National Library of Energy BETA

Sample records for thermoelectric hvac components

  1. Automotive Thermoelectric Generators and HVAC

    Broader source: Energy.gov [DOE]

    Provides overview of DOE-supported projects in automotive thermoelectric generators and heaters/air conditioners

  2. Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Thermal Comfort Enablers for Light-Duty Vehicle Applications Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty Vehicle Applications 2012 DOE Hydrogen and Fuel ...

  3. Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty Vehicle

    Broader source: Energy.gov (indexed) [DOE]

    Applications | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace047_maranville_2012_o.pdf More Documents & Publications Thermoelectric HVAC for Light-Duty Vehicle Applications Improving efficiency of a vehicle HVAC system with comfort modeling, zonal design, and thermoelectric devices

  4. Development of a Thermoelectric Device for an Automotive Zonal HVAC System

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy Presents development of a thermoelectric device using liquid working fluid on the wasteŽ side and air as working fluid on the mainŽ side to enable zonal or distributed heating/cooling systems within a vehicle PDF icon barnhart.pdf More Documents & Publications Thermoelectric HVAC for Light-Duty Vehicle Applications Improving the Efficiency of Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric Devices and Comfort Modeling Improving efficiency of a

  5. Development of a High-Efficiency Zonal Thermoelectric HVAC System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Identify a technical and business approach to accelerate the deployment of light-duty automotive TE HVAC technology, maintain occupant comfort, and improve energy efficiency. PDF ...

  6. Improving Energy Efficiency by Developing Components for Distributed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling Thermoelectric (TE) HVAC Energy Efficient HVAC System ...

  7. HVAC component data modeling using industry foundation classes

    SciTech Connect (OSTI)

    Bazjanac, Vladimir; Forester, James; Haves, Philip; Sucic, Darko; Xu, Peng

    2002-07-01

    The Industry Foundation Classes (IFC) object data model of buildings is being developed by the International Alliance for Interoperability (IAI). The aim is to support data sharing and exchange in the building and construction industry across the life-cycle of a building. This paper describes a number of aspects of a major extension of the HVAC part of the IFC data model. First is the introduction of a more generic approach for handling HVAC components. This includes type information, which corresponds to catalog data, occurrence information, which defines item-specific attributes such as location and connectivity, and performance history information, which documents the actual performance of the component instance over time. Other IFC model enhancements include an extension of the connectivity model used to specify how components forming a system can be traversed and the introduction of time-based data streams. This paper includes examples of models of particular types of HVAC components, such as boilers and actuators, with all attributes included in the definitions. The paper concludes by describing the on-going process of model testing, implementation and integration into the complete IFC model and how the model can be used by software developers to support interoperability between HVAC-oriented design and analysis tools.

  8. Development of a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications

    Broader source: Energy.gov [DOE]

    Identify a technical and business approach to accelerate the deployment of light-duty automotive TE HVAC technology, maintain occupant comfort, and improve energy efficiency.

  9. Improving Energy Efficiency by Developing Components for Distributed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling Thermoelectric (TE) HVAC 2011 DOE Hydrogen and Fuel ...

  10. Improving Energy Efficiency by Developing Components for Distributed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling Thermoelectric (TE) HVAC Discusses results from TE ...

  11. Improving the Efficiency of Light-Duty Vehicle HVAC Systems using...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Thermoelectric HVAC for Light-Duty Vehicle Applications Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty Vehicle Applications ...

  12. Progress toward Development of a High-Efficiency Zonal Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    toward Development of a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications Progress toward Development of a High-Efficiency Zonal Thermoelectric HVAC...

  13. Improving the Efficiency of Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric Devices and Comfort Modeling

    Broader source: Energy.gov [DOE]

    Summarizes results from a study to identify and demonstrate technical and commercial approaches necessary to accelerate the deployment of zonal TE HVAC systems in light-duty vehicles

  14. Improving efficiency of a vehicle HVAC system with comfort modeling, zonal design, and thermoelectric devices

    Broader source: Energy.gov [DOE]

    Discusses progress on thermal comfort modeling and detailed design, fabrication, and component/system-level testing of TE architecture

  15. Improving efficiency of a vehicle HVAC system with comfort modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving efficiency of a vehicle HVAC system with comfort modeling, zonal design, and thermoelectric devices Discusses progress on thermal comfort modeling and detailed design, ...

  16. Improving Energy Efficiency by Developing Components for Distributed

    Broader source: Energy.gov (indexed) [DOE]

    Cooling and Heating Based on Thermal Comfort Modeling[ Thermoelectric (TE) HVAC ] | Department of Energy results from TE HVAC project to add detail to a human thermal comfort model and further allow load reduction in the climate control energy through a distributed TE network PDF icon deer11_bozeman.pdf More Documents & Publications Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling Energy Efficient HVAC System for

  17. Thermoelectric Opportunities in Light-Duty Vehicles

    Broader source: Energy.gov [DOE]

    Overview of thermoelectric (TE) vehicle exhaust heat recovery, TE HVAC systems, and OEM role in establishing guidelines for cost, power density, systems integration, and durability.

  18. Automotive Thermoelectric Generators and HVAC

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. Clean Diesel Engine Component Improvement Program Diesel Truck Thermoelectric Generator

    SciTech Connect (OSTI)

    Elsner, N. B.; Bass, J. C.; Ghamaty, S.; Krommenhoek, D.; Kushch, A.; Snowden, D.; Marchetti, S.

    2005-03-16

    Hi-Z Technology, Inc. (Hi-Z) is currently developing four different auxiliary generator designs that are used to convert a portion (5 to 20%) of the waste heat from vehicle engines exhaust directly to electricity. The four designs range from 200 Watts to 10 kW. The furthest along is the 1 kW Diesel Truck Thermoelectric Generator (DTTEG) for heavy duty Class 8 Diesel trucks, which, under this program, has been subjected to 543,000 equivalent miles of bouncing and jarring on PACCAR's test track. Test experience on an earlier version of the DTTEG on the same track showed the need for design modifications incorporated in DTTEG Mod 2, such as a heavy duty shock mounting system and reinforcement of the electrical leads mounting system, the thermocouple mounting system and the thermoelectric module restraints. The conclusion of the 543,000 mile test also pointed the way for an upgrading to heavy duty hose or flex connections for the internal coolant connections for the TEG, and consideration of a separate lower temperature cooling loop with its own radiator. Fuel savings of up to $750 per year and a three to five year payback are believed to be possible with the 5 % efficiency modules. The economics are expected to improve considerably to approach a two year payback when the 5 kW to 10 kW generators make it to the market in a few years with a higher efficiency (20%) thermoelectric module system called Quantum Wells, which are currently under development by Hi-Z. Ultimately, as automation takes over to reduce material and labor costs in the high volume production of QW modules, a one year payback for the 5 kW to10 kW generator appears possible. This was one of the stated goals at the beginning of the project. At some future point in time, with the DTTEG becoming standard equipment on all trucks and automobiles, fuel savings from the 25% conversion of exhaust heat to useable electricity nationwide equates to a 10% reduction in the 12 to 15 million barrels per day of imported oil, that much less air pollution, and an equivalent reduction in the trade deficit, which is expected to lower the inflation rate.

  20. Strategy Guideline: HVAC Equipment Sizing

    SciTech Connect (OSTI)

    Burdick, A.

    2012-02-01

    The heating, ventilation, and air conditioning (HVAC) system is arguably the most complex system installed in a house and is a substantial component of the total house energy use. A right-sized HVAC system will provide the desired occupant comfort and will run efficiently. This Strategy Guideline discusses the information needed to initially select the equipment for a properly designed HVAC system. Right-sizing of an HVAC system involves the selection of equipment and the design of the air distribution system to meet the accurate predicted heating and cooling loads of the house. Right-sizing the HVAC system begins with an accurate understanding of the heating and cooling loads on a space; however, a full HVAC design involves more than just the load estimate calculation - the load calculation is the first step of the iterative HVAC design procedure. This guide describes the equipment selection of a split system air conditioner and furnace for an example house in Chicago, IL as well as a heat pump system for an example house in Orlando, Florida. The required heating and cooling load information for the two example houses was developed in the Department of Energy Building America Strategy Guideline: Accurate Heating and Cooling Load Calculations.

  1. Thermoelectric-enhanced, liquid-based cooling of a multi-component electronic system

    SciTech Connect (OSTI)

    Chainer, Timothy J; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Steinke, Mark E

    2015-05-12

    Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled structure, a thermal conduction path coupling the electronic component and the liquid-cooled structure, a coolant loop in fluid communication with a coolant-carrying channel of the liquid-cooled structure, and an outdoor-air-cooled heat exchange unit coupled to facilitate heat transfer from the liquid-cooled structure via, at least in part, the coolant loop. The thermoelectric array facilitates transfer of heat from the electronic component to the liquid-cooled structure, and the heat exchange unit cools coolant passing through the coolant loop by dissipating heat from the coolant to outdoor ambient air. In one implementation, temperature of coolant entering the liquid-cooled structure is greater than temperature of the outdoor ambient air to which heat is dissipated.

  2. Thermoelectric-enhanced, liquid-based cooling of a multi-component electronic system

    SciTech Connect (OSTI)

    Chainer, Timothy J; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Steinke, Mark E

    2015-11-10

    Methods are provided for facilitating cooling of an electronic component. The methods include providing: a liquid-cooled structure, a thermal conduction path coupling the electronic component and the liquid-cooled structure, a coolant loop in fluid communication with a coolant-carrying channel of the liquid-cooled structure, and an outdoor-air-cooled heat exchange unit coupled to facilitate heat transfer from the liquid-cooled structure via, at least in part, the coolant loop. The thermoelectric array facilitates transfer of heat from the electronic component to the liquid-cooled structure, and the heat exchange unit cools coolant passing through the coolant loop by dissipating heat from the coolant to outdoor ambient air. In one implementation, temperature of coolant entering the liquid-cooled structure is greater than temperature of the outdoor ambient air to which heat is dissipated.

  3. Overview of Fords Thermoelectric Programs: Waste Heat Recovery...

    Broader source: Energy.gov (indexed) [DOE]

    Overview of progress in TE waste heat recovery from sedan gasoline-engine exhaust, TE HVAC ... Overview of Fords Thermoelectric Programs: Waste Heat Recovery and Climate Control ...

  4. Energy Efficient HVAC System for Distributed Cooling/Heating...

    Broader source: Energy.gov (indexed) [DOE]

    Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling Energy Efficient HVAC System for Distributed Cooling...

  5. HVAC Packages for SMSCB

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HVAC Packages for SMSCB* 2015 Building Technologies Office Peer Review * Small and Medium Sized Commercial Buildings Russell D. Taylor, TaylorRD@utrc.utc.com CBEI - United ...

  6. HVAC Performance Maps

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... models for building energy simulation tools (mathematical framework - what are the right ... integrated HPWHs were performance mapped in NREL's Advanced HVAC Systems Laboratory. ...

  7. Thermoelectrics: The New Green Automotive Technology | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace00e_fairbanks_2012_o.pdf More Documents & Publications Automotive Thermoelectric Generators and HVAC Vehicular Thermoelectrics: A New Green Technology Thermoelectrics: The New Green Automotive

  8. Thermoelectrics Partnership: Automotive Thermoelectric Modules...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solution for Automotive Thermoelectric Modules Application Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces

  9. Issue #7: What are the Best HVAC Solutions for Low-Load, High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7: What are the Best HVAC Solutions for Low-Load, High Performance Homes? Issue 7: What are the Best HVAC Solutions for Low-Load, High Performance Homes? What components and ...

  10. HVAC Installed Performance

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question HVAC proper installation energy savings: over-promising or under-delivering?"

  11. Thermoelectrics Partnership: Automotive Thermoelectric Modules...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Novel Nanostructured Interface Solution for Automotive ...

  12. Alternate HVAC systems and exceptions for QA-Credentialed HVAC Contractor |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Alternate HVAC systems and exceptions for QA-Credentialed HVAC Contractor Alternate HVAC systems and exceptions for QA-Credentialed HVAC Contractor The document outlines alternate HVAC systems and exceptions for QA-Credentialed HVAC Contractor. PDF icon HVAC Credentialing Alternate HVAC Systems Bulletin 07012015.pdf More Documents & Publications ENERGY STAR Certified Homes, Version 3 (Rev. 07) Inspection Checklists for National Program Requirements DOE Zero Energy

  13. Control strategy optimization of HVAC plants

    SciTech Connect (OSTI)

    Facci, Andrea Luigi; Zanfardino, Antonella; Martini, Fabrizio; Pirozzi, Salvatore; Ubertini, Stefano

    2015-03-10

    In this paper we present a methodology to optimize the operating conditions of heating, ventilation and air conditioning (HVAC) plants to achieve a higher energy efficiency in use. Semi-empiric numerical models of the plant components are used to predict their performances as a function of their set-point and the environmental and occupied space conditions. The optimization is performed through a graph-based algorithm that finds the set-points of the system components that minimize energy consumption and/or energy costs, while matching the user energy demands. The resulting model can be used with systems of almost any complexity, featuring both HVAC components and energy systems, and is sufficiently fast to make it applicable to real-time setting.

  14. Thermoelectrics Partnership: High Performance Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Embedded Nanoparticles Thermoelectrics Partnership: High Performance Thermoelectric Waste Heat Recovery System Based on Zintl Phase Materials with Embedded Nanoparticles 2011 DOE ...

  15. ORNL: HVAC Lab Research - 2015 Peer Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ORNL: HVAC Lab Research - 2015 Peer Review ORNL: HVAC Lab Research - 2015 Peer Review Presenter: Jeffrey Munk, ORNL View the Presentation PDF icon ORNL: HVAC Lab Research - 2015 ...

  16. Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling

    Broader source: Energy.gov [DOE]

    Develop distributed HVAC components to supplement the central HVAC system to reduce the energy required by current compressed gas air conditioners by at least one-third.

  17. Chapter 19: HVAC Controls (DDC/EMS/BAS) Evaluation Protocol

    SciTech Connect (OSTI)

    Romberger, J.

    2014-11-01

    The HVAC Controls Evaluation Protocol is designed to address evaluation issues for direct digital controls/energy management systems/building automation systems (DDC/EMS/BAS) that are installed to control heating, ventilation, and air-conditioning (HVAC) equipment in commercial and institutional buildings. (This chapter refers to the DDC/EMS/BAS measure as HVAC controls.) This protocol may also be applicable to industrial facilities such as clean rooms and labs, which have either significant HVAC equipment or spaces requiring special environmental conditions. This protocol addresses only HVAC-related equipment and the energy savings estimation methods associated with installing such control systems as an energy efficiency measure. The affected equipment includes: Air-side equipment (air handlers, direct expansion systems, furnaces, other heating- and cooling-related devices, terminal air distribution equipment, and fans); Central plant equipment (chillers, cooling towers, boilers, and pumps). These controls may also operate or affect other end uses, such as lighting, domestic hot water, irrigation systems, and life safety systems such as fire alarms and other security systems. Considerable nonenergy benefits, such as maintenance scheduling, system component troubleshooting, equipment failure alarms, and increased equipment lifetime, may also be associated with these systems. When connected to building utility meters, these systems can also be valuable demand-limiting control tools. However, this protocol does not evaluate any of these additional capabilities and benefits.

  18. Pedernales Electric Cooperative- HVAC Rebate Program

    Broader source: Energy.gov [DOE]

    Pedernales Electric Cooperative offers equipment rebates to its members who install energy efficient HVAC equipment. Eligible equipment includes:

  19. Thermoelectric module

    DOE Patents [OSTI]

    Kortier, William E.; Mueller, John J.; Eggers, Philip E.

    1980-07-08

    A thermoelectric module containing lead telluride as the thermoelectric mrial is encapsulated as tightly as possible in a stainless steel canister to provide minimum void volume in the canister. The lead telluride thermoelectric elements are pressure-contacted to a tungsten hot strap and metallurgically bonded at the cold junction to iron shoes with a barrier layer of tin telluride between the iron shoe and the p-type lead telluride element.

  20. Thermoelectric HVAC for Light-Duty Vehicle Applications

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  1. Thermoelectric HVAC for Light-Duty Vehicle Applications

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  2. Better Buildings Neighborhood Program Business Models Guide: HVAC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contractor Business Model | Department of Energy HVAC Contractor Business Model Better Buildings Neighborhood Program Business Models Guide: HVAC Contractor Business Model Better Buildings Neighborhood Program Business Models Guide: HVAC Contractor Business Model. PDF icon HVAC Contractor Business Model More Documents & Publications Better Buildings Neighborhood Program Business Models Guide: HVAC Contractor Business Model Conclusion Better Buildings Neighborhood Program Business Models

  3. Strategy Guideline: HVAC Equipment Sizing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategy Guideline: HVAC Equipment Sizing Arlan Burdick IBACOS, Inc. February 2012 This report received minimal editorial review at NREL NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information,

  4. Building America Expert Meeting: Transitioning Traditional HVAC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review and validate the general business models for traditional HVAC companies and whole house energy upgrade companies Review preliminary findings on the differences between the ...

  5. 1999 Commercial Buildings Characteristics--HVAC Conservation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Center at (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey Those commercial buildings that used HVAC conservation features...

  6. Building America Expert Meeting: Transitioning Traditional HVAC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IBACOS held an Expert Meeting on the topic of Transitioning Traditional HVAC Contractors to Whole House Performance Contractors on March 29, 2011 in San Francisco, CA. The major ...

  7. Columbia Water & Light- Residential HVAC Rebates

    Broader source: Energy.gov [DOE]

    Columbia Water & Light (CWL) provides residential customers with rebates on energy efficient HVAC equipment. Customers should submit the mechanical permit from a Protective Inspection, a copy...

  8. Pre-Commercial Demonstration of Cost-Effective Advanced HVAC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HVAC energy reduction versus state-of- the-art building automation systems. This technology targets building automation systems for medium-size buildings with central HVAC systems. ...

  9. HVAC, Water Heating, and Appliance Subprogram Overview - 2016...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appliance Subprogram Overview - 2016 BTO Peer Review HVAC, Water Heating, and Appliance ... Office's Emerging Technologies: HVAC, Water Heating, and Appliance subprogram. ...

  10. Home Upgrades: Leveraging HVAC Upgrades for Greater Impact (201...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Upgrades: Leveraging HVAC Upgrades for Greater Impact (201) Home Upgrades: Leveraging HVAC Upgrades for Greater Impact (201) Better Buildings Residential Network Peer Exchange Call...

  11. 2014-04-28 Issuance: Certification of Commercial HVAC, Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    28 Issuance: Certification of Commercial HVAC, Water Heating, and Refrigeration Equipment; Final Rule 2014-04-28 Issuance: Certification of Commercial HVAC, Water Heating, and ...

  12. HVAC Cabinet Air Leakage Test Method - Building America Top Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cabinet Air Leakage Test Method - Building America Top Innovation HVAC Cabinet Air Leakage Test Method - Building America Top Innovation While HVAC installers have improved their ...

  13. Integration of HVAC System Design with Simplified Duct Distribution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration of HVAC System Design with Simplified Duct Distribution - Building America Top Innovation Integration of HVAC System Design with Simplified Duct Distribution - Building ...

  14. Building America Webinar: HVAC Right-Sizing Part 1-Calculating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the key criteria required to create accurate heating and cooling load calculations. ... HVAC Right-Sizing Part 1: Calculating Loads ZERH Webinar: Low Load HVAC in Zero Energy ...

  15. HVAC, Water Heating, and Appliance Overview - 2016 BTO Peer Review...

    Energy Savers [EERE]

    HVAC, Water Heating, and Appliance Overview - 2016 BTO Peer Review HVAC, Water Heating, and Appliance Overview - 2016 BTO Peer Review Presenter: Antonio M. Bouza, U.S. Department ...

  16. HVAC, Water Heating, and Appliances Overview - 2015 BTO Peer...

    Energy Savers [EERE]

    HVAC, Water Heating, and Appliances Overview - 2015 BTO Peer Review Presenter: Tony Bouza, U.S. Department of Energy View the Presentation PDF icon HVAC, Water Heating, and ...

  17. NSF/DOE Thermoelectrics Partnership: Thermoelectrics for Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectrics for Automotive Waste Heat Recovery Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces

  18. Vehicular Applications of Thermoelectrics

    Broader source: Energy.gov [DOE]

    Overivew of DOE projects developing thermoelectric generators for engine waste heat utilization and vehiclular thermoelectric heating/cooling.

  19. HVAC, Water Heating, and Appliance Overview - 2016 BTO Peer Review |

    Energy Savers [EERE]

    market entry & acceptance of technologies & products Competitive & shared R&D funding focused on tech. performance by researchers in lab / field facilities Technology pathway & research reports Improve performance & cost of heat pump & water heating technologies Researchers equipped with validated solutions to develop or improve components & optimize tech. systems at reduced cost High-efficiency HVAC, water heating & appliance technologies & products are

  20. HVAC, Water Heating and Appliances Sub-Program Logic Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    market entry & acceptance of technologies & products Competitive & shared R&D funding focused on tech. performance by researchers in lab / field facilities Technology pathway & research reports Improve performance & cost of heat pump & water heating technologies Researchers equipped with validated solutions to develop or improve components & optimize tech. systems at reduced cost High-efficiency HVAC, water heating & appliance technologies & products are

  1. Thermoelectric system

    DOE Patents [OSTI]

    Reiners, Eric A.; Taher, Mahmoud A.; Fei, Dong; McGilvray, Andrew N.

    2007-10-30

    In one particular embodiment, an internal combustion engine is provided. The engine comprises a block, a head, a piston, a combustion chamber defined by the block, the piston, and the head, and at least one thermoelectric device positioned between the combustion chamber and the head. In this particular embodiment, the thermoelectric device is in direct contact with the combustion chamber. In another particular embodiment, a cylinder head configured to sit atop a cylinder bank of an internal combustion engine is provided. The cylinder head comprises a cooling channel configured to receive cooling fluid, valve seats configured for receiving intake and exhaust valves, and thermoelectric devices positioned around the valve seats.

  2. HVAC Efficiency Controls Could Mean Significant Savings

    Broader source: Energy.gov [DOE]

    According to a new report from Pacific Northwest National Lab, commercial building owners could save an average 38 percent on their heating and cooling bills just by installing a few new controls onto their HVAC systems.

  3. BTO Workshop on Advanced HVAC Research Effort

    Broader source: Energy.gov [DOE]

    The Building Technologies Office (BTO) is exploring the launch of a major HVAC research effort in the area of low global warming potential and non-vapor compression technologies. To support this...

  4. A PDI for your HVAC System

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question "HVAC proper installation energy savings: over-promising or under-deliverying?"

  5. Non-Vapor Compression HVAC Technologies Report

    Broader source: Energy.gov [DOE]

    While vapor-compression technologies have served heating, ventilation, and air-conditioning (HVAC) needs very effectively, and have been the dominant HVAC technology for close to 100 years, the conventional refrigerants used in vapor-compression equipment contribute to global climate change when released to the atmosphere. The Building Technologies Office is evaluating low-global warming potential (GWP) alternatives to vapor-compression technologies.

  6. Self-composite comprised of nanocrystalline diamond and a non-diamond component useful for thermoelectric applications

    DOE Patents [OSTI]

    Gruen, Dieter M.

    2009-08-11

    One provides nanocrystalline diamond material that comprises a plurality of substantially ordered diamond crystallites that are sized no larger than about 10 nanometers. One then disposes a non-diamond component within the nanocrystalline diamond material. By one approach this non-diamond component comprises an electrical conductor that is formed at the grain boundaries that separate the diamond crystallites from one another. The resultant nanowire is then able to exhibit a desired increase with respect to its ability to conduct electricity while also preserving the thermal conductivity behavior of the nanocrystalline diamond material.

  7. Self-composite comprised of nanocrystalline diamond and a non-diamond component useful for thermoelectric applications

    DOE Patents [OSTI]

    Gruen, Dieter M.

    2012-09-04

    One provides nanocrystalline diamond material that comprises a plurality of substantially ordered diamond crystallites that are sized no larger than about 10 nanometers. One then disposes a non-diamond component within the nanocrystalline diamond material. By one approach this non-diamond component comprises an electrical conductor that is formed at the grain boundaries that separate the diamond crystallites from one another. The resultant nanowire is then able to exhibit a desired increase with respect to its ability to conduct electricity while also preserving the thermal conductivity behavior of the nanocrystalline diamond material.

  8. High temperature thermoelectrics

    DOE Patents [OSTI]

    Moczygemba, Joshua E.; Biershcenk, James L.; Sharp, Jeffrey W.

    2014-09-23

    In accordance with one embodiment of the present disclosure, a thermoelectric device includes a plurality of thermoelectric elements that each include a diffusion barrier. The diffusion barrier includes a refractory metal. The thermoelectric device also includes a plurality of conductors coupled to the plurality of thermoelectric elements. The plurality of conductors include aluminum. In addition, the thermoelectric device includes at least one plate coupled to the plurality of thermoelectric elements using a braze. The braze includes aluminum.

  9. Better Buildings Neighborhood Program Business Models Guide: HVAC Contractor Business Model Conclusion

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Business Models Guide: HVAC Contractor Business Model Conclusion, Summary of HVAC Contractor Insights.

  10. Thermoelectric generator

    DOE Patents [OSTI]

    Pryslak, N.E.

    1974-02-26

    A thermoelectric generator having a rigid coupling or stack'' between the heat source and the hot strap joining the thermoelements is described. The stack includes a member of an insulating material, such as ceramic, for electrically isolating the thermoelements from the heat source, and a pair of members of a ductile material, such as gold, one each on each side of the insulating member, to absorb thermal differential expansion stresses in the stack. (Official Gazette)

  11. Indirect Benefits (Increased Roof Life and HVAC Savings) from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Indirect Benefits (Increased Roof Life and HVAC Savings) from a Solar PV System at the San Jos Convention Center Indirect Benefits (Increased Roof Life and HVAC Savings) from a ...

  12. EECBG Success Story: HVAC Upgrade Saving Money, Protecting History...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HVAC Upgrade Saving Money, Protecting History EECBG Success Story: HVAC Upgrade Saving Money, Protecting History November 2, 2010 - 5:37pm Addthis A new heating and cooling system...

  13. HVAC Cabinet Air Leakage Test Method - Building America Top Innovation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Cabinet Air Leakage Test Method - Building America Top Innovation HVAC Cabinet Air Leakage Test Method - Building America Top Innovation While HVAC installers have improved their air sealing practices to reduce the amount of air leaking at ducts and duct boots, testing showed that distribution systems still leaked at air handlers and furnace HVAC Air Leakage Fig 1 Air handler furnace cabinet with pressure taps.jpg cabinets. This has hampered the ability of HVAC

  14. HVAC, Water Heating, and Appliances | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Technologies » HVAC, Water Heating, and Appliances HVAC, Water Heating, and Appliances About the Portfolio The HVAC/Water Heating/Appliance subprogram develops cost effective, energy efficient technologies with national labs and industry partners. Technical analysis has shown that heat pumps have the technical potential to save up to 50% of the energy used by conventional HVAC technologies in residential buildings. Our focus is on the introduction of new heat pumping technologies, heat

  15. HVAC, Water Heating, and Appliances Overview - 2015 BTO Peer Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Appliances Overview - 2015 BTO Peer Review HVAC, Water Heating, and Appliances Overview - 2015 BTO Peer Review Presenter: Tony Bouza, U.S. Department of Energy View the Presentation PDF icon HVAC, Water Heating, and Appliances Overview - 2015 BTO Peer Review More Documents & Publications HVAC, Water Heater and Appliance R&D - 2014 BTO Peer Review HVAC, Water Heating, and Appliance Subprogram Overview - 2016 BTO Peer Review Research & Development Roadmap:

  16. Research & Development Roadmap: Emerging HVAC Technologies | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy HVAC Technologies Research & Development Roadmap: Emerging HVAC Technologies The Research and Development (R&D) Roadmap for Emerging Heating, Ventilation, and Air-Conditioning (HVAC) Technologies provides recommendations to the Building Technologies Office (BTO) on R&D activities to pursue that will aid in achieving BTO's energy savings goals. For HVAC, BTO targets 12% and 24% primary energy savings by 2020 and 2030, respectively. The recommended initiatives in the report

  17. Home Upgrades: Leveraging HVAC Upgrades for Greater Impact (201)

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call Series: Home Upgrades: Leveraging HVAC Upgrades for Greater Impact (201), November 18, 2015.

  18. 2009 Thermoelectrics Applications Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectrics Applications Workshop 2009 Thermoelectrics Applications Workshop September 29 - October 1, 2009 San Diego, CA Tuesday, September 29, 2009 Opening Plenary Session Wednesday, September 30, 2009 Overview of Worldwide Activities in Thermoelectrics Thermoelectric Applications I Thermoelectric Materials I Thermoelectric Manufacturing Thursday, October 1, 2009 Thermoelectric Materials II Thermoelectric Applications II Thermoelectric Materials III Thermoelectric Applications III Tuesday,

  19. Solar Thermoelectric Energy Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Thermoelectric Energy Conversion Solar Thermoelectric Energy Conversion Efficiencies of different types of solar thermoelectric generators were predicted using theoretical ...

  20. Thermoelectric Mechanical Reliability | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    0wereszczak.pdf More Documents & Publications Thermoelectric Mechanical Reliability Thermoelectric Mechanical Reliability Thermoelectrics Theory and Structure

  1. Potential Thermoelectric Applications in Diesel Vehicles | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Thermoelectrics: The New Green Automotive Technology Challenges and Opportunities in Thermoelectric ...

  2. Waste Heat Recovery Opportunities for Thermoelectric Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for ...

  3. Text-Alternative Version of Building America Webinar: High Performance HVAC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems, Part II: Low-Load HVAC Systems for Single and Multifamily Applications | Department of Energy HVAC Systems, Part II: Low-Load HVAC Systems for Single and Multifamily Applications Text-Alternative Version of Building America Webinar: High Performance HVAC Systems, Part II: Low-Load HVAC Systems for Single and Multifamily Applications High Performance HVAC Systems, Part II: Low-Load HVAC Systems for Single and Multifamily Applications November 16, 2015 Speakers Andrew Poerschke,

  4. Method of operating a thermoelectric generator

    DOE Patents [OSTI]

    Reynolds, Michael G; Cowgill, Joshua D

    2013-11-05

    A method for operating a thermoelectric generator supplying a variable-load component includes commanding the variable-load component to operate at a first output and determining a first load current and a first load voltage to the variable-load component while operating at the commanded first output. The method also includes commanding the variable-load component to operate at a second output and determining a second load current and a second load voltage to the variable-load component while operating at the commanded second output. The method includes calculating a maximum power output of the thermoelectric generator from the determined first load current and voltage and the determined second load current and voltage, and commanding the variable-load component to operate at a third output. The commanded third output is configured to draw the calculated maximum power output from the thermoelectric generator.

  5. Integration of HVAC System Design with Simplified Duct Distribution -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Top Innovation | Department of Energy Integration of HVAC System Design with Simplified Duct Distribution - Building America Top Innovation Integration of HVAC System Design with Simplified Duct Distribution - Building America Top Innovation This photo shows framed walls and HVAC distribution systems. This Top Innovation profile describes work by Building America research team IBACOS who field tested simplified duct designs in hundreds of homes, confirming the performance of

  6. Building America Expert Meeting: Transitioning Traditional HVAC Contractors

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Whole House Performance Contractors | Department of Energy Transitioning Traditional HVAC Contractors to Whole House Performance Contractors Building America Expert Meeting: Transitioning Traditional HVAC Contractors to Whole House Performance Contractors IBACOS held an Expert Meeting on the topic of Transitioning Traditional HVAC Contractors to Whole House Performance Contractors on March 29, 2011 in San Francisco, CA. The major objectives of the meeting were to: Review and validate the

  7. HVAC upgrade saving money, protecting history | Department of Energy

    Energy Savers [EERE]

    HVAC Right-Sizing Part 1: Calculating Loads HVAC Right-Sizing Part 1: Calculating Loads This webinar, presented by IBACOS (a Building America Research Team) will highlight the key criteria required to create accurate heating and cooling load calculations, following the guidelines of the Air Conditioning Contractors of America (ACCA) Manual J version 8 PDF icon webinar_hvac_calculatingloads_20110428.pdf More Documents & Publications 2014-08-28 Issuance: Energy Conservation Standards for

  8. enVerid Systems - HVAC Load Reduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    enVerid Systems - HVAC Load Reduction enVerid Systems - HVAC Load Reduction Credit: Enverid Systems Credit: Enverid Systems Lead Performer: enVerid Systems Inc. - Houston, TX DOE Funding: $2,400,000 Cost Share: $2,400,000 Project Term: October 1, 2014 - September 30, 2017 Funding Opportunity: DE-FOA-0001084 PROJECT OBJECTIVE The objective is to install and operate modular HVAC Load Reduction (HLR) retrofits in multiple and diverse buildings, monitor their performance, analyze the energy savings

  9. Inverted Attic Bulkhead for HVAC Ductwork, Roseville, California...

    Energy Savers [EERE]

    Inverted Attic Bulkhead for HVAC Ductwork Roseville, California PROJECT INFORMATION ... bathrooms constructed in Roseville, California, for one year as an occupied test home. ...

  10. Building America Top Innovations 2014 Profile: HVAC Cabinet Air...

    Energy Savers [EERE]

    HVAC Cabinet Air Leakage Test Method (top left) Building America teams evaluated several testing methods to identify a robust, repeatable test to recommend for air leakage ...

  11. Pre-Commercial Demonstration of Cost-Effective Advanced HVAC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimal control coordination of heating, ventilation, and air conditioning (HVAC) equipment can reduce energy by more than 20% over current building automation systems (BASs) but ...

  12. Research & Development Opportunities for Joining Technologies in HVAC&R

    Broader source: Energy.gov [DOE]

    This report identifies and characterizes R&D opportunities with HVAC&R joining technologies for the Building Technologies Office (BTO) to pursue.

  13. Issue #3: HVAC Proper Installation Energy Savings: Over-Promising...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A PDI for your HVAC System Guidelines on Airflow and Refrigerant Charge Verification and Diagnostics Building America Expert Meeting: Summary for Diagnostic and Performance ...

  14. Columbia Water & Light- HVAC and Lighting Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Columbia Water & Light (CWL) offers rebates to its commercial and industrial customers for the purchase of high efficiency HVAC installations and efficient lighting. Incentives for certain...

  15. CBEI: HVAC Packages for Small and Medium Sized Commercial Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CBEI: HVAC Packages for Small and Medium Sized Commercial Buildings - 2015 Peer Review Presenter: Russell Taylor, United Technologies Research Center View the Presentation PDF icon ...

  16. R&D Opportunity Assessment: Joining Technologies in HVAC&R -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R&D Opportunity Assessment: Joining Technologies in HVAC&R - Workshop on Joining Technologies in HVAC&R R&D Opportunity Assessment: Joining Technologies in HVAC&R - Workshop on ...

  17. Workshop 1: Advanced HVAC&R Research Effort | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Advanced HVAC&R Research Effort Workshop 1: Advanced HVAC&R Research Effort The Building Technologies Office (BTO) is exploring the launch of a major HVAC&R research effort in ...

  18. Inverted Attic Bulkhead for HVAC Ductwork, Roseville, California (Fact Sheet), Building America Case Study: Whole-House Solutions for Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Inverted Attic Bulkhead for HVAC Ductwork Roseville, California PROJECT INFORMATION Project Name: Long-Term Monitoring of Occupied Test House Location: Roseville, CA Partners: K. Hovnanian® Homes®, www.khov.com IBACOS www.ibacos.com Building Component: Envelope, structural, HVAC ducts Construction: New Application: New; single and/or multifamily Year Tested: 2012 Applicable Climate Zone(s): Hot-dry climate PERFORMANCE DATA HERS Index: 52 Projected Energy Savings: 11 million Btu/year heating

  19. Thermoelectric materials having porosity

    DOE Patents [OSTI]

    Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

    2014-08-05

    A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

  20. HVAC & Building Management Control System Energy Efficiency Replacements

    SciTech Connect (OSTI)

    Hernandez, Adriana

    2012-09-21

    The project objective was the replacement of an aging, un-repairable HVAC system which has grown inefficient and a huge energy consumer with low energy and efficient HVAC units, and installation of energy efficient building control technologies at City's YMCA Community Center.

  1. Thermoelectric heat exchange element

    DOE Patents [OSTI]

    Callas, James J. (Peoria, IL); Taher, Mahmoud A. (Peoria, IL)

    2007-08-14

    A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

  2. Solar Thermoelectric Energy Conversion

    Broader source: Energy.gov [DOE]

    Efficiencies of different types of solar thermoelectric generators were predicted using theoretical modeling and validated with measurements using constructed prototypes under different solar intensities

  3. Better Buildings Neighborhood Program Business Models Guide: HVAC Contractor Business Model Introduction

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Business Models Guide: HVAC Contractor Business Model Introduction.

  4. The Impact of Uncertain Physical Parameters on HVAC Demand Response

    SciTech Connect (OSTI)

    Sun, Yannan; Elizondo, Marcelo A.; Lu, Shuai; Fuller, Jason C.

    2014-03-01

    HVAC units are currently one of the major resources providing demand response (DR) in residential buildings. Models of HVAC with DR function can improve understanding of its impact on power system operations and facilitate the deployment of DR technologies. This paper investigates the importance of various physical parameters and their distributions to the HVAC response to DR signals, which is a key step to the construction of HVAC models for a population of units with insufficient data. These parameters include the size of floors, insulation efficiency, the amount of solid mass in the house, and efficiency of the HVAC units. These parameters are usually assumed to follow Gaussian or Uniform distributions. We study the effect of uncertainty in the chosen parameter distributions on the aggregate HVAC response to DR signals, during transient phase and in steady state. We use a quasi-Monte Carlo sampling method with linear regression and Prony analysis to evaluate sensitivity of DR output to the uncertainty in the distribution parameters. The significance ranking on the uncertainty sources is given for future guidance in the modeling of HVAC demand response.

  5. Integrated Design and Manufacturing of Thermoelectric Generator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Generator Using Thermal Spray Integrated Design and Manufacturing of Thermoelectric Generator Using Thermal Spray Presents progress in cost-effective thermoelectric ...

  6. Challenges and Opportunities in Thermoelectric Materials Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Bottom-Up Approach forThermoelectric Nanocomposites, plus NSFDOE Thermoelectric Partnership: Inorganic-Organic Hybrid Thermoelectrics Inorganic-Organic Hybrid ...

  7. Thermoelectric Generator Development for Automotive Waste Heat...

    Broader source: Energy.gov (indexed) [DOE]

    Develop Thermoelectric Technology for Automotive Waste Heat Recovery Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM Advanced Thermoelectric ...

  8. SURFACE INDUSTRIAL HVAC SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    M.M. Ansari

    2005-04-05

    The purpose of this system description document (SDD) is to establish requirements that drive the design of the surface industrial heating, ventilation, and air-conditioning (HVAC) system and its bases to allow the design effort to proceed to license application. This SDD will be revised at strategic points as the design matures. This SDD identifies the requirements and describes the system design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This SDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This SDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the system. Knowledge of these requirements is essential to performing the design process. The SDD follows the design with regard to the description of the system. The description that provided in this SDD reflects the current results of the design process.

  9. Heat recovery and the economizer for HVAC systems

    SciTech Connect (OSTI)

    Anantapantula, V.S. . Alco Controls Div.); Sauer, H.J. Jr. )

    1994-11-01

    This articles examines why a combined heat reclaim/economizer system with priority to heat reclaim operation is most likely to result in the least annual total HVAC energy. PC-based, hour-by-hour simulation programs evaluate annual HVAC energy requirements when using combined operation of heat reclaim and economizer cycle, while giving priority to operation of either one. These simulation programs also enable the design engineer to select the most viable heat reclaim and/or economizer system for any given type of HVAC system serving the building internal load level, building geographical location and other building/system variables.

  10. Thermal model of solar absorption HVAC systems

    SciTech Connect (OSTI)

    Bergquam, J.B.; Brezner, J.M.

    1995-11-01

    This paper presents a thermal model that describes the performance of solar absorption HVAC systems. The model considers the collector array, the building cooling and heating loads, the absorption chiller and the high temperature storage. Heat losses from the storage tank and piping are included in the model. All of the results presented in the paper are for an array of flat plate solar collectors with black chrome (selective surface) absorber plates. The collector efficiency equation is used to calculate the useful heat output from the array. The storage is modeled as a non-stratified tank with polyurethane foam insulation. The system is assumed to operate continuously providing air conditioning during the cooling season, space heating during the winter and hot water throughout the year. The amount of heat required to drive the chiller is determined from the coefficient of performance of the absorption cycle. Results are presented for a typical COP of 0.7. The cooling capacity of the chiller is a function of storage (generator) temperature. The nominal value is 190 F (88 C) and the range of values considered is 180 F (82 C) to 210 F (99 C). Typical building cooling and heating loads are determined as a function of ambient conditions. Performance results are presented for Sacramento, CA and Washington, D.C. The model described in the paper makes use of National Solar Radiation Data Base (NSRDB) data and results are presented for these two locations. The uncertainties in the NSRDB are estimated to be in a range of 6% to 9%. This is a significant improvement over previously available data. The model makes it possible to predict the performance of solar HVAC systems and calculate quantities such as solar fraction, storage temperature, heat losses and parasitic power for every hour of the period for which data are available.

  11. 2nd Thermoelectrics Applications Workshop 2011 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    nd Thermoelectrics Applications Workshop 2011 2nd Thermoelectrics Applications Workshop 2011 January 3-6, 2011 Hotel Del Coronado San Diego, CA Monday, January 3, 2011 Opening Plenary Session Tuesday, January 4, 2011 Overview of Worldwide Activities in Thermoelectrics Thermoelectric Applications I Thermoelectric Materials I NSF/DOE Thermoelectrics Partnership Wednesday, January 5, 2012 Thermoelectric Materials II Thermoelectric Applications II Thermoelectric Materials III Thermoelectric

  12. 3rd Thermoelectrics Applications Workshop 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3rd Thermoelectrics Applications Workshop 2012 3rd Thermoelectrics Applications Workshop 2012 March 19-22, 2012 Marriott Inner Harbor at Camden Yards Baltimore, MD Tuesday, March 20, 2012 Opening Plenary Session Thermoelectric Applications I Thermoelectric Applications II Thermoelectric Technologies Wednesday, March 21, 2012 Thermoelectric Applications II Thermoelectric Applications III Thermoelectric Materials III Thermoelectric Applications IV Thursday, March 22, 2012 Thermoelectric

  13. Building America Webinar: HVAC Right-Sizing Part 1-Calculating Loads |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy HVAC Right-Sizing Part 1-Calculating Loads Building America Webinar: HVAC Right-Sizing Part 1-Calculating Loads During this webinar, Building America Research Team IBACOS highlighted the key criteria required to create accurate heating and cooling load calculations. Current industry rules of thumb, perceptions and barriers to right-sizing HVAC were also discussed. File webinar_hvac_calculatingloads_20110428.wmv More Documents & Publications HVAC Right-Sizing Part 1:

  14. Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Avery, Azure D.; Zhou, Ben H.; Lee, Jounghee; Lee, Eui -Sup; Miller, Elisa M.; Ihly, Rachelle; Wesenberg, Devin; Mistry, Kevin S.; Guillot, Sarah L.; Zink, Barry L.; et al

    2016-04-04

    Thermoelectric power generation, allowing recovery of part of the energy wasted as heat, is emerging as an important component of renewable energy and energy efficiency portfolios. Although inorganic semiconductors have traditionally been employed in thermoelectric applications, organic semiconductors garner increasing attention as versatile thermoelectric materials. Here we present a combined theoretical and experimental study suggesting that semiconducting single-walled carbon nanotubes with carefully controlled chirality distribution and carrier density are capable of large thermoelectric power factors, higher than 340 μW m-1 K-2, comparable to the best-performing conducting polymers and larger than previously observed for carbon nanotube films. Furthermore, we demonstrate thatmore » phonons are the dominant source of thermal conductivity in the networks, and that our carrier doping process significantly reduces the thermal conductivity relative to undoped networks. As a result, these findings provide the scientific underpinning for improved functional organic thermoelectric composites with carbon nanotube inclusions.« less

  15. Two Alabama Elementary Schools Get Cool with New HVAC Units

    Broader source: Energy.gov [DOE]

    Addison Elementary School and Double Springs Elementary School in northwestern Alabama were warm. Some classrooms just didn’t cool fast enough. The buildings, which were built almost 20 years ago, were in need of new HVAC units.

  16. EECBG Success Story: HVAC Upgrade Saving Money, Protecting History

    Broader source: Energy.gov [DOE]

    With financial support from a $250,000 PA Conservation Works! grant – funded through the federal Energy Efficiency and Conservation Block Grant program and the Recovery Act – CCHS purchased a new Desert-Aire HVAC system. Learn more.

  17. Strategy Guideline: Transitioning HVAC Companies to Whole House Performance Contractors

    SciTech Connect (OSTI)

    Burdick, A.

    2012-05-01

    This report describes the findings from research IBACOS conducted related to heating, ventilation, and air conditioning (HVAC) companies who have made the decision to transition to whole house performance contracting (WHPC).

  18. Strategy Guideline. Transitioning HVAC Companies to Whole House Performance Contractors

    SciTech Connect (OSTI)

    Burdick, Arlan

    2012-05-01

    This report describes the findings from research IBACOS conducted related to heating, ventilation, and air conditioning (HVAC) companies who have made the decision to transition to whole house performance contracting (WHPC).

  19. BTO Workshop on Advanced HVAC Research Effort | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office (BTO) is exploring the launch of a major HVAC research effort in the area of low global warming potential and non-vapor compression technologies. To support this endeavor,...

  20. ETs HVAC, WH and Appliance R&D

    Energy Savers [EERE]

    ... CRADAs can act as a catalyst in the process. HVAC, Water Heating and Appliance R&D 7 Integrated Heat Pump (IHP) Technologies Integrated Approach * Energy cascading is the process ...

  1. Review of Residential Low-Load HVAC Systems

    SciTech Connect (OSTI)

    Brown, Scott A.; Thornton, Brian; Widder, Sarah H.

    2013-09-01

    In support of the U.S. Department of Energys (DOEs) Building America Program, Pacific Northwest National Laboratory (PNNL) conducted an investigation to inventory commercially available HVAC technologies that are being installed in low-load homes. The first step in this investigation was to conduct a review of published literature to identify low-load HVAC technologies available in the United States and abroad, and document the findings of existing case studies that have evaluated the performance of the identified technologies. This report presents the findings of the literature review, identifies gaps in the literature or technical understanding that must be addressed before low-load HVAC technologies can be fully evaluated, and introduces PNNLs planned research and analysis for this project to address identified gaps and potential future work on residential low-load HVAC systems.

  2. ZERH Webinar: Low Load HVAC in Zero Energy Ready Homes

    Broader source: Energy.gov [DOE]

    Building low-load homes creates a new set of challenges for HVAC designers and installers. Right-sizing equipment, managing ventilation, and controlling interior moisture levels are critical if you...

  3. Chapter 5: Lighting, HVAC, and Plumbing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Lighting, HVAC, and Plumbing Chapter 5: Lighting, HVAC, and Plumbing Chapter 5 of the LANL Sustainable Design Guide with guidelines for developing sustainable, healthy, energy-efficient buildings on the Los Alamos National Laboratory campus. PDF icon sustainable_guide_ch5.pdf More Documents & Publications IES version 2012 IES <Virtual Environment> version 6.3 IES version 2013

  4. HVAC R&D | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R&D HVAC R&D Lead Performer: Oak Ridge National Laboratory (ORNL) - Oak Ridge, TN FY16 DOE Funding: $2,688,000 Project Term: Ongoing Funding Type: Direct Lab Funding PROJECT OBJECTIVE Heating, ventilation, and air conditioning (HVAC) is the largest energy end use in both residential and commercial buildings, at 38% and 31% respectively. ORNL's research and development efforts aim to create next-generation, cost-effective, energy-efficient technologies that will enable energy savings

  5. Building America Best Practices Series Vol. 14: Energy Renovations - HVAC:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Guide for Contractors to Share with Homeowners | Department of Energy Vol. 14: Energy Renovations - HVAC: A Guide for Contractors to Share with Homeowners Building America Best Practices Series Vol. 14: Energy Renovations - HVAC: A Guide for Contractors to Share with Homeowners This guide, which is part of a series of Best Practices guides produced by DOE's Building America program, describes ways homeowners can reduce their energy costs and improve the comfort, health, and safety of their

  6. Building America Envelope and Advanced HVAC Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Envelope and Advanced HVAC Research Building America Envelope and Advanced HVAC Research Lead Performer: Oak Ridge National Laboratory (ORNL) - Oak Ridge, TN Project Term: FY 2016 - FY 2018 Funding Type: Direct Lab Funding PROJECT OBJECTIVE ORNL's work in roof and attic research will address the industry need for clear guidance on unvented attics. The wall assemblies research involves a comprehensive evaluation of high-R assemblies. This research supports the Lab and Field Moisture Risk

  7. HVAC Performance Maps - 2014 BTO Peer Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HVAC Performance Maps - 2014 BTO Peer Review HVAC Performance Maps - 2014 BTO Peer Review Presenter: Dane Christensen, National Renewable Energy Laboratory Through laboratory evaluation, this project will develop detailed data sets, termed "performance maps," of certain types of heat pumps. In fiscal year 2014, the National Renewable Energy Laboratory (NREL) will develop performance maps of residential variable speed heat pumps. The U.S. Department of Energy's Building America program

  8. HVAC, Water Heating, and Appliance Publications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HVAC, Water Heating, and Appliance Publications HVAC, Water Heating, and Appliance Publications October 15, 2015 Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners This publication is a final report for Oak Ridge National Laboratory's High-Ambient-Temperature Evaluation Program for Low Global Warming Potential (Low-GWP) Refrigerants project. October 9, 2015 Pump and Fan Technology Characterization and

  9. Nationwide Limited Public Interest Waiver for LED and HVAC Units |

    Energy Savers [EERE]

    Department of Energy Limited Public Interest Waiver for LED and HVAC Units Nationwide Limited Public Interest Waiver for LED and HVAC Units PDF icon eere_nationwide_public_interest_waiver More Documents & Publications Nationwide Nonavailability Waiver: February 11, 2010 (Please note, the waiver for LED traffic signals has been withdrawn effective December 1, 2010) Nationwide Nonavailability Waiver: November 5, 2010 Amended Nationwide Nonavailability Waiver: November 5, 2010

  10. Energy Department Releases Roadmaps on HVAC Technologies, Water Heating,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appliances, and Low-GWP Refrigerants | Department of Energy Releases Roadmaps on HVAC Technologies, Water Heating, Appliances, and Low-GWP Refrigerants Energy Department Releases Roadmaps on HVAC Technologies, Water Heating, Appliances, and Low-GWP Refrigerants December 18, 2014 - 4:50pm Addthis The Research & Development Roadmap for Next-Generation Low Global Warming Potential Refrigerants provides recommendations on R&D activities that will help accelerate the transition to low-GWP

  11. Complex oxides useful for thermoelectric energy conversion

    DOE Patents [OSTI]

    Majumdar, Arunava; Ramesh, Ramamoorthy; Yu, Choongho; Scullin, Matthew L.; Huijben, Mark

    2012-07-17

    The invention provides for a thermoelectric system comprising a substrate comprising a first complex oxide, wherein the substrate is optionally embedded with a second complex oxide. The thermoelectric system can be used for thermoelectric power generation or thermoelectric cooling.

  12. Commercialization of Bulk Thermoelectric Materials for Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercialization of Bulk Thermoelectric Materials for Power Generation Commercialization of Bulk Thermoelectric Materials for Power Generation Critical aspects of technology ...

  13. Novel Nanostructured Interface Solution for Automotive Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Electro-Mechanical Interfaces Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Automotive ...

  14. Proactive Strategies for Designing Thermoelectric Materials for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Proactive Strategies for Designing Thermoelectric Materials for Power Generation Proactive Strategies for Designing Thermoelectric Materials for Power ...

  15. Thermoelectric Mechanical Reliability | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Transport Properties, Thermal Response, and Mechanical Reliability of Thermoelectric Materials and Devices for Automotive Waste Heat Recovery Thermoelectric Mechanical Reliability

  16. The Industrialization of Thermoelectric Power Generation Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presents module and system requirements for high volume power generation with thermoelectrics such desirable thermoelectric properties, low material toxicity, interface ...

  17. Solar thermoelectric generator

    DOE Patents [OSTI]

    Toberer, Eric S.; Baranowski, Lauryn L.; Warren, Emily L.

    2016-05-03

    Solar thermoelectric generators (STEGs) are solid state heat engines that generate electricity from concentrated sunlight. A novel detailed balance model for STEGs is provided and applied to both state-of-the-art and idealized materials. STEGs can produce electricity by using sunlight to heat one side of a thermoelectric generator. While concentrated sunlight can be used to achieve extremely high temperatures (and thus improved generator efficiency), the solar absorber also emits a significant amount of black body radiation. This emitted light is the dominant loss mechanism in these generators. In this invention, we propose a solution to this problem that eliminates virtually all of the emitted black body radiation. This enables solar thermoelectric generators to operate at higher efficiency and achieve said efficient with lower levels of optical concentration. The solution is suitable for both single and dual axis solar thermoelectric generators.

  18. R&D Opportunity Assessment: Joining Technologies in HVAC&R - Workshop on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Joining Technologies in HVAC&R | Department of Energy R&D Opportunity Assessment: Joining Technologies in HVAC&R - Workshop on Joining Technologies in HVAC&R R&D Opportunity Assessment: Joining Technologies in HVAC&R - Workshop on Joining Technologies in HVAC&R Presenter: William Goetzler, Navigant Consulting On June 14, 2015, the U.S. Department of Energy organized a workshop "Joining Technologies in HVAC&R." The purpose of the meeting was for the

  19. NSF/DOE Thermoelectrics Partnership: Thermoelectrics for Automotive Waste

    Broader source: Energy.gov (indexed) [DOE]

    Heat Recovery | Department of Energy Development for commercialization of automotive thermoelectric generators from high-ZT TE materials with using low-cost, widely available materials, system design and modeling to maximize temperature differential across TE modules and maximize power output PDF icon xu.pdf More Documents & Publications NSF/DOE Thermoelectrics Partnership: Thermoelectrics for Automotive Waste Heat Recovery NSF/DOE Thermoelectics Partnership: Thermoelectrics for

  20. Energy Efficient HVAC System for Distributed Cooling/Heating with Thermoelectric Devices

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. Progress toward Development of a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  2. Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty Vehicle Applications

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Energy Efficient HVAC System for Distributed Cooling/Heating with Thermoelectric Devices

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. DOE and Stakeholders Consider Best Approach to Major HVAC&R Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stakeholders Consider Best Approach to Major HVAC&R Research Effort DOE and Stakeholders Consider Best Approach to Major HVAC&R Research Effort January 15, 2016 - 11:27am Addthis ...

  5. CoolCab Thermal Load Reduction Project: CoolCalc HVAC Tool Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Load Reduction Project: CoolCalc HVAC Tool Development CoolCab Thermal Load Reduction Project: CoolCalc HVAC Tool Development 2010 DOE Vehicle Technologies and Hydrogen...

  6. Building America Whole-House Solutions for New Homes: HVAC Design...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HVAC Design Strategy for a Hot-Humid Production Builder Building America Whole-House Solutions for New Homes: HVAC Design Strategy for a Hot-Humid Production Builder In this ...

  7. Critical Question #4: What are the Best Off-the-Shelf HVAC Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HVAC Solutions for Low-Load, High-Performance Homes and Apartments? Critical Question 4: What are the Best Off-the-Shelf HVAC Solutions for Low-Load, High-Performance Homes ...

  8. HVAC, Water Heater and Appliance R&D - 2014 BTO Peer Review ...

    Energy Savers [EERE]

    HVAC, Water Heater and Appliance R&D - 2014 BTO Peer Review HVAC, Water Heater and Appliance R&D - 2014 BTO Peer Review Presenter: Tony Bouza, U.S. Department of Energy This ...

  9. DOE and Stakeholders Ponder Best Approach to Major HVAC&R Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Stakeholders Ponder Best Approach to Major HVAC&R Research Effort DOE and Stakeholders Ponder Best Approach to Major HVAC&R Research Effort January 15, 2016 - 11:27am Addthis...

  10. Issue #3: HVAC Proper Installation Energy Savings: Over-Promising or

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Under-Delivering? | Department of Energy 3: HVAC Proper Installation Energy Savings: Over-Promising or Under-Delivering? Issue #3: HVAC Proper Installation Energy Savings: Over-Promising or Under-Delivering? What energy savings are realistically achievable by following quality installation standards for installation, operation, and maintenance of residential HVAC? PDF icon issue3_airflow_charge.pdf PDF icon issue3_hvac_installed.pdf PDF icon issue3_pdi_hvacsys.pdf More Documents &

  11. DOE Convening Report on Certification of Commercial HVAC and CRE Products |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Convening Report on Certification of Commercial HVAC and CRE Products DOE Convening Report on Certification of Commercial HVAC and CRE Products This document is the convening report on the feasibility of a negotiated rulemaking to revise the certification program for commercial HVAC and CRE products published on October 2, 2012. PDF icon convening_report_hvac_cre_1.pdf More Documents & Publications Lochinvar Preliminary Plan Comments Comment On: DOE-HQ-2011-0014-0001

  12. Superconducting thermoelectric generator

    DOE Patents [OSTI]

    Metzger, J.D.; El-Genk, M.S.

    1994-01-01

    Thermoelectricity is produced by applying a temperature differential to dissimilar electrically conducting or semiconducting materials, thereby producing a voltage that is proportional to the temperature difference. Thermoelectric generators use this effect to directly convert heat into electricity; however, presently-known generators have low efficiencies due to the production of high currents which in turn cause large resistive heating losses. Some thermoelectric generators operate at efficiencies between 4% and 7% in the 800{degrees} to 1200{degrees}C range. According to its major aspects and bradly stated, the present invention is an apparatus and method for producing electricity from heat. In particular, the invention is a thermoelectric generator that juxtaposes a superconducting material and a semiconducting material - so that the superconducting and the semiconducting materials touch - to convert heat energy into electrical energy without resistive losses in the temperature range below the critical temperature of the superconducting material. Preferably, an array of superconducting material is encased in one of several possible configurations within a second material having a high thermal conductivity, preferably a semiconductor, to form a thermoelectric generator.

  13. In-line thermoelectric module

    DOE Patents [OSTI]

    Pento, Robert; Marks, James E.; Staffanson, Clifford D.

    2000-01-01

    A thermoelectric module with a plurality of electricity generating units each having a first end and a second end, the units being arranged first end to second end along an in-line axis. Each unit includes first and second elements each made of a thermoelectric material, an electrically conductive hot member arranged to heat one side of the first element, and an electrically conductive cold member arranged to cool another side of the first element and to cool one side of the second element. The hot member, the first element, the cold member and the second element are supported in a fixture, are electrically connected respectively to provide an electricity generating unit, and are arranged respectively in positions along the in-line axis. The individual components of each generating unit and the respective generating units are clamped in their in-line positions by a loading bolt at one end of the fixture and a stop wall at the other end of the fixture. The hot members may have a T-shape and the cold members an hourglass shape to facilitate heat transfer. The direction of heat transfer through the hot members may be perpendicular to the direction of heat transfer through the cold members, and both of these heat transfer directions may be perpendicular to the direction of current flow through the module.

  14. In-Line Thermoelectric Module

    SciTech Connect (OSTI)

    Pento, Robert; Marks, James E.; Staffanson, Clifford D.

    1998-07-28

    A thermoelectric module with a plurality of electricity generating units each having a first end and a second end, the units being arranged first end to second end along an-in-line axis. Each unit includes first and second elements each made of a thermoelectric material, an electrically conductive hot member arranged to heat one side of the first element, and an electrically conductive cold member arranged to cool another side of the first element and to cool one side of the second element. The hot member, the first element, the cold member and the second element are supported in a fixture, are electrically connected respectively to provide an electricity generating unit, and are arranged respectively in positions along the in-line axis. The individual components of each generating unit and the respective generating units are clamped in their in-line positions by a loading bolt at one end of the fixture and a stop wall at the other end of the fixture. The hot members may have a T-shape and the cold members an hourglass shape to facilitate heat transfer. The direction of heat transfer through the hot members may be perpendicular to the direction of heat transfer through the cold members, and both of these heat transfer directions maybe perpendicular to the direction-of current flow through the module.

  15. Thermoelectrically cooled water trap

    DOE Patents [OSTI]

    Micheels, Ronald H.

    2006-02-21

    A water trap system based on a thermoelectric cooling device is employed to remove a major fraction of the water from air samples, prior to analysis of these samples for chemical composition, by a variety of analytical techniques where water vapor interferes with the measurement process. These analytical techniques include infrared spectroscopy, mass spectrometry, ion mobility spectrometry and gas chromatography. The thermoelectric system for trapping water present in air samples can substantially improve detection sensitivity in these analytical techniques when it is necessary to measure trace analytes with concentrations in the ppm (parts per million) or ppb (parts per billion) partial pressure range. The thermoelectric trap design is compact and amenable to use in a portable gas monitoring instrumentation.

  16. Synthetic thermoelectric materials comprising phononic crystals

    DOE Patents [OSTI]

    El-Kady, Ihab F; Olsson, Roy H; Hopkins, Patrick; Reinke, Charles; Kim, Bongsang

    2013-08-13

    Synthetic thermoelectric materials comprising phononic crystals can simultaneously have a large Seebeck coefficient, high electrical conductivity, and low thermal conductivity. Such synthetic thermoelectric materials can enable improved thermoelectric devices, such as thermoelectric generators and coolers, with improved performance. Such synthetic thermoelectric materials and devices can be fabricated using techniques that are compatible with standard microelectronics.

  17. Vehicular Thermoelectrics: A New Green Technology

    Broader source: Energy.gov [DOE]

    Overview of DOE-funded R&D on vehicular application of thermoelectric s - thermoelectric generators and thermoelectric heating and cooling, and a jointly funded TE R&D program with the NSF

  18. NSF/DOE Thermoelectric Partnership: High-Performance Thermoelectric...

    Broader source: Energy.gov (indexed) [DOE]

    An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles An integrated approach towards efficient, scalable, and low ...

  19. Investigations of Interfacial Structure in Thermoelectric Tellurides...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investigations of Interfacial Structure in Thermoelectric Tellurides Discusses examples of work on the investigation of atomic structure of interfaces in thermoelectric tellurides ...

  20. Proactive Strategies for Designing Thermoelectric Materials for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Proactive Strategies for Designing Thermoelectric Materials for Power Generation Thermoelectric Couple Demonstration of (In, Ce)-based Skutterudite ...

  1. Recent Device Developments with Advanced Bulk Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recent Device Developments with Advanced Bulk Thermoelectric Materials at RTI Reviews work in engineered thin-film nanoscale thermoelectric materials and nano-bulk materials with ...

  2. ThermoElectric Power System Simulator (TEPSS)

    Broader source: Energy.gov [DOE]

    It describes the tool ThermoElectric Power System Simulator (TEPSS) which enables feasibility evaluation for thermoelectrics with various heat resources and optimizing design for specific uses.

  3. Vehicular Thermoelectrics: A New Green Technology | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A New Green Technology Vehicular Thermoelectrics: A New Green Technology An overview of the DOE activities in vehicular application of thermoelectrics PDF icon fairbanks.pdf More ...

  4. Vehicle Fuel Economy Improvement through Thermoelectric Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery 2005 Diesel Engine Emissions ...

  5. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste ...

  6. Vehicular Thermoelectric Applications Session DEER 2009 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon deer09fairbanks.pdf More Documents & Publications Thermoelectrics: The New Green Automotive Technology Vehicular Thermoelectrics: The New Green Technology Vehicular ...

  7. Heilongjiang Mudanjiang Nongken Xinneng Thermoelectric Co Ltd...

    Open Energy Info (EERE)

    Heilongjiang Mudanjiang Nongken Xinneng Thermoelectric Co Ltd Jump to: navigation, search Name: Heilongjiang Mudanjiang Nongken Xinneng Thermoelectric Co., Ltd. Place: Mishan,...

  8. Automotive Thermoelectric Generator (TEG) Controls

    Broader source: Energy.gov [DOE]

    Addresses functions to be controlled that make the difference between a barely functional and an efficient, cost-effective thermoelectric generator(TEG)

  9. Superconducting thermoelectric generator

    DOE Patents [OSTI]

    Metzger, J.D.; El-Genk, M.S.

    1998-05-05

    An apparatus and method for producing electricity from heat is disclosed. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device. 4 figs.

  10. Superconducting thermoelectric generator

    DOE Patents [OSTI]

    Metzger, J.D.; El-Genk, M.S.

    1996-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  11. Superconducting thermoelectric generator

    DOE Patents [OSTI]

    Metzger, John D.; El-Genk, Mohamed S.

    1998-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  12. Integrated high efficiency blower apparatus for HVAC systems

    DOE Patents [OSTI]

    Liu, Xiaoyue; Weigman, Herman; Wang, Shixiao

    2007-07-24

    An integrated centrifugal blower wheel for a heating, ventilation and air conditioning (HVAC) blower unit includes a first blade support, a second blade support, and a plurality of S-shaped blades disposed between the first and second blade supports, wherein each of the S-shaped blades has a trailing edge bent in a forward direction with respect to a defined direction of rotation of the wheel.

  13. Research and Development Roadmap for Emerging HVAC Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development Roadmap for Emerging HVAC Technologies W. Goetzler, M. Guernsey, and J. Young October 2014 Prepared by Navigant Consulting, Inc. (This page intentionally left blank) NOTICE This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied,

  14. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Systems Implemented in a Hybrid Configuration Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of ...

  15. NSF/DOE Thermoelectric Partnership: Inorganic-Organic Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inorganic-Organic Hybrid Thermoelectrics NSFDOE Thermoelectric Partnership: Inorganic-Organic Hybrid Thermoelectrics 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle ...

  16. Development of a 100-Watt High Temperature Thermoelectric Generator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a 100-Watt High Temperature Thermoelectric Generator Development of a 100-Watt High Temperature Thermoelectric Generator Test results for low and high temperature thermoelectric ...

  17. Investigations of Interfacial Structure in Thermoelectric Tellurides

    Broader source: Energy.gov [DOE]

    Discusses examples of work on the investigation of atomic structure of interfaces in thermoelectric tellurides

  18. Waste Heat Recovery Opportunities for Thermoelectric Generators

    Broader source: Energy.gov [DOE]

    Thermoelectrics have unique advantages for integration into selected waste heat recovery applications.

  19. Composite Thermoelectric Devices | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Composite thermoelectric devices incorporating common conductors laminated between P- and N-type thermoelectric plates demonstrate internal ohmic loss reduction and enhanced performance PDF icon chyu.pdf More Documents & Publications Thermoelectric Developments for Vehicular Applications Proactive Strategies for Designing Thermoelectric Materials for Power Generation Materials strategies for improving the overall device ZT

  20. Methods of synthesizing thermoelectric materials

    DOE Patents [OSTI]

    Ren, Zhifeng; Chen, Shuo; Liu, Wei-Shu; Wang, Hengzhi; Wang, Hui; Yu, Bo; Chen, Gang

    2016-04-05

    Methods for synthesis of thermoelectric materials are disclosed. In some embodiments, a method of fabricating a thermoelectric material includes generating a plurality of nanoparticles from a starting material comprising one or more chalcogens and one or more transition metals; and consolidating the nanoparticles under elevated pressure and temperature, wherein the nanoparticles are heated and cooled at a controlled rate.

  1. High performance thermoelectric nanocomposite device

    DOE Patents [OSTI]

    Yang, Jihui; Snyder, Dexter D.

    2011-10-25

    A thermoelectric device includes a nanocomposite material with nanowires of at least one thermoelectric material having a predetermined figure of merit, the nanowires being formed in a porous substrate having a low thermal conductivity and having an average pore diameter ranging from about 4 nm to about 300 nm.

  2. CBEI: HVAC Packages for Small and Medium Sized Commercial Buildings - 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Review | Department of Energy HVAC Packages for Small and Medium Sized Commercial Buildings - 2015 Peer Review CBEI: HVAC Packages for Small and Medium Sized Commercial Buildings - 2015 Peer Review Presenter: Russell Taylor, United Technologies Research Center View the Presentation PDF icon CBEI: HVAC Packages for Small and Medium Sized Commercial Buildings - 2015 Peer Review More Documents & Publications CBEI: FDD for Advanced RTUs - 2015 Peer Review CBEI: Lessons Learned from

  3. 2014-04-28 Issuance: Certification of Commercial HVAC, Water Heating, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refrigeration Equipment; Final Rule | Department of Energy 28 Issuance: Certification of Commercial HVAC, Water Heating, and Refrigeration Equipment; Final Rule 2014-04-28 Issuance: Certification of Commercial HVAC, Water Heating, and Refrigeration Equipment; Final Rule This document is a pre-publication Federal Register final rule regarding the certification of commercial heating, ventilation, and air-conditioning (HVAC), water heating (WH), and refrigeration (CRE) equipment, as issued by

  4. Thermoelectric system for an engine

    DOE Patents [OSTI]

    Mcgilvray, Andrew N.; Vachon, John T.; Moser, William E.

    2010-06-22

    An internal combustion engine that includes a block, a cylinder head having an intake valve port and exhaust valve port formed therein, a piston, and a combustion chamber defined by the block, the piston, and the head. At least one thermoelectric device is positioned within either or both the intake valve port and the exhaust valve port. Each of the valves is configured to move within a respective intake and exhaust valve port thereby causing said valves to engage the thermoelectric devices resulting in heat transfer from the valves to the thermoelectric devices. The intake valve port and exhaust valve port are configured to fluidly direct intake air and exhaust gas, respectively, into the combustion chamber and the thermoelectric device is positioned within the intake valve port, and exhaust valve port, such that the thermoelectric device is in contact with the intake air and exhaust gas.

  5. Electronic cooling using thermoelectric devices

    SciTech Connect (OSTI)

    Zebarjadi, M.

    2015-05-18

    Thermoelectric coolers or Peltier coolers are used to pump heat in the opposite direction of the natural heat flux. These coolers have also been proposed for electronic cooling, wherein the aim is to pump heat in the natural heat flux direction and from hot spots to the colder ambient temperature. In this manuscript, we show that for such applications, one needs to use thermoelectric materials with large thermal conductivity and large power factor, instead of the traditionally used high ZT thermoelectric materials. We further show that with the known thermoelectric materials, the active cooling cannot compete with passive cooling, and one needs to explore a new set of materials to provide a cooling solution better than a regular copper heat sink. We propose a set of materials and directions for exploring possible materials candidates suitable for electronic cooling. Finally, to achieve maximum cooling, we propose to use thermoelectric elements as fins attached to copper blocks.

  6. Building America Whole-House Solutions for New Homes: HVAC Design Strategy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for a Hot-Humid Production Builder | Department of Energy HVAC Design Strategy for a Hot-Humid Production Builder Building America Whole-House Solutions for New Homes: HVAC Design Strategy for a Hot-Humid Production Builder In this project, BSC worked with the builder to develop a cost-effective design for moving the HVAC system into conditioned space and increase the energy performance of future production houses in anticipation of 2015 IECC codes. PDF icon HVAC Design Strategy for a

  7. DOE Zero Energy Ready Home Low Load High Efficiency HVAC Webinar (Text Version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the DOE Zero Energy Ready Home webinar, Low Load High Efficiency HVAC, presented in May 2014.

  8. ZERH Webinar: Low Load HVAC and Zero Energy Ready Homes | Department...

    Office of Environmental Management (EM)

    long-term structure durability. In this webinar you will learn key HVAC design techniques and critical pitfalls to avoid when building highly energy efficient homes....

  9. CoolCab Test and Evaluation and CoolCalc HVAC Tool Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications CoolCab Test and Evaluation and CoolCalc HVAC Tool Development CoolCab Test and Evaluation Vehicle Technologies Office Merit Review ...

  10. R&D Opportunity Assessment: Joining Technologies in HVAC&R

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stakeholder Discussion Forum R&D Opportunity Assessment: Joining Technologies in HVAC&R ... Project Summary and Introductions Purpose The DOE aims to: Facilitate R&D on ...

  11. R&D Opportunity Assessment: Joining Technologies in HVAC&R -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HVAC&R More Documents & Publications Research & Development Roadmap: Next-Generation Low Global Warming Potential Refrigerants Advanced Rotating Heat Exchangers Working Fluids Low...

  12. ZERH Webinar: Low Load HVAC in Zero Energy Ready Homes (Text Version) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Low Load HVAC in Zero Energy Ready Homes (Text Version) ZERH Webinar: Low Load HVAC in Zero Energy Ready Homes (Text Version) Below is the text version of the webinar Low Load HVAC in Zero Energy Ready Homes, presented in January 2016. Watch the presentation. Lindsay Parker: Hi, everyone. Welcome to the Department of Energy Zero Energy Ready Home technical training webinar series. We're very excited that you can join us today for this session on low-load HVAC for Zero

  13. Concentrated Thermoelectric Power

    Broader source: Energy.gov [DOE]

    This fact sheet describes a concentrated solar hydroelectric power project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by MIT, is working to demonstrate concentrating solar thermoelectric generators with >10% solar-to-electrical energy conversion efficiency while limiting optical concentration to less than a factor of 10 and potentially less than 4. When combined with thermal storage, CSTEGs have the potential to provide electricity day and night using no moving parts at both the utility and distributed scale.

  14. NSF/DOE Thermoelectrics Partnership: Purdue … GM Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces NSFDOE Thermoelectics Partnership: Thermoelectrics for Automotive Waste Heat ...

  15. Thermal Strategies for High Efficiency Thermoelectric Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies for High Efficiency Thermoelectric Power Generation Thermal Strategies for High Efficiency Thermoelectric Power Generation Developing integrated TE system configurations ...

  16. NSF/DOE Thermoelectics Partnership: Thermoelectrics for Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectics Partnership: Thermoelectrics for Automotive Waste Heat Recovery NSFDOE Thermoelectics Partnership: Thermoelectrics for Automotive Waste Heat Recovery 2011 DOE ...

  17. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Engineering and Materials for Automotive Thermoelectric Applications Electrical ...

  18. Manufacture of thermoelectric generator structures by fiber drawing

    DOE Patents [OSTI]

    McIntyre, Timothy J; Simpson, John T; West, David L

    2014-11-18

    Methods of manufacturing a thermoelectric generator via fiber drawing and corresponding or associated thermoelectric generator devices are provided.

  19. Thermoelectric generator for motor vehicle

    DOE Patents [OSTI]

    Bass, John C.

    1997-04-29

    A thermoelectric generator for producing electric power for a motor vehicle from the heat of the exhaust gasses produced by the engine of the motor vehicle. The exhaust gasses pass through a finned heat transfer support structure which has seat positions on its outside surface for the positioning of thermoelectric modules. A good contact cylinder provides a framework from which a spring force can be applied to the thermoelectric modules to hold them in good contact on their seats on the surface of the heat transfer support structure.

  20. Low-Load HVAC Systems for Single and Multifamily Applications

    Energy Savers [EERE]

    Low-Load HVAC Systems for Single and Multifamily Applications Anthony Grisolia Managing Director Innovation Programs Andrew Poerschke Specialist Innovation Programs CONFIDENTIAL Agenda Basis for Thermal Comfort Comparative Modeling Newtown Townhouse Case Study Plug and Play System Future Work How IBACOS Thinks About Comfort Risks Home 24 Home 25 Home 26 Same Plan Same Street Same Orientation Different Occupants 0.5 CLO 1.0 MET ASHRAE 55 Comfort Aggregate of 36 Homes 0.5 CLO 1.0 MET 47% of data

  1. Building America Top Innovations 2014 Profile: HVAC Cabinet Air Leakage Test Method

    SciTech Connect (OSTI)

    none,

    2014-11-01

    This 2014 Top Innovation profile describes Building America-funded research by teams and national laboratories that resulted in the development of an ASHRAE standard and a standardized testing method for testing the air leakage of HVAC air handlers and furnace cabinets and has spurred equipment manufacturers to tighten the cabinets they use for residential HVAC systems.

  2. Building America Top Innovations Hall of Fame Profile … Integration of HVAC System Design with Simplified Duct Distribution

    Energy Savers [EERE]

    research team IBACOS worked with S&A Homes to design a compact HVAC layout with all ducts in conditioned space in several homes in Pittsburgh. Poor-quality HVAC design and installation can reduce the overall HVAC system energy efficiency up to 30%. HVAC quality installation practices are essential to realizing the promise of high-performance homes. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.1 Building Science Solutions

  3. Thermoelectric Materials for Automotive Applications

    Broader source: Energy.gov [DOE]

    Discusses the background information on what makes a good thermoelectric material, then the findings of three recent ORNL field report studies focused at PbSe, Bi2Se3, CrSi2, respectively

  4. Fouling of HVAC fin and tube heat exchangers

    SciTech Connect (OSTI)

    Siegel, Jeffrey; Carey, Van P.

    2001-07-01

    Fin and tube heat exchangers are used widely in residential, commercial and industrial HVAC applications. Invariably, indoor and outdoor air contaminants foul these heat exchangers. This fouling can cause decreased capacity and efficiency of the HVAC equipment as well as indoor air quality problems related to microbiological growth. This paper describes laboratory studies to investigate the mechanisms that cause fouling. The laboratory experiments involve subjecting a 4.7 fins/cm (12 fins/inch) fin and tube heat exchanger to an air stream that contains monodisperse particles. Air velocities ranging from 1.5-5.2 m/s (295 ft/min-1024 ft/min) and particle sizes from 1--8.6 {micro}m are used. The measured fraction of particles that deposit as well as information about the location of the deposited material indicate that particles greater than about 1 {micro}m contribute to fouling. These experimental results are used to validate a scaling analysis that describes the relative importance of several deposition mechanisms including impaction, Brownian diffusion, turbophoresis, thermophoresis, diffusiophoresis, and gravitational settling. The analysis is extended to apply to different fin spacings and particle sizes typical of those found in indoor air.

  5. The Industrialization of Thermoelectric Power Generation Technology

    Broader source: Energy.gov [DOE]

    Presents module and system requirements for high volume power generation with thermoelectrics such desirable thermoelectric properties, low material toxicity, interface compatibility, cost scalability, raw material availability and module reliability

  6. Benefits of Thermoelectric Technology for the Automobile

    Broader source: Energy.gov [DOE]

    Discusses improved fuel efficiency and other benefits of automotive application of thermoelectric (power generation and heating/cooling) and the need for production quantities of high-efficiency thermoelectric modules

  7. Thermoelectric Applications to Truck Essential Power

    SciTech Connect (OSTI)

    John C. Bass; Norbert B. Elsner

    2001-12-12

    The subjects covered in this report are: thermoelectrics, 1-kW generator for diesel engine; self-powered heater; power for wireless data transmission; and quantum-well thermoelectrics.

  8. Thermoelectric Generator Performance for Passenger Vehicles

    Broader source: Energy.gov [DOE]

    Presents bench, dynamometer, in-vehicle tests of thermoelectric generators in BMW X6 and Lincoln MKT

  9. Reliability of Transport Properties for Bulk Thermoelectrics

    Broader source: Energy.gov [DOE]

    Presents international round-robin study to ensure quality of transport data and figure of merit of thermoelectric materials

  10. Thermoelectric Bulk Materials from the Explosive Consolidation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Bulk Materials from the Explosive Consolidation of Nanopowders Describes technique of explosively consolidating nanopowders to yield fully dense, consolidated, ...

  11. Thermoelectric Generator (TEG) Fuel Displacement Potential using

    Broader source: Energy.gov (indexed) [DOE]

    Engine-in-the-Loop and Simulation | Department of Energy Assessment of fuel savings with thermoelectric generators (TEGs) using detailed model of GM-developed TEG as part of the engine connected to a dynamometer that emulates the rest of the vehicle PDF icon vijayagopal.pdf More Documents & Publications Establishing Thermo-Electric Generator (TEG) Design Targets for Hybrid Vehicles Thermoelectric Generator Performance for Passenger Vehicles Skutterudite Thermoelectric Generator For

  12. Workshop 2: Advanced HVAC&R Research Effort | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Advanced HVAC&R Research Effort Workshop 2: Advanced HVAC&R Research Effort The Building Technologies Office (BTO) is exploring the launch of a major HVAC&R research effort in the area of low global warming potential and non-vapor compression technologies. To support this endeavor, BTO convened two workshops to exchange ideas on the technical focus and overall structure and approach for the effort. The second workshop was held at the American Society of Heating, Refrigerating, and

  13. Building America Expert Meeting Report: Transitioning Traditional HVAC Contractors to Whole House Performance Contractors

    SciTech Connect (OSTI)

    Burdick, A.

    2011-10-01

    This report outlines findings resulting from a U.S. Department of Energy Building America expert meeting to determine how HVAC companies can transition from a traditional contractor status to a service provider for whole house energy upgrade contracting. IBACOS has embarked upon a research effort under the Building America Program to understand business impacts and change management strategies for HVAC companies. HVAC companies can implement these strategies in order to quickly transition from a 'traditional' heating and cooling contractor to a service provider for whole house energy upgrade contracting. Due to HVAC service contracts, which allow repeat interaction with homeowners, HVAC companies are ideally positioned in the marketplace to resolve homeowner comfort issues through whole house energy upgrades. There are essentially two primary ways to define the routes of transition for an HVAC contractor taking on whole house performance contracting: (1) Sub-contracting out the shell repair/upgrade work; and (2) Integrating the shell repair/upgrade work into their existing business. IBACOS held an Expert Meeting on the topic of Transitioning Traditional HVAC Contractors to Whole House Performance Contractors on March 29, 2011 in San Francisco, CA. The major objectives of the meeting were to: Review and validate the general business models for traditional HVAC companies and whole house energy upgrade companies Review preliminary findings on the differences between the structure of traditional HVAC Companies and whole house energy upgrade companies Seek industry input on how to structure information so it is relevant and useful for traditional HVAC contractors who are transitioning to becoming whole house energy upgrade contractors Seven industry experts identified by IBACOS participated in the session along with one representative from the National Renewable Energy Laboratory (NREL). The objective of the meeting was to validate the general operational profile of an integrated whole house performance contracting company and identify the most significant challenges facing a traditional HVAC contractor looking to transition to a whole house performance contractor. To facilitate the discussion, IBACOS divided the business operations profile of a typical integrated whole house performance contracting company (one that performs both HVAC and shell repair/upgrade work) into seven Operational Areas with more detailed Business Functions and Work Activities falling under each high-level Operational Area. The expert panel was asked to review the operational profile or 'map' of the Business Functions. The specific Work Activities within the Business Functions identified as potential transition barriers were rated by the group relative to the value in IBACOS creating guidance ensuring a successful transition and the relative difficulty in executing.

  14. DOE ZERH Webinar: Low Load High Efficiency HVAC (Text Version) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Low Load High Efficiency HVAC (Text Version) DOE ZERH Webinar: Low Load High Efficiency HVAC (Text Version) Below is the text version of the DOE Zero Energy Ready Home webinar, Low Load High Efficiency HVAC, presented in May 2014. Watch the presentation. GoToWebinar voice: The broadcast is now starting. All attendees are in listen-only mode. Lindsay Parker: Hi, everyone. Welcome to the Department of Energy Zero Energy Ready Home Technical Training Webinar Series. We're really

  15. HVAC, Water Heater and Appliance R&D - 2014 BTO Peer Review | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Heater and Appliance R&D - 2014 BTO Peer Review HVAC, Water Heater and Appliance R&D - 2014 BTO Peer Review Presenter: Tony Bouza, U.S. Department of Energy This presentation at the 2014 Peer Review provided an overview of the Building Technologies Office's HVAC, Water Heater and Appliance R&D activities. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs. View the Presentation PDF icon HVAC, Water Heater and

  16. High Energy Density Thermal Batteries: Thermoelectric Reactors for Efficient Automotive Thermal Storage

    SciTech Connect (OSTI)

    2011-11-15

    HEATS Project: Sheetak is developing a new HVAC system to store the energy required for heating and cooling in EVs. This system will replace the traditional refrigerant-based vapor compressors and inefficient heaters used in todays EVs with efficient, light, and rechargeable hot-and-cold thermal batteries. The high energy density thermal batterywhich does not use any hazardous substancescan be recharged by an integrated solid-state thermoelectric energy converter while the vehicle is parked and its electrical battery is being charged. Sheetaks converters can also run on the electric battery if needed and provide the required cooling and heating to the passengerseliminating the space constraint and reducing the weight of EVs that use more traditional compressors and heaters.

  17. Improved Thermoelectric Devices: Advanced Semiconductor Materials for Thermoelectric Devices

    SciTech Connect (OSTI)

    2009-12-11

    Broad Funding Opportunity Announcement Project: Phononic Devices is working to recapture waste heat and convert it into usable electric power. To do this, the company is using thermoelectric devices, which are made from advanced semiconductor materials that convert heat into electricity or actively remove heat for refrigeration and cooling purposes. Thermoelectric devices resemble computer chips, and they manage heat by manipulating the direction of electrons at the nanoscale. These devices arent new, but they are currently too inefficient and expensive for widespread use. Phononic Devices is using a high-performance, cost-effective thermoelectric design that will improve the devices efficiency and enable electronics manufacturers to more easily integrate them into their products.

  18. Nanostructured Thermoelectrics. The New Paradigm | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Highlights advances and future strategies for enhancing the thermoelectric figure of merit of bulk nanostructured thermoelectric and materials using low cost earth abundant elements PDF icon kanatzidis.pdf More Documents & Publications DOE/NSF Thermoelectric Partnership Project SEEBECK Saving Energy Effectively By Engaging in Collaborative Research and Sharing Knowledge Thermoelectric Materials for Automotive Applications Recent Theoretical Results for Advanced Thermoelectric Materials

  19. Thermoelectric refrigerator having improved temperature stabilization means

    DOE Patents [OSTI]

    Falco, Charles M.

    1982-01-01

    A control system for thermoelectric refrigerators is disclosed. The thermoelectric refrigerator includes at least one thermoelectric element that undergoes a first order change at a predetermined critical temperature. The element functions as a thermoelectric refrigerator element above the critical temperature, but discontinuously ceases to function as a thermoelectric refrigerator element below the critical temperature. One example of such an arrangement includes thermoelectric refrigerator elements which are superconductors. The transition temperature of one of the superconductor elements is selected as the temperature control point of the refrigerator. When the refrigerator attempts to cool below the point, the metals become superconductors losing their ability to perform as a thermoelectric refrigerator. An extremely accurate, first-order control is realized.

  20. Semimetal/Semiconductor Nanocomposites for Thermoelectrics

    SciTech Connect (OSTI)

    Lu, Hong; Burke, Peter G.; Gossard, Arthur C.; Zeng, Gehong; Ramu, Ashok T.; Bahk, Je-Hyeong; Bowers, John E.

    2011-04-15

    In this work, we present research on semimetal-semiconductor nanocomposites grown by molecular beam epitaxy (MBE) for thermoelectric applications. We study several different III-V semiconductors embedded with semimetallic rare earth-group V (RE-V) compounds, but focus is given here to ErSb:InxGa1-xSb as a promising p-type thermoelectric material. Nanostructures of RE-V compounds are formed and embedded within the III-V semiconductor matrix. By codoping the nanocomposites with the appropriate dopants, both n-type and p-type materials have been made for thermoelectric applications. The thermoelectric properties have been engineered for enhanced thermoelectric device performance. Segmented thermoelectric power generator modules using 50 ?m thick Er-containing nanocomposites have been fabricated and measured. Research on different rare earth elements for thermoelectrics is discussed.

  1. End-on radioisotope thermoelectric generator impact tests

    SciTech Connect (OSTI)

    Reimus, M.A.H.; Hhinckley, J.E.

    1997-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of [sup 238]Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). The modular GPHS design was developed to address both survivability during launch abort and return from orbit. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure.

  2. End-on radioisotope thermoelectric generator impact tests

    SciTech Connect (OSTI)

    Reimus, M.A.; Hinckley, J.E.

    1997-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). The modular GPHS design was developed to address both survivability during launch abort and return from orbit. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure. {copyright} {ital 1997 American Institute of Physics.}

  3. Energy Savings Potential and RD&D Opportunities for Commercial Building HVAC

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Building Technologies Office report assesses heating, ventilation, and air-conditioning (HVAC) technologies for U.S. commercial buildings to identify and provide analysis on 17 priority technology options in various stages of development.

  4. CoolCab Test and Evaluation and CoolCalc HVAC Tool Development...

    Broader source: Energy.gov (indexed) [DOE]

    icon vss075lustbader2012o.pdf More Documents & Publications CoolCab Test and Evaluation CoolCab Test and Evaluation and CoolCalc HVAC Tool Development Vehicle Technologies ...

  5. HVAC, Water Heating, and Appliance Subprogram Overview — 2016 BTO Peer Review

    Broader source: Energy.gov [DOE]

    This presentation at the 2016 Peer Review provided an overview of the Building Technologies Office’s Emerging Technologies: HVAC, Water Heating, and Appliance subprogram. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs.

  6. CoolCab Test and Evaluation and CoolCalc HVAC Tool Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CoolCab Test and Evaluation & CoolCalc HVAC Tool Development Presenter and P.I.: Jason A. ... idling * Develop analytical models and test methods to reduce uncertainties and ...

  7. Variable-Speed, Low-Cost Motor for Residential HVAC Systems ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Variable-Speed, Low-Cost Motor for Residential HVAC Systems Lower-Cost, Variable-Speed ... DynaMotors Inc., with the aid of a grant from DOE's Inventions and Innovation Program, ...

  8. Building America Expert Meeting Report. Transitioning Traditional HVAC Contractors to Whole House Performance Contractors

    SciTech Connect (OSTI)

    Burdick, Arlan

    2011-10-01

    This expert meeting was hosted by the IBACOS Building America research team to determine how HVAC companies can transition from a traditional contractor status to a service provider for whole house energy upgrade contracting.

  9. What are the Best HVAC Solutions for Low-Load, High Performance Homes?"

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 26, 2012, and addressed the question What are the best HVAC solutions for low-load, high performance homes?"

  10. CBEI: Pre-commercial demonstration of cost-effective advanced HVAC controls

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and diagnostics for medium-sized buildings - 2015 Peer Review | Department of Energy Pre-commercial demonstration of cost-effective advanced HVAC controls and diagnostics for medium-sized buildings - 2015 Peer Review CBEI: Pre-commercial demonstration of cost-effective advanced HVAC controls and diagnostics for medium-sized buildings - 2015 Peer Review Presenter: Draguna Vrabie, United Technologies Research Center View the Presentation PDF icon CBEI: Pre-commercial demonstration of

  11. HVAC Right-Sizing Part 1: Calculating Loads | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Right-Sizing Part 1: Calculating Loads HVAC Right-Sizing Part 1: Calculating Loads This webinar, presented by IBACOS (a Building America Research Team) will highlight the key criteria required to create accurate heating and cooling load calculations, following the guidelines of the Air Conditioning Contractors of America (ACCA) Manual J version 8 PDF icon webinar_hvac_calculatingloads_20110428.pdf More Documents & Publications 2014-08-28 Issuance: Energy Conservation Standards for Packaged

  12. International HVAC&R R&D Collaboration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International HVAC&R R&D Collaboration International HVAC&R R&D Collaboration Tony Bouza, chair of the International Organizing Committee for the 11th IEA Heat Pump Conference, delivers the welcoming address in Montreal. (2014) Tony Bouza, chair of the International Organizing Committee for the 11th IEA Heat Pump Conference, delivers the welcoming address in Montreal. (2014) Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN Partners: -- International Energy Agency -

  13. Case study field evaluation of a systems approach to retrofitting a residential HVAC system

    SciTech Connect (OSTI)

    Walker, Iain S.; McWiliams, Jennifer A.; Konopacki, Steven J.

    2003-09-01

    This case study focusing on a residence in northern California was undertaken as a demonstration of the potential of a systems approach to HVAC retrofits. The systems approach means that other retrofits that can affect the HVAC system are also considered. For example, added building envelope insulation reduces building loads so that smaller capacity HVAC system can be used. Secondly, we wanted to examine the practical issues and interactions with contractors and code officials required to accomplish the systems approach because it represents a departure from current practice. We identified problems in the processes of communication and installation of the retrofit that led to compromises in the final energy efficiency of the HVAC system. These issues must be overcome in order for HVAC retrofits to deliver the increased performance that they promise. The experience gained in this case study was used to optimize best practices guidelines for contractors (Walker 2003) that include building diagnostics and checklists as tools to assist in ensuring the energy efficiency of ''house as a system'' HVAC retrofits. The best practices guidelines proved to be an excellent tool for evaluating the eight existing homes in this study, and we received positive feedback from many potential users who reviewed and used them. In addition, we were able to substantially improve the energy efficiency of the retrofitted case study house by adding envelope insulation, a more efficient furnace and air conditioner, an economizer and by reducing duct leakage.

  14. An Evaluation of the HVAC Load Potential for Providing Load Balancing Service

    SciTech Connect (OSTI)

    Lu, Ning

    2012-09-30

    This paper investigates the potential of providing aggregated intra-hour load balancing services using heating, ventilating, and air-conditioning (HVAC) systems. A direct-load control algorithm is presented. A temperature-priority-list method is used to dispatch the HVAC loads optimally to maintain consumer-desired indoor temperatures and load diversity. Realistic intra-hour load balancing signals were used to evaluate the operational characteristics of the HVAC load under different outdoor temperature profiles and different indoor temperature settings. The number of HVAC units needed is also investigated. Modeling results suggest that the number of HVACs needed to provide a {+-}1-MW load balancing service 24 hours a day varies significantly with baseline settings, high and low temperature settings, and the outdoor temperatures. The results demonstrate that the intra-hour load balancing service provided by HVAC loads meet the performance requirements and can become a major source of revenue for load-serving entities where the smart grid infrastructure enables direct load control over the HAVC loads.

  15. Concentrated Solar Thermoelectric Power

    SciTech Connect (OSTI)

    Chen, Gang; Ren, Zhifeng

    2015-07-09

    The goal of this project is to demonstrate in the lab that solar thermoelectric generators (STEGs) can exceed 10% solar-to-electricity efficiency, and STEGs can be integrated with phase-change materials (PCM) for thermal storage, providing operation beyond daylight hours. This project achieved significant progress in many tasks necessary to achieving the overall project goals. An accurate Themoelectric Generator (TEG) model was developed, which included realistic treatment of contact materials, contact resistances and radiative losses. In terms of fabricating physical TEGs, high performance contact materials for skutterudite TE segments were developed, along with brazing and soldering methods to assemble segmented TEGs. Accurate measurement systems for determining device performance (in addition to just TE material performance) were built for this project and used to characterize our TEGs. From the optical components’ side, a spectrally selective cermet surface was developed with high solar absorptance and low thermal emittance, with thermal stability at high temperature. A measurement technique was also developed to determine absorptance and total hemispherical emittance at high temperature, and was used to characterize the fabricated spectrally selective surfaces. In addition, a novel reflective cavity was designed to reduce radiative absorber losses and achieve high receiver efficiency at low concentration ratios. A prototype cavity demonstrated that large reductions in radiative losses were possible through this technique. For the overall concentrating STEG system, a number of devices were fabricated and tested in a custom built test platform to characterize their efficiency performance. Additionally, testing was performed with integration of PCM thermal storage, and the storage time of the lab scale system was evaluated. Our latest testing results showed a STEG efficiency of 9.6%, indicating promising potential for high performance concentrated STEGs.

  16. Energy Savings From System Efficiency Improvements in Iowas HVAC SAVE Program

    SciTech Connect (OSTI)

    Yee, S.; Baker, J.; Brand, L.; Wells, J.

    2013-08-01

    The objective of this project is to explore the energy savings potential of maximizing furnace and distribution system performance by adjusting operating, installation, and distribution conditions. The goal of the Iowa HVAC System Adjusted and Verified Efficiency (SAVE) program is to train contractors to measure installed system efficiency as a diagnostic tool to ensure that the homeowner achieves the energy reduction target for the home rather than simply performing a tune-up on the furnace or having a replacement furnace added to a leaky system. The PARR research team first examined baseline energy usage from a sample of 48 existing homes, before any repairs or adjustments were made, to calculate an average energy savings potential and to determine which system deficiencies were prevalent. The results of the baseline study of these homes found that, on average, about 10% of the space heating energy available from the furnace was not reaching the conditioned space. In the second part of the project, the team examined a sample of 10 homes that had completed the initial evaluation for more in-depth study. For these homes, the diagnostic data shows that it is possible to deliver up to 23% more energy from the furnace to the conditioned space by doing system tune ups with or without upgrading the furnace. Replacing the furnace provides additional energy reduction. The results support the author's belief that residential heating and cooling equipment should be tested and improved as a system rather than a collection of individual components.

  17. High Performance Bulk Thermoelectric Materials

    SciTech Connect (OSTI)

    Ren, Zhifeng

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  18. Modeling and Simulation of HVAC Faulty Operations and Performance Degradation due to Maintenance Issues

    SciTech Connect (OSTI)

    Wang, Liping; Hong, Tianzhen

    2013-01-01

    Almost half of the total energy used in the U.S. buildings is consumed by heating, ventilation and air conditionings (HVAC) according to EIA statistics. Among various driving factors to energy performance of building, operations and maintenance play a significant role. Many researches have been done to look at design efficiencies and operational controls for improving energy performance of buildings, but very few study the impacts of HVAC systems maintenance. Different practices of HVAC system maintenance can result in substantial differences in building energy use. If a piece of HVAC equipment is not well maintained, its performance will degrade. If sensors used for control purpose are not calibrated, not only building energy usage could be dramatically increased, but also mechanical systems may not be able to satisfy indoor thermal comfort. Properly maintained HVAC systems can operate efficiently, improve occupant comfort, and prolong equipment service life. In the paper, maintenance practices for HVAC systems are presented based on literature reviews and discussions with HVAC engineers, building operators, facility managers, and commissioning agents. We categorize the maintenance practices into three levels depending on the maintenance effort and coverage: 1) proactive, performance-monitored maintenance; 2) preventive, scheduled maintenance; and 3) reactive, unplanned or no maintenance. A sampled list of maintenance issues, including cooling tower fouling, boiler/chiller fouling, refrigerant over or under charge, temperature sensor offset, outdoor air damper leakage, outdoor air screen blockage, outdoor air damper stuck at fully open position, and dirty filters are investigated in this study using field survey data and detailed simulation models. The energy impacts of both individual maintenance issue and combined scenarios for an office building with central VAV systems and central plant were evaluated by EnergyPlus simulations using three approaches: 1) direct modeling with EnergyPlus, 2) using the energy management system feature of EnergyPlus, and 3) modifying EnergyPlus source code. The results demonstrated the importance of maintenance for HVAC systems on energy performance of buildings. The research is intended to provide a guideline to help practitioners and building operators to gain the knowledge of maintaining HVAC systems in efficient operations, and prioritize HVAC maintenance work plan. The paper also discusses challenges of modeling building maintenance issues using energy simulation programs.

  19. Packaged HVAC Unit Diagnostician version 1.0

    Energy Science and Technology Software Center (OSTI)

    2007-01-09

    The PHD automatically detects and diagnoses faults with respect to four major aspects of packaged heating, ventilating, and air conditioning (HVAC) unit operation: 1) air handling in which return-air and outdoor-air are mixed, then conditioned to appropriate temperature and humidity conditions, 2) vapor-compression refrigerant loop operation, 3) overall unit efficiency and its potential degradation over time, and 4) operation scheduling. When faults are detected, the software provides alarm codes corresponding to the detected problem(s). Thesemore » alarms map into explanations of the faults, possible causes for them, and suggested actions to remedy the faults. For air handling, the software also estimates energy and cost impacts of faults. The software is intended for implementation on a hardware systems that includes sensors, sensor signal processing, micro-processor unit for running this software, and communication to a web server. Results are made available to users via the world wide web using a computer with Web browser and Internet connection for access. The graphical web-based interface must be provided by an application service provider (not part of this software).« less

  20. Deposition of biological aerosols on HVAC heat exchangers

    SciTech Connect (OSTI)

    Siegel, Jeffrey; Walker, Ian

    2001-09-01

    Many biologically active materials are transported as bioaerosols 1-10 {micro}m in diameter. These particles can deposit on cooling and heating coils and lead to serious indoor air quality problems. This paper investigates several of the mechanisms that lead to aerosol deposition on fin and tube heat exchangers. A model has been developed that incorporates the effects of several deposition mechanisms, including impaction, Brownian and turbulent diffusion, turbophoresis, thermophoresis, diffusiophoresis, and gravitational settling. The model is applied to a typical range of air velocities that are found in commercial and residential HVAC systems 1 - 6 m/s (200 - 1200 ft/min), particle diameters from 1 - 8 {micro}m, and fin spacings from 3.2 - 7.9 fins/cm (8 - 16 fins/inch or FPI). The results from the model are compared to results from an experimental apparatus that directly measures deposition on a 4.7 fins/cm (12 FPI) coil. The model agrees reasonably well with this measured data and suggests that cooling coils are an important sink for biological aerosols and consequently a potential source of indoor air quality problems.

  1. NSF/DOE Thermoelectrics Partnership: Purdue … GM Partnership on Thermoelectrics for Automotive Waste Heat Recovery

    Broader source: Energy.gov [DOE]

    Reviews results in developing commercially viable thermoelectric generators for efficient conversion of automotive exhaust waste heat to electricity

  2. Development of Cost-Competitive Advanced Thermoelectric Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power Development of Cost-Competitive Advanced Thermoelectric...

  3. Status of the Application of Thermoelectric Technology in Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Application of Thermoelectric Technology in Vehicles Status of the Application of Thermoelectric Technology in Vehicles 2004 Diesel Engine Emissions Reduction (DEER) Conference...

  4. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    thermoelectrics on a OTR truck PDF icon schock.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle...

  5. Glass-like thermal conductivity in high efficiency thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    thermal conductivity in high efficiency thermoelectric materials Glass-like thermal conductivity in high efficiency thermoelectric materials Discusses strategies to design ...

  6. Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications 2004 Diesel Engine Emissions Reduction ...

  7. Overview of Research on Thermoelectric Materials and Devices...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research on Thermoelectric Materials and Devices in China Overview of Research on Thermoelectric Materials and Devices in China An overview presentation of R&D projects on ...

  8. Inorganic-Organic Hybrid Thermoelectrics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inorganic-Organic Hybrid Thermoelectrics Inorganic-Organic Hybrid Thermoelectrics Large-scale synthesis of inorganic and organic nanomaterials (single-crystalline nanowires and ...

  9. Nanostructures boost the thermoelectric performance of PbS (Journal...

    Office of Scientific and Technical Information (OSTI)

    Nanostructures boost the thermoelectric performance of PbS Citation Details In-Document Search Title: Nanostructures boost the thermoelectric performance of PbS In situ ...

  10. An Overview of Thermoelectric Waste Heat Recovery Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An overview presentation of R&D ...

  11. Development of a 500 Watt High Temperature Thermoelectric Generator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a 500 Watt High Temperature Thermoelectric Generator Development of a 500 Watt High Temperature Thermoelectric Generator A low temperature TEG has been built and tested providing ...

  12. Innovative Nano-structuring Routes for Novel ThermoelectricMaterials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nano-structuring Routes for Novel Thermoelectric Materials;Phonon Blocking & DOS Engineering Innovative Nano-structuring Routes for Novel Thermoelectric Materials;Phonon Blocking & ...

  13. Review of Interests and Activities in Thermoelectric Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    thermoelectric cooling of high-performance infrared systems for surveillance PDF icon taylor.pdf More Documents & Publications Review of Interests and Activities in Thermoelectric ...

  14. Probing strong Kondo disorder with measurements of thermoelectric...

    Office of Scientific and Technical Information (OSTI)

    Probing strong Kondo disorder with measurements of thermoelectric power Title: Probing strong Kondo disorder with measurements of thermoelectric power Authors: White, B. D. ; ...

  15. A Solution Route to Thermoelectric Oxide Nanoparticles - A Sol...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Solution Route to Thermoelectric Oxide Nanoparticles - A Sol-Gel Process Employing Heterometallic Alkoxides A Solution Route to Thermoelectric Oxide Nanoparticles - A Sol-Gel ...

  16. Thermoelectrics: From Space Power Systems to Terrestrial Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications ...

  17. BTO Partners Develop Novel, Energy-efficient Thermoelectric Clothes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partners Develop Novel, Energy-efficient Thermoelectric Clothes Dryer Prototype BTO Partners Develop Novel, Energy-efficient Thermoelectric Clothes Dryer Prototype April 18, 2016 - ...

  18. Overview of Progress in Thermoelectric Power Generation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview of Thermoelectric Power Generation Technologies in Japan Overview of Thermoelectric Power Generation Technologies in Japan Overview of Japanese Activities in ...

  19. Overview of Thermoelectric Power Generation Technologies in Japan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview of Thermoelectric Power Generation Technologies in Japan Overview of Progress in Thermoelectric Power Generation Technologies in Japan Overview of Japanese Activities in ...

  20. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develop thermoelectric technology for waste heat recovery with a 10% fuel economy ... More Documents & Publications Engineering and Materials for Automotive Thermoelectric ...

  1. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery in the Automotive Industry On Thermoelectric Properties of p-Type Skutterudites Development of Thermoelectric Technology for Automotive Waste Heat Recovery

  2. Potential of Thermoelectrics forOccupant Comfort and Fuel Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Thermoelectrics forOccupant Comfort and Fuel Efficiency Gains in Vehicle Applications Potential of Thermoelectrics forOccupant Comfort and Fuel Efficiency Gains in Vehicle ...

  3. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Broader source: Energy.gov (indexed) [DOE]

    Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Development of Cost-Competitive ...

  4. High Heat Flux Thermoelectric Module Using Standard Bulk Material...

    Broader source: Energy.gov (indexed) [DOE]

    Presents high heat flux thermoelectric module design for cooling using a novel V-shaped ... Temperature Thermoelectric Generator Automotive Waste Heat Conversion to Power Program

  5. Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...

    Broader source: Energy.gov (indexed) [DOE]

    Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Develop Thermoelectric Technology for Automotive Waste Heat Recovery Development of Cost-Competitive ...

  6. Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines...

    Office of Environmental Management (EM)

    Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines Discusses a novel TEG which utilizes a ...

  7. Probabilistic Mechanical Reliability Prediction of Thermoelectric Legs

    SciTech Connect (OSTI)

    Jadaan, Osama M.; Wereszczak, Andrew A

    2009-05-01

    The probability of failure, Pf, for various square-arrayed thermoelectric device designs using bismuth telluride, lead telluride, or skutterudite thermoelectric materials were estimated. Only volume- or bulk-based Pf analysis was considered in this study. The effects of the choice of the thermoelectric material, the size of the leg array, the height of the thermoelectric legs, and the boundary conditions on the Pf of thermoelectric devices were investigated. Yielding of the solder contacts and mounting layer was taken into account. The modeling results showed that the use of longer legs, using skutterudites, allowing the thermoelectric device to freely deform while under a thermal gradient, and using smaller arrays promoted higher probabilities of survival.

  8. Novel Nanostructured Thermoelectrics | Center for Energy Efficient

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Novel Nanostructured Thermoelectrics While the ultimate CEEM goal is the development of materials with improved thermoelectric power generation capabilities, the path to that goal involves discovering and using the important physics of the electrical transport, thermoelectric potentials and heat transport in the new structures that we prepare. This involves importantly understanding and engineering the inclusion, transport and scattering of mobile charge carriers and the

  9. Thermoelectrics | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermoelectrics One of the central themes of S3TEC is to develop more efficient thermoelectric materials to directly convert heat into electricity via the Seebeck effect, or provide cooling via the Peltier effect. Their ability to harvest waste heat and deliver cooling power through solid-state devices without moving parts makes them important candidates of sustainable energy technologies in the future. Despite the benefits, the current bottleneck of thermoelectric technology is its relatively

  10. Band structure engineering and thermoelectric properties of

    Office of Scientific and Technical Information (OSTI)

    charge-compensated filled skutterudites (Journal Article) | SciTech Connect Band structure engineering and thermoelectric properties of charge-compensated filled skutterudites Citation Details In-Document Search Title: Band structure engineering and thermoelectric properties of charge-compensated filled skutterudites Thermoelectric properties of semiconductors are intimately related to their electronic band structure, which can be engineered via chemical doping. Dopant Ga in the

  11. Thermoelectric Power Generation System with Loop Thermosyphon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Generation System with Loop Thermosyphon in Future High Efficiency Hybrid Vehicles Thermoelectric Power Generation System with Loop Thermosyphon in Future High Efficiency ...

  12. Connecting Thermoelectric Performance and Topological-Insulator...

    Office of Scientific and Technical Information (OSTI)

    Publisher's Accepted Manuscript: Connecting Thermoelectric Performance and Topological-Insulator Behavior: BiTe and BiTeSe from First Principles Prev Next Title: ...

  13. Thermoelectric Materials by Design, Computational Theory and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by Design, Computational Theory and Structure Thermoelectric Materials by Design, Computational Theory and Structure 2009 DOE Hydrogen Program and Vehicle Technologies Program...

  14. Thermoelectric Generator (TEG) Fuel Displacement Potential using...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    model of GM-developed TEG as part of the engine connected to a dynamometer that emulates ... Establishing Thermo-Electric Generator (TEG) Design Targets for Hybrid Vehicles ...

  15. Thermoelectric Activities of European Community within Framework...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and additional activities in Germany Thermoelectric Activities of European Community within Framework Programme 7 and additional activities in Germany Provides survey of basic and ...

  16. Thermoelectric Opportunities for Light-Duty Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Overview of thermoelectrics for automotive applications and role of automakers in setting guidelines and technology attributes needed for the global product, regulatory, and market environment

  17. High-Temperature Thermoelectric Materials Characterization for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program...

  18. Proactive Strategies for Designing Thermoelectric Materials for...

    Broader source: Energy.gov (indexed) [DOE]

    New p-type and n-type multiple-rattler skutterudite thermoelectric materials design, synthesis, fabrication, and characterization for power generation using vehicle exhaust waste ...

  19. thermo-electric power conversion technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    thermo-electric power conversion technology - Sandia Energy Energy Search Icon Sandia Home ... Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar ...

  20. Engineering and Materials for Automotive Thermoelectric Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon yang.pdf More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Electrical and Thermal Transport Optimization of High Efficient ...

  1. Nanostructured Thermoelectric Materials and High Efficiency Power...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Abstract: For thermoelectric applications, the best materials have high electrical conductivity and thermopower and, simultaneously, low thermal conductivity. Such a combination...

  2. The Effective Thermoelectric Properties of Composite Materials

    Broader source: Energy.gov [DOE]

    Rigorous mathematical analysis of electric conduction and heat transfer in heterogeneous thermoelectric composites, showing higher conversion efficiency than all its constituents is possible

  3. Skutterudite Thermoelectric Generator For Automotive Waste Heat...

    Broader source: Energy.gov (indexed) [DOE]

    of Exhaust Gas Waste Heat into Usable Electricity Development of Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful ...

  4. Mechanical Response of Thermoelectric Materials

    SciTech Connect (OSTI)

    Wereszczak, Andrew A.; Case, Eldon D.

    2015-05-01

    A sufficient mechanical response of thermoelectric materials (TEMats) to structural loadings is a prerequisite to the exploitation of any candidate TEMat's thermoelectric efficiency. If a TEMat is mechanically damaged or cracks from service-induced stresses, then its thermal and electrical functions can be compromised or even cease. Semiconductor TEMats tend to be quite brittle and have a high coefficient of thermal expansion; therefore, they can be quite susceptible to mechanical failure when subjected to operational thermal gradients. Because of this, sufficient mechanical response (vis-a-vis, mechanical properties) of any candidate TEMat must be achieved and sustained in the context of the service-induced stress state to which it is subjected. This report provides an overview of the mechanical responses of state-of-the-art TEMats; discusses the relevant properties that are associated with those responses and their measurement; and describes important, nonequilibrium phenomena that further complicate their use in thermoelectric devices. For reference purposes, the report also includes several appendixes that list published data on elastic properties and strengths of a variety of TEMats.

  5. Energy Savings Potential and RD&D Opportunities for Non-Vapor-Compression HVAC Technologies

    SciTech Connect (OSTI)

    none,

    2014-03-01

    While vapor-compression technologies have served heating, ventilation, and air-conditioning (HVAC) needs very effectively, and have been the dominant HVAC technology for close to 100 years, the conventional refrigerants used in vapor-compression equipment contribute to global climate change when released to the atmosphere. This Building Technologies Office report: --Identifies alternatives to vapor-compression technology in residential and commercial HVAC applications --Characterizes these technologies based on their technical energy savings potential, development status, non-energy benefits, and other factors affecting end-user acceptance and their ability to compete with conventional vapor-compression systems --Makes specific research, development, and deployment (RD&D) recommendations to support further development of these technologies, should DOE choose to support non-vapor-compression technology further.

  6. Energy Renovations: Volume 14: HVAC - A Guide for Contractors to Share with Homeowners

    SciTech Connect (OSTI)

    Gilbride, Theresa L.; Baechler, Michael C.; Hefty, Marye G.; Hand, James R.; Love, Pat M.

    2011-08-29

    This report was prepared by PNNL for DOE's Building America program and is intended as a guide that energy performance contractors can share with homeowners to describe various energy-efficient options for heating, cooling, and ventilating existing homes. The report provides descriptions of many common and not-so-common HVAC systems, including their advantages and disadvantages, efficiency ranges and characteristics of high-performance models, typical costs, and climate considerations. The report also provides decision trees and tables of useful information for homeowners who are making decisions about adding, replacing, or upgrading existing HVAC equipment in their homes. Information regarding home energy performance assessments (audits) and combustion safety issues when replacing HVAC equipment are also provided.

  7. Thermoelectric Bulk Materials from the Explosive Consolidation of Nanopowders

    Broader source: Energy.gov [DOE]

    Describes technique of explosively consolidating nanopowders to yield fully dense, consolidated, nanostructured thermoelectric material

  8. Innovative Nano-structuring Routes for Novel Thermoelectric

    Broader source: Energy.gov (indexed) [DOE]

    Materials;Phonon Blocking & DOS Engineering | Department of Energy Presents new concepts for high performance nanostructured bulk thermoelectric materials PDF icon lee.pdf More Documents & Publications Thermoelectric Materials for Automotive Applications The Bottom-Up Approach forThermoelectric Nanocomposites, plusƒ Glass-like thermal conductivity in high efficiency thermoelectric materials

  9. Overview of Progress in Thermoelectric Power Generation Technologies in

    Broader source: Energy.gov (indexed) [DOE]

    Japan | Department of Energy Presents progress in government- and private-funded thermoelectric power generation R&D in Japan PDF icon kajikawa.pdf More Documents & Publications Overview of Thermoelectric Power Generation Technologies in Japan Overview of Thermoelectric Power Generation Technologies in Japan Overview of Japanese Activities in Thermoelectrics

  10. Overview of Thermoelectric Power Generation Technologies in Japan |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy sources, and energy harvesting PDF icon kajikawa.pdf More Documents & Publications Overview of Thermoelectric Power Generation Technologies in Japan Overview of Progress in Thermoelectric Power Generation Technologies in Japan Overview of Japanese Activities in Thermoelectrics

  11. Status of Segmented Element Thermoelectric Generator for Vehicle Waste Heat

    Broader source: Energy.gov (indexed) [DOE]

    Recovery | Department of Energy Discusses progress of thermoelectric generator development at BSST and assessment of potential to enter commercial operation in vehicles PDF icon crane.pdf More Documents & Publications Status of Segmented Element Thermoelectric Generator for Vehicle Waste Heat Recovery Development of a 100-Watt High Temperature Thermoelectric Generator Development of a Scalable 10% Efficient Thermoelectric Generator

  12. Challenges and Opportunities in Thermoelectric Materials Research for

    Broader source: Energy.gov (indexed) [DOE]

    Automotive Applications | Department of Energy tritt.pdf More Documents & Publications The Bottom-Up Approach forThermoelectric Nanocomposites, plusƒ NSF/DOE Thermoelectric Partnership: Inorganic-Organic Hybrid Thermoelectrics Inorganic-Organic Hybrid Thermoelectrics

  13. Development of Marine Thermoelectric Heat Recovery Systems | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Discusses benefits of integration of thermoelectrics into the marine industry, research program milestones, and prototype TEG design and integration PDF icon wallace.pdf More Documents & Publications Development of Marine Thermoelectric Heat Recovery Systems PACCAR/Hi-Z Thermoelectric Generator Project Vehicular Thermoelectric Applications Session DEER 2009

  14. Thermoelectric materials ternary penta telluride and selenide compounds

    DOE Patents [OSTI]

    Sharp, Jeffrey W.

    2001-01-01

    Ternary tellurium compounds and ternary selenium compounds may be used in fabricating thermoelectric devices with a thermoelectric figure of merit (ZT) of 1.5 or greater. Examples of such compounds include Tl.sub.2 SnTe.sub.5, Tl.sub.2 GeTe.sub.5, K.sub.2 SnTe.sub.5 and Rb.sub.2 SnTe.sub.5. These compounds have similar types of crystal lattice structures which include a first substructure with a (Sn, Ge) Te.sub.5 composition and a second substructure with chains of selected cation atoms. The second substructure includes selected cation atoms which interact with selected anion atoms to maintain a desired separation between the chains of the first substructure. The cation atoms which maintain the desired separation between the chains occupy relatively large electropositive sites in the resulting crystal lattice structure which results in a relatively low value for the lattice component of thermal conductivity (.kappa..sub.g). The first substructure of anion chains indicates significant anisotropy in the thermoelectric characteristics of the resulting semiconductor materials.

  15. Thermoelectric materials: ternary penta telluride and selenide compounds

    DOE Patents [OSTI]

    Sharp, Jeffrey W.

    2002-06-04

    Ternary tellurium compounds and ternary selenium compounds may be used in fabricating thermoelectric devices with a thermoelectric figure of merit (ZT) of 1.5 or greater. Examples of such compounds include Tl.sub.2 SnTe.sub.5, Tl.sub.2 GeTe.sub.5, K.sub.2 SnTe.sub.5 and Rb.sub.2 SnTe.sub.5. These compounds have similar types of crystal lattice structures which include a first substructure with a (Sn, Ge) Te.sub.5 composition and a second substructure with chains of selected cation atoms. The second substructure includes selected cation atoms which interact with selected anion atoms to maintain a desired separation between the chains of the first substructure. The cation atoms which maintain the desired separation between the chains occupy relatively large electropositive sites in the resulting crystal lattice structure which results in a relatively low value for the lattice component of thermal conductivity (.kappa..sub.g). The first substructure of anion chains indicates significant anisotropy in the thermoelectric characteristics of the resulting semiconductor materials.

  16. Thermoelectric Development at Hi-Z Technology

    SciTech Connect (OSTI)

    Kushch, Aleksandr S.; Bass, John C.; Ghamaty, Saeid; Elsner, Norbert B.; Bergstrand, Richard A.; Furrow, David; Melvin, Mike

    2002-08-25

    An improved Thermoelectric Generator (TEG) for the Heavy Duty Class Eight Diesel Trucks is under development at Hi-Z Technology. The current TEG is equipped with the improved HZ-14 Thermoelectric module, which features better mechanical properties as well as higher electric power output. Also, the modules are held in place more securely.

  17. Nanostructures having high performance thermoelectric properties

    DOE Patents [OSTI]

    Yang, Peidong; Majumdar, Arunava; Hochbaum, Allon I.; Chen, Renkun; Delgado, Raul Diaz

    2015-12-22

    The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.

  18. Nanostructures having high performance thermoelectric properties

    DOE Patents [OSTI]

    Yang, Peidong; Majumdar, Arunava; Hochbaum, Allon I; Chen, Renkun; Delgado, Raul Diaz

    2014-05-20

    The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.

  19. DOE and Stakeholders Consider Best Approach to Major HVAC&R Research Effort

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy and Stakeholders Consider Best Approach to Major HVAC&R Research Effort DOE and Stakeholders Consider Best Approach to Major HVAC&R Research Effort January 15, 2016 - 11:27am Addthis The planned research effort would support the U.S. hydrofluorocarbon (HFC) phasedown proposal, which targets an 85% reduction by 2035 compared to a 2014-2016 average baseline. Image credit: Navigant Consulting. The planned research effort would support the U.S. hydrofluorocarbon

  20. Thermoelectrics and Photovoltaics - Center for Solar and Thermal Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion Thermoelectrics and Photovoltaics Thermoelectrics A significant amount of heat is wasted from industrial processes, home heating and vehicle exhausts that could otherwise be converted to electricity through the use of thermoelectric devices. The interconversion between heat and electricity, through the use of thermoelectrics, is environmentally friendly and highly reliable. With improved efficiency, thermoelectrics could have a significant impact on the energy consumption

  1. Thermoelectric generator having a resiliently mounted removable thermoelectric module

    DOE Patents [OSTI]

    Purdy, David L.; Shapiro, Zalman M.; Hursen, Thomas F.; Maurer, Gerould W.

    1976-11-02

    An electrical generator having an Isotopic Heat Capsule including radioactive fuel rod 21 as a primary heat source and Thermoelectric Modules 41 and 43 as converters. The Biological Shield for the Capsule is suspended from Spiders at each end each consisting of pretensioned rods 237 and 239 defining planes at right angles to each other. The Modules are mounted in cups 171 of transition members 173 of a heat rejection Fin Assembly whose fins 195 and 197 extend from both sides of the transition member 173 for effective cooling.

  2. High-Efficiency Solid State Cooling Technologies: Non-Equilibrium Asymmetic Thermoelectrics (NEAT) Devices

    SciTech Connect (OSTI)

    2010-09-01

    BEETIT Project: Sheetak is developing a thermoelectric-based solid state cooling system to replace typical air conditioners that use vapor compression to cool air. With noisy mechanical components, vapor compression systems use a liquid refrigerant to circulate within the air conditioner, absorb heat, and pump the heat out into the external environment. With no noisy moving parts or polluting refrigerants, thermoelectric systems rely on an electrical current being passed through the junction of the two different conducting materials to change temperature. Using advanced semiconductor technology, Sheetak is improving solid state cooling systems by using proprietary thermoelectric materials along with other innovations to achieve significant energy efficiency. Sheetaks new design displaces compressor-based technology; improves reliability; and decreases energy usage. Sheetaks use of semiconductor manufacturing methods leads to less material usefacilitating cheaper production.

  3. Energy Department Invests Nearly $8 Million to Develop Next-Generation HVAC Systems for Buildings

    Broader source: Energy.gov [DOE]

    The Energy Department today announced nearly $8 million to advance research and development of next-generation heating, ventilating, and air conditioning (HVAC) technologies, supporting the Administration's goal of saving money by saving energy, and phasing down the use of chemicals that have a devastating effect on the global climate.

  4. IFC HVAC interface to EnergyPlus - A case of expanded interoperability for energy simulation

    SciTech Connect (OSTI)

    Bazjanac, Vladimir; Maile, Tobias

    2004-03-29

    Tedious manual input of data that define a building, its systems and its expected pattern of use and operating schedules for building energy performance simulation has in the past diverted time and resources from productive simulation runs. In addition to its previously released IFCtoIDF utility that semiautomates the import of building geometry, the new IFC HVAC interface to EnergyPlus (released at the end of 2003) makes it possible to import and export most of the data that define HVAC equipment and systems in a building directly from and to other IFC compatible software tools. This reduces the manual input of other data needed for successful simulation with EnergyPlus to a minimum. The main purpose of this new interface is to enable import of HVAC equipment and systems definitions, generated by other IFC compatible software tools (such as HVAC systems design tools) and data bases, into EnergyPlus, and to write such definitions contained in EnergyPlus input files to the original IFC files from which building geometry was extracted for the particular EnergyPlus input. In addition, this interface sets an example for developers of other software tools how to import and/or export data other than building geometry from and/or into EnergyPlus. This paper describes the necessary simplifications and shortcuts incorporated in this interface, its operating environment, interface architecture, and the basic conditions and methodology for its use with EnergyPlus.

  5. Pre-Commercial Demonstration of Cost-Effective Advanced HVAC Controls- 2014 BTO Peer Review

    Broader source: Energy.gov [DOE]

    Presenter: Hayden Reeve, United Technologies Research Center Optimal control coordination of heating, ventilation, and air conditioning (HVAC) equipment can reduce energy by more than 20% over current building automation systems (BASs) but is not widely deployed due to challenges with complexity, scalability, and deployment.

  6. Building America Best Practices Series Volume 14 - HVAC. A Guide for Contractors to Share with Homeowners

    SciTech Connect (OSTI)

    Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Hand, James R.; Love, Pat M.

    2011-08-01

    This guide, which is part of a series of Best Practices guides produced by DOE’s Building America program, describes ways homeowners can reduce their energy costs and improve the comfort, health, and safety of their homes by upgrading their heating, ventilation, and air conditioning (HVAC) equipment.

  7. HVAC Equipment Design Options for Near-Zero-Energy Homes (NZEH) -A Stage 2 Scoping Assessment

    SciTech Connect (OSTI)

    Baxter, Van D

    2005-11-01

    Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Conventional unitary equipment and system designs have matured to a point where cost-effective, dramatic efficiency improvements that meet near-zero-energy housing (NZEH) goals require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. This report describes results of a scoping assessment of HVAC system options for NZEH homes. ORNL has completed a preliminary adaptation, for consideration by The U.S. Department of Energy, Energy Efficiency and Renewable Energy Office, Building Technologies (BT) Program, of Cooper's (2001) stage and gate planning process to the HVAC and Water Heating element of BT's multi-year plan, as illustrated in Figure 1. In order to adapt to R&D the Cooper process, which is focused on product development, and to keep the technology development process consistent with an appropriate role for the federal government, the number and content of the stages and gates needed to be modified. The potential federal role in technology development involves 6 stages and 7 gates, but depending on the nature and status of the concept, some or all of the responsibilities can flow to the private sector for product development beginning as early as Gate 3. In the proposed new technology development stage and gate sequence, the Stage 2 'Scoping Assessment' provides the deliverable leading into the Gate 3 'Scoping Assessment Screen'. This report is an example of a Stage 2 deliverable written to document the screening of options against the Gate 3 criteria and to support DOE decision making and option prioritization. The objective of this scoping assessment was to perform a transparent evaluation of the HVAC system options for NZEH based on the applying the Gate 3 criteria uniformly to all options.

  8. Silicon-Based Thermoelectrics: Harvesting Low Quality Heat Using Economically Printed Flexible Nanostructured Stacked Thermoelectric Junctions

    SciTech Connect (OSTI)

    2010-03-01

    Broad Funding Opportunity Announcement Project: UIUC is experimenting with silicon-based materials to develop flexible thermoelectric deviceswhich convert heat into energythat can be mass-produced at low cost. A thermoelectric device, which resembles a computer chip, creates electricity when a different temperature is applied to each of its sides. Existing commercial thermoelectric devices contain the element tellurium, which limits production levels because tellurium has become increasingly rare. UIUC is replacing this material with microscopic silicon wires that are considerably cheaper and could be equally effective. Improvements in thermoelectric device production could return enough wasted heat to add up to 23% to our current annual electricity production.

  9. Bulk dimensional nanocomposites for thermoelectric applications

    DOE Patents [OSTI]

    Nolas, George S

    2014-06-24

    Thermoelectric elements may be used for heat sensors, heat pumps, and thermoelectric generators. A quantum-dot or nano-scale grain size polycrystalline material the effects of size-quantization are present inside the nanocrystals. A thermoelectric element composed of densified Groups IV-VI material, such as calcogenide-based materials are doped with metal or chalcogenide to form interference barriers form along grains. The dopant used is either silver or sodium. These chalcogenide materials form nanoparticles of highly crystal grains, and may specifically be between 1- and 100 nm. The compound is densified by spark plasma sintering.

  10. Thermoelectric generator cooling system and method of control

    DOE Patents [OSTI]

    Prior, Gregory P; Meisner, Gregory P; Glassford, Daniel B

    2012-10-16

    An apparatus is provided that includes a thermoelectric generator and an exhaust gas system operatively connected to the thermoelectric generator to heat a portion of the thermoelectric generator with exhaust gas flow through the thermoelectric generator. A coolant system is operatively connected to the thermoelectric generator to cool another portion of the thermoelectric generator with coolant flow through the thermoelectric generator. At least one valve is controllable to cause the coolant flow through the thermoelectric generator in a direction that opposes a direction of the exhaust gas flow under a first set of operating conditions and to cause the coolant flow through the thermoelectric generator in the direction of exhaust gas flow under a second set of operating conditions.

  11. Phase Stability, Crystal Structure, and Thermoelectric Properties...

    Office of Scientific and Technical Information (OSTI)

    Phase Stability, Crystal Structure, and Thermoelectric Properties of Cu12Sb4S13xSex Solid Solutions Citation Details In-Document Search Title: Phase Stability, Crystal Structure, ...

  12. Effective thermal conductivity in thermoelectric materials

    SciTech Connect (OSTI)

    Baranowski, LL; Snyder, GJ; Toberer, ES

    2013-05-28

    Thermoelectric generators (TEGs) are solid state heat engines that generate electricity from a temperature gradient. Optimizing these devices for maximum power production can be difficult due to the many heat transport mechanisms occurring simultaneously within the TEG. In this paper, we develop a model for heat transport in thermoelectric materials in which an "effective thermal conductivity" (kappa(eff)) encompasses both the one dimensional steady-state Fourier conduction and the heat generation/consumption due to secondary thermoelectric effects. This model is especially powerful in that the value of kappa(eff) does not depend upon the operating conditions of the TEG but rather on the transport properties of the TE materials themselves. We analyze a variety of thermoelectric materials and generator designs using this concept and demonstrate that kappa(eff) predicts the heat fluxes within these devices to 5% of the exact value. (C) 2013 AIP Publishing LLC.

  13. Thermoelectric Nanocarbon Ensembles | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2_gruen.pdf More Documents & Publications Diamond Based TE Materials DOE Vehicle Technologies Program 2009 Merit Review Report - Propulsion Materials Integrated Design and Manufacturing of Thermoelectric Generator Using Thermal Spray

  14. Thermoelectric materials and methods for synthesis thereof

    DOE Patents [OSTI]

    Ren, Zhifeng; Zhang, Qinyong; Zhang, Qian; Chen, Gang

    2015-08-04

    Materials having improved thermoelectric properties are disclosed. In some embodiments, lead telluride/selenide based materials with improved figure of merit and mechanical properties are disclosed. In some embodiments, the lead telluride/selenide based materials of the present disclosure are p-type thermoelectric materials formed by adding sodium (Na), silicon (Si) or both to thallium doped lead telluride materials. In some embodiments, the lead telluride/selenide based materials are formed by doping lead telluride/selenides with potassium.

  15. Nanostructured Thermoelectric Materials and High Efficiency Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation Modules | Energy Frontier Research Centers Nanostructured Thermoelectric Materials and High Efficiency Power Generation Modules Home Author: T. Hogan, A. Downey, J. Short, S. D. Mahanti, H. Schock, E. Case Year: 2007 Abstract: For thermoelectric applications, the best materials have high electrical conductivity and thermopower and, simultaneously, low thermal conductivity. Such a combination of properties is usually found in heavily doped semiconductors. Renewed interest in this

  16. Concentrated Solar Thermoelectric Power | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon csp_review_meeting_042313_chen.pdf More Documents & Publications High-Temperature Solar Thermoelectric Generators (STEG) Concentrated Thermoelectric Power Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC )

  17. High Temperature Integrated Thermoelectric Ststem and Materials

    SciTech Connect (OSTI)

    Mike S. H. Chu

    2011-06-06

    The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits. Two composition systems, specifically 1.0 SrO - 0.8 x 1.03 TiO2 - 0.2 x 1.03 NbO2.5 and 0.97 TiO2 - 0.03 NbO2.5, have been identified as good base line compositions for n-type thermoelectric compositions in future module design. Tests of these materials at an outside company were promising using that company's processing and material expertise. There was no unique p-type thermoelectric compositions identified in phase I work other than several current cobaltite materials. Ca3Co4O9 will be the primary p-type material for the future module design until alternative materials are developed. BaTiO3 and rare earth titanate based dielectric compositions show both p-type and n-type behavior even though their electrical conductivities were very low. Further research and development of these materials for thermoelectric applications is planned in the future. A preliminary modeling and optimization of a thermoelectric generator (TEG) that uses the n-type 1.0 SrO - 1.03 x 0.8 TiO2 - 1.03 x 0.2 NbO2.5 was performed. Future work will combine development of ceramic powders and manufacturing expertise at TAM, development of SPS at TAM or a partner organization, and thermoelectric material/module testing, modeling, optimization, production at several partner organizations.

  18. Integrated Design and Manufacturing of Thermoelectric Generator Using Thermal Spray

    Broader source: Energy.gov [DOE]

    Presents progress in cost-effective thermoelectric generator fabrication by thermal spraying of thermoelectric materials and other functional layers directly onto automotive exhaust pipes with enhanced performance, durability, and heat transfer

  19. Comparisons of HVAC Simulations between EnergyPlus and DOE-2.2 for Data Centers

    SciTech Connect (OSTI)

    Hong, Tianzhen; Sartor, Dale; Mathew, Paul; Yazdanian, Mehry

    2008-08-13

    This paper compares HVAC simulations between EnergyPlus and DOE-2.2 for data centers. The HVAC systems studied in the paper are packaged direct expansion air-cooled single zone systems with and without air economizer. Four climate zones are chosen for the study - San Francisco, Miami, Chicago, and Phoenix. EnergyPlus version 2.1 and DOE-2.2 version 45 are used in the annual energy simulations. The annual cooling electric consumption calculated by EnergyPlus and DOE-2.2 are reasonablely matched within a range of -0.4percent to 8.6percent. The paper also discusses sources of differences beween EnergyPlus and DOE-2.2 runs including cooling coil algorithm, performance curves, and important energy model inputs.

  20. BTO Partners Develop Novel, Energy-efficient Thermoelectric Clothes Dryer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Prototype | Department of Energy Partners Develop Novel, Energy-efficient Thermoelectric Clothes Dryer Prototype BTO Partners Develop Novel, Energy-efficient Thermoelectric Clothes Dryer Prototype April 18, 2016 - 1:29pm Addthis A new thermoelectric clothes dryer being developed by Oak Ridge National Lab and Sheetak, Inc. could yield a 38% reduction in energy use compared to current dryers, which could save 356 TBtu of energy per year. A new thermoelectric clothes dryer being developed by

  1. Novel Energy-Efficient Thermoelectric Clothes Dryer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Efficient Thermoelectric Clothes Dryer Novel Energy-Efficient Thermoelectric Clothes Dryer A new thermoelectric clothes dryer being developed by Oak Ridge National Lab and Sheetak, Inc. could yield a 38% reduction in energy use compared to current dryers, which could save 356 TBtu of energy per year. Credit: Oak Ridge National Laboratory. A new thermoelectric clothes dryer being developed by Oak Ridge National Lab and Sheetak, Inc. could yield a 38% reduction in energy use compared to

  2. Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Skutterudite TE modules were fabricated and assembled into prototype thermoelectric generators (TEGs), then installed on a standard GM production vehicle and tested for performance PDF icon meisner.pdf More Documents & Publications Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Development of Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power Develop Thermoelectric

  3. Overview of Thermoelectric Power Generation Technologies in Japan

    Broader source: Energy.gov [DOE]

    Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy sources, and energy harvesting

  4. Compositional ordering and stability in nanostructured, bulk thermoelectric alloys.

    SciTech Connect (OSTI)

    Hekmaty, Michelle A.; Faleev, S.; Medlin, Douglas L.; Leonard, F.; Lensch-Falk, J.; Sharma, Peter Anand; Sugar, J. D.

    2009-09-01

    Thermoelectric materials have many applications in the conversion of thermal energy to electrical power and in solid-state cooling. One route to improving thermoelectric energy conversion efficiency in bulk material is to embed nanoscale inclusions. This report summarize key results from a recently completed LDRD project exploring the science underpinning the formation and stability of nanostructures in bulk thermoelectric and the quantitative relationships between such structures and thermoelectric properties.

  5. Opportunities for Building America Research to Address Energy Upgrade Technical Challenges: HVAC, Envelope & IAQ (301)

    Energy Savers [EERE]

    Peer Exchange Call Series: Opportunities for Building America Research to Address Energy Upgrade Technical Challenges: HVAC, Envelope & IAQ (301) July 21, 2015 Call Slides and Discussion Summary Agenda  Call Logistics and Introductions  Opening Polls  Residential Network and Peer Exchange Call Overview  Introduction to Building America Technology to Market Roadmaps  Eric Werling, Building America Program Director, DOE Building Technologies Office  Questions, Discussion, and

  6. DOE and Stakeholders Ponder Best Approach to Major HVAC&R Research Effort

    Broader source: Energy.gov [DOE]

    The Building Technologies Office (BTO) recently convened two workshops to discuss the potential launch of a major research effort for advanced HVAC&R technologies. DOEs goal is to develop next-generation heating and cooling technologies that leapfrog the existing vapor compression solutions and result in dramatically improved efficiency while utilizing near-zero global warming potential (GWP) refrigerants or non-vapor compression approaches.

  7. Research & Development Opportunities for Joining Technologies in HVAC&R

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities for Joining Technologies in HVAC&R W. Goetzler, M. Guernsey, J. Young October 2015 (This page intentionally left blank) NOTICE This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the

  8. Comparative guide to emerging diagnostic tools for large commercial HVAC systems

    SciTech Connect (OSTI)

    Friedman, Hannah; Piette, Mary Ann

    2001-05-01

    This guide compares emerging diagnostic software tools that aid detection and diagnosis of operational problems for large HVAC systems. We have evaluated six tools for use with energy management control system (EMCS) or other monitoring data. The diagnostic tools summarize relevant performance metrics, display plots for manual analysis, and perform automated diagnostic procedures. Our comparative analysis presents nine summary tables with supporting explanatory text and includes sample diagnostic screens for each tool.

  9. Building America Expert Meeting Report: Transitioning Traditional HVAC Contractors to Whole House Performance Contractors

    Energy Savers [EERE]

    Transitioning Traditional HVAC Contractors to Whole House Performance Contractors Arlan Burdick IBACOS, Inc. October 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or

  10. Overview of Research on Thermoelectric Materials and Devices in China |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy An overview presentation of R&D projects on thermoelectric power generation technology in China. PDF icon zhang.pdf More Documents & Publications Recent Progress in the Development of N-type Skutterudites Vehicular Thermoelectric Applications Session DEER 2009 The Bottom-Up Approach forThermoelectric Nanocomposites, plusƒ

  11. Thermoelectrics Interests and Research: ARL and TARDEC | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Discusses US Army Applications of Thermoelectrics, including accurate measurements of TE coefficients, device parasitic and field emissions and ARL role. PDF icon taylor.pdf More Documents & Publications Review of Interests and Activities in Thermoelectric Materials and Devices at the Army Research Laboratory Review of Interests and Activities in Thermoelectric Materials and Devices at the Army Research Laboratory

  12. Thermoelectrics: The New Green Automotive Technology | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace00e_fairbanks_2011_o.pdf More Documents & Publications Vehicular Thermoelectrics: A New Green Technology Vehicular Thermoelectrics: A New Green Technology Vehicular Thermoelectrics: The New Green

  13. Development of Marine Thermoelectric Heat Recovery Systems | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Thermoelectric generator prototypes are evaluated in a dedicated hybrid vessel test platform fabricated from an encapsulated lifeboat to optimize performance and reliability for marine industry applications PDF icon wallace.pdf More Documents & Publications Development of Marine Thermoelectric Heat Recovery Systems Vehicular Thermoelectrics: The New Green Technology Bi-directional dc-dc Converter

  14. Determination of Thermoelectric Module Efficiency A Survey

    SciTech Connect (OSTI)

    Wang, Hsin; McCarty, Robin; Salvador, James R.; Yamamoto, Atsushi; Konig, Jan

    2014-01-01

    The development of thermoelectrics (TE) for energy conversion is in the transition phase from laboratory research to device development. There is an increasing demand to accurately determine the module efficiency, especially for the power generation mode. For many thermoelectrics, the figure of merit, ZT, of the material sometimes cannot be fully realized at the device level. Reliable efficiency testing of thermoelectric modules is important to assess the device ZT and provide the end-users with realistic values on how much power can be generated under specific conditions. We conducted a general survey of efficiency testing devices and their performance. The results indicated the lack of industry standards and test procedures. This study included a commercial test system and several laboratory systems. Most systems are based on the heat flow meter method and some are based on the Harman method. They are usually reproducible in evaluating thermoelectric modules. However, cross-checking among different systems often showed large errors that are likely caused by unaccounted heat loss and thermal resistance. Efficiency testing is an important area for the thermoelectric community to focus on. A follow-up international standardization effort is planned.

  15. Thermoelectric power generator with intermediate loop

    DOE Patents [OSTI]

    Bell, Lon E; Crane, Douglas Todd

    2013-05-21

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  16. Thermoelectric power generator with intermediate loop

    DOE Patents [OSTI]

    Bel,; Lon E.; Crane, Douglas Todd

    2009-10-27

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  17. Holey Silicon as an Efficient Thermoelectric Material

    SciTech Connect (OSTI)

    Tang, Jinyao; Wang, Hung-Ta; Hyun Lee, Dong; Fardy, Melissa; Huo, Ziyang; Russell, Thomas P.; Yang, Peidong

    2010-09-30

    This work investigated the thermoelectric properties of thin silicon membranes that have been decorated with high density of nanoscopic holes. These ?holey silicon? (HS) structures were fabricated by either nanosphere or block-copolymer lithography, both of which are scalable for practical device application. By reducing the pitch of the hexagonal holey pattern down to 55 nm with 35percent porosity, the thermal conductivity of HS is consistently reduced by 2 orders of magnitude and approaches the amorphous limit. With a ZT value of 0.4 at room temperature, the thermoelectric performance of HS is comparable with the best value recorded in silicon nanowire system.

  18. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    DOE Patents [OSTI]

    Singh, David Joseph

    2013-07-16

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  19. Application of real time transient temperature (RT{sup 3}) program on nuclear power plant HVAC analysis

    SciTech Connect (OSTI)

    Cai, Y.; Tomlins, V.A.; Haskell, N.L.; Giffels, F.W.

    1996-08-01

    A database oriented technical analysis program (RT) utilizing a lumped parameter model combined with a finite difference method was developed to concurrently simulate transient temperatures in single or multiple room(s)/area(s). Analyses can be seen for postulated design basis events, such as, 10CFR50 Appendix-R, Loss of Coolant Accident concurrent with Loss of Offsite Power (LOCA/LOOP), Station BlackOut (SBO), and normal station operating conditions. The rate of change of the air temperatures is calculated by explicitly solving a series of energy balance equations with heat sources and sinks that have been described. For building elements with heat absorbing capacity, an explicit Forward Time Central Space (FTCS) model of one dimensional transient heat conduction in a plane element is used to describe the element temperature profile. Heat migration among the rooms/areas is considered not only by means of conduction but also by means of natural convection induced by temperature differences through openings between rooms/areas. The program also provides a means to evaluate existing plant HVAC system performance. The performance and temperature control of local coolers/heaters can be also simulated. The program was used to calculate transient temperature profiles for several buildings and rooms housing safety-related electrical components in PWR and BWR nuclear power plants. Results for a turbine building and reactor building in a BWR nuclear power plant are provided here. Specific calculational areas were defined on the basis of elevation, physical barriers and components/systems. Transient temperature profiles were then determined for the bounding design basis events with winter and summer outdoor air temperatures.

  20. Energy Savings Potential of Flexible and Adaptive HVAC Distribution Systems for Office Buildings

    SciTech Connect (OSTI)

    Loftness, Vivian; Brahme, Rohini; Mondazzi, Michelle; Vineyard, Edward; MacDonald, Michael

    2002-06-01

    It has been understood by architects and engineers that office buildings with easily re-configurable space and flexible mechanical and electrical systems are able to provide comfort that increases worker productivity while using less energy. Raised floors are an example of how fresh air, thermal conditioning, lighting needs, and network access can be delivered in a flexible manner that is not ''embedded'' within the structure. What are not yet documented is how well these systems perform and how much energy they can save. This area is being investigated in phased projects of the 21st Century Research Program of the Air-conditioning and Refrigeration Technology Institute. For the initial project, research teams at the Center for Building Performance and Diagnostics, Pittsburgh, Pennsylvania, and Oak Ridge National Laboratory, Oak Ridge, Tennessee, documented the diversity, performance, and incidence of flexible and adaptive HVAC systems. Information was gathered worldwide from journal and conference articles, case studies, manufactured products and assemblies, and interviews with design professionals. Their report thoroughly describes the variety of system types along with the various design alternatives observed for plenums, diffusers, individual control, and system integration. Many of the systems are illustrated in the report and the authors provide quantitative and qualitative comparisons. Among conclusions regarding key design issues, and barriers to widespread adoption, the authors state that flexible and adaptive HVAC systems, such as underfloor air, perform as well if not better than ceiling-based systems. Leading engineers have become active proponents after their first experience, which is resulting in these flexible and adaptive HVAC systems approaching 10 percent of the new construction market. To encourage adoption of this technology that improves thermal comfort and indoor air quality, follow-on work is required to further document performance. Architects, professional engineers, and commercial real estate developers will benefit from the availability of information that quantifies energy savings, first cost construction differences, and additional operating costs created when office space must be reconfigured to accommodate new tenants.

  1. Titanium nitride electrodes for thermoelectric generators

    DOE Patents [OSTI]

    Novak, Robert F.; Schmatz, Duane J.; Hunt, Thomas K.

    1987-12-22

    The invention is directed to a composite article suitable for use in thermoelectric generators. The article comprises a thin film of titanium nitride as an electrode deposited onto solid electrolyte. The invention is also directed to the method of making same.

  2. Thermoelectric Ambient Energy Harvester - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Energy Storage Energy Storage Electricity Transmission Electricity Transmission Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Thermoelectric Ambient Energy Harvester Pacific Northwest National Laboratory Contact PNNL About This Technology Environments where natural temperature differences exist (above/below ground and either side of ductwork that delivers heating, ventilation and air conditioning in

  3. High ZT bismuth-doped perovskite thermoelectrics

    DOE Patents [OSTI]

    Brown-Shaklee, Harlan James

    2016-02-23

    A bismuth-doped perovskite thermoelectric, comprising (Bi.sub.x, La.sub.0.1-x)SrTiO.sub.3, wherein x is between 0.01 and 0.1, can have a high figure-of-merit, ZT.

  4. Molybdenum oxide electrodes for thermoelectric generators

    DOE Patents [OSTI]

    Schmatz, Duane J. (Dearborn Heights, MI)

    1989-01-01

    The invention is directed to a composite article suitable for use in thermoelectric generators. The article comprises a thin film comprising molybdenum oxide as an electrode deposited by physical deposition techniques onto solid electrolyte. The invention is also directed to the method of making same.

  5. Thermoelectric devices and applications for the same

    DOE Patents [OSTI]

    DeSteese, John G [Kennewick, WA; Olsen, Larry C [Richland, WA; Martin, Peter M [Kennewick, WA

    2010-12-14

    High performance thin film thermoelectric couples and methods of making the same are disclosed. Such couples allow fabrication of at least microwatt to watt-level power supply devices operating at voltages greater than one volt even when activated by only small temperature differences.

  6. COMPARATIVE STUDY AMONG HYBRID GROUND SOURCE HEAT PUMP SYSTEM, COMPLETE GROUND SOURCE HEAT PUMP AND CONVENTIONAL HVAC SYSTEM

    SciTech Connect (OSTI)

    Jiang Zhu; Yong X. Tao

    2011-11-01

    In this paper, a hotel with hybrid geothermal heat pump system (HyGSHP) in the Pensacola is selected and simulated by the transient simulation software package TRNSYS [1]. To verify the simulation results, the validations are conducted by using the monthly average entering water temperature, monthly facility consumption data, and etc. And three types of HVAC systems are compared based on the same building model and HVAC system capacity. The results are presented to show the advantages and disadvantages of HyGSHP compared with the other two systems in terms of energy consumptions, life cycle cost analysis.

  7. The Effects of an Exhaust Thermoelectric Generator of a GM Sierra...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Exhaust Thermoelectric Generator of a GM Sierra Pickup Truck The Effects of an Exhaust Thermoelectric Generator of a GM Sierra Pickup Truck 2004 Diesel Engine Emissions ...

  8. Performance, Market and Manufacturing Constraints relevant to the Industrialization of Thermoelectric Devices

    Broader source: Energy.gov [DOE]

    Market pricing of thermoelectric raw materials and processing, cost of manufacture of devices and systems constraints on the viability of a mass market thermoelectric product are discussed

  9. Combined solar and internal load effects on selection of heat reclaim-economizer HVAC systems

    SciTech Connect (OSTI)

    Sauer, H.J. Jr.; Howell, R.H.; Wang, Z. . Dept. of Mechanical Engineering)

    1990-05-01

    The concern for energy conservation has led to the development and use of heat recovery systems which reclaim the building internal heat before it is discarded in the exhaust air. On the other hand, economizer cycles have been widely used for many years in a variety of types of HVAC systems. Economizer cycles are widely accepted as a means to reduce operating time for chilling equipment when cool outside air is available. It has been suggested that heat reclaim systems should not be used in conjunction with an HVAC system which incorporates an economizer cycle because the economizer operation would result in heat being exhausted which might have been recovered. Others suggest that the economizer cycle can be used economically in a heat recovery system if properly controlled to maintain an overall building heat balance. This study looks at potential energy savings of such combined systems with particular emphasis on the effects of the solar load (amount of glass) and the internal load level (lights, people, appliances, etc.). For systems without thermal storage, annual energy savings of up to 60 percent are predicted with the use of heat reclaim systems in conjunction with economizers when the heat reclaim has priority. These results demonstrate the necessity of complete engineering evaluations if proper selection and operation of combined heat recovery and economizer cycles are to be obtained. This paper includes the basic methodology for making such evaluations.

  10. COMPREHENSIVE DIAGNOSTIC AND IMPROVEMENT TOOLS FOR HVAC-SYSTEM INSTALLATIONS IN LIGHT COMMERCIAL BUILDINGS

    SciTech Connect (OSTI)

    Abram Conant; Mark Modera; Joe Pira; John Proctor; Mike Gebbie

    2004-10-31

    Proctor Engineering Group, Ltd. (PEG) and Carrier-Aeroseal LLP performed an investigation of opportunities for improving air conditioning and heating system performance in existing light commercial buildings. Comprehensive diagnostic and improvement tools were created to address equipment performance parameters (including airflow, refrigerant charge, and economizer operation), duct-system performance (including duct leakage, zonal flows and thermal-energy delivery), and combustion appliance safety within these buildings. This investigation, sponsored by the National Energy Technology Laboratory, a division of the U.S. Department of Energy, involved collaboration between PEG and Aeroseal in order to refine three technologies previously developed for the residential market: (1) an aerosol-based duct sealing technology that allows the ducts to be sealed remotely (i.e., without removing the ceiling tiles), (2) a computer-driven diagnostic and improvement-tracking tool for residential duct installations, and (3) an integrated diagnosis verification and customer satisfaction system utilizing a combined computer/human expert system for HVAC performance. Prior to this work the aerosol-sealing technology was virtually untested in the light commercial sector--mostly because the savings potential and practicality of this or any other type of duct sealing had not been documented. Based upon the field experiences of PEG and Aeroseal, the overall product was tailored to suit the skill sets of typical HVAC-contractor personnel.

  11. HVAC Design Strategy for a Hot-Humid Production Builder, Houston, Texas (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-03-01

    BSC worked directly with the David Weekley Homes - Houston division to redesign three floor plans in order to locate the HVAC system in conditioned space. The purpose of this project is to develop a cost effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses. This is in preparation for the upcoming code changes in 2015. The builder wishes to develop an upgrade package that will allow for a seamless transition to the new code mandate. The following research questions were addressed by this research project: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost? BSC and the builder developed a duct design strategy that employs a system of dropped ceilings and attic coffers for moving the ductwork from the vented attic to conditioned space. The furnace has been moved to either a mechanical closet in the conditioned living space or a coffered space in the attic.

  12. Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes - Business Case Assessment

    SciTech Connect (OSTI)

    Baxter, Van D

    2007-05-01

    The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, 'HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment', ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. Table 1 summarizes the energy savings potential of the highest scoring options from the 2005 study for all five locations. All system options were scored by the ORNL building equipment research team and by William Goetzler of Navigant Consulting. These scores were reviewed by DOE/BT's Residential Integration program leaders and Building America team members. Based on these results, the two centrally ducted integrated heat pump (IHP) systems (air source and ground source versions) were selected for advancement to Stage 2 (Exploratory Development) business case assessments in FY06. This report describes results of these business case assessments. It is a compilation of three separate reports describing the initial business case study (Baxter 2006a), an update to evaluate the impact of an economizer cooling option (Baxter 2006b), and a second update to evaluate the impact of a winter humidification option (Baxter 2007). In addition it reports some corrections made subsequent to release of the first two reports to correct some errors in the TRNSYS building model for Atlanta and in the refrigerant pressure drop calculation in the water-to-refrigerant evaporator module of the ORNL Heat Pump Design Model (HPDM) used for the IHP analyses. These changes resulted in some minor differences between IHP performance as reported in Baxter (2006a, b) and in this report.

  13. Report on HVAC option selections for a relocatable classroom energy and indoor environmental quality field study

    SciTech Connect (OSTI)

    Apte, Michael G.; Delp, Woody W.; Diamond, Richard C.; Hodgson, Alfred T.; Kumar, Satish; Rainer, Leo I.; Shendell, Derek G.; Sullivan, Doug P.; Fisk, William J.

    2001-10-11

    It is commonly assumed that efforts to simultaneously develop energy efficient building technologies and to improve indoor environmental quality (IEQ) are unfeasible. The primary reason for this is that IEQ improvements often require additional ventilation that is costly from an energy standpoint. It is currently thought that health and productivity in work and learning environments requires adequate, if not superior, IEQ. Despite common assumptions, opportunities do exist to design building systems that provide improvements in both energy efficiency and IEQ. This report outlines the selection of a heating, ventilation, and air conditioning (HVAC) system to be used in demonstrating such an opportunity in a field study using relocatable school classrooms. Standard classrooms use a common wall mounted heat pump HVAC system. After reviewing alternative systems, a wall-mounting indirect/direct evaporative cooling system with an integral hydronic gas heating is selected. The anticipated advantages of this system include continuous ventilation of 100 percent outside air at or above minimum standards, projected cooling energy reductions of about 70 percent, inexpensive gas heating, improved airborne particle filtration, and reduced peak load electricity use. Potential disadvantages include restricted climate regions and possible increases in indoor relative humidity levels under some conditions.

  14. Learning Based Bidding Strategy for HVAC Systems in Double Auction Retail Energy Markets

    SciTech Connect (OSTI)

    Sun, Yannan; Somani, Abhishek; Carroll, Thomas E.

    2015-07-01

    In this paper, a bidding strategy is proposed using reinforcement learning for HVAC systems in a double auction market. The bidding strategy does not require a specific model-based representation of behavior, i.e., a functional form to translate indoor house temperatures into bid prices. The results from reinforcement learning based approach are compared with the HVAC bidding approach used in the AEP gridSMART® smart grid demonstration project and it is shown that the model-free (learning based) approach tracks well the results from the model-based behavior. Successful use of model-free approaches to represent device-level economic behavior may help develop similar approaches to represent behavior of more complex devices or groups of diverse devices, such as in a building. Distributed control requires an understanding of decision making processes of intelligent agents so that appropriate mechanisms may be developed to control and coordinate their responses, and model-free approaches to represent behavior will be extremely useful in that quest.

  15. Molecular and Hybrid Solution Processable Thermoelectrics | MIT-Harvard

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Excitonics and Hybrid Solution Processable Thermoelectrics February 15, 2011 at 3pm/36-428 Rachel Segalman University of California, Berkeley segalman_001 abstract: Thermoelectric materials for energy generation have several advantages over conventional power cycles including lack of moving parts, silent operation, miniaturizability, and CO2 free conversion of heat to electricity. Excellent thermoelectric efficiency requires a combination of high thermopower (S, V/K), high

  16. Enhancement of automotive exhaust heat recovery by thermoelectric devices

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: Enhancement of automotive exhaust heat recovery by thermoelectric devices Citation Details In-Document Search Title: Enhancement of automotive exhaust heat recovery by thermoelectric devices In an effort to improve automobile fuel economy, an experimental study is undertaken to explore practical aspects of implementing thermoelectric devices for exhaust gas energy recovery. A highly instrumented apparatus consisting of a hot (exhaust gas)

  17. High Reliability, High TemperatureThermoelectric Power Generation Materials

    Broader source: Energy.gov (indexed) [DOE]

    and Technologies | Department of Energy Key technologies and system approaches to excellent record of thermoelectric power sources in deep space missions and development of higher performance TE materials for the next generation systems PDF icon fleurial.pdf More Documents & Publications Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications Waste Heat Recovery

  18. Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy Presents successful incorporation of one of the most promising classes of the new materials, the skutterudites, into a working automotive TEG prototype and test results on its performance PDF icon deer11_meisner.pdf More Documents & Publications Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Develop Thermoelectric Technology for Automotive Waste Heat Recovery Development of Cost-Competitive Advanced Thermoelectric Generators for Direct

  19. Thermoelectric Generator Development for Automotive Waste Heat Recovery |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. PDF icon deer10_meisner.pdf More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM

  20. Develop Thermoelectric Technology for Automotive Waste Heat Recovery |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 11 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace050_meisner_2011_o.pdf More Documents & Publications Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Development of Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power

  1. Development of Cost-Competitive Advanced Thermoelectric Generators for

    Broader source: Energy.gov (indexed) [DOE]

    Direct Conversion of Vehicle Waste Heat into Useful Electrical Power | Department of Energy ace081_meisner_2012_o.pdf More Documents & Publications Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power Vehicle Technologies Office Merit Review 2014: Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power Skutterudite Thermoelectric Generator For

  2. Development of Thermoelectric Technology for Automotive Waste Heat Recovery

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy Overview and status of project to develop thermoelectric generator for automotive waste heat recovery and achieve at least 10% fuel economy improvement. PDF icon deer08_gundlach.pdf More Documents & Publications Opportunities and Challenges of Thermoelectrlic Waste Heat Recovery in the Automotive Industry Develop Thermoelectric Technology for Automotive Waste Heat Recovery Thermoelectric Technology for Automotive Waste Heat Recovery

  3. Development of a 100-Watt High Temperature Thermoelectric Generator |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Test results for low and high temperature thermoelectric generators (TEG) those for a 530-watt BiTe TEG; design and construction of a 100-watt high temperature TEG currently in fabrication. PDF icon deer08_lagrandeur.pdf More Documents & Publications Status of Segmented Element Thermoelectric Generator for Vehicle Waste Heat Recovery Status of Segmented Element Thermoelectric Generator for Vehicle Waste Heat Recovery Development of a Scalable 10% Efficient

  4. High-Performance Thermoelectric Devices Based on Abundant Silicide...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicle waste heat recovery will include fundamental research to use abundant promising low-cost thermoelectric materials, thermal management and interfaces design, and metrology

  5. Automotive Thermoelectric Moduleswith Scalable Thermo- andElectro...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moduleswith Scalable Thermo- and Electro-Mechanical Interfaces Automotive Thermoelectric Moduleswith Scalable Thermo- and Electro-Mechanical Interfaces Interface materials based on ...

  6. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Conversion for Efficient Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery ...

  7. Thermoelectric Couple Demonstration of (In, Ce)-based Skutterudite...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of (In, Ce)-based Skutterudite Materials for Automotive Energy Recovery Thermoelectric Couple Demonstration of (In, Ce)-based Skutterudite Materials for Automotive...

  8. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion of Waste Heat to Electricity in an IC Engine-Powered Vehicle Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle...

  9. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Evaluation PDF icon ace049schock2011o.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle...

  10. Thermoelectric Generator Development at Renault Trucks-Volvo Group

    Broader source: Energy.gov [DOE]

    Reviews project to study the potential of thermoelectricity for diesel engines of trucks and passenger cars, where relatively low exhaust temperature is challenging for waste heat recovery systems

  11. Feasibility of OnBoard Thermoelectric Generation for Improved...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Feasibility of OnBoard Thermoelectric Generation for Improved Vehicle Fuel Economy Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER ...

  12. Strategies for High Thermoelectric zT in Bulk Materials

    Broader source: Energy.gov [DOE]

    Zintl principle in chemistry, complex electronic band structures, and incorporation of nanometer sized particles were used to explore, optimize and improve bulk thermoelectric materials

  13. Thermoelectric Generator Development at Renault Trucks-Volvo...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    systems PDF icon aixala.pdf More Documents & Publications RENOTER Project RENOTER Project Integrated Design and Manufacturing of Thermoelectric Generator Using Thermal Spray

  14. Thermoelectric FabricsŽ based on carbon nanotube composites

    Broader source: Energy.gov [DOE]

    Composite films of multi-walled carbon nanotubes/polyvinylidene fluoride layered into multiple element modules, results in thermoelectric fabrics with increased power output

  15. Progress in Thermoelectrical Energy Recovery from a Light Truck...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery from a Light Truck Exhaust Progress in Thermoelectrical Energy Recovery from a Light Truck Exhaust Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. ...

  16. Thermoelectric Properties of Rare-Earth-Ruthenium-Germanium Compounds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cobalt substitution for ruthenium enhances the semiconductor character but does not improve the thermoelectric properties. URL: Link to article - Journal of Applied Physics...

  17. Nano-structures Thermoelectric Materals - Part 2 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nano-structures Thermoelectric Materals - Part 2 2002 DEER Conference Presentation: RTI International PDF icon 2002deervenkatasubramanian2.pdf More Documents & Publications Nano-...

  18. Nano-structures Thermoelectric Materals - Part 1 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nano-structures Thermoelectric Materals - Part 1 2002 DEER Conference Presentation: RTI International PDF icon 2002deervenkatasubramanian1.pdf More Documents & Publications Nano-...

  19. Recent Device Developments with Advanced Bulk Thermoelectric Materials at RTI

    Broader source: Energy.gov [DOE]

    Reviews work in engineered thin-film nanoscale thermoelectric materials and nano-bulk materials with high ZT undertaken by RTI in collaboration with its research partners

  20. Sandia Energy - The Quest for Efficiency in Thermoelectric Nanowires

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency in Thermoelectric Nanowires Sandia researchers say better materials and manufacturing techniques for nanowires could allow car makers to harvest power from the heat...

  1. Glass-like thermal conductivity in high efficiency thermoelectric materials

    Broader source: Energy.gov [DOE]

    Discusses strategies to design thermoelectric materials with extremely low lattice thermal conductivity through modifications of the phonon band structure and phonon relaxation time.

  2. Commercialization of Bulk Thermoelectric Materials for Power Generation

    Broader source: Energy.gov [DOE]

    Critical aspects of technology commercialization of preproduction high performance thermoelectric materials available for device developers, data analysis, and future plans are discussed

  3. A miniaturized mW thermoelectric generator for nw objectives...

    Office of Scientific and Technical Information (OSTI)

    reliable power for decades. Citation Details In-Document Search Title: A miniaturized mW thermoelectric generator for nw objectives: continuous, autonomous, reliable power for ...

  4. The potential impact of ZT=4 thermoelectric materials on solar...

    Office of Scientific and Technical Information (OSTI)

    engines taking into account specific mass, volume and cost as well as system reliability. ... CONVERSION; INDUCTION; PERFORMANCE; RELIABILITY; STIRLING ENGINES; THERMOELECTRIC ...

  5. High Reliability, High TemperatureThermoelectric Power Generation...

    Broader source: Energy.gov (indexed) [DOE]

    Key technologies and system approaches to excellent record of thermoelectric power sources in deep space missions and development of higher performance TE materials for the next ...

  6. Proactive Strategies for Designing Thermoelectric Materials for Power Generation

    Broader source: Energy.gov [DOE]

    New p-type and n-type multiple-rattler skutterudite thermoelectric materials design, synthesis, fabrication, and characterization for power generation using vehicle exhaust waste heat.

  7. PACCAR/Hi-Z Thermoelectric Generator Project | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon 2002deerbergstrand.pdf More Documents & Publications Self-powered Hydrogen + Oxygen Injection System The Effects of an Exhaust Thermoelectric Generator of a GM Sierra ...

  8. Development of a Thermoelectric Device for an Automotive Zonal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presents development of a thermoelectric device using liquid working fluid on the waste side and air as working fluid on the main side to enable zonal or distributed ...

  9. Status of Segmented Element Thermoelectric Generator for Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Discusses progress of thermoelectric generator development at BSST and assessment of potential to enter commercial operation in vehicles PDF icon crane.pdf More Documents & ...

  10. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Describes TEG systems built at MSU to mitigate couple failures and a cost-benefit analysis ... More Documents & Publications Thermoelectric Conversion of Wate Heat to Electricity in an ...

  11. DOE/NSF Thermoelectric Partnership Project SEEBECK Saving Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    research and sharing Knowledge DOENSF Thermoelectric Partnership Project SEEBECK Saving Energy Effectively By Engaging in Collaborative research and sharing Knowledge 2011 DOE ...

  12. DOE/NSF Thermoelectric Partnership Project SEEBECK Saving Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Sharing Knowledge DOENSF Thermoelectric Partnership Project SEEBECK Saving Energy Effectively By Engaging in Collaborative Research and Sharing Knowledge 2012 DOE ...

  13. Characterization of thermoelectric elements and devices by impedance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    describes a new measurement technique that utilizes impedance spectroscopy for the characterization of thermoelectric materials and devices. Two circuit models were...

  14. State of the Art Prototype Vehicle with a Thermoelectric Generator.

    Broader source: Energy.gov [DOE]

    Highlights BMW and partners buildup and testing of state-of-the-art prototype vehicle with the thermoelectric generator that produced over 600W under highway driving conditions

  15. Enhancement of automotive exhaust heat recovery by thermoelectric...

    Office of Scientific and Technical Information (OSTI)

    Measurements of thermoelectric voltage output and flow and surface temperatures were acquired and analyzed to investigate the power generation and heat transfer properties of the ...

  16. High Heat Flux Thermoelectric Module Using Standard Bulk Material

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presents high heat flux thermoelectric module design for cooling using a novel V-shaped shunt configuration with bulk TE elements achieving high area packing fractions

  17. Low and high Temperature Dual Thermoelectric Generation Waste...

    Broader source: Energy.gov (indexed) [DOE]

    Developing a low and high temperature dual thermoelectric generation waste heat recovery ... for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power Skutterudite ...

  18. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle ...

  19. Multi-physics modeling of thermoelectric generators for waste...

    Broader source: Energy.gov (indexed) [DOE]

    heat recovery applications PDF icon deer12zhang2.pdf More Documents & Publications Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat ...

  20. Design of Bulk Nanocomposites as High Efficiency Thermoelectric...

    Office of Science (SC) Website

    that more efficiently convert heat to electricity. Research Details Thermoelectric materials directly generate electrical power from heat, but suffer from low efficiency, ...

  1. Sandia Researchers Are First to Measure Thermoelectric Behavior...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... materials, but we think we can improve that with better electrical conductivity." ... A thermoelectric device near a car engine or exhaust system could capture that wasted heat ...

  2. HVAC Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Commercial Program Development Commercial Current Promotions Industrial Federal Agriculture Heating Ventilation and Air Conditioning Energy efficient Heating Ventilation and...

  3. Radioisotope thermoelectric generator reliability and safety

    SciTech Connect (OSTI)

    Campbell, R.; Klein, J.

    1989-01-01

    There are numerous occasions when a planetary mission requires energy in remote areas of the solar system. Anytime power is required much beyond Mars or the Asteroid Belts, solar power is not an option. The radioisotope thermoelectric generator (RTG) was developed for such a mission requirement. It is a relatively small and lightweight power source that can produce power under adverse conditions. Just this type of source has become the backbone of the power system for far outer plant exploration. Voyagers I and II are utilizing RTGs, which will soon power the Galileo spacecraft to Jupiter and the Ulysses spacecraft to study the solar poles. The paper discusses RTG operation including thermoelectric design, converter design, general-purpose heat source; RTG reliability including design, testing, experience, and launch approval; and RTG safety issues and methods of ensuring safety.

  4. Value impact analysis of Generic Issue 143, Availability of Heating, Ventilation, Air Conditioning (HVAC) and Chilled Water Systems

    SciTech Connect (OSTI)

    Daling, P.M.; Marler, J.E.; Vo, T.V.; Phan, H.; Friley, J.R.

    1993-11-01

    This study evaluates the values (benefits) and impacts (costs) associated with potential resolutions to Generic Issue 143, ``Availability of HVAC and Chilled Water Systems.`` The study identifies vulnerabilities related to failures of HVAC, chilled water, and room cooling systems; develops estimates of room heatup rates and safety-related equipment vulnerabilities following losses of HVAC/room cooler systems; develops estimates of the core damage frequencies and public risks associated with failures of these systems; develops three proposed resolution strategies to this generic issue; and performs a value/impact analysis of the proposed resolutions. Existing probabilistic risk assessments for four representative plants, including one plant from each vendor, form the basis for the core damage frequency and public risk calculations. Both internal and external events were considered. It was concluded that all three proposed resolution strategies exceed the $1,000/person-rem cost-effectiveness ratio. Additional evaluations were performed to develop ``generic`` insights on potential design-related and configuration-related vulnerabilities and potential high-frequency ({approximately}1E-04/RY) accident sequences that involve failures of HVAC/room cooling functions. It was concluded that, although high-frequency accident sequences may exist at some plants, these high-frequency sequences are plant-specific in nature or have been resolved through hardware and/or operational changes. The plant-specific Individual Plant Examinations are an effective vehicle for identification and resolution of these plant-specific anomalies and hardware configurations.

  5. Thermoelectric Power Plant Water Needs and Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study of the Use of Saline Formations for Combined Thermoelectric Power Plant Water Needs and Carbon Sequestration at a Regional Scale: Phase II Report June 2010 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness

  6. Project Profile: Concentrated Solar Thermoelectric Power

    Broader source: Energy.gov [DOE]

    The Rohsenow-Kendall Heat Transfer Lab at Massachusetts Institute of Technology(MIT), under the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is developing concentrated solar thermoelectric generators (CSTEGs) for CSP systems. This innovative distributed solution contains no moving parts and converts heat directly into electricity. Thermal storage can be integrated into the system, creating a reliable and flexible source of electricity.

  7. High Temperature Thermoelectric Materials Characterization for Automotive

    Broader source: Energy.gov (indexed) [DOE]

    Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program | Department of Energy lmp_06_wang.pdf More Documents & Publications High-Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program Selection of a Wear-Resistant Tractor Drivetrain Material: Success stories at the High Temperature Materials Laboratory (HTML) User Program

  8. multi-mission radioisotope thermoelectric generator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    multi-mission radioisotope thermoelectric generator - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  9. Engineering and Materials for Automotive Thermoelectric Applications |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Design and optimization of TE exhaust generator, vehicle integration, and thermal management; distributed cooling and heating with TE devices; discovery and development of highly efficient TE materials. PDF icon yang.pdf More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites Electrical and Thermal Transport Optimization of High Efficient

  10. Design and development of thermoelectric generator

    SciTech Connect (OSTI)

    Prem Kumar, D. S. Mahajan, Ishan Vardhan Anbalagan, R. Mallik, Ramesh Chandra

    2014-04-24

    In this paper we discuss the fabrication, working and characteristics of a thermoelectric generator made up of p and n type semiconductor materials. The device consists of Fe{sub 0.2}Co{sub 3.8}Sb{sub 11.5}Te{sub 0.5} (zT = 1.04 at 818 K) as the n-type and Zn4Sb3 (zT=0.8 at 550 K) as the p-type material synthesized by vacuum hot press method. Carbon paste has been used to join the semiconductor legs to metal (Molybdenum) electrodes to reduce the contact resistance. The multi-couple (4 legs) generator results a maximum output power of 1.083 mW at a temperature difference of 240 K between the hot and cold sides. In this investigation, an I-V characteristic, maximum output power of the thermoelectric module is presented. The efficiency of thermoelectric module is obtained as ? = 0.273 %.

  11. Multi-physics modeling of thermoelectric generators for waste heat recovery applications

    Broader source: Energy.gov [DOE]

    Model developed provides effective guidelines to designing thermoelectric generation systems for automotive waste heat recovery applications

  12. New Composite Thermoelectric Materials for Macro-size Applications

    ScienceCinema (OSTI)

    Dresselhaus, Mildred [MIT, Cambridge, Massachusetts, United States

    2010-01-08

    A review will be given of several important recent advances in both thermoelectrics research and industrial thermoelectric applications, which have attracted much attention, increasing incentives for developing advanced materials appropriate for large-scale applications of thermoelectric devices. One promising strategy is the development of materials with a dense packing of random nanostructures as a route for the sacle-up of thermoelectrics applications. The concepts involved in designing composite materials containing nanostructures for thermoelectric applications will be discussed in general terms. Specific application is made to the Bi{sub 2}Te{sub 3} nanocomposite system for use in power generation. Also emphasized are the scientific advantages of the nanocomposite approach for the simultaneous increase in the power factor and decrease of the thermal conductivity, along with the practical advantages of having bulk samples for property measurements and device applications. A straightforward path is identified for the scale-up of thermoelectric materials synthesis containing nanostructured constituents for use in thermoelectric applications. We end with some vision of where the field of thermoelectrics is now heading.

  13. High-Performance Thermoelectric Devices Based on Abundant Silicide

    Broader source: Energy.gov (indexed) [DOE]

    Materials for Vehicle Waste Heat Recovery | Department of Energy Development of high-performance thermoelectric devices for vehicle waste heat recovery will include fundamental research to use abundant promising low-cost thermoelectric materials, thermal management and interfaces design, and metrology

  14. Progress towards an Optimization Methodology for Combustion-Driven Portable Thermoelectric Power Generation Systems

    SciTech Connect (OSTI)

    Krishnan, Shankar; Karri, Naveen K.; Gogna, Pawan K.; Chase, Jordan R.; Fleurial, Jean-Pierre; Hendricks, Terry J.

    2012-03-13

    Enormous military and commercial interests exist in developing quiet, lightweight, and compact thermoelectric (TE) power generation systems. This paper investigates design integration and analysis of an advanced TE power generation system implementing JP-8 fueled combustion and thermal recuperation. Design and development of a portable TE power system using a JP-8 combustor as a high temperature heat source and optimal process flows depend on efficient heat generation, transfer, and recovery within the system are explored. Design optimization of the system required considering the combustion system efficiency and TE conversion efficiency simultaneously. The combustor performance and TE sub-system performance were coupled directly through exhaust temperatures, fuel and air mass flow rates, heat exchanger performance, subsequent hot-side temperatures, and cold-side cooling techniques and temperatures. Systematic investigation of this system relied on accurate thermodynamic modeling of complex, high-temperature combustion processes concomitantly with detailed thermoelectric converter thermal/mechanical modeling. To this end, this work reports on design integration of systemlevel process flow simulations using commercial software CHEMCADTM with in-house thermoelectric converter and module optimization, and heat exchanger analyses using COMSOLTM software. High-performance, high-temperature TE materials and segmented TE element designs are incorporated in coupled design analyses to achieve predicted TE subsystem level conversion efficiencies exceeding 10%. These TE advances are integrated with a high performance microtechnology combustion reactor based on recent advances at the Pacific Northwest National Laboratory (PNNL). Predictions from this coupled simulation established a basis for optimal selection of fuel and air flow rates, thermoelectric module design and operating conditions, and microtechnology heat-exchanger design criteria. This paper will discuss this simulation process that leads directly to system efficiency power maps defining potentially available optimal system operating conditions and regimes. This coupled simulation approach enables pathways for integrated use of high-performance combustor components, high performance TE devices, and microtechnologies to produce a compact, lightweight, combustion driven TE power system prototype that operates on common fuels.

  15. General-purpose heat source: Research and development program. Radioisotope thermoelectric generator impact tests: RTG-1 and RTG-2

    SciTech Connect (OSTI)

    Reimus, M.A.H.; Hinckley, J.E.; George, T.G.

    1996-07-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure.

  16. Market assessment for active solar heating and cooling products. Category B: a survey of decision-makers in the HVAC marketplace. Final report

    SciTech Connect (OSTI)

    1980-09-01

    A comprehensive evaluation of the market for solar heating and cooling products for new and retrofit markets is reported. The emphasis is on the analysis of solar knowledge among HVAC decision makers and a comprehensive evaluation of their solar attitudes and behavior. The data from each of the following sectors are described and analyzed: residential consumers, organizational and manufacturing buildings, HVAC engineers and architects, builders/developers, and commercial/institutional segments. (MHR)

  17. Solid state transport-based thermoelectric converter

    DOE Patents [OSTI]

    Hu, Zhiyu

    2010-04-13

    A solid state thermoelectric converter includes a thermally insulating separator layer, a semiconducting collector and an electron emitter. The electron emitter comprises a metal nanoparticle layer or plurality of metal nanocatalyst particles disposed on one side of said separator layer. A first electrically conductive lead is electrically coupled to the electron emitter. The collector layer is disposed on the other side of the separator layer, wherein the thickness of the separator layer is less than 1 .mu.m. A second conductive lead is electrically coupled to the collector layer.

  18. Energy harvesting using a thermoelectric material

    DOE Patents [OSTI]

    Nersessian, Nersesse; Carman, Gregory P.; Radousky, Harry B.

    2008-07-08

    A novel energy harvesting system and method utilizing a thermoelectric having a material exhibiting a large thermally induced strain (TIS) due to a phase transformation and a material exhibiting a stress induced electric field is introduced. A material that exhibits such a phase transformation exhibits a large increase in the coefficient of thermal expansion over an incremental temperature range (typically several degrees Kelvin). When such a material is arranged in a geometric configuration, such as, for a example, a laminate with a material that exhibits a stress induced electric field (e.g. a piezoelectric material) the thermally induced strain is converted to an electric field.

  19. Thermoelectric Power Plant Water Needs and Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study of the Use of Saline Formations for Combined Thermoelectric Power Plant Water Needs and Carbon Sequestration at a Regional Scale: Phase III Report August 2010 DOE/NETL-09-014470 SAND2011-5776P Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the

  20. Radioisotope thermoelectric generator transport trailer system

    SciTech Connect (OSTI)

    Ard, K.E.; King, D.A.; Leigh, H.; Satoh, J.A.

    1995-01-20

    The Radioisotope Thermoelectric Generator (RTG) Transportation System, designated as System 100, comprises four major systems. The four major systems are designated as the Packaging System (System 120), Trailer System (System 140), Operations and Ancillary Equipment System (System 160), and Shipping and Receiving Facility Transport System (System 180). Packaging System (System 120), including the RTG packaging is licensed (regulatory) hardware; it is certified by the U.S. Department of Energy to be in accordance with Title 10, {ital Code} {ital of} {ital Federal} {ital Regulations}, Part 71 (10 CFR 71). System 140, System 160, and System 180 are nonlicensed (nonregulatory) hardware. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}

  1. Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes

    SciTech Connect (OSTI)

    Baxter, Van D

    2006-11-01

    The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, 'HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment,' ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. Table 1 summarizes the energy savings potential of the highest scoring options from the 2005 study for all five locations.

  2. NREL Delivers In-Home HVAC Efficiency Testing Solutions (Fact Sheet), Building America: Technical Highlight, Building Technologies Program (BTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Delivers In-Home HVAC Efficiency Testing Solutions Researchers at the National Renewable Energy Laboratory (NREL) have recently developed two simple in-home efficiency test methods that can be used by technicians, researchers, or interested homeowners to verify the correct opera- tion and energy efficiency of a home's air conditioning and heating equipment. An efficiency validation method for mini-split heat pumps (MSHPs)-highly efficient refrigerant-based air conditioning and heating systems

  3. Microscreen radiation shield for thermoelectric generator

    DOE Patents [OSTI]

    Hunt, Thomas K.; Novak, Robert F.; McBride, James R.

    1990-01-01

    The present invention provides a microscreen radiation shield which reduces radiative heat losses in thermoelectric generators such as sodium heat engines without reducing the efficiency of operation of such devices. The radiation shield is adapted to be interposed between a reaction zone and a means for condensing an alkali metal vapor in a thermoelectric generator for converting heat energy directly to electrical energy. The radiation shield acts to reflect infrared radiation emanating from the reaction zone back toward the reaction zone while permitting the passage of the alkali metal vapor to the condensing means. The radiation shield includes a woven wire mesh screen or a metal foil having a plurality of orifices formed therein. The orifices in the foil and the spacing between the wires in the mesh is such that radiant heat is reflected back toward the reaction zone in the interior of the generator, while the much smaller diameter alkali metal atoms such as sodium pass directly through the orifices or along the metal surfaces of the shield and through the orifices with little or no impedance.

  4. Promoting high efficiency residential HVAC equipment: Lessons learned from leading utility programs

    SciTech Connect (OSTI)

    Neme, C.; Peters, J.; Rouleau, D.

    1998-07-01

    The Consortium for Energy Efficiency recently sponsored a study of leading electric utility efforts to promote high efficiency residential HVAC equipment. Given growing concerns from some utilities about the level of expenditures associated with rebate programs, special emphasis was placed on assessing the success of financing and other non-rebate options for promoting efficiency. Emphasis was also placed on review of efforts--rebate or otherwise--to push the market to very high levels of efficiency (i.e., SEER 13). This paper presents the results of the study. It includes discussion of key lessons from the utility programs analyzed. It also examines program participation rates and other potential indicators of market impacts. One notable conclusion is that several utility programs have pushed market shares for SEER 12 equipment to about 50% (the national average is less than 20%). At least one utility program has achieved a 50% market share for SEER 13 equipment (the national average is less than 3%). In general, financing does not appear to have as broad an appeal as consumer rebates. However, one unique utility program which combines the other of customer financing with modest incentives to contractors--in the form of frequent seller points that can be redeemed for advertising, technician training, travel and other merchandise--offers some promise that high participation rates can be achieved without customer rebates.

  5. An implementation of co-simulation for performance prediction of innovative integrated HVAC systems in buildings

    SciTech Connect (OSTI)

    Trcka, Marija; Wetter, Michael; Hensen, Jan L.M.

    2010-07-01

    Integrated performance simulation of buildings and heating, ventilation and air-conditioning (HVAC) systems can help reducing energy consumption and increasing level of occupant comfort. However, no singe building performance simulation (BPS) tool offers sufficient capabilities and flexibilities to accommodate the ever-increasing complexity and rapid innovations in building and system technologies. One way to alleviate this problem is to use co-simulation. The co-simulation approach represents a particular case of simulation scenario where at least two simulators solve coupled differential-algebraic systems of equations and exchange data that couples these equations during the time integration. This paper elaborates on issues important for co-simulation realization and discusses multiple possibilities to justify the particular approach implemented in a co-simulation prototype. The prototype is verified and validated against the results obtained from the traditional simulation approach. It is further used in a case study for the proof-of-concept, to demonstrate the applicability of the method and to highlight its benefits. Stability and accuracy of different coupling strategies are analyzed to give a guideline for the required coupling frequency. The paper concludes by defining requirements and recommendations for generic cosimulation implementations.

  6. Electronic, phononic, and thermoelectric properties of graphyne sheets

    SciTech Connect (OSTI)

    Sevinli, Hldun; Sevik, Cem

    2014-12-01

    Electron, phonon, and thermoelectric transport properties of ?-, ?-, ?-, and 6,6,12-graphyne sheets are compared and contrasted with those of graphene. ?-, ?-, and 6,6,12-graphynes, with direction dependent Dirac dispersions, have higher electronic transmittance than graphene. ?-graphyne also attains better electrical conduction than graphene except at its band gap. Vibrationally, graphene conducts heat much more efficiently than graphynes, a behavior beyond an atomic density differences explanation. Seebeck coefficients of the considered Dirac materials are similar but thermoelectric power factors decrease with increasing effective speeds of light. ?-graphyne yields the highest thermoelectric efficiency with a thermoelectric figure of merit as high as ZT?=?0.45, almost an order of magnitude higher than that of graphene.

  7. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    estimated to be 500 oC PDF icon deer09schock.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle...

  8. Thermoelectric Conversion of Wate Heat to Electricity in an IC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wate Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Wate Heat to Electricity in an IC Engine Powered Vehicle Presentation given at the 16th...

  9. Recent Progress in the Development of High Efficiency Thermoelectrics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Power Generation Quantum Well Thermoelectrics and Waste Heat Recovery Scale Up of SiSi0.8GE0.2 and B4CB9C Superlattices for Harvesting of Waste Heat in Diesel Engines

  10. System level modeling of thermoelectric generators for automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Uses a model to predict and analyze the system-level performance of a thermoelectric generator in terms of the power output and the power density at the element, module and ...

  11. Automotive Thermoelectric Moduleswith Scalable Thermo- and Electro-Mechanical Interfaces

    Broader source: Energy.gov [DOE]

    Interface materials based on carbon nanotubes and metallic alloys, scalable p- and n-type thermoelectrics, materials compatibility for improved reliability, and performance targets for automotive applications are discussed

  12. Amplification and reversal of Knudsen force by thermoelectric heating

    SciTech Connect (OSTI)

    O'Neill, William J.; Wada, Mizuki; Strongrich, Andrew D.; Cofer, Anthony; Alexeenko, Alina A.

    2014-12-09

    We show that the Knudsen thermal force generated by a thermally-induced flow over a heated beam near a colder wall could be amplified significantly by thermoelectric heating. Bidirectional actuation is achieved by switching the polarity of the thermoelectric device bias voltage. The measurements of the resulting thermal forces at different rarefaction regimes, realized by changing geometry and gas pressure, are done using torsional microbalance. The repulsive or attractive forces between a thermoelectrically heated or cooled plate and a substrate are shown to be up to an order of magnitude larger than for previously studied configurations and heating methods due to favorable coupling of two thermal gradients. The amplification and reversal of the Knudsen force is confirmed by numerical solution of the Boltzmann-ESBGK kinetic model equation. Because of the favorable scaling with decreasing system size, the Knudsen force with thermoelectric heating offers a novel actuation and sensing mechanism for nano/microsystems.

  13. High temperature thermoelectric properties of the solid-solution...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: High temperature thermoelectric properties of the solid-solution zintl phase EuCd6-xZnxSb Citation Details In-Document Search Title: High temperature ...

  14. Thermoelectric skutterudite compositions and methods for producing the same

    DOE Patents [OSTI]

    Ren, Zhifeng; Yang, Jian; Yan, Xiao; He, Qinyu; Chen, Gang; Hao, Qing

    2014-11-11

    Compositions related to skutterudite-based thermoelectric materials are disclosed. Such compositions can result in materials that have enhanced ZT values relative to one or more bulk materials from which the compositions are derived. Thermoelectric materials such as n-type and p-type skutterudites with high thermoelectric figures-of-merit can include materials with filler atoms and/or materials formed by compacting particles (e.g., nanoparticles) into a material with a plurality of grains each having a portion having a skutterudite-based structure. Methods of forming thermoelectric skutterudites, which can include the use of hot press processes to consolidate particles, are also disclosed. The particles to be consolidated can be derived from (e.g., grinded from), skutterudite-based bulk materials, elemental materials, other non-Skutterudite-based materials, or combinations of such materials.

  15. High-Temperature High-Efficiency Solar Thermoelectric Generators

    SciTech Connect (OSTI)

    Baranowski, LL; Warren, EL; Toberer, ES

    2014-03-01

    Inspired by recent high-efficiency thermoelectric modules, we consider thermoelectrics for terrestrial applications in concentrated solar thermoelectric generators (STEGs). The STEG is modeled as two subsystems: a TEG, and a solar absorber that efficiently captures the concentrated sunlight and limits radiative losses from the system. The TEG subsystem is modeled using thermoelectric compatibility theory; this model does not constrain the material properties to be constant with temperature. Considering a three-stage TEG based on current record modules, this model suggests that 18% efficiency could be experimentally expected with a temperature gradient of 1000A degrees C to 100A degrees C. Achieving 15% overall STEG efficiency thus requires an absorber efficiency above 85%, and we consider two methods to achieve this: solar-selective absorbers and thermally insulating cavities. When the TEG and absorber subsystem models are combined, we expect that the STEG modeled here could achieve 15% efficiency with optical concentration between 250 and 300 suns.

  16. Fiber optic signal amplifier using thermoelectric power generation

    DOE Patents [OSTI]

    Hart, Mark M.

    1995-01-01

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu.sub.238 or Sr.sub.90 thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu.sub.238 or Sr.sub.90 thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

  17. Fiber optic signal amplifier using thermoelectric power generation

    DOE Patents [OSTI]

    Hart, M.M.

    1995-04-18

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications. 2 figs.

  18. Fiber optic signal amplifier using thermoelectric power generation

    DOE Patents [OSTI]

    Hart, M.M.

    1993-01-01

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communication, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of material resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

  19. Large-dimension, high-ZT Thermoelectric Nanocomposites for High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BiTe and Pb-based nanocomposites produced with a low-cost scalable process were used for development and testing of ... research and sharing Knowledge DOENSF Thermoelectric ...

  20. Thermoelectric generator and method for the fabrication thereof

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

    1987-01-01

    A thermoelectric generator using semiconductor elements for responding to a temperature gradient to produce electrical energy with all of the semiconductor elements being of the same type is disclosed. A continuous process for forming substrates on which the semiconductor elements and superstrates are deposited and a process for forming the semiconductor elements on the substrates are also disclosed. The substrates with the semiconductor elements thereon are combined with superstrates to form modules for use thermoelectric generators.

  1. Modeling and Optimization of Hybrid Solar Thermoelectric Systems with

    Office of Scientific and Technical Information (OSTI)

    Thermosyphons (Journal Article) | SciTech Connect Journal Article: Modeling and Optimization of Hybrid Solar Thermoelectric Systems with Thermosyphons Citation Details In-Document Search Title: Modeling and Optimization of Hybrid Solar Thermoelectric Systems with Thermosyphons Authors: Miljkovic, N ; Wang, E Publication Date: 2011-01-01 OSTI Identifier: 1066915 DOE Contract Number: SC0001299; FG02-09ER46577 Resource Type: Journal Article Resource Relation: Journal Name: Solar Energy; Journal

  2. Water Based Process for Fabricating Thermoelectric Materials - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Solar Thermal Solar Thermal Find More Like This Return to Search Water Based Process for Fabricating Thermoelectric Materials Lawrence Berkeley National Laboratory Contact LBL About This Technology Publications: PDF Document Publication LBNL Commercial Analysis Report (1,391 KB) Technology Marketing Summary Berkeley Lab scientists Rachel Segalman, Jeffrey Urban and Kevin See have invented a water based process to make thermoelectric films. The resulting composite film

  3. Thermoelectric generator and method for the fabrication thereof

    DOE Patents [OSTI]

    Benson, D.K.; Tracy, C.E.

    1984-08-01

    A thermoelectric generator using semiconductor elements for responding to a temperature gradient to produce electrical energy with all of the semiconductor elements being of the same type is disclosed. A continuous process for forming substrates on which the semiconductor elements and superstrates are deposited and a process for forming the semiconductor elements on the substrates are also disclosed. The substrates with the semiconductor elements thereon are combined with superstrates to form modules for use as thermoelectric generators.

  4. Characterization of thermoelectric elements and devices by impedance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    spectroscopy | Energy Frontier Research Centers Characterization of thermoelectric elements and devices by impedance spectroscopy Home Author: A. D. Downey, T. P. Hogan, B. Cook Year: 2007 Abstract: This article describes a new measurement technique that utilizes impedance spectroscopy for the characterization of thermoelectric materials and devices. Two circuit models were developed and used to help explain the impedance spectroscopy data using transmission line theory and a coupled

  5. Recent Progress in the Development of High Efficiency Thermoelectrics |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy PDF icon 2003_deer_bass.pdf More Documents & Publications High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation Quantum Well Thermoelectrics and Waste Heat Recovery Scale Up of Si/Si0.8GE0.2 and B4C/B9C Superlattices for Harvesting of Waste Heat in Diesel Engines

  6. Thermoelectric Activities of European Community within Framework Programme

    Broader source: Energy.gov (indexed) [DOE]

    7 and additional activities in Germany | Department of Energy Provides survey of basic and applied thermoelectric activities in Germany within the European Community Programme and in Fraunhofer IPM PDF icon bottner.pdf More Documents & Publications Overview of Fraunhofer IPM Activities in High Temperature Bulk Materials and Device Development Overview of Fraunhofer IPM Activities in High Temperature Bulk Materials and Device Development Automotive Thermoelectric Generators and H

  7. Correlation Between Structure and Thermoelectric Properties of Bulk High

    Broader source: Energy.gov (indexed) [DOE]

    Performance Materials for Energy Conversion | Department of Energy Rapid solidified precursor converted into crystalline bulks under pressure produced thermoelectric materials of nano-sized grains with strongly coupled grain boundaries, achieving reduced lattice thermal conductivity and increased power factor PDF icon li.pdf More Documents & Publications Correlation Between Structure and Thermoelectric Properties of Bulk High Performance Materials for Energy Conversion Integrated Design

  8. Develop Thermoelectric Technology for Automotive Waste Heat Recovery |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_yang.pdf More Documents & Publications Opportunities and Challenges of Thermoelectrlic Waste Heat Recovery in the Automotive Industry On Thermoelectric Properties of p-Type Skutterudites Development of Thermoelectric Technology for Automotive Waste Heat Recovery

  9. Develop Thermoelectric Technology for Automotive Waste Heat Recovery |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ace_45_yang.pdf More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Engineering and Materials for Automotive Thermoelectric Applications Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites

  10. Development of a Scalable 10% Efficient Thermoelectric Generator |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_crane.pdf More Documents & Publications Development of a 100-Watt High Temperature Thermoelectric Generator Status of Segmented Element Thermoelectric Generator for Vehicle Waste Heat Recovery Status of

  11. Quantum interference in thermoelectric molecular junctions: A toy model perspective

    SciTech Connect (OSTI)

    Nozaki, Daijiro E-mail: research@nano.tu-dresden.de; Avdoshenko, Stas M.; Sevinçli, Hâldun; Cuniberti, Gianaurelio

    2014-08-21

    Quantum interference (QI) phenomena between electronic states in molecular circuits offer a new opportunity to design new types of molecular devices such as molecular sensors, interferometers, and thermoelectric devices. Controlling the QI effect is a key challenge for such applications. For the development of single molecular devices employing QI effects, a systematic study of the relationship between electronic structure and the quantum interference is needed. In order to uncover the essential topological requirements for the appearance of QI effects and the relationship between the QI-affected line shape of the transmission spectra and the electronic structures, we consider a homogeneous toy model where all on-site energies are identical and model four types of molecular junctions due to their topological connectivities. We systematically analyze their transmission spectra, density of states, and thermoelectric properties. Even without the degree of freedom for on-site energies an asymmetric Fano peak could be realized in the homogeneous systems with the cyclic configuration. We also calculate the thermoelectric properties of the model systems with and without fluctuation of on-site energies. Even under the fluctuation of the on-site energies, the finite thermoelectrics are preserved for the Fano resonance, thus cyclic configuration is promising for thermoelectric applications. This result also suggests the possibility to detect the cyclic configuration in the homogeneous systems and the presence of the QI features from thermoelectric measurements.

  12. Resonant Level Enhancement of the Thermoelectric Power of Bi2Te3...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resonant Level Enhancement of the Thermoelectric Power of Bi2Te3 with Tin Resonant Level Enhancement of the Thermoelectric Power of Bi2Te3 with Tin Application to practical p-type...

  13. An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles

    Broader source: Energy.gov [DOE]

    Efficient, scalable, and low cost vehicular thermoelectric generators development will include rapid synthesis of thermoelectric materials, different device geometries, heat sink designs, and durability and long-term performance tests

  14. Development of an Underamor 1-kW Thermoelectric Generator Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Underamor 1-kW Thermoelectric Generator Waste Heat Recovery System for Military Vehicles Development of an Underamor 1-kW Thermoelectric Generator Waste Heat Recovery System for ...

  15. Review of Interests and Activities in Thermoelectric Materials and Devices at the Army Research Laboratory

    Broader source: Energy.gov [DOE]

    Army interests in thermoelectrics include integrated TE-hand-held burners for battery-replacement, waste-heat recovery on vehicles, heat-powered mobile units, and for thermoelectric cooling of high-performance infrared systems for surveillance

  16. High-Temperature Thermoelectric Properties of p-Type Yb-filled...

    Office of Scientific and Technical Information (OSTI)

    High-Temperature Thermoelectric Properties of p-Type Yb-filled Skutterudites with FeSb2 Nanoinclusions Citation Details In-Document Search Title: High-Temperature Thermoelectric ...

  17. High-Performance Thermoelectric Devices Based on Abundant Silicide Materials for Vehicle Waste Heat Recovery

    Broader source: Energy.gov [DOE]

    Development of high-performance thermoelectric devices for vehicle waste heat recovery will include fundamental research to use abundant promising low-cost thermoelectric materials, thermal management and interfaces design, and metrology

  18. Screening analysis for EPACT-covered commercial HVAC and water-heating equipment

    SciTech Connect (OSTI)

    S Somasundaram; PR Armstrong; DB Belzer; SC Gaines; DL Hadley; S Katipumula; DL Smith; DW Winiarski

    2000-05-25

    EPCA requirements state that if the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE) amends efficiency levels prescribed in Standard 90.1-1989, then DOE must establish an amended uniform national manufacturing standard at the minimum level specified in amended Standard 90.1. However, DOE can establish higher efficiency levels if it can show through clear and convincing evidence that a higher efficiency level, that is technologically feasible and economically justified, would produce significant additional energy savings. On October 29, 1999, ASHRAE approved the amended Standard 90.1, which increases the minimum efficiency levels for some of the commercial heating, cooling, and water-heating equipment covered by EPCA 92. DOE asked Pacific Northwest National Laboratory (PNNL) to conduct a screening analysis to determine the energy-savings potential of the efficiency levels listed in Standard 90.1-1999. The analysis estimates the annual national energy consumption and the potential for energy savings that would result if the EPACT-covered products were required to meet these efficiency levels. The analysis also estimates additional energy-savings potential for the EPACT-covered products if they were to exceed the efficiency levels prescribed in Standard 90-1-1999. In addition, a simple life-cycle cost (LCC) analysis was performed for some alternative efficiency levels. This paper will describe the methodology, data assumptions, and results of the analysis. The magnitude of HVAC and SWH loads imposed on equipment depends on the building's physical and operational characteristics and prevailing climatic conditions. To address this variation in energy use, coil loads for 7 representative building types at 11 climate locations were estimated based on a whole-building simulation.

  19. Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles

    Broader source: Energy.gov [DOE]

    Developing a low and high temperature dual thermoelectric generation waste heat recovery system for light-duty vehicles.

  20. Status of Segmented Element Thermoelectric Generator for Vehicle Waste Heat Recovery

    Broader source: Energy.gov [DOE]

    Discusses progress of thermoelectric generator development at BSST and assessment of potential to enter commercial operation in vehicles

  1. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine

    Broader source: Energy.gov (indexed) [DOE]

    Powered Vehicle | Department of Energy Determining if a 10% fuel economy improvement is possible using thermoelectrics on a OTR truck PDF icon schock.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Wate

  2. Development of an Underamor 1-kW Thermoelectric Generator Waste Heat

    Broader source: Energy.gov (indexed) [DOE]

    Recovery System for Military Vehicles | Department of Energy 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Hi-Z Technology, Inc. PDF icon 2004_deer_bass.pdf More Documents & Publications High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation Thermoelectric Developments for Vehicular Applications Quantum Well Thermoelectrics and Waste Heat Recovery

  3. Radiant heating and cooling, displacement ventilation with heat recovery and storm water cooling: An environmentally responsible HVAC system

    SciTech Connect (OSTI)

    Carpenter, S.C.; Kokko, J.P.

    1998-12-31

    This paper describes the design, operation, and performance of an HVAC system installed as part of a project to demonstrate energy efficiency and environmental responsibility in commercial buildings. The systems installed in the 2180 m{sup 2} office building provide superior air quality and thermal comfort while requiring only half the electrical energy of conventional systems primarily because of the hydronic heating and cooling system. Gas use for the building is higher than expected because of longer operating hours and poor performance of the boiler/absorption chiller.

  4. Thermoelectric powered wireless sensors for spent fuel monitoring

    SciTech Connect (OSTI)

    Carstens, T.; Corradini, M.; Blanchard, J.; Ma, Z.

    2011-07-01

    This paper describes using thermoelectric generators to power wireless sensors to monitor spent nuclear fuel during dry-cask storage. OrigenArp was used to determine the decay heat of the spent fuel at different times during the service life of the dry-cask. The Engineering Equation Solver computer program modeled the temperatures inside the spent fuel storage facility during its service life. The temperature distribution in a thermoelectric generator and heat sink was calculated using the computer program Finite Element Heat Transfer. From these temperature distributions the power produced by the thermoelectric generator was determined as a function of the service life of the dry-cask. In addition, an estimation of the path loss experienced by the wireless signal can be made based on materials and thickness of the structure. Once the path loss is known, the transmission power and thermoelectric generator power requirements can be determined. This analysis estimates that a thermoelectric generator can produce enough power for a sensor to function and transmit data from inside the dry-cask throughout its service life. (authors)

  5. An evaluation of three commercially available technologies forreal-time measurement of rates of outdoor airflow into HVAC systems

    SciTech Connect (OSTI)

    Fisk, William J.; Faulkner, David; Sullivan, Douglas P.

    2004-10-28

    During the last few years, new technologies have been introduced for real-time continuous measurement of the flow rates of outdoor air (OA) into HVAC systems; however, an evaluation of these measurements technologies has not previously been published. This document describes a test system and protocols developed for a controlled evaluation of these measurement technologies. The results of tests of three commercially available measurement technologies are also summarized. The test system and protocol were judged practical and very useful. The three commercially available measurement technologies should provide reasonably, e.g., 20%, accurate measurements of OA flow rates as long as air velocities are maintained high enough to produce accurately measurable pressure signals. In HVAC systems with economizer controls, to maintain the required air velocities the OA intake will need to be divided into two sections in parallel, each with a separate OA damper. All of the measurement devices had pressure drops that are likely to be judged acceptable. The influence of wind on the accuracy of these measurement technologies still needs to be evaluated.

  6. An evaluation of technologies for real-time measurement of rates of outdoor airflow into HVAC systems

    SciTech Connect (OSTI)

    Fisk, William J.; Faulkner, David; Sullivan, Douglas P.

    2004-09-01

    During the last few years, new technologies have been introduced for real-time continuous measurement of the flow rates of outdoor air (OA) into HVAC systems; however, an evaluation of these measurement technologies has not previously been published. This document describes a test system and protocols developed for a controlled evaluation of these measurement technologies. The results of tests of four commercially available measurement technologies and one prototype based on a new design are also summarized. The test system and protocol were judged practical and very useful. The series of tests identified three commercially available measurement technologies that should provide reasonably accurate measurements of OA flow rates as long as air velocities are maintained high enough to produce accurately measurable pressure signals. In HVAC systems with economizer controls, to maintain the required air velocities the OA intake will need to be divided into two sections in parallel, each with a separate OA damper. The errors in OA flow rates measured with the fourth commercially available measurement technology were 20% to 30% with horizontal probes but much larger with vertical probes. The new prototype measurement technology was the only one that appears suitable for measuring OA flow rates over their full range from 20% OA to 100% OA without using two separate OA dampers. All of the measurement devices had pressure drops that are likely to be judged acceptable. The influence of wind on the accuracy of these measurement technologies still needs to be evaluated.

  7. Thermoelectric Properties of Indium-Filled Skutterudites

    SciTech Connect (OSTI)

    He, Tao; Chen, Jiazhong; Rosenfeld, H. David; Subramanian, M.A.

    2008-09-18

    Structural, electrical, and thermal transport properties of CoSb{sub 3} partially filled with indium are reported. Polycrystalline samples of In{sub x}Co{sub 4}Sb{sub 12} (0 {le} x {le} 0.3) were prepared by solid-state reaction under a gas mixture of 5% H{sub 2} and 95% Ar. The solubility limit of the indium filling voids in CoSb{sub 3} was found to be close to 0.22. Synchrotron X-ray diffraction refinement of the x = 0.2 sample showed that the indium is located in the classic rattler site and has a substantially larger thermal factor than those of Co and Sb. The electrical resistivity, Seebeck coefficients, and thermal conductivity of the In{sub x}Co{sub 4}Sb{sub 12} samples were measured in the temperature range of 300-600 K. All samples showed metal-like behavior, and the large negative Seebeck coefficients indicated n-type conduction. The thermal conductivity decreased with increasing temperature for all samples. A thermoelectric figure-of-merit (ZT) {ge} 1 (n-type) has been achieved when x {ge} 0.2 in In{sub x}Co{sub 4}Sb{sub 12} at 575 K.

  8. Miniature thermo-electric cooled cryogenic pump

    DOE Patents [OSTI]

    Keville, Robert F.

    1997-01-01

    A miniature thermo-electric cooled cryogenic pump for removing residual water molecules from an inlet sample prior to sample analysis in a mass spectroscopy system, such as ion cyclotron resonance (ICR) mass spectroscopy. The cryogenic pump is a battery operated, low power (<1.6 watts) pump with a .DELTA.T=100.degree. C. characteristic. The pump operates under vacuum pressures of 5.times.10.sup.-4 Torr to ultra high vacuum (UHV) conditions in the range of 1.times.10.sup.-7 to 3.times.10.sup.-9 Torr and will typically remove partial pressure, 2.times.10.sup.-7 Torr, residual water vapor. The cryogenic pump basically consists of an inlet flange piece, a copper heat sink with a square internal bore, four two tier Peltier (TEC) chips, a copper low temperature square cross sectional tubulation, an electronic receptacle, and an exit flange piece, with the low temperature tubulation being retained in the heat sink at a bias angle of 5.degree., and with the TECs being positioned in parallel to each other with a positive potential being applied to the top tier thereof.

  9. Miniature thermo-electric cooled cryogenic pump

    DOE Patents [OSTI]

    Keville, R.F.

    1997-11-18

    A miniature thermo-electric cooled cryogenic pump is described for removing residual water molecules from an inlet sample prior to sample analysis in a mass spectroscopy system, such as ion cyclotron resonance (ICR) mass spectroscopy. The cryogenic pump is a battery operated, low power (<1.6 watts) pump with a {Delta}T=100 C characteristic. The pump operates under vacuum pressures of 5{times}10{sup {minus}4} Torr to ultra high vacuum (UHV) conditions in the range of 1{times}10{sup {minus}7} to 3{times}10{sup {minus}9} Torr and will typically remove partial pressure, 2{times}10{sup {minus}7} Torr, residual water vapor. The cryogenic pump basically consists of an inlet flange piece, a copper heat sink with a square internal bore, four two tier Peltier (TEC) chips, a copper low temperature square cross sectional tubulation, an electronic receptacle, and an exit flange piece, with the low temperature tubulation being retained in the heat sink at a bias angle of 5{degree}, and with the TECs being positioned in parallel to each other with a positive potential being applied to the top tier thereof. 2 figs.

  10. Thermoelectric power generator for variable thermal power source

    DOE Patents [OSTI]

    Bell, Lon E; Crane, Douglas Todd

    2015-04-14

    Traditional power generation systems using thermoelectric power generators are designed to operate most efficiently for a single operating condition. The present invention provides a power generation system in which the characteristics of the thermoelectrics, the flow of the thermal power, and the operational characteristics of the power generator are monitored and controlled such that higher operation efficiencies and/or higher output powers can be maintained with variably thermal power input. Such a system is particularly beneficial in variable thermal power source systems, such as recovering power from the waste heat generated in the exhaust of combustion engines.

  11. Microscopic theory of thermoelectric properties of silicon nanowires

    SciTech Connect (OSTI)

    Vo, T; Williamson, A; Lordi, V; Galli, G

    2007-06-14

    We present predictions of the thermoelectric figure of merit (ZT) of Si nanowires, as obtained using Boltzman transport equation and ab-initio electronic structure calculations. We find that ZT is strongly dependent on the nanowire growth direction and surface reconstruction and we discuss general rules to select silicon based nanostructures with combined n-type and p-type optimal ZT. In particular, our calculations indicate that 1 nm wires grown in the [001] and [011] directions can attain ZT values which are about twice as high as those of ordinary thermoelectric materials.

  12. Overview of Fords Thermoelectric Programs: Waste Heat Recovery and Climate Control

    Broader source: Energy.gov [DOE]

    Overview of progress in TE waste heat recovery from sedan gasoline-engine exhaust, TE HVAC system in hybrid sedan, and establishing targets for cost, power density, packaging, durability, and systems integration

  13. High Thermoelectric Performance in Copper Telluride

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    He, Ying; Zhang, Tiansong; Shi, Xun; Wei, Su-Huai; Chen, Lidong

    2015-06-21

    Recently, Cu 2-δ S and Cu 2-δ Se were reported to have an ultralow thermal conductivity and high thermoelectric figure of merit zT. Thus, as a member of the copper chalcogenide group, Cu 2-δ Te is expected to possess superior zTs because Te is less ionic and heavy. However, the zT value is low in the Cu2Te sintered using spark plasma sintering, which is typically used to fabricate high-density bulk samples. In addition, the extra sintering processes may change the samples’ compositions as well as their physical properties, especially for Cu2Te, which has many stable and meta-stable phasesmore » as well as weaker ionic bonding between Cu and Te as compared with Cu2S and Cu2Se. In this study, high-density Cu2Te samples were obtained using direct annealing without a sintering process. In the absence of sintering processes, the samples’ compositions could be well controlled, leading to substantially reduced carrier concentrations that are close to the optimal value. The electrical transports were optimized, and the thermal conductivity was considerably reduced. The zT values were significantly improved—to 1.1 at 1000 K—which is nearly 100% improvement. Furthermore, this method saves substantial time and cost during the sample’s growth. The study demonstrates that Cu 2-δ X (X=S, Se and Te) is the only existing system to show high zTs in the series of compounds composed of three sequential primary group elements.« less

  14. New approaches to thermoelectric cooling effects in magnetic fields

    SciTech Connect (OSTI)

    Migliori, A.; Darling, T.W.; Freibert, F.; Trugman, S.A.; Moshopoulou, E.; Sarrao, J.L.

    1997-08-01

    The authors review thermoelectric effects in a magnetic field at a phenomenological level. Discussions of the limiting performance and problems with its computation for both Peltier and Ettingshausen coolers are presented. New principles are discussed to guide the materials scientist in the search for better Ettingshausen materials, and a brief review of the subtle measurement problems is presented.

  15. Molybdenum-platinum-oxide electrodes for thermoelectric generators

    DOE Patents [OSTI]

    Schmatz, Duane J. (Dearborn Heights, MI)

    1990-01-01

    The invention is directed to a composite article suitable for use in thermoelectric generators. The article comprises a solid electrolyte carrying a thin film comprising molybdenum-platinum-oxide as an electrode deposited by physical deposition techniques. The invention is also directed to the method of making same.

  16. Thermoelectric Materials Development for Low Temperature Geothermal Power Generation

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Tim Hansen

    2016-01-29

    Data includes characterization results for novel thermoelectric materials developed specifically for power generation from low temperature geothermal brines. Materials characterization data includes material density, thickness, resistance, Seebeck coefficient. This research was carried out by Novus Energy Partners in Cooperation with Southern Research Institute for a Department of Energy Sponsored Project.

  17. System level modeling of thermoelectric generators for automotive applications

    Broader source: Energy.gov [DOE]

    Uses a model to predict and analyze the system-level performance of a thermoelectric generator in terms of the power output and the power density … at the element, module and system-level and for a wide range of operating conditions.

  18. Measurement and simulation of thermoelectric efficiency for single leg

    SciTech Connect (OSTI)

    Hu, Xiaokai; Yamamoto, Atsushi Ohta, Michihiro; Nishiate, Hirotaka

    2015-04-15

    Thermoelectric efficiency measurements were carried out on n-type bismuth telluride legs with the hot-side temperature at 100 and 150°C. The electric power and heat flow were measured individually. Water coolant was utilized to maintain the cold-side temperature and to measure heat flow out of the cold side. Leg length and vacuum pressure were studied in terms of temperature difference across the leg, open-circuit voltage, internal resistance, and heat flow. Finite-element simulation on thermoelectric generation was performed in COMSOL Multiphysics, by inputting two-side temperatures and thermoelectric material properties. The open-circuit voltage and resistance were in good agreement between the measurement and simulation. Much larger heat flows were found in measurements, since they were comprised of conductive, convective, and radiative contributions. Parasitic heat flow was measured in the absence of bismuth telluride leg, and the conductive heat flow was then available. Finally, the maximum thermoelectric efficiency was derived in accordance with the electric power and the conductive heat flow.

  19. Thermo-electric modular structure and method of making same

    DOE Patents [OSTI]

    Freedman, N.S.; Horsting, C.W.; Lawrence, W.F.; Carrona, J.J.

    1974-01-29

    A method is presented for making a thermoelectric module wtth the aid of an insulating wafer having opposite metallized surfaces, a pair of similar equalizing sheets of metal, a hot-junction strap of metal, a thermoelectric element having hot- and cold-junction surfaces, and a radiator sheet of metal. The method comprises the following steps: brazing said equalizer sheets to said opposite metallized surfaces, respectively, of said insulating wafer with pure copper in a non-oxidizing ambient; brazing one surface of said hot-junction strap to one of the surfaces of said equalizing sheet with a nickel-gold alloy in a non- oxidizing ambient; and diffusion bonding said hot-junction surface of said thermoelectric element to the other surface of said hot-junction strap and said radiator sheet to said cold-junction surface of said thermoelectric element, said diffusion bonding being carried out in a non-oxidizing ambient, under compressive loading, at a temperature of about 550 deg C., and for about one-half hour. (Official Gazette)

  20. DOE/NSF Thermoelectric Partnership Project SEEBECK Saving Energy

    Broader source: Energy.gov (indexed) [DOE]

    Effectively By Engaging in Collaborative research and sharing Knowledge | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace068_heremans_2011_o.pdf More Documents & Publications DOE/NSF Thermoelectric Partnership Project SEEBECK Saving Energy Effectively By Engaging in Collaborative Research and Sharing

  1. Development of a 500 Watt High Temperature Thermoelectric Generator |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy A low temperature TEG has been built and tested providing over 500 watts electric power at a ∆T of 2000C PDF icon deer09_lagrandeur.pdf More Documents & Publications Development of a 100-Watt High Temperature Thermoelectric Generator Automotive Waste Heat Conversion to Power Program Automotive Waste Heat Conversion to Power Program

  2. Encapsulation of High Temperature Thermoelectric Modules | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Presents concept for hermetic encapsulation of TE modules addressing key failure mechanism, TE material oxidation, which severely impacts long term performance PDF icon deer12_whalen.pdf More Documents & Publications CX-013743: Categorical Exclusion Determination CX-013467: Categorical Exclusion Determination Materials, Modules, and Systems: An Atoms to Autos Approach to Automotive Thermoelectric Systems Development

  3. Comparison of heating and cooling energy consumption by HVAC system with mixing and displacement air distribution for a restaurant dining area in different climates

    SciTech Connect (OSTI)

    Zhivov, A.M.; Rymkevich, A.A.

    1998-12-31

    Different ventilation strategies to improve indoor air quality and to reduce HVAC system operating costs in a restaurant with nonsmoking and smoking areas and a bar are discussed in this paper. A generic sitting-type restaurant is used for the analysis. Prototype designs for the restaurant chain with more than 200 restaurants in different US climates were analyzed to collect the information on building envelope, dining area size, heat and contaminant sources and loads, occupancy rates, and current design practices. Four constant air volume HVAC systems wit h a constant and variable (demand-based) outdoor airflow rate, with a mixing and displacement air distribution, were compared in five representative US climates: cold (Minneapolis, MN); Maritime (Seattle, WA); moderate (Albuquerque, NM); hot-dry (Phoenix, AZ); and hot-humid (Miami, FL). For all four compared cases and climatic conditions, heating and cooling consumption by the HVAC system throughout the year-round operation was calculated and operation costs were compared. The analysis shows: Displacement air distribution allows for better indoor air quality in the breathing zone at the same outdoor air supply airflow rate due to contaminant stratification along the room height. The increase in outdoor air supply during the peak hours in Miami and Albuquerque results in an increase of both heating and cooling energy consumption. In other climates, the increase in outdoor air supply results in reduced cooling energy consumption. For the Phoenix, Minneapolis, and Seattle locations, the HVAC system operation with a variable outdoor air supply allows for a decrease in cooling consumption up to 50% and, in some cases, eliminates the use of refrigeration machines. The effect of temperature stratification on HVAC system parameters is the same for all locations; displacement ventilation systems result in decreased cooling energy consumption but increased heating consumption.

  4. Energy Management in Small Commercial Buildings: A Look at How HVAC Contractors Can Deliver Energy Efficiency to this Segment

    SciTech Connect (OSTI)

    Hult, Erin; Granderson, Jessica; Mathew, Paul

    2014-07-01

    While buildings smaller than 50,000 sq ft account for nearly half of the energy used in US commercial buildings, energy efficiency programs to-date have primarily focused on larger buildings. Interviews with stakeholders and a review of the literature indicate interest in energy efficiency from the small commercial building sector, provided solutions are simple and low-cost. An approach to deliver energy management to small commercial buildings via HVAC contractors and preliminary demonstration findings are presented. The energy management package (EMP) developed includes five technical elements: benchmarking and analysis of monthly energy use; analysis of interval electricity data (if available), a one-hour onsite walkthrough, communication with the building owner, and checking of results. This data-driven approach tracks performance and identifies low-cost opportunities, using guidelines and worksheets for each element to streamline the delivery process and minimize the formal training required. This energy management approach is unique from, but often complementary to conventional quality maintenance or retrofit-focused programs targeting the small commercial segment. Because HVAC contractors already serve these clients, the transaction cost to market and deliver energy management services can be reduced to the order of hundreds of dollars per year. This business model, outlined briefly in this report, enables the offering to benefit the contractor and client even at the modest expected energy savings in small buildings. Results from a small-scale pilot of this approach validated that the EMP could be delivered by contractors in 4-8 hours per building per year, and that energy savings of 3-5percent are feasible through this approach.

  5. Interpretation of thermoelectric properties of Cu substituted LaCoO{sub 3} ceramics

    SciTech Connect (OSTI)

    Choudhary, K. K.; Kaurav, N.; Sharma, U.; Ghosh, S. K.

    2014-04-24

    The thermoelectric properties of LaCo{sub 1?x}Cu{sub x}O{sub 3??} is theoretically analyzed, it is observed that thermoelectric figure of merit ZT (=S{sup 2}?T/?) is maximized by Cu substitution in LaCoO{sub 3} Ceramics at x=0.15. The lattice thermal conductivity and thermoelectric power were estimated by the scattering of phonons with defects, grain boundaries, electrons and phonons to evaluate the thermoelectric properties. We found that Cu substitution increase the phonon scattering with grain boundaries and defects which significantly increase the thermoelectric power and decrease the thermal conductivity. The present numerical analysis will help in designing more efficient thermoelectric materials.

  6. Issue #7: What are the Best HVAC Solutions for Low-Load, High Performance Homes?

    Broader source: Energy.gov [DOE]

    What components and controls are required to implement the "perfect," cost-effective, production-level low-load space conditioning systems for all major U.S. climate regions?

  7. A miniaturized mW thermoelectric generator for nw objectives: continuous,

    Office of Scientific and Technical Information (OSTI)

    autonomous, reliable power for decades. (Technical Report) | SciTech Connect Technical Report: A miniaturized mW thermoelectric generator for nw objectives: continuous, autonomous, reliable power for decades. Citation Details In-Document Search Title: A miniaturized mW thermoelectric generator for nw objectives: continuous, autonomous, reliable power for decades. We have built and tested a miniaturized, thermoelectric power source that can provide in excess of 450 {micro}W of power in a

  8. Thermoelectric energy converter for generation of electricity from low-grade heat

    DOE Patents [OSTI]

    Jayadev, T.S.; Benson, D.K.

    1980-05-27

    A thermoelectric energy conversion device which includes a plurality of thermoelectric elements is described. A hot liquid is supplied to one side of each element and a cold liquid is supplied to the other side of each element. The thermoelectric generator may be utilized to produce power from low-grade heat sources such as ocean thermal gradients, solar ponds, and low-grade geothermal resources. (WHK)

  9. Microstructure and Thermoelectric Properties of Mechanically Robust PbTe-Si

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eutectic Composites | Energy Frontier Research Centers Microstructure and Thermoelectric Properties of Mechanically Robust PbTe-Si Eutectic Composites Home Author: J. R. Sootsman, J. He, V. P. Dravid, S. Ballikaya, D. Vermeulen, C. Uher, M. G. Kanatzidis Year: 2010 Abstract: The microstructure and thermoelectric properties of the PbTe-Si eutectic system are presented in detail. When rapidly quenched from the melt this system yields materials with thermoelectric properties similar to PbTe

  10. CsBi4Te6: A High-Performance Thermoelectric Material for Low-Temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applications | Energy Frontier Research Centers CsBi4Te6: A High-Performance Thermoelectric Material for Low-Temperature Applications Home Author: D.Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannawurf, M. Bastea, C. Uher, M. Kanatzidis Year: 2000 Abstract: Thermoelectric (Peltier) heat pumps are capable of refrigerating solid or fluid objects, and unlike conventional vapor compressor systems, they can be miniaturized without loss of efficiency. More efficient thermoelectric materials

  11. Advanced Thin Film Thermoelectric Systems forEfficient Air-Conditioner...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presents recent advances in thermoelectric device fabrication and the design of novel coolingheating engines exploiting thermal storage for efficient air-conditioners in ...

  12. Strategies for High Thermoelectric zT in Bulk Materials | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies for High Thermoelectric zT in Bulk Materials Zintl principle in chemistry, complex electronic band structures, and incorporation of nanometer sized particles were used ...

  13. Micro- & Nano-Technologies Enabling More Compact, Lightweight Thermoelectric Power Generation & Cooling Systems

    Broader source: Energy.gov [DOE]

    Advanced thermoelectric energy recovery and cooling system weight and volume improvements with low-cost microtechnology heat and mass transfer devices are presented

  14. Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications

    Broader source: Energy.gov [DOE]

    Progress in reliable high temperature segmented thermoelectric devices and potential for producing electricity from waste heat from energy intensive industrial processes and transportation vehicles exhaust are discussed

  15. High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Development of an Underamor 1-kW Thermoelectric Generator Waste Heat Recovery System for Military Vehicles Recent Progress in the Development of High ...

  16. Thermoelectric Power Generation System with Loop Thermosyphon in Future High Efficiency Hybrid Vehicles

    Broader source: Energy.gov [DOE]

    This project discusses preliminary experimental results to find how thermoelectrics can be applied ot future hybrid vehicles and the optimum design of such equipment using heat pipes

  17. Tuning thermoelectricity in a Bi2Se3 topological insulator via varied film thickness

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guo, Minghua; Wang, Zhenyu; Xu, Yong; Huang, Huaqing; Zang, Yunyi; Liu, Chang; Duan, Wenhui; Gan, Zhongxue; Zhang, Shou-Cheng; He, Ke; et al

    2016-01-12

    We report thermoelectric transport studies on Bi2Se3 topological insulator thin films with varied thickness grown by molecular beam epitaxy. We find that the Seebeck coefficient and thermoelectric power factor decrease systematically with the reduction of film thickness. These experimental observations can be explained quantitatively by theoretical calculations based on realistic electronic band structure of the Bi2Se3 thin films. Lastly, this work illustrates the crucial role played by the topological surface states on the thermoelectric transport of topological insulators, and sheds new light on further improvement of their thermoelectric performance.

  18. Standardization of Transport Properties Measurements: Internal Energy Agency (IEA-AMT) Annex on Thermoelectric

    Broader source: Energy.gov [DOE]

    Thermoelectric materials transport properties measurements improvement and standardization is undertaken by new IEA annex under the Advanced Materials for Transportation implementing agreement

  19. Rare Earth Atoms Make the Best Thermoelectrics Better | U.S....

    Office of Science (SC) Website

    Rare Earth Atoms Make the Best Thermoelectrics Better Basic Energy Sciences (BES) BES Home About ... Funding Basic Research: DOE Office of Science, Office of Basic Energy ...

  20. An apparatus for concurrent measurement of thermoelectric material parameters

    SciTech Connect (OSTI)

    Kallaher, R. L.; Latham, C. A.; Sharifi, F.

    2013-01-15

    We describe an apparatus which concurrently and independently measures the parameters determining thermoelectric material conversion efficiency: the Seebeck coefficient, thermal conductivity, and electrical resistivity. The apparatus is designed to characterize thermoelectric materials which are technologically relevant for waste heat energy conversion, and may operate from room temperature to 400 Degree-Sign C. It is configured so the heat flux is axially confined along two boron nitride rods of known thermal conductance. The Seebeck coefficient and thermal conductivity are obtained in steady-state using a differential technique, while the electrical resistivity is obtained using a four-point lock-in amplification method. Measurements on the newly developed NIST Seebeck standard reference material are presented in the temperature range from 50 Degree-Sign C to 250 Degree-Sign C.