considered for this application. Retrofitting coal-fired power plants to capture the CO2 they produce would enable greenhouse gas reductions without forcing these plants to close, shifting away from the inexpensive and abundant U.S. coal supply.

  5. Improving carbon fixation pathways

    SciTech Connect (OSTI)

    Ducat, DC; Silver, PA

    2012-08-01

    A recent resurgence in basic and applied research on photosynthesis has been driven in part by recognition that fulfilling future food and energy requirements will necessitate improvements in crop carbon-fixation efficiencies. Photosynthesis in traditional terrestrial crops is being reexamined in light of molecular strategies employed by photosynthetic microbes to enhance the activity of the Calvin cycle. Synthetic biology is well-situated to provide original approaches for compartmentalizing and enhancing photosynthetic reactions in a species independent manner. Furthermore, the elucidation of alternative carbon-fixation routes distinct from the Calvin cycle raises possibilities that novel pathways and organisms can be utilized to fix atmospheric carbon dioxide into useful materials.

  6. An analysis of the pull strength behaviors of fine-pitch, flip chip solder interconnections using a Au-Pt-Pd thick film conductor on Low-Temperature, Co-fired Ceramic (LTCC) substrates.

    SciTech Connect (OSTI)

    Uribe, Fernando R.; Kilgo, Alice C.; Grazier, John Mark; Vianco, Paul Thomas; Zender, Gary L.; Hlava, Paul Frank; Rejent, Jerome Andrew

    2008-09-01

    The assembly of the BDYE detector requires the attachment of sixteen silicon (Si) processor dice (eight on the top side; eight on the bottom side) onto a low-temperature, co-fired ceramic (LTCC) substrate using 63Sn-37Pb (wt.%, Sn-Pb) in a double-reflow soldering process (nitrogen). There are 132 solder joints per die. The bond pads were gold-platinum-palladium (71Au-26Pt-3Pd, wt.%) thick film layers fired onto the LTCC in a post-process sequence. The pull strength and failure modes provided the quality metrics for the Sn-Pb solder joints. Pull strengths were measured in both the as-fabricated condition and after exposure to thermal cycling (-55/125 C; 15 min hold times; 20 cycles). Extremely low pull strengths--referred to as the low pull strength phenomenon--were observed intermittently throughout the product build, resulting in added program costs, schedule delays, and a long-term reliability concern for the detector. There was no statistically significant correlation between the low pull strength phenomenon and (1) the LTCC 'sub-floor' lot; (2) grit blasting the LTCC surfaces prior to the post-process steps; (3) the post-process parameters; (4) the conductor pad height (thickness); (5) the dice soldering assembly sequence; or (5) the dice pull test sequence. Formation of an intermetallic compound (IMC)/LTCC interface caused by thick film consumption during either the soldering process or by solid-state IMC formation was not directly responsible for the low-strength phenomenon. Metallographic cross sections of solder joints from dice that exhibited the low pull strength behavior, revealed the presence of a reaction layer resulting from an interaction between Sn from the molten Sn-Pb and the glassy phase at the TKN/LTCC interface. The thick film porosity did not contribute, explicitly, to the occurrence of reaction layer. Rather, the process of printing the very thin conductor pads was too sensitive to minor thixotropic changes to ink, which resulted in inconsistent proportions of metal and glassy phase particles present during the subsequent firing process. The consequences were subtle, intermittent changes to the thick film microstructure that gave rise to the reaction layer and, thus, the low pull strength phenomenon. A mitigation strategy would be the use of physical vapor deposition (PVD) techniques to create thin film bond pads; this is multi-chip module, deposited (MCM-D) technology.

  7. Research Report Forests and carbon

    E-Print Network [OSTI]

    , baseline, carbon, climate change mitigation, forestry, quality assurance, sequestration. FCRP013/FCResearch Report Forests and carbon: a review of additionality #12;#12;Forests and carbon: a review. ISBN 978-0-85538-816-4 Valatin, G. (2011). Forests and carbon: a review of additionality. Forestry

  8. Biosensors Based on Carbon Nanotubes

    SciTech Connect (OSTI)

    Lin, Yuehe; Yantasee, Wassana; Lu, Fang; Wang, Joseph; Musameh, Mustafa; Tu, Yi; Ren, Zhifeng

    2009-03-24

    This chapter summarizes the recent development of carbon nanotube based electrochemical biosensors work at PNNL.

  9. Biosensors Based on Carbon Nanotubes

    SciTech Connect (OSTI)

    Lin, Yuehe; Yantasee, Wassana; Lu, Fang; Wang, Joseph; Musameh, Mustafa; Tu, Yi; Ren, Zhifeng; J. A. Schwarz, C. Contescu, K. Putyera

    2004-04-01

    This invited review article summarizes recent work on biosensor development based on carbon nanotubes

  10. Method for synthesizing carbon nanotubes

    DOE Patents [OSTI]

    Fan, Hongyou

    2012-09-04

    A method for preparing a precursor solution for synthesis of carbon nanomaterials, where a polar solvent is added to at least one block copolymer and at least one carbohydrate compound, and the precursor solution is processed using a self-assembly process and subsequent heating to form nanoporous carbon films, porous carbon nanotubes, and porous carbon nanoparticles.

  11. ATK - Supersonic Carbon Capture

    ScienceCinema (OSTI)

    Castrogiovanni, Anthony (ACEnT Laboratories, President and CEO); Calayag, Bon (ATK, Program Manager)

    2014-04-11

    ATK and ACEnt Laboratories, with the help of ARPA-E funding, have taken an aerospace problem, supersonic condensation, and turned it into a viable clean energy solution for carbon capture.

  12. ATK - Supersonic Carbon Capture

    SciTech Connect (OSTI)

    Castrogiovanni, Anthony; Calayag, Bon

    2014-03-05

    ATK and ACEnt Laboratories, with the help of ARPA-E funding, have taken an aerospace problem, supersonic condensation, and turned it into a viable clean energy solution for carbon capture.

  13. CARBON DIOXIDE EMISSION REDUCTION

    E-Print Network [OSTI]

    Delaware, University of

    ........................................................................................ 21 2.3.5 Pulp and paper industry Technologies and Measures in Pulp and Paper IndustryCARBON DIOXIDE EMISSION REDUCTION TECHNOLOGIES AND MEASURES IN US INDUSTRIAL SECTOR FINAL REPORT

  14. Regional Carbon Sequestration Partnerships

    Broader source: Energy.gov [DOE]

    DOE has created a network of seven Regional Carbon Sequestration Partnerships (RCSPs) to help develop the technology, infrastructure, and regulations to implement large-scale CO2 storage (also...

  15. Low Carbon Fuel Standards

    E-Print Network [OSTI]

    Sperling, Dan; Yeh, Sonia

    2009-01-01

    S O N I A YE H Low Carbon Fuel Standards The most direct andalternative transportation fuels is to spur innovation withstandard for upstream fuel producers. hen it comes to energy

  16. Black Carbon’s Properties and Role in the Environment: A Comprehensive Review

    E-Print Network [OSTI]

    Shrestha, Gyami

    2010-01-01

    black carbon and carbon dioxide emissions. Energ. Policyreduces predicted carbon dioxide emissions estimation by upincrease rates of carbon dioxide emissions [135,136]. Due to

  17. Black Carbon’s Properties and Role in the Environment: A Comprehensive Review

    E-Print Network [OSTI]

    Shrestha, Gyami

    2010-01-01

    Keywords: soil carbon sequestration; carbon budget;of an energy efficient carbon sequestration mechanism, asin the later section on carbon sequestration. In atmospheric

  18. Effective Permeability Change in Wellbore Cement with Carbon Dioxide Reaction

    SciTech Connect (OSTI)

    Um, Wooyong; Jung, Hun Bok; Martin, Paul F.; McGrail, B. Peter

    2011-11-01

    Portland cement, a common sealing material for wellbores for geological carbon sequestration was reacted with CO{sub 2} in supercritical, gaseous, and aqueous phases at various pressure and temperature conditions to simulate cement-CO{sub 2} reaction along the wellbore from carbon injection depth to the near-surface. Hydrated Portland cement columns (14 mm diameter x 90 mm length; water-to-cement ratio = 0.33) including additives such as steel coupons and Wallula basalt fragments were reacted with CO{sub 2} in the wet supercritical (the top half) and dissolved (the bottom half) phases under carbon sequestration condition with high pressure (10 MPa) and temperature (50 C) for 5 months, while small-sized hydrated Portland cement columns (7 mm diameter x 20 mm length; water-to-cement ratio = 0.38) were reacted with CO{sub 2} in dissolved phase at high pressure (10 MPa) and temperature (50 C) for 1 month or with wet CO{sub 2} in gaseous phase at low pressure (0.2 MPa) and temperature (20 C) for 3 months. XMT images reveal that the cement reacted with CO{sub 2} saturated groundwater had degradation depth of {approx}1 mm for 1 month and {approx}3.5 mm for 5 month, whereas the degradation was minor with cement exposure to supercritical CO{sub 2}. SEM-EDS analysis showed that the carbonated cement was comprised of three distinct zones; the innermost less degraded zone with Ca atom % > C atom %, the inner degraded zone with Ca atom % {approx} C atom % due to precipitation of calcite, the outer degraded zone with C atom % > Ca atom % due to dissolution of calcite and C-S-H, as well as adsorption of carbon to cement matrix. The outer degraded zone of carbonated cement was porous and fractured because of dissolution-dominated reaction by carbonic acid exposure, which resulted in the increase in BJH pore volume and BET surface area. In contrast, cement-wet CO{sub 2}(g) reaction at low P (0.2 MPa)-T (20 C) conditions for 1 to 3 months was dominated by precipitation of micron-sized calcite on the outside surface of cement, which resulted in the decrease in BJH pore volume and BET surface area. Cement carbonation and pore structure change are significantly dependent on pressure and temperature conditions as well as the phase of CO{sub 2}, which controls the balance between precipitation and dissolution in cement matrix. Geochemical modeling result suggests that ratio of solid (cement)-to-solution (carbonated water) has a significant effect on cement carbonation, thus the cement-CO{sub 2} reaction experiment needs to be conducted under realistic conditions representing the in-situ wellbore environment of carbon sequestration field site. Total porosity and air permeability for a duplicate cement column with water-to-cement ratio of 0.38 measured after oven-drying by Core Laboratories using Boyle's Law technique and steady-state method were 31% and 0.576 mD. A novel method to measure the effective liquid permeability of a cement column using X-ray micro-tomography images after injection of pressurized KI (potassium iodide) is under development by PNNL. Preliminary results indicate the permeability of a cement column with water-to-cement ratio of 0.38 is 4-8 mD. PNNL will apply the method to understand the effective permeability change of Portland cement by CO{sub 2}(g) reaction under a variety of pressure and temperature conditions to develop a more reliable well-bore leakage risk model.

  19. Supercritical carbon dioxide behavior in porous silica aerogel

    SciTech Connect (OSTI)

    Ciccariello, Salvino [Universita di Padova; Melnichenko, Yuri B [ORNL; He, Lilin [ORNL

    2011-01-01

    Analysis of the tails of the small-angle neutron scattering (SANS) intensities relevant to samples formed by porous silica and carbon dioxide at pressures ranging from 0 to 20 MPa and at temperatures of 308 and 353 K confirms that the CO2 fluid must be treated as a two-phase system. The first of these phases is formed by the fluid closer to the silica wall than a suitable distance [delta] and the second by the fluid external to this shell. The sample scattering-length densities and shell thicknesses are determined by the Porod invariants and the oscillations observed in the Porod plots of the SANS intensities. The resulting matter densities of the shell regions (thickness 15-35 {angstrom}) are approximately equal, while those of the outer regions increase with pressure and become equal to the bulk CO2 at the higher pressures only in the low-temperature case.

  20. Carbon dioxide removal process

    DOE Patents [OSTI]

    Baker, Richard W.; Da Costa, Andre R.; Lokhandwala, Kaaeid A.

    2003-11-18

    A process and apparatus for separating carbon dioxide from gas, especially natural gas, that also contains C.sub.3+ hydrocarbons. The invention uses two or three membrane separation steps, optionally in conjunction with cooling/condensation under pressure, to yield a lighter, sweeter product natural gas stream, and/or a carbon dioxide stream of reinjection quality and/or a natural gas liquids (NGL) stream.

  1. Lead carbonate scintillator materials

    DOE Patents [OSTI]

    Derenzo, S.E.; Moses, W.W.

    1991-05-14

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses. 3 figures.

  2. Numerical modeling of carbon dioxide sequestration on the rate of pressure solution creep in limestone: Preliminary results

    E-Print Network [OSTI]

    Renard, Francois; Hellmann, Roland; Collombet, Marielle; Guen, Yvi Le

    2008-01-01

    When carbon dioxide (CO2) is injected into an aquifer or a depleted geological reservoir, its dissolution into solution results in acidification of the pore waters. As a consequence, the pore waters become more reactive, which leads to enhanced dissolution-precipitation processes and a modification of the mechanical and hydrological properties of the rock. This effect is especially important for limestones given that the solubility and reactivity of carbonates is strongly dependent on pH and the partial pressure of CO2. The main mechanism that couples dissolution, precipitation and rock matrix deformation is commonly referred to as intergranular pressure solution creep (IPS) or pervasive pressure solution creep (PSC). This process involves dissolution at intergranular grain contacts subject to elevated stress, diffusion of dissolved material in an intergranular fluid, and precipitation in pore spaces subject to lower stress. This leads to an overall and pervasive reduction in porosity due to both grain indent...

  3. In situ measurement of low-Z material coating thickness on high Z substrate for tokamaks

    SciTech Connect (OSTI)

    Mueller, D. Roquemore, A. L.; Jaworski, M.; Skinner, C. H.; Miller, J.; Creely, A.; Raman, P.; Ruzic, D.

    2014-11-15

    Rutherford backscattering of energetic particles can be used to determine the thickness of a coating of a low-Z material over a heavier substrate. Simulations indicate that 5 MeV alpha particles from an {sup 241}Am source can be used to measure the thickness of a Li coating on Mo tiles between 0.5 and 15??m thick. Using a 0.1?mCi source, a thickness measurement can be accomplished in 2 h of counting. This technique could be used to measure any thin, low-Z material coating (up to 1?mg/cm{sup 2} thick) on a high-Z substrate, such as Be on W, B on Mo, or Li on Mo. By inserting a source and detector on a moveable probe, this technique could be used to provide an in situ measurement of the thickness of Li coating on NSTX-U Mo tiles. A test stand with an alpha source and an annular solid-state detector was used to investigate the measurable range of low-Z material thicknesses on Mo tiles.

  4. Determining the covering factor of Compton-thick active galactic nuclei with NuSTAR

    E-Print Network [OSTI]

    Brightman, M; Stern, D; Arevalo, P; Ballantyne, D R; Bauer, F E; Boggs, S E; Craig, W W; Christensen, F E; Comastri, A; Fuerst, F; Gandhi, P; Hailey, C J; Harrison, F A; Hickox, R C; Koss, M; LaMassa, S; Puccetti, S; Rivers, E; Vasudevan, R; Walton, D J; Zhang, W W

    2015-01-01

    The covering factor of Compton-thick obscuring material associated with the torus in active galactic nuclei (AGN) is at present best understood through the fraction of sources exhibiting Compton-thick absorption along the line of sight ($N_{H}>1.5\\times10^{24}$ cm$^{-2}$) in the X-ray band, which reveals the average covering factor. Determining this Compton-thick fraction is difficult however, due to the extreme obscuration. With its spectral coverage at hard X-rays ($>$10 keV), NuSTAR is sensitive to the AGN covering factor since Compton scattering of X-rays off optically thick material dominates at these energies. We present a spectral analysis of 10 AGN observed with NuSTAR where the obscuring medium is optically thick to Compton scattering, so called Compton-thick (CT) AGN. We use the torus models of Brightman & Nandra which predict the X-ray spectrum from reprocessing in a torus and include the torus opening angle as a free parameter and aim to determine the covering factor of the Compton-thick gas i...

  5. Experiments and modeling of variably permeable carbonate reservoir samples in contact with CO?-acidified brines

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smith, Megan M.; Hao, Yue; Mason, Harris E.; Carroll, Susan A.

    2014-12-31

    Reactive experiments were performed to expose sample cores from the Arbuckle carbonate reservoir to CO?-acidified brine under reservoir temperature and pressure conditions. The samples consisted of dolomite with varying quantities of calcite and silica/chert. The timescales of monitored pressure decline across each sample in response to CO? exposure, as well as the amount of and nature of dissolution features, varied widely among these three experiments. For all samples cores, the experimentally measured initial permeability was at least one order of magnitude or more lower than the values estimated from downhole methods. Nondestructive X-ray computed tomography (XRCT) imaging revealed dissolution featuresmore »including “wormholes,” removal of fracture-filling crystals, and widening of pre-existing pore spaces. In the injection zone sample, multiple fractures may have contributed to the high initial permeability of this core and restricted the distribution of CO?-induced mineral dissolution. In contrast, the pre-existing porosity of the baffle zone sample was much lower and less connected, leading to a lower initial permeability and contributing to the development of a single dissolution channel. While calcite may make up only a small percentage of the overall sample composition, its location and the effects of its dissolution have an outsized effect on permeability responses to CO? exposure. The XRCT data presented here are informative for building the model domain for numerical simulations of these experiments but require calibration by higher resolution means to confidently evaluate different porosity-permeability relationships.« less

  6. Mechanistical studies on the formation and destruction of carbon monoxide (CO), carbon dioxide (CO2), and carbon trioxide (CO3)

    E-Print Network [OSTI]

    Kaiser, Ralf I.

    Mechanistical studies on the formation and destruction of carbon monoxide (CO), carbon dioxide (CO2 monoxide (CO), carbon dioxide (CO2), and molecular oxygen (O2) with varying carbon-to-oxygen ratios from 1 and destruction pathways of carbon monoxide (CO), carbon dioxide (CO2), and carbon trioxide (CO3

  7. PULSED EDDY CURRENT THICKNESS MEASUREMENT OF SELECTIVE PHASE CORROSION ON NICKEL ALUMINUM BRONZE VALVES

    SciTech Connect (OSTI)

    Krause, T. W.; Harlley, D.; Babbar, V. K.; Wannamaker, K. [Department of Physics, Royal Military College of Canada, Kingston, ON, K7K 7B4 (Canada)

    2010-02-22

    Nickel Aluminum Bronze (NAB) is a material with marine environment applications that under certain conditions can undergo selective phase corrosion (SPC). SPC involves the removal of minority elements while leaving behind a copper matrix. Pulsed eddy current (PEC) was evaluated for determination of SPC thickness on a NAB valve section with access from the surface corroded side. A primarily linear response of PEC amplitude, up to the maximum available SPC thickness of 4 mm was observed. The combination of reduced conductivity and permeability in the SPC phase relative to the base NAB was used to explain the observed sensitivity of PEC to SPC thickness variations.

  8. ORIGIN OF CHEMICAL AND DYNAMICAL PROPERTIES OF THE GALACTIC THICK DISK

    SciTech Connect (OSTI)

    Bekki, Kenji [ICRAR, M468, University of Western Australia, Crawley, Western Australia, 6009 (Australia); Tsujimoto, Takuji [National Astronomical Observatory, Mitaka-shi, Tokyo 181-8588 (Japan)

    2011-09-01

    We adopt a scenario in which the Galactic thick disk was formed by minor merging between the first generation of the Galactic thin disk (FGTD) and a dwarf galaxy about {approx}9 Gyr ago and thereby investigate chemical and dynamical properties of the Galactic thick disk. In this scenario, the dynamical properties of the thick disk have long been influenced both by the mass growth of the second generation of the Galactic thin disk (i.e., the present thin disk) and by its non-axisymmetric structures. On the other hand, the early star formation history and chemical evolution of the thin disk was influenced by the remaining gas of the thick disk. Based on N-body simulations and chemical evolution models, we investigate the radial metallicity gradient, structural and kinematical properties, and detailed chemical abundance patterns of the thick disk. Our numerical simulations show that the ancient minor merger event can significantly flatten the original radial metallicity gradient of the FGTD, in particular, in the outer part, and also can be responsible for migration of inner metal-rich stars into the outer part (R > 10 kpc). The simulations show that the central region of the thick disk can develop a bar due to dynamical effects of a separate bar in the thin disk. Whether or not rotational velocities (V{sub {phi}}) can correlate with metallicities ([Fe/H]) for the simulated thick disks depends on the initial metallicity gradients of the FGTDs. The simulated orbital eccentricity distributions in the thick disk for models with higher mass ratios ({approx}0.2) and lower orbital eccentricities ({approx}0.5) of minor mergers are in good agreement with the corresponding observations. The simulated V{sub {phi}}-|z| relation of the thick disk in models with low orbital inclination angles of mergers are also in good agreement with the latest observational results. The vertical metallicity gradient of the simulated thick disk is rather flat or very weakly negative in the solar neighborhood. Our Galactic chemical evolution models show that if we choose two distinctive timescales for star formation in the thin and thick disks, then the models can explain both the observed metallicity distribution functions and correlations between [Mg/Fe] and [Fe/H] for the two disks in a self-consistent manner. We discuss how the early star formation history and chemical evolution of the Galactic thin disk can be influenced by the pre-existing thick disk.

  9. Measurement of carbon capture efficiency and stored carbon leakage

    SciTech Connect (OSTI)

    Keeling, Ralph F.; Dubey, Manvendra K.

    2013-01-29

    Data representative of a measured carbon dioxide (CO.sub.2) concentration and of a measured oxygen (O.sub.2) concentration at a measurement location can be used to determine whether the measured carbon dioxide concentration at the measurement location is elevated relative to a baseline carbon dioxide concentration due to escape of carbon dioxide from a source associated with a carbon capture and storage process. Optionally, the data can be used to quantify a carbon dioxide concentration increase at the first location that is attributable to escape of carbon dioxide from the source and to calculate a rate of escape of carbon dioxide from the source by executing a model of gas-phase transport using at least the first carbon dioxide concentration increase. Related systems, methods, and articles of manufacture are also described.

  10. 444 IEEE SENSORS JOURNAL, VOL. 13, NO. 2, FEBRUARY 2013 Flexible Sputter-Deposited Carbon Strain Sensor

    E-Print Network [OSTI]

    Chiao, Jung-Chih

    on a flexible polyimide substrate. Amorphous carbon was sputter-deposited onto a 125-µm-thick polyimide film, polyimide and strain sensor. I. INTRODUCTION RECENTLY there has been an increasing tendency of developing of the ceramic material, it suffers from cracks and cannot withstand high strains. Polyimide as a substrate

  11. Chemically modified carbonic anhydrases useful in carbon capture systems

    DOE Patents [OSTI]

    Novick, Scott J; Alvizo, Oscar

    2013-10-29

    The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

  12. Chemically modified carbonic anhydrases useful in carbon capture systems

    DOE Patents [OSTI]

    Novick, Scott; Alvizo, Oscar

    2013-01-15

    The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

  13. Carbon fuel particles used in direct carbon conversion fuel cells

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA); Cherepy, Nerine (Oakland, CA)

    2011-08-16

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  14. Carbon fuel particles used in direct carbon conversion fuel cells

    DOE Patents [OSTI]

    Cooper, John F.; Cherepy, Nerine

    2012-10-09

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  15. Carbon fuel particles used in direct carbon conversion fuel cells

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA); Cherepy, Nerine (Oakland, CA)

    2012-01-24

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  16. Carbon Fuel Particles Used in Direct Carbon Conversion Fuel Cells

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA); Cherepy, Nerine (Oakland, CA)

    2008-10-21

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  17. Effective zero-thickness model for a conductive membrane driven by an electric field

    E-Print Network [OSTI]

    Bazant, Martin Z.

    The behavior of a conductive membrane in a static (dc) electric field is investigated theoretically. An effective zero-thickness model is constructed based on a Robin-type boundary condition for the electric potential at ...

  18. On-Line Measurement of Lubricant Film Thickness Using Ultrasonic Reflection Coefficients

    SciTech Connect (OSTI)

    Drinkwater, B.W.; Dwyer-Joyce, R.S.; Harper, P.

    2004-02-26

    The ultrasonic reflectivity of a lubricant layer between two solid bodies depends on the ultrasonic frequency, the acoustic properties of the liquid and solid, and the layer thickness. In this paper, ultrasonic reflectivity measurements are used as a method for determining the thickness of lubricating films in bearing systems. An ultrasonic transducer is positioned on the outside of a bearing shell such that the wave is focused on the lubricant film layer. For a particular lubricant film the reflected pulse is processed to give a reflection coefficient spectrum. The lubricant film thickness is then obtained from either the layer stiffness or the resonant frequency. The method has been validated using static fluid wedges and the elastohydrodynamic film formed between a ball sliding on a flat. Film thickness values in the range 50-500 nm were recorded which agreed well with theoretical film formation predictions.

  19. The effect of lubrication film thickness on thermoelastic instability under fluid lubricating condition

    E-Print Network [OSTI]

    Yi, Yun-Bo

    The effect of lubrication film thickness on thermoelastic instability under fluid lubricating online 14 March 2013 Keywords: Thermoelastic instability Wet clutches Fluid lubrication Critical speed by a thin layer of lubricating fluid is developed to investigate thermoelastic instability with fluid

  20. Thickness of the crust of Mercury from geoid-to-topography ratios

    E-Print Network [OSTI]

    Padovan, S; Wieczorek, MA; Margot, JL; Tosi, N; Solomon, SC

    2015-01-01

    the support of planetary topography, J. Geophys. Res. , 86,thickness and support of topography on Venus, J. Geophys.expansion for the topography of Mercury, GTMES_120V02_SHA,

  1. Oxide thickness measurement technique for duplex-layer Zircaloy-4 cladding

    SciTech Connect (OSTI)

    McClelland, R.G.; O'Leary, P.M. (Siemens Nuclear Power Corp., Richland, WA (United States))

    1992-01-01

    Siemens Nuclear Power Corporation (SNP) is investigating the use of duplex-layer Zircaloy-4 tubing to improve the waterside corrosion resistance of cladding for high-burnup pressurized water reactor (PWR) fuel designs. Standard SNP PWR cladding is typically 0.762-mm (0.030-in.)-thick Zircaloy-4. The SNP duplex cladding is nominally 0.660-mm (0.026-in.)-thick Zircalloy-4 with an [approximately]0.102-mm (0.004-in.) outer layer of another, more corrosion-resistant, zirconium-based alloy. It is common industry practice to monitor the in-reactor corrosion behavior of Zircaloy cladding by using an eddy-current lift-off' technique to measure the oxide thickness on the outer surface of the fuel cladding. The test program evaluated three different cladding samples, all with the same outer diameter and wall thickness: Zircaloy-4 and duplex clad types D2 and D4.

  2. A determination of the effective thickness of a liquid deuterium target for a quasielastic scattering experiment

    E-Print Network [OSTI]

    Turkewitz, Jared Ripley

    2010-01-01

    The effective thickness of a liquid deuterium target was determined by measuring the yield of the neutron-deuteron elastic scattering cross section. The flux of incident neutrons was determined by a fission ionization ...

  3. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica

    E-Print Network [OSTI]

    Fretwell, P.; Pritchard, H. D.; Vaughan, D. G.; Bamber, J. L.; Barrand, N. E.; Bell, R.; Bianchi, C.; Bingham, R. G.; Blankenship, D. D.; Casassa, G.; Catania, G.; Callens, D.; Conway, H.; Cook, A. J.; Corr, H. F. J.; Damaske, D.; Damm, V.; Ferraccioli, F.; Forsberg, R.; Fujita, S.; Gim, Y.; Gogineni, Sivaprasad; Griggs, J. A.; Hindmarsh, R.; Holmlund, P.; Holt, J. W.; Jacobel, R. W.; Jenkins, A.; Jokat, W.; Jordan, T.; King, E. C.; Kohler, J.; Krabill, W.; Riger-Kusk, M.; Langley, K. A.; Leitchenkov, G.; Leuschen, Carl; Lyendyk, B. P.; Matsuoka, K.; Mouginot, J.; Nitsche, F. O.; Nogi, Y.; Nost, O. A.; Popov, S. V.; Rignot, E.; Rippin, D. M.; Rivera, A.; Roberts, J.; Roberts, J.; Ross, N.; Siegert, M. J.; Smith, A. M.; Steinhage, D.; Studinger, M.; Sun, B.; Tinto, B. K.; Welch, B. C.; Wilson, D.; Young, D. A.; Xiangbin, C.; Zirizzotti, A.

    2013-02-28

    We present Bedmap2, a new suite of gridded products describing surface elevation, ice-thickness and the seafloor and subglacial bed elevation of the Antarctic south of 60° S. We derived these products using data from a ...

  4. Analysis of Antarctic Sea Ice Thickness: A Newly Created Database for 2000-2009 

    E-Print Network [OSTI]

    Morgan, Benjamin Patrick

    2012-10-19

    Observations of Antarctic sea ice thickness are sporadic in space and time, hindering knowledge of its variability. A proxy based on stage of development data from the National Ice Center (NIC) weekly operational charts is used to create a high...

  5. Thickness Measurement of Fracture Fluid Gel Filter Cake after Static Build Up and Shear Erosion 

    E-Print Network [OSTI]

    Xu, Ben

    2011-08-08

    . Despite proven economic benefit, the hydraulic fracture fluid damages the producing formation and the propped fracture. To analyze the gel damage effect quantitatively, the filter cake thickness is used as a parameter that has not been measured before...

  6. In-situ Measurement of Low-Z Material Coating Thickness on High...

    Office of Scientific and Technical Information (OSTI)

    Conference: In-situ Measurement of Low-Z Material Coating Thickness on High Z Substrate for Tokamaks Citation Details In-Document Search Title: In-situ Measurement of Low-Z...

  7. In situ measurement of low-Z material coating thickness on high...

    Office of Scientific and Technical Information (OSTI)

    In situ measurement of low-Z material coating thickness on high Z substrate for tokamaks Citation Details In-Document Search Title: In situ measurement of low-Z material coating...

  8. Electrodeposition of Pd Nanowires and Nanorods on Carbon Nanoparticles

    SciTech Connect (OSTI)

    Bliznakov, S.; Vukmirovic, M.; Sutter, E.; Adzic, R.

    2011-06-01

    We report on the method for synthesizing palladium nanowires and nanorods involving the electrodeposition on oxidized amorphous carbon nanoparticles from chloride containing solutions. The effect of the deposition overpotential and the concentration of palladium ions on the morphology of the Pd electrodeposits have been established. Palladium grows predominately in the shape of nanowires if electrodeposited at potentials in the H underpotential deposition potential (UPD) range, where chloride ions are adsorbed only at the edges of nucleated monolayer-thick clusters on the carbon surface. The effect of the concentration of palladium ions on deposits morphology is also discussed. The mechanism of electrodeposition of Pd nanowires and nanorods in the H UPD potential range has been proposed.

  9. Vitreous carbon mask substrate for X-ray lithography

    DOE Patents [OSTI]

    Aigeldinger, Georg (Livermore, CA); Skala, Dawn M. (Fremont, CA); Griffiths, Stewart K. (Livermore, CA); Talin, Albert Alec (Livermore, CA); Losey, Matthew W. (Livermore, CA); Yang, Chu-Yeu Peter (Dublin, CA)

    2009-10-27

    The present invention is directed to the use of vitreous carbon as a substrate material for providing masks for X-ray lithography. The new substrate also enables a small thickness of the mask absorber used to pattern the resist, and this enables improved mask accuracy. An alternative embodiment comprised the use of vitreous carbon as a LIGA substrate wherein the VC wafer blank is etched in a reactive ion plasma after which an X-ray resist is bonded. This surface treatment provides a surface enabling good adhesion of the X-ray photoresist and subsequent nucleation and adhesion of the electrodeposited metal for LIGA mold-making while the VC substrate practically eliminates secondary radiation effects that lead to delamination of the X-ray resist form the substrate, the loss of isolated resist features, and the formation of a resist layer adjacent to the substrate that is insoluble in the developer.

  10. On carbon footprints and growing energy use

    E-Print Network [OSTI]

    Oldenburg, C.M.

    2012-01-01

    On carbon footprints and growing energy use Curtis M.reductions in the carbon footprint of a growing organizationhis own organization's carbon footprint and answers this

  11. ASSESSMENT OF HOUSEHOLD CARBON FOOTPRINT REDUCTION POTENTIALS

    E-Print Network [OSTI]

    Masanet, Eric

    2010-01-01

    of  American household carbon footprint. ” Ecological and  limitations) of carbon footprint estimates toward of the art in carbon footprint analyses for California, 

  12. Carbon contamination topography analysis of EUV masks

    E-Print Network [OSTI]

    Fan, Y.-J.

    2010-01-01

    induced carbon contamination of extreme ultraviolet optics,"and A. Izumi. "Carbon contamination of EL'V mask: filmEffect of Carbon Contamination on the Printing Performance

  13. Conductive Carbon Coatings for Electrode Materials

    E-Print Network [OSTI]

    Doeff, Marca M.; Kostecki, Robert; Wilcox, James; Lau, Grace

    2007-01-01

    Raman spectrum of the carbon coating. Deconvoluted peaksConductive Carbon Coatings for Electrode Materials Marca M.for optimizing the carbon coatings on non-conductive battery

  14. Participatory Carbon Monitoring: Operational Guidance for National...

    Open Energy Info (EERE)

    Participatory Carbon Monitoring: Operational Guidance for National REDD+ Carbon Accounting Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Participatory Carbon...

  15. Carbon nanotubes : synthesis, characterization, and applications

    E-Print Network [OSTI]

    Deck, Christian Peter

    2009-01-01

    around Surface-Attached Carbon Nanotubes. Ind. Eng. Chem.the flexural rigidity of carbon nanotube ensembles. AppliedNanotechnology in Carbon Materials. Acta Metallurgica, 1997.

  16. A simple and clean source of low-energy atomic carbon

    SciTech Connect (OSTI)

    Krasnokutski, S. A.; Huisken, F.

    2014-09-15

    A carbon source emitting low-energy carbon atoms from a thin-walled, sealed tantalum tube via thermal evaporation has been constructed. The tube is made from a 0.05?mm thick tantalum foil and filled with {sup 12}C or {sup 13}C carbon powder. After being sealed, it is heated by direct electric current. The solvated carbon atoms diffuse to the outer surface of the tube and, when the temperature rises over 2200?K, the evaporation of atomic carbon from the surface of the tantalum tube is observed. As the evaporated species have low energy they are well-suited for the incorporation into liquid helium droplets by the pick-up technique. Mass analysis of the incorporated species reveals the dominant presence of atomic carbon and very low abundances of C{sub 2} and C{sub 3} molecules (<1%). This is in striking contrast to the thermal evaporation of pure carbon, where C{sub 3} molecules are found to be the dominant species in the gas phase. Due to the thermal evaporation and the absence of high-energy application required for the dissociation of C{sub 2} and C{sub 3} molecules, the present source provides carbon atoms with rather low energy.

  17. Searching for the metal-weak thick disc in the solar neighbourhood

    E-Print Network [OSTI]

    Bacham E. Reddy; David L. Lambert

    2008-09-05

    An abundance analysis is presented of 60 metal-poor stars drawn from catalogues of nearby stars provided by Ariyanto et al. (2005) and Schuster et al. (2006). In an attempt to isolate a sample of metal-weak thick disc stars, we applied the kinematic criteria $V_{\\rm rot} \\geq 100$ km s$^{-1}$, $|U_{LSR}| \\leq 140$ km s$^{-1}$, and $|W_{LSR}| \\leq 100$ km s$^{-1}$. Fourteen stars satisfying these criteria and having [Fe/H] $\\leq -1.0$ are included in the sample of 60 stars. Eight of the 14 have [Fe/H] $\\geq -1.3$ and may be simply thick disc stars of slightly lower than average [Fe/H]. The other six have [Fe/H] from -1.3 to -2.3 and are either metal-weak thick disc stars or halo stars with kinematics mimicking those of the thick disc. The sample of 60 stars is completed by eight thick disc stars, 20 stars of a hybrid nature (halo or thick disc stars), and 18 stars with kinematics distinctive of the halo.

  18. LOW ALLOY STEELS FOR THICK WALL PRESSURE VESSELS Yearly Report for Period Oct. 1, 1976 to Sept. 30, 1977.

    E-Print Network [OSTI]

    Horn, R.M.

    2011-01-01

    FOR THICK WALL PRESSURE VESSELS R. M, Horn, E. R. Parker,FOR THICK WALL PRESSURE VESSELS Yearly Report f o r PeriodManufacture Pressure Vessel Fabrication Under ASME Code

  19. Invertebrate muscles: Thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle

    E-Print Network [OSTI]

    Hooper, Scott

    Invertebrate muscles: Thin and thick filament structure; molecular basis of contraction and its . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 2.1. Vertebrate thin and thick filament structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 2.2. Cross-bridge driven filament sliding underlies force production

  20. Measurement of porosity in a composite high explosive as a function of pressing conditions by ultra-small-angle neutron scattering with contrast variation

    SciTech Connect (OSTI)

    Mang, Joseph Thomas; Hjelm, Rex P; Francois, Elizabeth G

    2009-01-01

    We have used ultra-small-angle neutron scattering (USANS) with contrast variation to measure the porosity (voids and binder-filled regions) in a composite high explosive, PBX 9501, formulated with a deuterated binder. Little is known about the microstructure of pressed PBX 9501 parts and thus how it is affected by processing. Here, we explore the effect of varying the pressing intensity on the PBX 9501 microstructure. Disk-shaped samples of PBX 9501 were die-pressed with applied pressures ranging between 10,000 and 29,000 psi at 90 C. Five samples were prepared at each pressure that differed in the fraction of deuterated binder, facilitating variation of the neutron scattering length density contrast ({Delta}{rho}) and thus, the resolution of microstructural details. The sample composition was determined by calculation of the Porod Invariant as a function of {Delta}{rho} and compared with compositional estimates obtained from the bulk sample density. Structural modeling of the USANS data, at different levels of contrast, assuming both spherical and cylindrical morphologies, allowed the mean size and size distribution of voids and binder-filled regions to be determined. A decrease in the mean diameter of binder-filled regions was found with increasing pressing intensity, while the mean void diameter showed no significant change.

  1. Carbon-particle generator

    DOE Patents [OSTI]

    Hunt, A.J.

    1982-09-29

    A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

  2. What is carbon monoxide? Carbon monoxide (CO) is a poisonous,

    E-Print Network [OSTI]

    Johnson, Eric E.

    other material containing carbon such as gasoline, kerosene, oil, propane, coal, or wood. Forges, blast is the internal combustion engine. How does CO harm you? Carbon monoxide is harmful when breathed because

  3. On the Emissivity of Silver Coated Panels, Effect of Long Term Stability and Effect of Coating Thickness

    E-Print Network [OSTI]

    On the Emissivity of Silver Coated Panels, Effect of Long Term Stability and Effect of Coating Thickness

  4. Carbon Capture and Storage

    SciTech Connect (OSTI)

    Friedmann, S

    2007-10-03

    Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climate Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide has been separated from large point sources for nearly 100 years, and has been injected underground for over 30 years (below). (3) Testing of GCS at intermediate scale is feasible. In the US, Canada, and many industrial countries, large CO{sub 2} sources like power plants and refineries lie near prospective storage sites. These plants could be retrofit today and injection begun (while bearing in mind scientific uncertainties and unknowns). Indeed, some have, and three projects described here provide a great deal of information on the operational needs and field implementation of CCS. Part of this interest comes from several key documents written in the last three years that provide information on the status, economics, technology, and impact of CCS. These are cited throughout this text and identified as key references at the end of this manuscript. When coupled with improvements in energy efficiency, renewable energy supplies, and nuclear power, CCS help dramatically reduce current and future emissions (US CCTP 2005, MIT 2007). If CCS is not available as a carbon management option, it will be much more difficult and much more expensive to stabilize atmospheric CO{sub 2} emissions. Recent estimates put the cost of carbon abatement without CCS to be 30-80% higher that if CCS were to be available (Edmonds et al. 2004).

  5. Carbon | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd Jump to: navigation, search Name: Carbon Trade LtdCarbon Jump

  6. ISSUES IN EVALUATING CARBON SEQUESTRATION AND ATTRIBUTING CARBON CREDITS TO GRASSLAND RESTORATION EFFORTS

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    ISSUES IN EVALUATING CARBON SEQUESTRATION AND ATTRIBUTING CARBON CREDITS TO GRASSLAND RESTORATION examines biological carbon sequestration using a grassland restoration as a model system. Chapter 1 for biological carbon sequestration. In this analysis, we found that significantly greater soil carbon

  7. Cumulative Carbon and Just Allocation of the Global Carbon Commons

    E-Print Network [OSTI]

    goal for a theory of justice: first to reduce the growth rate of global carbon dioxide emissions such activitiespersist.In thispaper the conceptis usedto addressthe question offair allocation of carbon emissions nations could continue emissions for much longer before exhausting theirfair share of the Carbon Commons

  8. Sensor applications of carbon nanotubes

    E-Print Network [OSTI]

    Rushfeldt, Scott I

    2005-01-01

    A search of published research on sensing mechanisms of carbon nanotubes was performed to identify applications in which carbon nanotubes might improve on current sensor technologies, in either offering improved performance, ...

  9. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure...

  10. Carbon nanotubes: synthesis and functionalization 

    E-Print Network [OSTI]

    Andrews, Robert

    2007-01-01

    conditions were then used as the basis of several comparative CVD experiments showing that the quality of nanotubes and the yield of carbon depended on the availability of carbon to react. The availability could be controlled by the varying concentration...

  11. Relationship between textural properties, fly ash carbons, and Hg capture in fly ashes derived from the combustion of anthracitic pulverized feed blends

    SciTech Connect (OSTI)

    Isabel Surez-Ruiz; Jose B. Parra

    2007-08-15

    In this work, the textural properties of a series of whole anthracitic-derived fly ashes sampled in eight hoppers from the electrostatic precipitators and their sized fractions (from {gt}150 to {lt}25 {mu}m) are investigated. Data from N{sub 2} adsorption isotherms at 77 K, helium density, and mercury porosimetry have contributed to establish a relationship between the Brunauer-Emmett-Teller (BET) surface areas, VTOT, porosity, carbon content (the type of fly ash carbons), and Hg retention in these fly ashes. The unburned carbons in these ashes are macroporous materials, and they are different from the carbons in fly ashes from classes C and F (the latter derived from the combustion of bituminous coals) and show different textural properties. These ashes represent the end member of the fly ash classes C and F with respect to certain textural properties. Although the BET surface area and VTOT values for the studied samples are the lowest reported, they increase with the increase in carbon content, anisotropic carbon content, and particle size of the ashes. Thus, a positive relationship between all these parameters and Hg capture by the coarser ash fractions was found. The finest fraction of carbons ({lt}25 {mu}m) represented an exception. Although it makes a significant contribution to the total carbon of the whole fly ashes and shows relatively higher surface areas and VTOT values, its Hg concentration was found to be the lowest. This suggests that the type of unburned carbons in the finest fraction and/or other adsorption mechanisms may play a role in Hg concentration. Because the textural properties of anisotropic carbons depend on their subtype and on their origin, the need for its differentiation has been evidenced. 54 refs., 8 figs., 3 tabs.

  12. The Australian terrestrial carbon budget

    E-Print Network [OSTI]

    2013-01-01

    the Australian National Green- house Gas Inventory (DCCEE,fuel emissions Carbon and green house gas (GHG) accounts are

  13. Probabilistic evaluation of shallow groundwater resources at a hypothetical carbon sequestration site

    SciTech Connect (OSTI)

    Dai, Zhenxue; Keating, Elizabeth; Bacon, Diana H.; Viswanathan, Hari; Stauffer, Philip; Jordan, Amy B.; Pawar, Rajesh

    2014-03-07

    Carbon sequestration in geologic reservoirs is an important approach for mitigating greenhouse gases emissions to the atmosphere. This study first develops an integrated Monte Carlo method for simulating CO2 and brine leakage from carbon sequestration and subsequent geochemical interactions in shallow aquifers. Then, we estimate probability distributions of five risk proxies related to the likelihood and volume of changes in pH, total dissolved solids, and trace concentrations of lead, arsenic, and cadmium for two possible consequence thresholds. The results indicate that shallow groundwater resources may degrade locally around leakage points by reduced pH and increased total dissolved solids (TDS). The volumes of pH and TDS plumes are most sensitive to aquifer porosity, permeability, and CO2 and brine leakage rates. The estimated plume size of pH change is the largest, while that of cadmium is the smallest among the risk proxies. Plume volume distributions of arsenic and lead are similar to those of TDS. The scientific results from this study provide substantial insight for understanding risks of deep fluids leaking into shallow aquifers, determining the area of review, and designing monitoring networks at carbon sequestration sites.

  14. Carbon Footprint Calculator

    Broader source: Energy.gov [DOE]

    This calculator estimates the amount of carbon emissions you and members of your household are responsible for. It does not include emissions associated with your work or getting to work if you commute by public transportation. It was developed by IEEE Spectrum magazine.

  15. CARBON -14 PHYSICAL DATA

    E-Print Network [OSTI]

    Vallino, Joseph J.

    CARBON - 14 [14C] PHYSICAL DATA · Beta Energy: 156 keV (maximum) 49 keV (average) (100% abundance on wipes. #12;RADIATION MONITORING DOSIMETERS · Not needed (beta energy too low). · 14C Beta Dose Rate: 6) · Effective Half-Life: 40 days (unbound) · Specific Activity: 4460 mCi/gram · Maximum Beta Range in Air: 24

  16. Carbon smackdown: wind warriors

    ScienceCinema (OSTI)

    Glen Dahlbacka of the Accelerator & Fusion Research Division and Ryan Wiser of the Environmental Energy Technologies Division are the speakers.

    2010-09-01

    July 16. 2010 carbon smackdown summer lecture: learn how Berkeley Lab scientists are developing wind turbines to be used in an urban setting, as well as analyzing what it will take to increase the adoption of wind energy in the U.S.

  17. Carbon-Fuelled Future

    SciTech Connect (OSTI)

    Appel, Aaron M.

    2014-09-12

    Whether due to changes in policy or consumption of available fossil fuels, alternative sources of energy will be required, especially given the rising global energy demand. However, one of the main factors limiting the widespread utilization of renewable energy, such as wind, solar, wave or geothermal, is our ability to store energy. Storage of energy from carbon-neutral sources, such as electricity from solar or wind, can be accomplished through many routes. One approach is to store energy in the form of chemical bonds, as fuels. The conversion of low-energy compounds, such as water and carbon dioxide, to higher energy molecules, such as hydrogen or carbon-based fuels, enables the storage of carbon-neutral energy on a very large scale. The authorąs work in this area is supported by the US Department of Energy Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  18. OF CARBON FIBERS TURBINE BLADE

    E-Print Network [OSTI]

    THE USE IN WIND DESIGN: OF CARBON FIBERS TURBINE BLADE A SERI-8BLADE EXAMPLE Cheng Printed March 2000 The Use of Carbon Fibers in Wind Turbine Blade Design: a SERI-8 Blade Example Cheng represent different volumes of carbon fibers in the blade, were also studied for two design options

  19. 4, 21112145, 2007 Enhanced carbon

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    are generally low in productivity and carbon (C) storage. We report, however, large increases in C sequestration . Carbon sequestration following afforestation was associated with increased N use efficiency as reflected of terrestrial ecosystems that leads to increased carbon (C) sequestration. One of those means is afforestation

  20. 4, 99123, 2007 Amazon carbon

    E-Print Network [OSTI]

    Boyer, Edmond

    , suggested much larger estimates for tropical forest carbon sequestration in the Ama- zon BasinBGD 4, 99­123, 2007 Amazon carbon balanc J. Lloyd et al. Title Page Abstract Introduction Discussions is the access reviewed discussion forum of Biogeosciences An airborne regional carbon balance

  1. 3, 409447, 2006 Modeling carbon

    E-Print Network [OSTI]

    Boyer, Edmond

    not only impaired the soil fertility but also increased the amount of carbon dioxide (CO2) emitted fromBGD 3, 409­447, 2006 Modeling carbon dynamics in farmland of China F. Zhang et al. Title Page impacts of management alternatives on soil carbon storage of farmland in Northwest China F. Zhang1,3 , C

  2. Carbon Nanomaterials: The Ideal Interconnect

    E-Print Network [OSTI]

    Carbon Nanomaterials: The Ideal Interconnect Technology for Next- Generation ICs Hong Li, Chuan Xu-generation ICs. In this research, carbon nanomaterials, with their many attractive properties, are emerging-a`-vis optical and RF interconnects, and we illustrate why carbon nanomaterials constitute the ideal intercon

  3. Dispersion toughened silicon carbon ceramics

    DOE Patents [OSTI]

    Wei, G.C.

    1984-01-01

    Fracture resistant silicon carbide ceramics are provided by incorporating therein a particulate dispersoid selected from the group consisting of (a) a mixture of boron, carbon and tungsten, (b) a mixture of boron, carbon and molybdenum, (c) a mixture of boron, carbon and titanium carbide, (d) a mixture of aluminum oxide and zirconium oxide, and (e) boron nitride. 4 figures.

  4. Apparatus for producing carbon-coated nanoparticles and carbon nanospheres

    DOE Patents [OSTI]

    Perry, W. Lee; Weigle, John C.; Phillips, Jonathan

    2015-10-20

    An apparatus for producing carbon-coated nano- or micron-scale particles comprising a container for entraining particles in an aerosol gas, providing an inlet for carbon-containing gas, providing an inlet for plasma gas, a proximate torch for mixing the aerosol gas, the carbon-containing gas, and the plasma gas, bombarding the mixed gases with microwaves, and providing a collection device for gathering the resulting carbon-coated nano- or micron-scale particles. Also disclosed is a method and apparatus for making hollow carbon nano- or micro-scale spheres.

  5. Distributed Energy Resources for Carbon Emissions Mitigation

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2008-01-01

    Distributed Energy Resource Technology Characterizations. ”ABORATORY Distributed Energy Resources for Carbon Emissions5128 Distributed Energy Resources for Carbon Emissions

  6. Electrobiocommodities from Carbon Dioxide: Enhancing Microbial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrobiocommodities from Carbon Dioxide: Enhancing Microbial Electrosynthesis with Synthetic Electromicrobiology and System Design Electrobiocommodities from Carbon Dioxide:...

  7. Establishing MICHCARB, a geological carbon sequestration research...

    Office of Scientific and Technical Information (OSTI)

    Western Michigan University 58 GEOSCIENCES Geological carbon sequestration Enhanced oil recovery Characterization of oil, gas and saline reservoirs Geological carbon...

  8. Development and Commercialization of Alternative Carbon Fiber...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Carbon Fiber Precursors and Conversion Technologies - Advanced Conversion Development and Commercialization of Alternative Carbon Fiber Precursors and Conversion...

  9. Manufacturing Energy and Carbon Footprint References | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    References Manufacturing Energy and Carbon Footprint References footprintreferences.pdf More Documents & Publications 2010 Manufacturing Energy and Carbon Footprints: References...

  10. CVD Growth of Carbon Nanostructures from Zirconia: Mechanisms and a Method for Enhancing Yield

    E-Print Network [OSTI]

    Kudo, Akira; Steiner, Stephen A., III; Bayer, Bernhard C.; Kidambi, Piran R.; Hofmann, Stephan; Strano, Michael S.; Wardle, Brian L.

    2014-12-09

    , provided the author and source are cited. etc.). Despite attempts to improve yield via parametric optimization of process conditions,18 a reliable process for reproducible growth of CNTs and CNFs that yields comparable areal density and nanostructure... the zirconia nanoparticle surface, as shown in Step 1 of Figure 8. The ethylene molecules may develop thin carbon layers not as thick as seen with Type M growth or may desorb before decomposition (e.g., hydro- genation). A certain amount of the adsorbed...

  11. Optical spectroscopy of sputtered nanometer-thick yttrium iron garnet films

    SciTech Connect (OSTI)

    Jakubisova-Liskova, Eva Visnovsky, Stefan; Chang, Houchen; Wu, Mingzhong

    2015-05-07

    Nanometer (nm)-thick yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12}, YIG) films present interest for spintronics. This work employs spectral ellipsometry and magneto-optic Kerr effect (MOKE) spectra to characterize nm-thick YIG films grown on single-crystal Gd{sub 3}Ga{sub 5}O{sub 12} substrates by magnetron sputtering. The thickness (t) of the films ranges between 10?nm and 40?nm. Independent on t, the polar MOKE hysteresis loops saturate in the field of about 1.8 kOe, consistent with the saturation magnetization in bulk YIG (4?M{sub s}???1.75?kG). The MOKE spectrum measured at photon energies between 1.3?eV and 4.5?eV on the 38-nm-thick film agrees with that measured on single-crystal YIG bulk materials. The MOKE spectrum of the 12-nm-thick film still preserves the structure of the bulk YIG but its amplitude at lower photon energies is modified due to the fact that the radiation penetration depth exceeds 20?nm. The t dependence of the MOKE amplitude is consistent with MOKE calculations. The results indicate that the films are stoichiometric, strain free, without Fe{sup 2+}, and preserve bulk YIG properties down to t ? 10?nm.

  12. Uniqueness of RS2 type thick branes supported by a scalar field

    E-Print Network [OSTI]

    S. T. Abdyrakhmanov; K. A. Bronnikov; B. E. Meierovich

    2005-03-13

    We study thick brane world models as Z_2-symmetric domain walls supported by a scalar field with an arbitrary potential V(\\phi) in 5D general relativity. Under the global regularity requirement, such configurations (i) have always an AdS asymptotic far from the brane, (ii) are only possible if V(\\phi) has an alternating sign and (iii) V(\\phi) should satisfy a certain fine-tuning type equality. Thus a thick brane with any admissible V(\\phi) is a regularized version of the RS2 brane immersed in the AdS_5 bulk. The thin brane limit is realized in a universal manner by including an arbitrary thick brane model in a one-parameter family, where the parameter "a" is associated with brane thickness; the asymptotic value of V(\\phi) (related to \\Lambda_5, the effective cosmological constant) remains a-independent. The problem of ordinary matter confinement on the brane is discussed for a test scalar field. Its stress-energy tensor is found to diverge at the AdS horizon for both thin and thick branes, making a serious problem for this class of brane world models.

  13. Thick adherent dielectric films on plastic substrates and method for depositing same

    DOE Patents [OSTI]

    Wickboldt, Paul (Walnut Creek, CA); Ellingboe, Albert R. (Fremont, CA); Theiss, Steven D. (Woodbury, MN); Smith, Patrick M. (San Ramon, CA)

    2002-01-01

    Thick adherent dielectric films deposited on plastic substrates for use as a thermal barrier layer to protect the plastic substrates from high temperatures which, for example, occur during laser annealing of layers subsequently deposited on the dielectric films. It is desirable that the barrier layer has properties including: a thickness of 1 .mu.m or greater, adheres to a plastic substrate, does not lift-off when cycled in temperature, has few or no cracks and does not crack when subjected to bending, resistant to lift-off when submersed in fluids, electrically insulating and preferably transparent. The thick barrier layer may be composed, for example, of a variety of dielectrics and certain metal oxides, and may be deposited on a variety of plastic substrates by various known deposition techniques. The key to the method of forming the thick barrier layer on the plastic substrate is maintaining the substrate cool during deposition of the barrier layer. Cooling of the substrate maybe accomplished by the use of a cooling chuck on which the plastic substrate is positioned, and by directing cooling gas, such as He, Ar and N.sub.2, between the plastic substrate and the cooling chucks. Thick adherent dielectric films up to about 5 .mu.m have been deposited on plastic substrates which include the above-referenced properties, and which enable the plastic substrates to withstand laser processing temperatures applied to materials deposited on the dielectric films.

  14. Method and apparatus for ultrasonic characterization through the thickness direction of a moving web

    DOE Patents [OSTI]

    Jackson, Theodore (Atlanta, GA); Hall, Maclin S. (Marietta, GA)

    2001-01-01

    A method and apparatus for determining the caliper and/or the ultrasonic transit time through the thickness direction of a moving web of material using ultrasonic pulses generated by a rotatable wheel ultrasound apparatus. The apparatus includes a first liquid-filled tire and either a second liquid-filled tire forming a nip or a rotatable cylinder that supports a thin moving web of material such as a moving web of paper and forms a nip with the first liquid-filled tire. The components of ultrasonic transit time through the tires and fluid held within the tires may be resolved and separately employed to determine the separate contributions of the two tire thicknesses and the two fluid paths to the total path length that lies between two ultrasonic transducer surfaces contained within the tires in support of caliper measurements. The present invention provides the benefit of obtaining a transit time and caliper measurement at any point in time as a specimen passes through the nip of rotating tires and eliminates inaccuracies arising from nonuniform tire circumferential thickness by accurately retaining point-to-point specimen transit time and caliper variation information, rather than an average obtained through one or more tire rotations. Morever, ultrasonic transit time through the thickness direction of a moving web may be determined independent of small variations in the wheel axle spacing, tire thickness, and liquid and tire temperatures.

  15. Origin of chemical and dynamical properties of the Galactic thick disk

    E-Print Network [OSTI]

    Bekki, Kenji

    2011-01-01

    We adopt a scenario in which the Galactic thick disk was formed by minor merging between the first generation of the Galactic thin disk (FGTD) and a dwarf galaxy about 9 Gyr ago and thereby investigate chemical and dynamical properties of the Galactic thick disk. In this scenario, the dynamical properties of the thick disk have long been influenced both by the mass growth of the second generation of the Galactic thin disk (i.e., the present thin disk) and by its non-axisymmetric structures. On the other hand, the early star formation history and chemical evolution of the thin disk was influenced by the remaining gas of the thick disk. Based on N-body simulations and chemical evolution models, we investigate the radial metallicity gradient, structural and kinematical properties, and detailed chemical abundance patterns of the thick disk. Our numerical simulations show that the ancient minor merger event can significantly flatten the original radial metallicity gradient of the FGTD, in particular, in the outer ...

  16. Jeans analysis of the Galactic thick disk and the local dark matter density

    E-Print Network [OSTI]

    Sanchez-Salcedo, F J; de Diego, J A

    2015-01-01

    Dynamical estimates of the mass surface density at the solar radius can be made up to a height of 4 kpc using thick disk stars as tracers of the potential. We investigate why different Jeans estimators of the local surface density lead to puzzling and conflicting results. Using the Jeans equations, we compute the vertical (F_z) and radial (F_R) components of the gravitational force, as well as Gamma(z), defined as the radial derivative of V_c^2, with V_c^{2}= -RF_R. If we assume that the thick disk does not flare and that all the components of the velocity dispersion tensor of the thick disk have a uniform radial scalelength of 3.5 kpc, Gamma takes implausibly large negative values, when using the currently available kinematical data of the thick disk. This implies that the input parameters or the model assumptions must be revised. We have explored, using a simulated thick disk, the impact of the assumption that the scale lengths of the density and velocity dispersions do not depend on the vertical height z a...

  17. Thermodynamic assessment of microencapsulated sodium carbonate slurry for carbon capture

    SciTech Connect (OSTI)

    Stolaroff, Joshuah K.; Bourcier, William L.

    2014-01-01

    Micro-encapsulated Carbon Sorbents (MECS) are a new class of carbon capture materials consisting of a CO?- absorbing liquid solvent contained within solid, CO?-permeable, polymer shells. MECS enhance the rate of CO? absorption for solvents with slow kinetics and prevent solid precipitates from scaling and fouling equipment, two factors that have previously limited the use of sodium carbonate solution for carbon capture. Here, we examine the thermodynamics of sodium carbonate slurries for carbon capture. We model the vapour-liquid-solid equilibria of sodium carbonate and find several features that can contribute to an energy-efficient capture process: very high CO? pressures in stripping conditions, relatively low water vapour pressures in stripping conditions, and good swing capacity. The potential energy savings compared with an MEA system are discussed.

  18. Thermodynamic assessment of microencapsulated sodium carbonate slurry for carbon capture

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stolaroff, Joshuah K.; Bourcier, William L.

    2014-01-01

    Micro-encapsulated Carbon Sorbents (MECS) are a new class of carbon capture materials consisting of a CO?- absorbing liquid solvent contained within solid, CO?-permeable, polymer shells. MECS enhance the rate of CO? absorption for solvents with slow kinetics and prevent solid precipitates from scaling and fouling equipment, two factors that have previously limited the use of sodium carbonate solution for carbon capture. Here, we examine the thermodynamics of sodium carbonate slurries for carbon capture. We model the vapour-liquid-solid equilibria of sodium carbonate and find several features that can contribute to an energy-efficient capture process: very high CO? pressures in stripping conditions,more »relatively low water vapour pressures in stripping conditions, and good swing capacity. The potential energy savings compared with an MEA system are discussed.« less

  19. CALCULATING THE CARBON FOOTPRINT SUPPLY CHAIN FOR

    E-Print Network [OSTI]

    Su, Xiao

    CALCULATING THE CARBON FOOTPRINT SUPPLY CHAIN FOR THE SEMICONDUCTOR INDUSTRY By: Yasser Dessouky #12;Carbon Footprint Supply Chain Carbon Trust defines carbon footprint of a supply chain as follows: "The carbon footprint of a product is the carbon dioxide emitted across the supply chain for a single

  20. Carbon Capture and Storage, 2008

    SciTech Connect (OSTI)

    2009-03-19

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  1. Carbon Capture and Storage, 2008

    ScienceCinema (OSTI)

    None

    2010-01-08

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  2. Tuning the thickness of electrochemically grafted layers in large area molecular junctions

    SciTech Connect (OSTI)

    Fluteau, T.; Bessis, C.; Barraud, C. Della Rocca, M. L.; Lafarge, P.; Martin, P.; Lacroix, J.-C.

    2014-09-21

    We have investigated the thickness, the surface roughness, and the transport properties of oligo(1-(2-bisthienyl)benzene) (BTB) thin films grafted on evaporated Au electrodes, thanks to a diazonium-based electro-reduction process. The thickness of the organic film is tuned by varying the number of electrochemical cycles during the growth process. Atomic force microscopy measurements reveal the evolution of the thickness in the range of 2–27 nm. Its variation displays a linear dependence with the number of cycles followed by a saturation attributed to the insulating behavior of the organic films. Both ultrathin (2 nm) and thin (12 and 27 nm) large area BTB-based junctions have then been fabricated using standard CMOS processes and finally electrically characterized. The electronic responses are fully consistent with a tunneling barrier in case of ultrathin BTB film whereas a pronounced rectifying behavior is reported for thicker molecular films.

  3. Thickness-dependent metal-insulator transition in epitaxial SrRuO? ultrathin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shen, Xuan; Qiu, Xiangbiao; Su, Dong; Zhou, Shengqiang; Li., Aidong; Wu, Di

    2015-01-06

    Transport characteristics of ultrathin SrRuO? films, deposited epitaxially on TiO?-terminated SrTiO? (001) single-crystal substrates, were studied as a function of film thickness. Evolution from a metallic to an insulating behavior is observed as the film thickness decreases from 20 to 4 unit cells. In films thicker than 4 unit cells, the transport behavior obeys the Drude low temperature conductivity with quantum corrections, which can be attributed to weak localization. Fitting the data with 2-dimensional localization model indicates that electron-phonon collisions are the main inelastic relaxation mechanism. In the film of 4 unit cells in thickness, the transport behavior follows variablemore »range hopping model, indicating a strongly localized state. Magnetoresistance measurements reveal a likely magnetic anisotropy with the magnetic easy axis along the out-of-plane direction.« less

  4. Limits on thickness and efficiency of Polish Doughnuts in application to the ULX sources

    E-Print Network [OSTI]

    Wielgus, Maciek; Lasota, Jean-Pierre; Abramowicz, Marek

    2015-01-01

    Polish Doughnuts (PDs) are geometrically thick disks which rotate with super-Keplerian velocities in their innermost parts, and whose long and narrow funnels along rotation axes collimate the emerging radiation into beams. In this paper we construct extremal family of PDs that maximize both geometrical thickness and radiative efficiency. We then derive upper limits for these quantities and subsequently for the related ability to collimate radiation. PDs with such extreme properties may explain the observed properties of the ULX sources with no need for the black hole masses exceeding ~ 10 solar masses. However, we show that strong advective cooling, which is expected to be one of the dominant cooling mechanisms in accretion flows with super-Eddington accretion rates, tends to reduce geometrical thickness and luminosity of PDs substantially. We also show that the beamed radiation emerging from the PDs' funnels corresponds to "isotropic" luminosities that linearly scale with the mass accretion rate, and do not ...

  5. Thickness-dependent metal-insulator transition in epitaxial SrRuO3 ultrathin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shen, Xuan; Qiu, Xiangbiao; Su, Dong; Zhou, Shengqiang; Li, Aidong; Wu, Di

    2015-01-06

    Transport characteristics of ultrathin SrRuO? films, deposited epitaxially on TiO?-terminated SrTiO? (001) single-crystal substrates, were studied as a function of film thickness. Evolution from a metallic to an insulating behavior is observed as the film thickness decreases from 20 to 4 unit cells. In films thicker than 4 unit cells, the transport behavior obeys the Drude low temperature conductivity with quantum corrections, which can be attributed to weak localization. Fitting the data with 2-dimensional localization model indicates that electron-phonon collisions are the main inelastic relaxation mechanism. In the film of 4 unit cells in thickness, the transport behavior follows variablemore »range hopping model, indicating a strongly localized state. As a result, magnetoresistance measurements reveal a likely magnetic anisotropy with the magnetic easy axis along the out-of-plane direction.« less

  6. Investigation of damage behavior of thermally sprayed coatings depending on coating thickness

    SciTech Connect (OSTI)

    Crostack, H.A.; Beller, U.

    1995-12-31

    In order to increase the lifetime of components used for diesel engines or gas turbines surfaces are coated by ceramics. In recent years it succeeded in spraying thermal barrier coatings based on zirconia up to a thickness of a few millimeters. A comparison of the damage behavior between yttria partially stabilized zirconia coatings with different thickness will be presented. The coatings are produced by atmospheric plasma spraying. The thickness is varied from 0.5 mm up to 2 mm. In order to characterize the mechanical as well as the damage processes different methods of destructive testing (tensile, bending, and loading test) are applied. Additionally, non-destructive testing methods were used to investigate the damage processes on micro structural level. The results will be discussed according to the microstructure.

  7. Thickness-dependent metal-insulator transition in epitaxial SrRuO? ultrathin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shen, Xuan [Nanjing Univ. (China); Brookhaven National Lab. (BNL), Upton, NY (United States); Qiu, Xiangbiao [Nanjing Univ. (China); Su, Dong [Brookhaven National Lab. (BNL), Upton, NY (United States); Zhou, Shengqiang [Inst. of Ion Beam Physics and Materials Research, Dresden (Germany); Li., Aidong [Nanjing Univ. (China); Wu, Di [Nanjing Univ. (China)

    2015-01-07

    Transport characteristics of ultrathin SrRuO? films, deposited epitaxially on TiO?-terminated SrTiO? (001) single-crystal substrates, were studied as a function of film thickness. Evolution from a metallic to an insulating behavior is observed as the film thickness decreases from 20 to 4 unit cells. In films thicker than 4 unit cells, the transport behavior obeys the Drude low temperature conductivity with quantum corrections, which can be attributed to weak localization. Fitting the data with 2-dimensional localization model indicates that electron-phonon collisions are the main inelastic relaxation mechanism. In the film of 4 unit cells in thickness, the transport behavior follows variable range hopping model, indicating a strongly localized state. Magnetoresistance measurements reveal a likely magnetic anisotropy with the magnetic easy axis along the out-of-plane direction.

  8. Physicochemical controls on absorbed water film thickness in unsaturated geological media

    SciTech Connect (OSTI)

    Tokunaga, T.

    2011-06-14

    Adsorbed water films commonly coat mineral surfaces in unsaturated soils and rocks, reducing flow and transport rates. Therefore, it is important to understand how adsorbed film thickness depends on matric potential, surface chemistry, and solution chemistry. Here, the problem of adsorbed water film thickness is examined through combining capillary scaling with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Novel aspects of this analysis include determining capillary influences on film thicknesses, and incorporating solution chemistry-dependent electrostatic potential at air-water interfaces. Capillary analysis of monodisperse packings of spherical grains provided estimated ranges of matric potentials where adsorbed films are stable, and showed that pendular rings within drained porous media retain most of the 'residual' water except under very low matric potentials. Within drained pores, capillary contributions to thinning of adsorbed films on spherical grains are shown to be small, such that DLVO calculations for flat surfaces are suitable approximations. Hamaker constants of common soil minerals were obtained to determine ranges of the dispersion component to matric potential-dependent film thickness. The pressure component associated with electrical double layer forces was estimated using the compression and linear superposition approximations. The pH-dependent electrical double layer pressure component is the dominant contribution to film thicknesses at intermediate values of matric potential, especially in lower ionic strength solutions (< 10 mol m{sup -3}) on surfaces with higher magnitude electrostatic potentials (more negative than - 50 mV). Adsorbed water films are predicted to usually range in thickness from 1 to 20 nm in drained pores and fractures of unsaturated environments.

  9. Measurement of neutron yield by 62 MeV proton beam on a thick Beryllium target

    E-Print Network [OSTI]

    R. Alba; M. Barbagallo; P. Boccaccio; A. Celentano; N. Colonna; G. Cosentino; A. Del Zoppo; A. Di Pietro; J. Esposito; P. Figuera; P. Finocchiaro; A. Kostyukov; C. Maiolino; M. Osipenko; G. Ricco; M. Ripani; C. M. Viberti; D. Santonocito; M. Schillaci

    2012-08-08

    In the framework of research on IVth generation reactors and high intensity neutron sources a low-power prototype neutron amplifier was recently proposed by INFN. It is based on a low-energy, high current proton cyclotron, whose beam, impinging on a thick Beryllium converter, produces a fast neutron spectrum. The world database on the neutron yield from thick Beryllium target in the 70 MeV proton energy domain is rather scarce. The new measurement was performed at LNS, covering a wide angular range from 0 to 150 degrees and an almost complete neutron energy interval. In this contribution the preliminary data are discussed together with the proposed ADS facility.

  10. Method and apparatus for determining diameter and wall thickness of minute hollow spherical shells

    DOE Patents [OSTI]

    Steinman, D.A.

    1980-05-30

    Method and apparatus for determining diameter and wall thickness of hollow microspheres or shells wherein terminal velocities of shells traveling in fluid-filled conduits of differing diameters are measured. A wall-effect factor is determined as a ratio of the terminal velocities, and shell outside diameter may then be ascertained as a predetermined empirical function of wall-effect factor. For shells of known outside diameter, wall thickness may then be ascertained as a predetermined empirical function of terminal velocity in either conduit.

  11. Carbon K-edge Spectra of Carbonate Minerals

    SciTech Connect (OSTI)

    Brandes, J.; Wirick, S; Jacobsen, C

    2010-01-01

    Carbon K-edge X-ray spectroscopy has been applied to the study of a wide range of organic samples, from polymers and coals to interstellar dust particles. Identification of carbonaceous materials within these samples is accomplished by the pattern of resonances in the 280-320 eV energy region. Carbonate minerals are often encountered in the study of natural samples, and have been identified by a distinctive resonance at 290.3 eV. Here C K-edge and Ca L-edge spectra from a range of carbonate minerals are presented. Although all carbonates exhibit a sharp 290 eV resonance, both the precise position of this resonance and the positions of other resonances vary among minerals. The relative strengths of the different carbonate resonances also vary with crystal orientation to the linearly polarized X-ray beam. Intriguingly, several carbonate minerals also exhibit a strong 288.6 eV resonance, consistent with the position of a carbonyl resonance rather than carbonate. Calcite and aragonite, although indistinguishable spectrally at the C K-edge, exhibited significantly different spectra at the Ca L-edge. The distinctive spectral fingerprints of carbonates provide an identification tool, allowing for the examination of such processes as carbon sequestration in minerals, Mn substitution in marine calcium carbonates (dolomitization) and serpentinization of basalts.

  12. Carbonate fuel cell matrix

    DOE Patents [OSTI]

    Farooque, M.; Yuh, C.Y.

    1996-12-03

    A carbonate fuel cell matrix is described comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles. 8 figs.

  13. Carbon Fiber Technology Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels| Departmentof Energy CaliforniaContentsForumCarbon Fiber

  14. Terahertz Sensor for Non-Contact Thickness and Quality Measurement of Automobile Paints of Varying Complexity

    E-Print Network [OSTI]

    Su, Ke; Shen, Yao-Chun; Zeitler, J. Axel

    2014-06-06

    in the remainder of the paper. The substrate upon which the paint layers are deposited can either be metallic (e.g., aluminum or steel) or non-metallic (e.g. carbon fiber, plastic, etc.). For each paint layer the refractive index, extinction coef- ficient... substrate. (c) Four-layer automobile paint on carbon fiber substrate. (d) Four step paint sample on both metallic and carbon fiber substrate (A1: one-layer paint, A2: two-layer paint, A3: three-layer paint and A4: four-layer paint). layers above and also...

  15. Carbon Capital: The Political Ecology of Carbon Forestry and Development in Chiapas, Mexico

    E-Print Network [OSTI]

    Osborne, Tracey Muttoo

    2010-01-01

    B v + B d ) C T = Total carbon B v = biomass contained indevelopment through carbon sequestration: experiences in2000) Rural livelihoods and carbon management, IIED Natural

  16. Novel strategies for the synthesis of methane adsorbents with controlled porosity and high surface area. Annual report, January 1, 1994-December 31, 1995

    SciTech Connect (OSTI)

    Ventura, S.C.; Kumar, S.K.; Yokoi, S.I.

    1995-04-01

    Natural gas is an attractive alternative to gasoline as fuel for cars because of its desirable emission characteristics, good cold starting characteristics, and high octane number. A major factor that limits widespread use of NGV`s is the low energy density of natural gas. The authors have developed low-cost gel precursors that are excellent binders of high surface area carbon and produce monoliths with piece density of 0.64 g/mL, carbon packing density of 0.62 g/mL and methane volumetric storage capacity of 140 V/V (based on volume of gas delivered) at 500 psia. The authors` preliminary experiments show that piece density may be further increased under suitable processing conditions and that even higher methane volumetric capacities will be attainable.

  17. Influence of wall thickness on the stability of the resistive wall mode in tokamak Richard Fitzpatrick

    E-Print Network [OSTI]

    Fitzpatrick, Richard

    Influence of wall thickness on the stability of the resistive wall mode in tokamak plasmas Richard.1063/1.2446041 Nonlinear evolution of resistive wall mode in a cylindrical tokamak with poloidal rotation Phys. Plasmas 13); 10.1063/1.1943347 Control of resistive wall modes in a cylindrical tokamak with radial and poloidal

  18. Micro-fabrication of high-thickness spiral inductors for the remote powering of implantable biosensors

    E-Print Network [OSTI]

    De Micheli, Giovanni

    biosensors Jacopo Olivo , Sandro Carrara, Giovanni De Micheli Integrated Circuits Laboratory, EPFL ­ École Keywords: High-thickness inductors Inductive link Remote powering Implantable biosensors Ordyl a b s t r for the remote power- ing of implantable biosensors through inductive link. The process is suitable for different

  19. INFLUENCE OF HYDRIDE MICROSTRUCTURE ON THROUGH-THICKNESS CRACK GROWTH IN ZIRCALOY-4 SHEET

    E-Print Network [OSTI]

    Motta, Arthur T.

    1 INFLUENCE OF HYDRIDE MICROSTRUCTURE ON THROUGH-THICKNESS CRACK GROWTH IN ZIRCALOY-4 SHEET P. A and Engineering, The Pennsylvania State University, University Park, PA 16802 2 Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 3 Southwest Research

  20. Estimation of the optical constants and the thickness of thin lms using unconstrained

    E-Print Network [OSTI]

    Martínez, José Mario

    Estimation of the optical constants and the thickness of thin #12;lms using unconstrained, spectral gradient method, optical constants, thin #12;lms. 1 #12; Proposed running head: Estimation of optical constants of thin #12;lms using SGM Corresponding author: Jos#19;e Mario Mart#19;#16;nez

  1. Created 12/8/05 Nanospec / AFT Film Thickness Measurement System

    E-Print Network [OSTI]

    objective and refocus. d. Critical Focus required for film thickness suspected to be Control knob until the Photo Intensity Meter reads between 65.0 and 67.0. a. Gain Control knob located in the open back of the cover. DO NOT ADJUST "ZERO", located to the left of GAIN. b. Photo Intensity Meter

  2. The imprints of the Galactic bar on the thick disk with RAVE

    E-Print Network [OSTI]

    Antoja, T; Helmi, A; Bienaymé, O; Bland-Hawthorn, J; Famaey, B; Gibson, B K; Grebel, E K; Kordopatis, G; Munari, U; Navarro, J; Parker, Q; Reid, W A; Seabroke, G; Steinmetz, M; Zwitter, T

    2015-01-01

    We study the kinematics of a local sample of stars, located within a cylinder of 500 pc radius centered on the Sun, in the RAVE dataset. We find clear asymmetries in the $v_R$-$v_\\phi$ velocity distributions of thin and thick disk stars: here are more stars moving radially outwards for low azimuthal velocities and more radially inwards for high azimuthal velocities. Such asymmetries have been previously reported for the thin disk as being due to the Galactic bar, but this is the first time that the same type of structures are seen in the thick disk. Our findings imply that the velocities of thick disk stars should no longer be described by Schwarzschild's, multivariate Gaussian or purely axisymmetric distributions. Furthermore, the nature of previously reported substructures in the thick disk needs to be revisited as these could be associated with dynamical resonances rather than to accretion events. It is clear that dynamical models of the Galaxy must fit the 3D velocity distributions of the disks, rather th...

  3. Characterization of thick 4H-SiC hot-wall CVD layers

    SciTech Connect (OSTI)

    Paisley, M.J.; Irvine, K.G.; Kordina, O.; Singh, R.; Palmour, J.W.; Carter, C.H. Jr.

    1999-07-01

    Epitaxial 4H-SiC layers suitable for high power devices have been grown in a hot-wall chemical-vapor deposition (CVD) system. These layers were subsequently characterized for many parameters important in device development and production. The uniformity of both thickness and doping is presented. Doping trends vs. temperature and growth rate is shown for the p-type dopant used. The n-type dopant drops in concentration with increasing temperature or increasing growth rate. In contrast, the p-type dopant increases in concentration with decreasing temperature or increasing growth rate. A simple descriptive model for this behavior is presented. The outcome from capacitance-voltage and SIMS measurements demonstrate that transitions from n to n{sup {minus}}, or p to p{sup {minus}}, and even n to p levels can be made quickly without adjustment to growth conditions. The ability to produce sharp transitions without process changes avoids degrading the resulting surface morphology or repeatability of the process. Avoiding process changes is particularly important in growth of thick layers since surface roughness tends to increase with layer thickness. Device results from diodes producing two different blocking voltages in excess of 5 kV is also shown. The higher voltage diodes exhibited a breakdown behavior which was near the theoretical limit for the epitaxial layer thickness and doping level grown.

  4. Measuring Thickness Changes in Thin Films Due to Chemical Reaction by Monitoring the Surface

    E-Print Network [OSTI]

    Rutenberg, Andrew

    to the study of lithium-ion batteries. Recently metallic alloys M ~M Si, Sn, Al, etc.! have been proposed force microscope, expansion and contraction, Li-ion battery, surface roughness, thin film thickness as possible negative electrode materials for lithium-ion bat- teries ~Yang et al., 1996; Idota et al., 1997

  5. Static and fatigue bending behavior of pultruded GFRP sandwich panels with through-thickness fiber insertions

    E-Print Network [OSTI]

    Static and fatigue bending behavior of pultruded GFRP sandwich panels with through-thickness fiber testing a b s t r a c t This paper presents the findings of a research program that was undertaken to evaluate the effective elastic modulus, shear modulus and degree of composite interaction of the panels

  6. Thermal Conductivity Measurement of Xe-Implanted Uranium Dioxide Thick Films using Multilayer Laser Flash Analysis

    SciTech Connect (OSTI)

    Nelson, Andrew T. [Los Alamos National Laboratory

    2012-08-30

    The Fuel Cycle Research and Development program's Advanced Fuels campaign is currently pursuing use of ion beam assisted deposition to produce uranium dioxide thick films containing xenon in various morphologies. To date, this technique has provided materials of interest for validation of predictive fuel performance codes and to provide insight into the behavior of xenon and other fission gasses under extreme conditions. In addition to the structural data provided by such thick films, it may be possible to couple these materials with multilayer laser flash analysis in order to measure the impact of xenon on thermal transport in uranium dioxide. A number of substrate materials (single crystal silicon carbide, molybdenum, and quartz) containing uranium dioxide films ranging from one to eight microns in thickness were evaluated using multilayer laser flash analysis in order to provide recommendations on the most promising substrates and geometries for further investigation. In general, the uranium dioxide films grown to date using ion beam assisted deposition were all found too thin for accurate measurement. Of the substrates tested, molybdenum performed the best and looks to be the best candidate for further development. Results obtained within this study suggest that the technique does possess the necessary resolution for measurement of uranium dioxide thick films, provided the films are grown in excess of fifty microns. This requirement is congruent with the material needs when viewed from a fundamental standpoint, as this length scale of material is required to adequately sample grain boundaries and possible second phases present in ceramic nuclear fuel.

  7. Study of Dislocation Densities Through the Thickness of 7050 Aluminum Cory Parker, David Field

    E-Print Network [OSTI]

    Collins, Gary S.

    Study of Dislocation Densities Through the Thickness of 7050 Aluminum Cory Parker, David Field WSU number DMR-1062898. Introduction 7050 Aluminum is a lightweight, yet strong, alloy primarily used rather difficult due to the presence of a wide range of particles in the substrate. 7050 goes through

  8. 18 m THICK HIGH FREQUENCY CAPACITIVE HARPSS RESONATORS WITH REDUCED MOTIONAL RESISTANCE

    E-Print Network [OSTI]

    Ayazi, Farrokh

    thermal oxide layer is first grown on the low resistivity SOI substrate. The oxide is patterned and kept be as large as a few tens of microns. Trench sidewalls are coated with a thin sacrificial LPCVD oxide layer. The thickness of the deposited sacrificial oxide layer determines the capacitive gap size in between the SCS

  9. Temperature effects on failure thickness and deflagration-to-detonation transition in PBX 9502 and TATB

    SciTech Connect (OSTI)

    Asay, B.W.; McAfee, J.B.

    1993-01-01

    The deflagration-to-detonation (DDT) behavior of TATB has been investigated at high temperatures and severe confinement. comparison is made to other common explosives under similar confinement. TATB did not DDT under these conditions. The failure thickness of PBX 9502 at 250[degrees]C has also been determined. Two mm appears to be the limiting value at this temperature.

  10. Temperature effects on failure thickness and deflagration-to-detonation transition in PBX 9502 and TATB

    SciTech Connect (OSTI)

    Asay, B.W.; McAfee, J.B.

    1993-04-01

    The deflagration-to-detonation (DDT) behavior of TATB has been investigated at high temperatures and severe confinement. comparison is made to other common explosives under similar confinement. TATB did not DDT under these conditions. The failure thickness of PBX 9502 at 250{degrees}C has also been determined. Two mm appears to be the limiting value at this temperature.

  11. Altering Anode Thickness To Improve Power Production in Microbial Fuel Cells with Different Electrode Distances

    E-Print Network [OSTI]

    Altering Anode Thickness To Improve Power Production in Microbial Fuel Cells with Different ABSTRACT: A better understanding of how anode and separator physical properties affect power production is needed to improve energy and power production by microbial fuel cells (MFCs). Oxygen crossover from

  12. Embedding metal electrodes in thick active layers for ITO-free plasmonic organic solar cells

    E-Print Network [OSTI]

    Park, Namkyoo

    Embedding metal electrodes in thick active layers for ITO-free plasmonic organic solar cells%) in optical absorption over both a conventional ITO organic solar cell and a conventional plasmonic organic solar cell with top-loaded metallic grating is predicted in the proposed structure. Optimal positioning

  13. 15.7% Efficient 10-?m-Thick Crystalline Silicon Solar Cells Using Periodic Nanostructures

    E-Print Network [OSTI]

    Branham, Matthew Sanders

    Only ten micrometer thick crystalline silicon solar cells deliver a short-circuit current of 34.5 mA cm[superscript ?2] and power conversion efficiency of 15.7%. The record performance for a crystalline silicon solar cell ...

  14. Optical Histology: A Method to Visualize Microvasculature in Thick Tissue Sections of Mouse Brain

    E-Print Network [OSTI]

    Rose, Michael R.

    Optical Histology: A Method to Visualize Microvasculature in Thick Tissue Sections of Mouse Brain% paraformaldehyde. The organ is then sliced into 1 mm sections and optically cleared, or made transparent, using FocusClear, a proprietary optical clearing agent. After optical clearing, the DiI-labeled tissue

  15. Aperture Synthesis Observations of the Nearby Spiral NGC 6503: Modeling the Thin and Thick HI Disks

    E-Print Network [OSTI]

    Greisen, Eric

    Aperture Synthesis Observations of the Nearby Spiral NGC 6503: Modeling the Thin and Thick HI Disks aperture synthesis observations of the nearby, late­type spiral galaxy NGC 6503, and produce HI maps field, while remarkably regular, contains clear evidence for irregularities. The HI is distributed over

  16. Aperture Synthesis Observations of the Nearby Spiral NGC 6503: Modeling the Thin and Thick HI Disks

    E-Print Network [OSTI]

    Greisen, Eric

    Aperture Synthesis Observations of the Nearby Spiral NGC 6503: Modeling the Thin and Thick HI Disks aperture synthesis observations of the nearby, late-type spiral galaxy NGC 6503, and produce HI maps field, while remarkably regular, contains clear evidence for irregularities. The HI is distributed over

  17. Finite Element Analysis of Nonlinear Thickness-shear Vibrations of AT-cut Quartz Crystal Plates

    E-Print Network [OSTI]

    Wang, Ji

    Finite Element Analysis of Nonlinear Thickness-shear Vibrations of AT-cut Quartz Crystal Plates Ji, dujianke}@nbu.edu.cn Abstract--The nonlinear finite element analysis is performed with the nonlinear a smaller size in comparison with the 3D approach. General procedure of nonlinear finite element analysis

  18. Reprocessed emission line profiles from dense clouds in geometrically thick accretion engines

    E-Print Network [OSTI]

    Sean A. Hartnoll; Eric G. Blackman

    2000-09-19

    The central engines of active galactic nuclei (AGN) contain cold, dense material as well as hot X-ray emitting gas. The standard paradigm for the engine geometry is a cold thin disc sandwiched between hot X-ray coronae. Strong support for this geometry in Seyferts comes from the study of fluorescent iron line profiles, although the evidence is not ubiquitously air tight. The thin disc model of line profiles in AGN and in X-ray binaries should be bench marked against other plausible possibilities. One proposed alternative is an engine consisting of dense clouds embedded in an optically thin, geometrically thick X-ray emitting engine. This model is further motivated by studies of geometrically thick engines such as advection dominated accretion flows (ADAFs). Here we compute the reprocessed iron line profiles from dense clouds embedded in geometrically thick, optically thin X-ray emitting discs near a Schwarzchild black hole. We consider a range of cloud distributions and disc solutions, including ADAFs, pure radial infall, and bipolar outflows. We find that such models can reproduce line profiles similar to those from geometrically thin, optically thick discs and might help alleviate some of the problems encountered from the latter.

  19. Light Trapping Textures Designed by Electromagnetic Optimization for Sub-Wavelength Thick Solar Cells

    E-Print Network [OSTI]

    California at Irvine, University of

    the surface of the solar cell, where n is the material refractive index. This ray-optics absorption enhancement limit only holds when the thickness of the solar cell is much greater than the optical wavelength limit of 4n2 50. Introduction Texturing of solar cell surfaces allows for absorption enhancement, owing

  20. Research Paper Quantitative Image Analysis for Evaluating the Coating Thickness and Pore

    E-Print Network [OSTI]

    van Vliet, Lucas J.

    Research Paper Quantitative Image Analysis for Evaluating the Coating Thickness and Pore Distribution in Coated Small Particles F. L. Laksmana,1,3,5 L. J. Van Vliet,2 P. J. A. Hartman Kok,3 H. Vromans method for coating structure based on image analysis, which is particularly promising for the rational