Powered by Deep Web Technologies
Note: This page contains sample records for the topic "thermoelectric heating ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Thermoelectric heat exchange element  

DOE Patents (OSTI)

A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

Callas, James J. (Peoria, IL); Taher, Mahmoud A. (Peoria, IL)

2007-08-14T23:59:59.000Z

2

Waste Heat Recovery Opportunities for Thermoelectric Generators...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for...

3

Skutterudite Thermoelectric Generator For Automotive Waste Heat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite TE modules were...

4

Waste Heat Recovery Opportunities for Thermoelectric Generators  

Energy.gov (U.S. Department of Energy (DOE))

Thermoelectrics have unique advantages for integration into selected waste heat recovery applications.

5

High Heat Flux Thermoelectric Module Using Standard Bulk Material...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heat Flux Thermoelectric Module Using Standard Bulk Material High Heat Flux Thermoelectric Module Using Standard Bulk Material Presents high heat flux thermoelectric module design...

6

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...

7

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Documents & Publications Development of Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery...

8

Heat Transfer Enhancement in Thermoelectric Power Generation.  

E-Print Network (OSTI)

??Heat transfer plays an important role in thermoelectric (TE) power generation because the higher the heat-transfer rate from the hot to the cold side of… (more)

Hu, Shih-yung

2009-01-01T23:59:59.000Z

9

Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Presents successful...

10

Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines Discusses a novel TEG which utilizes a...

11

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2013 DOE Hydrogen and Fuel Cells Program and...

12

An Overview of Thermoelectric Waste Heat Recovery Activities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An overview presentation of R&D...

13

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2012 DOE Hydrogen and Fuel Cells Program and...

14

Develop Thermoelectric Technology for Automotive Waste Heat Recovery  

Energy.gov (U.S. Department of Energy (DOE))

Develop thermoelectric technology for waste heat recovery with a 10% fuel economy improvement without increasing emissions.

15

Thermoelectric Conversion of Waste Heat to Electricity in an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

truck system. schock.pdf More Documents & Publications Thermoelectric Conversion of Wate Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Waste...

16

Combustion Exhaust Gas Heat to Power usingThermoelectric Engines...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solutions Combustion Exhaust Gas Heat to Power using Thermoelectric Engines John LaGrandeur October 5, 2011 Advanced Thermoelectric Solutions - 1 - Market motivation based on CO 2...

17

Thermoelectric recovery of waste heat -- Case studies  

SciTech Connect

The use of waste heat as an energy source for thermoelectric generation largely removes the constraint for the wide scale application of this technology imposed by its relatively low conversion efficiency (typically about 5%). Paradoxically, in some parasitic applications, a low conversion efficiency can be viewed as a distinct advantage. However, commercially available thermoelectric modules are designed primarily for refrigerating applications and are less reliable when operated at elevated temperatures. Consequently, a major factor which determines the economic competitiveness of thermoelectric recovery of waste heat is the cost per watt divided by the mean-time between module failures. In this paper is reported the development of a waste, warm water powered thermoelectric generator, one target in a NEDO sponsored project to economically recover waste heat. As an application of this technology case studies are considered in which thermoelectric generators are operated in both active and parasitic modes to generate electrical power for a central heating system. It is concluded that, in applications when the supply of heat essentially is free as with waste heat, thermoelectrics can compete economically with conventional methods of electrical power generation. Also, in this situation, and when the generating system is operated in a parasitic mode, conversion efficiency is not an important consideration.

Rowe, M.D.; Min, G.; Williams, S.G.K.; Aoune, A. [Cardiff School of Engineering (United Kingdom). Div. of Electronic Engineering; Matsuura, Kenji [Osaka Univ., Suita, Osaka (Japan). Dept. of Electrical Engineering; Kuznetsov, V.L. [Ioffe Physical-Technical Inst., St. Petersburg (Russian Federation); Fu, L.W. [Tsinghua Univ., Beijing (China). Microelectronics Inst.

1997-12-31T23:59:59.000Z

18

NSF/DOE Thermoelectrics Partnership: Purdue ? GM Partnership on Thermoelectrics for Automotive Waste Heat Recovery  

Energy.gov (U.S. Department of Energy (DOE))

Reviews results in developing commercially viable thermoelectric generators for efficient conversion of automotive exhaust waste heat to electricity

19

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Automotive Waste Heat Recovery Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power Development...

20

Thermoelectrics Partnership: High Performance Thermoelectric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Performance Thermoelectric Waste Heat Recovery System Based on Zintl Phase Materials with Embedded Nanoparticles Thermoelectrics Partnership: High Performance Thermoelectric...

Note: This page contains sample records for the topic "thermoelectric heating ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Fluctuating local thermoelectric heat in dirty metals  

SciTech Connect

Using a recently developed multilead theory of dephasing in mesoscopic conductors, the mean-squared magnitude of the local Peltier heat in a uniform disordered metal is calculated diagrammatically. A heuristic estimate based on conductance fluctuation theory is also developed, and gives the same results. The generation and absorption of local thermoelectric heats require both phase-coherent elastic scattering to produce local conductance fluctuations and phase-breaking inelastic scattering to transport heat to and from the reservoirs. This phenomenon can cause substantial spatial variations in the electron temperature of low-carrier-density, clean, quasi-two-dimensional metals.

DiVincenzo, D.P. (IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (United States))

1993-07-15T23:59:59.000Z

22

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation  

E-Print Network (OSTI)

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation been proposed to model thermoelectric generators (TEGs) for automotive waste heat recovery. Details: Thermoelectric generators, waste heat recovery, automotive exhaust, skutterudites INTRODUCTION In part I

Xu, Xianfan

23

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling  

E-Print Network (OSTI)

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling telluride TEMs. Key words: Thermoelectric generators, waste heat recovery, automotive exhaust, skutterudites bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from

Xu, Xianfan

24

Novel thermoelectric generator for stationary power waste heat recovery .  

E-Print Network (OSTI)

??Internal combustion engines produce much excess heat that is vented to the atmosphere through the exhaust fluid. Use of solid-state thermoelectric (TE) energy conversion technology… (more)

Engelke, Kylan Wynn.

2010-01-01T23:59:59.000Z

25

High Heat Flux Thermoelectric Module Using Standard Bulk Material  

Energy.gov (U.S. Department of Energy (DOE))

Presents high heat flux thermoelectric module design for cooling using a novel V-shaped shunt configuration with bulk TE elements achieving high area packing fractions

26

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Recovery Engineering and Materials for Automotive Thermoelectric Applications Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites...

27

Development of Thermoelectric Technology for Automotive Waste Heat Recovery  

Energy.gov (U.S. Department of Energy (DOE))

Overview and status of project to develop thermoelectric generator for automotive waste heat recovery and achieve at least 10% fuel economy improvement.

28

From Heat to Electricity: How "nano" Saved Thermoelectrics  

E-Print Network (OSTI)

, reliable #12;Thermoelectric applications Waste heat recovery · Automobiles · Over the road trucks% of energy becomes waste heat, even a 10% capture and conversion to useful forms can have huge impactFrom Heat to Electricity: How "nano" Saved Thermoelectrics Sponsored by Mercouri Kanatzidis

Kanatzidis, Mercouri G

29

High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation 2005 Diesel Engine...

30

Silicon-Based Thermoelectrics: Harvesting Low Quality Heat Using Economically Printed Flexible Nanostructured Stacked Thermoelectric Junctions  

SciTech Connect

Broad Funding Opportunity Announcement Project: UIUC is experimenting with silicon-based materials to develop flexible thermoelectric devices—which convert heat into energy—that can be mass-produced at low cost. A thermoelectric device, which resembles a computer chip, creates electricity when a different temperature is applied to each of its sides. Existing commercial thermoelectric devices contain the element tellurium, which limits production levels because tellurium has become increasingly rare. UIUC is replacing this material with microscopic silicon wires that are considerably cheaper and could be equally effective. Improvements in thermoelectric device production could return enough wasted heat to add up to 23% to our current annual electricity production.

None

2010-03-01T23:59:59.000Z

31

Thermoelectric Conversion of Wate Heat to Electricity in an IC...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Wate Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Wate Heat to Electricity in an IC Engine Powered Vehicle Presentation given at the 16th...

32

Multi-physics modeling of thermoelectric generators for waste heat recovery applications  

Energy.gov (U.S. Department of Energy (DOE))

Model developed provides effective guidelines to designing thermoelectric generation systems for automotive waste heat recovery applications

33

Maintenance Guide for Greenhouse Ventilation, Evaporative Cooling Heating Systems1  

E-Print Network (OSTI)

condensation in winter, reduced life and reliability of ventilation equipment, and high repair bills cooling and heating systems. VENTILATION SYSTEMS The operating efficiency of a ventilation fan can be pockets of stagnant air, inadequate cooling from evaporative cooling pads, high heating expenses, heavy

Watson, Craig A.

34

Heating, Ventilation, and Air Conditioning Renovations | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating, Ventilation, and Air Conditioning Renovations Heating, Ventilation, and Air Conditioning Renovations Heating, Ventilation, and Air Conditioning Renovations October 16, 2013 - 4:49pm Addthis Renewable Energy Options for HVAC Renovations Geothermal Heat Pumps (GHP) Solar Water Heating (SWH) Biomass Passive Solar Heating Biomass Heating Solar Ventilation Air Preheating Federal building renovations that encompass the heating, ventilation, and air conditioning (HVAC) systems in a facility provide a range of renewable energy opportunities. The primary technology option for HVAC renovations is geothermal heat pumps (GHP). Other options include leveraging a solar water heating (SWH) system to offset heating load or using passive solar heating or a biomass-capable furnace or boiler. Some facilities may also take

35

Heating, Ventilation and Air Conditioning Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Presented By: WALTER E. JOHNSTON, PE Presented By: WALTER E. JOHNSTON, PE CEM, CEA, CLEP, CDSM, CPE Heating, Ventilation and Air Conditioning (HVAC) system is to provide and maintain a comfortable environment within a building for the occupants or for the process being conducted Many HVAC systems were not designed with energy efficiency as one of the design factors 3 Air Air is the major conductor of heat. Lack of heat = air conditioning OR 4 Btu - Amount of heat required to raise one pound of water 1 F = 0.252 KgCal 1 Pound of Water = About 1 Pint of Water ~ 1 Large Glass 1 Kitchen Match Basics of Air Conditioning = 1 Btu 5 = 6 Low Cost Cooling Unit 7 8 Typical Design Conditions 75 degrees F temperature 50% relative humidity 30 - 50 FPM air movement

36

Development of Marine Thermoelectric Heat Recovery Systems  

Energy.gov (U.S. Department of Energy (DOE))

Thermoelectric generator prototypes are evaluated in a dedicated hybrid vessel test platform fabricated from an encapsulated lifeboat to optimize performance and reliability for marine industry applications

37

Enhancement of automotive exhaust heat recovery by thermoelectric devices  

SciTech Connect

In an effort to improve automobile fuel economy, an experimental study is undertaken to explore practical aspects of implementing thermoelectric devices for exhaust gas energy recovery. A highly instrumented apparatus consisting of a hot (exhaust gas) and a cold (coolant liquid) side rectangular ducts enclosing the thermoelectric elements has been built. Measurements of thermoelectric voltage output and flow and surface temperatures were acquired and analyzed to investigate the power generation and heat transfer properties of the apparatus. Effects of inserting aluminum wool packing material inside the hot side duct on augmentation of heat transfer from the gas stream to duct walls were studied. Data were collected for both the unpacked and packed cases to allow for detection of packing influence on flow and surface temperatures. Effects of gas and coolant inlet temperatures as well as gas flow rate on the thermoelectric power output were examined. The results indicate that thermoelectric power production is increased at higher gas inlet temperature or flow rate. However, thermoelectric power generation decreases with a higher coolant temperature as a consequence of the reduced hot-cold side temperature differential. For the hot-side duct, a large temperature gradient exists between the gas and solid surface temperature due to poor heat transfer through the gaseous medium. Adding the packing material inside the exhaust duct enhanced heat transfer and hence raised hot-side duct surface temperatures and thermoelectric power compared to the unpacked duct, particularly where the gas-to-surface temperature differential is highest. Therefore it is recommended that packing of exhaust duct becomes common practice in thermoelectric waste energy harvesting applications.

Ibrahim, Essam [Alabama A& M University, Normal; Szybist, James P [ORNL; Parks, II, James E [ORNL

2010-01-01T23:59:59.000Z

38

Heat Transfer in Thermoelectric Materials and Devices  

E-Print Network (OSTI)

Solid-state thermoelectric devices are currently used in applications ranging from thermocouple sensors to power generators in space missions, to portable air-conditioners and refrigerators. With the ever-rising demand ...

Tian, Zhiting

39

Heat transfer in a thermoelectric generator for diesel engines  

SciTech Connect

This paper discusses the design and test results obtained for a 1kW thermoelectric generator used to convert the waste thermal energy in the exhaust of a Diesel engine directly to electric energy. The paper focuses on the heat transfer within the generator and shows what had to be done to overcome the heat transfer problems encountered in the initial generator testing to achieve the output goal of 1kW electrical. The 1kW generator uses Bismuth-Telluride thermoelectric modules for the energy conversion process. These modules are also being evaluated for other waste heat applications. Some of these applications are briefly addressed.

Bass, J.C. [Hi-Z Technology, Inc., San Diego, CA (United States)

1995-12-31T23:59:59.000Z

40

Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Developing a low and high temperature dual thermoelectric generation waste heat recovery system for light-duty vehicles.

Note: This page contains sample records for the topic "thermoelectric heating ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Section 38 - HVAC (Heating, Ventilation, Air Conditioning)  

Science Journals Connector (OSTI)

The term HVAC is an acronym for Heating, Ventilation (and) Air Conditioning, the industry term for any of various efforts to control conditions in a building or other enclosed area to improve comfort and efficiency. A closely related section is Refrigeration, which follows this one. Some contemporary HVAC techniques have ancient roots. Early forms of central heating and solar home heating were in use in Rome in the first century A.D. The earliest use of glass in windows (as opposed to a covering of wood, cloth, or hide, or simply an opening) is also attributed to the Romans at this same time. The first known use of solar-oriented building design in North America dates back to about the year 1050; i.e., the cliff dwellings built by the Anasazi (Ancient Pueblo) people of the Colorado Plateau area. Geothermal district heating was employed as early as the 1300s, in the Auvergne region of southern France. The foundation for modern central heating was established in the 1700s, first in England and then in France. The 1800s saw significant advances in the use of water heaters, especially the first automatic storage water heater (Edwin Ruud, 1889) and the first commercial solar water heater (Clarence Kemp, 1891). In comparison with heating, cooling technology was late in developing. The first successful method of producing ice occurred in 1851, and it was not until 1902 that Willis Haviland Carrier designed the first industrial air-conditioning system. His Carrier Air Conditioning Corporation would go on to develop air-conditioning systems for stores and theaters (1924) and for residential buildings (1928). Carrier remains the global leader in air conditioner production. The first air-conditioned automobile was produced by Packard in 1939. Recent entries in this section emphasize the use of alternative energy sources in heating and cooling, such as solar, photovoltaic, geothermal, and fuel cells. These advances include the ground-source heat pump, the Trombe wall, the heat pipe, and the PV/thermal hybrid system.

Cutler J. Cleveland; Christopher Morris

2014-01-01T23:59:59.000Z

42

High-Performance Thermoelectric Devices Based on Abundant Silicide Materials for Vehicle Waste Heat Recovery  

Energy.gov (U.S. Department of Energy (DOE))

Development of high-performance thermoelectric devices for vehicle waste heat recovery will include fundamental research to use abundant promising low-cost thermoelectric materials, thermal management and interfaces design, and metrology

43

An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Efficient, scalable, and low cost vehicular thermoelectric generators development will include rapid synthesis of thermoelectric materials, different device geometries, heat sink designs, and durability and long-term performance tests

44

Why Blow Away Heat? Harvest Server's Heat Using Ther-moelectric Generators  

E-Print Network (OSTI)

Why Blow Away Heat? Harvest Server's Heat Using Ther- moelectric Generators Ted Tsung-Te Lai, Wei ABSTRACT This paper argues for harvesting energy from servers' wasted heat in data centers. Our approach is to distribute a large number of thermoelectric generators (TEGs) on or nearby server hotspot components whose

Huang, Polly

45

Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications  

Energy.gov (U.S. Department of Energy (DOE))

Progress in reliable high temperature segmented thermoelectric devices and potential for producing electricity from waste heat from energy intensive industrial processes and transportation vehicles exhaust are discussed

46

Heating, Ventilation, and Air Conditioning Projects | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

- Grenada, MS -- International Copper Association - New York, NY -- Wieland - Ulm, Germany -- Heat Transfer Technologies - Abington, PA Multi-Function Fuel-Fired Heat Pump...

47

Reducing industrial energy use with thermoelectric diffusion heat pumps  

SciTech Connect

The described Peltier Effect Diffusion System (PEDS) employs an innovative unit geometry in conjunction with thermoelectric (TE) heat pumps having high operational efficiency. Significant system design dynamics are explored, including heat and mass transfer mechanisms, fluid dynamics, and unit sizing methodology. Finally, estimated operating performance is presented for some representative industrial applications which are well suited to availability-based efficiency evaluations, namely: desalination, multi-stage absorption cycle refrigeration systems and freeze-concentration processes. Peltier effect TE heat pumps provide multi-stage work input to separations. The PEDS utilizes electrically generated heat as the separating agent, and pumps this energy to successively higher availability levels, resulting in high overall COP and greatly improved thermodynamic efficiency. Process costs in terms of availability utilization can be identified. The described PEDS process offers a meaningful alternative to conventional mass transfer methods.

Meckler, M.

1982-08-01T23:59:59.000Z

48

Energy Saving Guidelines for Portland State University Heating and Ventilation  

E-Print Network (OSTI)

Energy Saving Guidelines for Portland State University Heating and Ventilation Conditioned spaces when a space is not being occupied and be selected with energy efficiency and safety as top priorities scheduling team to consolidate activities into energy efficient buildings on campus. Purchasing When

Caughman, John

49

IMPROVING THE EFFICIENCY OF THERMOELECTRIC GENERATORS BY USING SOLAR HEAT CONCENTRATORS  

E-Print Network (OSTI)

IMPROVING THE EFFICIENCY OF THERMOELECTRIC GENERATORS BY USING SOLAR HEAT CONCENTRATORS M. T. de : Thermoelectric generator, Solar heat concentrator, Carnot efficiency I - Introduction The global energy crisis the junctions of two different materials. For a TEG to supply a significant amount of power, several thermo

50

On thermoelectric power conversion from heat re-circulating combustion systems F. J. Weinberg  

E-Print Network (OSTI)

On thermoelectric power conversion from heat re-circulating combustion systems F. J. Weinberg for the Second Law heat engine cycles the maximum power that can be extracted is independent of layout Fax: 4420 7594 5604 Word count: 3750 Diags. equivalent: 1600 5350 #12;On thermoelectric power

51

Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries  

SciTech Connect

The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

Adam Polcyn; Moe Khaleel

2009-01-06T23:59:59.000Z

52

Heat exchanger design for thermoelectric electricity generation from low temperature flue gas streams .  

E-Print Network (OSTI)

??An air-to-oil heat exchanger was modeled and optimized for use in a system utilizing a thermoelectric generator to convert low grade waste heat in flue… (more)

Latcham, Jacob G. (Jacob Greco)

2009-01-01T23:59:59.000Z

53

Multifamily Individual Heating and Ventilation Systems, Lawrence...  

Energy Savers (EERE)

each apartment were much higher than the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) 62.2 rate; an extensive system of ductwork, smoke and...

54

Thermoelectric energy converter for generation of electricity from low-grade heat  

DOE Patents (OSTI)

A thermoelectric energy conversion device which includes a plurality of thermoelectric elements is described. A hot liquid is supplied to one side of each element and a cold liquid is supplied to the other side of each element. The thermoelectric generator may be utilized to produce power from low-grade heat sources such as ocean thermal gradients, solar ponds, and low-grade geothermal resources. (WHK)

Jayadev, T.S.; Benson, D.K.

1980-05-27T23:59:59.000Z

55

Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet)  

SciTech Connect

The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. Merrimack Valley Habitat for Humanity (MVHfH) partnered with U.S. Department of Energy Building America team Building Science Corporation (BSC) to provide high performance affordable housing for 10 families in the retrofit of an existing mass masonry building (a former convent). The original ventilation design for the project was provided by a local engineer and consisted of a single large heat recovery ventilator (HRV) located in a mechanical room in the basement with a centralized duct system providing supply air to the main living space and exhausting stale air from the single bathroom in each apartment. This design was deemed to be far too costly to install and operate for several reasons: the large central HRV was oversized and the specified flows to each apartment were much higher than the ASHRAE 62.2 rate; an extensive system of ductwork, smoke and fire dampers, and duct chases were specified; ductwork required a significant area of dropped ceilings; and the system lacked individual ventilation control in the apartments

Not Available

2013-11-01T23:59:59.000Z

56

IMPROVED STEAM APPARATUS FOR HEATING AND VENTILATING  

Science Journals Connector (OSTI)

...iilprovenments in these heaters, The hleatei is...all parts of the heater. The pipes in the...foot of pipe. In operation for heating andl...at or towards the cold outer v but it must...changes in the weather always have a serious...passing through the heater causes such a rapid...

1889-05-03T23:59:59.000Z

57

Feasibility of Thermoelectrics for Waste Heat Recovery in Hybrid Vehicles: Preprint  

SciTech Connect

Using advanced materials, thermoelectric conversion of efficiencies on the order of 20% may be possible in the near future. Thermoelectric generators offer potential to increase vehicle fuel economy by recapturing a portion of the waste heat from the engine exhaust and generating electricity to power vehicle accessory or traction loads.

Smith, K.; Thornton, M.

2007-12-01T23:59:59.000Z

58

Performance Study of Thermoelectric Solar-Assisted Heat Pump with Reflectors  

Science Journals Connector (OSTI)

The simultaneous conversion of solar radiation into thermal and electrical energy in a thermoelectric (TE) solar-assisted heat pump is, for the purposes of ... plate reflectors have been mounted on a TE solar col...

C. Lertsatitthanakorn; S. Soponronnarit…

2014-06-01T23:59:59.000Z

59

ON THE ROLE OF THERMOELECTRIC HEAT TRANSFER IN THE DESIGN OF SMA ACTUATORS: THEORETICAL MODELING AND EXPERIMENT  

E-Print Network (OSTI)

current densities. As a #12;rst step towards the design of an actuator, a thermoelectric module. Semiconductorshave been used for localized cooling, employing the thermoelectricPeltier eect. DependingON THE ROLE OF THERMOELECTRIC HEAT TRANSFER IN THE DESIGN OF SMA ACTUATORS: THEORETICAL MODELING

60

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Engineering and Materials for Automotive Thermoelectric Applications Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites Electrical...

Note: This page contains sample records for the topic "thermoelectric heating ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery  

Energy.gov (U.S. Department of Energy (DOE))

Skutterudite TE modules were fabricated and assembled into prototype thermoelectric generators (TEGs), then installed on a standard GM production vehicle and tested for performance

62

NSF/DOE Thermoelectrics Partnership: Thermoelectrics for Automotive Waste Heat Recovery  

Energy.gov (U.S. Department of Energy (DOE))

Development for commercialization of automotive thermoelectric generators from high-ZT TE materials with using low-cost, widely available materials, system design and modeling to maximize temperature differential across TE modules and maximize power output

63

Development of High-efficiency Thermoelectric Materials for Vehicle Waste Heat Utililization  

SciTech Connect

The goals of this . CRADA are: 1) Investigation of atomistic structure and nucleation of nanoprecipitates in (PbTe){sub I-x}(AgSbTe2){sub x} (LAST) system; and 2) Development of non-equilibrium synthesis of thermoelectric materials for waste heat recovery. We have made significant accomplishment in both areas. We studied the structure of LAST materials using high resolution imaging, nanoelectron diffraction, energy dispersive spectrum, arid electron energy loss spectrum, and observed a range of nanoparticles The results, published in J. of Applied Physics, provide quantitative structure information about nanoparticles, that is essential for the understanding of the origin of the high thermoelectric performance in this class of materials. We coordinated non-equilibrium synthesis and characterization of thermoelectric materials for waste heat recovery application. Our results, published in J. of Electronic Materials, show enhanced thermoelectric figure of merit and robust mechanical properties in bulk . filled skutterudites.

Li, Qiang

2009-04-30T23:59:59.000Z

64

QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY  

SciTech Connect

New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices.

Saeid Ghamaty; Sal Marchetti

2004-05-10T23:59:59.000Z

65

QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY  

SciTech Connect

New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices.

Saeid Ghamaty; Sal Marchetti

2004-07-30T23:59:59.000Z

66

Thermoelectric generators incorporating phase-change materials for waste heat recovery from engine exhaust  

DOE Patents (OSTI)

Thermoelectric devices, intended for placement in the exhaust of a hydrocarbon fuelled combustion device and particularly suited for use in the exhaust gas stream of an internal combustion engine propelling a vehicle, are described. Exhaust gas passing through the device is in thermal communication with one side of a thermoelectric module while the other side of the thermoelectric module is in thermal communication with a lower temperature environment. The heat extracted from the exhaust gasses is converted to electrical energy by the thermoelectric module. The performance of the generator is enhanced by thermally coupling the hot and cold junctions of the thermoelectric modules to phase-change materials which transform at a temperature compatible with the preferred operating temperatures of the thermoelectric modules. In a second embodiment, a plurality of thermoelectric modules, each with a preferred operating temperature and each with a uniquely-matched phase-change material may be used to compensate for the progressive lowering of the exhaust gas temperature as it traverses the length of the exhaust pipe.

Meisner, Gregory P; Yang, Jihui

2014-02-11T23:59:59.000Z

67

Economic Analysis and Optimization of Exterior Insulation Requirements for Ventilated Buildings at Power Generation Facilities with High Internal Heat Gain  

E-Print Network (OSTI)

Industrial buildings require a large amount of heating and ventilation equipment to maintain the indoor environment within acceptable levels for personnel protection and equipment protection. The required heating and ventilation equipment...

Hughes, Douglas E.

2010-12-17T23:59:59.000Z

68

Performance Analysis of a Thermoelectric Solar Collector Integrated with a Heat Pump  

Science Journals Connector (OSTI)

A novel heat pump system is proposed. A thermoelectric solar collector was coupled to a solar-assisted heat pump (TESC-HP) to work as an ... ambient temperature of 32.5°C and average solar intensity of 815 W/m2, ...

C. Lertsatitthanakorn; J. Jamradloedluk; M. Rungsiyopas…

2013-07-01T23:59:59.000Z

69

Thermoelectric Generators 1. Thermoelectric generator  

E-Print Network (OSTI)

. Cold Hot I - -- - - - - -- Figure 1 Electron concentration in a thermoelectric material. #12;2 A large1 Thermoelectric Generators HoSung Lee 1. Thermoelectric generator 1.1 Basic Equations In 1821 on the direction of current and material [3]. This is called the Thomson effect (or Thomson heat). These three

Lee, Ho Sung

70

The preliminary design of thermoelectric generation system using the fluid heat sources  

SciTech Connect

This paper describes the preliminary design of a thermoelectric generation system using the fluid heat sources available as the waste heat of the phosphoric acid fuel cells. The thermoelectric generator consists of many thermoelectric generation units. For estimating the output performance of the thermoelectric generator, an equilibrium thermal circuit was derived from an analytic model of a thermoelectric generation unit. Based on the equivalent thermal circuit, the output performance at thermal equilibrium was calculated by iteration. In this paper, the output performance was estimated considering the cold side pumping power. The calculation was done by assuming a heat source temperature of about 450K on the hot side, about 310 K on the cold side, and 2,000kWth as heat exchange capacity. The electric power of the generator with a size of 1.5 x 1.5 x 1.4 (h) m{sup 3} was found to be about 70 kW and its power density, about 1.5 kW/m{sup 2} excepting the pumping power on the cold water side.

Hori, Y.; Ito, T. [Central Research Inst. of Electric Power Industry, Yokosuka, Kanagawa (Japan)

1995-12-31T23:59:59.000Z

71

QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY  

SciTech Connect

New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce the technology for fabricating a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices. In this quarter Hi-Z has continued fabrication of the QW films and also continued development of joining techniques for fabricating the N and P legs into a couple. The upper operating temperature limit for these films is unknown and will be determined via the isothermal aging studies that are in progress. We are reporting on these studies in this report. The properties of the QW films that are being evaluated are Seebeck, thermal conductivity and thermal-to-electricity conversion efficiency.

Saeid Ghamaty

2004-01-01T23:59:59.000Z

72

QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY  

SciTech Connect

New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce the technology for fabricating a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices. In this quarter Hi-Z has continued fabrication of the QW films and also continued development of joining techniques for fabricating the N and P legs into a couple. The upper operating temperature limit for these films is unknown and will be determined via the isothermal aging studies that are in progress. We are reporting on these studies in this report. The properties of the QW films that are being evaluated are Seebeck, thermal conductivity and thermal-to-electricity conversion efficiency.

Saeid Ghamaty

2005-05-01T23:59:59.000Z

73

Thermoelectric Generator (TEG) Fuel Displacement Potential using...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(TEG) Design Targets for Hybrid Vehicles Thermoelectric Generator Performance for Passenger Vehicles Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery...

74

HEAT TRANSFERS IN A DOUBLE SKIN ROOF VENTILATED BY NATURAL CONVECTION IN SUMMER TIME  

E-Print Network (OSTI)

1 HEAT TRANSFERS IN A DOUBLE SKIN ROOF VENTILATED BY NATURAL CONVECTION IN SUMMER TIME P. H or in tropical and arid countries. In this work, radiation, convection and conduction heat transfers-dimensional numerical simulation of the heat transfers through the double skin reveals the most important parameters

Boyer, Edmond

75

High Temperature Experimental Characterization of Microscale Thermoelectric Effects  

E-Print Network (OSTI)

G. P. , Thermoelectric Generators for Automotive Waste Heatinto thermoelectric generators for waste heat recovery inThermoelectric Materials and Generator Technology for Automotive Waste Heat

Favaloro, Tela

2014-01-01T23:59:59.000Z

76

NSF/DOE Thermoelectics Partnership: Thermoelectrics for Automotive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectics Partnership: Thermoelectrics for Automotive Waste Heat Recovery NSFDOE Thermoelectics Partnership: Thermoelectrics for Automotive Waste Heat Recovery 2011 DOE...

77

Development of thermoelectric power generation system utilizing heat of combustible solid waste  

SciTech Connect

The paper presents the development of thermoelectric power generation system utilizing heat of municipal solid waste. The systematic classification and design guideline are proposed in consideration of the characteristics of solid waste processing system. The conceptual design of thermoelectric power generation system is carried out for a typical middle scale incinerator system (200 ton/day) by the local model. Totally the recovered electricity is 926.5 kWe by 445 units (569,600 couples). In order to achieve detailed design, one dimensional steady state model taking account of temperature dependency of the heat transfer performance and thermoelectric properties is developed. Moreover, small scale on-site experiment on 60 W class module installed in the real incinerator is carried out to extract various levels of technological problems. In parallel with the system development, high temperature thermoelectric elements such as Mn-Si and so on are developed aiming the optimization of ternary compound and high performance due to controlled fine-grain boundary effect. The manganese silicide made by shrinking-rate controlled sintering method performs 5 ({mu}W/cm K{cflx 2}) in power factor at 800 K. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

Kajikawa, T.; Ito, M.; Katsube, I. [Shonan Institute of Technology, Fujisawa, Kanagawa, 251 (Japan); Shibuya, E. [NKK Corporation, Yokohama, Kanagawa, 230 (Japan)

1994-08-10T23:59:59.000Z

78

EIS-0302: Transfer of the Heat Source/Radioisotope Thermoelectric Generator Assembly and Test Operations From the Mound Site  

Energy.gov (U.S. Department of Energy (DOE))

This EIS analyzes DOE's proposed transfer of the Heat Source/Radioisotope Thermoelectric Generator (HS/RTG) operations at the Mound Site near Miamisburg, Ohio, to an alternative DOE site.

79

A Study of Heat Sink Performance in Air and Soil for Use in a Thermoelectric Energy Harvesting Device  

E-Print Network (OSTI)

conductance of a passive heat sink buried in soil. Introduction Solid state thermoelectric generators offer a battery cell at low power. Sensors and communication devices would use the charged battery to operate

80

Spatial dependence of thermoelectric voltages and reversible heats  

Science Journals Connector (OSTI)

Thermocouples are probably the most widely used temperature sensors in science and industry but perhaps also the most often misunderstood. The basic distinction between an ordinary resistance thermometer in which the sensing element is localized and a thermocouple circuit in which potentials vary along the wires themselves is most clearly shown by a treatment in which the spatial dependences of the phenomena are explicitly invoked. Such treatment is essential to analysis of measurement errors in thermocouple circuits. In this article the basic equations of thermoelectricity are reviewed and their physical meanings discussed. The profile of the electrochemical potential for an illustrative example is then calculated from published data. Finally the problem of a thermocouple in a static magnetic field is discussed.

P. L. Walstrom

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermoelectric heating ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Quantum Well Thermoelectrics for Converting Waste Heat to Electricity  

SciTech Connect

Fabrication development of high efficiency quantum well (QW) thermoelectric continues with the P-type and N-type Si/Si{sub 80}Ge{sub 20} films with encouraging results. These films are fabricated on Si substrates and are being developed for low as well as high temperature operation. Both isothermal and gradient life testing are underway. One couple has achieved over 4000 hours at T{sub H} of 300 C and T{sub C} of 50 C with little or no degradation. Emphasis is now shifting towards couple and module design and fabrication, especially low resistance joining between N and P legs. These modules can be used in future energy conversion systems as well as for air conditioning.

Saeid Ghamaty

2007-04-01T23:59:59.000Z

82

Heat balance for two commercial broiler barns with solar preheated ventilation air  

Science Journals Connector (OSTI)

In temperate climatic zones, solar air heaters can reduce heating loads, and increase winter ventilation rates thereby improving inside air quality and livestock performance without additional fuel input. A heat balance was carried out to measure bird heat production under field conditions on two commercial broiler barns to evaluate the impact of solar heated ventilation air on bird performance, and identify strategies to reduce winter heating load. Located 40 km east of Montreal, Canada, the experimental broiler barns were identically built with three floors housing 6500 birds per floor in an all-in all-out fashion. Equipped with solar air pre-heaters over their fresh air inlets, the barns were instrumented to monitor inlet, inside and outside air conditions, ventilation rate and heating system operating time. The effects on bird performance were observed from November 2007 to March 2009 by alternating their operation between the barns. The measured sensible and total heat productions of 4.5 W and 8.4 W, respectively, for 1 kg birds corresponded to laboratory measured values. Bird performance was not affected by the solar air pre-heaters which increased the ventilation rate above normal during only 20% of the daytime period. Room air temperature stratification resulted in 20–40 kW of heat losses during the winter, representing 25% of the total natural gas heat load. Because inside air moved directly to the fans, large and rapid increases in ventilation inlet air temperature, produced by the solar air pre-heaters, resulted in further heat losses equivalent to 15% of the solar energy recovered. Sustainable energy management in livestock barns requiring heating should incorporate an air mixing system to eliminate air temperature stratification and improve fan flows.

Sébastien Cordeau; Suzelle Barrington

2010-01-01T23:59:59.000Z

83

The Ventilation, Heating, and Management of Churches and Public Buildings  

Science Journals Connector (OSTI)

... THIS book is addressed chiefly to the architects, managers and caretakers of buildings, and its opening chapter deals with the physical principles bearing on ventilation. An interesting ... the writer makes the cryptic statement that "the friction caused by the wind passing over buildings is so great that it is scarcely possible to demonstrate it accurately,"and later ...

J. H. V.

1903-04-02T23:59:59.000Z

84

Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Generator (Waste Heat 1) - TEG 1 (preliminary assembly and testing) - TEG 2 (Bi-Te modules) - TEG 3 (Skutterudite and Bi-Te modules) * Develop Cost-Effective TEG (Waste Heat...

85

Overview of Fords Thermoelectric Programs: Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Overview of progress in TE waste heat recovery from sedan gasoline-engine exhaust, TE HVAC system in hybrid sedan, and establishing targets for cost, power density, packaging,...

86

Development of Thermoelectric Technology for Automotive Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery Overview and status of project to develop...

87

Development of Thermoelectric Technology for Automotive Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery Presentation from the U.S. DOE Office of...

88

Vehicle Technologies Office Merit Review 2014: Thermoelectric...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Vehicle Technologies Office Merit Review 2014: Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...

89

A continuum theory of thermoelectric bodies and effective properties of thermoelectric composites  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 A constitutive model for thermoelectric materials . . . . . . . . . . . . . . . . . . . . 6 2 composites. 1 Introduction Thermoelectric (TE) materials directly convert heat into electric energyA continuum theory of thermoelectric bodies and effective properties of thermoelectric composites

Liu, Liping

90

Conjugate heat transfer in enclosures with openings for ventilation  

Science Journals Connector (OSTI)

The direct and indirect solar chimney principle has been used for heating of...12...]). In heating applications, for example, the dwelling is simulated as an enclosure having a solar chimney located towards the s...

E. Bilgen; T. Yamane

2004-03-01T23:59:59.000Z

91

UC Berkeley Heat/Ventilation Curtailment Period DECEMBER 24, 2011 through JANUARY 1, 2012  

E-Print Network (OSTI)

and January 1, 2012 in order to conserve energy, most campus buildings will be closed and heat and ventilation that a building be exempt from energy curtailment. If you would like to request that your building be exempt from. Technical questions or concerns about energy curtailment can be directed to Gilbert Escobar at 3

California at Irvine, University of

92

Potential of Thermoelectrics forOccupant Comfort and Fuel Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Documents & Publications Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Caterpillar Diesel Racing: Yesterday & Today Thermoelectric Conversion of...

93

EXERGY ANALYSIS AND ENTROPY GENERATION MINIMIZATION OF THERMOELECTRIC WASTE HEAT RECOVERY FOR ELECTRONICS  

E-Print Network (OSTI)

Energy recovery from waste heat is attracting more and more attention. All electronic systems consume electricity but only a fraction of it is used for information processing and for human interfaces, such as displays. Lots of energy is dissipated as heat. There are some discussions on waste heat recovery from the electronic systems such as laptop computers. However the efficiency of energy conversion for such utilization is not very attractive due to the maximum allowable temperature of the heat source devices. This leads to very low limits of Carnot efficiency. In contrast to thermodynamic heat engines, Brayton cycle, free piston Stirling engines, etc., authors previously reported that thermoelectric (TE) can be a cost-effective device if the TE and the heat sink are co-optimized, and if some parasitic effects could be reduced. Since the heat already exists and it is free, the additional cost and energy payback time are the key measures to evaluate the value of the energy recovery system. In this report, we will start with the optimum model of the TE power generation system. Then, theoretical maximum output, cost impact and energy payback are evaluated in the examples of electronics system. Entropy Generation Minimization (EGM) is a method already familiar in thermal management of electronics. The optimum thermoelectric waste heat recovery design is compared with the EGM approach. Exergy analysis evaluates the useful energy flow in the optimum TE system. This comprehensive analysis is used to predict the potential future impact of the TE material development, as the dimensionless figure-ofmerit (ZT) is improved.

Kazuaki Yazawa; Ali Shakouri

94

Exergy–economic evaluation of heat recovery device in mechanical ventilation system  

Science Journals Connector (OSTI)

Abstract The paper presents new approach in evaluation of heat recovery devices in mechanical ventilation system. The evaluation is based on exergy balance equation and economic analysis, what requires application of one of multicriteria decision aid methods—weighted sum method. The proposed set of evaluation criteria consists of: driving exergy, simple payback time and investment cost. The proposed method is applied to compare the four variants of heat recovery device in inlet-exhaust mechanical ventilation system of the capacity of 10,000 m3/h installed in residential part of hotel. The analysis is performed for four preference models. The results of the multicriteria evaluation indicate that counter flow plate heat exchanger and the rotating heat/mass regenerator are better solutions comparing with water loop heat exchanger and heat pipe heat exchanger. Counter flow plate heat exchanger is the most compromise solution for the two preference models PREF_00 (based on statistic approach) and PREF_03 (investment cost priority preference model). Rotating heat/mass regenerator is the most compromise solution for the preference model 01 (driving exergy priority preference model). The proposed method can be helpful in the choice of the most compromise solution of the heat recovery device in pre-design phase.

Tomasz M. Mróz; Anna Dutka

2015-01-01T23:59:59.000Z

95

Proceedings of the sixth international conference on thermoelectric energy conversion  

SciTech Connect

This book presents the papers given at a conference on thermoelectric energy conversion. Topics considered at the conference included thermoelectric materials, the computer calculation of thermoelectric properties, the performance of crss-flow thermoelectric liquid coolers, thermoelectric cooler performance corrections for soft heat sinks, heat exchange in a thermoelectric cooling system, the optimal efficiency of a solar pond and thermoelectric generator system, and thermoelectric generation utilizing industrial waste heat as an energy source.

Rao, K.R.

1986-01-01T23:59:59.000Z

96

WASTE HEAT RECOVERY USING THERMOELECTRIC DEVICES IN THE LIGHT METALS INDUSTRY  

SciTech Connect

Recently discovered thermoelectric materials and associated manufacturing techniques (nanostructures, thin-film super lattice, quantum wells...) have been characterized with thermal to electric energy conversion efficiencies of 12-25+%. These advances allow the manufacture of small-area, high-energy flux (350 W/cm2 input) thermoelectric generating (TEG) devices that operate at high temperatures (~750°C). TEG technology offers the potential for large-scale conversion of waste heat from the exhaust gases of electrolytic cells (e.g., Hall-Hèroult cells) and from aluminum, magnesium, metal and glass melting furnaces. This paper provides an analysis of the potential energy recovery and of the engineering issues that are expected when integrating TEG systems into existing manufacturing processes. The TEG module must be engineered for low-cost, easy insertion and simple operation in order to be incorporated into existing manufacturing operations. Heat transfer on both the hot and cold-side of these devices will require new materials, surface treatments and design concepts for their efficient operation.

Choate, William T.; Hendricks, Terry J.; Majumdar, Rajita

2007-05-01T23:59:59.000Z

97

Thermoelectrics Partnership: Automotive Thermoelectric Modules...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solution for Automotive Thermoelectric Modules Application Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces...

98

A genetic rule weighting and selection process for fuzzy control of heating, ventilating and air conditioning systems  

Science Journals Connector (OSTI)

In this paper, we propose the use of weighted linguistic fuzzy rules in combination with a rule selection process to develop accurate fuzzy logic controllers dedicated to the intelligent control of heating, ventilating and air conditioning systems concerning ... Keywords: BEMS, building energy management system, FLC, fuzzy logic controller, Fuzzy logic controllers, GA, genetic algorithm, Genetic algorithms, HVAC systems, HVAC, heating, ventilating, and air conditioning, KB, knowledge base, PMV, predicted mean vote index for thermal comfort, Rule selection, Weighted fuzzy rules

Rafael Alcalá; Jorge Casillas; Oscar Cordón; Antonio González; Francisco Herrera

2005-04-01T23:59:59.000Z

99

Project Profile: Concentrated Solar Thermoelectric Power | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Thermoelectric Power Project Profile: Concentrated Solar Thermoelectric Power MIT logo The Rohsenow-Kendall Heat Transfer Lab at Massachusetts Institute of...

100

Thermoelectric Properties of Nanostructured Silicon Films.  

E-Print Network (OSTI)

??Based on the Seebeck effect, thermoelectric materials can convert temperature heat into electrical energy. Alternatively, based on the Peltier effect, thermoelectric cooling can be achieved… (more)

Guo, Xiao

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermoelectric heating ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Overview of Japanese Activities in Thermoelectrics | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...

102

Status of Segmented Element Thermoelectric Generator for Vehicle Waste Heat Recovery  

Energy.gov (U.S. Department of Energy (DOE))

Discusses progress of thermoelectric generator development at BSST and assessment of potential to enter commercial operation in vehicles

103

Certification testing of the Los Alamos National Laboratory Heat Source/Radioisotopic Thermoelectric Generator shipping container  

SciTech Connect

The Heat Source/Radioisotopic Thermoelectric Generator shipping counter is a Type B packaging currently under development by Los Alamos National Laboratory. Type B packaging for transporting radioactive material is required to maintain containment and shielding after being exposed to normal and hypothetical accident environments defined in Title 10 of the Code of Federal Regulations Part 71. A combination of testing and analysis is used to verify the adequacy of this packaging design. This report documents the testing portion of the design verification. Six tests were conducted on a prototype package: a water spray test, a 4-foot normal conditions drop test, a 30-foot drop test, a 40-inch puncture test, a 30-minute thermal test, and an 8-hour immersion test.

Bronowski, D.R.; Madsen, M.M.

1991-09-01T23:59:59.000Z

104

General-purpose heat source: Research and development program. Radioisotope thermoelectric generator impact tests: RTG-1 and RTG-2  

SciTech Connect

The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure.

Reimus, M.A.H.; Hinckley, J.E.; George, T.G.

1996-07-01T23:59:59.000Z

105

General-purpose heat source: Research and development program, radioisotope thermoelectric generator/thin fragment impact test  

SciTech Connect

The general-purpose heat source provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system. The results of this test indicated that impact by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel.

Reimus, M.A.H.; Hinckley, J.E.

1996-11-01T23:59:59.000Z

106

Low and high Temperature Dual Thermoelectric Generation Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles Low and high Temperature Dual Thermoelectric Generation Waste Heat...

107

Multi-physics modeling of thermoelectric generators for waste...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Multi-physics modeling of thermoelectric generators for waste heat recovery applications Multi-physics modeling of thermoelectric generators for waste heat recovery applications...

108

Recent Progress in the Development of High Efficiency Thermoelectrics...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation Quantum Well Thermoelectrics and Waste Heat Recovery Scale Up of Si...

109

Thermoelectrics: From Space Power Systems to Terrestrial Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications...

110

Program Final Report - Develop Thermoelectric Technology for Automotive Waste Heat Recovery  

SciTech Connect

We conducted a vehicle analysis to assess the feasibility of thermoelectric technology for waste heat recovery and conversion to useful electrical power and found that eliminating the 500 W of electrical power generated by the alternator corresponded to about a 7% increase in fuel economy (FE) for a small car and about 6% for a full size truck. Electric power targets of 300 W were established for city and highway driving cycles for this project. We obtained critical vehicle level information for these driving cycles that enabled a high-level design and performance analysis of radiator and exhaust gas thermoelectric subsystems for several potential vehicle platforms, and we identified the location and geometric envelopes of the radiator and exhaust gas thermoelectric subsystems. Based on this analysis, we selected the Chevrolet Suburban as the most suitable demonstration vehicle for this project. Our modeling and thermal analysis assessment of a radiator-based thermoelectric generator (TEG), however, revealed severe practical limitations. Specifically the small temperature difference of 100°C or less between the engine coolant and ambient air results in a low Carnot conversion efficiency, and thermal resistance associated with air convection would reduce this conversion efficiency even further. We therefore decided not to pursue a radiator-based waste heat recovery system and focused only on the exhaust gas. Our overall approach was to combine science and engineering: (1) existing and newly developed TE materials were carefully selected and characterized by the material researcher members of our team, and most of the material property results were validated by our research partners, and (2) system engineers worked closely with vehicle engineers to ensure that accurate vehicle-level information was used for developing subsystem models and designs, and the subsystem output was analyzed for potential fuel economy gains. We incorporated material, module, subsystem, and integration costs into the material selection criteria in order to balance various materials, module and subsystem design, and vehicle integration options. Our work on advanced TE materials development and on TEG system design, assembly, vehicle integration, and testing proceeded in parallel efforts. Results from our two preliminary prototype TEGs using only Bi-Te TE modules allowed us to solve various mechanical challenges and to finalize and fine tune aspects of the design and implementation. Our materials research effort led us to quickly abandon work on PbTe and focus on the skutterudite materials due to their superior mechanical performance and suitability at automotive exhaust gas operating temperatures. We synthesized a sufficiently large quantity of skutterudite material for module fabrication for our third and final prototype. Our TEG#3 is the first of its kind to contain state-of-the-art skutterudite-based TE modules to be installed and tested on a production vehicle. The design, which consisted of 24 skutterudite modules and 18 Bi-Te modules, attempted to optimize electrical power generation by using these two kinds of TE modules that have their peak performance temperatures matched to the actual temperature profile of the TEG during operation. The performance of TEG#3 was limited by the maximum temperature allowable for the Bi-Te TE modules located in the colder end of the TEG, resulting in the operating temperature for the skutterudite modules to be considerably below optimum. We measured the power output for (1) the complete TEG (25 Watts) and (2) an individual TE module series string (1/3 of the TEG) operated at a 60°C higher temperature (19 Watts). We estimate that under optimum operating temperature conditions, TEG#3 will generate about 235 Watts. With additional improvements in thermal and electrical interfaces, temperature homogeneity, and power conditioning, we estimate TEG#3 could deliver a power output of about 425 Watts.

Gregory Meisner

2011-08-31T23:59:59.000Z

111

Theoretical and experimental estimation of limiting input heat flux for thermoelectric power generators with passive cooling  

Science Journals Connector (OSTI)

Abstract This paper focuses on theoretical and experimental analysis used to establish the limiting heat flux for passively cooled thermoelectric generators (TEG). 2 commercially available TEG’s further referred as type A and type B with different allowable hot side temperatures (150 °C and 250 °C respectively) were investigated in this research. The thermal resistance of TEG was experimentally verified against the manufacturer’s specifications and used for theoretical analysis in this paper. A theoretical model is presented to determine the maximum theoretical heat flux capacity of both the TEG’s. The conventional methods are used for cooling of TEG’s and actual limiting heat flux is experimentally established for various cold end cooling configurations namely bare plate, finned block and heat pipe with finned condenser. Experiments were performed on an indoor setup and outdoor setup to validate the results from the theoretical model. The outdoor test setup consist of a fresnel lens solar concentrator with manual two axis solar tracking system for varying the heat flux, whereas the indoor setup uses electric heating elements to vary the heat flux and a low speed wind tunnel blows the ambient air past the device to simulate the outdoor breezes. It was observed that bare plate cooling can achieve a maximum heat flux of 18,125 W/m2 for type A and 31,195 W/m2 for type B at ambient wind speed of 5 m/s while maintaining respective allowable temperature over the hot side of TEG’s. Fin geometry was optimised for the finned block cooling by using the fin length and fin gap optimisation model presented in this paper. It was observed that an optimum finned block cooling arrangement can reach a maximum heat flux of 26,067 W/m2 for type A and 52,251 W/m2 for type B TEG at ambient wind speed of 5 m/s of ambient wind speed. The heat pipe with finned condenser used for cooling can reach 40,375 W/m2 for type A TEG and 76,781 W/m2 for type B TEG.

Ashwin Date; Abhijit Date; Chris Dixon; Randeep Singh; Aliakbar Akbarzadeh

2015-01-01T23:59:59.000Z

112

Proposal for the award of a contract for the design, supply, installation and commissioning of an HVAC (Heating, Ventilation and Air Conditioning) system for Building 3862  

E-Print Network (OSTI)

Proposal for the award of a contract for the design, supply, installation and commissioning of an HVAC (Heating, Ventilation and Air Conditioning) system for Building 3862

2014-01-01T23:59:59.000Z

113

Proposal for the award of a contract for the design, supply, installation and commissioning of Heating, Ventilation and Air-Conditioning (HVAC) systems for the PS accelerator infrastructure  

E-Print Network (OSTI)

Proposal for the award of a contract for the design, supply, installation and commissioning of Heating, Ventilation and Air-Conditioning (HVAC) systems for the PS accelerator infrastructure

2012-01-01T23:59:59.000Z

114

Proposal for the award of a contract for dismantling, removal and packaging of the existing Heating, Ventilation and Air-Conditioning (HVAC) systems in the PS tunnel  

E-Print Network (OSTI)

Proposal for the award of a contract for dismantling, removal and packaging of the existing Heating, Ventilation and Air-Conditioning (HVAC) systems in the PS tunnel

2012-01-01T23:59:59.000Z

115

Thermoelectric Materials, Devices and Systems:  

Office of Environmental Management (EM)

41 thermopower) (Tritt, 2011). However the use of thermoelectric modules as solid state heat pumps for 42 heating and cooling applications using the opposite Peltier effect is...

116

Investigating and establishing limiting heat flux for passively cooled and solar concentrated thermoelectric power generation system.  

E-Print Network (OSTI)

??Thermoelectric generators (TEG) working on the principle of Seebeck effect have gathered the attention during this period as a potential device that can generate electricity… (more)

Date, A

2014-01-01T23:59:59.000Z

117

2014-02-07 Issuance: Certification of Commercial Heating, Ventilation, and Air-conditioning, Water Heating, and Refrigeration Equipment; Notice of Proposed Rulemaking  

Energy.gov (U.S. Department of Energy (DOE))

This document is a pre-publication Federal Register notice of proposed rulemaking regarding certification of commercial heating, ventilation, and air-conditioning, water-heating, and refrigeration equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on February 7, 2014.

118

A shielded storage and processing facility for radioisotope thermoelectric generator heat source production  

SciTech Connect

A shielded storage rack has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the U.S. Department of Energy's (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE's Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which processes and stores assembled GPHS modules, prior to their installation into RTGs. The shield rack design is simple and effective, with the result that background radiation levels within Hanford's MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford's calculations assume five times the GPHS inventory of that assumed for Mound.

Sherrell, D.L. (Westinghouse Hanford Company, P.O. Box 1970, Mail Stop N1-42, Richland, Washington 99352 (United States))

1993-01-15T23:59:59.000Z

119

A shielded storage and processing facility for radioisotope thermoelectric generator heat source production  

SciTech Connect

This report discusses a shielded storage rack which has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the US Department of Energy's (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE's Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which process and stores assembled GPHS modules, prior to their installation into RTGS. The shield rack design is simple and effective, with the result that background radiation levels within Hanford's MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford's calculations assume five times the GPHS inventory of that assumed for Mound.

Sherrell, D.L.

1992-06-01T23:59:59.000Z

120

A shielded storage and processing facility for radioisotope thermoelectric generator heat source production  

SciTech Connect

This report discusses a shielded storage rack which has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the US Department of Energy`s (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE`s Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which process and stores assembled GPHS modules, prior to their installation into RTGS. The shield rack design is simple and effective, with the result that background radiation levels within Hanford`s MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford`s calculations assume five times the GPHS inventory of that assumed for Mound.

Sherrell, D.L.

1992-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermoelectric heating ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Thermoelectrics Partnership: Automotive Thermoelectric Modules...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Novel Nanostructured Interface Solution for Automotive Thermoelectric...

122

Thermoelectric Opportunities for Light-Duty Vehicles | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heat Recovery Thermoelectric Activities of European Community within Framework Programme 7 and additional activities in Germany Automotive Thermoelectric Generator (TEG) Controls...

123

Development of Cost-Competitive Advanced Thermoelectric Generators...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power Development of Cost-Competitive Advanced Thermoelectric...

124

Overview of Thermoelectric Power Generation Technologies in Japan...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Thermoelectric Power Generation Technologies in Japan Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy...

125

Large-dimension, high-ZT Thermoelectric Nanocomposites for High...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Large-dimension, high-ZT Thermoelectric Nanocomposites for High-Power High-efficiency Waste Heat Recovery for Electricity Generation Large-dimension, high-ZT Thermoelectric...

126

Cost-Competitive Advanced Thermoelectric Generators for Direct...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power Cost-Competitive Advanced Thermoelectric Generators for...

127

Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy...

128

High-Performance Thermoelectric Devices Based on Abundant Silicide...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Development of high-performance thermoelectric devices for vehicle waste heat recovery will include fundamental research to use abundant promising low-cost thermoelectric...

129

Proactive Strategies for Designing Thermoelectric Materials for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

thermoelectric materials design, synthesis, fabrication, and characterization for power generation using vehicle exhaust waste heat. subramanian.pdf More Documents &...

130

Thermoelectric generator  

SciTech Connect

A thermoelectric generator unit is described comprising: a hot side heat exchanger including a plate having extruded retention posts projecting from one surface of the plate, and fins adapted for contact with a heating source. The fins are positioned between two of the retention posts. Retention rods are inserted between the retention posts and the base of the fins to retain the fin in thermal contact with the plate surface upon insertion of the retention rod between the engaging surface of the post and the corresponding fin. Thermoelectric semi-conductor modules are in thermal contact with the opposite side of the hot side heat exchanger plate from the contact with the fins. The modules are arranged in a grid pattern so that heat flow is directed into each of the modules from the hot side heat exchanger. The modules are connected electrically so as to combine their electrical output; and a cold side heat exchanger is in thermal contact with the modules acting as a heat sink on the opposite side of the module from the hot side heat exchanger plate so as to produce a thermal gradient across the modules.

Shakun, W.; Bearden, J.H.; Henderson, D.R.

1988-03-29T23:59:59.000Z

131

NSF/DOE Thermoelectrics Partnership: Thermoelectrics for Automotive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Recovery Development for commercialization of automotive thermoelectric generators from high-ZT TE materials with using low-cost, widely available materials, system...

132

Improvements to solar thermoelectric generators through device design  

E-Print Network (OSTI)

A solar thermoelectric generator (STEG) is a device which converts sunlight into electricity through the thermoelectric effect. A STEG is nominally formed when a thermoelectric generator (TEG), a type of solid state heat ...

Weinstein, Lee A. (Lee Adragon)

2013-01-01T23:59:59.000Z

133

An experimental system for advanced heating, ventilating and air conditioning (HVAC) control  

Science Journals Connector (OSTI)

While having the potential to significantly improve heating, ventilating and air conditioning (HVAC) system performance, advanced (e.g., optimal, robust and various forms of adaptive) controllers have yet to be incorporated into commercial systems. Controllers consisting of distributed proportional-integral (PI) control loops continue to dominate commercial HVAC systems. Investigation into advanced HVAC controllers has largely been limited to proposals and simulations, with few controllers being tested on physical systems. While simulation can be insightful, the only true means for verifying the performance provided by HVAC controllers is by actually using them to control an HVAC system. The construction and modeling of an experimental system for testing advanced HVAC controllers, is the focus of this article. A simple HVAC system, intended for controlling the temperature and flow rate of the discharge air, was built using standard components. While only a portion of an overall HVAC system, it is representative of a typical hot water to air heating system. In this article, a single integrated environment is created that is used for data acquisition, controller design, simulation, and closed loop controller implementation and testing. This environment provides the power and flexibility needed for rapid prototyping of various controllers and control design methodologies.

Michael Anderson; Michael Buehner; Peter Young; Douglas Hittle; Charles Anderson; Jilin Tu; David Hodgson

2007-01-01T23:59:59.000Z

134

Power generation of a thermoelectric generator with phase change materials  

Science Journals Connector (OSTI)

In this paper, a thermoelectric generator that embeds phase change materials for wasted heat energy harvesting is proposed. The proposed thermoelectric generator embeds phase change materials in its device structure. The phase change materials store large amounts of heat energy using the latent heat of fusion. When the heat source contacts the thermoelectric generator, dissipated heat from the heat source is stored in the phase change materials. When the heat source is removed from the thermoelectric generator, the output power of the thermoelectric generator slowly decreases, while the output power of conventional thermoelectric generators decreases rapidly without the heat source. The additional air layer in the proposed thermoelectric generator disturbs the heat dissipation from the phase change materials, so the thermoelectric generator can maintain the power generation for longer without a heat source. The experimental results for the thermoelectric generator fabricated clearly show the latent heat effect of the phase change materials and the embedded air layer.

Sung-Eun Jo; Myoung-Soo Kim; Min-Ki Kim; Yong-Jun Kim

2013-01-01T23:59:59.000Z

135

Bipolar thermoelectric devices  

E-Print Network (OSTI)

The work presented here is a theoretical and experimental study of heat production and transport in bipolar electrical devices, with detailed treatment of thermoelectric effects. Both homojunction and heterojunction devices ...

Pipe, Kevin P. (Kevin Patrick), 1976-

2004-01-01T23:59:59.000Z

136

Numerical Simulation of a Displacement Ventilation System with Multi-heat Sources and Analysis of Influential Factors  

E-Print Network (OSTI)

Displacement ventilation (DV) is a promising ventilation concept due to its high ventilation efficiency. In this paper, the application of the CFD method, the velocity and temperature fields of three-dimensional displacement ventilation systems...

Wu, X.; Gao, J.; Wu, W.

2006-01-01T23:59:59.000Z

137

US Department of Energys Regulatory Negotiations Convening on Commercial Certification for Heating, Ventilating, Air-Conditioning, and Refrigeration Equipment  

Energy.gov (U.S. Department of Energy (DOE))

This document provides Public Information for Convening Interviews for US Department of Energys Regulatory Negotiations Convening on Commercial Certification for Heating, Ventilating, Air-Conditioning, and Refrigeration Equipment

138

Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficient Automotive Waste Heat Recovery Multi-physics modeling of thermoelectric generators for waste heat recovery applications Nanostructured High-Temperature Bulk...

139

Thermoelectric energy conversion The objective of this laboratory is for you to explore the physics and practical aspects of solidsate heat  

E-Print Network (OSTI)

Thermoelectric energy conversion Objective The objective of this laboratory is for you to explore, plotting software Introduction Most largescale conversion of thermaltoelectrical energy uses a gas cycle the physics and practical aspects of solidsate heat pumps, the direct conversion of thermaltoelectrical

Braun, Paul

140

Techno-economic evaluation of a ventilation system assisted with exhaust air heat recovery, electrical heater and solar energy  

Science Journals Connector (OSTI)

Abstract The energy consumed to condition fresh air is considerable, particularly for the buildings such as cinema, theatre or gymnasium saloons. The aim of the present study is to design a ventilation system assisted with exhaust air heat recovery unit, electrical heater and stored solar energy, then to make an economical analysis based on life cycle cost (LCC) to find out its payback period. The system is able to recover thermal energy of exhaust air, store solar energy during the sunlight period and utilize it in the period between 17:00 and 24:00 h. The transient behaviour of the system is simulated by the TRNSYS 16 software for winter period from 1st of November to 31st of March for Izmir city of Turkey. The obtained results show that the suggested ventilation system reduces energy consumption by 86% compared to the conventional ventilation system in which an electrical heater is used. The payback period of the suggested system is found to be 5 years and 8 months which is a promising result in favour of the solar energy usage in building ventilation systems.

Gamze Ozyogurtcu; Moghtada Mobedi; Baris Ozerdem

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermoelectric heating ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Benefits of Thermoelectric Technology for the Automobile  

Energy.gov (U.S. Department of Energy (DOE))

Discusses improved fuel efficiency and other benefits of automotive application of thermoelectric (power generation and heating/cooling) and the need for production quantities of high-efficiency thermoelectric modules

142

Thermal Energy Harvesting with Thermoelectrics for Self-powered Sensors: With Applications to Implantable Medical Devices, Body Sensor Networks and Aging in Place  

E-Print Network (OSTI)

By scavenging waste heat, thermoelectric generators mightfor new thermoelectric generators to harvest waste heat fromthermoelectric energy generators (TEGs) that scavenge waste heat,

Chen, Alic

2011-01-01T23:59:59.000Z

143

Radon Mitigation in Schools Utilising Heating, Ventilating and Air Conditioning Systems  

Science Journals Connector (OSTI)

......and Air Conditioning Engineers (ASHRAE) standard Ventilation for Acceptable Indoor Air Quality...Two case studies are presented where HVAC technology was implemented for controlling...system in a two-storey building. The HVAC system's controls were restored and modified......

G. Fisher; B. Ligman; T. Brennan; R. Shaughnessy; B.H. Turk; B. Snead

1994-12-01T23:59:59.000Z

144

Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Documents & Publications Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Vehicle Technologies Office...

145

Overview of Thermoelectric Power Generation Technologies in Japan  

Energy.gov (U.S. Department of Energy (DOE))

Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy sources, and energy harvesting

146

Superconducting thermoelectric generator  

DOE Patents (OSTI)

Thermoelectricity is produced by applying a temperature differential to dissimilar electrically conducting or semiconducting materials, thereby producing a voltage that is proportional to the temperature difference. Thermoelectric generators use this effect to directly convert heat into electricity; however, presently-known generators have low efficiencies due to the production of high currents which in turn cause large resistive heating losses. Some thermoelectric generators operate at efficiencies between 4% and 7% in the 800{degrees} to 1200{degrees}C range. According to its major aspects and bradly stated, the present invention is an apparatus and method for producing electricity from heat. In particular, the invention is a thermoelectric generator that juxtaposes a superconducting material and a semiconducting material - so that the superconducting and the semiconducting materials touch - to convert heat energy into electrical energy without resistive losses in the temperature range below the critical temperature of the superconducting material. Preferably, an array of superconducting material is encased in one of several possible configurations within a second material having a high thermal conductivity, preferably a semiconductor, to form a thermoelectric generator.

Metzger, J.D.; El-Genk, M.S.

1994-01-01T23:59:59.000Z

147

Thermoelectric generator for motor vehicle  

SciTech Connect

A thermoelectric generator is described for producing electric power for a motor vehicle from the heat of the exhaust gases produced by the engine of the motor vehicle. The exhaust gases pass through a finned heat transfer support structure which has seat positions on its outside surface for the positioning of thermoelectric modules. A good contact cylinder provides a framework from which a spring force can be applied to the thermoelectric modules to hold them in good contact on their seats on the surface of the heat transfer support structure. 8 figs.

Bass, J.C.

1997-04-29T23:59:59.000Z

148

Thermoelectric generator for motor vehicle  

DOE Patents (OSTI)

A thermoelectric generator for producing electric power for a motor vehicle from the heat of the exhaust gasses produced by the engine of the motor vehicle. The exhaust gasses pass through a finned heat transfer support structure which has seat positions on its outside surface for the positioning of thermoelectric modules. A good contact cylinder provides a framework from which a spring force can be applied to the thermoelectric modules to hold them in good contact on their seats on the surface of the heat transfer support structure.

Bass, John C. (6121 La Pintra Dr., La Jolla, CA 92037)

1997-04-29T23:59:59.000Z

149

On the role of interface imperfections in thermoelectric nondestructive materials characterization  

E-Print Network (OSTI)

On the role of interface imperfections in thermoelectric nondestructive materials characterization of thermoelectric nondestructive materials characterization technique. It is shown that contact heating between used in nonde- structive materials characterization. The thermoelectric volt- age is given by VSR Tc Ti

Nagy, Peter B.

150

High Temperature Thermoelectric Materials Characterization for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2009 -- Washington D.C. lmp06wang.pdf More Documents & Publications High-Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success...

151

QUANTUM WELLS THERMOELECTRIC DEVICES FOR DIESEL ENGINES  

SciTech Connect

Thermoelectric materials are utilized for power generation in remote locations, on spacecraft used for interplanetary exploration, and in places where waste heat can be recovered.

Ghamaty, Saeid

2000-08-20T23:59:59.000Z

152

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book (EERE)

3 3 Main Commercial Primary Energy Use of Heating and Cooling Equipment as of 1995 Heating Equipment | Cooling Equipment Packaged Heating Units 25% | Packaged Air Conditioning Units 54% Boilers 21% | Room Air Conditioning 5% Individual Space Heaters 2% | PTAC (2) 3% Furnaces 20% | Centrifugal Chillers 14% Heat Pumps 5% | Reciprocating Chillers 12% District Heat 7% | Rotary Screw Chillers 3% Unit Heater 18% | Absorption Chillers 2% PTHP & WLHP (1) 2% | Heat Pumps 7% 100% | 100% Note(s): Source(s): 1) PTHP = Packaged Terminal Heat Pump, WLHP = Water Loop Heat Pump. 2) PTAC = Packaged Terminal Air Conditioner BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume 1: Chillers, Refrigerant Compressors, and Heating Systems, Apr. 2001, Figure 5-5, p. 5-14 for cooling and Figure 5-10, p. 5-18 for heating

153

An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Discusses isostatic pressing for scalable TE elements, properties characterization of nanostructured ZnO materials, and heat exchanger designs to improve device efficiency

154

Cylinder wall waste heat recovery from liquid-cooled internal combustion engines utilizing thermoelectric generators.  

E-Print Network (OSTI)

?? This report is a dissertation proposal that focuses on the energy balance within an internal combustion engine with a unique coolant-based waste heat recovery… (more)

Armstead, John Randall

2012-01-01T23:59:59.000Z

155

Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM  

Energy.gov (U.S. Department of Energy (DOE))

Overview of design, fabrication, integration, and test of working prototype TEG for engine waste heat recovery on Suburban test vehicle, and continuing investigation of skutterudite materials systems

156

Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air (Fact Sheet) (Revised), Federal Energy Management Program (FEMP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Highlights Highlights System Size 300 ft 2 transpired solar collector Energy Production About 125 Btu/hr/ft 2 (400 W/m 2 ) of heat delivery under ideal conditions (full sun) Installation Date 1990 Motivation Provide solar-heated ventilation air to offset some of the heating with conventional electric resistance heaters Annual Savings 14,310 kWh (49 million Btu/yr) or about 26% of the energy required to heat the facility's ventilation air System Details Components Black, 300 ft 2 corrugated aluminum transpired solar collector with a porosity of 2%; bypass damper; two-speed 3000 CFM vane axial supply fan; electric duct heater; thermostat controller Storage None Loads 188 million Btu/year (55,038 kWh/year) winter average to heat 1,300 ft 2 Waste Handling Facility

157

Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air (Fact Sheet) (Revised), Federal Energy Management Program (FEMP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Highlights Highlights System Size 300 ft 2 transpired solar collector Energy Production About 125 Btu/hr/ft 2 (400 W/m 2 ) of heat delivery under ideal conditions (full sun) Installation Date 1990 Motivation Provide solar-heated ventilation air to offset some of the heating with conventional electric resistance heaters Annual Savings 14,310 kWh (49 million Btu/yr) or about 26% of the energy required to heat the facility's ventilation air System Details Components Black, 300 ft 2 corrugated aluminum transpired solar collector with a porosity of 2%; bypass damper; two-speed 3000 CFM vane axial supply fan; electric duct heater; thermostat controller Storage None Loads 188 million Btu/year (55,038 kWh/year) winter average to heat 1,300 ft 2 Waste Handling Facility

158

Reducing Ventilation Energy Demand by Using Air-to-Earth Heat Exchangers  

Science Journals Connector (OSTI)

Air-to-Earth heat exchangers (earth tubes) utilize the fact that the temperature in the ground is relatively constant during the year. By letting the air travel through an air-to-earth heat exchanger before re...

Hans Havtun; Caroline Törnqvist

2013-01-01T23:59:59.000Z

159

Overview of Fords Thermoelectric Programs: Waste Heat Recovery and Climate Control  

Energy.gov (U.S. Department of Energy (DOE))

Overview of progress in TE waste heat recovery from sedan gasoline-engine exhaust, TE HVAC system in hybrid sedan, and establishing targets for cost, power density, packaging, durability, and systems integration

160

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book (EERE)

2 2 Main Commercial Heating and Cooling Equipment as of 1995, 1999, and 2003 (Percent of Total Floorspace) (1) Heating Equipment 1995 1999 2003 (2) Cooling Equipment 1995 1999 2003 (2) Packaged Heating Units 29% 38% 28% Packaged Air Conditioning Units 45% 54% 46% Boilers 29% 29% 32% Individual Air Conditioners 21% 21% 19% Individual Space Heaters 29% 26% 19% Central Chillers 19% 19% 18% Furnaces 25% 21% 30% Residential Central Air Conditioners 16% 12% 17% Heat Pumps 10% 13% 14% Heat Pumps 12% 14% 14% District Heat 10% 8% 8% District Chilled Water 4% 4% 4% Other 11% 6% 5% Swamp Coolers 4% 3% 2% Other 2% 2% 2% Note(s): Source(s): 1) Heating and cooling equipment percentages of floorspace total more than 100% since equipment shares floorspace. 2) Malls are no longer included in most CBECs tables; therefore, some data is not directly comparable to past CBECs.

Note: This page contains sample records for the topic "thermoelectric heating ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Development of a 500 Watt High Temperature Thermoelectric Generator...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Documents & Publications Development of a 100-Watt High Temperature Thermoelectric Generator Automotive Waste Heat Conversion to Power Program Automotive Waste Heat...

162

Review of Interests and Activities in Thermoelectric Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

burners for battery-replacement, waste-heat recovery on vehicles, heat-powered mobile units, and for thermoelectric cooling of high-performance infrared systems for...

163

Integrated Design and Manufacturing of Thermoelectric Generator Using Thermal Spray  

Energy.gov (U.S. Department of Energy (DOE))

Presents progress in cost-effective thermoelectric generator fabrication by thermal spraying of thermoelectric materials and other functional layers directly onto automotive exhaust pipes with enhanced performance, durability, and heat transfer

164

A Novel Optimization Method for the Electric Topology of Thermoelectric Modules Used in an Automobile Exhaust Thermoelectric Generator  

Science Journals Connector (OSTI)

Based on Bi2Te3 thermoelectric modules, a kind of automobile exhaust thermoelectric generator (AETEG) with a ... heat exchanger and cooling system. Then, their electric topology (series or parallel hybrid) was .....

Rui Quan; Xinfeng Tang; Shuhai Quan; Liang Huang

2013-07-01T23:59:59.000Z

165

Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet), Building America Case Study: Efficient Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Multifamily Individual Heating Multifamily Individual Heating and Ventilation Systems Lawrence, Massachusetts PROJECT INFORMATION Construction: Retrofit Type: Multifamily, affordable Builder: Merrimack Valley Habitat for Humanity (MVHfH) www.merrimackvalleyhabitat.org Size: 840 to 1,170 ft 2 units Price Range: $125,000-$130,000 Date completed: Slated for 2014 Climate Zone: Cold (5A) PERFORMANCE DATA HERS Index Range: 48 to 63 Projected annual energy cost savings: $1,797 Incremental cost of energy efficiency measures: $3,747 Incremental annual mortgage: $346 Annual cash flow: $1,451 Billing data: Not available The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. Merrimack Valley

166

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book (EERE)

3 3 Residential Boiler Efficiencies (1) Gas-Fired Boilers Oil-Fired Boilers Average shipped in 1985 (2): 74% AFUE Average shipped in 1985 (2): 79% AFUE Best Available in 1981: 81% AFUE Best Available in 1981: 86% AFUE Best Available in 2007: 96% AFUE Best Available in 2007: 89% AFUE Note(s): Source(s): 1) Federal appliance standards effective Jan. 1, 1992, require a minimum of 80% AFUE (except gas-fired steam boiler, which must have a 75% AFUE or higher). 2) Includes furnaces. GAMA, Consumer's Directory of Certified Efficiency Ratings for Residential Heating and Water Heating Equipment, Aug. 2005, p. 88 and 106 for best- available AFUE; and GAMA for 1985 average AFUEs; GAMA Tax Credit Eligible Equipment: Gas- and Oil-Fired Boilers 95% AFUE or Greater, May 2007; and GAMA Consumer's Directory of Certified Efficiency Ratings for Heating and Water Heating Equipment, May 2007

167

Optimization of the Fin Heat Pipe for Ventilating and Air Conditioning with a Genetic Algorithm  

E-Print Network (OSTI)

conservation, and it is urgent. At the same time, the energy consumption about air-conditioning of buildings continues to increase and the new wind energy accounts for 4%~12% of the buildings total energy consumption [1]. A heat recovery system for air...

Qian, J.; Sun, D.; Li, G.

2006-01-01T23:59:59.000Z

168

DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION  

SciTech Connect

This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included: ? The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).? Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.? Currently-available optical people counting systems work well much of the time but have large counting errors in some situations. ? In meeting rooms, measurements of carbon dioxide at return-air grilles appear to be a better choice than wall-mounted sensors.? In California, demand controlled ventilation in general office spaces is projected to save significant energy and be cost effective only if typical VRs without demand controlled ventilation are very high relative to VRs in codes. Based on the research, several recommendations were developed for demand controlled ventilation specifications in the California Title 24 Building Energy Efficiency Standards.The research on classroom ventilation collected data over two years on California elementary school classrooms to investigate associations between VRs and student illness absence (IA). Major findings included: ? Median classroom VRs in all studied climate zones were below the California guideline, and 40percent lower in portable than permanent buildings.? Overall, one additional L/s per person of VR was associated with 1.6percent less IA. ? Increasing average VRs in California K-12 classrooms from the current average to the required level is estimated to decrease IA by 3.4percent, increasing State attendance-based funding to school districts by $33M, with $6.2 M in increased energy costs. Further VR increases would provide additional benefits.? Confirming these findings in intervention studies is recommended. ? Energy costs of heating/cooling unoccupied classrooms statewide are modest, but a large portion occurs in relatively few classrooms.

Fisk, William J.; Mendell, Mark J.; Davies, Molly; Eliseeva, Ekaterina; Faulkner, David; Hong, Tienzen; Sullivan, Douglas P.

2014-01-06T23:59:59.000Z

169

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book (EERE)

U.S. Heating and Air-Conditioning System Manufacturer Shipments, by Type (Including Exports) 2005 Value of 2000 2005 2007 2009 2010 Shipments Equipment Type (1,000s) (1,000s) (1,000s) (1,000s) (1,000s) ($million) (7) Air-Conditioners (1) 5,346 6,472 4,508 3,516 3419 5,837 Heat Pumps 1,539 2,336 1,899 1,642 1,748 2,226 Air-to-Air Heat Pumps 1,339 2,114 1,899 1,642 1748 1,869 Water-Source Heat Pumps (2) 200 222 N.A. N.A. N.A. 357 Chillers 38 37 37 25 29 1,093 Reciprocating 25 24 30 20 24 462 Centrifugal/Screw 8 6 7 5 5 566 Absorption (3) 5 7 N.A. N.A. N.A. 64 Furnaces 3,681 3,624 2,866 2,231 2,509 2,144 Gas-Fired (4) 3,104 3,512 2,782 2,175 2453 2,081 Electric 455 N.A. N.A. N.A. N.A. N.A. Oil-Fired (5) 121 111 84 56 56 63 Boilers (6) 368 370 N.A. N.A. N.A. N.A. Note(s): Source(s): 1) Includes exports and gas air conditioners (gas units <10,000 units/yr) and rooftop equipment. Excludes heat pumps, packaged terminal air

170

Numerical study of porous media thermoelectric converter  

SciTech Connect

Thermoelectric conversion is direct conversion technology that has characteristics of being maintenance free. However, the efficiency of the conventional bulk semiconductor thermoelectric device is about 20% for ideal theoretical calculation, and less than 5% for an actual application. The efficiency is very low because the heat conduction in the device and the Joule loss are too large compared with the Peltier heat which is changed into the electric power. The thermoelectric device made by porous media is heated by the radiation and maintains a large temperature difference by the gas which passes in the porous device. Therefore, the influence of the heat conduction in the thermoelectric device is small and the improvement of the conversion efficiency can be attempted. In this paper, the authors report the calculated results and the performance of thermoelectric converter made with porous media.

Kosaka, Kenichirou; Yamada, Akira

1996-12-31T23:59:59.000Z

171

Corrosion of heat-recovery exchangers in swimming-pool-hall ventilation systems. Research report  

SciTech Connect

The report concludes an investigation of the corrosion resistance of heat-recovery exchangers operating in swimming-pool-hall atmospheres. An interim report was published in August 1981. The trends detected then have been confirmed and it is concluded that exchangers using copper for both tubes and fins have adequate corrosion resistance and can be expected to remain efficient and structurally sound for more than ten years. Aluminium is shown to be unsuitable as a fin material because of its susceptibility to localized dissimilar metal corrosion when in contact with the copper tubes. Some of the steel components in the heat recovery chamber are apt to corrode badly and need to be protected, or else made out of non-corrodible materials. It is also important to filter the incoming air to prevent the exchangers becoming contaminated by airborne detritus.

Bird, T.L.

1985-09-01T23:59:59.000Z

172

Capability of air filters to retain airborne bacteria and molds in heating, ventilating and air-conditioning (HVAC) systems  

Science Journals Connector (OSTI)

The capability of air filters (filterclass: F6, F7) to retain airborne outdoor microorganisms was examined in field experiments in two heating, ventilating and air conditioning (HVAC) systems. At the beginning of the 15-month investigation period, the first filter stages of both HVAC systems were equipped with new unused air filters. The number of airborne bacteria and molds before and behind the filters were determined simultaneously in 14 days-intervals using 6-stage Andersen cascade impactors. Under relatively dry ( 12 °C) outdoor air conditions air filters led to a marked reduction of airborne microorganism concentrations (bacteria by approximately 70 % and molds by > 80 %). However, during long periods of high relative humidity (> 80 % R. H.) a proliferation of bacteria on air filters with subsequent release into the filtered air occured. These microorganisms were mainly smaller than 1.1 ?m therefore being part of the respirable fraction. The results showed furthermore that one possibility to avoid microbial proliferation is to limit the relative humidity in the area of the air filters to 80 % R. H. (mean of 3 days), e. g. by using preheaters in front of air filters in HVAC-systems.

Martin Möritz; Hans Peters; Bettina Nipko; Hennin Rüden

2001-01-01T23:59:59.000Z

173

Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating Ventilation and Air Conditioning (HVAC) system for the HIE-ISOLDE infrastructure  

E-Print Network (OSTI)

Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating Ventilation and Air Conditioning (HVAC) system for the HIE-ISOLDE infrastructure

2012-01-01T23:59:59.000Z

174

Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating, Ventilation and Air-Conditioning (HVAC) system for the computer room of the CERN Control Centre  

E-Print Network (OSTI)

Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating, Ventilation and Air-Conditioning (HVAC) system for the computer room of the CERN Control Centre

2012-01-01T23:59:59.000Z

175

Radiant heating and cooling, displacement ventilation with heat recovery and storm water cooling: An environmentally responsible HVAC system  

SciTech Connect

This paper describes the design, operation, and performance of an HVAC system installed as part of a project to demonstrate energy efficiency and environmental responsibility in commercial buildings. The systems installed in the 2180 m{sup 2} office building provide superior air quality and thermal comfort while requiring only half the electrical energy of conventional systems primarily because of the hydronic heating and cooling system. Gas use for the building is higher than expected because of longer operating hours and poor performance of the boiler/absorption chiller.

Carpenter, S.C.; Kokko, J.P. [Enermodal Engineering Ltd., Kitchener, Ontario (Canada)

1998-12-31T23:59:59.000Z

176

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book (EERE)

5 5 Commercial Equipment Efficiencies Equipment Type Chiller Screw COP(full-load / IPLV) 2.80 / 3.05 2.80 / 3.05 3.02 / 4.45 Scroll COP 2.80 / 3.06 2.96 / 4.40 N.A. Reciprocating COP(full-load / IPLV) 2.80 / 3.05 2.80 / 3.05 3.52 / 4.40 Centrifugal COP(full-load / IPLV) 5.0 / 5.2 6.1 / 6.4 7.3 / 9.0 Gas-Fired Absorption COP 1.0 1.1 N.A. Gas-Fired Engine Driven COP 1.5 1.8 N.A. Rooftop A/C EER 10.1 11.2 13.9 Rooftop Heat Pump EER (cooling) 9.8 11.0 12.0 COP (heating) 3.2 3.3 3.4 Boilers Gas-Fired Combustion Efficiency 77 80 98 Oil-Fired Thermal Efficiency 80 84 98 Electric Thermal Efficiency 98 98 98 Furnace AFUE 77 80 82 Water Heater Gas-Fired Thermal Efficiency 78 80 96 Oil-Fired Thermal Efficiency 79 80 85 Electric Resistance Thermal Efficiency 98 98 98 Gas-Fired Instantaneous Thermal Efficiency 77 84 89 Source(s): Parameter Efficiency

177

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book (EERE)

1 1 Main Residential Heating Equipment as of 1987, 1993, 1997, 2001, and 2005 (Percent of Total Households) Equipment Type 1987 1993 1997 2001 2005 Natural Gas 55% 53% 53% 55% 52% Central Warm-Air Furnace 35% 36% 38% 42% 40% Steam or Hot-Water System 10% 9% 7% 7% 7% Floor/Wall/Pipeless Furnace 6% 4% 4% 3% 2% Room Heater/Other 4% 3% 4% 3% 3% Electricity 20% 26% 29% 29% 30% Central Warm-Air Furnace 8% 10% 11% 12% 14% Heat Pump 5% 8% 10% 10% 8% Built-In Electric Units 6% 7% 7% 6% 5% Other 1% 1% 2% 2% 1% Fuel Oil 12% 11% 9% 7% 7% Steam or Hot-Water System 7% 6% 5% 4% 4% Central Warm-Air Furnace 4% 5% 4% 3% 3% Other 1% 0% 0% 0% 0% Other 13% 11% 9% 8% 10% Total 100% 100% 100% 100% 100% Note(s): Source(s): Other equipment includes wood, LPG, kerosene, other fuels, and none. EIA, A Look at Residential Consumption in 2005, June 2008, Table HC2-4; EIA, A Look at Residential Energy Consumption in 2001, Apr. 2004, 'Table HC3-

178

ENERGY PAYBACK OPTIMIZATION OF THERMOELECTRIC POWER GENERATOR SYSTEMS  

E-Print Network (OSTI)

and the thermoelectric module should be performed. Active cooling and the design of the heat sink are customized to findENERGY PAYBACK OPTIMIZATION OF THERMOELECTRIC POWER GENERATOR SYSTEMS Kazuaki Yazawa Dept model for optimizing thermoelectric power generation system is developed and utilized for parametric

179

Review of Interests and Activities in Thermoelectric Materials and Devices at the Army Research Laboratory  

Energy.gov (U.S. Department of Energy (DOE))

Army interests in thermoelectrics include integrated TE-hand-held burners for battery-replacement, waste-heat recovery on vehicles, heat-powered mobile units, and for thermoelectric cooling of high-performance infrared systems for surveillance

180

Silicide Nanopowders as Low-Cost and High-Performance Thermoelectric Materials  

Science Journals Connector (OSTI)

Thermoelectric devices directly convert heat into electricity and are very attractive for waste heat recovery and solar energy utilization. If thermoelectric devices can be made sufficiently efficient and inex...

Renkun Chen

2013-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermoelectric heating ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Modular Isotopic Thermoelectric Generator  

SciTech Connect

Advanced RTG concepts utilizing improved thermoelectric materials and converter concepts are under study at Fairchild for DOE. The design described here is based on DOE's newly developed radioisotope heat source, and on an improved silicon-germanium material and a multicouple converter module under development at Syncal. Fairchild's assignment was to combine the above into an attractive power system for use in space, and to assess the specific power and other attributes of that design. The resultant design is highly modular, consisting of standard RTG slices, each producing ~24 watts at the desired output voltage of 28 volt. Thus, the design could be adapted to various space missions over a wide range of power levels, with little or no redesign. Each RTG slice consists of a 250-watt heat source module, eight multicouple thermoelectric modules, and standard sections of insulator, housing, radiator fins, and electrical circuit. The design makes it possible to check each thermoelectric module for electrical performance, thermal contact, leaktightness, and performance stability, after the generator is fully assembled; and to replace any deficient modules without disassembling the generator or perturbing the others. The RTG end sections provide the spring-loaded supports required to hold the free-standing heat source stack together during launch vibration. Details analysis indicates that the design offers a substantial improvement in specific power over the present generator of RTGs, using the same heat source modules. There are three copies in the file.

Schock, Alfred

1981-04-03T23:59:59.000Z

182

Ventilative cooling  

E-Print Network (OSTI)

This thesis evaluates the performance of daytime and nighttime passive ventilation cooling strategies for Beijing, Shanghai and Tokyo. A new simulation method for cross-ventilated wind driven airflow is presented . This ...

Graça, Guilherme Carrilho da, 1972-

1999-01-01T23:59:59.000Z

183

Superconducting thermoelectric generator  

DOE Patents (OSTI)

An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

Metzger, J.D.; El-Genk, M.S.

1996-01-01T23:59:59.000Z

184

Superconducting thermoelectric generator  

DOE Patents (OSTI)

An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

Metzger, John D. (Eaton's Neck, NY); El-Genk, Mohamed S. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

185

Superconducting thermoelectric generator  

DOE Patents (OSTI)

An apparatus and method for producing electricity from heat is disclosed. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device. 4 figs.

Metzger, J.D.; El-Genk, M.S.

1998-05-05T23:59:59.000Z

186

Energy Recovery Ventilator Membrane Efficiency Testing  

E-Print Network (OSTI)

A test setup was designed and built to test energy recovery ventilator membranes. The purpose of this test setup was to measure the heat transfer and water vapor transfer rates through energy recover ventilator membranes and find their effectiveness...

Rees, Jennifer Anne

2013-05-07T23:59:59.000Z

187

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book (EERE)

8 8 Major Residential HVAC Equipment Lifetimes, Ages, and Replacement Picture Equipment Type Central Air Conditioners 8 - 14 11 8 5,354 Heat Pumps 9 - 15 12 8 1,260 Furnaces Electric 10 - 20 15 11 N.A. Gas-Fired 12 - 17 15 11 2,601 Oil-Fired 15 - 19 17 N.A. 149 Gas-Fired Boilers (1) 17 - 24 20 17 204 Note(s): Source(s): Lifetimes based on use by the first owner of the product, and do not necessarily indicate that the product stops working after this period. A replaced unit may be discarded or used elsewhere. 1) 2005 average stock age is for gas- and oil-fired steam and hot water boilers. Appliance Magazine, U.S. Appliance Industry: Market Share, Life Expectancy & Replacement Market, and Saturation Levels, January 2010, p. 10 for service and average lifetimes, and units to be replaced; ASHRAE, 1999 ASHRAE Handbook: HVAC Applications, Table 3, p. 35.3 for boilers service lifetimes; and

188

Definition: Thermoelectric power generation | Open Energy Information  

Open Energy Info (EERE)

Thermoelectric power generation Thermoelectric power generation Jump to: navigation, search Dictionary.png Thermoelectric power generation The conversion of thermal energy into electrical energy. Thermoelectric generation relies on a fuel source (e.g. fossil, nuclear, biomass, geothermal, or solar) to heat a fluid to drive a turbine[1] View on Wikipedia Wikipedia Definition The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice-versa. A thermoelectric device creates voltage when there is a different temperature on each side. Conversely, when a voltage is applied to it, it creates a temperature difference. At the atomic scale, an applied temperature gradient causes charge carriers in the material to diffuse from the hot side to the cold

189

Analysis and feasibility study of residential integrated heat and energy recovery ventilator with built-in economizer using an excel spreadsheet program  

Science Journals Connector (OSTI)

Abstract Currently, heat recovery ventilator (HRV) and energy recovery ventilator (ERV) are commonly studied. Nevertheless, there is limited information regarding the dual-core approach energy recovery. This paper investigates the feasibility of an integrated HRV and ERV system, namely HERV, with a built-in economizer used in the residential sector to reduce dependency on furnace and air conditioning systems. In order to achieve this goal, an excel-based analysis tool was developed, providing a quick estimate of system performance and comparison with the HRV and ERV that are currently being used in research houses. The potential of integrated heat and energy recovery ventilator was evaluated based on its calculated operating cost ratio (OCR) and its payback period. Results collected for Vancouver and Toronto, corresponding to temperate and continental climate, indicated that the \\{OCRs\\} of the HERV were four times smaller than the ERV's, meaning that the proposed system was cost-efficient. It was also evidenced that the high demand on the economizer resulted in higher energy saving and shorter payback period of the system. In conclusion, the integrated HERV system with a built-in economizer could be a feasible option for both temperate and continental climates.

Junlong Zhang; Alan S. Fung; Sumeet Jhingan

2014-01-01T23:59:59.000Z

190

Thermoelectric power generator with intermediate loop  

DOE Patents (OSTI)

A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

Bell, Lon E; Crane, Douglas Todd

2013-05-21T23:59:59.000Z

191

Thermoelectric power generator with intermediate loop  

DOE Patents (OSTI)

A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

Bel,; Lon E. (Altadena, CA); Crane, Douglas Todd (Pasadena, CA)

2009-10-27T23:59:59.000Z

192

Ventilation Systems for Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Systems for Cooling Ventilation Systems for Cooling Ventilation Systems for Cooling May 30, 2012 - 6:19pm Addthis Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Ventilation is the least expensive and most energy-efficient way to cool buildings. Ventilation works best when combined with methods to avoid heat buildup in your home. In some cases, natural ventilation will suffice for cooling, although it usually needs to be supplemented with spot ventilation, ceiling fans, and window fans. For large homes, homeowners might want to investigate whole house fans. Interior ventilation is ineffective in hot, humid climates where

193

Ventilation Systems for Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Systems for Cooling Ventilation Systems for Cooling Ventilation Systems for Cooling May 30, 2012 - 6:19pm Addthis Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Ventilation is the least expensive and most energy-efficient way to cool buildings. Ventilation works best when combined with methods to avoid heat buildup in your home. In some cases, natural ventilation will suffice for cooling, although it usually needs to be supplemented with spot ventilation, ceiling fans, and window fans. For large homes, homeowners might want to investigate whole house fans. Interior ventilation is ineffective in hot, humid climates where

194

Ventilation System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation System Basics Ventilation System Basics Ventilation System Basics August 16, 2013 - 1:33pm Addthis Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings. Ventilation supplies air for occupants to breathe and removes moisture, odors, and indoor pollutants like carbon dioxide. Too little ventilation may result in poor indoor air quality, while too much may cause unnecessarily higher heating and cooling loads. Natural Ventilation Natural ventilation occurs when outdoor air is drawn inside through open windows or doors. Natural ventilation is created by the differences in the distribution of air pressures around a building. Air moves from areas of

195

Ventilation System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation System Basics Ventilation System Basics Ventilation System Basics August 16, 2013 - 1:33pm Addthis Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings. Ventilation supplies air for occupants to breathe and removes moisture, odors, and indoor pollutants like carbon dioxide. Too little ventilation may result in poor indoor air quality, while too much may cause unnecessarily higher heating and cooling loads. Natural Ventilation Natural ventilation occurs when outdoor air is drawn inside through open windows or doors. Natural ventilation is created by the differences in the distribution of air pressures around a building. Air moves from areas of

196

System level modeling of thermoelectric generators for automotive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and for a wide range of operating conditions. chen.pdf More Documents & Publications Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Combustion Exhaust Gas...

197

Thermoelectric Generator Development at Renault Trucks-Volvo Group  

Energy.gov (U.S. Department of Energy (DOE))

Reviews project to study the potential of thermoelectricity for diesel engines of trucks and passenger cars, where relatively low exhaust temperature is challenging for waste heat recovery systems

198

Proactive Strategies for Designing Thermoelectric Materials for Power Generation  

Energy.gov (U.S. Department of Energy (DOE))

New p-type and n-type multiple-rattler skutterudite thermoelectric materials design, synthesis, fabrication, and characterization for power generation using vehicle exhaust waste heat.

199

Thermoelectric Opportunities in Light-Duty Vehicles | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Light-Duty Vehicles Overview of thermoelectric (TE) vehicle exhaust heat recovery, TE HVAC systems, and OEM role in establishing guidelines for cost, power density, systems...

200

Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Project Overview 2 * Start: October 2011 * End: September 2015 * Percent complete -...

Note: This page contains sample records for the topic "thermoelectric heating ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

SunShot Initiative: Concentrated Solar Thermoelectric Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrated Solar Thermoelectric Concentrated Solar Thermoelectric Power to someone by E-mail Share SunShot Initiative: Concentrated Solar Thermoelectric Power on Facebook Tweet about SunShot Initiative: Concentrated Solar Thermoelectric Power on Twitter Bookmark SunShot Initiative: Concentrated Solar Thermoelectric Power on Google Bookmark SunShot Initiative: Concentrated Solar Thermoelectric Power on Delicious Rank SunShot Initiative: Concentrated Solar Thermoelectric Power on Digg Find More places to share SunShot Initiative: Concentrated Solar Thermoelectric Power on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment

202

Recent developments of thermoelectric power generation  

Science Journals Connector (OSTI)

One form of energy generation that is expected to be on the rise in the next several decades is thermoelectric power generation (TEPG) which converts heat directly to electricity. Compared with other methods, ...

Luan Weiling; Tu Shantung

2004-06-01T23:59:59.000Z

203

High temperature thermoelectrics  

DOE Patents (OSTI)

In accordance with one embodiment of the present disclosure, a thermoelectric device includes a plurality of thermoelectric elements that each include a diffusion barrier. The diffusion barrier includes a refractory metal. The thermoelectric device also includes a plurality of conductors coupled to the plurality of thermoelectric elements. The plurality of conductors include aluminum. In addition, the thermoelectric device includes at least one plate coupled to the plurality of thermoelectric elements using a braze. The braze includes aluminum.

Moczygemba, Joshua E.; Biershcenk, James L.; Sharp, Jeffrey W.

2014-09-23T23:59:59.000Z

204

US Department of Energys Regulatory Negotiations Convening on Commercial Certification for Heating, Ventilating, Air-Conditioning, and Refrigeration Equipment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

US Department of Energy's Regulatory Negotiations Convening on US Department of Energy's Regulatory Negotiations Convening on Commercial Certification for Heating, Ventilating, Air-Conditioning, and Refrigeration Equipment Public Information for Convening Interviews I. What are the substantive issues DOE seeks to address? Strategies for grouping various basic models for purposes of certification; Identification of non-efficiency attributes, which do not impact the measured consumption of the equipment as tested by DOE's test procedure; The information that is certified to the Department; The timing of when the certification should be made relative to distribution in commerce; and Alterations to a basic model that would impact the certification.

205

Bulk dimensional nanocomposites for thermoelectric applications  

DOE Patents (OSTI)

Thermoelectric elements may be used for heat sensors, heat pumps, and thermoelectric generators. A quantum-dot or nano-scale grain size polycrystalline material the effects of size-quantization are present inside the nanocrystals. A thermoelectric element composed of densified Groups IV-VI material, such as calcogenide-based materials are doped with metal or chalcogenide to form interference barriers form along grains. The dopant used is either silver or sodium. These chalcogenide materials form nanoparticles of highly crystal grains, and may specifically be between 1- and 100 nm. The compound is densified by spark plasma sintering.

Nolas, George S

2014-06-24T23:59:59.000Z

206

Composite Thermoelectric Devices  

Energy.gov (U.S. Department of Energy (DOE))

Composite thermoelectric devices incorporating common conductors laminated between P- and N-type thermoelectric plates demonstrate internal ohmic loss reduction and enhanced performance

207

PSPICE-Compatible Equivalent Circuit of Thermoelectric Coolers Simon Lineykin and Sam Ben-Yaakov*  

E-Print Network (OSTI)

. The thermoelectric module (TEM) can be used for cooling, heating, and energy generation [1] - [3]. The objective OF OPERATION Five energy-conversion processes take place in a thermoelectric module: conductive heat transfer of thermodynamics, one can express the energy equilibrium at both sides of the thermoelectric module

208

Influence of temperature on characters of thermoelectric generators based on test bed  

Science Journals Connector (OSTI)

In order to achieve the energy recovery of the coolant heat for internal combustion engine (ICE) using the thermoelectric generation (TEG) technology, one test bed for studying the influence of temperature on the characters of thermoelectric generators ...

Zongzheng Ma, Xinli Wang, Anjie Yang

2014-01-01T23:59:59.000Z

209

Evaluation of stack criteria pollutant gas absorption in the new generation thermoelectric water condenser fitted with laminar impinger type heat exchangers  

SciTech Connect

Title IV of the Clean Air Act Amendments of 1990 authorized the Environmental Protection Agency to establish an Acid Rain Program to reduce the adverse effects of acidic deposition. The Act specifically stipulated that CEMS (continuous emissions monitoring systems) be used to measure the stack emissions under this program. Along with these rules, comes the task of the Stack Tester (Reference Method) to routinely perform RATA (Relative Accuracy Test Audit) tests on the installed CEMS. This paper presents a laboratory and field test sequence to evaluate the signal attenuation through the gas sample conditioning, water condensation removal process, using laminar flow impinger heat exchangers. This method is compared to the EPA CFR 40, Part 60, Appendix A, Method 6, glass impinger train, commonly used by RATA stack testers. CFR 40, Part 75 revisions as of the CAAA 1990, requires more stringent certification and CEMS performance standards. These standards are summarized and related to gas absorption in both the thermoelectric cooler heat exchanger and the Method 6 glass impinger train system. As an incentive to reduce the frequency of RATA tests required per year, emitters are encouraged to achieve relative accuracies of 7.5% or less compared to the reference method. This incentive requires better reference method test apparatus definition. This paper will explore these alternatives and provide test data for comparison to the currently available apparatus. Also discussed is the theory of Electronic Gas Sample Coolers and their practical application to the removal of water from stack gas.

Baldwin, T. [Baldwin Environmental, Inc., Reno, NV (United States)

1995-12-31T23:59:59.000Z

210

HT-PEM Fuel Cell System with Integrated Thermoelectric Exhaust  

E-Print Network (OSTI)

HT-PEM Fuel Cell System with Integrated Thermoelectric Exhaust Heat Recovery Xin Gao Dissertation, Denmark #12;HT-PEM Fuel Cell System with Integrated Thermoelectric Exhaust Heat Recovery Xin Gao © 2014 Technology Pontoppidanstræde 101 9220 Aalborg Denmark #12;Title: HT-PEM Fuel Cell System with Integrated

Berning, Torsten

211

Thermoelectric generator apparatus and operation method  

SciTech Connect

A method of operating a thermoelectric generator includes: cyclically producing increasing then decreasing temperature differences in the thermoelectric material of the generator; and generating a cyclically increasing then decreasing electrical generator output signal, in response to such temperature differences, to transmit electrical power generated by the generator from the generator. Part of the thermoelectric material reaches temperatures substantially above the melting temperature of the material. The thermoelectric material of the generator forms a part of a closed electrical loop about a transformer core so that the inductor voltage for the loop serves as the output signal of the generator. A thermoelectric generator, which can be driven by the described method of operation, incorporates fins into a thermopile to conduct heat toward or away from the alternating spaces between adjacent layers of different types of thermoelectric material. The fins extend from between adjacent layers, so that they can also conduct electrical current between such layers, perpendicularly to the direction of stacking of the layers. The exhaust from an internal combustion engine can be employed to drive the thermoelectric generator, and, also, to act as a driver for a thermoelectric generator in accordance with the method of operation initially described.

Lowther, F.E.

1984-07-31T23:59:59.000Z

212

Review of Interests and Activities in Thermoelectric Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Laboratory Army interests in thermoelectrics include integrated TE-hand-held burners for battery-replacement, waste-heat recovery on vehicles, heat-powered mobile units, and for...

213

Heating, Ventilating, and Air-Conditioning: Recent Advances in Diagnostics and Controls to Improve Air-Handling System Performance  

SciTech Connect

The performance of air-handling systems in buildings needs to be improved. Many of the deficiencies result from myths and lore and a lack of understanding about the non-linear physical principles embedded in the associated technologies. By incorporating these principles, a few important efforts related to diagnostics and controls have already begun to solve some of the problems. This paper illustrates three novel solutions: one rapidly assesses duct leakage, the second configures ad hoc duct-static-pressure reset strategies, and the third identifies useful intermittent ventilation strategies. By highlighting these efforts, this paper seeks to stimulate new research and technology developments that could further improve air-handling systems.

Wray, Craig; Wray, Craig P.; Sherman, Max H.; Walker, I.S.; Dickerhoff, D.J.; Federspiel, C.C.

2008-02-01T23:59:59.000Z

214

Challenges and Opportunities in Thermoelectric Materials Research...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nanocomposites, plus Overview of Research on Thermoelectric Materials and Devices in China NSFDOE Thermoelectric Partnership: Inorganic-Organic Hybrid Thermoelectrics...

215

Novel Nanostructured Interface Solution for Automotive Thermoelectric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Thermoelectrics Partnership: Automotive Thermoelectric Modules with...

216

Applied Mathematical Sciences, Vol. 4, 2010, no. 11, 505 -514 Efficiency of Inhomogeneous Thermoelectric  

E-Print Network (OSTI)

- rounding the ship. Future work in thermoelectrics includes converting waste heat from power plants, trucks Thermoelectric Generators Hong Zhou Department of Applied Mathematics Naval Postgraduate School, Monterey, CA thermoelectric generators. The effects of different physical parameters on the efficiency of a generator

Zhou, Hong

217

Thermoelectric Effect across the Metal-Insulator Domain Walls in VO2  

E-Print Network (OSTI)

-performance thermoelectric materials are currently one of the focuses in materials research for energy conversion technologies.1-4 A good thermoelectric material should have a relatively high thermopower (Seebeck coefficient perpendicular to the current and heat flow direction. This offers a material platform where the thermoelectric

Wu, Junqiao

218

PHYSICAL REVIEW B 88, 085426 (2013) Nonlinear thermoelectric transport: A class of nanodevices for high efficiency  

E-Print Network (OSTI)

I. INTRODUCTION Thermoelectric materials1 can convert unused waste heat to electricity (Seebeck effect) or use electricity for refrigeration (Peltier effect). A good thermoelectric material needs charge. As a result it has not yet been possible to find bulk thermoelectric materials efficient enough

Muttalib, Khandker

219

Nontoxic and Abundant Copper Zinc Tin Sulfide Nanocrystals for Potential High-Temperature Thermoelectric Energy Harvesting  

E-Print Network (OSTI)

materials is of great interest due to its simplicity and reliability. However, many thermoelectric materials thermoelectric (TE) materials for waste heat recovery and solid-state cooling. However, most of these TE, the best-commercialized thermoelectric bulk material (Bi2Te3-based alloy) has a ZT around 1,2,3 whereas

Chen, Yong P.

220

Breathing HRV by the Concept of AC Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

Breathing HRV by the Concept of AC Ventilation Breathing HRV by the Concept of AC Ventilation Speaker(s): Hwataik Han Date: July 10, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Thomas McKone Heat recovery ventilators are frequently used to save heating/cooling loads of buildings for ventilation. There are several types of HRV's, including a parallel plate type, a rotary type, a capillary type, and a heat pipe type. The breathing HRV is a heat recovery ventilator of a new kind using the concept of alternating-current ventilation. The AC ventilation is the ventilation with the airflow directions reversed periodically. It has an advantage of using a single duct system, for both supply and exhaust purposes. In order to develop a breathing HRV system, the thermal recovery performance should be investigated depending on many parameters, such as

Note: This page contains sample records for the topic "thermoelectric heating ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Nanocomposites as thermoelectric materials  

E-Print Network (OSTI)

Thermoelectric materials have attractive applications in electric power generation and solid-state cooling. The performance of a thermoelectric device depends on the dimensionless figure of merit (ZT) of the material, ...

Hao, Qing

2010-01-01T23:59:59.000Z

222

POTENTIAL THERMOELECTRIC APPLICATIONS IN DIESEL VEHICLES  

SciTech Connect

Novel thermodynamic cycles developed by BSST provide improvements by factors of approximately 2 in cooling, heating and power generation efficiency of solid-state thermoelectric systems. The currently available BSST technology is being evaluated in automotive development programs for important new applications. Thermoelectric materials are likely to become available that further increase performance by a comparable factor. These major advancements should allow the use of thermoelectric systems in new applications that have the prospect of contributing to emissions reduction, fuel economy, and improved user comfort. Potential applications of thermoelectrics in diesel vehicles are identified and discussed. As a case in point, the history and status of the Climate Controlled Seat (CCS) system from Amerigon, the parent of BSST, is presented. CCS is the most successful and highest production volume thermoelectric system in vehicles today. As a second example, the results of recent analyses on electric power generation from vehicle waste heat are discussed. Conclusions are drawn as to the practicality of waste power generation systems that incorporate BSST's thermodynamic cycle and advanced thermoelectric materials.

Crane, D

2003-08-24T23:59:59.000Z

223

Review of Residential Ventilation Technologies.  

NLE Websites -- All DOE Office Websites (Extended Search)

Review of Residential Ventilation Technologies. Review of Residential Ventilation Technologies. Title Review of Residential Ventilation Technologies. Publication Type Journal Article LBNL Report Number LBNL-57730 Year of Publication 2007 Authors Russell, Marion L., Max H. Sherman, and Armin F. Rudd Journal HVAC&R Research Volume 13 Start Page Chapter Pagination 325-348 Abstract This paper reviews current and potential ventilation technologies for residential buildings in North America and a few in Europe. The major technologies reviewed include a variety of mechanical systems, natural ventilation, and passive ventilation. Key parameters that are related to each system include operating costs, installation costs, ventilation rates, heat recovery potential. It also examines related issues such as infiltration, duct systems, filtration options, noise, and construction issues. This report describes a wide variety of systems currently on the market that can be used to meet ASHRAE Standard 62.2. While these systems generally fall into the categories of supply, exhaust or balanced, the specifics of each system are driven by concerns that extend beyond those in the standard and are discussed. Some of these systems go beyond the current standard by providing additional features (such as air distribution or pressurization control). The market will decide the immediate value of such features, but ASHRAE may wish to consider modifications to the standard in the future.

224

Micro- & Nano-Technologies Enabling More Compact, Lightweight Thermoelectric Power Generation & Cooling Systems  

Energy.gov (U.S. Department of Energy (DOE))

Advanced thermoelectric energy recovery and cooling system weight and volume improvements with low-cost microtechnology heat and mass transfer devices are presented

225

Thermoelectric-Generator-Based DC-DC Conversion Network for Automotive Applications.  

E-Print Network (OSTI)

?? As waste heat recovering techniques, especially thermoelectric generator (TEG technologies, develop during recent years?its utilization in automotive industry is attempted from many aspects. Previous… (more)

Li, Molan

2011-01-01T23:59:59.000Z

226

CsBi4Te6: A High-Performance Thermoelectric Material for Low...  

NLE Websites -- All DOE Office Websites (Extended Search)

M. Bastea, C. Uher, M. Kanatzidis Year: 2000 Abstract: Thermoelectric (Peltier) heat pumps are capable of refrigerating solid or fluid objects, and unlike conventional...

227

Thermoelectric Power Generation System with Loop Thermosyphon in Future High Efficiency Hybrid Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

This project discusses preliminary experimental results to find how thermoelectrics can be applied ot future hybrid vehicles and the optimum design of such equipment using heat pipes

228

Advanced Thin Film Thermoelectric Systems forEfficient Air-Conditioners  

Energy.gov (U.S. Department of Energy (DOE))

Presents recent advances in thermoelectric device fabrication and the design of novel cooling/heating engines exploiting thermal storage for efficient air-conditioners in automobiles

229

Design of Bulk Nanocomposites as High Efficiency Thermoelectric Materials |  

Office of Science (SC) Website

Design of Bulk Nanocomposites as High Design of Bulk Nanocomposites as High Efficiency Thermoelectric Materials Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights Highlight Archives News & Events Publications Contact BES Home 04.27.12 Design of Bulk Nanocomposites as High Efficiency Thermoelectric Materials Print Text Size: A A A RSS Feeds FeedbackShare Page Scientific Achievement A newly synthesized bulk thermoelectric material that contains nanocrystals with the same orientation and structure as the host material breaks thermoelectric efficiency records by blocking thermal, but not electrical, conductivity. Significance and Impact A new strategy to design inexpensive materials that more efficiently convert heat to electricity. Research Details Thermoelectric materials directly generate electrical power from heat, but

230

Catalytic converter with thermoelectric generator  

SciTech Connect

The unique design of an electrically heated catalyst (EHC) and the inclusion of an ECO valve in the exhaust of an internal combustion engine will meet the strict new emission requirements, especially at vehicle cold start, adopted by several states in this country as well as in Europe and Japan. The catalytic converter (CC) has been a most useful tool in pollution abatement for the automobile. But the emission requirements are becoming more stringent and, along with other improvements, the CC must be improved to meet these new standards. Coupled with the ECO valve, the EHC can meet these new emission limits. In an internal combustion engine vehicle (ICEV), approximately 80% of the energy consumed leaves the vehicle as waste heat: out the tail pipe, through the radiator, or convected/radiated off the engine. Included with the waste heat out the tail pipe are the products of combustion which must meet strict emission requirements. The design of a new CC is presented here. This is an automobile CC that has the capability of producing electrical power and reducing the quantity of emissions at vehicle cold start, the Thermoelectric Catalytic Power Generator. The CC utilizes the energy of the exothermic reactions that take place in the catalysis substrate to produce electrical energy with a thermoelectric generator. On vehicle cold start, the thermoelectric generator is used as a heat pump to heat the catalyst substrate to reduce the time to catalyst light-off. Thus an electrically heated catalyst (EHC) will be used to augment the abatement of tail pipe emissions. Included with the EHC in the exhaust stream of the automobile is the ECO valve. This valve restricts the flow of pollutants out the tail pipe of the vehicle for a specified amount of time until the EHC comes up to operating temperature. Then the ECO valve opens and allows the full exhaust, now treated by the EHC, to leave the vehicle.

Parise, R.J.

1998-07-01T23:59:59.000Z

231

Removal of submicron particles using a carbon fiber ionizer-assisted medium air filter in a heating, ventilation, and air-conditioning (HVAC) system  

Science Journals Connector (OSTI)

Laboratory tests of particle removal were performed with a pair of carbon fiber ionizers installed upstream of a glass fiber air filter. For air flow face velocities of 0.4, 0.6, and 0.8 m/s, the overall particle removal efficiencies of the filter for all submicron particles were 17%, 16%, and 14%, respectively, when the ionizers were not turned on. These values increased to 27%, 23%, and 19%, respectively, when the ionizers were used to generate ions of 6.0 × 109 ions/cm3 in concentration. The carbon fiber ionizers were then installed in front of a glass fiber air filter located in a heating, ventilation, and air-conditioning (HVAC) system. Field tests were performed in a test office room with a total indoor particle concentration of 2.2 × 104 particles/cm3. When the flow rate was 75 cubic meters per hour (CMH), the steady-state values of the total indoor particle concentrations using the glass fiber air filter with and without ionizers decreased to 0.87 × 104 particles/cm3 and 1.15 × 104 particles/cm3, respectively, resulting in a 25% decrease of the ionizer effect. When the operation flow rate was increased to 115 and 150 CMH, the effect of the ionizer decreased to 19% and 17%, respectively. These experimental data match the results calculated using a mass-balance model whose parameters were determined from laboratory tests.

Jae Hong Park; Ki Young Yoon; Jungho Hwang

2011-01-01T23:59:59.000Z

232

Thermoelectric materials having porosity  

DOE Patents (OSTI)

A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

2014-08-05T23:59:59.000Z

233

In-line thermoelectric module  

DOE Patents (OSTI)

A thermoelectric module with a plurality of electricity generating units each having a first end and a second end, the units being arranged first end to second end along an in-line axis. Each unit includes first and second elements each made of a thermoelectric material, an electrically conductive hot member arranged to heat one side of the first element, and an electrically conductive cold member arranged to cool another side of the first element and to cool one side of the second element. The hot member, the first element, the cold member and the second element are supported in a fixture, are electrically connected respectively to provide an electricity generating unit, and are arranged respectively in positions along the in-line axis. The individual components of each generating unit and the respective generating units are clamped in their in-line positions by a loading bolt at one end of the fixture and a stop wall at the other end of the fixture. The hot members may have a T-shape and the cold members an hourglass shape to facilitate heat transfer. The direction of heat transfer through the hot members may be perpendicular to the direction of heat transfer through the cold members, and both of these heat transfer directions may be perpendicular to the direction of current flow through the module.

Pento, Robert (Algonquin, IL); Marks, James E. (Glenville, NY); Staffanson, Clifford D. (S. Glens Falls, NY)

2000-01-01T23:59:59.000Z

234

In-Line Thermoelectric Module  

SciTech Connect

A thermoelectric module with a plurality of electricity generating units each having a first end and a second end, the units being arranged first end to second end along an-in-line axis. Each unit includes first and second elements each made of a thermoelectric material, an electrically conductive hot member arranged to heat one side of the first element, and an electrically conductive cold member arranged to cool another side of the first element and to cool one side of the second element. The hot member, the first element, the cold member and the second element are supported in a fixture, are electrically connected respectively to provide an electricity generating unit, and are arranged respectively in positions along the in-line axis. The individual components of each generating unit and the respective generating units are clamped in their in-line positions by a loading bolt at one end of the fixture and a stop wall at the other end of the fixture. The hot members may have a T-shape and the cold members an hourglass shape to facilitate heat transfer. The direction of heat transfer through the hot members may be perpendicular to the direction of heat transfer through the cold members, and both of these heat transfer directions maybe perpendicular to the direction-of current flow through the module.

Pento, Robert; Marks, James E.; Staffanson, Clifford D.

1998-07-28T23:59:59.000Z

235

Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Ventilation Ventilation Controlled ventilation keeps energy-efficient homes healthy and comfortable. Learn more about ventilation. Controlled ventilation keeps energy-efficient homes healthy and comfortable. Learn more about ventilation. When creating an energy-efficient, airtight home through air sealing, it's very important to consider ventilation. Unless properly ventilated, an airtight home can seal in indoor air pollutants. Ventilation also helps control moisture-another important consideration for a healthy, energy-efficient home. Featured Whole-House Ventilation A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. Tight, energy-efficient homes require mechanical -- usually whole-house --

236

High Temperature Integrated Thermoelectric Ststem and Materials  

SciTech Connect

The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits. Two composition systems, specifically 1.0 SrO - 0.8 x 1.03 TiO2 - 0.2 x 1.03 NbO2.5 and 0.97 TiO2 - 0.03 NbO2.5, have been identified as good base line compositions for n-type thermoelectric compositions in future module design. Tests of these materials at an outside company were promising using that company's processing and material expertise. There was no unique p-type thermoelectric compositions identified in phase I work other than several current cobaltite materials. Ca3Co4O9 will be the primary p-type material for the future module design until alternative materials are developed. BaTiO3 and rare earth titanate based dielectric compositions show both p-type and n-type behavior even though their electrical conductivities were very low. Further research and development of these materials for thermoelectric applications is planned in the future. A preliminary modeling and optimization of a thermoelectric generator (TEG) that uses the n-type 1.0 SrO - 1.03 x 0.8 TiO2 - 1.03 x 0.2 NbO2.5 was performed. Future work will combine development of ceramic powders and manufacturing expertise at TAM, development of SPS at TAM or a partner organization, and thermoelectric material/module testing, modeling, optimization, production at several partner organizations.

Mike S. H. Chu

2011-06-06T23:59:59.000Z

237

Determination of Thermoelectric Module Efficiency A Survey  

SciTech Connect

The development of thermoelectrics (TE) for energy conversion is in the transition phase from laboratory research to device development. There is an increasing demand to accurately determine the module efficiency, especially for the power generation mode. For many thermoelectrics, the figure of merit, ZT, of the material sometimes cannot be fully realized at the device level. Reliable efficiency testing of thermoelectric modules is important to assess the device ZT and provide the end-users with realistic values on how much power can be generated under specific conditions. We conducted a general survey of efficiency testing devices and their performance. The results indicated the lack of industry standards and test procedures. This study included a commercial test system and several laboratory systems. Most systems are based on the heat flow meter method and some are based on the Harman method. They are usually reproducible in evaluating thermoelectric modules. However, cross-checking among different systems often showed large errors that are likely caused by unaccounted heat loss and thermal resistance. Efficiency testing is an important area for the thermoelectric community to focus on. A follow-up international standardization effort is planned.

Wang, Hsin [ORNL; McCarty, Robin [Marlow Industries, Inc; Salvador, James R. [GM R& D and Planning, Warren, Michigan; Yamamoto, Atsushi [AIST, Japan; Konig, Jan [Fraunhofer-Institute, Freiburg, Germany

2014-01-01T23:59:59.000Z

238

Building America Case Study: Selecting Ventilation Systems for...  

Energy Savers (EERE)

requirements must be met? * What is the scope of the renovation project? * What heating, air conditioning, and ventilation systems are currently in the home? * What type of...

239

The International Journal of Ventilation  

E-Print Network (OSTI)

in Buildings: Harrington C and Modera M 345 Estimates of Uncertainty in Multi-Zone Air Leakage Measurements. Introduction Heating, cooling and ventilation can account for 50 percent of total building energy use flow rate. Over the past 15 years, the subject of duct leakage in buildings other than single-family

California at Davis, University of

240

IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, VOL. 32, NO. 2, JUNE 2009 447 Temperature Profile Inside Microscale Thermoelectric  

E-Print Network (OSTI)

Temperature Profile Inside Microscale Thermoelectric Module Acquired Using Near-Infrared Thermoreflectance-scale thermoelectric modules. By determining localized sources of Joule heating, one can identify manufacturing errors and generate design rules that can improve the cooling performance of the thermoelectric device. Index Terms

Note: This page contains sample records for the topic "thermoelectric heating ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

A versatile thermoelectric temperature controller with 10 mK reproducibility and 100 mK absolute accuracy  

E-Print Network (OSTI)

elements and thermoelectric modules to heat or cool in the 40 to 40 °C range. A schematic of our controllerA versatile thermoelectric temperature controller with 10 mK reproducibility and 100 mK absolute December 2009 We describe a general-purpose thermoelectric temperature controller with 1 mK stability, 10 m

Libbrecht, Kenneth G.

242

Solar Thermoelectric Energy Conversion  

Energy.gov (U.S. Department of Energy (DOE))

Efficiencies of different types of solar thermoelectric generators were predicted using theoretical modeling and validated with measurements using constructed prototypes under different solar intensities

243

Steady State Thermoelectric Field-Reversed Configurations  

Science Journals Connector (OSTI)

It is shown that the cross-field thermoelectric force of magnetized plasmas can maintain field-reversed configurations against resistive diffusion, resulting in a steady state device attractive for thermonuclear fusion. If a peaked radial temperature profile is maintained, the thermoelectric force is in the opposite direction to the usual resistive friction, thus maintaining the field configuration. The field maintenance is tantamount to dynamo action, operating even in two dimensions. We show that a steady state device can be made by simply heating the O-point: no external electric fields or particle sources are needed. The feasibility of this scheme for fusion is discussed.

A. B. Hassam; R. M. Kulsrud; R. J. Goldston; H. Ji; M. Yamada

1999-10-11T23:59:59.000Z

244

Transport in Charged Colloids Driven by Thermoelectricity  

E-Print Network (OSTI)

We study the thermal diffusion coefficient DT of a charged colloid in a temperature gradient, and find that it is to a large extent determined by the thermoelectric response of the electrolyte solution. The thermally induced salinity gradient leads in general to a strong increase with temperature. The difference of the heat of transport of coions and counterions gives rise to a thermoelectric field that drives the colloid to the cold or to the warm, depending on the sign of its charge. Our results provide an explanation for recent experimental findings on thermophoresis in colloidal suspensions.

Alois Würger

2014-01-29T23:59:59.000Z

245

Vehicular Thermoelectric Applications Session DEER 2009  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Or this? Car of the Future? International Thermoelectric Conference 2009 - Frieburg, Germany U.S. Spacecraft using Radioisotope Thermoelectric Power Generators Thermoelectric...

246

Vehicular Thermoelectrics: A New Green Technology | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicular Thermoelectrics: A New Green Technology Vehicular Thermoelectrics: A New Green Technology An overview of the DOE activities in vehicular application of thermoelectrics...

247

Demand Controlled Ventilation and Classroom Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Authors Fisk, William J., Mark J. Mendell, Molly Davies, Ekaterina Eliseeva, David Faulkner, Tienzen Hong, and Douglas P. Sullivan Publisher Lawrence Berkeley National Laboratory City Berkeley Keywords absence, building s, carbon dioxide, demand - controlled ventilation, energy, indoor air quality, schools, ventilation Abstract This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included:  The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).  Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.

248

Automotive Thermoelectric Generators and HVAC  

Energy.gov (U.S. Department of Energy (DOE))

Provides overview of DOE-supported projects in automotive thermoelectric generators and heaters/air conditioners

249

Solar ventilation and tempering  

Science Journals Connector (OSTI)

The paper presents basic information about solar panels designed realized and used for solar ventilation of rooms. Used method of numerical flow simulation gives good overview about warming and flowing of the air in several kinds of realized panels (window facade chimney). Yearlong measurements give a good base for calculations of economic return of invested capital. The operation of the system in transient period (spring autumn) prolongs the period without classical heating of the room or building in winter the classical heating is supported. In the summer period the system furnished with chimney can exhaust inner warm air together with necessary cooling of the system by gravity circulation only. System needs not any invoiced energy source; it is supplied entirely by solar energy. Large building systems are supported by classical electric fan respectively.

2014-01-01T23:59:59.000Z

250

Cost–Performance Analysis and Optimization of Fuel-Burning Thermoelectric Power Generators  

Science Journals Connector (OSTI)

Energy cost analysis and optimization of thermoelectric (TE) power generators burning fossil fuel show a lower initial cost ... The produced heat generates electric power. Unlike waste heat recovery systems, the ...

Kazuaki Yazawa; Ali Shakouri

2013-07-01T23:59:59.000Z

251

Novel thermoelectric materials development, existing and potential applications, and commercialization routes  

E-Print Network (OSTI)

Thermoelectrics (TE) are devices which can convert heat in the form of a temperature gradient into electricity, or alternatively generate and absorb heat when an electrical current is run through them. It was established ...

Bertreau, Philippe

2006-01-01T23:59:59.000Z

252

Complex oxides useful for thermoelectric energy conversion  

DOE Patents (OSTI)

The invention provides for a thermoelectric system comprising a substrate comprising a first complex oxide, wherein the substrate is optionally embedded with a second complex oxide. The thermoelectric system can be used for thermoelectric power generation or thermoelectric cooling.

Majumdar, Arunava (Orinda, CA); Ramesh, Ramamoorthy (Moraga, CA); Yu, Choongho (College Station, TX); Scullin, Matthew L. (Berkeley, CA); Huijben, Mark (Enschede, NL)

2012-07-17T23:59:59.000Z

253

The Industrialization of Thermoelectric Power Generation Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

system requirements for high volume power generation with thermoelectrics such desirable thermoelectric properties, low material toxicity, interface compatibility, cost...

254

Thermoelectric Mechanical Reliability | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectric Mechanical Reliability Thermoelectric Mechanical Reliability 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting,...

255

Thermoelectric Mechanical Reliability | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectric Mechanical Reliability Thermoelectric Mechanical Reliability 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

256

Proactive Strategies for Designing Thermoelectric Materials for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Proactive Strategies for Designing Thermoelectric Materials for Power Generation Proactive Strategies for Designing Thermoelectric Materials for Power Generation...

257

DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION  

E-Print Network (OSTI)

columns indicate the energy and cost savings for demandand class size. (The energy costs of classroom ventilationTotal Increase in Energy Costs ($) Increased State Revenue

Fisk, William J.

2014-01-01T23:59:59.000Z

258

SYSTEM OPTIMIZTION OF HOT WATER CONCENTRATED SOLAR THERMOELECTRIC GENERATION  

E-Print Network (OSTI)

In this report, we describe the design of a concentrated solar thermoelectric (TE) system which can provide both electricity and hot water. Today’s thermoelectric materials have a relatively low efficiency (~6 % for temperature difference across the thermoelement on the order of 300 o C). However since thermoelectrics don’t need their cold side to be near room temperature, (in another word, one can chose the particular thermoelectric material to match to the operational temperature) it is possible to use the waste heat to provide hot water and this makes the overall efficiency of the combined system to be quite high. A key factor in the optimization of the thermoelectric module is the thermal impedance matching with the incident solar radiation, and also with the hot water heat exchanger on the cold side of the thermoelectric module. We have developed an analytic model for the whole system and optimized each component in order to minimize the material cost. TE element fill factor is found to be an important parameter to optimize at low solar concentrations (generated per mass of the thermoelectric elements. Similarly the co-optimization of the microchannel heat exchanger and the TE module can be used to minimize the amount of material in the heat exchanger and the pumping power required for forced convection liquid cooling. Changing the amount of solar concentration, changes the input heat flux and this is another parameter that can be optimized in order to reduce the cost of heat exchanger (by size), the tracking requirement and the whole system. A series of design curves for different solar concentration are obtained. It is shown that the overall efficiency of the system can be more than 80 % at 200x concentration which is independent of the material ZT (TE figure-of-merit). For a material with ZThot~0.9, the electrical conversion efficiency is ~10%. For advanced materials with ZThot ~ 2.8, the electrical conversion efficiency could reach ~21%. 1.

Kazuaki Yazawa; Ali Shakouri

259

Federal Energy Management Program: New and Underutilized Heating,  

NLE Websites -- All DOE Office Websites (Extended Search)

Heating, Ventilation, and Air Conditioning Technologies to Heating, Ventilation, and Air Conditioning Technologies to someone by E-mail Share Federal Energy Management Program: New and Underutilized Heating, Ventilation, and Air Conditioning Technologies on Facebook Tweet about Federal Energy Management Program: New and Underutilized Heating, Ventilation, and Air Conditioning Technologies on Twitter Bookmark Federal Energy Management Program: New and Underutilized Heating, Ventilation, and Air Conditioning Technologies on Google Bookmark Federal Energy Management Program: New and Underutilized Heating, Ventilation, and Air Conditioning Technologies on Delicious Rank Federal Energy Management Program: New and Underutilized Heating, Ventilation, and Air Conditioning Technologies on Digg Find More places to share Federal Energy Management Program: New and

260

Reducing Mortality from Terrorist Releases of Chemical and Biological Agents: I. Filtration for Ventilation Systems in Commercial Building  

E-Print Network (OSTI)

R.J. : Effect of ventilation rate in a healthy building.IAQ '91: Healthy Buildings, American Society of Heating,

Thatcher, Tracy L.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermoelectric heating ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Solar Thermoelectric Energy Conversion  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SOLID-STATE SOLAR-THERMAL ENERGY CONVERSION CENTER NanoEngineering Group Solar Thermoelectric Energy Conversion Gang Chen, 1 Daniel Kraemer, 1 Bed Poudel, 2 Hsien-Ping Feng, 1 J....

262

Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Ventilation Ventilation May 7, 2012 - 2:49pm Addthis This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. What does this mean for me? After you've reduced air leakage in your home, adequate ventilation is critical for health and comfort. Depending on your climate, there are a number of strategies to ventilate your home. Ventilation is very important in an energy-efficient home. Air sealing techniques can reduce air leakage to the point that contaminants with known health effects such as formaldehyde, volatile organic compounds, and radon

263

Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Ventilation Ventilation May 7, 2012 - 2:49pm Addthis This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. What does this mean for me? After you've reduced air leakage in your home, adequate ventilation is critical for health and comfort. Depending on your climate, there are a number of strategies to ventilate your home. Ventilation is very important in an energy-efficient home. Air sealing techniques can reduce air leakage to the point that contaminants with known health effects such as formaldehyde, volatile organic compounds, and radon

264

Zintl Phases as Thermoelectric Materials: Tuned Transport Properties of the Compounds CaxYb1xZn2Sb2**  

E-Print Network (OSTI)

Zintl Phases as Thermoelectric Materials: Tuned Transport Properties of the Compounds CaxYb1±xZn2Sb. Introduction Because of their ability to convert waste heat into electricity, thermoelectric materials have in efficiency, thermoelectric materials could pro- vide a substantial amount of electrical power from automotive

265

Large Thermoelectric Power Factor in P-type Si (110)/[110] Ultra-Thin-Layers Compared to Differently Oriented Channels  

E-Print Network (OSTI)

The ability of a material to convert heat into electricity is measured by the dimensionless thermoelectric (TE1 Large Thermoelectric Power Factor in P-type Si (110)/[110] Ultra-Thin-Layers Compared the thermoelectric power factor of ultra-thin-body p-type Si layers of thicknesses from W=3nm up to 10nm. We show

266

Thermoelectric Properties of n-type Polycrystalline BixSb2-xTe3 Alloys N. Gerovac, G. J. Snyder, and T. Caillat  

E-Print Network (OSTI)

. Introduction The best thermoelectric materials are semiconductors which limit the movement of heat conducting. The quality of a thermoelectric material is described by a dimensionless figure-of-merit, ZT, which depends thermoelectric materials have been made from (Bi,Sb)2Te3 compounds. In polycrystalline form, meaning made up

267

STRUCTURE ORIGIN OF THE ENHANCED THERMOELECTRIC POWER Today approximately 60% of the energy consumption in the US is lost, mostly through waste  

E-Print Network (OSTI)

consumption in the US is lost, mostly through waste heat. Development on thermoelectric technologySTRUCTURE ORIGIN OF THE ENHANCED THERMOELECTRIC POWER Today approximately 60% of the energy to significant energy savings. Many recent advances in thermoelectric materials are attributed to nanoscale

Homes, Christopher C.

268

2008 DOE FCVT Merit Review: BSST Waste Heat Recovery Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Documents & Publications Automotive Waste Heat Conversion to Power Program Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Development of a 100-Watt High...

269

Experimental and theoretical analysis of a thermoelectric generator  

SciTech Connect

The primary objectives of this study were to develop models for studying performance of a thermoelectric generator for the case of steady-state, and transient problems; and to develop a method and procedure for analyzing data taken experimentally and compare them with the theoretical results. The work is divided into primary areas that involve (i) model development and linear and nonlinear parameter estimations, (ii) experimental tests, and (iii) design and simulation. Analysis and experiments were conducted to describe the effects of the leg-surface heat loss, and the temperature difference on the performance of a thermoelectric generator. Two numerical models that treat the problem of thermoelectric generator, linear and nonlinear were developed. A Global Corporation model 5120, 120-watt thermoelectric generator system was tested in the 5-kW NMSU/PSL solar furnace at two different hot and cold junction temperatures. The developed computer models were used for design and simulation of an auto thermoelectric generator (Automobile Thermoelectric Generator) that converts waste heat from the car engine directly to the electrical power as a substitute device for the electrical generator used in cars.

Moghaddas, M.H.

1986-01-01T23:59:59.000Z

270

Fiber optic signal amplifier using thermoelectric power generation  

DOE Patents (OSTI)

A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications. 2 figs.

Hart, M.M.

1995-04-18T23:59:59.000Z

271

Fiber optic signal amplifier using thermoelectric power generation  

DOE Patents (OSTI)

A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu.sub.238 or Sr.sub.90 thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu.sub.238 or Sr.sub.90 thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

Hart, Mark M. (Aiken, SC)

1995-01-01T23:59:59.000Z

272

Rational Synthesis of Ultrathin n-Type Bi2Te3 Nanowires with Enhanced Thermoelectric Properties  

E-Print Network (OSTI)

, which can generate electricity by recovering waste heat or be used as solid-state cooling devices, have-based thermoelectric power generation and solid-state cooling devices with superior performance in a reliableRational Synthesis of Ultrathin n-Type Bi2Te3 Nanowires with Enhanced Thermoelectric Properties

Xu, Xianfan

273

Summary of the nano-related thermoelectric activities in BGU for the year of 2011  

E-Print Network (OSTI)

energy into electrical energy, plays an important role, particularly for the exploitation of waste heat of thermoelectric (TE) power generation. Alloys of type IV-VI, namely PbTe-, GeTe-, and SnTe- based, with ZT(=2 /)>1Summary of the nano-related thermoelectric activities in BGU for the year of 2011 Dr. Yaniv

Vardi, Amichay

274

REVIEW OF SCIENTIFIC INSTRUMENTS 83, 045116 (2012) Multi-layer thermoelectric-temperature-mapping microbial incubator  

E-Print Network (OSTI)

. [http://dx.doi.org/10.1063/1.4705748] I. INTRODUCTION Thermoelectric (TE) modules are advantageous of current flow- ing through the TE modules, heating and cooling functions of the TE modules can be generatedREVIEW OF SCIENTIFIC INSTRUMENTS 83, 045116 (2012) Multi-layer thermoelectric

Lin, Pei-Chun

275

Synthesis and evaluation of single layer, bilayer, and multilayer thermoelectric thin films  

SciTech Connect

The relative efficiency of a thermoelectric material is measured in terms of a dimensionless figure of merit, ZT. Though all known thermoelectric materials are believed to have ZT{le}1, recent theoretical results predict that thermoelectric devices fabricated as two-dimensional quantum wells (2D QWs) or one-dimensional (ID) quantum wires could have ZT{ge}3. Multilayers with the dimensions of 2D QWs have been synthesized by alternately sputtering thermoelectric and barrier materials onto a moving single-crystal sapphire substrate from dual magnetrons. These materials have been used to test the thermoelectric quantum well concept and gain insight into relevant transport mechanisms. If successful, research could lead to thermoelectric devices that have efficiencies close to that of an ideal Carnot engine. Ultimately, such devices could be used to replace conventional heat engines and mechanical refrigeration systems.

Farmer, J.C.; Barbee, T.W. Jr.; Chapline, G.C. Jr.; Olsen, M.L.; Foreman, R.J.; Summers, L.J. [Lawrence Livermore National Lab., CA (United States); Dresselhaus, M.S.; Hicks, L.D. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Physics

1995-01-20T23:59:59.000Z

276

Synthesis and Evaluation of Single Layer, Bilayer, and Multilayer Thermoelectric Thin Films  

DOE R&D Accomplishments (OSTI)

The relative efficiency of a thermoelectric material is measured in terms of a dimensionless figure of merit, ZT. Though all known thermoelectric materials are believed to have ZT{le}1, recent theoretical results predict that thermoelectric devices fabricated as two-dimensional quantum wells (2D QWs) or one-dimensional (ID) quantum wires could have ZT{ge}3. Multilayers with the dimensions of 2D QWs have been synthesized by alternately sputtering thermoelectric and barrier materials onto a moving single-crystal sapphire substrate from dual magnetrons. These materials have been used to test the thermoelectric quantum well concept and gain insight into relevant transport mechanisms. If successful, research could lead to thermoelectric devices that have efficiencies close to that of an ideal Carnot engine. Ultimately, such devices could be used to replace conventional heat engines and mechanical refrigeration systems.

Farmer, J. C.; Barbee, T. W. Jr.; Chapline, G. C. Jr.; Olsen, M. L.; Foreman, R. J.; Summers, L. J.; Dresselhaus, M. S.; Hicks, L. D.

1995-01-20T23:59:59.000Z

277

A high performance thin film thermoelectric cooler  

SciTech Connect

Thin film thermoelectric devices with small dimensions have been fabricated using microelectronics technology and operated successfully in the Seebeck mode as sensors or generators. However, they do not operate successfully in the Peltier mode as coolers, because of the thermal bypass provided by the relatively thick substrate upon which the thermoelectric device is fabricated. In this paper a processing sequence is described which dramatically reduces this thermal bypass and facilitates the fabrication of high performance integrated thin film thermoelectric coolers. In the processing sequence a very thin amorphous SiC (or SiO{sub 2}SiN{sub 4}) film is deposited on a silicon substrate using conventional thin film deposition and a membrane formed by removing the silicon substrate over a desired region using chemical etching or micro-machining. Thermoelements are deposited on the membrane using conventional thin film deposition and patterning techniques and configured so that the region which is to be cooled is abutted to the cold junctions of the Peltier thermoelements while the hot junctions are located at the outer peripheral area which rests on the silicon substrate rim. Heat is pumped laterally from the cooled region to the silicon substrate rim and then dissipated vertically through it to an external heat sink. Theoretical calculations of the performance of a cooler described above indicate that a maximum temperature difference of about 40--50K can be achieved with a maximum heat pumping capacity of around 10 milliwatts.

Rowe, D.M.; Min, G.; Volklein, F.

1998-07-01T23:59:59.000Z

278

New materials and devices for thermoelectric applications  

SciTech Connect

The development of new, more efficient materials and devices is the key to expanding the range of application of thermoelectric generators and coolers. In the last couple of years, efforts to discover breakthrough thermoelectric materials have intensified, in particular in the US. Recent results on novel materials have already demonstrated that dimensionless figure of merit ZT values 40 to 50% larger than 1.0, the current limit, could be obtained in the 475 to 950 K temperature range. New terrestrial power generation applications have been recently described in the literature. There exists a wide range of heat source temperatures for these applications, from low grade waste heat, at 325--350 K, up to 850 to 1,100 K, such as in the heat recovery from a processing plant of combustible solid waste. The automobile industry has also recently developed a strong interest in a waste exhaust heat recovery power source operating in the 375--750 K temperature range to supplement or replace the alternator and thus decrease fuel consumption. Based on results achieved to date at the Jet Propulsion Laboratory (JPL) on novel materials, the performance of an advanced segmented generator design operating in a large 300--945 K temperature gradient is predicted to achieve about 15% conversion efficiency. This would be a very substantial improvement over state-of-the-art (SOA) thermoelectric power converters. Such a terrestrial power generator could be using waste heat or liquid fuels as a heat source. High performance radioisotope generators (RTG) are still of interest for deep space missions but the shift towards small, light spacecraft has developed a need for advanced power sources in the watt to milliwatt range. The powerstick concept would provide a study, compact, lightweight and low cost answer to this need. The development of thin film thermoelectric devices also offer attractive possibilities. The combination of semiconductor technology, thermoelectric films and high thermal conductivity materials could lead to the fabrication of light weight, high voltage devices with high cooling or high electrical power density characteristics. The use of microcoolers for the thermal management of power electronics is of particular interest.

Fleurial, J.P.; Borshchevsky, A.; Caillat, T.; Ewell, R. [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.

1997-12-31T23:59:59.000Z

279

Demand Controlled Ventilation and Classroom Ventilation  

E-Print Network (OSTI)

columns indicate the energy and cost savings for  demand class size.   (The energy costs  of classroom ventilation Total Increase in Energy Costs ($) Increased State Revenue

Fisk, William J.

2014-01-01T23:59:59.000Z

280

The Electrodeposition of PbTe Nanowires for Thermoelectric Applications  

E-Print Network (OSTI)

of thermoelectrics. Radioisotope Thermoelectric Generatorthermoelectric generators use radiation from the sun instead of a radioisotope

Hillman, Peter

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermoelectric heating ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Thermoelectric Development at Hi-Z Technology  

SciTech Connect

An improved Thermoelectric Generator (TEG) for the Heavy Duty Class Eight Diesel Trucks is under development at Hi-Z Technology. The current TEG is equipped with the improved HZ-14 Thermoelectric module, which features better mechanical properties as well as higher electric power output. Also, the modules are held in place more securely. The TEG is comprised of 72 TE modules, which are capable of producing 1kW of electrical power at 30 V DC during nominal engine operation. Currently the upgraded generator has completed testing in a test cell and starting from August 2001 will be tested on a Diesel truck under typical road and environmental conditions. It is expected that the TEG will be able to supplement the existing shaft driven alternator, resulting in significant fuel saving, generating additional power required by the truck?s accessories. The electronic and thermal properties of bulk materials are altered when they are incorporated into quantum wells. Two-dimensional quantum wells have been synthesized by alternating layers of B4C and B9C in one system and alternating layers of Si and Si0.8Ge0.2 in another system. Such nanostructures are being investigated as candidate thermoelectric materials with high figures of merit (Z). The predicted enhancement is attributed to the confined motion of charge carriers and phonons in the two dimensions and separating them from the ion scattering centers. Multilayer quantum well materials development continues with the fabrication of thicker films, evaluation of various substrates to minimize bypass heat loss, and bonding techniques to minimize high contact resistance. Quantum well thermoelectric devices with N-type Si/Si0.8Ge0.2 and P-type B4C/B9C have been fabricated from these films. The test results generated continue to indicate that much higher thermoelectric efficiencies can be achieved in the quantum wells compared to the bulk materials.

Kushch, Aleksandr

2001-08-05T23:59:59.000Z

282

Building Science - Ventilation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Ventilation Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow www.buildingscience.com Build Tight - Ventilate Right Building Science Corporation Joseph Lstiburek 2 Build Tight - Ventilate Right How Tight? What's Right? Building Science Corporation Joseph Lstiburek 3 Air Barrier Metrics Material 0.02 l/(s-m2) @ 75 Pa Assembly 0.20 l/(s-m2) @ 75 Pa Enclosure 2.00 l/(s-m2) @ 75 Pa 0.35 cfm/ft2 @ 50 Pa 0.25 cfm/ft2 @ 50 Pa 0.15 cfm/ft2 @ 50 Pa Building Science Corporation Joseph Lstiburek 4 Getting rid of big holes 3 ach@50 Getting rid of smaller holes 1.5 ach@50 Getting German 0.6 ach@50 Building Science Corporation Joseph Lstiburek 5 Best As Tight as Possible - with - Balanced Ventilation Energy Recovery Distribution Source Control - Spot exhaust ventilation Filtration

283

Carbon-dioxide-controlled ventilation study  

SciTech Connect

The In-House Energy Management (IHEM) Program has been established by the U.S. Department of Energy to provide funds to federal laboratories to conduct research on energy-efficient technology. The Energy Sciences Department of Pacific Northwest Laboratory (PNL) was tasked by IHEM to research the energy savings potential associated with reducing outdoor-air ventilation of buildings. By monitoring carbon dioxide (CO{sub 2}) levels in a building, outdoor air provided by the heating, ventilating, and air-conditioning (HVAC) system can be reduced to the percentage required to maintain satisfactory CO{sub 2} levels rather than ventilating with a higher outdoor-air percentage based on an arbitrary minimum outdoor-air setting. During summer months, warm outdoor air brought into a building for ventilation must be cooled to meet the appropriate cooling supply-air temperature, and during winter months, cold outdoor air must be heated. By minimizing the amount of hot or cold outdoor air brought into the HVAC system, the supply air requires less cooling or heating, saving energy and money. Additionally, the CO{sub 2} levels in a building can be monitored to ensure that adequate outdoor air is supplied to a building to maintain air quality levels. The two main considerations prior to implementing CO{sub 2}-based ventilation control are its impact on energy consumption and the adequacy of indoor air quality (IAQ) and occupant comfort. To address these considerations, six portable CO{sub 2} monitors were placed in several Hanford Site buildings to estimate the adequacy of office/workspace ventilation. The monitors assessed the potential for reducing the flow of outdoor-air to the buildings. A candidate building was also identified to monitor various ventilation control strategies for use in developing a plan for implementing and assessing energy savings.

McMordie, K.L.; Carroll, D.M.

1994-05-01T23:59:59.000Z

284

Radioisotope thermoelectric generator reliability and safety  

SciTech Connect

There are numerous occasions when a planetary mission requires energy in remote areas of the solar system. Anytime power is required much beyond Mars or the Asteroid Belts, solar power is not an option. The radioisotope thermoelectric generator (RTG) was developed for such a mission requirement. It is a relatively small and lightweight power source that can produce power under adverse conditions. Just this type of source has become the backbone of the power system for far outer plant exploration. Voyagers I and II are utilizing RTGs, which will soon power the Galileo spacecraft to Jupiter and the Ulysses spacecraft to study the solar poles. The paper discusses RTG operation including thermoelectric design, converter design, general-purpose heat source; RTG reliability including design, testing, experience, and launch approval; and RTG safety issues and methods of ensuring safety.

Campbell, R.; Klein, J.

1989-01-01T23:59:59.000Z

285

Development of a Thermoelectric Device for an Automotive Zonal HVAC System  

Energy.gov (U.S. Department of Energy (DOE))

Presents development of a thermoelectric device using liquid working fluid on the waste? side and air as working fluid on the main? side to enable zonal or distributed heating/cooling systems within a vehicle

286

Nanoscale Engineering for the Design of Efficient Inorganic-Organic Hybrid Thermoelectrics  

E-Print Network (OSTI)

Research aimed at enhancing the thermoelectric performance of semiconductors comprised of only earth-abundant elements has recently come under renewed focus as these materials systems offer a cost-effective path for scavenging waste heat. In light...

Brockway, Lance Robert

2014-04-14T23:59:59.000Z

287

Thermoelectric Power Generation as an Alternative Green Technology of Energy Harvesting  

E-Print Network (OSTI)

The vast majority of heat that is generated from computer processor chips to car engines to electric power plants, the need to use of excess heat creates a major source of inefficiency. Energy harvesters are thermoelectric materials which are solid-state energy converters used to convert waste heat into electricity. Significant improvements to the thermoelectric materials measured by figure of merit (ZT).forconverting waste-heat energy directly into electrical power, application of this alternative green technology can be made and also it will improve the overall efficiencies of energy conversion systems. In this paper, the basic concepts of thermoelectric material and its power generation is presented and recent patents of thermoelectric material are reviewed and discussed.

Ravi R. Nimbalkar; Sanket S. Kshirsagar

288

Resonant Level Enhancement of the Thermoelectric Power of Bi2Te3...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Power of Bi2Te3 with Tin Application to practical p-type thermoelectric tin alloys for heat pumps. heremans.pdf More Documents & Publications The tin impurity in Bi0.5Sb1.5Te3...

289

Nanostructured thin film thermoelectric composite materials using conductive polymer PEDOT:PSS  

E-Print Network (OSTI)

Thermoelectric materials have the ability to convert heat directly into electricity. This clean energy technology has advantages over other renewable technologies in that it requires no sunlight, has no moving parts, and ...

Kuryak, Chris A. (Chris Adam)

2013-01-01T23:59:59.000Z

290

Modeling and characterization of thermoelectric properties of SiGe nanocomposites  

E-Print Network (OSTI)

Direct energy conversion between thermal and electrical energy based on thermoelectric effects is attractive for potential applications in waste heat recovery and environmentally-friendly refrigeration. The energy conversion ...

Lee, Hohyun, 1978-

2009-01-01T23:59:59.000Z

291

Advanced Controls for Residential Whole-House Ventilation Systems  

SciTech Connect

Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health and compliance with standards, such as ASHRAE 62.2. Ventilation systems incur an energy penalty on the home via fan power used to drive the airflow, and the additional space-conditioning load associated with heating or cooling the ventilation air. Finding a balance between IAQ and energy use is important if homes are to be adequately ventilated while not increasing the energy burden. This study used computer simulations to examine RIVEC the Residential Integrated Ventilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. Four different whole-house ventilation systems were simulated, both with and without RIVEC, so that the energy and IAQ results could be compared. Simulations were conducted for 13 US climate zones, three house designs, and three envelope leakage values. The results showed that the RIVEC controller could typically return ventilation energy savings greater than 40percent without compromising long-term chronic or short-term acute exposures to relevant indoor contaminants. Critical and average peak power loads were also reduced as a consequence of using RIVEC.

Turner, William; Walker, Iain; Sherman, Max

2014-08-01T23:59:59.000Z

292

Peltier Junction heats and cools car seat  

SciTech Connect

Electrically heated seats may soon become heated and cooled seats. The design called the CCS module exploits the heat-pump capability of a class of semiconductor thermoelectric devices (TEDs) known as Peltier Junction. Every CCS module contain two TEDs. Heating and cooling occurs through convection and conduction. The heart of the system is the thermoelectric heat pump. This is originally conceived as the sole heating/cooling options for a prototype electric vehicle.

Gottschalk, M.A.

1994-10-10T23:59:59.000Z

293

Combustion-thermoelectric tube  

SciTech Connect

In direct combustion-thermoelectric energy conversion, direct fuel injection and reciprocation of the air flowing in a solid matrix are combined with the solid conduction to allow for obtaining super-adiabatic temperatures at the hot junctions. While the solid conductivity is necessary, the relatively large thermal conductivity of the available high-temperature thermoelectric materials (e.g., Si-Ge alloys) results in a large conduction loss from the hot junctions and deteriorates the performance. Here a combustion-thermoelectric tube is introduced and analyzed. Radially averaged temperatures are used for the fluid and solid phases. A combination of external cooling of the cold junctions, and direct injection of the fuel, has been used to increase the energy conversion efficiency for low thermal conductivity, high-melting temperature thermoelectric materials. The parametric study (geometry, flow, stoichiometry, materials) shows that with the current high figure of merit, high temperature Si{sub 0.7}Ge{sub 0.3} properties, a conversion efficiency of about 11% is achievable. With lower thermal conductivities for these high-temperature materials, efficiencies about 25% appear possible. This places this energy conversion in line with the other high efficiency, direct electric power generation methods.

Park, C.W.; Kaviany, M.

1999-07-01T23:59:59.000Z

294

Thermoelectric Temperature Control  

E-Print Network (OSTI)

the controller can supply the power required to bring the device to the desired temperature and maintain a stableNOTE 201TM TECHNICAL Optimizing Thermoelectric Temperature Control Systems #12;2 May 1995 92 of applications that require extremely stable temperature control. System design can be complex, but improved

Saffman, Mark

295

Green thermoelectrics: Observation and analysis of plant thermoelectric response  

E-Print Network (OSTI)

Plants are sensitive to thermal and electrical effects; yet the coupling of both, known as thermoelectricity, and its quantitative measurement in vegetal systems never were reported. We recorded the thermoelectric response of bean sprouts under various thermal conditions and stress. The obtained experimental data unambiguously demonstrate that a temperature difference between the roots and the leaves of a bean sprout induces a thermoelectric voltage between these two points. Basing our analysis of the data on the force-flux formalism of linear response theory, we found that the strength of the vegetal equivalent to the thermoelectric coupling is one order of magnitude larger than that in the best thermoelectric materials. Experimental data also show the importance of the thermal stress variation rate in the plant's electrophysiological response. Therefore, thermoelectric effects are sufficiently important to partake in the complex and intertwined processes of energy and matter transport within plants.

Goupil, C; Khamsing, A; Apertet, Y; Bouteau, F; Mancuso, S; Patino, R; Lecoeur, Ph

2015-01-01T23:59:59.000Z

296

Large-dimension, high-ZT Thermoelectric Nanocomposites for High-Power High-efficiency Waste Heat Recovery for Electricity Generation  

Energy.gov (U.S. Department of Energy (DOE))

Large-dimension, high-ZT BiTe and Pb-based nanocomposites produced with a low-cost scalable process were used for development and testing of TE module prototypes, and demonstration of a waste heat recovery system

297

2009 Thermoelectrics Applications Workshop | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Activities in Europe D. Michael Rowe Cardiff University Overview of Thermoelectrics in Germany Harald Bottner Fraunhofer Institute Overview of Research on Thermoelectric Materials...

298

Automotive Thermoelectric Generator (TEG) Controls | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(TEG) Fuel Displacement Potential using Engine-in-the-Loop and Simulation Automotive Thermoelectric Generator Design Issues Benefits of Thermoelectric Technology for the Automobile...

299

Nanostructured Thermoelectrics. The New Paradigm | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

figure of merit of bulk nanostructured thermoelectric and materials using low cost earth abundant elements kanatzidis.pdf More Documents & Publications DOENSF Thermoelectric...

300

Thermoelectrics: The New Green Automotive Technology | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermoelectrics: The New Green Automotive Technology Thermoelectrics: The New Green Automotive Technology 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program...

Note: This page contains sample records for the topic "thermoelectric heating ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Thermoelectrics: The New Green Automotive Technology | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermoelectrics: The New Green Automotive Technology Thermoelectrics: The New Green Automotive Technology 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program...

302

Vehicular Thermoelectrics: The New Green Technology | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicular Thermoelectrics: The New Green Technology Vehicular Thermoelectrics: The New Green Technology Presentation given at the 16th Directions in Engine-Efficiency and Emissions...

303

Proactive Strategies for Designing Thermoelectric Materials for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Proactive Strategies for Designing Thermoelectric Materials for Power Generation Proactive Strategies for Designing Thermoelectric Materials for Power Generation 2009 DOE Hydrogen...

304

Why We Ventilate  

NLE Websites -- All DOE Office Websites (Extended Search)

Why We Ventilate Why We Ventilate Title Why We Ventilate Publication Type Conference Paper LBNL Report Number LBNL-5093E Year of Publication 2011 Authors Logue, Jennifer M., Phillip N. Price, Max H. Sherman, and Brett C. Singer Conference Name Proceedings of the 2011 32nd AIVC Conference and 1st Tightvent Conference Date Published October 2011 Conference Location Brussels, Belgium Keywords indoor environment department, resave, ventilation and air cleaning Abstract It is widely accepted that ventilation is critical for providing good indoor air quality (IAQ) in homes. However, the definition of "good" IAQ, and the most effective, energy efficient methods for delivering it are still matters of research and debate. This paper presents the results of work done at the Lawrence Berkeley National Lab to identify the air pollutants that drive the need for ventilation as part of a larger effort to develop a health-based ventilation standard. First, we present results of a hazard analysis that identified the pollutants that most commonly reach concentrations in homes that exceed health-based standards or guidelines for chronic or acute exposures. Second, we present results of an impact assessment that identified the air pollutants that cause the most harm to the U.S. population from chronic inhalation in residences. Lastly, we describe the implications of our findings for developing effective ventilation standards.

305

Ventilation of Electrical Substations  

Science Journals Connector (OSTI)

... THE type of construction used for substations is generally governed by requirements, for example, fire and air-raid precautions, which ... Electrical Engineers, F. Favell and E. W. Connon record their experiences in overcoming substation ventilation problems in particular cases. Adequate and suitably planned ventilation will maintain ...

1943-05-01T23:59:59.000Z

306

Whole Building Ventilation Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Whole-Building Whole-Building Ventilation Systems for Existing Homes © 2011 Steven Winter Associates, Inc. All rights reserved. © 2011 Steven Winter Associates, Inc. All rights reserved. Home Performance / Weatherization  Addressing ventilation is the exception  Max tightness, e.g. BPI's "Building Airflow Standard" (BAS)  References ASHRAE 62-89  BAS = Max [0.35 ACH, 15 CFM/person], CFM50 eq.  If BD tests show natural infiltration below BAS...  Ventilation must be recommended or installed.  SO DON'T AIR SEAL TO MUCH! © 2011 Steven Winter Associates, Inc. All rights reserved. © 2011 Steven Winter Associates, Inc. All rights reserved. Ventilation Requirements Ventilation systems for existing homes that are:

307

Multifamily Ventilation - Best Practice?  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Multifamily Ventilation - Best Practice? Multifamily Ventilation - Best Practice? Dianne Griffiths April 29, 2013 Presentation Outline * Basic Objectives * Exhaust Systems * Make-up Air Systems Two Primary Ventilation Objectives 1) Providing Fresh Air - Whole-House 2) Removing Pollutants - Local Exhaust Our goal is to find the simplest solution that satisfies both objectives while minimizing cost and energy impacts. Common Solution: Align local exhaust with fresh air requirements (Ex: 25 Bath + 25 Kitchen) Exhaust-Driven Fresh Air Design * Exhaust slightly depressurizes the units * Outside air enters through leaks, cracks, or planned inlets * Widely used in the North Multifamily Ventilation Best Practice * Step 1: Understand ventilation requirements * Step 2: Select the simplest design that can

308

Nanoscale -structural domains in the phonon-glass thermoelectric material -Zn4Sb3 H. J. Kim,1 E. S. Bozin,1 S. M. Haile,2 G. J. Snyder,2 and S. J. L. Billinge1,  

E-Print Network (OSTI)

Nanoscale -structural domains in the phonon-glass thermoelectric material -Zn4Sb3 H. J. Kim,1 E. S April 2007 A study of the local atomic structure of the promising thermoelectric material -Zn4Sb3, using Thermoelectric materials allow for direct conversion of heat into electrical energy and vice versa. They hold

309

Thermoelectric Power of Germanium. Effect of 2000-atm Pressure  

Science Journals Connector (OSTI)

The effect of 2000-atm hydrostatic pressure on the thermoelectric power of n-and p-type germanium has been measured between 120 and 280°K. After spurious effects of heat conduction in the pressure medium were eliminated, the results could be explained in terms of pressure changes in the phonon-drag contribution.

P. J. Freud and G. M. Rothberg

1967-02-15T23:59:59.000Z

310

Profiling the Thermoelectric Power of Semiconductor Junctions with  

E-Print Network (OSTI)

sources realize energy conversion between heat and electricity without the use of moving me- chanical the thermoelectric power, band struc- tures, and carrier concentrations of semiconductor junctions that constitute S is governed by local carrier statistics, SThEM allows us to profile precise elec- tronic junction locations

311

Special Application Thermoelectric Micro Isotope Power Sources  

SciTech Connect

Promising design concepts for milliwatt (mW) size micro isotope power sources (MIPS) are being sought for use in various space and terrestrial applications, including a multitude of future NASA scientific missions and a range of military applications. To date, the radioisotope power sources (RPS) used on various space and terrestrial programs have provided power levels ranging from one-half to several hundred watts. In recent years, the increased use of smaller spacecraft and planned new scientific space missions by NASA, special terrestrial and military applications suggest the need for lower power, including mW level, radioisotope power sources. These power sources have the potential to enable such applications as long-lived meteorological or seismological stations distributed across planetary surfaces, surface probes, deep space micro-spacecraft and sub-satellites, terrestrial sensors, transmitters, and micro-electromechanical systems. The power requirements are in the range of 1 mW to several hundred mW. The primary technical requirements for space applications are long life, high reliability, high specific power, and high power density, and those for some special military uses are very high power density, specific power, reliability, low radiological induced degradation, and very low radiation leakage. Thermoelectric conversion is of particular interest because of its technological maturity and proven reliability. This paper summarizes the thermoelectric, thermal, and radioisotope heat source designs and presents the corresponding performance for a number of mW size thermoelectric micro isotope power sources.

Heshmatpour, Ben; Lieberman, Al; Khayat, Mo; Leanna, Andrew; Dobry, Ted [Teledyne Energy Systems, Incorporated, 10707 Gilroy Road, Hunt Valley, MD 21031 (United States)

2008-01-21T23:59:59.000Z

312

Proceedings of the XVI International Conference on Thermoelectrics, Dresden, Germany, August 26-29, 1997 Skutterudites: An Update  

E-Print Network (OSTI)

be meaningful for near room temperature applications [1], thermoelectric power generators which could operate technologies. This is true in particular for high power (over 200 W) automobile waste heat recovery and spaceProceedings of the XVI International Conference on Thermoelectrics, Dresden, Germany, August 26

313

High-temperature stability, structure and thermoelectric properties of CaMn1xNbxO3 phases  

E-Print Network (OSTI)

technologies such as solid oxide fuel cells, thermoelectric (TE) modules and high-temperature superconductorsHigh-temperature stability, structure and thermoelectric properties of CaMn1Ã?xNbxO3 phases Laura diffraction and electron diffraction data. Thermogravi- metric heating/cooling studies showed a reversible

314

Economic Passive Solar Warm-Air Heating and Ventilating System Combined with Short Term Storage within Building Components for Residential Houses  

Science Journals Connector (OSTI)

Warm-air heating systems are very suitable for the exploitation of solar energy. A relatively low temperature level combined ... used for transportation and distribution equipment or as storage elements.

K. Bertsch; E. Boy; K.-D. Schall

1984-01-01T23:59:59.000Z

315

The thermoelectric properties of Ge/SiGe modulation doped superlattices A. Samarelli, L. Ferre Llin, S. Cecchi, J. Frigerio, T. Etzelstorfer et al.  

E-Print Network (OSTI)

. [http://dx.doi.org/10.1063/1.4811228] I. INTRODUCTION Thermoelectric generators use the Seebeck effect to con- vert thermal energy into electrical energy. Since waste heat is abundant, there is renewed,3 The major use of thermoelectric materials is as heat pumps for cooling applications where the Peltier effect

Hague, Jim

316

High Temperature Experimental Characterization of Microscale Thermoelectric Effects  

E-Print Network (OSTI)

Mission Radioisotope Thermoelectric Generator (MMRTG) FactFigure 1.1: Radioisotope thermoelectric generator used byhand side radioisotope thermoelectric generator reflectivity

Favaloro, Tela

2014-01-01T23:59:59.000Z

317

Progress in Thermoelectrical Energy Recovery from a Light Truck...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of an Exhaust Thermoelectric Generator of a GM Sierra Pickup Truck Thermoelectrical Energy Recovery From the Exhaust of a Light Truck Automotive Thermoelectric Generators and HVAC...

318

ThermoElectric Power System Simulator (TEPSS) | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ThermoElectric Power System Simulator (TEPSS) ThermoElectric Power System Simulator (TEPSS) It describes the tool ThermoElectric Power System Simulator (TEPSS) which enables...

319

Development of a Thermoelectric Device for an Automotive Zonal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a Thermoelectric Device for an Automotive Zonal HVAC System Development of a Thermoelectric Device for an Automotive Zonal HVAC System Presents development of a thermoelectric...

320

NSF/DOE Thermoelectric Partnership: Inorganic-Organic Hybrid...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Inorganic-Organic Hybrid Thermoelectrics NSFDOE Thermoelectric Partnership: Inorganic-Organic Hybrid Thermoelectrics 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle...

Note: This page contains sample records for the topic "thermoelectric heating ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Heat Requirements of Buildings  

Science Journals Connector (OSTI)

... and Ventilating Engineers in a publication entitled “Recommendations for the Computation of Heat Requirements for Buildings” (Pp. iii+41. Is. 9d.) This comprises a section of the ... parts. That on temperature-rise and rates of change gives the recommended values applicable to buildings ranging alphabetically from aircraft sheds to warehouses. The design of heating and ventilating installations ...

1942-02-28T23:59:59.000Z

322

Natural Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Ventilation Natural Ventilation Natural Ventilation May 30, 2012 - 7:56pm Addthis Opening a window is a simple natural ventilation strategy. | Credit: ©iStockphoto/Simotion Opening a window is a simple natural ventilation strategy. | Credit: ©iStockphoto/Simotion What does this mean for me? If you live in a part of the country with cool nights and breezes, you may be able to cool your house with natural ventilation. If you're building a new home, design it to take advantage of natural ventilation. Natural ventilation relies on the wind and the "chimney effect" to keep a home cool. Natural ventilation works best in climates with cool nights and regular breezes. The wind will naturally ventilate your home by entering or leaving windows, depending on their orientation to the wind. When wind blows against your

323

Microsoft PowerPoint - High Temperature Thermoelectric_Ohuchi  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermoelectric Oxides Engineered Thermoelectric Oxides Engineered at Multiple Length Scales for Energy Harvesting Program Manager: Patricia Rawls Fumio S. Ohuchi (PI) and Rajendra K. Bordia(Co-PI) Department of Materials Science and Engineering University of Washington Box 352120 Seattle, WA 98195 Grant No. DE-FE0007272 (June 1, 2012-May 31, 2013) Graduate Students: Christopher Dandeneau and YiHsun Yang June 10, 2013 The UCR Contractors Review Conference Introduction/Motivation for Research * Thermoelectric (TE) oxides for waste heat recovery  Good high-temperature stability  Stable in hostile environments  Low cost/toxicity * Oxides with complex structure:  Low thermal conductivity,   Tailor stoichiometry to maximize S

324

Residential Ventilation & Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Residential Ventilation & Energy Figure 1: Annual Average Ventilation Costs of the Current U.S. Single-Family Housing Stock ($/year/house). Infiltration and ventilation in dwellings is conventionally believed to account for one-third to one-half of space conditioning energy. Unfortunately, there is not a great deal of measurement data or analysis to substantiate this assumption. As energy conservation improvements to the thermal envelope continue, the fraction of energy consumed by the conditioning of air may increase. Air-tightening programs, while decreasing energy requirements, have the tendency to decrease ventilation and its associated energy penalty at the possible expense of adequate indoor air quality. Therefore, more energy may be spent on conditioning air.

325

High performance thermoelectric nanocomposite device  

DOE Patents (OSTI)

A thermoelectric device includes a nanocomposite material with nanowires of at least one thermoelectric material having a predetermined figure of merit, the nanowires being formed in a porous substrate having a low thermal conductivity and having an average pore diameter ranging from about 4 nm to about 300 nm.

Yang, Jihui (Lakeshore, CA); Snyder, Dexter D. (Birmingham, MI)

2011-10-25T23:59:59.000Z

326

Dehumidification and cooling loads from ventilation air  

SciTech Connect

The importance of controlling humidity in buildings is cause for concern, in part, because of indoor air quality problems associated with excess moisture in air-conditioning systems. But more universally, the need for ventilation air has forced HVAC equipment (originally optimized for high efficiency in removing sensible heat loads) to remove high moisture loads. To assist cooling equipment and meet the challenge of larger ventilation loads, several technologies have succeeded in commercial buildings. Newer technologies such as subcool/reheat and heat pipe reheat show promise. These increase latent capacity of cooling-based systems by reducing their sensible capacity. Also, desiccant wheels have traditionally provided deeper-drying capacity by using thermal energy in place of electrical power to remove the latent load. Regardless of what mix of technologies is best for a particular application, there is a need for a more effective way of thinking about the cooling loads created by ventilation air. It is clear from the literature that all-too-frequently, HVAC systems do not perform well unless the ventilation air loads have been effectively addressed at the original design stage. This article proposes an engineering shorthand, an annual load index for ventilation air. This index will aid in the complex process of improving the ability of HVAC systems to deal efficiently with the amount of fresh air the industry has deemed useful for maintaining comfort in buildings. Examination of typical behavior of weather shows that latent loads usually exceed sensible loads in ventilation air by at least 3:1 and often as much as 8:1. A designer can use the engineering shorthand indexes presented to quickly assess the importance of this fact for a given system design. To size those components after they are selected, the designer can refer to Chapter 24 of the 1997 ASHRAE Handbook--Fundamentals, which includes separate values for peak moisture and peak temperature.

Harriman, L.G. III [Mason-Grant, Portsmouth, NH (United States); Plager, D. [Quantitative Decision Support, Portsmouth, NH (United States); Kosar, D. [Gas Research Inst., Chicago, IL (United States)

1997-11-01T23:59:59.000Z

327

Low-power communication with a photonic heat pump  

Science Journals Connector (OSTI)

An optical communication channel is constructed using a heated thermo-electrically pumped, high efficiency infrared light-emitting diode (LED). In these devices, electro-luminescent...

Huang, Duanni; Santhanam, Parthiban; Ram, Rajeev J

2014-01-01T23:59:59.000Z

328

FEMP-FS--Solar Ventilation Preheating  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Installing a "solar wall" to heat air before it enters a Installing a "solar wall" to heat air before it enters a building, called solar ventilation preheating, is one of the most efficient ways of reducing energy costs using clean and renewable energy. The system works by heating outside air with a south-facing solar collector-a dark-colored wall made of sheet metal and perforated with tiny holes. Outdoor air is drawn through the holes and heated as it absorbs the wall's warmth. The warm air rises in the space between the solar wall and the building wall and is moved into the air-duct system, usually by means of a fan, to heat the building. Any additional heating needed at night or on cloudy days is supplied by the build- ing's conventional heating system. During summer months, intake air bypasses the solar collector,

329

Domestic Heating and Thermal Insulation  

Science Journals Connector (OSTI)

... DIGEST 133 of the Building Research Station, entitled "Domestic Heating and Thermal Insulation" (Pp. 7. London : H.M. Stationery Office, 1960. 4insulation, the standard of heating, the ventilation-rate and the length of the heating season ...

1960-09-17T23:59:59.000Z

330

Heat Source Lire,  

NLE Websites -- All DOE Office Websites (Extended Search)

Source Lire, Source Lire, (liayrICS-25 ) tooling Tulles (Ai 1,06:1) - 11 (31.118 Module Stack Thermoelectric Module:, (14) ltcal L/Mr r a it i lli tisli Block Mounting Interface MMRTG Design Housing (At 2219) Fin (At Go63) Thermal Insulation (Min-K & Microtherm) Space Radioisotope Power Systems Multi-Mission Radioisotope Thermoelectric Generator January 2008 What is a Multi-Mission Radioisotope Thermoelectric Generator? Space exploration missions require safe, reliable, long-lived power systems to provide electricity and heat to spacecraft and their science instruments. A uniquely capable source of power is the radioisotope thermoelectric generator (RTG) - essentially a nuclear battery that reliably converts heat into electricity. The Department of Energy and NASA are developing

331

Radioisotope thermoelectric generator/thin fragment impact test  

SciTech Connect

The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel.

Reimus, M. A. H.; Hinckley, J. E. [Los Alamos National Laboratory, P.O. Box 1663, MS-E502, Los Alamos, New Mexico 87545 (United States)

1998-01-15T23:59:59.000Z

332

Radioisotope thermoelectric generator/thin fragment impact test  

SciTech Connect

The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel. {copyright} {ital 1998 American Institute of Physics.}

Reimus, M.A.; Hinckley, J.E. [Los Alamos National Laboratory, P.O. Box 1663, MS-E502, Los Alamos, New Mexico 87545 (United States)

1998-01-01T23:59:59.000Z

333

Radioisotope thermoelectric generator/thin fragment impact test  

SciTech Connect

The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the convertor housing, failure of one fueled clad, and release of a small quantity of fuel.

Reimus, M.A.H.; Hinckley, J.E.

1998-12-31T23:59:59.000Z

334

Manufacture of thermoelectric generator structures by fiber drawing  

DOE Patents (OSTI)

Methods of manufacturing a thermoelectric generator via fiber drawing and corresponding or associated thermoelectric generator devices are provided.

McIntyre, Timothy J; Simpson, John T; West, David L

2014-11-18T23:59:59.000Z

335

Thermal Strategies for High Efficiency Thermoelectric Power Generation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Strategies for High Efficiency Thermoelectric Power Generation Thermal Strategies for High Efficiency Thermoelectric Power Generation Developing integrated TE system...

336

NSF/DOE Thermoelectrics Partnership: Purdue ? GM Partnership...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces NSFDOE Thermoelectics Partnership: Thermoelectrics for Automotive Waste...

337

Sodium heat engine electrical feedthrough  

DOE Patents (OSTI)

A thermoelectric generator device which converts heat energy to electrical energy is disclosed. An alkali metal is used with a solid electrolyte and a hermetically sealed feedthrough structure. 4 figs.

Weber, N.

1985-03-19T23:59:59.000Z

338

Hybrid Solid Oxide Fuel Cell and Thermoelectric Generator for Maximum Power Output in Micro-CHP Systems  

Science Journals Connector (OSTI)

One of the most obvious early market applications for thermoelectric generators (TEG) is decentralized micro combined heat and power (CHP) installations of 0.5 kWe to 5 ... possible to increase the electricity pr...

L. A. Rosendahl; Paw V. Mortensen; Ali A. Enkeshafi

2011-05-01T23:59:59.000Z

339

Design of double skin (envelope) as a solar chimney: adapting natural ventilation in double envelope for mild or warm climates.  

E-Print Network (OSTI)

??In United States, space heating, space cooling and ventilation of buildings consume 33% of the annual building energy consumption and 15% of the total annual… (more)

Wang, Lutao

2010-01-01T23:59:59.000Z

340

Natural ventilation generates building form  

E-Print Network (OSTI)

Natural ventilation is an efficient design strategy for thermal comfort in hot and humid climates. The building forms can generate different pressures and temperatures to induce natural ventilation. This thesis develops a ...

Chen, Shaw-Bing

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermoelectric heating ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Measuring Residential Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Residential Ventilation Measuring Residential Ventilation System Airflows: Part 2 - Field Evaluation of Airflow Meter Devices and System Flow Verification J. Chris Stratton, Iain S. Walker, Craig P. Wray Environmental Energy Technologies Division October 2012 LBNL-5982E 2 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any

342

Thermoelectric Materials for Automotive Applications  

Energy.gov (U.S. Department of Energy (DOE))

Discusses the background information on what makes a good thermoelectric material, then the findings of three recent ORNL field report studies focused at PbSe, Bi2Se3, CrSi2, respectively

343

Prescription to Improve Thermoelectric Efficiency  

E-Print Network (OSTI)

PRESCRIPTION TO IMPROVE THERMOELECTRIC EFFICIENCY A Thesis by SHIV AKARSH MEKA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... May 2010 Major Subject: Materials Science and Engineering PRESCRIPTION TO IMPROVE THERMOELECTRIC EFFICIENCY A Thesis by SHIV AKARSH MEKA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...

Meka, Shiv Akarsh

2012-07-16T23:59:59.000Z

344

Atomic-level control of the thermoelectric properties in polytypoid nanowires Sean C. Andrews,ab  

E-Print Network (OSTI)

electrical power is generated through the scavenging of waste heat. The efficiency of this conversion the scavenging of waste heat. Materials containing nanometer-sized structural and compositional features canAtomic-level control of the thermoelectric properties in polytypoid nanowires Sean C. Andrews

Yang, Peidong

345

End-on radioisotope thermoelectric generator impact tests  

SciTech Connect

The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). The modular GPHS design was developed to address both survivability during launch abort and return from orbit. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure. {copyright} {ital 1997 American Institute of Physics.}

Reimus, M.A.; Hinckley, J.E. [Los Alamos National Laboratory P.O. Box 1663, MS-E502 Los Alamos, New Mexico87545 (United States)

1997-01-01T23:59:59.000Z

346

End-on radioisotope thermoelectric generator impact tests  

SciTech Connect

The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of [sup 238]Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). The modular GPHS design was developed to address both survivability during launch abort and return from orbit. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure.

Reimus, M.A.H.; Hhinckley, J.E.

1997-01-01T23:59:59.000Z

347

The Industrialization of Thermoelectric Power Generation Technology  

Energy.gov (U.S. Department of Energy (DOE))

Presents module and system requirements for high volume power generation with thermoelectrics such desirable thermoelectric properties, low material toxicity, interface compatibility, cost scalability, raw material availability and module reliability

348

Thermoelectric energy conversion using nanostructured materials  

E-Print Network (OSTI)

High performance thermoelectric materials in a wide range of temperatures are essential to broaden the application spectrum of thermoelectric devices. This paper presents experiments on the power and efficiency characteristics ...

Chen, Gang

349

E-Print Network 3.0 - absorption-sorption heat pumps Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Corporation Auxiliary - Heat pump water heater 50... -gal tank, electric auxiliary heating Multiple operating modes: heat pump, hybrid and standard... and Ventilation Systems...

350

E-Print Network 3.0 - absorption-type heat pumps Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Corporation Auxiliary - Heat pump water heater 50... -gal tank, electric auxiliary heating Multiple operating modes: heat pump, hybrid and standard... and Ventilation Systems...

351

Reliability of Transport Properties for Bulk Thermoelectrics  

Energy.gov (U.S. Department of Energy (DOE))

Presents international round-robin study to ensure quality of transport data and figure of merit of thermoelectric materials

352

Thermoelectric Bulk Materials from the Explosive Consolidation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

explosively consolidating nanopowders to yield fully dense, consolidated, nanostructured thermoelectric material nemir.pdf More Documents & Publications Enhancing the...

353

Thermoelectrics Interests and Research: ARL and TARDEC  

Energy.gov (U.S. Department of Energy (DOE))

Discusses US Army Applications of Thermoelectrics, including accurate measurements of TE coefficients, device parasitic and field emissions and ARL role.

354

High-Temperature Thermoelectric Materials Characterization for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies Program's subprograms in Lightweight Materials, Propulsion Materials, Energy Storage, and Thermoelectric Conversion at the Oak Ridge National Laboratory. * This...

355

Enhanced thermoelectric performance of rough silicon nanowires  

E-Print Network (OSTI)

thermoelectric materials can increase ZT . 1 (refs 2­4), the materials (Bi, Te, Pb, Sb, and Ag) and processes thermoelectric material, by greatly redu- cing thermal conductivitywithout much affectingtheSeebeckcoef- ficient and electricalresistivity, Si nanowire arrays show promise as high-performance, scalable thermoelectric materials. The most

Yang, Peidong

356

AbstractAbstract Improving efficiency of thermoelectric  

E-Print Network (OSTI)

-classical transport models used to predict ZT can effectively predict thermoelectric performance of bulk materials Material PerformanceThermoelectric Material Performance 0 0.5 1 1.5 2 2.5 3 1950 1960 1970 1980 1990 2000AbstractAbstract · Improving efficiency of thermoelectric energy conversion devices is a major

Walker, D. Greg

357

CONFERENCE PROCEEDINGS Low-dimensional thermoelectric materials  

E-Print Network (OSTI)

CONFERENCE PROCEEDINGS Low-dimensional thermoelectric materials M. S. Dresselhaus Department of low dimensional thermoelectric materials for enhanced performance is reviewed, with particular-dimensional thermoelectric material is discussed. © 1999 American Institute of Physics. S1063-7834 99 00105-7 Professor Abram

Cronin, Steve

358

Measurements and Standards for Thermoelectric Materials  

E-Print Network (OSTI)

Measurements and Standards for Thermoelectric Materials CERAMICS Our goal is to develop standard, electrical conductivity, thermal conductivity) for thin film and bulk thermoelectric materials to enable the commercialization of these materials. Objective Impact and Customers · Thermoelectric SRMs and measurement methods

359

Natural thermoelectric heat pump in social wasps  

Science Journals Connector (OSTI)

... answer a lot of questions about how hornets, wasps and even other insects stop themselves overheating during a day's work. The hornet's cuticle has the same structure, albeit ... generates a voltage when exposed to sunlight or ultraviolet rays, much like a man-made solar battery. ...

2003-06-05T23:59:59.000Z

360

Thermoelectric Technology for Automotive Waste Heat Recovery  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

Note: This page contains sample records for the topic "thermoelectric heating ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Quantum Well Thermoelectrics and Waste Heat Recovery  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

362

The impact of demand-controlled and economizer ventilation strategies on energy use in buildings  

SciTech Connect

The overall objective of this work was to evaluate typical energy requirements associated with alternative ventilation control strategies for constant-air-volume (CAV) systems in commercial buildings. The strategies included different combinations of economizer and demand-controlled ventilation, and energy analyses were performed for four typical building types, eight alternative ventilation systems, and twenty US climates. Only single-zone buildings were considered so that simultaneous heating and cooling did not exist. The energy savings associated with economizer and demand-controlled ventilation strategies were found to be very significant for both heating and cooling. In general, the greatest savings in electrical usage for cooling with the addition of demand-controlled ventilation occur in situations where the opportunities for economizer cooling are less. This is true for warm and humid climates and for buildings that have relatively low internal gains (i.e., low occupant densities). As much as 20% savings in electrical energy for cooling were possible with demand-controlled ventilation. The savings in heating energy associated with demand-controlled ventilation were generally much larger but were strongly dependent upon the building type and occupancy schedule. Significantly greater savings were found for buildings with highly variable occupancy schedules and large internal gains (i.e., restaurants) as compared with office buildings. In some cases, the primary heating energy was virtually eliminated by demand-controlled ventilation as compared with fixed ventilation rates. For both heating and cooling, the savings associated with demand-controlled ventilation are dependent on the fixed minimum ventilation rate of the base case at design conditions.

Brandemuehl, M.J.; Braun, J.E.

1999-07-01T23:59:59.000Z

363

Ventilation Air Preconditioning Systems  

E-Print Network (OSTI)

Ventilation Air Preconditioning Systems Mukesh Khattar Michael J. Brandemuehl Manager, Space Conditioning and Refrigeration Associate Professor Customer Systems Group Joint Center for Energy Management Electric Power Research Institute Campus... costs, the small, modular nature of the system allows great flexibility for fitting into retrofit geometries and saves space in new construction. Moreover, a single chiller can serve multiple air-handling units-in stark contrast to packaged...

Khattar, M.; Brandemuehl, M. J.

1996-01-01T23:59:59.000Z

364

Automotive Fuel Efficiency Improvement via Exhaust Gas Waste Heat Conversion to Electricity  

Energy.gov (U.S. Department of Energy (DOE))

Working to expand the usage of thermoelectric technology beyond seat heating and cooling and in doing so reduce CO2 emissions and conserve energy.

365

Synthesis and Characterization of 14-1-11 Ytterbium Manganese Antimonide Derivatives for Thermoelectric Applications  

E-Print Network (OSTI)

have made radioisotope thermoelectric generators (RTGs),Mission Radioisotope Thermoelectric Generator (MMRTG) used

Star, Kurt

2013-01-01T23:59:59.000Z

366

A Solid Core Heatpipe Reactor with Cylindrical Thermoelectric Converter Modules  

SciTech Connect

A nuclear space power system that consists of a solid metal nuclear reactor core with heat pipes carrying energy to a cylindrical thermoelectric converter surrounding each of the heat pipes with a heat pipe radiator surrounding the thermoelectric converter is the most simple and reliable space power system. This means no single point of failure since each heat pipe and cylindrical converter is a separate power system and if one fails it will not affect the others. The heat pipe array in the solid core is designed so that if an isolated heat pipe or even two adjacent heat pipes fail, the remaining heat pipes will still transport the core heat without undue overheating of the uranium nitride fuel. The primary emphasis in this paper is on simplicity, reliability and fabricability of such a space nuclear power source. The core and heat pipes are made of Niobium 1% Zirconium alloy (Nb1Zr), with rhenium lined fuel tubes, bonded together by hot isostatic pressure (HIPing) and with sodium as the heat pipe working fluid, can be operated up to 1250K. The cylindrical thermoelectric converter is made by depositing the constituents of the converter around a Nb1%Zr tube and encasing it in a Nb 1% Zr alloy tube and HIPing the structure to get final bonding and to produce residual compressive stresses in all brittle materials in the converter. A radiator heat pipe filled with potassium that operates at 850K is bonded to the outside of the cylindrical converter for cooling. The solid core heat pipe and cylindrical converter are mated by welding during the final assembly. A solid core reactor with 150 heat pipes with a 0.650-inch (1.65 cm) ID and a 30-inch (76.2 cm) length with an output of 8 Watts per square inch as demonstrated by the SP100 PD2 cell tests will produce about 80 KW of electrical power. An advanced solid core reactor made with molybdenum 47% rhenium alloy, with lithium heat pipes and the PD2 theoretical output of 11 watts per square inch or advanced higher temperature converter to operate at 1350K could produce a greater output of approximately 100KW.

Sayre, Edwin D. [218 Brooke Acres Drive, Los Gatos, CA 95032 (United States); Vaidyanathan, Sam [6663 Pomander Place, San Jose, CA 95120 (United States)

2006-01-20T23:59:59.000Z

367

The impact of demand-controlled ventilation on energy use in buildings  

SciTech Connect

The overall objective of this work was to evaluate typical energy requirements associated with alternative ventilation control strategies. The strategies included different combinations of economizer and demand-controlled ventilation controls and energy analyses were performed for a range of typical buildings, systems, and climates. Only single zone buildings were considered, so that simultaneous heating and cooling did not exist. The energy savings associated with economizer and demand-controlled ventilation strategies were found to be very significant for both heating and cooling. In general, the greatest savings in electrical usage for cooling with the addition of demand-controlled ventilation occur in situations where the opportunities for economizer cooling are less. This is true for warm and humid climates, and for buildings that have low relative internal gains (i.e., low occupant densities). As much as 10% savings in electrical energy for cooling were possible with demand-controlled ventilation. The savings in heating energy associated with demand-controlled ventilation were generally much larger, but were strongly dependent upon the occupancy schedule. Significantly greater savings were found for buildings with highly variable occupancy schedules (e.g., stores and restaurants) as compared with office buildings. In some cases, the primary heating energy was reduced by a factor of 10 with demand-controlled ventilation as compared with fixed ventilation rates.

Braun, J.E.; Brandemuehl, M.J.

1999-07-01T23:59:59.000Z

368

The Improvement of Natural Ventilation in an Industrial Workshop by Solar Chimney  

Science Journals Connector (OSTI)

This paper presents a numerical simulation based on computational fluid dynamics (CFD) method on the enhancement of natural ventilation in an industrial workshop with heat source induced by solar chimney (SC). Four types of SC were designed to attach ... Keywords: natural ventilation, solar chimney, industrtial workshop, numerical simulation, thermal comfort

Yu-feng Xue; Ya-xin Su

2011-02-01T23:59:59.000Z

369

Thermoelectric refrigerator having improved temperature stabilization means  

DOE Patents (OSTI)

A control system for thermoelectric refrigerators is disclosed. The thermoelectric refrigerator includes at least one thermoelectric element that undergoes a first order change at a predetermined critical temperature. The element functions as a thermoelectric refrigerator element above the critical temperature, but discontinuously ceases to function as a thermoelectric refrigerator element below the critical temperature. One example of such an arrangement includes thermoelectric refrigerator elements which are superconductors. The transition temperature of one of the superconductor elements is selected as the temperature control point of the refrigerator. When the refrigerator attempts to cool below the point, the metals become superconductors losing their ability to perform as a thermoelectric refrigerator. An extremely accurate, first-order control is realized.

Falco, Charles M. (Woodridge, IL)

1982-01-01T23:59:59.000Z

370

Greenhouse Ventilation1 Dennis E . Buffington, Ray A. Bucklin, Richard W. Henley and Dennis B. McConnell2  

E-Print Network (OSTI)

high temperatures during the summer caused by the influx of solar radiation, to maintain relative VENTILATION A heating system with adequate capacity is needed in the winter to maintain environmental of the winter, when the heating system is running at full capacity, some ventilation is still required

Watson, Craig A.

371

Department of Mechanical Engineering "Heat Under the Microscope  

E-Print Network (OSTI)

applications ranging from thermoelectric waste heat recovery to radio astronomy. BIOGRAPHY Austin MinnichDepartment of Mechanical Engineering presents "Heat Under the Microscope: Uncovering an essential role in nearly every technological application, ranging from space power generation to consumer

Militzer, Burkhard

372

Literature Review of Displacement Ventilation  

E-Print Network (OSTI)

) and Nielsen et al. (1988) showed the impact of supply diffusers whereby increasing the entrainment of room air can decrease the temperature gradient in the occupied zone. #0;? Two important parameters to evaluate the performance of displacement ventilation... of Ventilated Rooms, Oslo, Norway. Nielsen, P.V., Hoff, L., Pedersen, L.G. 1988. Displacement Ventilation by Different Types of Diffusers. Proceedings of the 9 th AIVC Conference, Warwick. Niu, J. 1994. Modeling of Cooled-Ceiling Air-Conditioning Systems Ph...

Cho, S.; Im, P.; Haberl, J. S.

373

Concentrated Solar Thermoelectric Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SOLAR POWER PROGRAM REVIEW 2013 Receiver Cavity * Receiver cavity can reduce heat loss from black surface or selective surface 18 With blackbody absorber: With 20%...

374

Procurement of a fully licensed radioisotope thermoelectric generator transportation system  

SciTech Connect

A fully licensed transportation system for Radioisotope Thermoelectric Generators and Light-Weight Radioisotope Heater Units is currently being designed and built. The system will comply with all applicable U.S. Department of Transportation regulations without the use of a DOE Alternative.'' The U.S. Department of Transportation has special double containment'' requirements for plutonium. The system packaging uses a doubly contained bell jar'' concept. A refrigerated trailer is used for cooling the high-heat payloads. The same packaging is used for both high- and low-heat payloads. The system is scheduled to be available for use by mid-1992.

Adkins, H.E.; Bearden, T.E. (Westinghouse Hanford Company, P.O. Box 1970, N1-42, Richland, Washington 99352 (US))

1991-01-01T23:59:59.000Z

375

Procurement of a fully licensed radioisotope thermoelectric generator transportation system  

SciTech Connect

A fully licensed transportation system for Radioisotope Thermoelectric Generators and Light-Weight Radioisotope Heater Units is currently being designed and built. The system will comply with all applicable US Department of Transportation regulations without the use of a DOE Alternative.'' The US Department of Transportation has special double containment'' requirements for plutonium. The system packaging uses a doubly contained bell jar'' concept. A refrigerated trailer is used for cooling the high-heat payloads. The same packaging is used for both high- and low-heat payloads. The system is scheduled to be available for use by mid-1992. 4 refs., 4 figs., 2 tabs.

Adkins, H.E.; Bearden, T.E.

1990-10-01T23:59:59.000Z

376

High-Efficiency Solid State Cooling Technologies: Non-Equilibrium Asymmetic Thermoelectrics (NEAT) Devices  

SciTech Connect

BEETIT Project: Sheetak is developing a thermoelectric-based solid state cooling system to replace typical air conditioners that use vapor compression to cool air. With noisy mechanical components, vapor compression systems use a liquid refrigerant to circulate within the air conditioner, absorb heat, and pump the heat out into the external environment. With no noisy moving parts or polluting refrigerants, thermoelectric systems rely on an electrical current being passed through the junction of the two different conducting materials to change temperature. Using advanced semiconductor technology, Sheetak is improving solid state cooling systems by using proprietary thermoelectric materials along with other innovations to achieve significant energy efficiency. Sheetak’s new design displaces compressor-based technology; improves reliability; and decreases energy usage. Sheetak’s use of semiconductor manufacturing methods leads to less material use—facilitating cheaper production.

None

2010-09-01T23:59:59.000Z

377

General formula for the thermoelectric transport phenomena based on Fermi liquid theory: Thermoelectric power, Nernst coefficient, and thermal conductivity  

Science Journals Connector (OSTI)

On the basis of linear response transport theory, the general expressions for the thermoelectric transport coefficients, such as thermoelectric power (S), Nernst coefficient (?), and thermal conductivity (?), are derived by using Fermi liquid theory. The obtained expression is exact for the most singular term in terms of 1/?k* (?k* being the quasiparticle damping rate). We utilize Ward identities for the heat velocity which is derived by the local energy conservation law. The derived expressions enable us to calculate various thermoelectric transport coefficients in a systematic way, within the framework of the conserving approximation of Baym and Kadanoff. Thus the present expressions are very useful for studying strongly correlated electrons such as high-Tc superconductors, organic metals, and heavy fermion systems, where the current vertex correction (VC) is expected to play important roles. By using the derived expression, we calculate the thermal conductivity ? in a free-dispersion model up to second order with respect to the on-site Coulomb potential U. We find that it is slightly enhanced due to the VC for the heat current, although the VC for electron current makes the conductivity (?) of this system diverge, reflecting the absence of the umklapp process.

Hiroshi Kontani

2003-01-16T23:59:59.000Z

378

Nanostructured Thermoelectric Materials: From Superlattices to Nanocomposites Ronggui Yang1  

E-Print Network (OSTI)

Nanostructured Thermoelectric Materials: From Superlattices to Nanocomposites Ronggui Yang1. Materials with a large thermoelectric figure of merit can be used to develop efficient solid-state devices nanocomposites, aiming at developing high efficiency thermoelectric energy conversion materials. 1. Introduction

Chen, Gang

379

Role of anisotropy in noncontacting thermoelectric materials characterization  

E-Print Network (OSTI)

Role of anisotropy in noncontacting thermoelectric materials characterization Adnan H. Nayfeh by the intrinsic thermoelectric anisotropy and inhomogeneity of the material to be inspected. This article presents for non- destructive evaluation NDE and materials characterization. Most existing thermoelectric NDE

Nagy, Peter B.

380

Phase Transition Enhanced Thermoelectrics From the Resnick Sustainability Institute  

E-Print Network (OSTI)

class of thermoelectric materials, mixed ion-electron conductors. It examines a new method thermoelectric material, Cu2 Se, that shows enhanced efficiency near its structural phase transition temperature and enhancing the thermoelectric effect. Via material engineering, including electrochemical investigations

Note: This page contains sample records for the topic "thermoelectric heating ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Electron and Phonon Engineering in Nanostructured Thermoelectric Materials Zhifeng Ren  

E-Print Network (OSTI)

2.00pm Electron and Phonon Engineering in Nanostructured Thermoelectric Materials Zhifeng Ren Department of Physics, Boston College, Chestnut Hill, Massachusetts Abstract Thermoelectric materials a successful case for potentially large scale application using thermoelectric materials. Biography Dr Zhifeng

Levi, Anthony F. J.

382

Energy Impact of Residential Ventilation Norms in the United States  

E-Print Network (OSTI)

legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus by the American Society of Heating, Refrigerating and Air- conditioning Engineers (ASHRAE). This standard does but about the environment in which they lived. Historically, people have ventilated buildings to provide

383

Why We Ventilate - Recent Advances  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WHY WE VENTILATE: WHY WE VENTILATE: Recent Advances Max Sherman BA Stakeholders meeting ASHRAE BIO  Distinguished Lecturer  Exceptional Service Award  Board of Directors; TechC  Chair of committees:  62.2; Standards Committee  TC 4.3; TC 2.5  Holladay Distinguished Fellow OVERVIEW QUESTIONS  What is Ventilation? What is IAQ?  What functions does it provide?  How much do we need? Why?  How should ventilations standards be made? LBL has working on these problems Who Are You?  Engineers (ASHRAE Members & not);  architects,  contractors,  reps,  builders,  vendors,  code officials WHAT IS VENTILATION  Medicine: To Exchange Air In the Lungs  Latin: Ventilare, "to expose to the wind"  Today: To Bring In Outdoor Air And Replace

384

Vehicle Technologies Office: 3rd Thermoelectrics Applications Workshop 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

3rd Thermoelectrics 3rd Thermoelectrics Applications Workshop 2012 to someone by E-mail Share Vehicle Technologies Office: 3rd Thermoelectrics Applications Workshop 2012 on Facebook Tweet about Vehicle Technologies Office: 3rd Thermoelectrics Applications Workshop 2012 on Twitter Bookmark Vehicle Technologies Office: 3rd Thermoelectrics Applications Workshop 2012 on Google Bookmark Vehicle Technologies Office: 3rd Thermoelectrics Applications Workshop 2012 on Delicious Rank Vehicle Technologies Office: 3rd Thermoelectrics Applications Workshop 2012 on Digg Find More places to share Vehicle Technologies Office: 3rd Thermoelectrics Applications Workshop 2012 on AddThis.com... Publications Key Publications Plans & Roadmaps Partnership Documents Annual Progress Reports Success Stories

385

2nd Thermoelectrics Applications Workshop 2011 | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for the Application of Thermoelectric Generators Andreas Eder BMW Group, Munich, Germany Tuesday, January 4, 2011 Overview of Worldwide Activities in Thermoelectrics John...

386

Thermoelectrical Energy Recovery From the Exhaust of a Light...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications The Effects of an Exhaust Thermoelectric Generator of a GM Sierra Pickup Truck Progress in Thermoelectrical Energy Recovery from a...

387

Analysis of a novel thermoelectric generator in the built environment.  

E-Print Network (OSTI)

??This study centered on a novel thermoelectric generator (TEG) integrated into the built environment. Designed by Watts Thermoelectric LLC, the TEG is essentially a novel… (more)

Lozano, Adolfo

2011-01-01T23:59:59.000Z

388

Development of a 100-Watt High Temperature Thermoelectric Generator...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Generator Development of a 100-Watt High Temperature Thermoelectric Generator Test results for low and high temperature thermoelectric generators (TEG) those for a...

389

Progress toward Development of a High-Efficiency Zonal Thermoelectric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

toward Development of a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications Progress toward Development of a High-Efficiency Zonal Thermoelectric HVAC...

390

Nano-structures Thermoelectric Materals - Part 2 | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nano-structures Thermoelectric Materals - Part 2 Nano-structures Thermoelectric Materals - Part 2 2002 DEER Conference Presentation: RTI International 2002deervenkatasubramanian2...

391

Nano-structures Thermoelectric Materals - Part 1 | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nano-structures Thermoelectric Materals - Part 1 Nano-structures Thermoelectric Materals - Part 1 2002 DEER Conference Presentation: RTI International 2002deervenkatasubramanian1...

392

Innovative Nano-structuring Routes for Novel ThermoelectricMaterials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nano-structuring Routes for Novel Thermoelectric Materials;Phonon Blocking & DOS Engineering Innovative Nano-structuring Routes for Novel Thermoelectric Materials;Phonon Blocking &...

393

High Reliability, High TemperatureThermoelectric Power Generation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Reliability, High TemperatureThermoelectric Power Generation Materials and Technologies High Reliability, High TemperatureThermoelectric Power Generation Materials and Technologies...

394

Feasibility of OnBoard Thermoelectric Generation for Improved...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

OnBoard Thermoelectric Generation for Improved Vehicle Fuel Economy Feasibility of OnBoard Thermoelectric Generation for Improved Vehicle Fuel Economy Poster presentation at the...

395

Overview of Progress in Thermoelectric Power Generation Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Overview of Progress in Thermoelectric Power Generation Technologies in Japan Overview of Progress in Thermoelectric Power Generation Technologies in Japan Presents progress in...

396

Probabilistic Mechanical Reliability Prediction of Thermoelectric Legs  

SciTech Connect

The probability of failure, Pf, for various square-arrayed thermoelectric device designs using bismuth telluride, lead telluride, or skutterudite thermoelectric materials were estimated. Only volume- or bulk-based Pf analysis was considered in this study. The effects of the choice of the thermoelectric material, the size of the leg array, the height of the thermoelectric legs, and the boundary conditions on the Pf of thermoelectric devices were investigated. Yielding of the solder contacts and mounting layer was taken into account. The modeling results showed that the use of longer legs, using skutterudites, allowing the thermoelectric device to freely deform while under a thermal gradient, and using smaller arrays promoted higher probabilities of survival.

Jadaan, Osama M. [University of Wisconsin, Platteville; Wereszczak, Andrew A [ORNL

2009-05-01T23:59:59.000Z

397

High thermoelectric performance by resonant dopant indium in nanostructured SnTe  

E-Print Network (OSTI)

From an environmental perspective, lead-free SnTe would be preferable for solid-state waste heat recovery if its thermoelectric figure-of-merit could be brought close to that of the lead-containing chalcogenides. In this ...

Liao, Bolin

398

Atomic Layer-by-Layer Thermoelectric Conversion in Topological Insulator Bismuth/Antimony Tellurides  

E-Print Network (OSTI)

the hot carrier conduction near the Fermi energy (EF) through the band states or other localized statesAtomic Layer-by-Layer Thermoelectric Conversion in Topological Insulator Bismuth Supporting Information ABSTRACT: Material design for direct heat-to-electricity conversion with substantial

Jo, Moon-Ho

399

Powering a Cat Warmer Using Thin-Film Thermoelectric Conversion of Microprocessor  

E-Print Network (OSTI)

towards one end, creating a difference in potential. The efficiency of thermo- electric generators (TEG efficiencies when converting heat to electricity using the thermoelectric ef- fect. Applied to microprocessors produced by laptops [14], [17], climate-change inducing electricity consumption [11], and unhappy house

Yang, Junfeng

400

Thermoelectric Activities of European Community within Framework...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of European Community within Framework Programme 7 and additional activities in Germany Thermoelectric Activities of European Community within Framework Programme 7 and...

Note: This page contains sample records for the topic "thermoelectric heating ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Commercialization of Bulk Thermoelectric Materials for Power...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Commercialization of Bulk Thermoelectric Materials for Power Generation Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation Distributed Bio-Oil...

402

Thermoelectric Materials by Design, Computational Theory and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Design, Computational Theory and Structure Thermoelectric Materials by Design, Computational Theory and Structure 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual...

403

Thermoelectric Materials by Design: Computational Theory and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Design: Computational Theory and Structure Thermoelectric Materials by Design: Computational Theory and Structure Presentation from the U.S. DOE Office of Vehicle Technologies...

404

Scientists Connect Thermoelectric Materials and Topological Insulators...  

NLE Websites -- All DOE Office Websites (Extended Search)

and relativity in combination produce a unique conducting state on the surface. Excellent thermoelectric performance depends on a material having both high conductivity and high...

405

Concentrated Thermoelectric Power | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Concentrated Thermoelectric Power This fact sheet describes a concentrated solar hydroelectric power project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D...

406

Thermoelectric Power Generation System with Loop Thermosyphon...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Power Generation System with Loop Thermosyphon in Future High Efficiency Hybrid Vehicles Thermoelectric Power Generation System with Loop Thermosyphon in Future High Efficiency...

407

Electrical and Thermoelectrical Transport Properties of Graphene  

E-Print Network (OSTI)

OF CALIFORNIA RIVERSIDE Electrical and ThermoelectricalIn addition to the electrical conductivity, thermoelectricthe energy-dependent electrical conductivity under certain

Wang, Deqi

2011-01-01T23:59:59.000Z

408

Ferecrystals: Thermoelectric Materials Poised Between the Crystalline...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

These new compounds are thermal stable to 650 C, have low thermal and an increased ZT. johnson.pdf More Documents & Publications Trends in Thermoelectric Properties with...

409

Trends in Thermoelectric Properties with Nanostructure: Ferecrystals...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to interleave on the nanoscale two or more compounds with different crystal structures johnson.pdf More Documents & Publications Ferecrystals: Thermoelectric Materials Poised...

410

Vehicular Thermoelectrics: A New Green Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Performance: Figure of Merit (ZT) Oregon State Vehicle Technologies Program eere.energy.gov Nanoscale Effects for Thermoelectrics (courtesy Millie Dresselhaus, MIT)...

411

Nanostructured Thermoelectric Materials and High Efficiency Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanostructured Thermoelectric Materials and High Efficiency Power Generation Modules Home Author: T. Hogan, A. Downey, J. Short, S. D. Mahanti, H. Schock, E. Case Year: 2007...

412

Thermoelectric Mechanical Reliability | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Mechanical Reliability Thermoelectric Mechanical Reliability 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

413

Thermoelectric Materials By Design: Mechanical Reliability (Agreement...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Materials By Design: Mechanical Reliability (Agreement 14957) Thermoelectric Materials By Design: Mechanical Reliability (Agreement 14957) Presentation from the U.S. DOE Office of...

414

Vehicular Thermoelectrics: A New Green Technology | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

with the NSF deer11fairbanks.pdf More Documents & Publications Thermoelectrics: The New Green Automotive Technology Solid-State Energy Conversion Overview Automotive...

415

Correlation Between Structure and Thermoelectric Properties of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

converted into crystalline bulks under pressure produced thermoelectric materials of nano-sized grains with strongly coupled grain boundaries, achieving reduced lattice thermal...

416

Recent Device Developments with Advanced Bulk Thermoelectric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

at RTI Reviews work in engineered thin-film nanoscale thermoelectric materials and nano-bulk materials with high ZT undertaken by RTI in collaboration with its research...

417

Ventilation in Multifamily Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2011 , 2011 Ventilation in Multifamily Buildings Welcome to the Webinar! We will start at 2:00 PM Eastern Time Be sure that you are also dialed into the telephone conference call: Dial-in number: 888-324-9601; Pass code: 5551971 Download the presentation at: www.buildingamerica.gov/meetings.html Building Technologies Program eere.energy.gov Building America: Introduction November 1, 2011 Cheryn Engebrecht Cheryn.engebrecht@nrel.gov Building Technologies Program Building Technologies Program eere.energy.gov * Reduce energy use in new and existing residential buildings * Promote building science and systems engineering / integration approach * "Do no harm": Ensure safety, health and durability are maintained or improved * Accelerate adoption of high performance technologies

418

Miniature thermo-electric cooled cryogenic pump  

SciTech Connect

A miniature thermo-electric cooled cryogenic pump is described for removing residual water molecules from an inlet sample prior to sample analysis in a mass spectroscopy system, such as ion cyclotron resonance (ICR) mass spectroscopy. The cryogenic pump is a battery operated, low power (<1.6 watts) pump with a {Delta}T=100 C characteristic. The pump operates under vacuum pressures of 5{times}10{sup {minus}4} Torr to ultra high vacuum (UHV) conditions in the range of 1{times}10{sup {minus}7} to 3{times}10{sup {minus}9} Torr and will typically remove partial pressure, 2{times}10{sup {minus}7} Torr, residual water vapor. The cryogenic pump basically consists of an inlet flange piece, a copper heat sink with a square internal bore, four two tier Peltier (TEC) chips, a copper low temperature square cross sectional tubulation, an electronic receptacle, and an exit flange piece, with the low temperature tubulation being retained in the heat sink at a bias angle of 5{degree}, and with the TECs being positioned in parallel to each other with a positive potential being applied to the top tier thereof. 2 figs.

Keville, R.F.

1997-11-18T23:59:59.000Z

419

Miniature thermo-electric cooled cryogenic pump  

SciTech Connect

A miniature thermo-electric cooled cryogenic pump for removing residual water molecules from an inlet sample prior to sample analysis in a mass spectroscopy system, such as ion cyclotron resonance (ICR) mass spectroscopy. The cryogenic pump is a battery operated, low power (<1.6 watts) pump with a .DELTA.T=100.degree. C. characteristic. The pump operates under vacuum pressures of 5.times.10.sup.-4 Torr to ultra high vacuum (UHV) conditions in the range of 1.times.10.sup.-7 to 3.times.10.sup.-9 Torr and will typically remove partial pressure, 2.times.10.sup.-7 Torr, residual water vapor. The cryogenic pump basically consists of an inlet flange piece, a copper heat sink with a square internal bore, four two tier Peltier (TEC) chips, a copper low temperature square cross sectional tubulation, an electronic receptacle, and an exit flange piece, with the low temperature tubulation being retained in the heat sink at a bias angle of 5.degree., and with the TECs being positioned in parallel to each other with a positive potential being applied to the top tier thereof.

Keville, Robert F. (Valley Springs, CA)

1997-01-01T23:59:59.000Z

420

Thermoelectric properties of mesoscopic superconductors  

SciTech Connect

We develop a general framework for describing thermoelectric effects in phase-coherent superconducting structures. Formulas for the electrical conductance, thermal conductance, thermopower, and Peltier coefficient are obtained and their various symmetries discussed. Numerical results for both dirty and clean Andreev interferometers are presented. We predict that giant oscillations of the thermal conductance can occur, even when oscillations in the electrical conductance are negligibly small. Results for clean, two-dimensional systems with a single superconducting inclusion are also presented, which show that normal-state oscillations arising from quasiparticle boundary scattering are suppressed by the onset of superconductivity. In contrast, for a clean system with no normal-state boundary scattering, switching on superconductivity induces oscillations in off-diagonal thermoelectric coefficients. {copyright} {ital 1996 The American Physical Society.}

Claughton, N.R.; Lambert, C.J. [School of Physics and Chemistry, Lancaster University, Lancaster, LA14YB (England)] [School of Physics and Chemistry, Lancaster University, Lancaster, LA14YB (England)

1996-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermoelectric heating ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Modeling Energy Recovery Using Thermoelectric Conversion Integrated with an Organic Rankine Bottoming Cycle  

SciTech Connect

Hot engine exhaust represents a resource that is often rejected to the environment without further utilization. This resource is most prevalent in the transportation sector, but stationary engine-generator systems also typically do not utilize this resource. Engine exhaust is a source of high grade thermal energy that can potentially be utilized by various approaches to produce electricity or to drive heating and cooling systems. This paper describes a model system that employs thermoelectric conversion as a topping cycle integrated with an organic Rankine bottoming cycle for waste heat utilization. This approach is being developed to fully utilize the thermal energy contained in hot exhaust streams. The model is composed of a high temperature heat exchanger which extracts thermal energy for driving the thermoelectric conversion elements. However, substantial sensible heat remains in the exhaust stream after emerging from the heat exchanger. The model incorporates a closely integrated bottoming cycle to utilize this remaining thermal energy in the exhaust stream. The model has many interacting parameters that define combined system quantities such as overall output power, efficiency, and total energy utilization factors. In addition, the model identifies a maximum power operating point for the system. That is, the model can identify the optimal amount of heat to remove from the exhaust flow to run through the thermoelectric elements. Removing too much or too little heat from the exhaust stream in this stage will reduce overall cycle performance. The model has been developed such that heat exchanger UAh values, thermal resistances, ZT values, and multiple thermoelectric elements can be investigated in the context of system operation. The model also has the ability to simultaneously determine the effect of each cycle design parameter on the performance of the overall system, thus giving the ability to utilize as much waste heat as possible. Key analysis results are presented showing the impact of critical design parameters on power output, system performance and inter-relationships between design parameters in governing performance.

Miller, Erik W.; Hendricks, Terry J.; Peterson, Richard B.

2009-07-01T23:59:59.000Z

422

Advanced Thin Film Thermoelectric Systems forEfficient Air-Conditioner...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thin Film Thermoelectric Systems forEfficient Air-Conditioners Advanced Thin Film Thermoelectric Systems forEfficient Air-Conditioners Presents recent advances in thermoelectric...

423

Development of a solar receiver for a high-efficiency thermionic/thermoelectric conversion system  

SciTech Connect

Solar energy is one of the most promising energy resources on Earth and in space, because it is clean and inexhaustible. Therefore, we have been developing a solar-powered high-efficiency thermionic-thermoelectric conversion system which combines a thermionic converter (TIC) with a thermoelectric converter (TEC) to use thermal energy efficiently and to achieve high efficiency conversion. The TIC emitter must uniformly heat up to 1800 K. The TIC emitter can be heated using thermal radiation from a solar receiver maintained at a high temperature by concentrated solar irradiation. A cylindrical cavity-type solar receiver constructed from graphite was designed and heated in a vacuum by using the solar concentrator at Tohoku University. The maximum temperature of the solar receiver enclosed by a molybdenum cup reached 1965 K, which was sufficiently high to heat a TIC emitter using thermal radiation from the receiver. 4 refs., 6 figs., 1 tab.

Naito, H.; Kohsaka, Y.; Cooke, D.; Arashi, H. [Tohoku Univ., Aramaki (Japan)] [Tohoku Univ., Aramaki (Japan)

1996-10-01T23:59:59.000Z

424

IMPROVING THERMOELECTRIC TECHNOLOGY PERFORMANCE AND DURABILITY WITH AEROGEL  

E-Print Network (OSTI)

aerogel as an effective sublimation barrier for a wide range of thermoelectric technologies based on Si

Jeff Sakamoto; Thierry Caillat; Jean-pierre Fleurial; Steve Jones; Jong-ah Paik; Winny Dong

425

Thermoelectric Bulk Materials from the Explosive Consolidation of Nanopowders  

Energy.gov (U.S. Department of Energy (DOE))

Describes technique of explosively consolidating nanopowders to yield fully dense, consolidated, nanostructured thermoelectric material

426

Design and Optimization of Compatible, Segmented Thermoelectric Generators  

E-Print Network (OSTI)

to rationally select materials for a segmented thermoelectric generator. The thermoelectric potential is used for the exact analytic expressions for materials with temperature dependent thermoelectric properties C H T T = . The thermoelectric material governs how close the efficiency can be to Carnot primarily

427

Making the Right Substitution for Better Thermoelectrics | U.S. DOE Office  

Office of Science (SC) Website

Making the Right Substitution for Better Thermoelectrics Making the Right Substitution for Better Thermoelectrics Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) News & Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » February 2013 Making the Right Substitution for Better Thermoelectrics Exploiting the self-organizing nature of atoms to block heat transfer and improve thermal-to-electrical energy conversion. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Image courtesy of Ctirad Uher

428

Modeling of thermoelectricity and magnetohydrodynamics at a cell or dendrite tip  

SciTech Connect

When a solidification front is non-planar, in electrically conducting materials, such as metals or semi-conductors, the Seebeck effect generates an electric current (density j{sub TE}) at the scale of each non isothermal deformation (dendrite, cell, ...) and Peltier effect causes cooling at its tip (heating at its base). Alone, these thermoelectric effects, which are weakly destabilizing, do not significantly modify the solidification process. But, when an external magnetic field B is applied, the Lorentz force j{sub TE} x B drives a fluid motion, whose typical velocities may be higher than the speed of the moving front and thus may influence the solidification phenomenon. The influence of thermoelectric magnetohydrodynamic effects (TEMHD) is numerically examined in the particular case of a vertical directional solidification in the presence of vertical magnetic field. Numerical models have been used to simulate in details the internal thermoelectric current, the velocity and concentration fields around a dendrite-like shape.

Laskar, O.; Moreau, R. [EPM-Madylam, Saint Martin D`Heres (France); Lehmann, P.; Camel, D. [CEREM/DEM CENG, Grenoble (France)

1995-12-31T23:59:59.000Z

429

A High-temperature, High-efficiency Solar Thermoelectric Generator Prototype  

Science Journals Connector (OSTI)

Abstract Solar thermoelectric generators (STEGs) have the potential to convert solar energy at greater than 15% efficiency. This project investigates the system design, the necessary thermoelectric and optical technologies, and the economic feasibility of the STEG approach. A STEG is a solid-state heat engine that converts sunlight directly into DC electricity through the thermoelectric effect. \\{STEGs\\} consist of three subsystems: the solar absorber, the thermoelectric generator (TEG), and the heat management system (insulation, heat exchanger, vacuum enclosure, etc.). This project will integrate several state-of-the-art technologies to achieve high efficiency, including next- generation materials for TEGs, high-temperature solar-selective absorbers, and thermal cavities. We will test \\{STEGs\\} at NREL's high flux solar furnace (HFSF) and perform analysis of parasitic losses and lifetime analysis to optimize prototype operation. Equally important for this technology is the development of a cost model to determine the economic competitiveness and possible application niches for STEG technologies. We report on first-order economic analysis to identify the most promising pathways for advancing the technology.

M.L. Olsen; E.L. Warren; P.A. Parilla; E.S. Toberer; C.E. Kennedy; G.J. Snyder; S.A. Firdosy; B. Nesmith; A. Zakutayev; A. Goodrich; C.S. Turchi; J. Netter; M.H. Gray; P.F. Ndione; R. Tirawat; L.L. Baranowski; A. Gray; D.S. Ginley

2014-01-01T23:59:59.000Z

430

Electrical Resistance and Thermo-Electric Power of the Alkali Metals  

Science Journals Connector (OSTI)

Electrical resistance and thermo-electric power of the five alkali metals, -183°C to 250°C.—Pure samples of the metals were fused into glass or quartz tubes, and measurements were made by means of thermo-junctions sealed into each end. Enough points were secured in each case to determine the slopes and the breaks in the curves. In both the resistance and thermo-electric power lines, changes of slope are observed beginning gradually 100 degrees or more below the melting point. These are taken to indicate transformations in each case from an ? to a ? form. These transformations occur at approximately the temperatures, 50°C for Li, -20°C to +20°C for Na, -120°C for K, -35°C for Rb, and -80°C for Cs. In all cases a sharp rise in thermo-electric power and resistance occurs as the melting point is approached. The temperature coefficients of resistance decrease smoothly with increasing atomic weight for all forms.Atomic heat of electrons in the alkali metals.—The atomic heat of electricity as computed from thermo-electric data is approximately 0.24 cal. for Na and K, and 0.58 cal. for Rb and Cs. The values are too small to account for the observed excess of the atomic heats for these metals above the equipartition value.

Charles C. Bidwell

1924-03-01T23:59:59.000Z

431

Thermoelectric Development at Hi-Z Technology  

SciTech Connect

An improved Thermoelectric Generator (TEG) for the Heavy Duty Class Eight Diesel Trucks is under development at Hi-Z Technology. The current TEG is equipped with the improved HZ-14 Thermoelectric module, which features better mechanical properties as well as higher electric power output. Also, the modules are held in place more securely.

Kushch, Aleksandr S.; Bass, John C.; Ghamaty, Saeid; Elsner, Norbert B.; Bergstrand, Richard A.; Furrow, David; Melvin, Mike

2002-08-25T23:59:59.000Z

432

Nanostructures having high performance thermoelectric properties  

DOE Patents (OSTI)

The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.

Yang, Peidong; Majumdar, Arunava; Hochbaum, Allon I; Chen, Renkun; Delgado, Raul Diaz

2014-05-20T23:59:59.000Z

433

Phase transition enhanced thermoelectric figure-of-merit in copper chalcogenides  

SciTech Connect

While thermoelectric materials can be used for solid state cooling, waste heat recovery, and solar electricity generation, low values of the thermoelectric figure of merit, zT, have led to an efficiency too low for widespread use. Thermoelectric effects are characterized by the Seebeck coefficient or thermopower, which is related to the entropy associated with charge transport. For example, coupling spin entropy with the presence of charge carriers has enabled the enhancement of zT in cobalt oxides. We demonstrate that the coupling of a continuous phase transition to carrier transport in Cu{sub 2}Se over a broad (360–410 K) temperature range results in a dramatic peak in thermopower, an increase in phonon and electron scattering, and a corresponding doubling of zT (to 0.7 at 406 K), and a similar but larger increase over a wider temperature range in the zT of Cu{sub 1.97}Ag{sub .03}Se (almost 1.0 at 400 K). The use of structural entropy for enhanced thermopower could lead to new engineering approaches for thermoelectric materials with high zT and new green applications for thermoelectrics.

Brown, David R.; Day, Tristan; Snyder, G. Jeffrey, E-mail: jsnyder@caltech.edu [Department of Applied Physics and Materials Science, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125 (United States); Borup, Kasper A.; Christensen, Sebastian; Iversen, Bo B. [Department of Chemistry and iNano, Aarhus University, Aarhus 8000 (Denmark)

2013-11-01T23:59:59.000Z

434

Comparative study of the thermal and power performances of a semi-transparent photovoltaic façade under different ventilation modes  

Science Journals Connector (OSTI)

Abstract This paper studied the thermal and power performances of a ventilated photovoltaic façade under different ventilation modes, and appropriate operation strategies for different weather conditions were proposed accordingly to maximize its energy conversion efficiency. This ventilated PV double-skin façade (PV-DSF) consists of an outside layer of semi-transparent amorphous silicon (a-Si) PV laminate, an inward-openable window and a 400 mm airflow cavity. Before installation, the electrical characteristics under standard testing conditions (STC) and the temperature coefficients of the semi-transparent PV module were tested and determined in the laboratory. Field measurements were carried out to investigate the impact of different ventilation modes, namely, ventilated, buoyancy-driven ventilated and non-ventilated, on the thermal and power performances of this PV-DSF. The results show that the ventilated PV-DSF provides the lowest average solar heat gain coefficient (SHGC) and the non-ventilated PV-DSF provides the best thermal insulation performance. In terms of power performance, the energy output of the ventilated PV-DSF is greater than those of the buoyancy-driven ventilated and non-ventilated PV-DSFs by 1.9% and 3%, respectively, due to its much lower operating temperature. Based on the experimental results, a conclusion was drawn that the ventilation design can not only reduce the heat gain of PV-DSF but also improve the energy conversion efficiency of PV modules by bringing down their operating temperature. In addition, an optimum operation strategy is recommended for this kind of PV-DSF to maximize its overall energy efficiency under different weather conditions.

Jinqing Peng; Lin Lu; Hongxing Yang; Tao Ma

2014-01-01T23:59:59.000Z

435

Ventilation Industrielle de Bretagne VIB | Open Energy Information  

Open Energy Info (EERE)

Ventilation Industrielle de Bretagne VIB Ventilation Industrielle de Bretagne VIB Jump to: navigation, search Name Ventilation Industrielle de Bretagne (VIB) Place Ploudalmezeau, France Zip 29839 Sector Geothermal energy, Solar Product Ploudalmezeau-based company producing and marketing energy efficient and ventilation products including air source heat pumps, geothermal water source heat pumps, efficient air filtration systems and solar products. Coordinates 48.540325°, -4.657904° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.540325,"lon":-4.657904,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

436

Municipal District Heating and Cooling Co-generation System Feasibility Research  

E-Print Network (OSTI)

In summer absorption refrigerating machines provide cold water using excess heat from municipal thermoelectric power plant through district heating pipelines, which reduces peak electric load from electricity networks in summer. The paper simulates...

Zhang, W.; Guan, W.; Pan, Y.; Ding, G.; Song, X.; Zhang, Y.; Li, Y.; Wei, H.; He, Y.

2006-01-01T23:59:59.000Z

437

Ventilation, temperature, and HVAC characteristics in small and medium  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation, temperature, and HVAC characteristics in small and medium Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in California Title Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in California Publication Type Journal Article Refereed Designation Refereed Year of Publication 2012 Authors Bennett, Deborah H., William J. Fisk, Michael G. Apte, X. Wu, Amber L. Trout, David Faulkner, and Douglas P. Sullivan Journal Indoor Air Volume 22 Issue 4 Pagination 309-20 Abstract This field study of 37 small and medium commercial buildings throughout California obtained information on ventilation rate, temperature, and heating, ventilating, and air-conditioning (HVAC) system characteristics. The study included seven retail establishments; five restaurants; eight offices; two each of gas stations, hair salons, healthcare facilities, grocery stores, dental offices, and fitness centers; and five other buildings. Fourteen (38%) of the buildings either could not or did not provide outdoor air through the HVAC system. The air exchange rate averaged 1.6 (s.d. = 1.7) exchanges per hour and was similar between buildings with and without outdoor air supplied through the HVAC system, indicating that some buildings have significant leakage or ventilation through open windows and doors. Not all buildings had sufficient air exchange to meet ASHRAE 62.1 Standards, including buildings used for fitness centers, hair salons, offices, and retail establishments. The majority of the time, buildings were within the ASHRAE temperature comfort range. Offices were frequently overcooled in the summer. All of the buildings had filters, but over half the buildings had a filter with a minimum efficiency reporting value rating of 4 or lower, which are not very effective for removing fine particles. PRACTICAL IMPLICATIONS: Most U.S. commercial buildings (96%) are small- to medium-sized, using nearly 18% of the country's energy, and sheltering a large population daily. Little is known about the ventilation systems in these buildings. This study found a wide variety of ventilation conditions, with many buildings failing to meet relevant ventilation standards. Regulators may want to consider implementing more complete building inspections at commissioning and point of sale.

438

Thermoelectric Microdevice Fabrication Process and Evaluation at the Jet Propulsion Laboratory (JPL)  

E-Print Network (OSTI)

system), radioisotope thermoelectric generators (RTGs) are used for power [1]. Thermoelectric devicesThermoelectric Microdevice Fabrication Process and Evaluation at the Jet Propulsion Laboratory (JPL of integrated thermal management and power management and distribution. Micro thermoelectric converters

439

Thermoelectric power in carbon nanotubes  

SciTech Connect

The theoretical results for the temperature dependence of the thermoelectric power of graphite and semimetal carbon nanotubes are reported. In the calculations, the cylindrical superatomic range structure of nanotubes is taken into account. The Boltzmann equation and the {pi}-electron model of semimetal carbon nanotubes are used. The basic parameters of the calculation are the concentration of electrons, the Fermi energy, and the energy of the local level associated with the cylindrical structure of carbon nanotubes. The theoretical results are compared with the available experimental data.

Mavrinskiy, A. V., E-mail: mavrinsky@gmail.com; Baitinger, E. M. [Chelyabinsk State Pedagogical University (Russian Federation)

2009-04-15T23:59:59.000Z

440

Thermoelectric standardisation - Reference materials and characterisation  

Science Journals Connector (OSTI)

Thermoelectric materials for working temperatures between 300 K and 1000 K become continuously more important for energy recuperation applications. The efficiency is determined by the transport properties (electrical and thermal conductivity and Seebeck coefficient) which form the known thermoelectric figure of merit ZT. The thorough determination of ZT represents the basis for the assessment of thermoelectric materials research. Due to different continuing difficulties measurement errors distinctly higher than 15% can be observed repeatedly which is still too high for an industrial benchmark and deficient for many scientific investigations and technological developments. Against this background a project was launched in 2011 together with the Fraunhofer Institute of Physical Measurement Techniques (IPM Freiburg) the Department Temperature of the Physikalisch-Technische Bundesanstalt (PTB Berlin) and the company Netzsch Gerätebau GbmH (Selb). The aim of the project "Thermoelectric Standardisation" (TEST) is to minimise the measurement uncertainties and to develop traceable high-accurate thermoelectric characterisation techniques and thermoelectric reference materials for the mentioned temperature range. Here we initially present the project to the thermoelectric society and want to give a survey on the planned activities and the current status of the contributions of the German Aerospace Center (DLR Cologne).

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermoelectric heating ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Improving Ventilation and Saving Energy: Laboratory Study in a Modular  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Ventilation and Saving Energy: Laboratory Study in a Modular Improving Ventilation and Saving Energy: Laboratory Study in a Modular Classroom Test Bed Title Improving Ventilation and Saving Energy: Laboratory Study in a Modular Classroom Test Bed Publication Type Report Year of Publication 2005 Authors Apte, Michael G., Ian S. Buchanan, David Faulkner, William J. Fisk, Chi-Ming Lai, Michael Spears, and Douglas P. Sullivan Publisher Lawrence Berkeley National Laboratory Abstract The primary goals of this research effort were to develop, evaluate, and demonstrate a practical HVAC system for classrooms that consistently provides classrooms with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research was motivated by several factors, including the public benefits of energy efficiency, evidence that many classrooms are under-ventilated, and public concerns about indoor environmental quality in classrooms. This project involved the installation and verification of the performance of an Improved Heat Pump Air Conditioning (IHPAC) system, and its comparison, a standard HVAC system having an efficiency of 10 SEER. The project included the verification of the physical characteristics suitable for direct replacement of existing 10 SEER systems, quantitative demonstration of improved energy efficiency, reduced acoustic noise levels, quantitative demonstration of improved ventilation control, and verification that the system would meet temperature control demands necessary for the thermal comfort of the occupants. Results showed that the IHPAC met these goals. The IHPAC was found to be a direct bolt-on replacement for the 10 SEER system. Calculated energy efficiency improvements based on many days of classroom cooling or heating showed that the IHPAC system is about 44% more efficient during cooling and 38% more efficient during heating than the 10 SEER system. Noise reduction was dramatic, with measured A-weighed sound level for fan only operation conditions of 34.3 dB(A), a reduction of 19 dB(A) compared to the 10 SEER system. Similarly, the IHPAC stage-1 and stage-2 compressor plus fan sound levels were 40.8 dB(A) and 42.7 dB(A), reductions of 14 and 13 dB(A), respectively. Thus, the IHPAC is 20 to 35 times quieter than the 10 SEER systems depending upon the operation mode. The IHPAC system met the ventilation requirements and was able to provide consistent outside air supply throughout the study. Indoor CO2 levels with simulated occupancy were maintained below 1000 ppm. Finally temperature settings were met and controlled accurately. The goals of the laboratory testing phase were met and this system is ready for further study in a field test of occupied classrooms

442

Fresh Way to Cut Combustion, Crop and Air Heating Costs Avoids Million BTU Purchases: Inventions and Innovation Combustion Success Story  

SciTech Connect

Success story written for the Inventions and Innovation Program about a new space heating method that uses solar energy to heat incoming combustion, crop, and ventilation air.

Wogsland, J.

2001-01-17T23:59:59.000Z

443

DOE Announces up to $29.3 Million in Projects for Research, Developmen...  

Office of Environmental Management (EM)

These projects were selected to accelerate the development of thermoelectric (TE) systems that provides the heating, ventilation, and air conditioning (HVAC) in vehicles. The...

444

On the Use of Thermoelectric (TE) Applications Based on Commercial Modules: The Case of TE Generator and TE Cooler  

Science Journals Connector (OSTI)

In recent years thermoelectricity sees rapidly increasing usages in applications like portable refrigerators beverage coolers electronic component coolers etc. when used as Thermoelectric Cooler (TEC) and Thermoelectric Generators (TEG) which make use of the Seebeck effect in semiconductors for the direct conversion of heat into electrical energy and is of particular interest for systems of highest reliability or for waste heat recovery. In this work we examine the performance of commercially available TEC and TEG. A prototype TEC?refrigerator has been designed modeled and constructed for in?car applications. Additionally a TEG was made in order to measure the gained power and efficiency. Furthermore a TEG module was tested on a small size car (Toyota Starlet 1300 cc) in order to measure the gained power and efficiency for various engine loads. With the use of a modeling approach we evaluated the thermal contact resistances and their influence on the final device efficiency.

K. Zorbas; E. Hatzikraniotis; K. M. Paraskevopoulos; Th. Kyratsi

2010-01-01T23:59:59.000Z

445

An overview of the Radioisotope Thermoelectric Generator Transportation System Program  

SciTech Connect

Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft. However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The U.S. Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administration{close_quote}s Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent major changes in the U.S. Department of Energy structure and resources will be outlined. {copyright} {ital 1996 American Institute of Physics.}

McCoy, J.C.; Becker, D.L. [Westinghouse Hanford Company, P.O. Box 1970, Richland, Washington 99352 (United States)

1996-03-01T23:59:59.000Z

446

An overview of the Radioisotope Thermoelectric Generator Transporation System Program  

SciTech Connect

Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The US Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administrations Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent ma or changes in the US Department of Energy structure and resources will be outlined.

McCoy, J.C.

1995-10-01T23:59:59.000Z

447

Whole-House Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Whole-House Ventilation Whole-House Ventilation Whole-House Ventilation May 30, 2012 - 2:37pm Addthis A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. What does this mean for me? Whole-house ventilation is critical in an energy-efficient home to maintain adequate indoor air quality and comfort. The whole-house ventilation system you choose will depend upon your climate, budget, and the availability of experienced contractors in your area. Energy-efficient homes -- both new and existing -- require mechanical ventilation to maintain indoor air quality. There are four basic mechanical

448

Design of industrial ventilation systems  

SciTech Connect

This latest edition has a title change to reflect an expansion to cover the interrelated areas of general exhaust ventilation and makeup air supply. More coverage is also given the need for energy conservation and for the physical isolation of the workspace from major contaminant generation zones. Excellent and generous illustrative matter is included. Contents, abridged are as follows: flow of fluids; air flow through hoods; pipe resistance; piping design; centrifugal exhaust fans; axial-flow fans; monitoring industrial ventilization systems; isolation; and energy conservation.

Alden, J.L.; Kane, J.M.

1982-01-01T23:59:59.000Z

449

Ventilation Requirements in Hot Humid Climates  

E-Print Network (OSTI)

the Building America program, LBNL has simulated the effects of mechanical ventilation systems that meet ASHRAE Standard 62.2 on ventilation, energy use and indoor humidity levels. In order to capture moisture related HVAC system operation..., LBNL has simulated the effects of mechanical ventilation systems that meet ASHRAE Standard 62.2 on ventilation, energy use and indoor humidity levels for houses that meet current (2005) International Energy Conservation Code requirements...

Walker, I. S.; Sherman, M. H.

2006-01-01T23:59:59.000Z

450

A facility to remotely assemble radioisotope thermoelectric generators  

SciTech Connect

Radioisotope Thermoelectric Generators (RTGs) are electrical power sources that use heat from decaying radioisotopes to directly generate electrical power. The RTG assembly process is performed in an inert atmosphere inside a large glovebox, which is surrounded by radiation shielding to reduce exposure to neutron and gamma radiation from the radioisotope heat source. In the past, allowable dose rate limits have allowed direct, manual assembly methods; however, current dose rate limits require a thicker radiation shielding that makes direct, manual assembly infeasible. To minimize RTG assembly process modifications, telerobotic systems are being investigated to perform remote assembly tasks. Telerobotic systems duplicate human arm motion and incorporate force feedback sensitivity to handle objects and tools in a human-like manner. A telerobotic system with two arms and a three-dimensional (3-D) vision system can be used to perform remote RTG assembly tasks inside gloveboxes and cells using unmodified, normal hand tools.

Engstrom, J.W.; Goldmann, L.H.; Truitt, R.W.

1992-07-01T23:59:59.000Z

451

Most efficient quantum thermoelectric at finite power output  

E-Print Network (OSTI)

Machines are only Carnot efficient if they are reversible, but then their power output is vanishingly small. Here we ask, what is the maximum efficiency of an irreversible device with finite power output? We use a nonlinear scattering theory to answer this question for thermoelectric quantum systems; heat engines or refrigerators consisting of nanostructures or molecules that exhibit a Peltier effect. We find that quantum mechanics places an upper bound on both power output, and on the efficiency at any finite power. The upper bound on efficiency equals Carnot efficiency at zero power output, but decays with increasing power output. It is intrinsically quantum (wavelength dependent), unlike Carnot efficiency. This maximum efficiency occurs when the system lets through all particles in a certain energy window, but none at other energies. A physical implementation of this is discussed, as is the suppression of efficiency by a phonon heat flow.

Robert S. Whitney

2014-03-13T23:59:59.000Z

452

Generalized drift-diffusion for microscopic thermoelectricity  

E-Print Network (OSTI)

Although thermoelectric elements increasingly incorporate nano-scale features in similar material systems as other micro-electronic devices, the former are described in the language of irreversible thermodynamics while ...

Santhanam, Parthiban

2009-01-01T23:59:59.000Z

453

Photoacoustic measurement of bandgaps of thermoelectric materials  

E-Print Network (OSTI)

Thermoelectric materials are a promising class of direct energy conversion materials, usually consisting of highly doped semiconductors. The key to maximizing their thermal to electrical energy conversion lies in optimizing ...

Ni, George (George Wei)

2014-01-01T23:59:59.000Z

454

Device testing and characterization of thermoelectric nanocomposites  

E-Print Network (OSTI)

It has become evident in recent years that developing clean, sustainable energy technologies will be one of the world's greatest challenges in the 21st century. Thermoelectric materials can potentially make a contribution ...

Muto, Andrew (Andrew Jerome)

2008-01-01T23:59:59.000Z

455

Thermoelectrics : material advancements and market applications  

E-Print Network (OSTI)

Thermoelectric properties have been known since the initial discovery in 1821 by Thomas Seebeck, who found that a current flowed at the junction of two dissimilar metals when placed under a temperature differential. This ...

Monreal, Jorge

2007-01-01T23:59:59.000Z

456

Semiclassical model for thermoelectric transport in nanocomposites  

E-Print Network (OSTI)

Nanocomposites (NCs) has recently been proposed and experimentally demonstrated to be potentially high-efficiency thermoelectric materials by reducing the thermal conductivity through phonon-interface scattering and possibly ...

Zhou, Jun

457

RESIDENTIAL VENTILATION AND ENERGY CHARACTERISTICS*  

E-Print Network (OSTI)

to account for 1/3 to 1/2 of the space conditioning energy. There is not a great deal of measurement data opportunities, the United States Department of Energy and others need to put into perspective the energy based on energy conservation and ventilation strategies. Because of the lack of direct measurements, we

458

Development of a Residential Integrated Ventilation Controller  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of a Residential Integrated Ventilation Controller Development of a Residential Integrated Ventilation Controller Title Development of a Residential Integrated Ventilation Controller Publication Type Report LBNL Report Number LBNL-5554E Year of Publication 2012 Authors Walker, Iain S., Max H. Sherman, and Darryl J. Dickerhoff Keywords ashrae standard 62,2, california title 24, residential ventilation, ventilation controller Abstract The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20%, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

459

Radioisotope thermoelectric generator licensed hardware package and certification tests  

SciTech Connect

This paper presents the Licensed Hardware package and the Certification Test portions of the Radioisitope Themoelectric Generator Transportation System. This package has been designed to meet those portions of the {ital Code} {ital of} {ital Federal} {ital Regulations} (10 CFR 71) relating to ``Type B`` shipments of radioactive materials. The licensed hardware is now in the U. S. Department of Energy licensing process that certifies the packaging`s integrity under accident conditions. The detailed information for the anticipated license is presented in the safety analysis report for packaging, which is now in process and undergoing necessary reviews. As part of the licensing process, a full-size Certification Test Article unit, which has modifications slightly different than the Licensed Hardware or production shipping units, is used for testing. Dimensional checks of the Certification Test Article were made at the manufacturing facility. Leak testing and drop testing were done at the 300 Area of the U.S. Department of Energy`s Hanford Site near Richland, Washington. The hardware includes independent double containments to prevent the environmental spread of {sup 238}Pu, impact limiting devices to protect portions of the package from impacts, and thermal insulation to protect the seal areas from excess heat during accident conditions. The package also features electronic feed-throughs to monitor the Radioisotope Thermoelectric Generator`s temperature inside the containment during the shipment cycle. This package is designed to safely dissipate the typical 4,500 thermal watts produced in the largest Radioisotope Thermoelectric Generators. The package also contains provisions to ensure leak tightness when radioactive materials, such as a Radioisotope Thermoelectric Generator for the Cassini Mission, planned for 1997 by the National Aeronautics and Space Administration, are being prepared for shipment. (Abstract Truncated)

Goldmann, L.H.; Averette, H.S. [Westinghouse Hanford Company, P.O. Box 1970, M/S R3-86 or N1-32, Richland, Washington 99352 (United States)

1995-01-20T23:59:59.000Z

460

Resistance and Thermo-Electric Power of Metallic Germanium  

Science Journals Connector (OSTI)

Electric Resistance and Thermo-electric Power of Germanium, from — 191° to 675° R=log A+aT+QkT.—Measurements were made on a pure specimen of this rare metal in the form of a rod 2.4 by 0.44 by 0.41 cm., prepared under the direction of L. M. Dennis. The current was led in through graphite blocks and thermo-junctions were placed in grooves near each end. For the thermo-electric power determinations a temperature gradient was secured by placing the specimen in a non-uniform part of a furnace or refrigerator and also by using a heater coil wound on one end. Between 125° and 450° the results indicate a slow reversible transformation of some sort, for below and above this range the thermo-electric power is a linear function of the temperature and also, except in the range 100° to 600°, the resistance is an exponential function of the form log R=log A+aT+QkT. The specific resistance reaches a minimum at - 116° and again at 645°, the temperature coefficient changing from positive to negative with rising temperature. Its value at 0° is 0.089 ohm per cm. cube.Periodic Relations among the Elements with Reference to Temperature Variation of Resistance are pointed out. High resistance elements toward the right side of the Periodic Table have characteristically negative coefficients while the good conductors toward the left side have positive coefficients. The elements in Group IV, C, Si, Ti, Ge and Zr show transitional behavior, each giving indications at least of a minimum resistance at temperatures which decrease regularly from very high for the lightest to very low for the heaviest element.Transformation in Germanium, 125° to 450° C., as indicated by the above data, shows no hysteresis, the rapid cooling curves duplicating the slow cooling and heating ones. The phases are always in equilibrium, one, perhaps, being dissolved in the other.

C. C. Bidwell

1922-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermoelectric heating ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Modelica® Library for Dynamic Simulation of Thermoelectric Generators  

Science Journals Connector (OSTI)

The contribution presents a new modeling library for the dynamic simulation of thermoelectric generators (TEG) in 1D spatial resolution. The core of the library is a model of the thermoelectric legs (TEL), which ...

M. Nesarajah; L. Exel; G. Frey

2014-01-01T23:59:59.000Z

462

Segregated Network Polymer-Carbon Nanotubes Composites For Thermoelectrics  

E-Print Network (OSTI)

nanocomposites were measured for carbon nanotubes and the thermoelectric figure of merit, ZT, was calculated at room temperature. The influence on thermoelectric properties from filler concentration, stabilizer materials and drying condition are also discussed....

Kim, Dasaroyong

2010-10-12T23:59:59.000Z

463

Thermoelectric Behavior of Flexible Organic Nanocomposites with Carbon Nanotubes  

E-Print Network (OSTI)

There have been significant researches about thermoelectric behaviors by applying carbon nanotube (CNT)/polymer nanocomposites. Due to its thermally disconnected but electrically connected junctions between CNTs, the thermoelectric properties were...

Choi, Kyung Who

2013-12-03T23:59:59.000Z

464

A Natural-Gas-Fired Thermoelectric Power Generation System  

Science Journals Connector (OSTI)

This paper presents a combustion-driven thermoelectric power generation system that uses PbSnTe-based thermoelectric modules. The modules were integrated into a gas-fired furnace with a special burner design. The...

K. Qiu; A.C.S. Hayden

2009-07-01T23:59:59.000Z

465

Energy Impact of Residential Ventilation Norms in the UnitedStates  

SciTech Connect

The first and only national norm for residential ventilation in the United States is Standard 62.2-2004 published by the American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE). This standard does not by itself have the force of regulation, but is being considered for adoption by various jurisdictions within the U.S. as well as by various voluntary programs. The adoption of 62.2 would require mechanical ventilation systems to be installed in virtually all new homes, but allows for a wide variety of design solutions. These solutions, however, may have a different energy costs and non-energy benefits. This report uses a detailed simulation model to evaluate the energy impacts of currently popular and proposed mechanical ventilation approaches that are 62.2 compliant for a variety of climates. These results separate the energy needed to ventilate from the energy needed to condition the ventilation air, from the energy needed to distribute and/or temper the ventilation air. The results show that exhaust systems are generally the most energy efficient method of meeting the proposed requirements. Balanced and supply systems have more ventilation resulting in greater energy and their associated distribution energy use can be significant.

Sherman, Max H.; Walker, Iain S.

2007-02-01T23:59:59.000Z

466

3rd Thermoelectrics Applications Workshop 2012 | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Chestnut Hill, MA Analytical Modeling and Simulation of Thermomechanical Devices Jordan Chase NASA Jet Propulsion Laboratory, Pasadena, California Thermoelectric Bulk...

467

Compositional ordering and stability in nanostructured, bulk thermoelectric alloys.  

SciTech Connect

Thermoelectric materials have many applications in the conversion of thermal energy to electrical power and in solid-state cooling. One route to improving thermoelectric energy conversion efficiency in bulk material is to embed nanoscale inclusions. This report summarize key results from a recently completed LDRD project exploring the science underpinning the formation and stability of nanostructures in bulk thermoelectric and the quantitative relationships between such structures and thermoelectric properties.

Hekmaty, Michelle A.; Faleev, S.; Medlin, Douglas L.; Leonard, F.; Lensch-Falk, J.; Sharma, Peter Anand; Sugar, J. D.

2009-09-01T23:59:59.000Z

468

High Temperature Experimental Characterization of Microscale Thermoelectric Effects  

E-Print Network (OSTI)

of thermoelectric energy conversion devices. J. Appl.convection cooling. Energy Conversion and Mangement, 46:for energy conversion .. 1

Favaloro, Tela

2014-01-01T23:59:59.000Z

469

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network (OSTI)

the thermoelectric module, and the water cooling tubes. Tothermoelectric module, combined with the thermal power transferred by the water cooling

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

470

THERMOELECTRICAL ENERGY RECOVERY FROM THE EXHAUST OF A LIGHT TRUCK  

SciTech Connect

A team formed by Clarkson University is engaged in a project to design, build, model, test, and develop a plan to commercialize a thermoelectric generator (TEG) system for recovering energy from the exhaust of light trucks and passenger cars. Clarkson University is responsible for project management, vehicle interface design, system modeling, and commercialization plan. Hi-Z Technology, Inc. (sub-contractor to Clarkson) is responsible for TEG design and construction. Delphi Corporation is responsible for testing services and engineering consultation and General Motors Corporation is responsible for providing the test vehicle and information about its systems. Funds were supplied by a grant from the Transportation Research Program of the New York State Energy Research and Development Authority (NYSERDA), through Joseph R. Wagner. Members of the team and John Fairbanks (Project Manager, Office of Heavy Vehicle Technology). Currently, the design of TEG has been completed and initial construction of the TEG has been initiated by Hi-Z. The TEG system consists of heat exchangers, thermoelectric modules and a power conditioning unit. The heat source for the TEG is the exhaust gas from the engine and the heat sink is the engine coolant. A model has been developed to simulate the performance of the TEG under varying operating conditions. Preliminary results from the model predict that up to 330 watts can be generated by the TEG which would increase fuel economy by 5 percent. This number could possibly increase to 20 percent with quantum-well technology. To assess the performance of the TEG and improve the accuracy of the modeling, experimental testing will be performed at Delphi Corporation. A preliminary experimental test plan is given. To determine the economic and commercial viability, a business study has been conducted and results from the study showing potential areas for TEG commercialization are discussed.

Karri, M; Thacher, E; Helenbrook, B; Compeau, M; Kushch, A; Elsner, N; Bhatti, M; O' Brien, J; Stabler, F

2003-08-24T23:59:59.000Z

471

BuildingaThermoelectricMug This rllorrfh,s  

E-Print Network (OSTI)

(Radioisotope Thermoelectric Generators), which are basically armored canisters holding plutonium dioxide fuel. Here, I will show how you can use these in reverseto generate electrical power. Thermoelectric Devicesfava Power BuildingaThermoelectricMug F This rllorrfh,s ?rcjae J a v a P o w e r. . . . . . . . 4 6

Lorenz, Ralph D.

472

Engineering Enhanced Thermoelectric Properties in Zigzag Graphene Nanoribbons  

E-Print Network (OSTI)

- ties [7]. Graphene, however, is not a useful thermoelectric material. Although its electricalEngineering Enhanced Thermoelectric Properties in Zigzag Graphene Nanoribbons Hossein Karamitaheri1@iue.tuwien.ac.at (Dated: March 7, 2012) Abstract We theoretically investigate the thermoelectric properties of zigzag

473

Evaluating the potential for high thermoelectric efficiency of silver selenide  

E-Print Network (OSTI)

to the exceptionally high mobility, higher than other optimized thermoelectric materials. Although zT decreases at high refrigerants.1 Increasing the efficiency of a thermoelectric material necessitates increasing the gure of merit contribution and an electronic contribution. Thermoelectric materials used in practice have zT near 1. One

Martin, Alain

474

G. J. Snyder Page 1 THERMOELECTRIC PROPERTIES OF SELENIDE SPINELS  

E-Print Network (OSTI)

of merit, ZT, for thermoelectric materials. The figure of merit is defined as ZT = 2 T/, where conductivity. Thus, one method for finding new, advanced thermoelectric materials is to searchG. J. Snyder Page 1 THERMOELECTRIC PROPERTIES OF SELENIDE SPINELS G. Jeffrey Snyder*, T. Caillat

475

Automotive Thermoelectric Generators and HVAC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1) Compression (1 2) Combustion (2 3) Expansion (3 4) Exhaust (1 5) Heat loss to radiator: 30% of fuel energy lost ( 70% is used) waste heat T H T catlytic...

476

Geometric effect on cooling power and performance of an integrated thermoelectric generation-cooling system  

Science Journals Connector (OSTI)

Abstract Geometric design of an integrated thermoelectric generation-cooling system is performed numerically using a finite element method. In the system, a thermoelectric cooler (TEC) is powered directly by a thermoelectric generator (TEG). Two different boundary conditions in association with the effects of contact resistance and heat convection on system performance are taken into account. The results suggest that the characteristics of system performance under varying TEG length are significantly different from those under altering TEC length. When the TEG length is changed, the entire behavior of system performance depends highly on the boundary conditions. On the other hand, the maximum distributions of cooling power and coefficient of performance (COP) are exhibited when the TEC length is altered, whether the hot surface of TEG is given by a fixed temperature or heat transfer rate. The system performance will be reduced once the contact resistance and heat convection are considered. When the lengths of TEG and TEC vary, the maximum reduction percentages of system performance are 12.45% and 18.67%, respectively. The numerical predictions have provided a useful insight into the design of integrated TEG–TEC systems.

Wei-Hsin Chen; Chien-Chang Wang; Chen-I Hung

2014-01-01T23:59:59.000Z

477

Silicon-germanium/gallium phosphide material in high power density thermoelectric modules. Final report, February 1980--September 1981  

SciTech Connect

This is the final report of work on the characterization of an improved Si-Ge alloy and the fabrication of thermoelectric devices. The improved Si-Ge alloy uses a small addition of GaP in n- and p- type 80 at.% Si-20 at.% Ge; this addition reduces the thermal conductivity, thereby increasing its figure of merit and conversion efficiency. The thermoelectric devices fabricated include multicouples intended for use in Radioisotope Thermoelectric Generators (RTGs) and ring-type modules intended for use with nuclear reactor heat sources. This report summarizes the effort in the material as well as the device areas and discusses individual phases of each area. Results should form basis for further effort.

Not Available

1981-12-31T23:59:59.000Z

478

Sputter deposition of multilayer thermoelectric films: An approach to the fabrication of two-dimensional quantum wells  

SciTech Connect

The relative efficiency of a thermoelectric material is measured in terms of a dimensionless figure of merit, ZT. Though all known thermoelectric materials are believed to have ZT{le}1, recent theoretical results predict that thermoelectric devices fabricated as two-dimensional quantum wells (2D QWs) or onedimensional (1D) quantum wires could have ZT{ge}3. Multilayers with the dimensions of 2D QWs have been synthesized by alternately sputtering Bi{sub 0.9}Sb{sub 0.1} and PbTe{sub 0.8}Se{sub 0.2} onto a moving single-crystal sapphire substrate from dual magnetrons. These materials have been used to test the thermoelectric quantum-well concept and gain insight into relevant transport mechanisms. If successful, this research could lead to thermoelectric devices that have efficiencies close to that of an ideal Carnot engine. Ultimately, such devices could be used to replace conventional heat engines and mechanical refrigeration systems.

Farmer, J.C.; Barbee, T.W. Jr.; Chapline, G.C. Jr.; Foreman, R.J.; Summers, L.J. [Lawrence Livermore National Lab., CA (United States); Dresselhaus, M.S.; Hicks, L.D. [Massachusetts Institute of Technology, Boston, MA (United States). Dept. of Physics

1994-07-01T23:59:59.000Z

479

NSF/DOE Thermoelectric Partnership: High-Performance Thermoelectric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

on Abundant Silicide Materials for Vehicle Waste Heat Recovery 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

480

Thermoelectric Potential of Bi and Bi1-x Sbx Nanowire M. S. Dresselhausa,b  

E-Print Network (OSTI)

for thermoelectric applications is discussed. The advantages of bismuth as a low dimensional thermoelectric material as the wire diameter as materials parameters for optimizing the thermoelectric performance of these nanowires thermoelectric material. INTRODUCTION Bismuth provides a very attractive model system for thermoelectric

Cronin, Steve

Note: This page contains sample records for the topic "thermoelectric heating ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Anneng Thermoelectricity Group | Open Energy Information  

Open Energy Info (EERE)

Anneng Thermoelectricity Group Anneng Thermoelectricity Group Jump to: navigation, search Name Anneng Thermoelectricity Group Place Wuhan, Hubei Province, China Zip 430071 Sector Biomass Product China-based biomass project developer. Coordinates 30.572399°, 114.279121° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.572399,"lon":114.279121,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

482

Measurement and characterization techniques for thermoelectric materials  

SciTech Connect

Characterization of thermoelectric materials can pose many problems. A temperature difference can be established across these materials as an electrical current is passed due to the Peltier effect. The thermopower of these materials is quite large and thus large thermal voltages can contribute to many of the measurements necessary to investigate these materials. This paper will discuss the chracterization techniques necessary to investigate these materials and provide an overview of some of the potential systematic errors which can arise. It will also discuss some of the corrections one needs to consider. This should provide an introduction to the characterization and measurement of thermoelectric materials and provide references for a more in depth discussion of the concepts. It should also serve as an indication of the care that must be taken while working with thermoelectric materials.

Tritt, T.M.

1997-07-01T23:59:59.000Z

483

Building ventilation and acoustics for people who don’t know much about building ventilation.  

Science Journals Connector (OSTI)

The architectural composition required for building ventilation used both for low energy cooling and improved air quality can be anathema to acoustical goals of speech privacy and noise control. This paper presents a short tutorial on the basics of cross ventilation stack ventilation comfort ventilation and indoor air quality as it relates to climate building type and indoor pollutants. It is geared to those without significant prior knowledge and follows a similar tutorial on geothermal systems presented at the Miami ASA conference.

2009-01-01T23:59:59.000Z

484

Analytical thermal model validation for Cassini radioisotope thermoelectric generator  

SciTech Connect

The Saturn-bound Cassini spacecraft is designed to rely, without precedent, on the waste heat from its three radioisotope thermoelectric generators (RTGs) to warm the propulsion module subsystem, and the RTG end dome temperature is a key determining factor of the amount of waste heat delivered. A previously validated SINDA thermal model of the RTG was the sole guide to understanding its complex thermal behavior, but displayed large discrepancies against some initial thermal development test data. A careful revalidation effort led to significant modifications and adjustments of the model, which result in a doubling of the radiative heat transfer from the heat source support assemblies to the end domes and bring up the end dome and flange temperature predictions to within 2 C of the pertinent test data. The increased inboard end dome temperature has a considerable impact on thermal control of the spacecraft central body. The validation process offers an example of physically-driven analytical model calibration with test data from not only an electrical simulator but also a nuclear-fueled flight unit, and has established the end dome temperatures of a flight RTG where no in-flight or ground-test data existed before.

Lin, E.I. [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.

1997-12-31T23:59:59.000Z

485

Heilongjiang Mudanjiang Nongken Xinneng Thermoelectric Co Ltd | Open Energy  

Open Energy Info (EERE)

Mudanjiang Nongken Xinneng Thermoelectric Co Ltd Mudanjiang Nongken Xinneng Thermoelectric Co Ltd Jump to: navigation, search Name Heilongjiang Mudanjiang Nongken Xinneng Thermoelectric Co., Ltd. Place Mishan, Heilongjiang Province, China Zip 158308 Sector Biomass Product Heilongjiang-based developer of a CDM biomass plant. References Heilongjiang Mudanjiang Nongken Xinneng Thermoelectric Co., Ltd.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Heilongjiang Mudanjiang Nongken Xinneng Thermoelectric Co., Ltd. is a company located in Mishan, Heilongjiang Province, China . References ↑ "[ Heilongjiang Mudanjiang Nongken Xinneng Thermoelectric Co., Ltd.]" Retrieved from "http://en.openei.org/w/index.php?title=Heilongjiang_Mudanjiang_Nongken_Xinneng_Thermoelectric_Co_Ltd&oldid=346439"

486

Solar Ventilation Preheating Resources and Technologies  

Energy.gov (U.S. Department of Energy (DOE))

This page provides a brief overview of solar ventilation preheating (SVP) technologies supplemented by specific information to apply SVP within the Federal sector.

487

Alkaline earth filled nickel skutterudite antimonide thermoelectrics  

DOE Patents (OSTI)

A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

Singh, David Joseph

2013-07-16T23:59:59.000Z

488

Holey Silicon as an Efficient Thermoelectric Material  

SciTech Connect

This work investigated the thermoelectric properties of thin silicon membranes that have been decorated with high density of nanoscopic holes. These ?holey silicon? (HS) structures were fabricated by either nanosphere or block-copolymer lithography, both of which are scalable for practical device application. By reducing the pitch of the hexagonal holey pattern down to 55 nm with 35percent porosity, the thermal conductivity of HS is consistently reduced by 2 orders of magnitude and approaches the amorphous limit. With a ZT value of 0.4 at room temperature, the thermoelectric performance of HS is comparable with the best value recorded in silicon nanowire system.

Tang, Jinyao; Wang, Hung-Ta; Hyun Lee, Dong; Fardy, Melissa; Huo, Ziyang; Russell, Thomas P.; Yang, Peidong

2010-09-30T23:59:59.000Z

489

Thermoelectric power of small polarons in magnetic semiconductors  

SciTech Connect

The thermoelectric power (Seebeck coefficient) ..cap alpha.. of a small polaron in both ferromagnetic and antiferromagnetic semiconductors and insulators is calculated for the first time. In particular, we obtain the contribution to the Seebeck coefficient arising from exchange interactions between the severely localized carrier (i.e., small polaron) of charge q and the spins of the host lattice. In essence, we study the heat transported along with a carrier. This heat, the Peltier heat, Pi, is related to the Seebeck coefficient by the Kelvin relation: Pi = qT..cap alpha.., where T is the temperature. The heat per carrier is simply the product of the temperature and the change of the entropy of the system when a small polaron is added to it. The magnetic contribution to the Seebeck coefficient is therefore directly related to the change of the magnetic entropy of the system upon introduction of a charge carrier. We explicitly treat the intrasite and intersite exchange interactions between a small polaron and the spins of a spin-1/2 system. These magnetic interactions produce two competing contributions to the Seebeck coefficient. First, adding the carrier tends to provide extra spin freedom (e.g., spin up or spin down of the carrier). This effect augments the entropy of the system, thereby producing a positive contribution to the Peltier heat. Second, however, the additional exchange between the carrier and the sites about it enhances the exchange binding among these sites. This generally reduces the energetically allowable spin configurations. The concomitant reduction of the system's entropy provides a negative contribution to the Peltier heat. At the highest of temperatures, when kT exceeds the intrasite exchange energy, the first effect dominates. Then, the Peltier heat is simply augmented by kT ln2.

Liu, N.H.; Emin, D.

1984-09-15T23:59:59.000Z

490

Study of solar-assisted thermoelectric technology for automobile air conditioning  

SciTech Connect

An analytical study was conducted to determine the feasibility of employing solar energy assisted thermoelectric (TE) cooling technology in automobile air conditioners. The study addressed two key issues -- power requirements and availability of thermoelectric materials. In this paper a mathematical model was developed to predict the performance of TE air conditioners and to analyze power consumption. Results show that the power required to deliver a cooling capacity of 4 kW (13,680 Btu/h) in a 38 C (100 F) environment will be 9.5 kW electric. Current TE modules suitable for air conditioning are made of bismuth telluride. The element tellurium is expected to be in short supply if TE cooling is widely implemented for auto air conditioning; some options available in this regard were studied and presented in this paper. The photovoltaic (PV) cells, assumed to cover the roof area of a compact car can only generate about 225 W. However, this is more than enough to power a fan to provide air ventilation to the car interior which significantly reduces the peak cooling load when the car is parked in bright sunlight.

Mei, V.C.; Chen, F.C. [Oak Ridge National Lab., Oak Ridge, TN (United States); Mathiprakasam, B.; Heenan, P. [Midwest Research Inst., Kansas City, MO (United States)

1993-11-01T23:59:59.000Z

491

Nonequilibrium Thermoelectrics: Low-Cost, High-Performance Materials for Cooling and Power Generation  

SciTech Connect

Thermoelectric materials can be made into coolers (TECs) that use electricity to develop a temperature difference, cooling something, or generators (TEGs) that convert heat directly to electricity. One application of TEGs is to place them in a waste heat stream to recuperate some of the power being lost and putting it to use more profitably. To be effective thermoelectrics, however, materials must have both high electrical conductivity and low thermal conductivity, a combination rarely found in nature. Materials selection and processing has led to the development of several systems with a figure of merit, ZT, of nearly unity. By using non-equilibrium techniques, we have fabricated higher efficiency thermoelectric materials. The process involves creating an amorphous material through melt spinning and then sintering it with either spark plasma or a hot press for as little as two minutes. This results in a 100% dense material with an extremely fine grain structure. The grain boundaries appear to retard phonons resulting in a reduced thermal conductivity while the electrons move through the material relatively unchecked. The techniques used are low-cost and scaleable to support industrial manufacturing.

Li, Q.

2011-05-18T23:59:59.000Z

492

NREL: Learning - Solar Process Heat  

NLE Websites -- All DOE Office Websites (Extended Search)

Process Heat Process Heat Photo of part of one side of a warehouse wall, where a perforated metal exterior skin is spaced about a foot out from the main building wall to form part of the transpired solar collector system. A transpired collector is installed at a FedEx facility in Denver, Colorado. Commercial and industrial buildings may use the same solar technologies-photovoltaics, passive heating, daylighting, and water heating-that are used for residential buildings. These nonresidential buildings can also use solar energy technologies that would be impractical for a home. These technologies include ventilation air preheating, solar process heating, and solar cooling. Space Heating Many large buildings need ventilated air to maintain indoor air quality. In cold climates, heating this air can use large amounts of energy. But a

493

Air Distribution Effectiveness for Residential Mechanical Ventilation: Simulation and Comparison of Normalized Exposures  

SciTech Connect

The purpose of ventilation is to dilute indoor contaminants that an occupant is exposed to. Even when providing the same nominal rate of outdoor air, different ventilation systems may distribute air in different ways, affecting occupants' exposure to household contaminants. Exposure ultimately depends on the home being considered, on source disposition and strength, on occupants' behavior, on the ventilation strategy, and on operation of forced air heating and cooling systems. In any multi-zone environment dilution rates and source strengths may be different in every zone and change in time, resulting in exposure being tied to occupancy patterns.This paper will report on simulations that compare ventilation systems by assessing their impact on exposure by examining common house geometries, contaminant generation profiles, and occupancy scenarios. These simulations take into account the unsteady, occupancy-tied aspect of ventilation such as bathroom and kitchen exhaust fans. As most US homes have central HVAC systems, the simulation results will be used to make appropriate recommendations and adjustments for distribution and mixing to residential ventilation standards such as ASHRAE Standard 62.2.This paper will report on work being done to model multizone airflow systems that are unsteady and elaborate the concept of distribution matrix. It will examine several metrics for evaluating the effect of air distribution on exposure to pollutants, based on previous work by Sherman et al. (2006).

Petithuguenin, T.D.P.; Sherman, M.H.

2009-05-01T23:59:59.000Z

494

Predicting hottest spot temperatures in ventilated dry type transformer windings  

SciTech Connect

Test data indicates that hottest spot allowances used in IEEE standards for ventilated dry type transformers above 500 kVA are too low. A mathematical model to predict hottest spot temperature rises in ventilated dry type transformers was developed. Data from six layer type test windings and a 2500 kva prototype was used to refine the model. A correlation for the local heat transfer coefficient in the cooling ducts was developed. The model was used to study the effect of various parameters on the ratio of hottest spot to average winding temperature rise. The number of conductor layers, insulation thickness, and conductor strand size were found to have only a minor effect on the ratio. Winding height was found to be the main parameter influencing the ratio of hottest spot to average winding temperature rise. The study based on the mathematical model confirmed previous conclusions based on test data that the hottest spot allowances used in IEEE standards for ventilated dry type transformers above 500 kVA should be revised.

Pierce, L.W. (General Electric Co., Rome, GA (United States))

1994-04-01T23:59:59.000Z

495

An electrochemical system for efficiently harvesting low-grade heat energy  

E-Print Network (OSTI)

Efficient and low-cost thermal energy-harvesting systems are needed to utilize the tremendous low-grade heat sources. Although thermoelectric devices are attractive, its efficiency is limited by the relatively low ...

Lee, Seok Woo

496

Welding Isotopic Heat Sources for the Cassini Mission to Saturn (U)  

SciTech Connect

In 1997 NASA will launch the Cassini scientific probe to the planet Saturn. Electric power for this probe will be provided by Radioisotope Thermoelectric Generators thermally driven by General Purpose Heat Source modules.

Franco-Ferreira, E.A. [Westinghouse Savannah River Company, SC (United States); George, T.G. [Los Alamos National Laboratory, CA (United States)

1995-02-28T23:59:59.000Z

497

Minority-Carrier Thermoelectric Devices Kevin P. Pipe and Rajeev J. Ram  

E-Print Network (OSTI)

results are given for several common material systems. Introduction Thermoelectric effects haveMinority-Carrier Thermoelectric Devices Kevin P. Pipe and Rajeev J. Ram Research Laboratory the thermoelectric performance of the electronic devices themselves. Recognizing that minority carriers play

498

Method of controlling temperature of a thermoelectric generator in an exhaust system  

DOE Patents (OSTI)

A method of controlling the temperature of a thermoelectric generator (TEG) in an exhaust system of an engine is provided. The method includes determining the temperature of the heated side of the TEG, determining exhaust gas flow rate through the TEG, and determining the exhaust gas temperature through the TEG. A rate of change in temperature of the heated side of the TEG is predicted based on the determined temperature, the determined exhaust gas flow rate, and the determined exhaust gas temperature through the TEG. Using the predicted rate of change of temperature of the heated side, exhaust gas flow rate through the TEG is calculated that will result in a maximum temperature of the heated side of the TEG less than a predetermined critical temperature given the predicted rate of change in temperature of the heated side of the TEG. A corresponding apparatus is provided.

Prior, Gregory P; Reynolds, Michael G; Cowgill, Joshua D

2013-05-21T23:59:59.000Z

499

NUMERICAL ANALYSIS OF VENTILATION TEMPERATURES REGULATION BY ENERGY STORAGE IN PHASE CHANGE  

E-Print Network (OSTI)

NUMERICAL ANALYSIS OF VENTILATION TEMPERATURES REGULATION BY ENERGY STORAGE IN PHASE CHANGE, the use of thermal energy storage (TES) systems receives increasing interest. To allow high or low temperature thermal energy to be stored for later use, a heat or cool storage with PCM could be designed; Zhu

Paris-Sud XI, Université de

500

Federal Energy Management Program: Solar Ventilation Preheating Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Ventilation Solar Ventilation Preheating Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Google Bookmark Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Delicious Rank Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on AddThis.com... Energy-Efficient Products