Powered by Deep Web Technologies
Note: This page contains sample records for the topic "thermoelectric generators thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Thermal Strategies for High Efficiency Thermoelectric Power Generation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Strategies for High Efficiency Thermoelectric Power Generation Thermal Strategies for High Efficiency Thermoelectric Power Generation Developing integrated TE system...

2

Integrated Design and Manufacturing of Thermoelectric Generator Using Thermal Spray  

Energy.gov (U.S. Department of Energy (DOE))

Presents progress in cost-effective thermoelectric generator fabrication by thermal spraying of thermoelectric materials and other functional layers directly onto automotive exhaust pipes with enhanced performance, durability, and heat transfer

3

Thermoelectric Generators 1. Thermoelectric generator  

E-Print Network (OSTI)

. Cold Hot I - -- - - - - -- Figure 1 Electron concentration in a thermoelectric material. #12;2 A large1 Thermoelectric Generators HoSung Lee 1. Thermoelectric generator 1.1 Basic Equations In 1821 on the direction of current and material [3]. This is called the Thomson effect (or Thomson heat). These three

Lee, Ho Sung

4

Thermoelectric generator  

SciTech Connect

A thermoelectric generator unit is described comprising: a hot side heat exchanger including a plate having extruded retention posts projecting from one surface of the plate, and fins adapted for contact with a heating source. The fins are positioned between two of the retention posts. Retention rods are inserted between the retention posts and the base of the fins to retain the fin in thermal contact with the plate surface upon insertion of the retention rod between the engaging surface of the post and the corresponding fin. Thermoelectric semi-conductor modules are in thermal contact with the opposite side of the hot side heat exchanger plate from the contact with the fins. The modules are arranged in a grid pattern so that heat flow is directed into each of the modules from the hot side heat exchanger. The modules are connected electrically so as to combine their electrical output; and a cold side heat exchanger is in thermal contact with the modules acting as a heat sink on the opposite side of the module from the hot side heat exchanger plate so as to produce a thermal gradient across the modules.

Shakun, W.; Bearden, J.H.; Henderson, D.R.

1988-03-29T23:59:59.000Z

5

High-density thermoelectric power generation and nanoscale thermal metrology  

E-Print Network (OSTI)

Thermoelectric power generation has been around for over 50 years but has seen very little large scale implementation due to the inherently low efficiencies and powers available from known materials. Recent material advances ...

Mayer, Peter (Peter Matthew), 1978-

2007-01-01T23:59:59.000Z

6

Analytical thermal model validation for Cassini radioisotope thermoelectric generator  

SciTech Connect

The Saturn-bound Cassini spacecraft is designed to rely, without precedent, on the waste heat from its three radioisotope thermoelectric generators (RTGs) to warm the propulsion module subsystem, and the RTG end dome temperature is a key determining factor of the amount of waste heat delivered. A previously validated SINDA thermal model of the RTG was the sole guide to understanding its complex thermal behavior, but displayed large discrepancies against some initial thermal development test data. A careful revalidation effort led to significant modifications and adjustments of the model, which result in a doubling of the radiative heat transfer from the heat source support assemblies to the end domes and bring up the end dome and flange temperature predictions to within 2 C of the pertinent test data. The increased inboard end dome temperature has a considerable impact on thermal control of the spacecraft central body. The validation process offers an example of physically-driven analytical model calibration with test data from not only an electrical simulator but also a nuclear-fueled flight unit, and has established the end dome temperatures of a flight RTG where no in-flight or ground-test data existed before.

Lin, E.I. [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.

1997-12-31T23:59:59.000Z

7

Superconducting thermoelectric generator  

DOE Patents (OSTI)

Thermoelectricity is produced by applying a temperature differential to dissimilar electrically conducting or semiconducting materials, thereby producing a voltage that is proportional to the temperature difference. Thermoelectric generators use this effect to directly convert heat into electricity; however, presently-known generators have low efficiencies due to the production of high currents which in turn cause large resistive heating losses. Some thermoelectric generators operate at efficiencies between 4% and 7% in the 800{degrees} to 1200{degrees}C range. According to its major aspects and bradly stated, the present invention is an apparatus and method for producing electricity from heat. In particular, the invention is a thermoelectric generator that juxtaposes a superconducting material and a semiconducting material - so that the superconducting and the semiconducting materials touch - to convert heat energy into electrical energy without resistive losses in the temperature range below the critical temperature of the superconducting material. Preferably, an array of superconducting material is encased in one of several possible configurations within a second material having a high thermal conductivity, preferably a semiconductor, to form a thermoelectric generator.

Metzger, J.D.; El-Genk, M.S.

1994-01-01T23:59:59.000Z

8

Overview of Thermoelectric Power Generation Technologies in Japan...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Thermoelectric Power Generation Technologies in Japan Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy...

9

Waste Heat Recovery Opportunities for Thermoelectric Generators...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for...

10

Superconducting thermoelectric generator  

DOE Patents (OSTI)

An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

Metzger, J.D.; El-Genk, M.S.

1996-01-01T23:59:59.000Z

11

Superconducting thermoelectric generator  

DOE Patents (OSTI)

An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

Metzger, John D. (Eaton's Neck, NY); El-Genk, Mohamed S. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

12

Superconducting thermoelectric generator  

DOE Patents (OSTI)

An apparatus and method for producing electricity from heat is disclosed. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device. 4 figs.

Metzger, J.D.; El-Genk, M.S.

1998-05-05T23:59:59.000Z

13

Modular Isotopic Thermoelectric Generator  

SciTech Connect

Advanced RTG concepts utilizing improved thermoelectric materials and converter concepts are under study at Fairchild for DOE. The design described here is based on DOE's newly developed radioisotope heat source, and on an improved silicon-germanium material and a multicouple converter module under development at Syncal. Fairchild's assignment was to combine the above into an attractive power system for use in space, and to assess the specific power and other attributes of that design. The resultant design is highly modular, consisting of standard RTG slices, each producing ~24 watts at the desired output voltage of 28 volt. Thus, the design could be adapted to various space missions over a wide range of power levels, with little or no redesign. Each RTG slice consists of a 250-watt heat source module, eight multicouple thermoelectric modules, and standard sections of insulator, housing, radiator fins, and electrical circuit. The design makes it possible to check each thermoelectric module for electrical performance, thermal contact, leaktightness, and performance stability, after the generator is fully assembled; and to replace any deficient modules without disassembling the generator or perturbing the others. The RTG end sections provide the spring-loaded supports required to hold the free-standing heat source stack together during launch vibration. Details analysis indicates that the design offers a substantial improvement in specific power over the present generator of RTGs, using the same heat source modules. There are three copies in the file.

Schock, Alfred

1981-04-03T23:59:59.000Z

14

Automotive Thermoelectric Generators and HVAC  

Energy.gov (U.S. Department of Energy (DOE))

Provides overview of DOE-supported projects in automotive thermoelectric generators and heaters/air conditioners

15

Overview of Thermoelectric Power Generation Technologies in Japan  

Energy.gov (U.S. Department of Energy (DOE))

Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy sources, and energy harvesting

16

Skutterudite Thermoelectric Generator For Automotive Waste Heat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite TE modules were...

17

Thermoelectric Generator (TEG) Fuel Displacement Potential using...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(TEG) Design Targets for Hybrid Vehicles Thermoelectric Generator Performance for Passenger Vehicles Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery...

18

Definition: Thermoelectric power generation | Open Energy Information  

Open Energy Info (EERE)

Thermoelectric power generation Thermoelectric power generation Jump to: navigation, search Dictionary.png Thermoelectric power generation The conversion of thermal energy into electrical energy. Thermoelectric generation relies on a fuel source (e.g. fossil, nuclear, biomass, geothermal, or solar) to heat a fluid to drive a turbine[1] View on Wikipedia Wikipedia Definition The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice-versa. A thermoelectric device creates voltage when there is a different temperature on each side. Conversely, when a voltage is applied to it, it creates a temperature difference. At the atomic scale, an applied temperature gradient causes charge carriers in the material to diffuse from the hot side to the cold

19

The Industrialization of Thermoelectric Power Generation Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

system requirements for high volume power generation with thermoelectrics such desirable thermoelectric properties, low material toxicity, interface compatibility, cost...

20

Automotive Thermoelectric Generator (TEG) Controls | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(TEG) Fuel Displacement Potential using Engine-in-the-Loop and Simulation Automotive Thermoelectric Generator Design Issues Benefits of Thermoelectric Technology for the Automobile...

Note: This page contains sample records for the topic "thermoelectric generators thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Thermoelectric generator for motor vehicle  

SciTech Connect

A thermoelectric generator is described for producing electric power for a motor vehicle from the heat of the exhaust gases produced by the engine of the motor vehicle. The exhaust gases pass through a finned heat transfer support structure which has seat positions on its outside surface for the positioning of thermoelectric modules. A good contact cylinder provides a framework from which a spring force can be applied to the thermoelectric modules to hold them in good contact on their seats on the surface of the heat transfer support structure. 8 figs.

Bass, J.C.

1997-04-29T23:59:59.000Z

22

Thermoelectric generator for motor vehicle  

DOE Patents (OSTI)

A thermoelectric generator for producing electric power for a motor vehicle from the heat of the exhaust gasses produced by the engine of the motor vehicle. The exhaust gasses pass through a finned heat transfer support structure which has seat positions on its outside surface for the positioning of thermoelectric modules. A good contact cylinder provides a framework from which a spring force can be applied to the thermoelectric modules to hold them in good contact on their seats on the surface of the heat transfer support structure.

Bass, John C. (6121 La Pintra Dr., La Jolla, CA 92037)

1997-04-29T23:59:59.000Z

23

Manufacture of thermoelectric generator structures by fiber drawing  

DOE Patents (OSTI)

Methods of manufacturing a thermoelectric generator via fiber drawing and corresponding or associated thermoelectric generator devices are provided.

McIntyre, Timothy J; Simpson, John T; West, David L

2014-11-18T23:59:59.000Z

24

Double quantum dot as a minimal thermoelectric generator  

Science Journals Connector (OSTI)

Based on numerical renormalization group calculations, we demonstrate that experimentally realized double quantum dots constitute a minimal thermoelectric generator. In the Kondo regime, one quantum dot acts as an n-type and the other one as a p-type thermoelectric device. Properly connected, a capacitively coupled double quantum dot provides a miniature power supply utilizing the thermal energy of the environment.

S. Donsa; S. Andergassen; K. Held

2014-03-05T23:59:59.000Z

25

The Industrialization of Thermoelectric Power Generation Technology  

Energy.gov (U.S. Department of Energy (DOE))

Presents module and system requirements for high volume power generation with thermoelectrics such desirable thermoelectric properties, low material toxicity, interface compatibility, cost scalability, raw material availability and module reliability

26

Power generation of a thermoelectric generator with phase change materials  

Science Journals Connector (OSTI)

In this paper, a thermoelectric generator that embeds phase change materials for wasted heat energy harvesting is proposed. The proposed thermoelectric generator embeds phase change materials in its device structure. The phase change materials store large amounts of heat energy using the latent heat of fusion. When the heat source contacts the thermoelectric generator, dissipated heat from the heat source is stored in the phase change materials. When the heat source is removed from the thermoelectric generator, the output power of the thermoelectric generator slowly decreases, while the output power of conventional thermoelectric generators decreases rapidly without the heat source. The additional air layer in the proposed thermoelectric generator disturbs the heat dissipation from the phase change materials, so the thermoelectric generator can maintain the power generation for longer without a heat source. The experimental results for the thermoelectric generator fabricated clearly show the latent heat effect of the phase change materials and the embedded air layer.

Sung-Eun Jo; Myoung-Soo Kim; Min-Ki Kim; Yong-Jun Kim

2013-01-01T23:59:59.000Z

27

Thermoelectric Power Generation System with Loop Thermosyphon...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Power Generation System with Loop Thermosyphon in Future High Efficiency Hybrid Vehicles Thermoelectric Power Generation System with Loop Thermosyphon in Future High Efficiency...

28

Development of a 100-Watt High Temperature Thermoelectric Generator...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Generator Development of a 100-Watt High Temperature Thermoelectric Generator Test results for low and high temperature thermoelectric generators (TEG) those for a...

29

Heat Transfer Enhancement in Thermoelectric Power Generation.  

E-Print Network (OSTI)

??Heat transfer plays an important role in thermoelectric (TE) power generation because the higher the heat-transfer rate from the hot to the cold side of… (more)

Hu, Shih-yung

2009-01-01T23:59:59.000Z

30

Thermoelectric generator apparatus and operation method  

SciTech Connect

A method of operating a thermoelectric generator includes: cyclically producing increasing then decreasing temperature differences in the thermoelectric material of the generator; and generating a cyclically increasing then decreasing electrical generator output signal, in response to such temperature differences, to transmit electrical power generated by the generator from the generator. Part of the thermoelectric material reaches temperatures substantially above the melting temperature of the material. The thermoelectric material of the generator forms a part of a closed electrical loop about a transformer core so that the inductor voltage for the loop serves as the output signal of the generator. A thermoelectric generator, which can be driven by the described method of operation, incorporates fins into a thermopile to conduct heat toward or away from the alternating spaces between adjacent layers of different types of thermoelectric material. The fins extend from between adjacent layers, so that they can also conduct electrical current between such layers, perpendicularly to the direction of stacking of the layers. The exhaust from an internal combustion engine can be employed to drive the thermoelectric generator, and, also, to act as a driver for a thermoelectric generator in accordance with the method of operation initially described.

Lowther, F.E.

1984-07-31T23:59:59.000Z

31

Catalytic converter with thermoelectric generator  

SciTech Connect

The unique design of an electrically heated catalyst (EHC) and the inclusion of an ECO valve in the exhaust of an internal combustion engine will meet the strict new emission requirements, especially at vehicle cold start, adopted by several states in this country as well as in Europe and Japan. The catalytic converter (CC) has been a most useful tool in pollution abatement for the automobile. But the emission requirements are becoming more stringent and, along with other improvements, the CC must be improved to meet these new standards. Coupled with the ECO valve, the EHC can meet these new emission limits. In an internal combustion engine vehicle (ICEV), approximately 80% of the energy consumed leaves the vehicle as waste heat: out the tail pipe, through the radiator, or convected/radiated off the engine. Included with the waste heat out the tail pipe are the products of combustion which must meet strict emission requirements. The design of a new CC is presented here. This is an automobile CC that has the capability of producing electrical power and reducing the quantity of emissions at vehicle cold start, the Thermoelectric Catalytic Power Generator. The CC utilizes the energy of the exothermic reactions that take place in the catalysis substrate to produce electrical energy with a thermoelectric generator. On vehicle cold start, the thermoelectric generator is used as a heat pump to heat the catalyst substrate to reduce the time to catalyst light-off. Thus an electrically heated catalyst (EHC) will be used to augment the abatement of tail pipe emissions. Included with the EHC in the exhaust stream of the automobile is the ECO valve. This valve restricts the flow of pollutants out the tail pipe of the vehicle for a specified amount of time until the EHC comes up to operating temperature. Then the ECO valve opens and allows the full exhaust, now treated by the EHC, to leave the vehicle.

Parise, R.J.

1998-07-01T23:59:59.000Z

32

Low and high Temperature Dual Thermoelectric Generation Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles Low and high Temperature Dual Thermoelectric Generation Waste Heat...

33

Multi-physics modeling of thermoelectric generators for waste...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Multi-physics modeling of thermoelectric generators for waste heat recovery applications Multi-physics modeling of thermoelectric generators for waste heat recovery applications...

34

Cost-Competitive Advanced Thermoelectric Generators for Direct...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power Cost-Competitive Advanced Thermoelectric Generators for...

35

High Reliability, High TemperatureThermoelectric Power Generation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Reliability, High TemperatureThermoelectric Power Generation Materials and Technologies High Reliability, High TemperatureThermoelectric Power Generation Materials and Technologies...

36

Feasibility of OnBoard Thermoelectric Generation for Improved...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

OnBoard Thermoelectric Generation for Improved Vehicle Fuel Economy Feasibility of OnBoard Thermoelectric Generation for Improved Vehicle Fuel Economy Poster presentation at the...

37

Overview of Progress in Thermoelectric Power Generation Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Overview of Progress in Thermoelectric Power Generation Technologies in Japan Overview of Progress in Thermoelectric Power Generation Technologies in Japan Presents progress in...

38

Improvements to solar thermoelectric generators through device design  

E-Print Network (OSTI)

A solar thermoelectric generator (STEG) is a device which converts sunlight into electricity through the thermoelectric effect. A STEG is nominally formed when a thermoelectric generator (TEG), a type of solid state heat ...

Weinstein, Lee A. (Lee Adragon)

2013-01-01T23:59:59.000Z

39

Recent developments of thermoelectric power generation  

Science Journals Connector (OSTI)

One form of energy generation that is expected to be on the rise in the next several decades is thermoelectric power generation (TEPG) which converts heat directly to electricity. Compared with other methods, ...

Luan Weiling; Tu Shantung

2004-06-01T23:59:59.000Z

40

Heat transfer in a thermoelectric generator for diesel engines  

SciTech Connect

This paper discusses the design and test results obtained for a 1kW thermoelectric generator used to convert the waste thermal energy in the exhaust of a Diesel engine directly to electric energy. The paper focuses on the heat transfer within the generator and shows what had to be done to overcome the heat transfer problems encountered in the initial generator testing to achieve the output goal of 1kW electrical. The 1kW generator uses Bismuth-Telluride thermoelectric modules for the energy conversion process. These modules are also being evaluated for other waste heat applications. Some of these applications are briefly addressed.

Bass, J.C. [Hi-Z Technology, Inc., San Diego, CA (United States)

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "thermoelectric generators thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Analysis of a novel thermoelectric generator in the built environment.  

E-Print Network (OSTI)

??This study centered on a novel thermoelectric generator (TEG) integrated into the built environment. Designed by Watts Thermoelectric LLC, the TEG is essentially a novel… (more)

Lozano, Adolfo

2011-01-01T23:59:59.000Z

42

Development of Cost-Competitive Advanced Thermoelectric Generators...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power Development of Cost-Competitive Advanced Thermoelectric...

43

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network (OSTI)

the thermoelectric module, and the water cooling tubes. Tothermoelectric module, combined with the thermal power transferred by the water cooling

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

44

System and method to improve the power output and longetivity of a radioisotope thermoelectric generator  

SciTech Connect

By using the helium generated by the alpha emissions of a thermoelectric generator during space travel for cooling, the thermal degradation of the thermoelectric generator can be slowed. Slowing degradation allows missions to be longer with little additional expense or payload.

Mowery, Jr., Alfred L. (Potomac, MD)

1993-01-01T23:59:59.000Z

45

System and method to improve the power output and longevity of a radioisotope thermoelectric generator  

SciTech Connect

By using the helium generated by the alpha emissions of a thermoelectric generator during space travel for cooling, the thermal degradation of the thermoelectric generator can be slowed. Slowing degradation allows missions to be longer with little additional expense or payload. 1 figures.

Mowery, A.L. Jr.

1993-09-21T23:59:59.000Z

46

System and method to improve the power output and longetivity of a radioisotope thermoelectric generator  

SciTech Connect

By using the helium generated by the alpha emissions of a thermoelectric generator during space travel for cooling the thermal degradation of the thermoelectric generator can be slowed. Slowing degradation allows missions to be longer with little additional expense or payload.

Mowery, A.L. Jr.

1992-12-31T23:59:59.000Z

47

Thermoelectric power generator with intermediate loop  

DOE Patents (OSTI)

A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

Bell, Lon E; Crane, Douglas Todd

2013-05-21T23:59:59.000Z

48

Thermoelectric power generator with intermediate loop  

DOE Patents (OSTI)

A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

Bel,; Lon E. (Altadena, CA); Crane, Douglas Todd (Pasadena, CA)

2009-10-27T23:59:59.000Z

49

Design and Optimization of Compatible, Segmented Thermoelectric Generators  

E-Print Network (OSTI)

to rationally select materials for a segmented thermoelectric generator. The thermoelectric potential is used for the exact analytic expressions for materials with temperature dependent thermoelectric properties C H T T = . The thermoelectric material governs how close the efficiency can be to Carnot primarily

50

Thermoelectric energy converter for generation of electricity from low-grade heat  

DOE Patents (OSTI)

A thermoelectric energy conversion device which includes a plurality of thermoelectric elements is described. A hot liquid is supplied to one side of each element and a cold liquid is supplied to the other side of each element. The thermoelectric generator may be utilized to produce power from low-grade heat sources such as ocean thermal gradients, solar ponds, and low-grade geothermal resources. (WHK)

Jayadev, T.S.; Benson, D.K.

1980-05-27T23:59:59.000Z

51

SYSTEM OPTIMIZTION OF HOT WATER CONCENTRATED SOLAR THERMOELECTRIC GENERATION  

E-Print Network (OSTI)

In this report, we describe the design of a concentrated solar thermoelectric (TE) system which can provide both electricity and hot water. Today’s thermoelectric materials have a relatively low efficiency (~6 % for temperature difference across the thermoelement on the order of 300 o C). However since thermoelectrics don’t need their cold side to be near room temperature, (in another word, one can chose the particular thermoelectric material to match to the operational temperature) it is possible to use the waste heat to provide hot water and this makes the overall efficiency of the combined system to be quite high. A key factor in the optimization of the thermoelectric module is the thermal impedance matching with the incident solar radiation, and also with the hot water heat exchanger on the cold side of the thermoelectric module. We have developed an analytic model for the whole system and optimized each component in order to minimize the material cost. TE element fill factor is found to be an important parameter to optimize at low solar concentrations (generated per mass of the thermoelectric elements. Similarly the co-optimization of the microchannel heat exchanger and the TE module can be used to minimize the amount of material in the heat exchanger and the pumping power required for forced convection liquid cooling. Changing the amount of solar concentration, changes the input heat flux and this is another parameter that can be optimized in order to reduce the cost of heat exchanger (by size), the tracking requirement and the whole system. A series of design curves for different solar concentration are obtained. It is shown that the overall efficiency of the system can be more than 80 % at 200x concentration which is independent of the material ZT (TE figure-of-merit). For a material with ZThot~0.9, the electrical conversion efficiency is ~10%. For advanced materials with ZThot ~ 2.8, the electrical conversion efficiency could reach ~21%. 1.

Kazuaki Yazawa; Ali Shakouri

52

Glass-like thermal conductivity in high efficiency thermoelectric materials  

Energy.gov (U.S. Department of Energy (DOE))

Discusses strategies to design thermoelectric materials with extremely low lattice thermal conductivity through modifications of the phonon band structure and phonon relaxation time.

53

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration.  

E-Print Network (OSTI)

??A solar tracker and concentrator was designed and assembled for the purpose of cogeneration of thermal power and electrical power using thermoelectric technology. A BiTe… (more)

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

54

Molybdenum oxide electrodes for thermoelectric generators  

DOE Patents (OSTI)

The invention is directed to a composite article suitable for use in thermoelectric generators. The article comprises a thin film comprising molybdenum oxide as an electrode deposited by physical deposition techniques onto solid electrolyte. The invention is also directed to the method of making same.

Schmatz, Duane J. (Dearborn Heights, MI)

1989-01-01T23:59:59.000Z

55

Titanium nitride electrodes for thermoelectric generators  

DOE Patents (OSTI)

The invention is directed to a composite article suitable for use in thermoelectric generators. The article comprises a thin film of titanium nitride as an electrode deposited onto solid electrolyte. The invention is also directed to the method of making same.

Novak, Robert F. (Farmington Hills, MI); Schmatz, Duane J. (Dearborn Heights, MI); Hunt, Thomas K. (Ann Arbor, MI)

1987-12-22T23:59:59.000Z

56

ENERGY PAYBACK OPTIMIZATION OF THERMOELECTRIC POWER GENERATOR SYSTEMS  

E-Print Network (OSTI)

and the thermoelectric module should be performed. Active cooling and the design of the heat sink are customized to findENERGY PAYBACK OPTIMIZATION OF THERMOELECTRIC POWER GENERATOR SYSTEMS Kazuaki Yazawa Dept model for optimizing thermoelectric power generation system is developed and utilized for parametric

57

Modelica® Library for Dynamic Simulation of Thermoelectric Generators  

Science Journals Connector (OSTI)

The contribution presents a new modeling library for the dynamic simulation of thermoelectric generators (TEG) in 1D spatial resolution. The core of the library is a model of the thermoelectric legs (TEL), which ...

M. Nesarajah; L. Exel; G. Frey

2014-01-01T23:59:59.000Z

58

A Natural-Gas-Fired Thermoelectric Power Generation System  

Science Journals Connector (OSTI)

This paper presents a combustion-driven thermoelectric power generation system that uses PbSnTe-based thermoelectric modules. The modules were integrated into a gas-fired furnace with a special burner design. The...

K. Qiu; A.C.S. Hayden

2009-07-01T23:59:59.000Z

59

Potential Impact of ZT = 4 Thermoelectric Materials on Solar Thermal Energy Conversion Technologies  

Science Journals Connector (OSTI)

Photovoltaic and solar-thermal are two conversion technologies receiving a great deal of attention. ... Solar-thermal conversion uses the full solar spectrum and generates electricity by conventional electromagnetic induction methods. ... Resource and environmental impact considerations will play an increasingly important role in reaching decisions concerning the practicality of thermoelectric power generation systems. ...

Ming Xie; Dieter M. Gruen

2010-03-02T23:59:59.000Z

60

Automotive Thermoelectric Generator Design Issues  

Energy.gov (U.S. Department of Energy (DOE))

Mechanical, electrical, thermal engineering, and durability issues related to use of TEGs in the challenging automotive environment need to be resolved as they affect warranty cost and customer acceptance.

Note: This page contains sample records for the topic "thermoelectric generators thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Design and development of thermoelectric generator  

SciTech Connect

In this paper we discuss the fabrication, working and characteristics of a thermoelectric generator made up of p and n type semiconductor materials. The device consists of Fe{sub 0.2}Co{sub 3.8}Sb{sub 11.5}Te{sub 0.5} (zT = 1.04 at 818 K) as the n-type and Zn4Sb3 (zT=0.8 at 550 K) as the p-type material synthesized by vacuum hot press method. Carbon paste has been used to join the semiconductor legs to metal (Molybdenum) electrodes to reduce the contact resistance. The multi-couple (4 legs) generator results a maximum output power of 1.083 mW at a temperature difference of 240 K between the hot and cold sides. In this investigation, an I-V characteristic, maximum output power of the thermoelectric module is presented. The efficiency of thermoelectric module is obtained as ? = 0.273 %.

Prem Kumar, D. S., E-mail: rcmallik@physics.iisc.ernet.in; Mahajan, Ishan Vardhan, E-mail: rcmallik@physics.iisc.ernet.in; Anbalagan, R., E-mail: rcmallik@physics.iisc.ernet.in; Mallik, Ramesh Chandra, E-mail: rcmallik@physics.iisc.ernet.in [Thermoelectric Materials and Devices Laboratory, Department of Physics, Indian Institute of Science, Bangalore-560012 (India)

2014-04-24T23:59:59.000Z

62

Radioisotope thermoelectric generator reliability and safety  

SciTech Connect

There are numerous occasions when a planetary mission requires energy in remote areas of the solar system. Anytime power is required much beyond Mars or the Asteroid Belts, solar power is not an option. The radioisotope thermoelectric generator (RTG) was developed for such a mission requirement. It is a relatively small and lightweight power source that can produce power under adverse conditions. Just this type of source has become the backbone of the power system for far outer plant exploration. Voyagers I and II are utilizing RTGs, which will soon power the Galileo spacecraft to Jupiter and the Ulysses spacecraft to study the solar poles. The paper discusses RTG operation including thermoelectric design, converter design, general-purpose heat source; RTG reliability including design, testing, experience, and launch approval; and RTG safety issues and methods of ensuring safety.

Campbell, R.; Klein, J.

1989-01-01T23:59:59.000Z

63

Development of a 500 Watt High Temperature Thermoelectric Generator...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Documents & Publications Development of a 100-Watt High Temperature Thermoelectric Generator Automotive Waste Heat Conversion to Power Program Automotive Waste Heat...

64

State of the Art Prototype Vehicle with a Thermoelectric Generator.  

Energy.gov (U.S. Department of Energy (DOE))

Highlights BMW and partners buildup and testing of state-of-the-art prototype vehicle with the thermoelectric generator that produced over 600W under highway driving conditions

65

Proactive Strategies for Designing Thermoelectric Materials for Power Generation  

Energy.gov (U.S. Department of Energy (DOE))

New p-type and n-type multiple-rattler skutterudite thermoelectric materials design, synthesis, fabrication, and characterization for power generation using vehicle exhaust waste heat.

66

Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery  

Energy.gov (U.S. Department of Energy (DOE))

Skutterudite TE modules were fabricated and assembled into prototype thermoelectric generators (TEGs), then installed on a standard GM production vehicle and tested for performance

67

PACCAR/Hi-Z Thermoelectric Generator Project | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Inc. 2002deerbergstrand.pdf More Documents & Publications Self-powered Hydrogen + Oxygen Injection System The Effects of an Exhaust Thermoelectric Generator of a GM Sierra...

68

Waste Heat Recovery Opportunities for Thermoelectric Generators  

Energy.gov (U.S. Department of Energy (DOE))

Thermoelectrics have unique advantages for integration into selected waste heat recovery applications.

69

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation  

E-Print Network (OSTI)

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation been proposed to model thermoelectric generators (TEGs) for automotive waste heat recovery. Details: Thermoelectric generators, waste heat recovery, automotive exhaust, skutterudites INTRODUCTION In part I

Xu, Xianfan

70

Radioisotope thermoelectric generator licensed hardware package and certification tests  

SciTech Connect

This paper presents the Licensed Hardware package and the Certification Test portions of the Radioisitope Themoelectric Generator Transportation System. This package has been designed to meet those portions of the {ital Code} {ital of} {ital Federal} {ital Regulations} (10 CFR 71) relating to ``Type B`` shipments of radioactive materials. The licensed hardware is now in the U. S. Department of Energy licensing process that certifies the packaging`s integrity under accident conditions. The detailed information for the anticipated license is presented in the safety analysis report for packaging, which is now in process and undergoing necessary reviews. As part of the licensing process, a full-size Certification Test Article unit, which has modifications slightly different than the Licensed Hardware or production shipping units, is used for testing. Dimensional checks of the Certification Test Article were made at the manufacturing facility. Leak testing and drop testing were done at the 300 Area of the U.S. Department of Energy`s Hanford Site near Richland, Washington. The hardware includes independent double containments to prevent the environmental spread of {sup 238}Pu, impact limiting devices to protect portions of the package from impacts, and thermal insulation to protect the seal areas from excess heat during accident conditions. The package also features electronic feed-throughs to monitor the Radioisotope Thermoelectric Generator`s temperature inside the containment during the shipment cycle. This package is designed to safely dissipate the typical 4,500 thermal watts produced in the largest Radioisotope Thermoelectric Generators. The package also contains provisions to ensure leak tightness when radioactive materials, such as a Radioisotope Thermoelectric Generator for the Cassini Mission, planned for 1997 by the National Aeronautics and Space Administration, are being prepared for shipment. (Abstract Truncated)

Goldmann, L.H.; Averette, H.S. [Westinghouse Hanford Company, P.O. Box 1970, M/S R3-86 or N1-32, Richland, Washington 99352 (United States)

1995-01-20T23:59:59.000Z

71

The Effects of an Exhaust Thermoelectric Generator of a GM Sierra...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

an Exhaust Thermoelectric Generator of a GM Sierra Pickup Truck The Effects of an Exhaust Thermoelectric Generator of a GM Sierra Pickup Truck 2004 Diesel Engine Emissions...

72

Radioisotope thermoelectric generator transport trailer system  

SciTech Connect

The Radioisotope Thermoelectric Generator (RTG) Transportation System, designated as System 100, comprises four major systems. The four major systems are designated as the Packaging System (System 120), Trailer System (System 140), Operations and Ancillary Equipment System (System 160), and Shipping and Receiving Facility Transport System (System 180). Packaging System (System 120), including the RTG packaging is licensed (regulatory) hardware; it is certified by the U.S. Department of Energy to be in accordance with Title 10, {ital Code} {ital of} {ital Federal} {ital Regulations}, Part 71 (10 CFR 71). System 140, System 160, and System 180 are nonlicensed (nonregulatory) hardware. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}

Ard, K.E.; King, D.A.; Leigh, H.; Satoh, J.A. [Westinghouse Hanford Company, P.O. Box 1970, MSIN N1-25, Richland, Washington 99352 (United States)

1995-01-20T23:59:59.000Z

73

Thermoelectric Microdevice Fabrication Process and Evaluation at the Jet Propulsion Laboratory (JPL)  

E-Print Network (OSTI)

system), radioisotope thermoelectric generators (RTGs) are used for power [1]. Thermoelectric devicesThermoelectric Microdevice Fabrication Process and Evaluation at the Jet Propulsion Laboratory (JPL of integrated thermal management and power management and distribution. Micro thermoelectric converters

74

Thermoelectric generators incorporating phase-change materials for waste heat recovery from engine exhaust  

DOE Patents (OSTI)

Thermoelectric devices, intended for placement in the exhaust of a hydrocarbon fuelled combustion device and particularly suited for use in the exhaust gas stream of an internal combustion engine propelling a vehicle, are described. Exhaust gas passing through the device is in thermal communication with one side of a thermoelectric module while the other side of the thermoelectric module is in thermal communication with a lower temperature environment. The heat extracted from the exhaust gasses is converted to electrical energy by the thermoelectric module. The performance of the generator is enhanced by thermally coupling the hot and cold junctions of the thermoelectric modules to phase-change materials which transform at a temperature compatible with the preferred operating temperatures of the thermoelectric modules. In a second embodiment, a plurality of thermoelectric modules, each with a preferred operating temperature and each with a uniquely-matched phase-change material may be used to compensate for the progressive lowering of the exhaust gas temperature as it traverses the length of the exhaust pipe.

Meisner, Gregory P; Yang, Jihui

2014-02-11T23:59:59.000Z

75

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling  

E-Print Network (OSTI)

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling telluride TEMs. Key words: Thermoelectric generators, waste heat recovery, automotive exhaust, skutterudites bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from

Xu, Xianfan

76

The preliminary design of thermoelectric generation system using the fluid heat sources  

SciTech Connect

This paper describes the preliminary design of a thermoelectric generation system using the fluid heat sources available as the waste heat of the phosphoric acid fuel cells. The thermoelectric generator consists of many thermoelectric generation units. For estimating the output performance of the thermoelectric generator, an equilibrium thermal circuit was derived from an analytic model of a thermoelectric generation unit. Based on the equivalent thermal circuit, the output performance at thermal equilibrium was calculated by iteration. In this paper, the output performance was estimated considering the cold side pumping power. The calculation was done by assuming a heat source temperature of about 450K on the hot side, about 310 K on the cold side, and 2,000kWth as heat exchange capacity. The electric power of the generator with a size of 1.5 x 1.5 x 1.4 (h) m{sup 3} was found to be about 70 kW and its power density, about 1.5 kW/m{sup 2} excepting the pumping power on the cold water side.

Hori, Y.; Ito, T. [Central Research Inst. of Electric Power Industry, Yokosuka, Kanagawa (Japan)

1995-12-31T23:59:59.000Z

77

Powering Curiosity: Multi-Mission Radioisotope Thermoelectric Generators |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Powering Curiosity: Multi-Mission Radioisotope Thermoelectric Powering Curiosity: Multi-Mission Radioisotope Thermoelectric Generators Powering Curiosity: Multi-Mission Radioisotope Thermoelectric Generators January 29, 2008 - 7:06pm Addthis Mars Science Laboratory, aka Curiosity, is part of NASA's Mars Exploration Program, a long-term program of robotic exploration of the Red Planet. It's powered by the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). Photo courtesy of NASA/JPL-Caltech. Mars Science Laboratory, aka Curiosity, is part of NASA's Mars Exploration Program, a long-term program of robotic exploration of the Red Planet. It's powered by the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). Photo courtesy of NASA/JPL-Caltech. What are the key facts? Over the last four decades, the United States has launched 26

78

A Novel Optimization Method for the Electric Topology of Thermoelectric Modules Used in an Automobile Exhaust Thermoelectric Generator  

Science Journals Connector (OSTI)

Based on Bi2Te3 thermoelectric modules, a kind of automobile exhaust thermoelectric generator (AETEG) with a ... heat exchanger and cooling system. Then, their electric topology (series or parallel hybrid) was .....

Rui Quan; Xinfeng Tang; Shuhai Quan; Liang Huang

2013-07-01T23:59:59.000Z

79

Multi-physics modeling of thermoelectric generators for waste heat recovery applications  

Energy.gov (U.S. Department of Energy (DOE))

Model developed provides effective guidelines to designing thermoelectric generation systems for automotive waste heat recovery applications

80

Development of a 100-Watt High Temperature Thermoelectric Generator  

Energy.gov (U.S. Department of Energy (DOE))

Test results for low and high temperature thermoelectric generators (TEG) those for a 530-watt BiTe TEG; design and construction of a 100-watt high temperature TEG currently in fabrication.

Note: This page contains sample records for the topic "thermoelectric generators thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Modeling of thin-film solar thermoelectric generators  

E-Print Network (OSTI)

Recent advances in solar thermoelectric generator (STEG) performance have raised their prospect as a potential technology to convert solar energy into electricity. This paper presents an analysis of thin-film STEGs. ...

Weinstein, Lee Adragon

82

Fiber optic signal amplifier using thermoelectric power generation  

DOE Patents (OSTI)

A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications. 2 figs.

Hart, M.M.

1995-04-18T23:59:59.000Z

83

Fiber optic signal amplifier using thermoelectric power generation  

DOE Patents (OSTI)

A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu.sub.238 or Sr.sub.90 thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu.sub.238 or Sr.sub.90 thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

Hart, Mark M. (Aiken, SC)

1995-01-01T23:59:59.000Z

84

Experimental and theoretical analysis of a thermoelectric generator  

SciTech Connect

The primary objectives of this study were to develop models for studying performance of a thermoelectric generator for the case of steady-state, and transient problems; and to develop a method and procedure for analyzing data taken experimentally and compare them with the theoretical results. The work is divided into primary areas that involve (i) model development and linear and nonlinear parameter estimations, (ii) experimental tests, and (iii) design and simulation. Analysis and experiments were conducted to describe the effects of the leg-surface heat loss, and the temperature difference on the performance of a thermoelectric generator. Two numerical models that treat the problem of thermoelectric generator, linear and nonlinear were developed. A Global Corporation model 5120, 120-watt thermoelectric generator system was tested in the 5-kW NMSU/PSL solar furnace at two different hot and cold junction temperatures. The developed computer models were used for design and simulation of an auto thermoelectric generator (Automobile Thermoelectric Generator) that converts waste heat from the car engine directly to the electrical power as a substitute device for the electrical generator used in cars.

Moghaddas, M.H.

1986-01-01T23:59:59.000Z

85

Thermoelectric generator and method for the fabrication thereof  

DOE Patents (OSTI)

A thermoelectric generator using semiconductor elements for responding to a temperature gradient to produce electrical energy with all of the semiconductor elements being of the same type is disclosed. A continuous process for forming substrates on which the semiconductor elements and superstrates are deposited and a process for forming the semiconductor elements on the substrates are also disclosed. The substrates with the semiconductor elements thereon are combined with superstrates to form modules for use thermoelectric generators.

Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

1987-01-01T23:59:59.000Z

86

Thermoelectric generator and method for the fabrication thereof  

DOE Patents (OSTI)

A thermoelectric generator using semiconductor elements for responding to a temperature gradient to produce electrical energy with all of the semiconductor elements being of the same type is disclosed. A continuous process for forming substrates on which the semiconductor elements and superstrates are deposited and a process for forming the semiconductor elements on the substrates are also disclosed. The substrates with the semiconductor elements thereon are combined with superstrates to form modules for use as thermoelectric generators.

Benson, D.K.; Tracy, C.E.

1984-08-01T23:59:59.000Z

87

Design of improved controller for thermoelectric generator used in distributed generation  

Science Journals Connector (OSTI)

This paper investigates the application of thermal generation based on solid-state devices such as thermoelectric generators (TEGs) as a novel technological alternative of distributed generation (DG). The full detailed modeling and the dynamic simulation of a three-phase grid-connected TEG used as a dispersed generator is studied. Moreover, a new control scheme of the TEG is proposed, which consists of a multi-level hierarchical structure and incorporates a maximum power point tracker (MPPT) for better use of the thermal resource. In addition, reactive power compensation of the electric grid is included, operating simultaneously and independently of the active power generation. Validation of models and control schemes is performed by using the MATLAB/Simulink environment. Moreover, a small-scale TEG experimental set-up was employed to demonstrate the accuracy of proposed models.

M.G. Molina; L.E. Juanicó; G.F. Rinalde; E. Taglialavore; S. Gortari

2010-01-01T23:59:59.000Z

88

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network (OSTI)

significant challenge for solar thermal energy generation issolar thermal, cogeneration of electrical and thermal energy,for efficient energy production. Solar thermal plants, such

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

89

Thermal Energy Harvesting with Thermoelectrics for Self-powered Sensors: With Applications to Implantable Medical Devices, Body Sensor Networks and Aging in Place  

E-Print Network (OSTI)

Pu-238) radioisotope and a thermoelectric generator. The Pu-to radioisotopes. In designing thermoelectric generators for

Chen, Alic

2011-01-01T23:59:59.000Z

90

Influence of temperature on characters of thermoelectric generators based on test bed  

Science Journals Connector (OSTI)

In order to achieve the energy recovery of the coolant heat for internal combustion engine (ICE) using the thermoelectric generation (TEG) technology, one test bed for studying the influence of temperature on the characters of thermoelectric generators ...

Zongzheng Ma, Xinli Wang, Anjie Yang

2014-01-01T23:59:59.000Z

91

Status of Segmented Element Thermoelectric Generator for Vehicle Waste Heat Recovery  

Energy.gov (U.S. Department of Energy (DOE))

Discusses progress of thermoelectric generator development at BSST and assessment of potential to enter commercial operation in vehicles

92

Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Developing a low and high temperature dual thermoelectric generation waste heat recovery system for light-duty vehicles.

93

New nano structure approaches for bulk thermoelectric materials  

E-Print Network (OSTI)

Thermoelectrics: Direct Solar Thermal Energy Conversion”,are working on solar thermal energy to generate electriccooling for CPUs, solar thermal energy harvesting, solid-

Kim, Jeonghoon

2010-01-01T23:59:59.000Z

94

System level modeling of thermoelectric generators for automotive applications  

Energy.gov (U.S. Department of Energy (DOE))

Uses a model to predict and analyze the system-level performance of a thermoelectric generator in terms of the power output and the power density ? at the element, module and system-level and for a wide range of operating conditions.

95

Molybdenum-platinum-oxide electrodes for thermoelectric generators  

DOE Patents (OSTI)

The invention is directed to a composite article suitable for use in thermoelectric generators. The article comprises a solid electrolyte carrying a thin film comprising molybdenum-platinum-oxide as an electrode deposited by physical deposition techniques. The invention is also directed to the method of making same.

Schmatz, Duane J. (Dearborn Heights, MI)

1990-01-01T23:59:59.000Z

96

A High-temperature, High-efficiency Solar Thermoelectric Generator Prototype  

Science Journals Connector (OSTI)

Abstract Solar thermoelectric generators (STEGs) have the potential to convert solar energy at greater than 15% efficiency. This project investigates the system design, the necessary thermoelectric and optical technologies, and the economic feasibility of the STEG approach. A STEG is a solid-state heat engine that converts sunlight directly into DC electricity through the thermoelectric effect. \\{STEGs\\} consist of three subsystems: the solar absorber, the thermoelectric generator (TEG), and the heat management system (insulation, heat exchanger, vacuum enclosure, etc.). This project will integrate several state-of-the-art technologies to achieve high efficiency, including next- generation materials for TEGs, high-temperature solar-selective absorbers, and thermal cavities. We will test \\{STEGs\\} at NREL's high flux solar furnace (HFSF) and perform analysis of parasitic losses and lifetime analysis to optimize prototype operation. Equally important for this technology is the development of a cost model to determine the economic competitiveness and possible application niches for STEG technologies. We report on first-order economic analysis to identify the most promising pathways for advancing the technology.

M.L. Olsen; E.L. Warren; P.A. Parilla; E.S. Toberer; C.E. Kennedy; G.J. Snyder; S.A. Firdosy; B. Nesmith; A. Zakutayev; A. Goodrich; C.S. Turchi; J. Netter; M.H. Gray; P.F. Ndione; R. Tirawat; L.L. Baranowski; A. Gray; D.S. Ginley

2014-01-01T23:59:59.000Z

97

Performance of the 1 kW thermoelectric generator for diesel engines  

SciTech Connect

Hi-Z Technology, Inc. (Hi-Z) has been developing a 1 kW thermoelectric generator for class eight Diesel truck engines under U.S. Department of Energy and California Energy Commission funding since 1992. The purpose of this generator is to replace the currently used shaft-driven alternator by converting part of the waste heat in the engine`s exhaust directly to electricity. The preliminary design of this generator was reported at the 1992 meeting of the XI-ICT in Arlington, Texas. This paper will report on the final mechanical, thermal and thermoelectric design of this generator. The generator uses seventy-two of Hi-Z`s 13 Watt bismuth-telluride thermoelectric modules for energy conversion. The number of modules and their arrangement has remained constant through the program. The 1 kW generator was tested on several engines during the development process. Many of the design features were changed during this development as more information was obtained. We have only recently reached our design goal of 1 kW output. The output parameters of the generator are reported. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

Bass, J.C.; Elsner, N.B.; Leavitt, F.A. [Hi-Z Technology, Inc (??)

1994-08-10T23:59:59.000Z

98

Investigating and establishing limiting heat flux for passively cooled and solar concentrated thermoelectric power generation system.  

E-Print Network (OSTI)

??Thermoelectric generators (TEG) working on the principle of Seebeck effect have gathered the attention during this period as a potential device that can generate electricity… (more)

Date, A

2014-01-01T23:59:59.000Z

99

Thermal Energy Harvesting with Thermoelectrics for Self-powered Sensors: With Applications to Implantable Medical Devices, Body Sensor Networks and Aging in Place  

E-Print Network (OSTI)

By scavenging waste heat, thermoelectric generators mightfor new thermoelectric generators to harvest waste heat fromthermoelectric energy generators (TEGs) that scavenge waste heat,

Chen, Alic

2011-01-01T23:59:59.000Z

100

Radioisotope thermoelectric generator transportation system subsystem 143 software development plan  

SciTech Connect

This plan describes the activities to be performed and the controls to be applied to the process of specifying, developing, and qualifying the data acquisition software for the Radioisotope Thermoelectric Generator (RTG) Transportation System Subsystem 143 Instrumentation and Data Acquisition System (IDAS). This plan will serve as a software quality assurance plan, a verification and validation (V and V) plan, and a configuration management plan.

King, D.A.

1994-11-10T23:59:59.000Z

Note: This page contains sample records for the topic "thermoelectric generators thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

End-on radioisotope thermoelectric generator impact tests  

SciTech Connect

The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). The modular GPHS design was developed to address both survivability during launch abort and return from orbit. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure. {copyright} {ital 1997 American Institute of Physics.}

Reimus, M.A.; Hinckley, J.E. [Los Alamos National Laboratory P.O. Box 1663, MS-E502 Los Alamos, New Mexico87545 (United States)

1997-01-01T23:59:59.000Z

102

Radioisotope thermoelectric generator/thin fragment impact test  

SciTech Connect

The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel.

Reimus, M. A. H.; Hinckley, J. E. [Los Alamos National Laboratory, P.O. Box 1663, MS-E502, Los Alamos, New Mexico 87545 (United States)

1998-01-15T23:59:59.000Z

103

Radioisotope thermoelectric generator/thin fragment impact test  

SciTech Connect

The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel. {copyright} {ital 1998 American Institute of Physics.}

Reimus, M.A.; Hinckley, J.E. [Los Alamos National Laboratory, P.O. Box 1663, MS-E502, Los Alamos, New Mexico 87545 (United States)

1998-01-01T23:59:59.000Z

104

Radioisotope thermoelectric generator/thin fragment impact test  

SciTech Connect

The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the convertor housing, failure of one fueled clad, and release of a small quantity of fuel.

Reimus, M.A.H.; Hinckley, J.E.

1998-12-31T23:59:59.000Z

105

End-on radioisotope thermoelectric generator impact tests  

SciTech Connect

The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of [sup 238]Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). The modular GPHS design was developed to address both survivability during launch abort and return from orbit. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure.

Reimus, M.A.H.; Hhinckley, J.E.

1997-01-01T23:59:59.000Z

106

Thermoelectric-Generator-Based DC-DC Conversion Network for Automotive Applications.  

E-Print Network (OSTI)

?? As waste heat recovering techniques, especially thermoelectric generator (TEG technologies, develop during recent years?its utilization in automotive industry is attempted from many aspects. Previous… (more)

Li, Molan

2011-01-01T23:59:59.000Z

107

High Reliability, High TemperatureThermoelectric Power Generation Materials and Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Key technologies and system approaches to excellent record of thermoelectric power sources in deep space missions and development of higher performance TE materials for the next generation systems

108

Electronic and thermal transport in GeTe: A versatile base for thermoelectric materials  

SciTech Connect

GeTe is a narrow-band gap semiconductor, where Ge vacancies generate free charge carriers, holes, forming a self-dopant degenerate system with p-type conductivity, and serves as a base for high-performance multicomponent thermoelectric materials. There is a significant discrepancy between the electronic and thermal transport data for GeTe-based materials reported in the literature, which obscures the baseline knowledge and prevents a clear understanding of the effect of alloying GeTe with various elements. A comprehensive study including XRD, SEM, EDS, Seebeck coefficient, electrical resistivity, thermal conductivity, and 125Te NMR of several GeTe samples was conducted. Similar Seebeck coefficient and electrical resistivity are observed for all GeTe samples used showing that the concentration of Ge vacancies generating charge carriers is constant along the ingot. Very short 125Te NMR spin-relaxation time agrees well with high carrier concentration obtained from the Hall effect measurements. Our data show that at ~700 K, GeTe has a very large power factor, 42 ?Wcm-1K-2, much larger than that of any high efficiency thermoelectric telluride at these temperatures. Electronic and thermal properties of GeTe are compared to PbTe, another well-known thermoelectric material, where free charge carriers, holes or electrons, are generated by vacancies on Pb or Te sites, respectively. Discrepancy in the data for GeTe reported in literature can be attributed to the variation in the Ge:Te ratio of solidified samples as well as to different conditions of measurements.

None

2013-08-29T23:59:59.000Z

109

Electronic and thermal transport in GeTe: A versatile base for thermoelectric materials  

GeTe is a narrow-band gap semiconductor, where Ge vacancies generate free charge carriers, holes, forming a self-dopant degenerate system with p-type conductivity, and serves as a base for high-performance multicomponent thermoelectric materials. There is a significant discrepancy between the electronic and thermal transport data for GeTe-based materials reported in the literature, which obscures the baseline knowledge and prevents a clear understanding of the effect of alloying GeTe with various elements. A comprehensive study including XRD, SEM, EDS, Seebeck coefficient, electrical resistivity, thermal conductivity, and 125Te NMR of several GeTe samples was conducted. Similar Seebeck coefficient and electrical resistivity are observed for all GeTe samples used showing that the concentration of Ge vacancies generating charge carriers is constant along the ingot. Very short 125Te NMR spin-relaxation time agrees well with high carrier concentration obtained from the Hall effect measurements. Our data show that at ~700 K, GeTe has a very large power factor, 42 ?Wcm-1K-2, much larger than that of any high efficiency thermoelectric telluride at these temperatures. Electronic and thermal properties of GeTe are compared to PbTe, another well-known thermoelectric material, where free charge carriers, holes or electrons, are generated by vacancies on Pb or Te sites, respectively. Discrepancy in the data for GeTe reported in literature can be attributed to the variation in the Ge:Te ratio of solidified samples as well as to different conditions of measurements.

None

2013-08-29T23:59:59.000Z

110

Nonequilibrium Thermoelectrics: Low-Cost, High-Performance Materials for Cooling and Power Generation  

SciTech Connect

Thermoelectric materials can be made into coolers (TECs) that use electricity to develop a temperature difference, cooling something, or generators (TEGs) that convert heat directly to electricity. One application of TEGs is to place them in a waste heat stream to recuperate some of the power being lost and putting it to use more profitably. To be effective thermoelectrics, however, materials must have both high electrical conductivity and low thermal conductivity, a combination rarely found in nature. Materials selection and processing has led to the development of several systems with a figure of merit, ZT, of nearly unity. By using non-equilibrium techniques, we have fabricated higher efficiency thermoelectric materials. The process involves creating an amorphous material through melt spinning and then sintering it with either spark plasma or a hot press for as little as two minutes. This results in a 100% dense material with an extremely fine grain structure. The grain boundaries appear to retard phonons resulting in a reduced thermal conductivity while the electrons move through the material relatively unchecked. The techniques used are low-cost and scaleable to support industrial manufacturing.

Li, Q.

2011-05-18T23:59:59.000Z

111

Proposed strontium radiosotope thermoelectric generator fuel encapsulation facility  

SciTech Connect

The proposed Fuel Encapsulation Facility is a fully equipped facility for processing and encapsulating strontium Radioisotope Thermoelectric Generator (RTG) fuel from presently available Waste Encapsulation and Storage Facility (WESF) capsules. The facility location is on the second building level below ground of the Fuels and Materials Examination Facility (FMEF), Cells 142, 143, and 145. Capsules containing strontium fluoride (SrF[sub 2]) would be received from the WESF in Cell 145 and transferred to the three adjacent cells for processing and encapsulation into the final RTG fuel configuration.

Adkins, H.E. (Westinghouse Hanford Company, P.O. Box 1970, Mail Stop N1-42, Richland, Washington 99352 (United States))

1993-01-10T23:59:59.000Z

112

Procurement of a fully licensed radioisotope thermoelectric generator transportation system  

SciTech Connect

A fully licensed transportation system for Radioisotope Thermoelectric Generators and Light-Weight Radioisotope Heater Units is currently being designed and built. The system will comply with all applicable U.S. Department of Transportation regulations without the use of a DOE Alternative.'' The U.S. Department of Transportation has special double containment'' requirements for plutonium. The system packaging uses a doubly contained bell jar'' concept. A refrigerated trailer is used for cooling the high-heat payloads. The same packaging is used for both high- and low-heat payloads. The system is scheduled to be available for use by mid-1992.

Adkins, H.E.; Bearden, T.E. (Westinghouse Hanford Company, P.O. Box 1970, N1-42, Richland, Washington 99352 (US))

1991-01-01T23:59:59.000Z

113

Procurement of a fully licensed radioisotope thermoelectric generator transportation system  

SciTech Connect

A fully licensed transportation system for Radioisotope Thermoelectric Generators and Light-Weight Radioisotope Heater Units is currently being designed and built. The system will comply with all applicable US Department of Transportation regulations without the use of a DOE Alternative.'' The US Department of Transportation has special double containment'' requirements for plutonium. The system packaging uses a doubly contained bell jar'' concept. A refrigerated trailer is used for cooling the high-heat payloads. The same packaging is used for both high- and low-heat payloads. The system is scheduled to be available for use by mid-1992. 4 refs., 4 figs., 2 tabs.

Adkins, H.E.; Bearden, T.E.

1990-10-01T23:59:59.000Z

114

An overview of the Radioisotope Thermoelectric Generator Transportation System Program  

SciTech Connect

Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft. However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The U.S. Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administration{close_quote}s Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent major changes in the U.S. Department of Energy structure and resources will be outlined. {copyright} {ital 1996 American Institute of Physics.}

McCoy, J.C.; Becker, D.L. [Westinghouse Hanford Company, P.O. Box 1970, Richland, Washington 99352 (United States)

1996-03-01T23:59:59.000Z

115

An overview of the Radioisotope Thermoelectric Generator Transporation System Program  

SciTech Connect

Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The US Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administrations Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent ma or changes in the US Department of Energy structure and resources will be outlined.

McCoy, J.C.

1995-10-01T23:59:59.000Z

116

IMPROVING THE EFFICIENCY OF THERMOELECTRIC GENERATORS BY USING SOLAR HEAT CONCENTRATORS  

E-Print Network (OSTI)

IMPROVING THE EFFICIENCY OF THERMOELECTRIC GENERATORS BY USING SOLAR HEAT CONCENTRATORS M. T. de : Thermoelectric generator, Solar heat concentrator, Carnot efficiency I - Introduction The global energy crisis the junctions of two different materials. For a TEG to supply a significant amount of power, several thermo

117

On the Use of Thermoelectric (TE) Applications Based on Commercial Modules: The Case of TE Generator and TE Cooler  

Science Journals Connector (OSTI)

In recent years thermoelectricity sees rapidly increasing usages in applications like portable refrigerators beverage coolers electronic component coolers etc. when used as Thermoelectric Cooler (TEC) and Thermoelectric Generators (TEG) which make use of the Seebeck effect in semiconductors for the direct conversion of heat into electrical energy and is of particular interest for systems of highest reliability or for waste heat recovery. In this work we examine the performance of commercially available TEC and TEG. A prototype TEC?refrigerator has been designed modeled and constructed for in?car applications. Additionally a TEG was made in order to measure the gained power and efficiency. Furthermore a TEG module was tested on a small size car (Toyota Starlet 1300 cc) in order to measure the gained power and efficiency for various engine loads. With the use of a modeling approach we evaluated the thermal contact resistances and their influence on the final device efficiency.

K. Zorbas; E. Hatzikraniotis; K. M. Paraskevopoulos; Th. Kyratsi

2010-01-01T23:59:59.000Z

118

Thermal to Electrical Energy Conversion of Skutterudite-Based Thermoelectric Modules  

Science Journals Connector (OSTI)

The performance of thermoelectric (TE) materials has improved tremendously over the past decade. The intrinsic thermal and electrical properties of state-of-the-art TE materials demonstrate that the potential ...

James R. Salvador; Jung Y. Cho; Zuxin Ye…

2013-07-01T23:59:59.000Z

119

Thermal Conductivity Reduction and Thermoelectric Figure of Merit Increase by Embedding Nanoparticles in Crystalline Semiconductors  

E-Print Network (OSTI)

, 63.22.+m, 65.80.+n, 66.60.+a The performance of thermoelectric energy conversion devices depends to achieve high carrier mobility. The lowest thermal conduc- tivity in crystalline solids is generally

120

A facility to remotely assemble radioisotope thermoelectric generators  

SciTech Connect

Radioisotope Thermoelectric Generators (RTGs) are electrical power sources that use heat from decaying radioisotopes to directly generate electrical power. The RTG assembly process is performed in an inert atmosphere inside a large glovebox, which is surrounded by radiation shielding to reduce exposure to neutron and gamma radiation from the radioisotope heat source. In the past, allowable dose rate limits have allowed direct, manual assembly methods; however, current dose rate limits require a thicker radiation shielding that makes direct, manual assembly infeasible. To minimize RTG assembly process modifications, telerobotic systems are being investigated to perform remote assembly tasks. Telerobotic systems duplicate human arm motion and incorporate force feedback sensitivity to handle objects and tools in a human-like manner. A telerobotic system with two arms and a three-dimensional (3-D) vision system can be used to perform remote RTG assembly tasks inside gloveboxes and cells using unmodified, normal hand tools.

Engstrom, J.W.; Goldmann, L.H.; Truitt, R.W.

1992-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermoelectric generators thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Cost–Performance Analysis and Optimization of Fuel-Burning Thermoelectric Power Generators  

Science Journals Connector (OSTI)

Energy cost analysis and optimization of thermoelectric (TE) power generators burning fossil fuel show a lower initial cost ... The produced heat generates electric power. Unlike waste heat recovery systems, the ...

Kazuaki Yazawa; Ali Shakouri

2013-07-01T23:59:59.000Z

122

System level modeling of thermoelectric generators for automotive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and for a wide range of operating conditions. chen.pdf More Documents & Publications Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Combustion Exhaust Gas...

123

Novel thermoelectric generator for stationary power waste heat recovery .  

E-Print Network (OSTI)

??Internal combustion engines produce much excess heat that is vented to the atmosphere through the exhaust fluid. Use of solid-state thermoelectric (TE) energy conversion technology… (more)

Engelke, Kylan Wynn.

2010-01-01T23:59:59.000Z

124

Status of Segmented Element Thermoelectric Generator for Vehicle...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ring which includes TE elements Advanced Thermoelectric Solutions - 10 - Liquid tanks are attached at each end of the TEG. The cooling liquid flows counter to the flow of...

125

Thermoelectric Generator Development at Renault Trucks-Volvo Group  

Energy.gov (U.S. Department of Energy (DOE))

Reviews project to study the potential of thermoelectricity for diesel engines of trucks and passenger cars, where relatively low exhaust temperature is challenging for waste heat recovery systems

126

Establishing Thermo-Electric Generator (TEG) Design Targets for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaluate the fuel economy impact of thermoelectric devices on a conventional vehicle, using engine-in- the-loop testing and simulation studies Results: * Cold & hot start...

127

Commercialization of Bulk Thermoelectric Materials for Power Generation  

Energy.gov (U.S. Department of Energy (DOE))

Critical aspects of technology commercialization of preproduction high performance thermoelectric materials available for device developers, data analysis, and future plans are discussed

128

General formula for the thermoelectric transport phenomena based on Fermi liquid theory: Thermoelectric power, Nernst coefficient, and thermal conductivity  

Science Journals Connector (OSTI)

On the basis of linear response transport theory, the general expressions for the thermoelectric transport coefficients, such as thermoelectric power (S), Nernst coefficient (?), and thermal conductivity (?), are derived by using Fermi liquid theory. The obtained expression is exact for the most singular term in terms of 1/?k* (?k* being the quasiparticle damping rate). We utilize Ward identities for the heat velocity which is derived by the local energy conservation law. The derived expressions enable us to calculate various thermoelectric transport coefficients in a systematic way, within the framework of the conserving approximation of Baym and Kadanoff. Thus the present expressions are very useful for studying strongly correlated electrons such as high-Tc superconductors, organic metals, and heavy fermion systems, where the current vertex correction (VC) is expected to play important roles. By using the derived expression, we calculate the thermal conductivity ? in a free-dispersion model up to second order with respect to the on-site Coulomb potential U. We find that it is slightly enhanced due to the VC for the heat current, although the VC for electron current makes the conductivity (?) of this system diverge, reflecting the absence of the umklapp process.

Hiroshi Kontani

2003-01-16T23:59:59.000Z

129

Device for use in a furnace exhaust stream for thermoelectric generation  

DOE Patents (OSTI)

A device for generating voltage or electrical current includes an inner elongated member mounted in an outer elongated member, and a plurality of thermoelectric modules mounted in the space between the inner and the outer members. The outer and/or inner elongated members each include a plurality of passages to move a temperature altering medium through the members so that the device can be used in high temperature environments, e.g. the exhaust system of an oxygen fired glass melting furnace. The modules are designed to include a biasing member and/or other arrangements to compensate for differences in thermal expansion between the first and the second members. In this manner, the modules remain in contact with the first and second members. The voltage generated by the modules can be used to power electrical loads.

Polcyn, Adam D.

2013-06-11T23:59:59.000Z

130

Heat exchanger design for thermoelectric electricity generation from low temperature flue gas streams .  

E-Print Network (OSTI)

??An air-to-oil heat exchanger was modeled and optimized for use in a system utilizing a thermoelectric generator to convert low grade waste heat in flue… (more)

Latcham, Jacob G. (Jacob Greco)

2009-01-01T23:59:59.000Z

131

Thermoelectric Generator (TEG) Fuel Displacement Potential using Engine-in-the-Loop and Simulation  

Energy.gov (U.S. Department of Energy (DOE))

Assessment of fuel savings with thermoelectric generators (TEGs) using detailed model of GM-developed TEG as part of the engine connected to a dynamometer that emulates the rest of the vehicle

132

Atomistic calculations of the electronic, thermal, and thermoelectric properties of ultra-thin Si layers  

E-Print Network (OSTI)

]. Mahan and Sofo have further shown that thermoelectric energy conversion through a single energy level (0 of a drastic reduction in their thermal conductivity, l, and possibilities of enhanced power factors temperature electrical conductivity, Seebeck coefficient, power factor, thermal conductivity, and ZT figure

133

Certification testing of the Los Alamos National Laboratory Heat Source/Radioisotopic Thermoelectric Generator shipping container  

SciTech Connect

The Heat Source/Radioisotopic Thermoelectric Generator shipping counter is a Type B packaging currently under development by Los Alamos National Laboratory. Type B packaging for transporting radioactive material is required to maintain containment and shielding after being exposed to normal and hypothetical accident environments defined in Title 10 of the Code of Federal Regulations Part 71. A combination of testing and analysis is used to verify the adequacy of this packaging design. This report documents the testing portion of the design verification. Six tests were conducted on a prototype package: a water spray test, a 4-foot normal conditions drop test, a 30-foot drop test, a 40-inch puncture test, a 30-minute thermal test, and an 8-hour immersion test.

Bronowski, D.R.; Madsen, M.M.

1991-09-01T23:59:59.000Z

134

Spin-on-doping for output power improvement of silicon nanowire array based thermoelectric power generators  

SciTech Connect

The output power of a silicon nanowire array (NWA)-bulk thermoelectric power generator (TEG) with Cu contacts is improved by spin-on-doping (SOD). The Si NWAs used in this work are fabricated via metal assisted chemical etching (MACE) of 0.01–0.02 ? cm resistivity n- and p-type bulk, converting ?4% of the bulk thickness into NWs. The MACE process is adapted to ensure crystalline NWs. Current-voltage and Seebeck voltage-temperature measurements show that while SOD mainly influences the contact resistance in bulk, it influences both contact resistance and power factor in NWA-bulk based TEGs. According to our experiments, using Si NWAs in combination with SOD increases the output power by an order of 3 under the same heating power due to an increased power factor, decreased thermal conductivity of the NWA and reduced Si-Cu contact resistance.

Xu, B., E-mail: bin.xu09@imperial.ac.uk; Fobelets, K. [Department of Electrical and Electronic Engineering, Imperial College London, Exhibition Road, SW7 2BT London (United Kingdom)

2014-06-07T23:59:59.000Z

135

Thermoelectric power generation materials: Technology and application opportunities  

Science Journals Connector (OSTI)

Thermoelectric power sources have consistently demonstrated their extraordinary reliability and longevity for deep space missions (67 missions to date, more than 30 years of life) as well as terrestrial applic...

Jean-Pierre Fleurial

2009-04-01T23:59:59.000Z

136

Oxide based thermoelectric materials for large scale power generation  

E-Print Network (OSTI)

The thermoelectric (TE) devices are based on the Seebeck and Peltier effects, which describe the conversion between temperature gradient and electricity. The effectiveness of the material performance can be described by ...

Song, Yang, M. Eng. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

137

Thermoelectric Power Generation as an Alternative Green Technology of Energy Harvesting  

E-Print Network (OSTI)

The vast majority of heat that is generated from computer processor chips to car engines to electric power plants, the need to use of excess heat creates a major source of inefficiency. Energy harvesters are thermoelectric materials which are solid-state energy converters used to convert waste heat into electricity. Significant improvements to the thermoelectric materials measured by figure of merit (ZT).forconverting waste-heat energy directly into electrical power, application of this alternative green technology can be made and also it will improve the overall efficiencies of energy conversion systems. In this paper, the basic concepts of thermoelectric material and its power generation is presented and recent patents of thermoelectric material are reviewed and discussed.

Ravi R. Nimbalkar; Sanket S. Kshirsagar

138

Proactive Strategies for Designing Thermoelectric Materials for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Proactive Strategies for Designing Thermoelectric Materials for Power Generation Proactive Strategies for Designing Thermoelectric Materials for Power Generation...

139

Generating random thermal momenta  

E-Print Network (OSTI)

Generation of random thermal particle momenta is a basic task in many problems, such as microscopic studies of equilibrium and transport properties of systems, or the conversion of a fluid to particles. In heavy-ion physics, the (in)efficiency of the algorithm matters particularly in hybrid hydrodynamics + hadronic transport calculations. With popular software packages, such as UrQMD 3.3p1 or THERMINATOR, it can still take ten hours to generate particles for a single Pb+Pb "event" at the LHC from fluid dynamics output. Below I describe reasonably efficient simple algorithms using the MPC package, which should help speed momentum generation up by at least one order of magnitude. It is likely that this wheel has been reinvented many times instead of reuse, so there may very well exist older and/or better algorithms that I am not aware of (MPC has been around only since 2000). The main goal here is to encourage practitioners to use available efficient routines, and offer a few practical solutions.

Denes Molnar

2012-12-09T23:59:59.000Z

140

The Electrodeposition of PbTe Nanowires for Thermoelectric Applications  

E-Print Network (OSTI)

of thermoelectrics. Radioisotope Thermoelectric Generatorthermoelectric generators use radiation from the sun instead of a radioisotope

Hillman, Peter

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermoelectric generators thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

EXERGY ANALYSIS AND ENTROPY GENERATION MINIMIZATION OF THERMOELECTRIC WASTE HEAT RECOVERY FOR ELECTRONICS  

E-Print Network (OSTI)

Energy recovery from waste heat is attracting more and more attention. All electronic systems consume electricity but only a fraction of it is used for information processing and for human interfaces, such as displays. Lots of energy is dissipated as heat. There are some discussions on waste heat recovery from the electronic systems such as laptop computers. However the efficiency of energy conversion for such utilization is not very attractive due to the maximum allowable temperature of the heat source devices. This leads to very low limits of Carnot efficiency. In contrast to thermodynamic heat engines, Brayton cycle, free piston Stirling engines, etc., authors previously reported that thermoelectric (TE) can be a cost-effective device if the TE and the heat sink are co-optimized, and if some parasitic effects could be reduced. Since the heat already exists and it is free, the additional cost and energy payback time are the key measures to evaluate the value of the energy recovery system. In this report, we will start with the optimum model of the TE power generation system. Then, theoretical maximum output, cost impact and energy payback are evaluated in the examples of electronics system. Entropy Generation Minimization (EGM) is a method already familiar in thermal management of electronics. The optimum thermoelectric waste heat recovery design is compared with the EGM approach. Exergy analysis evaluates the useful energy flow in the optimum TE system. This comprehensive analysis is used to predict the potential future impact of the TE material development, as the dimensionless figure-ofmerit (ZT) is improved.

Kazuaki Yazawa; Ali Shakouri

142

Effects of environmental factors on the conversion efficiency of solar thermoelectric co-generators comprising parabola trough collectors and thermoelectric modules without evacuated tubular collector  

Science Journals Connector (OSTI)

Abstract Solar thermoelectric co-generators (STECGs) are an attractive means of supplying electric power and heat simultaneously and economically. Here we examine the effects of environmental factors on the conversion efficiencies of a new type of STECG comprising parabolic trough concentrators and thermoelectric modules (TEMs). Each TEM array was bonded with a solar selective absorber plate and directly positioned on the focal axis of the parabolic concentrator. Glass tubular collectors were not used to encase the TEMs. Although this makes the overall system simpler, the environmental effects become significant. Simulations show that the performance of such a system strongly depends on ambient conditions such as solar insolation, atmospheric temperature and wind velocity. As each of these factors increases, the thermal losses of the STECG system also increase, resulting in reduced solar conversion efficiency, despite the increased radiation absorption. However, the impact of these factors is relatively complicated. Although the electrical efficiency of the system increases with increasing solar insolation, it decreases with increasing ambient temperature and wind velocity. These results serve as a useful guide to the selection and installation of STECGs, particularly in Guangzhou or similar climate region.

Chao Li; Ming Zhang; Lei Miao; Jianhua Zhou; Yi Pu Kang; C.A.J. Fisher; Kaoru Ohno; Yang Shen; Hong Lin

2014-01-01T23:59:59.000Z

143

Why Blow Away Heat? Harvest Server's Heat Using Ther-moelectric Generators  

E-Print Network (OSTI)

Why Blow Away Heat? Harvest Server's Heat Using Ther- moelectric Generators Ted Tsung-Te Lai, Wei ABSTRACT This paper argues for harvesting energy from servers' wasted heat in data centers. Our approach is to distribute a large number of thermoelectric generators (TEGs) on or nearby server hotspot components whose

Huang, Polly

144

Nanostructured Materials for Energy Generation and Storage  

E-Print Network (OSTI)

efficiency of the thermoelectric energy generation and battery storageefficiency of the thermoelectric energy generation and battery storagebattery electrodes suggest that the use of nanostructured materials can substantially improve the thermal management of the batteries and their energy storage efficiency.

Khan, Javed Miller

2012-01-01T23:59:59.000Z

145

Vehicular Thermoelectric Applications Session DEER 2009  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Or this? Car of the Future? International Thermoelectric Conference 2009 - Frieburg, Germany U.S. Spacecraft using Radioisotope Thermoelectric Power Generators Thermoelectric...

146

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network (OSTI)

Since the ceramic wafers have a high thermal conductivity,easily altered ceramic blocks all had a thermal conductivityCeramics. Available Online: http://www.dynacer.com/thermal_

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

147

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network (OSTI)

13 2.2.2. Solar Thermal Versus Photovoltaic ..…………..…………doi:10.1038/nmat2090. 17. Solar Thermal Technology on anFigure 2.5: An eSolar solar thermal system in Burbank,

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

148

High Temperature Experimental Characterization of Microscale Thermoelectric Effects  

E-Print Network (OSTI)

G. P. , Thermoelectric Generators for Automotive Waste Heatinto thermoelectric generators for waste heat recovery inThermoelectric Materials and Generator Technology for Automotive Waste Heat

Favaloro, Tela

2014-01-01T23:59:59.000Z

149

High Temperature Experimental Characterization of Microscale Thermoelectric Effects  

E-Print Network (OSTI)

Mission Radioisotope Thermoelectric Generator (MMRTG) FactFigure 1.1: Radioisotope thermoelectric generator used byhand side radioisotope thermoelectric generator reflectivity

Favaloro, Tela

2014-01-01T23:59:59.000Z

150

Synthesis and Characterization of 14-1-11 Ytterbium Manganese Antimonide Derivatives for Thermoelectric Applications  

E-Print Network (OSTI)

have made radioisotope thermoelectric generators (RTGs),Mission Radioisotope Thermoelectric Generator (MMRTG) used

Star, Kurt

2013-01-01T23:59:59.000Z

151

Proof-of-principle test for thermoelectric generator for diesel engines; Final report  

SciTech Connect

In September of 1987, the principals of what is now Hi-Z TECHNOLOGY, INC. applied to the National Bureau of Standards (now National Institute of Standards and Technology, NIST) under the Energy Related Inventions Program. The invention was entitled ``Thermoelectric Generator for Diesel Engines.`` The National Institute of Standards and Technology evaluated the invention and on January 12, 1989 forwarded Recommendation Number 455 to the Department of Energy (DOE). This recommendation informed the DOE that the invention had been selected for recommendation by the NIST for possible funding by the DOE. Following the recommendation of the NIST, the DOE contacted Hi-Z to work out a development program for the generator. A contract for a grant to design, fabricate, and test a Proof-of-Principle exhaust powered thermoelectric generator for Diesel engines was signed October 19, 1989. Hi-Z provided the thermoelectric modules used in the generator as their contribution to the project. The purpose of this Grant Program was to design, build, and test a small-scale, Proof-of-Principle thermoelectric generator for a Diesel engine. 15 figs., 1 tab.

NONE

1991-07-26T23:59:59.000Z

152

A new subunit of thermoelectric generator using single crystal-like elements of laminated type  

SciTech Connect

A compact subunit of thermoelectric generator is designed using single crystal-like 288 elements of (Bi,Sb){sub 2} (Te,Se){sub 3} compounds of laminated type. It is expected that the maximum power amounts to 17.3 (W) with 11.1 (A) and 1.56 (V) at the temperature difference of 50 {degree}C. The elements are prepared by the Bridgman method using a new type of crucible. Thermoelectric properties of these elements are measured using a simple Peltier technique. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

Tanji, Y. [R& D Division, Tokin Corporation, Sendai, 982 (Japan); Nakagawa, Y. [Faculty of Engineering, Tohoku Institute of Technology, Sendai, 982 (Japan); Kaneko, T. [Institute for Materials Research, Tohoku University, Sendai, 980 (Japan); Ido, H.; Kuboki, M. [Faculty of Engineering, Tohoku Gakuin University, Tagajyo, 985 (Japan); Kogo, M. [R& D Division, Tokin Corporation, Sendai, 982 (Japan); Masumoto, T. [Institute for Materials Research, Tohoku University, Sendai, 980 (Japan); Sato, R. [Faculty of Engineering, Tohoku Gakuin University, Tagajyo, 985 (Japan)

1994-08-10T23:59:59.000Z

153

[Radioisotope thermoelectric generators and ancillary activities]. Monthly technical progress report, 1 April--28 April 1996  

SciTech Connect

Tehnical progress achieved during this period on radioisotope thermoelectric generators is described under the following tasks: engineering support, safety analysis, qualified unicouple fabrication, ETG fabrication/assembly/test, RTG shipping/launch support, design/review/mission applications, and project management/quality assurance/reliability.

NONE

1996-06-01T23:59:59.000Z

154

Design of bulk thermoelectric modules for integrated circuit thermal management  

E-Print Network (OSTI)

Index Terms—Contact resistance, equivalent circuit models,1-D equivalent circuit model. When the thermal resistance

Fukutani, K; Shakouri, A

2006-01-01T23:59:59.000Z

155

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network (OSTI)

for efficient energy production. Solar thermal plants, suchenergy production. It would require a substantial amount of land usage to install enough solar

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

156

Progress in Thermoelectrical Energy Recovery from a Light Truck...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of an Exhaust Thermoelectric Generator of a GM Sierra Pickup Truck Thermoelectrical Energy Recovery From the Exhaust of a Light Truck Automotive Thermoelectric Generators and HVAC...

157

Development of thermoelectric power generation system utilizing heat of combustible solid waste  

SciTech Connect

The paper presents the development of thermoelectric power generation system utilizing heat of municipal solid waste. The systematic classification and design guideline are proposed in consideration of the characteristics of solid waste processing system. The conceptual design of thermoelectric power generation system is carried out for a typical middle scale incinerator system (200 ton/day) by the local model. Totally the recovered electricity is 926.5 kWe by 445 units (569,600 couples). In order to achieve detailed design, one dimensional steady state model taking account of temperature dependency of the heat transfer performance and thermoelectric properties is developed. Moreover, small scale on-site experiment on 60 W class module installed in the real incinerator is carried out to extract various levels of technological problems. In parallel with the system development, high temperature thermoelectric elements such as Mn-Si and so on are developed aiming the optimization of ternary compound and high performance due to controlled fine-grain boundary effect. The manganese silicide made by shrinking-rate controlled sintering method performs 5 ({mu}W/cm K{cflx 2}) in power factor at 800 K. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

Kajikawa, T.; Ito, M.; Katsube, I. [Shonan Institute of Technology, Fujisawa, Kanagawa, 251 (Japan); Shibuya, E. [NKK Corporation, Yokohama, Kanagawa, 230 (Japan)

1994-08-10T23:59:59.000Z

158

Complex oxides useful for thermoelectric energy conversion  

DOE Patents (OSTI)

The invention provides for a thermoelectric system comprising a substrate comprising a first complex oxide, wherein the substrate is optionally embedded with a second complex oxide. The thermoelectric system can be used for thermoelectric power generation or thermoelectric cooling.

Majumdar, Arunava (Orinda, CA); Ramesh, Ramamoorthy (Moraga, CA); Yu, Choongho (College Station, TX); Scullin, Matthew L. (Berkeley, CA); Huijben, Mark (Enschede, NL)

2012-07-17T23:59:59.000Z

159

Multi-physics modeling of thermoelectric generators for waste...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

modeling Material properties and interface information (Experiments) Fluid temperature, Heat transfer coefficient & Pressure drop System temperature & Electric power Thermal...

160

Hybrid Solid Oxide Fuel Cell and Thermoelectric Generator for Maximum Power Output in Micro-CHP Systems  

Science Journals Connector (OSTI)

One of the most obvious early market applications for thermoelectric generators (TEG) is decentralized micro combined heat and power (CHP) installations of 0.5 kWe to 5 ... possible to increase the electricity pr...

L. A. Rosendahl; Paw V. Mortensen; Ali A. Enkeshafi

2011-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermoelectric generators thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

EIS-0302: Transfer of the Heat Source/Radioisotope Thermoelectric Generator Assembly and Test Operations From the Mound Site  

Energy.gov (U.S. Department of Energy (DOE))

This EIS analyzes DOE's proposed transfer of the Heat Source/Radioisotope Thermoelectric Generator (HS/RTG) operations at the Mound Site near Miamisburg, Ohio, to an alternative DOE site.

162

Metallurgy, thermal stability, and failure mode of the commercial Bi-Te-based thermoelectric modules.  

SciTech Connect

Bi-Te-based thermoelectric (TE) alloys are excellent candidates for power generation modules. We are interested in reliable TE modules for long-term use at or below 200 C. It is known that the metallurgical characteristics of TE materials and of interconnect components affect the performance of TE modules. Thus, we have conducted an extensive scientific investigation of several commercial TE modules to determine whether they meet our technical requirements. Our main focus is on the metallurgy and thermal stability of (Bi,Sb){sup 2}(Te,Se){sup 3} TE compounds and of other materials used in TE modules in the temperature range between 25 C and 200 C. Our study confirms the material suite used in the construction of TE modules. The module consists of three major components: AlN cover plates; electrical interconnects; and the TE legs, P-doped (Bi{sub 8}Sb{sub 32})(Te{sub 60}) and N-doped (Bi{sub 37}Sb{sub 3})(Te{sub 56}Se{sub 4}). The interconnect assembly contains Sn (Sb {approx} 1wt%) solder, sandwiched between Cu conductor with Ni diffusion barriers on the outside. Potential failure modes of the TE modules in this temperature range were discovered and analyzed. The results show that the metallurgical characteristics of the alloys used in the P and N legs are stable up to 200 C. However, whole TE modules are thermally unstable at temperatures above 160 C, lower than the nominal melting point of the solder suggested by the manufacture. Two failure modes were observed when they were heated above 160 C: solder melting and flowing out of the interconnect assembly; and solder reacting with the TE leg, causing dimensional swelling of the TE legs. The reaction of the solder with the TE leg occurs as the lack of a nickel diffusion barrier on the side of the TE leg where the displaced solder and/or the preexisting solder beads is directly contact the TE material. This study concludes that the present TE modules are not suitable for long-term use at temperatures above 160 C due to the reactivity between the Sn-solder and the (Bi,Sb){sup 2}(Te,Se){sup 3} TE alloys. In order to deploy a reliable TE power generator for use at or below 200 C, alternate interconnect materials must be used and/or a modified module fabrication technique must be developed.

Yang, Nancy Y. C.; Morales, Alfredo Martin

2009-02-01T23:59:59.000Z

163

Combustion-thermoelectric tube  

SciTech Connect

In direct combustion-thermoelectric energy conversion, direct fuel injection and reciprocation of the air flowing in a solid matrix are combined with the solid conduction to allow for obtaining super-adiabatic temperatures at the hot junctions. While the solid conductivity is necessary, the relatively large thermal conductivity of the available high-temperature thermoelectric materials (e.g., Si-Ge alloys) results in a large conduction loss from the hot junctions and deteriorates the performance. Here a combustion-thermoelectric tube is introduced and analyzed. Radially averaged temperatures are used for the fluid and solid phases. A combination of external cooling of the cold junctions, and direct injection of the fuel, has been used to increase the energy conversion efficiency for low thermal conductivity, high-melting temperature thermoelectric materials. The parametric study (geometry, flow, stoichiometry, materials) shows that with the current high figure of merit, high temperature Si{sub 0.7}Ge{sub 0.3} properties, a conversion efficiency of about 11% is achievable. With lower thermal conductivities for these high-temperature materials, efficiencies about 25% appear possible. This places this energy conversion in line with the other high efficiency, direct electric power generation methods.

Park, C.W.; Kaviany, M.

1999-07-01T23:59:59.000Z

164

Unified theory for inhomogeneous thermoelectric generators and coolers including multistage devices  

Science Journals Connector (OSTI)

A novel generalized Lagrange multiplier method for functional optimization with inclusion of subsidiary conditions is presented and applied to the optimization of material distributions in thermoelectric converters. Multistaged devices are considered within the same formalism by inclusion of position-dependent electric current in the legs leading to a modified thermoelectric equation. Previous analytical solutions for maximized efficiencies for generators and coolers obtained by Sherman [J. Appl. Phys. 31, 1 (1960)], Snyder [Phys. Rev. B 86, 045202 (2012)], and Seifert et al. [Phys. Status Solidi A 207, 760 (2010)] by a method of local optimization of reduced efficiencies are recovered by independent proof. The outstanding maximization problems for generated electric power and cooling power can be solved swiftly numerically by solution of a differential equation-system obtained within the new formalism. As far as suitable materials are available, the inhomogeneous TE converters can have increased performance by use of purely temperature-dependent material properties in the thermoelectric legs or by use of purely spatial variation of material properties or by a combination of both. It turns out that the optimization domain is larger for the second kind of device which can, thus, outperform the first kind of device.

York Christian Gerstenmaier and Gerhard Wachutka

2012-11-05T23:59:59.000Z

165

Geometric effect on cooling power and performance of an integrated thermoelectric generation-cooling system  

Science Journals Connector (OSTI)

Abstract Geometric design of an integrated thermoelectric generation-cooling system is performed numerically using a finite element method. In the system, a thermoelectric cooler (TEC) is powered directly by a thermoelectric generator (TEG). Two different boundary conditions in association with the effects of contact resistance and heat convection on system performance are taken into account. The results suggest that the characteristics of system performance under varying TEG length are significantly different from those under altering TEC length. When the TEG length is changed, the entire behavior of system performance depends highly on the boundary conditions. On the other hand, the maximum distributions of cooling power and coefficient of performance (COP) are exhibited when the TEC length is altered, whether the hot surface of TEG is given by a fixed temperature or heat transfer rate. The system performance will be reduced once the contact resistance and heat convection are considered. When the lengths of TEG and TEC vary, the maximum reduction percentages of system performance are 12.45% and 18.67%, respectively. The numerical predictions have provided a useful insight into the design of integrated TEG–TEC systems.

Wei-Hsin Chen; Chien-Chang Wang; Chen-I Hung

2014-01-01T23:59:59.000Z

166

High-Temperature Thermal Array for Next Generation Solar Thermal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Array for Next Generation Solar Thermal Power Production Award Number: DE-EE00025828 Report Date: March 15, 2013 PI: Stephen Obrey * Technical approach is focused on...

167

Modular Isotopic Thermoelectric Generator (MITG) Design and Development, Part A-E. Original was presented at 1983 Intersociety Energy Conversion Engineering Conference (IECEC)  

SciTech Connect

Advanced RTG concepts utilizing improved thermoelectric materials and converter concepts are under study at Fairchild for DOE. The design described here is based on DOE's newly developed radioisotope heat source, and on an improved silicon-germanium material and a multicouple converter module under development at Syncal. Fairchild's assignment was to combine the above into an attractive power system for use in space, and to assess the specific power and other attributes of that design. The resultant design is highly modular, consisting of standard RTG slices, each producing 24 watts at the desired output voltage of 28 volt. Thus, the design could be adapted to various space missions over a wide range of power levels, with little or no redesign. Each RTG slice consists of a 250-watt heat source module, eight multicouple thermoelectric modules, and standard sections of insulator, housing, radiator fins, and electrical circuit. The design makes it possible to check each thermoelectric module for electrical performance, thermal contact, leaktightness, and performance stability, after the generator is fully assembled; and to replace any deficient modules without disassembling the generator or perturbing the others. The RTG end sections provide the spring-loaded supports required to hold the free-standing heat source stack together during launch vibration. Detailed analysis indicates that the present generation of RTGs, using the same heat source modules. There is a duplicate copy of this document. OSTI has a copy of this paper.

Schock, A.

1983-04-29T23:59:59.000Z

168

Thermoelectrics Partnership: High Performance Thermoelectric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Performance Thermoelectric Waste Heat Recovery System Based on Zintl Phase Materials with Embedded Nanoparticles Thermoelectrics Partnership: High Performance Thermoelectric...

169

Thermoelectrics Partnership: Automotive Thermoelectric Modules...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solution for Automotive Thermoelectric Modules Application Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces...

170

Nanocomposites as thermoelectric materials  

E-Print Network (OSTI)

Thermoelectric materials have attractive applications in electric power generation and solid-state cooling. The performance of a thermoelectric device depends on the dimensionless figure of merit (ZT) of the material, ...

Hao, Qing

2010-01-01T23:59:59.000Z

171

Proactive Strategies for Designing Thermoelectric Materials for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Proactive Strategies for Designing Thermoelectric Materials for Power Generation Proactive Strategies for Designing Thermoelectric Materials for Power Generation 2009 DOE Hydrogen...

172

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...

173

Development and Demonstration of a Modeling Framework for Assessing the Efficacy of Using Mine Water for Thermoelectric Power Generation  

SciTech Connect

Thermoelectric power plants use large volumes of water for condenser cooling and other plant operations. Traditionally, this water has been withdrawn from the cleanest water available in streams and rivers. However, as demand for electrical power increases it places increasing demands on freshwater resources resulting in conflicts with other off stream water users. In July 2002, NETL and the Governor of Pennsylvania called for the use of water from abandoned mines to replace our reliance on the diminishing and sometimes over allocated surface water resource. In previous studies the National Mine Land Reclamation Center (NMLRC) at West Virginia University has demonstrated that mine water has the potential to reduce the capital cost of acquiring cooling water while at the same time improving the efficiency of the cooling process due to the constant water temperatures associated with deep mine discharges. The objectives of this project were to develop and demonstrate a user-friendly computer based design aid for assessing the costs, technical and regulatory aspects and potential environmental benefits for using mine water for thermoelectric generation. The framework provides a systematic process for evaluating the hydrologic, chemical, engineering and environmental factors to be considered in using mine water as an alternative to traditional freshwater supply. A field investigation and case study was conducted for the proposed 300 MW Beech Hollow Power Plant located in Champion, Pennsylvania. The field study based on previous research conducted by NMLRC identified mine water sources sufficient to reliably supply the 2-3,000gpm water supply requirement of Beech Hollow. A water collection, transportation and treatment system was designed around this facility. Using this case study a computer based design aid applicable to large industrial water users was developed utilizing water collection and handling principals derived in the field investigation and during previous studies of mine water and power plant cooling. Visual basic software was used to create general information/evaluation modules for a range of power plant water needs that were tested/verified against the Beech Hollow project. The program allows for consideration of blending mine water as needed as well as considering potential thermal and environmental benefits that can be derived from using constant temperature mine water. Users input mine water flow, quality, distance to source, elevations to determine collection, transport and treatment system design criteria. The program also evaluates low flow volumes and sustainable yields for various sources. All modules have been integrated into a seamless user friendly computer design aid and user's manual for evaluating the capital and operating costs of mine water use. The framework will facilitate the use of mine water for thermoelectric generation, reduce demand on freshwater resources and result in environmental benefits from reduced emissions and abated mine discharges.

None

2010-03-01T23:59:59.000Z

174

Work plan for the fabrication of the radioisotope thermoelectric generator transportation system package mounting  

SciTech Connect

The Radioisotope Thermoelectric Generator (RTG) has available a dedicated system for the transportation of RTG payloads. The RTG Transportation System (System 100) is comprised of four systems; the Package (System 120), the Semi-trailer (System 140), the Gas Management (System 160), and the Facility Transport (System 180). This document provides guidelines on the fabrication, technical requirements, and quality assurance of the Package Mounting (Subsystem 145), part of System 140. The description follows the Development Control Requirements of WHC-CM-6-1, EP 2.4, Rev. 3.

Satoh, J.A.

1994-11-09T23:59:59.000Z

175

Radioisotope Thermoelectric Generator Package O-Ring Seal Material Validation Testing  

SciTech Connect

The Radioisotope Thermoelectric Generator Package O-Ring Seal Material Validation Test was conducted to validate the use of the Butyl material as a primary seal throughout the required temperature range. Three tests were performed at (1) 233 K ({minus}40 {degrees}F), (2) a specified operating temperature, and (3) 244 K ({minus}20 {degrees}F) before returning to room temperature. Helium leak tests were performed at each test point to determine seal performance. The two major test objectives were to establish that butyl rubber material would maintain its integrity under various conditions and within specified parameters and to evaluate changes in material properties.

Adkins, H.E.; Ferrell, P.C.; Knight, R.C.

1994-09-30T23:59:59.000Z

176

Radioisotope thermoelectric generator load and unload sequence from the licensed hardware package system and the trailer system  

SciTech Connect

The Radioisotope Thermoelectric Generator Transportation System, designated as System 100, comprises four major systems. The four major systems are designated as the Packaging System (System 120), Trailer System (System 140), Operations and Ancillary Equipment System (System 160), including the Radioisotope Thermoelectric Generator Transportation System packaging is licensed (regularoty) hardware, certified by the U.S. Department of Energy to be in accordance with Title 10, {ital Code} {ital of} {ital Federal} {ital Regulations}, Part 71 (10 CFR 71). System 140, System 160, and System 180 are nonlicensed (nonregulatory) hardware. This paper focuses on the required interfaces and sequencing of events required by these systems and the shipping and receiving facilities in preparation of the Radioisotope Thermoelectric Generator for space flight. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}

Reilly, M.A. [Westinghouse Hanford Company, P.O. Box 1970, MSIN N1-25, Richland, Washington 99352 (United States)

1995-01-20T23:59:59.000Z

177

Theoretical and experimental estimation of limiting input heat flux for thermoelectric power generators with passive cooling  

Science Journals Connector (OSTI)

Abstract This paper focuses on theoretical and experimental analysis used to establish the limiting heat flux for passively cooled thermoelectric generators (TEG). 2 commercially available TEG’s further referred as type A and type B with different allowable hot side temperatures (150 °C and 250 °C respectively) were investigated in this research. The thermal resistance of TEG was experimentally verified against the manufacturer’s specifications and used for theoretical analysis in this paper. A theoretical model is presented to determine the maximum theoretical heat flux capacity of both the TEG’s. The conventional methods are used for cooling of TEG’s and actual limiting heat flux is experimentally established for various cold end cooling configurations namely bare plate, finned block and heat pipe with finned condenser. Experiments were performed on an indoor setup and outdoor setup to validate the results from the theoretical model. The outdoor test setup consist of a fresnel lens solar concentrator with manual two axis solar tracking system for varying the heat flux, whereas the indoor setup uses electric heating elements to vary the heat flux and a low speed wind tunnel blows the ambient air past the device to simulate the outdoor breezes. It was observed that bare plate cooling can achieve a maximum heat flux of 18,125 W/m2 for type A and 31,195 W/m2 for type B at ambient wind speed of 5 m/s while maintaining respective allowable temperature over the hot side of TEG’s. Fin geometry was optimised for the finned block cooling by using the fin length and fin gap optimisation model presented in this paper. It was observed that an optimum finned block cooling arrangement can reach a maximum heat flux of 26,067 W/m2 for type A and 52,251 W/m2 for type B TEG at ambient wind speed of 5 m/s of ambient wind speed. The heat pipe with finned condenser used for cooling can reach 40,375 W/m2 for type A TEG and 76,781 W/m2 for type B TEG.

Ashwin Date; Abhijit Date; Chris Dixon; Randeep Singh; Aliakbar Akbarzadeh

2015-01-01T23:59:59.000Z

178

Thermal Strategies for High Efficiency Thermoelectric Power Generation  

Energy.gov (U.S. Department of Energy (DOE))

Developing integrated TE system configurations that can achieve high heat exchange effectiveness and thus, high TE system efficiency

179

Proceedings of the sixth international conference on thermoelectric energy conversion  

SciTech Connect

This book presents the papers given at a conference on thermoelectric energy conversion. Topics considered at the conference included thermoelectric materials, the computer calculation of thermoelectric properties, the performance of crss-flow thermoelectric liquid coolers, thermoelectric cooler performance corrections for soft heat sinks, heat exchange in a thermoelectric cooling system, the optimal efficiency of a solar pond and thermoelectric generator system, and thermoelectric generation utilizing industrial waste heat as an energy source.

Rao, K.R.

1986-01-01T23:59:59.000Z

180

High-Temperature Thermal Array for Next Generation Solar Thermal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 Q1 High-Temperature Thermal Array for Next Generation Solar Thermal Power Production - FY13 Q1 This document summarizes the progress of this Los Alamos National Laboratory...

Note: This page contains sample records for the topic "thermoelectric generators thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Theoretical, experimental and numerical diagnose of critical power point of thermoelectric generators  

Science Journals Connector (OSTI)

Abstract When a number of \\{TEMs\\} (thermoelectric modules) are connected in a series–parallel matrix and under mismatched temperature gradients, the overall maximum output power of the thermoelectric generator (TEG) may be lowered by certain \\{TEMs\\} with relatively smaller temperature difference. It is possible to avoid such a performance decrease by the disconnection of these low temperature TEMs, provided that the critical power point can be accurately determined. In this paper, firstly a rigorous and universal formulation is fully detailed to mathematically determine the conceptions and conditions of the critical power point in the series and parallel TEM arrays. Secondly, experiments of a series–parallel hybrid interconnected TEG are presented to clearly quantify the theoretical analyses. Finally, the hierarchical simulation, based on the SPICE (simulation program with integrated circuit emphasis) platform, is applied to estimate the critical power point. By numerically modeling the nonlinear physical processes of the TEG, the simulation can be used as an enabling technique in any model-based controller to dynamically minimize the mismatch power loss within the TEM matrix of any configuration. In experimental and numerical results, a number of critical power points are disclosed for a 2 × 4 parallel–serial hybrid TEM matrix, where the hot temperature mostly ranges from 120 °C to 60 °C.

Min Chen; Xin Gao

2014-01-01T23:59:59.000Z

182

Multiple-Filled Skutterudites: High Thermoelectric Figure of Merit through Separately Optimizing Electrical and Thermal Transports  

SciTech Connect

Skutterudites CoSb{sub 3} with multiple cofillers Ba, La, and Yb were synthesized and very high thermoelectric figure of merit ZT = 1.7 at 850 K was realized. X-ray diffraction of the densified multiple-filled bulk samples reveals all samples are phase pure. High-resolution scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDS) analysis confirm that multiple guest fillers occupy the nanoscale-cages in the skutterudites. The fillers are further shown to be uniformly distributed and the Co-Sb skutterudite framework is virtually unperturbed from atomic scale to a few micrometers. Our results firmly show that high power factors can be realized by adjusting the total filling fraction of fillers with different charge states to reach the optimum carrier density, at the same time, lattice thermal conductivity can also be significantly reduced, to values near the glass limit of these materials, through combining filler species of different rattling frequencies to achieve broad-frequency phonon scattering. Therefore, partially filled skutterudites with multiple fillers of different chemical nature render unique structural characteristics for optimizing electrical and thermal transports in a relatively independent way, leading to continually enhanced ZT values from single- to double-, and finally to multiple-filled skutterudites. The idea of combining multiple fillers with different charge states and rattling frequencies for performance optimization is also expected to be valid for other caged TE compounds.

Zhang, Weiqing [Chinese Academy of Sciences; Yang, Jiong [Chinese Academy of Sciences; Yang, Jihui [General Motors Corporation; Wang, Hsin [ORNL; Salvador, James R. [GM R& D and Planning, Warren, Michigan; Shi, Xun [General Motors Corporation-R& D; Chi, Miaofang [ORNL; Cho, Jung Y [GM R& D and Planning, Warren, Michigan; Bai, Shengqiang [Chinese Academy of Sciences; Chen, Lidong [Chinese Academy of Sciences

2011-01-01T23:59:59.000Z

183

Thermal Analysis of Step 2 GPHS for Next Generation Radioisotope Power Source Missions  

Science Journals Connector (OSTI)

The Step 2 General Purpose Heat Source (GPHS) is a slightly larger and more robust version of the heritage GPHS modules flown on previous Radioisotope Thermoelectric Generator (RTG) missions like Galileo Ulysses and Cassini. The Step 2 GPHS is to be used in future small radioisotope power sources such as the Stirling Radioisotope Generator (SRG110) and the Multi?Mission Radioisotope Thermoelectric Generator (MMRTG). New features include an additional central web of Fine Weave Pierced Fabric (FWPF) graphite in the aeroshell between the two Graphite Impact Shells (GIS) to improve accidental reentry and impact survivability and an additional 0.1?inch of thickness to the aeroshell broad faces to improve ablation protection. This paper details the creation of the thermal model using Thermal Desktop and AutoCAD interfaces and provides comparisons of the model to results of previous thermal analysis models of the heritage GPHS. The results of the analysis show an anticipated decrease in total thermal gradient from the aeroshell to the iridium clads compared to the heritage results. In addition the Step 2 thermal model is investigated under typical SRG110 boundary conditions with cover gas and gravity environments included where applicable to provide preliminary guidance for design of the generator. Results show that the temperatures of the components inside the GPHS remain within accepted design limits during all envisioned mission phases.

David R. Pantano; Dennis H. Hill

2005-01-01T23:59:59.000Z

184

Solar Thermoelectric Energy Conversion  

Energy.gov (U.S. Department of Energy (DOE))

Efficiencies of different types of solar thermoelectric generators were predicted using theoretical modeling and validated with measurements using constructed prototypes under different solar intensities

185

A prototype on-line work procedure system for radioisotope thermoelectric generator production  

SciTech Connect

An on-line system to manage work procedures is being developed to support radioisotope thermoelectric generator (RTG) assembly and testing in a new production facility. This system implements production work procedures as interactive electronic documents executed at the work site with no intermediate printed form. It provides good control of the creation and application of work procedures and provides active assistance to the worker in performing them and in documenting the results. An extensive prototype of this system is being evaluated to ensure that it will have all the necessary features and that it will fit the user's needs and expectations. This effort has involved the Radioisotope Power Systems Facility (RPSF) operations organization and technology transfer between Westinghouse Hanford Company (Westinghouse Hanford) and EG G Mound Applied Technologies Inc. (Mound) at the US Department of Energy (DOE) Mound Site. 1 ref.

Kiebel, G.R.

1991-09-01T23:59:59.000Z

186

Radioisotope thermoelectric generator package o-ring seal material validation testing  

SciTech Connect

The Radioisotope Thermoelectric Generator Package O-Ring Seal Material Validation Test was conducted to validate the use of the Butyl material as a primary seal throughout the required temperature range. Three tests were performed at (I) 233 K ({minus}40 {degree}F), (2) a specified operating temperature, and (3) 244 K ({minus}20 {degree}F) before returning to room temperature. Helium leak tests were performed at each test point to determine seal performance. The two major test objectives were to establish that butyl rubber material would maintain its integrity under various conditions and within specified parameters and to evaluate changes in material properties. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}

Adkins, H.E.; Ferrell, P.C.; Knight, R.C. [Westinghouse Hanford Company, P. O. Box 1970, MSIN N1-25, Richland, Washington 99352 (United States)

1995-01-20T23:59:59.000Z

187

A compendium of the radioisotope thermoelectric generator transportation system and recent programmatic changes  

SciTech Connect

Because RTGs contain significant quantities of radioactive materials, usually plutonium-238 and its decay products, they must be transported in packages built in accordance with 10 CFR 71 (1994). To meet these regulatory requirements, US DOE commissioned Westinghouse Hanford Co. in 1988 to develop a Radioisotope Thermoelectric Generator Transportation System (RTGTS) that would fully comply while protecting RTGs from adverse environmental conditions during normal transport conditions (eg, mainly shock and heat). RTGTS is scheduled for completion Dec. 1996 and will be available to support NASA`s Cassini mission to Saturn in Oct. 1997. This paper provides an overview of the RTGTS project, discusses the hardware being produced, and summarizes various programmatic and management innovations required by recent changes at DOE.

Becker, D.L.; McCoy, J.C.

1996-03-01T23:59:59.000Z

188

Method of controlling temperature of a thermoelectric generator in an exhaust system  

DOE Patents (OSTI)

A method of controlling the temperature of a thermoelectric generator (TEG) in an exhaust system of an engine is provided. The method includes determining the temperature of the heated side of the TEG, determining exhaust gas flow rate through the TEG, and determining the exhaust gas temperature through the TEG. A rate of change in temperature of the heated side of the TEG is predicted based on the determined temperature, the determined exhaust gas flow rate, and the determined exhaust gas temperature through the TEG. Using the predicted rate of change of temperature of the heated side, exhaust gas flow rate through the TEG is calculated that will result in a maximum temperature of the heated side of the TEG less than a predetermined critical temperature given the predicted rate of change in temperature of the heated side of the TEG. A corresponding apparatus is provided.

Prior, Gregory P; Reynolds, Michael G; Cowgill, Joshua D

2013-05-21T23:59:59.000Z

189

Micro- & Nano-Technologies Enabling More Compact, Lightweight Thermoelectric Power Generation & Cooling Systems  

Energy.gov (U.S. Department of Energy (DOE))

Advanced thermoelectric energy recovery and cooling system weight and volume improvements with low-cost microtechnology heat and mass transfer devices are presented

190

Thermoelectric Power Generation System with Loop Thermosyphon in Future High Efficiency Hybrid Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

This project discusses preliminary experimental results to find how thermoelectrics can be applied ot future hybrid vehicles and the optimum design of such equipment using heat pipes

191

Power generation from thermoelectric cells by using solar parabolic concentration dish.  

E-Print Network (OSTI)

??Thermoelectric and solar-energy technologies are the focus of significant research, and can make a major contribution to the need to find alternative methods of power… (more)

Fan, H

2011-01-01T23:59:59.000Z

192

Thermoelectrics Partnership: Automotive Thermoelectric Modules...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Novel Nanostructured Interface Solution for Automotive Thermoelectric...

193

Design of Bulk Nanocomposites as High Efficiency Thermoelectric Materials |  

Office of Science (SC) Website

Design of Bulk Nanocomposites as High Design of Bulk Nanocomposites as High Efficiency Thermoelectric Materials Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights Highlight Archives News & Events Publications Contact BES Home 04.27.12 Design of Bulk Nanocomposites as High Efficiency Thermoelectric Materials Print Text Size: A A A RSS Feeds FeedbackShare Page Scientific Achievement A newly synthesized bulk thermoelectric material that contains nanocrystals with the same orientation and structure as the host material breaks thermoelectric efficiency records by blocking thermal, but not electrical, conductivity. Significance and Impact A new strategy to design inexpensive materials that more efficiently convert heat to electricity. Research Details Thermoelectric materials directly generate electrical power from heat, but

194

Solar thermal power generation: a bibliography with abstracts. Quarterly update, October-December 1979  

SciTech Connect

This annotated bibliography contains the following subjects: energy overviews, solar overviews, energy conservation, economics and law, solar thermal power, thermionic and thermoelectric, ocean thermal energy conversion, biomass and photochemical energy, and large-scale photovoltaics. (MHR)

Not Available

1980-04-01T23:59:59.000Z

195

Proceedings of the XVI International Conference on Thermoelectrics, Dresden, Germany, p. 641, 1997 Thermoelectric Microcoolers for Thermal Management Applications  

E-Print Network (OSTI)

microelectronics. We are pursuing a novel thermal management approach that actively cools only the key high power solutions on a variety of metallic substrates. We also report on the development of Cu diffusion barriers for Bi2Te3 and stable metallizations and diffusion barriers for diamond and AlN substrates. Introduction

196

Electron-beam processing of kilogram quantities of iridium for radioisotope thermoelectric generator applications  

SciTech Connect

Iridium alloys are used as fuel-cladding materials in radioisotope thermoelectric generators (RTGs). Hardware produced at the Oak Ridge National Laboratory (ORNL) has been used in Voyagers I and 2, Galilee, and Ulysses spacecraft. An integral part of the production of iridium-sheet metal involves electron-beam (EB) processing. These processes include the degassing of powder-pressed compacts followed by multiple meltings in order to purify 500-g buttons of Ir-0.3% W alloy. Starting in 1972 and continuing into 1992, our laboratory EB processing was Performed (ca. 1970) in a 60-kW (20 kV at 3 A), two-gun system. In 1991, a new 150-kW EB gun facility was installed to complement the older unit. This paper describes how the newly installed system was qualified for production of RTG developmental work is discussed that will potentially improve the existing process by utilizing the capabilities of the new EB system.

Huxford, T.J.; Ohriner, E.K.

1992-12-31T23:59:59.000Z

197

A shielded storage and processing facility for radioisotope thermoelectric generator heat source production  

SciTech Connect

A shielded storage rack has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the U.S. Department of Energy's (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE's Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which processes and stores assembled GPHS modules, prior to their installation into RTGs. The shield rack design is simple and effective, with the result that background radiation levels within Hanford's MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford's calculations assume five times the GPHS inventory of that assumed for Mound.

Sherrell, D.L. (Westinghouse Hanford Company, P.O. Box 1970, Mail Stop N1-42, Richland, Washington 99352 (United States))

1993-01-15T23:59:59.000Z

198

A shielded storage and processing facility for radioisotope thermoelectric generator heat source production  

SciTech Connect

This report discusses a shielded storage rack which has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the US Department of Energy's (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE's Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which process and stores assembled GPHS modules, prior to their installation into RTGS. The shield rack design is simple and effective, with the result that background radiation levels within Hanford's MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford's calculations assume five times the GPHS inventory of that assumed for Mound.

Sherrell, D.L.

1992-06-01T23:59:59.000Z

199

A shielded storage and processing facility for radioisotope thermoelectric generator heat source production  

SciTech Connect

This report discusses a shielded storage rack which has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the US Department of Energy`s (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE`s Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which process and stores assembled GPHS modules, prior to their installation into RTGS. The shield rack design is simple and effective, with the result that background radiation levels within Hanford`s MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford`s calculations assume five times the GPHS inventory of that assumed for Mound.

Sherrell, D.L.

1992-06-01T23:59:59.000Z

200

Thermal Energy Harvesting with Thermoelectrics for Self-powered Sensors: With Applications to Implantable Medical Devices, Body Sensor Networks and Aging in Place  

E-Print Network (OSTI)

thermal expansion of polymer composites filled with ceramicas thermal energy generation and refrigeration. Ceramic&

Chen, Alic

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermoelectric generators thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

General-purpose heat source: Research and development program. Radioisotope thermoelectric generator impact tests: RTG-1 and RTG-2  

SciTech Connect

The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure.

Reimus, M.A.H.; Hinckley, J.E.; George, T.G.

1996-07-01T23:59:59.000Z

202

General-purpose heat source: Research and development program, radioisotope thermoelectric generator/thin fragment impact test  

SciTech Connect

The general-purpose heat source provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system. The results of this test indicated that impact by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel.

Reimus, M.A.H.; Hinckley, J.E.

1996-11-01T23:59:59.000Z

203

Solar Thermoelectric Energy Conversion  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SOLID-STATE SOLAR-THERMAL ENERGY CONVERSION CENTER NanoEngineering Group Solar Thermoelectric Energy Conversion Gang Chen, 1 Daniel Kraemer, 1 Bed Poudel, 2 Hsien-Ping Feng, 1 J....

204

Radiation Environments and Exposure Considerations for the Multi?Mission Radioisotope Thermoelectric Generator  

Science Journals Connector (OSTI)

The Multi?Mission Radioisotope Thermoelectric Generator (MMRTG) is the next generation (RTG) being developed by DOE to provide reliable long?life electric power for NASA’s planetary exploration programs. The MMRTG is being developed by Pratt & Whitney Rocketdyne and Teledyne Energy Systems Incorporated (TESI) for use on currently planned and projected flyby orbital and planet landing missions. This is a significant departure from the design philosophy of the past which was to match specific mission requirements to RTG design capabilities. Undefined mission requirements provide a challenge to system designers by forcing them to put a design envelope around “all possible missions”. These multi?mission requirements include internal and external radiation sources. Internal sources include the particles ejected by decaying Pu?238 and its daughters plus particles resulting from the interaction of these particles with other MMRTG materials. External sources include the full spectrum of charged particle radiation surrounding planets with magnetic fields and the surfaces of extraterrestrial objects not shielded by magnetic fields. The paper presents the results of investigations into the environments outlined above and the impact of radiation exposure on potential materials to be used on MMRTG and ground support personnel. Mission requirements were also reviewed to evaluate total integrated dose and to project potential shielding requirements for materials. Much of the information on mission shielding requirements was provided by NASA’s Jet Propulsion Laboratory. The primary result is an ionizing radiation design curve which indicates the limits to which a particular mission can take the MMRTG in terms of ionizing radiation exposure. Estimates of personnel radiation exposure during ground handling are also provided.

William M. Kelly; Nora M. Low; Andrew Zillmer; Gregory A. Johnson; Eugene Normand

2006-01-01T23:59:59.000Z

205

Radiation Environments and Exposure Considerations for the Multi-Mission Radioisotope Thermoelectric Generator  

SciTech Connect

The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) is the next generation (RTG) being developed by DOE to provide reliable, long-life electric power for NASA's planetary exploration programs. The MMRTG is being developed by Pratt and Whitney Rocketdyne and Teledyne Energy Systems Incorporated (TESI) for use on currently planned and projected flyby, orbital and planet landing missions. This is a significant departure from the design philosophy of the past which was to match specific mission requirements to RTG design capabilities. Undefined mission requirements provide a challenge to system designers by forcing them to put a design envelope around 'all possible missions'. These multi-mission requirements include internal and external radiation sources. Internal sources include the particles ejected by decaying Pu-238 and its daughters plus particles resulting from the interaction of these particles with other MMRTG materials. External sources include the full spectrum of charged particle radiation surrounding planets with magnetic fields and the surfaces of extraterrestrial objects not shielded by magnetic fields. The paper presents the results of investigations into the environments outlined above and the impact of radiation exposure on potential materials to be used on MMRTG and ground support personnel. Mission requirements were also reviewed to evaluate total integrated dose and to project potential shielding requirements for materials. Much of the information on mission shielding requirements was provided by NASA's Jet Propulsion Laboratory. The primary result is an ionizing radiation design curve which indicates the limits to which a particular mission can take the MMRTG in terms of ionizing radiation exposure. Estimates of personnel radiation exposure during ground handling are also provided.

Kelly, William M.; Low, Nora M.; Zillmer, Andrew; Johnson, Gregory A. [Pratt and Whitney Rocketdyne, 6633 Canoga Avenue, Canoga Park, CA 91309 (United States); Normand, Eugene [Boeing Radiation Effects Laboratory, P.O. Box 3707, M/S 2T-50, Seattle, WA 98124-22079 (United States)

2006-01-20T23:59:59.000Z

206

Ferecrystals: Thermoelectric Materials Poised Between the Crystalline...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

These new compounds are thermal stable to 650 C, have low thermal and an increased ZT. johnson.pdf More Documents & Publications Trends in Thermoelectric Properties with...

207

Green thermoelectrics: Observation and analysis of plant thermoelectric response  

E-Print Network (OSTI)

Plants are sensitive to thermal and electrical effects; yet the coupling of both, known as thermoelectricity, and its quantitative measurement in vegetal systems never were reported. We recorded the thermoelectric response of bean sprouts under various thermal conditions and stress. The obtained experimental data unambiguously demonstrate that a temperature difference between the roots and the leaves of a bean sprout induces a thermoelectric voltage between these two points. Basing our analysis of the data on the force-flux formalism of linear response theory, we found that the strength of the vegetal equivalent to the thermoelectric coupling is one order of magnitude larger than that in the best thermoelectric materials. Experimental data also show the importance of the thermal stress variation rate in the plant's electrophysiological response. Therefore, thermoelectric effects are sufficiently important to partake in the complex and intertwined processes of energy and matter transport within plants.

Goupil, C; Khamsing, A; Apertet, Y; Bouteau, F; Mancuso, S; Patino, R; Lecoeur, Ph

2015-01-01T23:59:59.000Z

208

2nd Thermoelectrics Applications Workshop 2011 | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for the Application of Thermoelectric Generators Andreas Eder BMW Group, Munich, Germany Tuesday, January 4, 2011 Overview of Worldwide Activities in Thermoelectrics John...

209

Thermoelectric Opportunities for Light-Duty Vehicles | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heat Recovery Thermoelectric Activities of European Community within Framework Programme 7 and additional activities in Germany Automotive Thermoelectric Generator (TEG) Controls...

210

Thermoelectrical Energy Recovery From the Exhaust of a Light...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications The Effects of an Exhaust Thermoelectric Generator of a GM Sierra Pickup Truck Progress in Thermoelectrical Energy Recovery from a...

211

Recent Progress in the Development of High Efficiency Thermoelectrics...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation Quantum Well Thermoelectrics and Waste Heat Recovery Scale Up of Si...

212

Large-dimension, high-ZT Thermoelectric Nanocomposites for High...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Large-dimension, high-ZT Thermoelectric Nanocomposites for High-Power High-efficiency Waste Heat Recovery for Electricity Generation Large-dimension, high-ZT Thermoelectric...

213

Determination of Thermoelectric Module Efficiency A Survey  

SciTech Connect

The development of thermoelectrics (TE) for energy conversion is in the transition phase from laboratory research to device development. There is an increasing demand to accurately determine the module efficiency, especially for the power generation mode. For many thermoelectrics, the figure of merit, ZT, of the material sometimes cannot be fully realized at the device level. Reliable efficiency testing of thermoelectric modules is important to assess the device ZT and provide the end-users with realistic values on how much power can be generated under specific conditions. We conducted a general survey of efficiency testing devices and their performance. The results indicated the lack of industry standards and test procedures. This study included a commercial test system and several laboratory systems. Most systems are based on the heat flow meter method and some are based on the Harman method. They are usually reproducible in evaluating thermoelectric modules. However, cross-checking among different systems often showed large errors that are likely caused by unaccounted heat loss and thermal resistance. Efficiency testing is an important area for the thermoelectric community to focus on. A follow-up international standardization effort is planned.

Wang, Hsin [ORNL; McCarty, Robin [Marlow Industries, Inc; Salvador, James R. [GM R& D and Planning, Warren, Michigan; Yamamoto, Atsushi [AIST, Japan; Konig, Jan [Fraunhofer-Institute, Freiburg, Germany

2014-01-01T23:59:59.000Z

214

Thermal Conductivity of Polycrystalline Semiconductors and Ceramics  

E-Print Network (OSTI)

RTG refers to radioisotope thermoelectric generator with aRTG refers to radioisotope thermoelectric generator with a

Wang, Zhaojie

2012-01-01T23:59:59.000Z

215

Proactive Strategies for Designing Thermoelectric Materials for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

thermoelectric materials design, synthesis, fabrication, and characterization for power generation using vehicle exhaust waste heat. subramanian.pdf More Documents &...

216

NSF/DOE Thermoelectrics Partnership: Thermoelectrics for Automotive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Recovery Development for commercialization of automotive thermoelectric generators from high-ZT TE materials with using low-cost, widely available materials, system...

217

Thermoelectric and thermal properties of GaAlAs Peltier-cooled laser diodes  

SciTech Connect

Analyses of heat spreading, temperature distribution, and resultant cooling effects in a monolithically Peltier-cooled laser (MPCL) structure are presented. The analyses were obtained by using Laplace's equation and were made under steady-state conditions, assuming constant thermal conductivity. In this MPCL structure a metal surface layer surrounds a heat-generating p-n laser junction. It is shown that by depositing relatively thick metallic cooling plates a 15% temperature reduction and 25% thermal spreading can be achieved. This heat spreading due to the passive cooling is added to the cooling obtained when the Peltier cooler is operated. Experimental measurements of the effect of Peltier cooling reveal a 6.8 /sup 0/C reduction in junction temperature corresponding to a wavelength shift of as much as 20 A.

Hava, S.; Sequeira, H.B.; Hunsperger, R.G.

1985-09-01T23:59:59.000Z

218

Vibration Testing of the Pluto/New Horizons Radioisotope Thermoelectric Generator  

SciTech Connect

The Radioisotopic Thermal Generator (RTG) for the Pluto/New Horizons spacecraft was subjected to a flight dynamic acceptance test to demonstrate that it would perform successfully following launch. Seven RTGs of this type had been assembled and tested at Mound, Ohio from 1984 to 1997. This paper chronicles major events in establishing a new vibration test laboratory at the Idaho National Laboratory and the nineteen days of dynamic testing.

Charles D. Griffin

2006-06-01T23:59:59.000Z

219

The thermoelectric properties of Ge/SiGe modulation doped superlattices A. Samarelli, L. Ferre Llin, S. Cecchi, J. Frigerio, T. Etzelstorfer et al.  

E-Print Network (OSTI)

. [http://dx.doi.org/10.1063/1.4811228] I. INTRODUCTION Thermoelectric generators use the Seebeck effect to con- vert thermal energy into electrical energy. Since waste heat is abundant, there is renewed,3 The major use of thermoelectric materials is as heat pumps for cooling applications where the Peltier effect

Hague, Jim

220

Enhanced thermoelectric performance of rough silicon nanowires  

E-Print Network (OSTI)

thermoelectric materials can increase ZT . 1 (refs 2­4), the materials (Bi, Te, Pb, Sb, and Ag) and processes thermoelectric material, by greatly redu- cing thermal conductivitywithout much affectingtheSeebeckcoef- ficient and electricalresistivity, Si nanowire arrays show promise as high-performance, scalable thermoelectric materials. The most

Yang, Peidong

Note: This page contains sample records for the topic "thermoelectric generators thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Measurements and Standards for Thermoelectric Materials  

E-Print Network (OSTI)

Measurements and Standards for Thermoelectric Materials CERAMICS Our goal is to develop standard, electrical conductivity, thermal conductivity) for thin film and bulk thermoelectric materials to enable the commercialization of these materials. Objective Impact and Customers · Thermoelectric SRMs and measurement methods

222

NSF/DOE Thermoelectrics Partnership: Purdue ? GM Partnership on Thermoelectrics for Automotive Waste Heat Recovery  

Energy.gov (U.S. Department of Energy (DOE))

Reviews results in developing commercially viable thermoelectric generators for efficient conversion of automotive exhaust waste heat to electricity

223

Benefits of Thermoelectric Technology for the Automobile  

Energy.gov (U.S. Department of Energy (DOE))

Discusses improved fuel efficiency and other benefits of automotive application of thermoelectric (power generation and heating/cooling) and the need for production quantities of high-efficiency thermoelectric modules

224

High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation 2005 Diesel Engine...

225

High performance thermoelectric nanocomposite device  

DOE Patents (OSTI)

A thermoelectric device includes a nanocomposite material with nanowires of at least one thermoelectric material having a predetermined figure of merit, the nanowires being formed in a porous substrate having a low thermal conductivity and having an average pore diameter ranging from about 4 nm to about 300 nm.

Yang, Jihui (Lakeshore, CA); Snyder, Dexter D. (Birmingham, MI)

2011-10-25T23:59:59.000Z

226

Low-cost distributed solar-thermal-electric power generation  

E-Print Network (OSTI)

Low-cost distributed solar-thermal-electric power generation A. Der Minassians, K. H. Aschenbach and feasibility study of a low-cost solar thermal electricity generation technology, suitable for distributed: Solar Thermal Collectors, Solar Thermal Electricity, Stirling Engine 1. INTRODUCTION In this paper, we

Sanders, Seth

227

Correlation Between Structure and Thermoelectric Properties of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

converted into crystalline bulks under pressure produced thermoelectric materials of nano-sized grains with strongly coupled grain boundaries, achieving reduced lattice thermal...

228

Molecular Level Assessment of Thermal Transport and Thermoelectricity in Materials: From Bulk Alloys to Nanostructures  

E-Print Network (OSTI)

and graphene provide further avenues for tuning thermal and electronic properties. In this work, the thermal conductivity of hybrid graphene/hexagonal-BN structures: stripe superlattices and BN (graphene) dots embedded in graphene (BN) are studied. The largest...

Kinaci, Alper

2013-05-02T23:59:59.000Z

229

Thermoelectric Development at Hi-Z Technology  

SciTech Connect

An improved Thermoelectric Generator (TEG) for the Heavy Duty Class Eight Diesel Trucks is under development at Hi-Z Technology. The current TEG is equipped with the improved HZ-14 Thermoelectric module, which features better mechanical properties as well as higher electric power output. Also, the modules are held in place more securely. The TEG is comprised of 72 TE modules, which are capable of producing 1kW of electrical power at 30 V DC during nominal engine operation. Currently the upgraded generator has completed testing in a test cell and starting from August 2001 will be tested on a Diesel truck under typical road and environmental conditions. It is expected that the TEG will be able to supplement the existing shaft driven alternator, resulting in significant fuel saving, generating additional power required by the truck?s accessories. The electronic and thermal properties of bulk materials are altered when they are incorporated into quantum wells. Two-dimensional quantum wells have been synthesized by alternating layers of B4C and B9C in one system and alternating layers of Si and Si0.8Ge0.2 in another system. Such nanostructures are being investigated as candidate thermoelectric materials with high figures of merit (Z). The predicted enhancement is attributed to the confined motion of charge carriers and phonons in the two dimensions and separating them from the ion scattering centers. Multilayer quantum well materials development continues with the fabrication of thicker films, evaluation of various substrates to minimize bypass heat loss, and bonding techniques to minimize high contact resistance. Quantum well thermoelectric devices with N-type Si/Si0.8Ge0.2 and P-type B4C/B9C have been fabricated from these films. The test results generated continue to indicate that much higher thermoelectric efficiencies can be achieved in the quantum wells compared to the bulk materials.

Kushch, Aleksandr

2001-08-05T23:59:59.000Z

230

Project Profile: High-Temperature Thermal Array for Next-Generation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Array for Next-Generation Solar Thermal Power Production Project Profile: High-Temperature Thermal Array for Next-Generation Solar Thermal Power Production Los Alamos...

231

Solar thermal power generation: a bibliography with abstracts. Quarterly update, July-September 1979  

SciTech Connect

This annotated bibliography covers the following subjects: energy overviews, solar overviews, energy conservation, economics and law, solar thermal power, thermionic and thermoelectric, ocean thermal energy conversion, wind power, biomass and photochemical energy, and large scale photovoltaics. An author index and a keyword index are included. (MHR)

Not Available

1980-02-01T23:59:59.000Z

232

Solar thermal power generation: a bibliography with abstracts. Quarterly update, April-June 1980  

SciTech Connect

This annotated bibliography covers the following subjects: energy overviews; solar overviews; energy conservation; environment, law, and policy; total energy systems; solar thermal power and energy storage; thermoelectric, thermionic, and thermolysis; Ocean Thermal Energy Conversion; wind energy; biomass; bioconversion, and photochemical; satellite power systems; and photovoltaic applications. (MHR)

Sparkman, T.; Bozman, W.R. (eds.)

1980-08-01T23:59:59.000Z

233

Solar thermal power generation: a bibliography with abstracts. Quarterly update, January-March 1980  

SciTech Connect

This annotated bibliography contains the following: energy overviews, solar overviews, energy conservation, economics and law, total energy systems, solar thermal power, thermionic and thermoelectric, ocean thermal energy conversion, wind power, biomass and photochemical energy, satellite power stations, and large-scale photovoltaics. (MHR)

Not Available

1980-06-01T23:59:59.000Z

234

Thermoelectric Behavior of Flexible Organic Nanocomposites with Carbon Nanotubes  

E-Print Network (OSTI)

There have been significant researches about thermoelectric behaviors by applying carbon nanotube (CNT)/polymer nanocomposites. Due to its thermally disconnected but electrically connected junctions between CNTs, the thermoelectric properties were...

Choi, Kyung Who

2013-12-03T23:59:59.000Z

235

Device for thermal transfer and power generation  

DOE Patents (OSTI)

A system is provided. The system includes a device that includes top and bottom thermally conductive substrates positioned opposite to one another, wherein a top surface of the bottom thermally conductive substrate is substantially atomically flat and a thermal blocking layer disposed between the top and bottom thermally conductive substrates. The device also includes top and bottom electrodes separated from one another between the top and bottom thermally conductive substrates to define a tunneling path, wherein the top electrode is disposed on the thermal blocking layer and the bottom electrode is disposed on the bottom thermally conductive substrate.

Weaver, Stanton Earl (Northville, NY); Arik, Mehmet (Niskayuna, NY)

2011-04-19T23:59:59.000Z

236

Techno-Economic Feasibility of Highly Efficient Cost-Effective Thermoelectric-SOFC Hybrid Power Generation Systems  

SciTech Connect

Solid oxide fuel cell (SOFC) systems have the potential to generate exhaust gas streams of high temperature, ranging from 400 to 800 C. These high temperature gas streams can be used for additional power generation with bottoming cycle technologies to achieve higher system power efficiency. One of the potential candidate bottoming cycles is power generation by means of thermoelectric (TE) devices, which have the inherent advantages of low noise, low maintenance and long life. This study was to analyze the feasibility of combining coal gas based SOFC and TE through system performance and cost techno-economic modeling in the context of multi-MW power plants, with 200 kW SOFC-TE module as building blocks. System and component concepts were generated for combining SOFC and TE covering electro-thermo-chemical system integration, power conditioning system (PCS) and component designs. SOFC cost and performance models previously developed at United Technologies Research Center were modified and used in overall system analysis. The TE model was validated and provided by BSST. The optimum system in terms of energy conversion efficiency was found to be a pressurized SOFC-TE, with system efficiency of 65.3% and cost of $390/kW of manufacturing cost. The pressurization ratio was approximately 4 and the assumed ZT of the TE was 2.5. System and component specifications were generated based on the modeling study. The major technology and cost barriers for maturing the system include pressurized SOFC stack using coal gas, the high temperature recycle blowers, and system control design. Finally, a 4-step development roadmap is proposed for future technology development, the first step being a 1 kW proof-of-concept demonstration unit.

Jifeng Zhang; Jean Yamanis

2007-09-30T23:59:59.000Z

237

Commercialization of Bulk Thermoelectric Materials for Power...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Commercialization of Bulk Thermoelectric Materials for Power Generation Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation Distributed Bio-Oil...

238

Development of Marine Thermoelectric Heat Recovery Systems  

Energy.gov (U.S. Department of Energy (DOE))

Thermoelectric generator prototypes are evaluated in a dedicated hybrid vessel test platform fabricated from an encapsulated lifeboat to optimize performance and reliability for marine industry applications

239

Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficient Automotive Waste Heat Recovery Multi-physics modeling of thermoelectric generators for waste heat recovery applications Nanostructured High-Temperature Bulk...

240

QUANTUM WELLS THERMOELECTRIC DEVICES FOR DIESEL ENGINES  

SciTech Connect

Thermoelectric materials are utilized for power generation in remote locations, on spacecraft used for interplanetary exploration, and in places where waste heat can be recovered.

Ghamaty, Saeid

2000-08-20T23:59:59.000Z

Note: This page contains sample records for the topic "thermoelectric generators thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Nanostructured Thermoelectric Materials and High Efficiency Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanostructured Thermoelectric Materials and High Efficiency Power Generation Modules Home Author: T. Hogan, A. Downey, J. Short, S. D. Mahanti, H. Schock, E. Case Year: 2007...

242

Proceedings of the MRS Spring Meeting, San Francisco, March 1997, Symposium Q -Thermoelectrics, in press (1997) THERMAL CONDUCTIVITY OF Zn4-xCdxSb3 SOLID SOLUTIONS  

E-Print Network (OSTI)

performance p-type thermoelectric material with a maximum dimensionless thermoelectric figure of merit ZT of 1.4 at a temperature of 673K. A usual approach, used for many state-of-the-art thermoelectric materials, to further performance p-type material [1,2]. -Zn4Sb3 has interesting thermoelectric properties in the 473-673K

243

High Temperature Thermal Array for Next Generation Solar Thermal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A 10% increase in shaft work is directly attributable to modified thermal heat capacity Engineering HTF Specific heat yields modified power output. 27 127 227 327 427 527...

244

A high performance thin film thermoelectric cooler  

SciTech Connect

Thin film thermoelectric devices with small dimensions have been fabricated using microelectronics technology and operated successfully in the Seebeck mode as sensors or generators. However, they do not operate successfully in the Peltier mode as coolers, because of the thermal bypass provided by the relatively thick substrate upon which the thermoelectric device is fabricated. In this paper a processing sequence is described which dramatically reduces this thermal bypass and facilitates the fabrication of high performance integrated thin film thermoelectric coolers. In the processing sequence a very thin amorphous SiC (or SiO{sub 2}SiN{sub 4}) film is deposited on a silicon substrate using conventional thin film deposition and a membrane formed by removing the silicon substrate over a desired region using chemical etching or micro-machining. Thermoelements are deposited on the membrane using conventional thin film deposition and patterning techniques and configured so that the region which is to be cooled is abutted to the cold junctions of the Peltier thermoelements while the hot junctions are located at the outer peripheral area which rests on the silicon substrate rim. Heat is pumped laterally from the cooled region to the silicon substrate rim and then dissipated vertically through it to an external heat sink. Theoretical calculations of the performance of a cooler described above indicate that a maximum temperature difference of about 40--50K can be achieved with a maximum heat pumping capacity of around 10 milliwatts.

Rowe, D.M.; Min, G.; Volklein, F.

1998-07-01T23:59:59.000Z

245

Thermal building simulation and computer generation of nodal models  

E-Print Network (OSTI)

Thermal building simulation and computer generation of nodal models H. BOYER, J.P. CHABRIAT, B exchanges and finally in the constitution of thermal state models of the building. Big variations existing from one building to another, it's necessary to build the thermal model from the building description

Paris-Sud XI, Université de

246

New materials and devices for thermoelectric applications  

SciTech Connect

The development of new, more efficient materials and devices is the key to expanding the range of application of thermoelectric generators and coolers. In the last couple of years, efforts to discover breakthrough thermoelectric materials have intensified, in particular in the US. Recent results on novel materials have already demonstrated that dimensionless figure of merit ZT values 40 to 50% larger than 1.0, the current limit, could be obtained in the 475 to 950 K temperature range. New terrestrial power generation applications have been recently described in the literature. There exists a wide range of heat source temperatures for these applications, from low grade waste heat, at 325--350 K, up to 850 to 1,100 K, such as in the heat recovery from a processing plant of combustible solid waste. The automobile industry has also recently developed a strong interest in a waste exhaust heat recovery power source operating in the 375--750 K temperature range to supplement or replace the alternator and thus decrease fuel consumption. Based on results achieved to date at the Jet Propulsion Laboratory (JPL) on novel materials, the performance of an advanced segmented generator design operating in a large 300--945 K temperature gradient is predicted to achieve about 15% conversion efficiency. This would be a very substantial improvement over state-of-the-art (SOA) thermoelectric power converters. Such a terrestrial power generator could be using waste heat or liquid fuels as a heat source. High performance radioisotope generators (RTG) are still of interest for deep space missions but the shift towards small, light spacecraft has developed a need for advanced power sources in the watt to milliwatt range. The powerstick concept would provide a study, compact, lightweight and low cost answer to this need. The development of thin film thermoelectric devices also offer attractive possibilities. The combination of semiconductor technology, thermoelectric films and high thermal conductivity materials could lead to the fabrication of light weight, high voltage devices with high cooling or high electrical power density characteristics. The use of microcoolers for the thermal management of power electronics is of particular interest.

Fleurial, J.P.; Borshchevsky, A.; Caillat, T.; Ewell, R. [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.

1997-12-31T23:59:59.000Z

247

Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems  

Science Journals Connector (OSTI)

...simply as resistive heaters. Efficiency is about...office resistance heaters. Usually, traditional heaters draw more electrical...maintenance-free operation dominate other performance...pipelines, polar weather station power generators...

Lon E. Bell

2008-09-12T23:59:59.000Z

248

Efficient and Dynamic ? The BMW Group Roadmap for the Application of Thermoelectric Generators  

Energy.gov (U.S. Department of Energy (DOE))

The diesel engine EGR system is a logical application of TE generators because the necessary system components are already available; transfer of module concepts is possible to other applications in the exhaust system with higher waste heat recovery potential

249

Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems  

Science Journals Connector (OSTI)

...the vehicle engine is off. Fuel consumption is reduced...target of 10% fuel reduction...possible in diesel-powered...combustion engines such as those...spectrum of fuels, such as...generation, fuel consumption and CO 2 emissions...

Lon E. Bell

2008-09-12T23:59:59.000Z

250

BuildingaThermoelectricMug This rllorrfh,s  

E-Print Network (OSTI)

(Radioisotope Thermoelectric Generators), which are basically armored canisters holding plutonium dioxide fuel. Here, I will show how you can use these in reverseto generate electrical power. Thermoelectric Devicesfava Power BuildingaThermoelectricMug F This rllorrfh,s ?rcjae J a v a P o w e r. . . . . . . . 4 6

Lorenz, Ralph D.

251

Thermoelectric power source utilizing ambient energy harvesting for remote sensing and transmitting  

DOE Patents (OSTI)

A method and apparatus for providing electrical energy to an electrical device wherein the electrical energy is originally generated from temperature differences in an environment having a first and a second temperature region. A thermoelectric device having a first side and a second side wherein the first side is in communication with a means for transmitting ambient thermal energy collected or rejected in the first temperature region and the second side is in communication with the second temperature region thereby producing a temperature gradient across the thermoelectric device and in turn generating an electrical current.

DeSteese, John G

2010-11-16T23:59:59.000Z

252

Radioisotope Thermoelectric Generator Transportation System licensed hardware second certification test series and package shock mount system test  

SciTech Connect

This paper presents a summary of two separate drop test activities that were performed in support of the Radioisotope Thermoelectric Generator (RTG) Transportation System (RTGTS). The first portion of this paper presents the second series of drop testing required to demonstrate that the RTG package design meets the requirements of {ital Title} 10, {ital Code} {ital of} {ital Federal} {ital Regulations}, {open_quote}{open_quote}Part 71{close_quote}{close_quote} (10 CFR 71). Results of the first test series, performed in July 1994, demonstrated that some design changes were necessary. The package design was modified to improve test performance and the design changes were incorporated into the Safety Analysis Report for Packaging (SARP). The second full-size certification test article (CTA-2) incorporated the modified design and was tested at the U.S. Department of Energy{close_quote}s (DOE) Hanford Site near Richland, Washington. With the successful completion of the test series, and pending DOE Office of Facility Safety Analysis approval of the SARP, a certificate of compliance will be issued for the RTG package allowing its use. The second portion of this paper presents the design and testing of the RTG Package Mount System. The RTG package mount was designed to protect the RTG from excessive vibration during transport, provide shock protection during on/off loading, and provide a mechanism for moving the RTG package with a forklift. Military Standard (MIL-STD) 810E, {ital Transit} {ital Drop} {ital Procedure} (DOE 1989), was used to verify that the shock limiting system limited accelerations in excess of 15 G{close_quote}s at frequencies below 150 Hz. Results of the package mount drop tests indicate that an impact force of 15 G{close_quote}s was not exceeded in any test from a free drop height of 457 mm (18 in.). {copyright} {ital 1996 American Institute of Physics.}

Ferrell, P.C.; Moody, D.A. [Westinghouse Hanford Company, P.O. Box 1970, Richland, Washington 99352 (United States)

1996-03-01T23:59:59.000Z

253

Radioisotope Thermoelectric Generator Transporation System licensed hardware second certification test series and package shock mount system test  

SciTech Connect

This paper presents a summary of two separate drop test a e performed in support of the Radioisotope Thermoelectric Generator (RTG) Transportation System (RTGTS). The first portion of this paper presents the second series of drop testing required to demonstrate that the RTG package design meets the requirements of Title 10, Code of Federal Regulations, ``Part 71`` (10 CFR 71). Results of the first test series, performed in July 1994, demonstrated that some design changes were necessary. The package design was modified to improve test performance and the design changes were incorporated into the Safety Analysis Report for Packaging (SARP). The second full-size certification test article (CTA-2) incorporated the modified design and was tested at the US Department of Energy`s (DOE) Hanford Site near Richland, Washington. With the successful completion of the test series, and pending DOE Office of Facility Safety Analysis approval of the SARP, a certificate of compliance will be issued for the RTG package allowing its use. The second portion of this paper presents the design and testing of the RTG Package Mount System. The RTG package mount was designed to protect the RTG from excessive vibration during transport, provide shock protection during on/off loading, and provide a mechanism for moving the RTG package with a forklift. Military Standard (MIL-STD) 810E, Transit Drop Procedure (DOE 1989), was used to verify that the shock limiting system limited accelerations in excess of 15 G`s at frequencies below 150 Hz. Results of the package mount drop tests indicate that an impact force of 15 G`s was not exceeded in any test from a free drop height of 457 mm (18 in.).

Ferrell, P.C.; Moody, D.A.

1995-10-01T23:59:59.000Z

254

Thermoelectric properties of high quality nanostructured Ge:Mn thin D. Tanoff2*  

E-Print Network (OSTI)

. The thermoelectric performance ZT of such material is as high as 0.15 making them a promising thermoelectric p the thermal properties by inducing phonon diffusion. The efficiency of thermoelectric materials is given properties of a nanostructured thermoelectric material are never those of the related bulk ones. Different

Boyer, Edmond

255

Compositional ordering and stability in nanostructured, bulk thermoelectric alloys.  

SciTech Connect

Thermoelectric materials have many applications in the conversion of thermal energy to electrical power and in solid-state cooling. One route to improving thermoelectric energy conversion efficiency in bulk material is to embed nanoscale inclusions. This report summarize key results from a recently completed LDRD project exploring the science underpinning the formation and stability of nanostructures in bulk thermoelectric and the quantitative relationships between such structures and thermoelectric properties.

Hekmaty, Michelle A.; Faleev, S.; Medlin, Douglas L.; Leonard, F.; Lensch-Falk, J.; Sharma, Peter Anand; Sugar, J. D.

2009-09-01T23:59:59.000Z

256

Probabilistic Mechanical Reliability Prediction of Thermoelectric Legs  

SciTech Connect

The probability of failure, Pf, for various square-arrayed thermoelectric device designs using bismuth telluride, lead telluride, or skutterudite thermoelectric materials were estimated. Only volume- or bulk-based Pf analysis was considered in this study. The effects of the choice of the thermoelectric material, the size of the leg array, the height of the thermoelectric legs, and the boundary conditions on the Pf of thermoelectric devices were investigated. Yielding of the solder contacts and mounting layer was taken into account. The modeling results showed that the use of longer legs, using skutterudites, allowing the thermoelectric device to freely deform while under a thermal gradient, and using smaller arrays promoted higher probabilities of survival.

Jadaan, Osama M. [University of Wisconsin, Platteville; Wereszczak, Andrew A [ORNL

2009-05-01T23:59:59.000Z

257

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Engineering and Materials for Automotive Thermoelectric Applications Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites Electrical...

258

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Recovery Engineering and Materials for Automotive Thermoelectric Applications Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites...

259

SunShot Initiative: Concentrated Solar Thermoelectric Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrated Solar Thermoelectric Concentrated Solar Thermoelectric Power to someone by E-mail Share SunShot Initiative: Concentrated Solar Thermoelectric Power on Facebook Tweet about SunShot Initiative: Concentrated Solar Thermoelectric Power on Twitter Bookmark SunShot Initiative: Concentrated Solar Thermoelectric Power on Google Bookmark SunShot Initiative: Concentrated Solar Thermoelectric Power on Delicious Rank SunShot Initiative: Concentrated Solar Thermoelectric Power on Digg Find More places to share SunShot Initiative: Concentrated Solar Thermoelectric Power on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment

260

Lunar Base Thermoelectric Power Station Study  

Science Journals Connector (OSTI)

Under NASA’s Project Prometheus the Nuclear Space Power Systems Program the Jet Propulsion Laboratory Pratt & Whitney Rocketdyne and Teledyne Energy Systems have teamed with a number of universities under the Segmented Thermoelectric Multicouple Converter (STMC) Task to develop the next generation of advanced thermoelectric converters for space reactor power systems. Work on the STMC converter assembly has progressed to the point where the lower temperature stage of the segmented multicouple converter assembly is ready for laboratory testing and promising candidates for the upper stage materials have been identified and their properties are being characterized. One aspect of the program involves mission application studies to help define the potential benefits from the use of these STMC technologies for designated NASA missions such as a lunar base power station where kilowatts of power would be required to maintain a permanent manned presence on the surface of the moon. A modular 50 kWe thermoelectric power station concept was developed to address a specific set of requirements developed for this particular mission concept. Previous lunar lander concepts had proposed the use of lunar regolith as in?situ radiation shielding material for a reactor power station with a one kilometer exclusion zone radius to minimize astronaut radiation dose rate levels. In the present concept we will examine the benefits and requirements for a hermetically?sealed reactor thermoelectric power station module suspended within a man?made lunar surface cavity. The concept appears to maximize the shielding capabilities of the lunar regolith while minimizing its handling requirements. Both thermal and nuclear radiation levels from operation of the station at its 100?m exclusion zone radius were evaluated and found to be acceptable. Site preparation activities are reviewed as well as transport issues for this concept. The goal of the study was to review the entire life cycle of the unit to assess its technical problems and technology needs in all areas to support the development deployment operation and disposal of the unit.

William Determan; Patrick Frye; Jack Mondt; Jean?Pierre Fleurial; Ken Johnson; Gerhard Stapfer; Michael Brooks; Ben Heshmatpour

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermoelectric generators thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Lunar Base Thermoelectric Power Station Study  

SciTech Connect

Under NASA's Project Prometheus, the Nuclear Space Power Systems Program, the Jet Propulsion Laboratory, Pratt and Whitney Rocketdyne, and Teledyne Energy Systems have teamed with a number of universities, under the Segmented Thermoelectric Multicouple Converter (STMC) Task, to develop the next generation of advanced thermoelectric converters for space reactor power systems. Work on the STMC converter assembly has progressed to the point where the lower temperature stage of the segmented multicouple converter assembly is ready for laboratory testing, and promising candidates for the upper stage materials have been identified and their properties are being characterized. One aspect of the program involves mission application studies to help define the potential benefits from the use of these STMC technologies for designated NASA missions such as a lunar base power station where kilowatts of power would be required to maintain a permanent manned presence on the surface of the moon. A modular 50 kWe thermoelectric power station concept was developed to address a specific set of requirements developed for this particular mission concept. Previous lunar lander concepts had proposed the use of lunar regolith as in-situ radiation shielding material for a reactor power station with a one kilometer exclusion zone radius to minimize astronaut radiation dose rate levels. In the present concept, we will examine the benefits and requirements for a hermetically-sealed reactor thermoelectric power station module suspended within a man-made lunar surface cavity. The concept appears to maximize the shielding capabilities of the lunar regolith while minimizing its handling requirements. Both thermal and nuclear radiation levels from operation of the station, at its 100-m exclusion zone radius, were evaluated and found to be acceptable. Site preparation activities are reviewed as well as transport issues for this concept. The goal of the study was to review the entire life cycle of the unit to assess its technical problems and technology needs in all areas to support the development, deployment, operation and disposal of the unit.

Determan, William; Frye, Patrick [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States); Mondt, Jack; Fleurial, Jean-Pierre; Johnson, Ken; Stapfer, Gerhard [Pratt and Whitney Rocketdyne Inc., P.O. Box 7922, Canoga Park, CA 91309 (United States); Brooks, Michael; Heshmatpour, Ben [Teledyne Energy Systems, Inc., 10707 Gilroy Rd, Hunt Valley, MD 21031 (United States)

2006-01-20T23:59:59.000Z

262

Photoacoustic measurement of bandgaps of thermoelectric materials  

E-Print Network (OSTI)

Thermoelectric materials are a promising class of direct energy conversion materials, usually consisting of highly doped semiconductors. The key to maximizing their thermal to electrical energy conversion lies in optimizing ...

Ni, George (George Wei)

2014-01-01T23:59:59.000Z

263

Semiclassical model for thermoelectric transport in nanocomposites  

E-Print Network (OSTI)

Nanocomposites (NCs) has recently been proposed and experimentally demonstrated to be potentially high-efficiency thermoelectric materials by reducing the thermal conductivity through phonon-interface scattering and possibly ...

Zhou, Jun

264

Thermoelectric Development at Hi-Z Technology  

SciTech Connect

An improved Thermoelectric Generator (TEG) for the Heavy Duty Class Eight Diesel Trucks is under development at Hi-Z Technology. The current TEG is equipped with the improved HZ-14 Thermoelectric module, which features better mechanical properties as well as higher electric power output. Also, the modules are held in place more securely.

Kushch, Aleksandr S.; Bass, John C.; Ghamaty, Saeid; Elsner, Norbert B.; Bergstrand, Richard A.; Furrow, David; Melvin, Mike

2002-08-25T23:59:59.000Z

265

Nanostructures having high performance thermoelectric properties  

DOE Patents (OSTI)

The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.

Yang, Peidong; Majumdar, Arunava; Hochbaum, Allon I; Chen, Renkun; Delgado, Raul Diaz

2014-05-20T23:59:59.000Z

266

High temperature thermoelectrics  

DOE Patents (OSTI)

In accordance with one embodiment of the present disclosure, a thermoelectric device includes a plurality of thermoelectric elements that each include a diffusion barrier. The diffusion barrier includes a refractory metal. The thermoelectric device also includes a plurality of conductors coupled to the plurality of thermoelectric elements. The plurality of conductors include aluminum. In addition, the thermoelectric device includes at least one plate coupled to the plurality of thermoelectric elements using a braze. The braze includes aluminum.

Moczygemba, Joshua E.; Biershcenk, James L.; Sharp, Jeffrey W.

2014-09-23T23:59:59.000Z

267

Composite Thermoelectric Devices  

Energy.gov (U.S. Department of Energy (DOE))

Composite thermoelectric devices incorporating common conductors laminated between P- and N-type thermoelectric plates demonstrate internal ohmic loss reduction and enhanced performance

268

High-Performance Thermoelectric Devices Based on Abundant Silicide Materials for Vehicle Waste Heat Recovery  

Energy.gov (U.S. Department of Energy (DOE))

Development of high-performance thermoelectric devices for vehicle waste heat recovery will include fundamental research to use abundant promising low-cost thermoelectric materials, thermal management and interfaces design, and metrology

270

Thermal Energy Harvesting with Thermoelectrics for Self-powered Sensors: With Applications to Implantable Medical Devices, Body Sensor Networks and Aging in Place  

E-Print Network (OSTI)

the sheet resistance of the materials. Seebeck measurementsexpected resistance calculated from the material properties.thermoelectric materials typically produce high-resistance

Chen, Alic

2011-01-01T23:59:59.000Z

271

A computational analysis of the evaporator/artery of an alkali metal thermal to electric conversion (AMTEC) PX series cell  

E-Print Network (OSTI)

, while minimizing mass. Current technology, such as Radioisotope Thermoelectric Generators (RTG's) are reliable, but do not supply the power conversion efficiencies desired for future space missions. That leads to Alkali Metal Thermal to Electric...-series cells to generate electricity for the deep space vehicle. The higher efficiency of AMTEC compared to other conversion technologies, such as Radioisotope Thermoelectric Generators (RTG's), results in less energy source material being launched...

Pyrtle, Frank

1999-01-01T23:59:59.000Z

272

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Automotive Waste Heat Recovery Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power Development...

273

Development of Thermoelectric Technology for Automotive Waste Heat Recovery  

Energy.gov (U.S. Department of Energy (DOE))

Overview and status of project to develop thermoelectric generator for automotive waste heat recovery and achieve at least 10% fuel economy improvement.

274

Applied Mathematical Sciences, Vol. 4, 2010, no. 11, 505 -514 Efficiency of Inhomogeneous Thermoelectric  

E-Print Network (OSTI)

- rounding the ship. Future work in thermoelectrics includes converting waste heat from power plants, trucks Thermoelectric Generators Hong Zhou Department of Applied Mathematics Naval Postgraduate School, Monterey, CA thermoelectric generators. The effects of different physical parameters on the efficiency of a generator

Zhou, Hong

275

Solar thermal organic rankine cycle for micro-generation  

Science Journals Connector (OSTI)

The conceptual design of an Organic Rankine Cycle (ORC) driven by solar thermal energy is developed for the decentralized production of electricity of up to 50 kW. Conventional Rankine Cycle uses water as the working fluid whereas ORC uses organic compound as the working fluid and it is particularly suitable for low temperature applications. The ORC and the solar collector will be sized according to the solar flux distribution in the Republic of Yemen for the required power output of 50 kW. This will be a micro power generation system that consists of two cycles the solar thermal cycle that harness solar energy and the power cycle which is the ORC that generates electricity. As for the solar thermal cycle heat transfer fluid (HTF) circulates the cycle while absorbing thermal energy from the sun through a parabolic trough collector and then storing it in a thermal storage to increase system efficiency and maintains system operation during low radiation. The heat is then transferred to the organic fluid in the ORC via a heat exchanger. The organic fluids to be used and analyzed in the ORC are hydrocarbons R600a and R290.

2012-01-01T23:59:59.000Z

276

Nanostructured Materials for Energy Generation and Storage  

E-Print Network (OSTI)

waste-heat recovery allowing for energy reuse. The limited use of thermoelectric generatorswaste-heat recovery allowing for en- ergy reuse. The limited use of thermoelectric generators

Khan, Javed Miller

2012-01-01T23:59:59.000Z

277

Heat Transfer in Thermoelectric Materials and Devices  

E-Print Network (OSTI)

Solid-state thermoelectric devices are currently used in applications ranging from thermocouple sensors to power generators in space missions, to portable air-conditioners and refrigerators. With the ever-rising demand ...

Tian, Zhiting

278

Challenges and Opportunities in Thermoelectric Materials Research...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nanocomposites, plus Overview of Research on Thermoelectric Materials and Devices in China NSFDOE Thermoelectric Partnership: Inorganic-Organic Hybrid Thermoelectrics...

279

Novel Nanostructured Interface Solution for Automotive Thermoelectric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Thermoelectrics Partnership: Automotive Thermoelectric Modules with...

280

Thermoelectric recovery of waste heat -- Case studies  

SciTech Connect

The use of waste heat as an energy source for thermoelectric generation largely removes the constraint for the wide scale application of this technology imposed by its relatively low conversion efficiency (typically about 5%). Paradoxically, in some parasitic applications, a low conversion efficiency can be viewed as a distinct advantage. However, commercially available thermoelectric modules are designed primarily for refrigerating applications and are less reliable when operated at elevated temperatures. Consequently, a major factor which determines the economic competitiveness of thermoelectric recovery of waste heat is the cost per watt divided by the mean-time between module failures. In this paper is reported the development of a waste, warm water powered thermoelectric generator, one target in a NEDO sponsored project to economically recover waste heat. As an application of this technology case studies are considered in which thermoelectric generators are operated in both active and parasitic modes to generate electrical power for a central heating system. It is concluded that, in applications when the supply of heat essentially is free as with waste heat, thermoelectrics can compete economically with conventional methods of electrical power generation. Also, in this situation, and when the generating system is operated in a parasitic mode, conversion efficiency is not an important consideration.

Rowe, M.D.; Min, G.; Williams, S.G.K.; Aoune, A. [Cardiff School of Engineering (United Kingdom). Div. of Electronic Engineering; Matsuura, Kenji [Osaka Univ., Suita, Osaka (Japan). Dept. of Electrical Engineering; Kuznetsov, V.L. [Ioffe Physical-Technical Inst., St. Petersburg (Russian Federation); Fu, L.W. [Tsinghua Univ., Beijing (China). Microelectronics Inst.

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "thermoelectric generators thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Investigation of thermal storage and steam generator issues  

SciTech Connect

A review and evaluation of steam generator and thermal storage tank designs for commercial nitrate salt technology showed that the potential exists to procure both on a competitive basis from a number of qualified vendors. The report outlines the criteria for review and the results of the review, which was intended only to assess the feasibility of each design, not to make a comparison or select the best concept.

Not Available

1993-08-01T23:59:59.000Z

282

Thermoelectric standardisation - Reference materials and characterisation  

Science Journals Connector (OSTI)

Thermoelectric materials for working temperatures between 300 K and 1000 K become continuously more important for energy recuperation applications. The efficiency is determined by the transport properties (electrical and thermal conductivity and Seebeck coefficient) which form the known thermoelectric figure of merit ZT. The thorough determination of ZT represents the basis for the assessment of thermoelectric materials research. Due to different continuing difficulties measurement errors distinctly higher than 15% can be observed repeatedly which is still too high for an industrial benchmark and deficient for many scientific investigations and technological developments. Against this background a project was launched in 2011 together with the Fraunhofer Institute of Physical Measurement Techniques (IPM Freiburg) the Department Temperature of the Physikalisch-Technische Bundesanstalt (PTB Berlin) and the company Netzsch Gerätebau GbmH (Selb). The aim of the project "Thermoelectric Standardisation" (TEST) is to minimise the measurement uncertainties and to develop traceable high-accurate thermoelectric characterisation techniques and thermoelectric reference materials for the mentioned temperature range. Here we initially present the project to the thermoelectric society and want to give a survey on the planned activities and the current status of the contributions of the German Aerospace Center (DLR Cologne).

2012-01-01T23:59:59.000Z

283

Thermostat for high temperature and transient characterization of thin film thermoelectric materials  

E-Print Network (OSTI)

Institute of Physics. DOI: 10.1063/1.3072603 I. INTRODUCTION Thermoelectric materials have the potential-limited world. An impor- tant application of thermoelectric materials is in direct thermal-to-electrical energy conversion efficiency of a thermoelectric material is a func- tion of its dimensionless figure of merit

284

Thermoelectric and Magnetothermoelectric Transport Measurements of Graphene Yuri M. Zuev,1  

E-Print Network (OSTI)

of thermal and thermoelectric prop- erties of this two-dimensional material [2­8], only an indirectThermoelectric and Magnetothermoelectric Transport Measurements of Graphene Yuri M. Zuev,1 Willy, USA (Received 7 December 2008; published 6 March 2009) The conductance and thermoelectric power (TEP

Kim, Philip

285

Direct measurement of thin-film thermoelectric figure of merit Rajeev Singh,1,a  

E-Print Network (OSTI)

conductivity of the thermoelectric material. Self-consistent finite-element simulations of the three. © 2009 American Institute of Physics. DOI: 10.1063/1.3094880 Thermoelectric materials are playing application of thermoelectric materials is in direct thermal-to-electrical energy conversion. Because

Bowers, John

286

G. J. Snyder Page 1 of 6 THERMOELECTRIC PROPERTIES OF CR3S4-TYPE SELENIDES  

E-Print Network (OSTI)

devices depends primarily on increasing the figure of merit, ZT, for thermoelectric materials. The figure thermoelectric materials is to search for semiconductors with low lattice thermal conductivity. In this paper we lower than the state-of-the-art thermoelectric material, Bi2Te3 alloys. The structure of Cr3S4 (Figure 1

287

Intersociety Energy Conversion Engineering Conference Proc., Vancouver, BC, Canada, 992569 (1999) Miniaturized Thermoelectric Power Sources  

E-Print Network (OSTI)

thermoelectric microdevices combining high thermal conductivity substrate materials such as diamond or even is the discovery and infusion of novel thermoelectric materials more efficient above room temperature than 10 15 0.5 1.0 1.5 2.0 2.5 3 average ZT of thermoelectric material Materialsconversionefficiency(%) .0

288

An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Efficient, scalable, and low cost vehicular thermoelectric generators development will include rapid synthesis of thermoelectric materials, different device geometries, heat sink designs, and durability and long-term performance tests

289

Bulk dimensional nanocomposites for thermoelectric applications  

DOE Patents (OSTI)

Thermoelectric elements may be used for heat sensors, heat pumps, and thermoelectric generators. A quantum-dot or nano-scale grain size polycrystalline material the effects of size-quantization are present inside the nanocrystals. A thermoelectric element composed of densified Groups IV-VI material, such as calcogenide-based materials are doped with metal or chalcogenide to form interference barriers form along grains. The dopant used is either silver or sodium. These chalcogenide materials form nanoparticles of highly crystal grains, and may specifically be between 1- and 100 nm. The compound is densified by spark plasma sintering.

Nolas, George S

2014-06-24T23:59:59.000Z

290

Thermoelectric properties of mesoscopic superconductors  

SciTech Connect

We develop a general framework for describing thermoelectric effects in phase-coherent superconducting structures. Formulas for the electrical conductance, thermal conductance, thermopower, and Peltier coefficient are obtained and their various symmetries discussed. Numerical results for both dirty and clean Andreev interferometers are presented. We predict that giant oscillations of the thermal conductance can occur, even when oscillations in the electrical conductance are negligibly small. Results for clean, two-dimensional systems with a single superconducting inclusion are also presented, which show that normal-state oscillations arising from quasiparticle boundary scattering are suppressed by the onset of superconductivity. In contrast, for a clean system with no normal-state boundary scattering, switching on superconductivity induces oscillations in off-diagonal thermoelectric coefficients. {copyright} {ital 1996 The American Physical Society.}

Claughton, N.R.; Lambert, C.J. [School of Physics and Chemistry, Lancaster University, Lancaster, LA14YB (England)] [School of Physics and Chemistry, Lancaster University, Lancaster, LA14YB (England)

1996-03-01T23:59:59.000Z

291

Improving efficiency of thermoelectric energy conversion devices is a major  

E-Print Network (OSTI)

Abstract · Improving efficiency of thermoelectric energy conversion devices is a major challenge Interdisciplinary Program in Material Science Thermal Physics Lab Vanderbilt University, Nashville, TN 2 S T ZT dominates over increase in Seebeck coefficient leading to poor device performance. Thermoelectric figure

Walker, D. Greg

292

Stirling Engines for Low-Temperature Solar-Thermal-Electric Power Generation  

E-Print Network (OSTI)

Stirling Engines for Low-Temperature Solar-Thermal- Electric Power Generation Artin Der Minassians-Temperature Solar-Thermal-Electric Power Generation by Artin Der Minassians Karshenasi (Amirkabir University-Temperature Solar-Thermal-Electric Power Generation Copyright c 2007 by Artin Der Minassians #12;1 Abstract Stirling

Sanders, Seth

293

NSF/DOE Thermoelectrics Partnership: Thermoelectrics for Automotive Waste Heat Recovery  

Energy.gov (U.S. Department of Energy (DOE))

Development for commercialization of automotive thermoelectric generators from high-ZT TE materials with using low-cost, widely available materials, system design and modeling to maximize temperature differential across TE modules and maximize power output

294

Silicon-germanium/gallium phosphide material in high power density thermoelectric modules. Final report, February 1980--September 1981  

SciTech Connect

This is the final report of work on the characterization of an improved Si-Ge alloy and the fabrication of thermoelectric devices. The improved Si-Ge alloy uses a small addition of GaP in n- and p- type 80 at.% Si-20 at.% Ge; this addition reduces the thermal conductivity, thereby increasing its figure of merit and conversion efficiency. The thermoelectric devices fabricated include multicouples intended for use in Radioisotope Thermoelectric Generators (RTGs) and ring-type modules intended for use with nuclear reactor heat sources. This report summarizes the effort in the material as well as the device areas and discusses individual phases of each area. Results should form basis for further effort.

Not Available

1981-12-31T23:59:59.000Z

295

POTENTIAL THERMOELECTRIC APPLICATIONS IN DIESEL VEHICLES  

SciTech Connect

Novel thermodynamic cycles developed by BSST provide improvements by factors of approximately 2 in cooling, heating and power generation efficiency of solid-state thermoelectric systems. The currently available BSST technology is being evaluated in automotive development programs for important new applications. Thermoelectric materials are likely to become available that further increase performance by a comparable factor. These major advancements should allow the use of thermoelectric systems in new applications that have the prospect of contributing to emissions reduction, fuel economy, and improved user comfort. Potential applications of thermoelectrics in diesel vehicles are identified and discussed. As a case in point, the history and status of the Climate Controlled Seat (CCS) system from Amerigon, the parent of BSST, is presented. CCS is the most successful and highest production volume thermoelectric system in vehicles today. As a second example, the results of recent analyses on electric power generation from vehicle waste heat are discussed. Conclusions are drawn as to the practicality of waste power generation systems that incorporate BSST's thermodynamic cycle and advanced thermoelectric materials.

Crane, D

2003-08-24T23:59:59.000Z

296

Advanced Thin Film Thermoelectric Systems forEfficient Air-Conditioners  

Energy.gov (U.S. Department of Energy (DOE))

Presents recent advances in thermoelectric device fabrication and the design of novel cooling/heating engines exploiting thermal storage for efficient air-conditioners in automobiles

297

Radioisotope Power System Delivery, Ground Support and Nuclear Safety Implementation: Use of the Multi-Mission Radioisotope Thermoelectric Generator for the NASA's Mars Science Laboratory  

SciTech Connect

Radioisotope power systems have been used for over 50 years to enable missions in remote or hostile environments. They are a convenient means of supplying a few milliwatts up to a few hundred watts of useable, long-term electrical power. With regard to use of a radioisotope power system, the transportation, ground support and implementation of nuclear safety protocols in the field is a complex process that requires clear identification of needed technical and regulatory requirements. The appropriate care must be taken to provide high quality treatment of the item to be moved so it arrives in a condition to fulfill its missions in space. Similarly it must be transported and managed in a manner compliant with requirements for shipment and handling of special nuclear material. This presentation describes transportation, ground support operations and implementation of nuclear safety and security protocols for a radioisotope power system using recent experience involving the Multi-Mission Radioisotope Thermoelectric Generator for National Aeronautics and Space Administration’s Mars Science Laboratory, which launched in November of 2011.

S.G. Johnson; K.L. Lively; C.C. Dwight

2014-07-01T23:59:59.000Z

298

Transport in Charged Colloids Driven by Thermoelectricity  

E-Print Network (OSTI)

We study the thermal diffusion coefficient DT of a charged colloid in a temperature gradient, and find that it is to a large extent determined by the thermoelectric response of the electrolyte solution. The thermally induced salinity gradient leads in general to a strong increase with temperature. The difference of the heat of transport of coions and counterions gives rise to a thermoelectric field that drives the colloid to the cold or to the warm, depending on the sign of its charge. Our results provide an explanation for recent experimental findings on thermophoresis in colloidal suspensions.

Alois Würger

2014-01-29T23:59:59.000Z

299

Thermoelectric detection of spherical tin inclusions in copper by magnetic sensing  

E-Print Network (OSTI)

, respectively. Any variation in material properties can affect the measured thermoelectric voltage via SSR SS SR of different materials, or more precisely, materials of different thermoelectric power, will generate sensitive material discriminators used in nondestructive inspection. The thermoelectric power of metals

Nagy, Peter B.

300

PSPICE-Compatible Equivalent Circuit of Thermoelectric Coolers Simon Lineykin and Sam Ben-Yaakov*  

E-Print Network (OSTI)

. The thermoelectric module (TEM) can be used for cooling, heating, and energy generation [1] - [3]. The objective OF OPERATION Five energy-conversion processes take place in a thermoelectric module: conductive heat transfer of thermodynamics, one can express the energy equilibrium at both sides of the thermoelectric module

Note: This page contains sample records for the topic "thermoelectric generators thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Modeling Energy Recovery Using Thermoelectric Conversion Integrated with an Organic Rankine Bottoming Cycle  

SciTech Connect

Hot engine exhaust represents a resource that is often rejected to the environment without further utilization. This resource is most prevalent in the transportation sector, but stationary engine-generator systems also typically do not utilize this resource. Engine exhaust is a source of high grade thermal energy that can potentially be utilized by various approaches to produce electricity or to drive heating and cooling systems. This paper describes a model system that employs thermoelectric conversion as a topping cycle integrated with an organic Rankine bottoming cycle for waste heat utilization. This approach is being developed to fully utilize the thermal energy contained in hot exhaust streams. The model is composed of a high temperature heat exchanger which extracts thermal energy for driving the thermoelectric conversion elements. However, substantial sensible heat remains in the exhaust stream after emerging from the heat exchanger. The model incorporates a closely integrated bottoming cycle to utilize this remaining thermal energy in the exhaust stream. The model has many interacting parameters that define combined system quantities such as overall output power, efficiency, and total energy utilization factors. In addition, the model identifies a maximum power operating point for the system. That is, the model can identify the optimal amount of heat to remove from the exhaust flow to run through the thermoelectric elements. Removing too much or too little heat from the exhaust stream in this stage will reduce overall cycle performance. The model has been developed such that heat exchanger UAh values, thermal resistances, ZT values, and multiple thermoelectric elements can be investigated in the context of system operation. The model also has the ability to simultaneously determine the effect of each cycle design parameter on the performance of the overall system, thus giving the ability to utilize as much waste heat as possible. Key analysis results are presented showing the impact of critical design parameters on power output, system performance and inter-relationships between design parameters in governing performance.

Miller, Erik W.; Hendricks, Terry J.; Peterson, Richard B.

2009-07-01T23:59:59.000Z

302

Thermoelectric materials having porosity  

DOE Patents (OSTI)

A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

2014-08-05T23:59:59.000Z

303

Improved maximum cooling by optimizing the geometry of thermoelectric leg elements Yan Zhang, Zhixi Bian and Ali Shakouri*  

E-Print Network (OSTI)

in improving the thermoelectric efficiency and maximum cooling mainly focuses on improving materials' figure , power factor; , thermal conductivity. Bi2Te3 has been the most popular thermoelectric material at room a high power factor. Most of the recent research on thermoelectrics focuses on improving the material

304

Thermoelectric effects in wurtzite GaN and AlxGa1-xN alloys and Alexander A. Balandin  

E-Print Network (OSTI)

N-based alloys may have some potential as thermoelectric materials at high temperature. It was found with the active thermoelectric cooling implemented on the same material system can improve the device performance to the thermal challenges. Apparently, the preferred thermoelectric material, in terms of integration

305

Review of solar thermoelectric energy conversion and analysis of a two cover flat-plate solar collector  

E-Print Network (OSTI)

The process of solar thermoelectric energy conversion was explored through a review of thermoelectric energy generation and solar collectors. Existing forms of flat plate collectors and solar concentrators were surveyed. ...

Hasan, Atiya

2007-01-01T23:59:59.000Z

306

Thermoelectric heat exchange element  

DOE Patents (OSTI)

A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

Callas, James J. (Peoria, IL); Taher, Mahmoud A. (Peoria, IL)

2007-08-14T23:59:59.000Z

307

High Temperature Integrated Thermoelectric Ststem and Materials  

SciTech Connect

The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits. Two composition systems, specifically 1.0 SrO - 0.8 x 1.03 TiO2 - 0.2 x 1.03 NbO2.5 and 0.97 TiO2 - 0.03 NbO2.5, have been identified as good base line compositions for n-type thermoelectric compositions in future module design. Tests of these materials at an outside company were promising using that company's processing and material expertise. There was no unique p-type thermoelectric compositions identified in phase I work other than several current cobaltite materials. Ca3Co4O9 will be the primary p-type material for the future module design until alternative materials are developed. BaTiO3 and rare earth titanate based dielectric compositions show both p-type and n-type behavior even though their electrical conductivities were very low. Further research and development of these materials for thermoelectric applications is planned in the future. A preliminary modeling and optimization of a thermoelectric generator (TEG) that uses the n-type 1.0 SrO - 1.03 x 0.8 TiO2 - 1.03 x 0.2 NbO2.5 was performed. Future work will combine development of ceramic powders and manufacturing expertise at TAM, development of SPS at TAM or a partner organization, and thermoelectric material/module testing, modeling, optimization, production at several partner organizations.

Mike S. H. Chu

2011-06-06T23:59:59.000Z

308

Holey Silicon as an Efficient Thermoelectric Material  

SciTech Connect

This work investigated the thermoelectric properties of thin silicon membranes that have been decorated with high density of nanoscopic holes. These ?holey silicon? (HS) structures were fabricated by either nanosphere or block-copolymer lithography, both of which are scalable for practical device application. By reducing the pitch of the hexagonal holey pattern down to 55 nm with 35percent porosity, the thermal conductivity of HS is consistently reduced by 2 orders of magnitude and approaches the amorphous limit. With a ZT value of 0.4 at room temperature, the thermoelectric performance of HS is comparable with the best value recorded in silicon nanowire system.

Tang, Jinyao; Wang, Hung-Ta; Hyun Lee, Dong; Fardy, Melissa; Huo, Ziyang; Russell, Thomas P.; Yang, Peidong

2010-09-30T23:59:59.000Z

309

Gated Si nanowires for large thermoelectric power factors Neophytos Neophytou1  

E-Print Network (OSTI)

thermal conductivities as low as =1-2 W/mK (compared to bulk=142 W/mK), which resulted in room temperature;2 Nanostructured and low-dimensional silicon based thermoelectric (TE) materials have attracted significant conductivity, S is the Seebeck coefficient, and is the thermal conductivity. Traditional thermoelectric

310

Vehicular Thermoelectrics: A New Green Technology | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicular Thermoelectrics: A New Green Technology Vehicular Thermoelectrics: A New Green Technology An overview of the DOE activities in vehicular application of thermoelectrics...

311

Measurement and characterization techniques for thermoelectric materials  

SciTech Connect

Characterization of thermoelectric materials can pose many problems. A temperature difference can be established across these materials as an electrical current is passed due to the Peltier effect. The thermopower of these materials is quite large and thus large thermal voltages can contribute to many of the measurements necessary to investigate these materials. This paper will discuss the chracterization techniques necessary to investigate these materials and provide an overview of some of the potential systematic errors which can arise. It will also discuss some of the corrections one needs to consider. This should provide an introduction to the characterization and measurement of thermoelectric materials and provide references for a more in depth discussion of the concepts. It should also serve as an indication of the care that must be taken while working with thermoelectric materials.

Tritt, T.M.

1997-07-01T23:59:59.000Z

312

Ceramics in non-thermal plasma discharge for hydrogen generation.  

E-Print Network (OSTI)

??Recent interest in hydrogen as an energy source has resulted in development of new technologies such as non-thermal plasma processing of natural gas. We report… (more)

Vintila, Ramona Roxana

2005-01-01T23:59:59.000Z

313

Sustainable solar thermal power generation (STPG) technologies in Indian context  

SciTech Connect

India is a fast developing country. Some of the factors like population growth, industrialization, liberalization in economic policies, green revolution and awareness toward the environment, are increasing the electricity demand rapidly. As per the 14th Power Survey Report, an energy deficit of (+) 9% and peak demand deficit of (+) 18% have been estimated. Keeping in view the liberalization in economic policies, this deficit may be higher by the year 2000 AD. An estimation indicates that India is blessed with solar energy to the tune of 5 x 10{sup 15} kWh/yr. Being clean and inexhaustible source of energy, it can be used for large-scale power generation in the country. Keeping in view the present state-of-art technologies for STPG in MW range, best possible efforts are required to be made by all the concerned, to develop sustainable STPG technology of the future, specially for tropical regions. Standardization of vital equipment is an important aspect. There are a few required criteria like simple and robust technology, its transfer and adaptation in tropical climate conditions; high plant load factor without fossil-fired backup; availability of plant during evening peak and night hours; least use of fragile components, and capacity optimization for MW plants as per solar irradiance and environmental factors. In this paper, efforts have been made to compare the different STPG technologies. On the basis, of literature surveyed and studies carried out by the author, it may be stated that Central Receiver System technologies using molten salt and volumetric air receiver, along with molten salt and ceramic thermal storage respectively seems to be suitable and comparable in Indian context. Performance of SOLAR-TWO and PHOEBUS plants may be decisive.

Sharma, R.S. [Ministry of Non-Conventional Energy Sources, New Delhi (India). Solar Energy Centre

1996-12-31T23:59:59.000Z

314

Proceedings of the XVII International Conference on Thermoelectrics, Cardiff, UK, p. 151 (2000) Synthesis and thermoelectric properties of some materials with the PbBi4Te7 crystal structure  

E-Print Network (OSTI)

used in thermoelectric modules for cooling and power generation applications. Extensive research hasProceedings of the XVII International Conference on Thermoelectrics, Cardiff, UK, p. 151 (2000) 1 Synthesis and thermoelectric properties of some materials with the PbBi4Te7 crystal structure T. Caillat, C

315

High Temperature Experimental Characterization of Microscale Thermoelectric Effects  

E-Print Network (OSTI)

Thermoelectric Generator (MMRTG) Fact Sheet. Nationalmars.jpl.nasa.gov/msl/files/mep/MMRTG_FactSheet_update_10-2-mars.jpl.nasa.gov/msl/files/mep/MMRTG_FactSheet_update_10-2-

Favaloro, Tela

2014-01-01T23:59:59.000Z

316

On the thermoelectric magnetic field of spherical and cylindrical inclusions Peter B. Nagy and Adnan H. Nayfeh  

E-Print Network (OSTI)

made of different materials, i.e., materials of different thermoelectric powers, will generate material discriminators used in nondestructive inspection. The thermoelectric power of metals is sensitive of thermoelectric materials characterization is metal sorting.1 However, it is known that under special conditions

Nagy, Peter B.

317

IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, VOL. 32, NO. 2, JUNE 2009 447 Temperature Profile Inside Microscale Thermoelectric  

E-Print Network (OSTI)

Temperature Profile Inside Microscale Thermoelectric Module Acquired Using Near-Infrared Thermoreflectance-scale thermoelectric modules. By determining localized sources of Joule heating, one can identify manufacturing errors and generate design rules that can improve the cooling performance of the thermoelectric device. Index Terms

318

Thermoelectric Mechanical Reliability | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectric Mechanical Reliability Thermoelectric Mechanical Reliability 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting,...

319

Thermoelectric Mechanical Reliability | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectric Mechanical Reliability Thermoelectric Mechanical Reliability 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

320

In-line thermoelectric module  

DOE Patents (OSTI)

A thermoelectric module with a plurality of electricity generating units each having a first end and a second end, the units being arranged first end to second end along an in-line axis. Each unit includes first and second elements each made of a thermoelectric material, an electrically conductive hot member arranged to heat one side of the first element, and an electrically conductive cold member arranged to cool another side of the first element and to cool one side of the second element. The hot member, the first element, the cold member and the second element are supported in a fixture, are electrically connected respectively to provide an electricity generating unit, and are arranged respectively in positions along the in-line axis. The individual components of each generating unit and the respective generating units are clamped in their in-line positions by a loading bolt at one end of the fixture and a stop wall at the other end of the fixture. The hot members may have a T-shape and the cold members an hourglass shape to facilitate heat transfer. The direction of heat transfer through the hot members may be perpendicular to the direction of heat transfer through the cold members, and both of these heat transfer directions may be perpendicular to the direction of current flow through the module.

Pento, Robert (Algonquin, IL); Marks, James E. (Glenville, NY); Staffanson, Clifford D. (S. Glens Falls, NY)

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermoelectric generators thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

In-Line Thermoelectric Module  

SciTech Connect

A thermoelectric module with a plurality of electricity generating units each having a first end and a second end, the units being arranged first end to second end along an-in-line axis. Each unit includes first and second elements each made of a thermoelectric material, an electrically conductive hot member arranged to heat one side of the first element, and an electrically conductive cold member arranged to cool another side of the first element and to cool one side of the second element. The hot member, the first element, the cold member and the second element are supported in a fixture, are electrically connected respectively to provide an electricity generating unit, and are arranged respectively in positions along the in-line axis. The individual components of each generating unit and the respective generating units are clamped in their in-line positions by a loading bolt at one end of the fixture and a stop wall at the other end of the fixture. The hot members may have a T-shape and the cold members an hourglass shape to facilitate heat transfer. The direction of heat transfer through the hot members may be perpendicular to the direction of heat transfer through the cold members, and both of these heat transfer directions maybe perpendicular to the direction-of current flow through the module.

Pento, Robert; Marks, James E.; Staffanson, Clifford D.

1998-07-28T23:59:59.000Z

322

Scaling Considerations for Thermoelectric Generators  

Energy.gov (U.S. Department of Energy (DOE))

This presentation describes a simulation study undertaken to identify and characterize the ways in which geometry impacts performance, using a fully coupled finite element model.

323

Automotive Thermoelectric Generators and HVAC  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

324

Automotive Thermoelectric Generators and HVAC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1) Compression (1 2) Combustion (2 3) Expansion (3 4) Exhaust (1 5) Heat loss to radiator: 30% of fuel energy lost ( 70% is used) waste heat T H T catlytic...

325

http://journals.cambridge.org Downloaded: 20 May 2013 IP address: 129.120.21.98 Bismuth telluride-based thermoelectric materials: Coatings as  

E-Print Network (OSTI)

-based thermoelectric materials: Coatings as protection against thermal cycling effects Witold Brostow,a) Tea Datashvili operating temperature TE materials also. I. INTRODUCTION Solid-state thermoelectric (TE) devices preferential sublimation of the thermoelectric material. For example, in (Bi2Te3) alloys, tellurium (Te

North Texas, University of

326

Bipolar thermoelectric devices  

E-Print Network (OSTI)

The work presented here is a theoretical and experimental study of heat production and transport in bipolar electrical devices, with detailed treatment of thermoelectric effects. Both homojunction and heterojunction devices ...

Pipe, Kevin P. (Kevin Patrick), 1976-

2004-01-01T23:59:59.000Z

327

Novel Thermal Storage Technologies for Concentrating Solar Power Generation  

SciTech Connect

The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300oC and 850oC using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

2013-06-20T23:59:59.000Z

328

Evaluation of Thermal to Electrical Energy Conversion of High...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules Evaluation of Thermal to Electrical Energy Conversion of High Temperature...

329

Optimizing Thermoelectric Power Factor by Means of a Potential Barrier  

E-Print Network (OSTI)

, S is the Seebeck coefficient, and is the thermal conductivity. Traditional thermoelectric materials suffer from conductivities. Nanostructures and low- dimensional materials such as 1D nanowires (NWs) [1, 2], 2D thin of the electrical conductivity and the Seebeck coefficient via the carrier density, and to high thermal

330

Energy harvesting using a thermoelectric material  

DOE Patents (OSTI)

A novel energy harvesting system and method utilizing a thermoelectric having a material exhibiting a large thermally induced strain (TIS) due to a phase transformation and a material exhibiting a stress induced electric field is introduced. A material that exhibits such a phase transformation exhibits a large increase in the coefficient of thermal expansion over an incremental temperature range (typically several degrees Kelvin). When such a material is arranged in a geometric configuration, such as, for a example, a laminate with a material that exhibits a stress induced electric field (e.g. a piezoelectric material) the thermally induced strain is converted to an electric field.

Nersessian, Nersesse (Van Nuys, CA); Carman, Gregory P. (Los Angeles, CA); Radousky, Harry B. (San Leandro, CA)

2008-07-08T23:59:59.000Z

331

Rational Synthesis of Ultrathin n-Type Bi2Te3 Nanowires with Enhanced Thermoelectric Properties  

E-Print Network (OSTI)

, which can generate electricity by recovering waste heat or be used as solid-state cooling devices, have-based thermoelectric power generation and solid-state cooling devices with superior performance in a reliableRational Synthesis of Ultrathin n-Type Bi2Te3 Nanowires with Enhanced Thermoelectric Properties

Xu, Xianfan

332

Feasibility of Thermoelectrics for Waste Heat Recovery in Hybrid Vehicles: Preprint  

SciTech Connect

Using advanced materials, thermoelectric conversion of efficiencies on the order of 20% may be possible in the near future. Thermoelectric generators offer potential to increase vehicle fuel economy by recapturing a portion of the waste heat from the engine exhaust and generating electricity to power vehicle accessory or traction loads.

Smith, K.; Thornton, M.

2007-12-01T23:59:59.000Z

333

Multilayer thermoelectric films: A strategy for the enhancement of ZT  

SciTech Connect

The relative efficiency of a thermoelectric material is measured in terms of a dimensionless figure of merit, ZT. Although all known thermoelectric materials are believed to have ZT {le} 1, recent theoretical results predict that thermoelectric devices fabricated as two-dimensional quantum wells (2D QWs) could have ZT {ge} 3. Multilayers with the dimensions of 2D QWs have been synthesized by alternately sputtering Bi{sub 0.9}Sb{sub 0.1} and PbTe{sub 0.8}Se{sub 0.2} onto a moving substrate from a pair of magnetron sources. These materials have been synthesized to test the thermoelectric quantum-well concept and gain insight into relevant transport mechanisms. This work focuses primarily on the scientific issues involved in producing the materials necessary to examine the possibility of enhancing ZT using quantum confinement. The techniques needed to measure the relevant electrical parameters of thermoelectric thin films are developed in this paper. Ultimately, if a quantum well enhancement of thermoelectrics is experimentally observed, devices based on this technology could be used to greatly expand the role of thermoelectrics in power generation and refrigeration.

Wadgner, A.V.; Foreman, R.J.; Summers, L.J.; Barbee, T.W. Jr.; Farmer, J.C.

1995-03-01T23:59:59.000Z

334

A continuum theory of thermoelectric bodies and effective properties of thermoelectric composites  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 A constitutive model for thermoelectric materials . . . . . . . . . . . . . . . . . . . . 6 2 composites. 1 Introduction Thermoelectric (TE) materials directly convert heat into electric energyA continuum theory of thermoelectric bodies and effective properties of thermoelectric composites

Liu, Liping

335

Thermal management of nanoelectronics  

E-Print Network (OSTI)

-state thermoelectric on- spot cooling, requiring efficient thermoelectric materials that can be integrated with the IC are further complicated by the fact that the material's ability to conduct heat deteriorates when at the packaging level but also at the nanoscale materials and device levels. THERMAL CHALLENGES AT NANOSCALE One

336

Pressure drops for direct steam generation in line-focus solar thermal systems  

E-Print Network (OSTI)

the focus of the solar collector, and then generate steam outside the collector in a large heat exchanger applicable to DSG in long horizontal pipes as required for the current work with a line-focus collector. #12Pressure drops for direct steam generation in line-focus solar thermal systems John Pye1 , Graham

337

Technical and economical evaluation of solar thermal power generation  

Science Journals Connector (OSTI)

This article presents a feasibilty on a solar power system based on the Stirling dish (SD) technology, reviews and compares the available Stirling engines in the perspective of a solar Stirling system. The system is evaluated, as a parameter to alleviate the energy system of the Cretan island while taking care of the CO2 emissions. In the results a sensitivity analysis was implemented, as well as a comparison with conventional power systems. In the long-term, solar thermal power stations based on a SD can become a competitive option on the electricity market, if a concerted programme capable of building the forces of industry, finance, insurance and other decision makers will support the market extension for this promising technology.

Theocharis Tsoutsos; Vasilis Gekas; Katerina Marketaki

2003-01-01T23:59:59.000Z

338

Thermal generation currents in hydrogenated amorphous silicon p?i?n structures  

Science Journals Connector (OSTI)

Dark conductivity in amorphous siliconp?i?n devices arising from thermal generation through bulk defect states is explored. The current decays slowly after a voltage is applied due to depletion of charge from the undoped layer and is voltage dependent due to a field?enhanced generation rate. Creation of metastable bulk defects by light soaking reversibly increases the current. The steady?state generation current is dervied from the measuredrelaxation time and depletion charge.

R. A. Street

1990-01-01T23:59:59.000Z

339

To be published in the proceedings of the International Conference on Thermoelectrics, Adelaide, Australia 2003 High Performance Multi Barrier Thermionic Devices  

E-Print Network (OSTI)

-of-merit, ZT specifies how "good" the material is for thermoelectric cooling and power generation applications. Widely used thermoelectric material at room temperature is based on Bi2Te3 2 . Heterostructure Integrated. As a concrete example, thermoelectric properties of InGaAs/InAlAs superlattices is studied. Material properties

340

Journal of Physics and Chemistry of Solids Vol 58 p 1119-25 (1997) T Caillat et al Preparation and thermoelectric properties of semiconducting Zn4Sb3  

E-Print Network (OSTI)

-of-the-art thermoelectric materials between Bi2Te3-based alloys and PbTe-based alloys. This material, relatively inexpensive conductivity. Established thermoelectric materials used in power generation can be divided into three and theoretical considerations, several new potentially high performance thermoelectric materials were identified

Note: This page contains sample records for the topic "thermoelectric generators thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Enhancement of automotive exhaust heat recovery by thermoelectric devices  

SciTech Connect

In an effort to improve automobile fuel economy, an experimental study is undertaken to explore practical aspects of implementing thermoelectric devices for exhaust gas energy recovery. A highly instrumented apparatus consisting of a hot (exhaust gas) and a cold (coolant liquid) side rectangular ducts enclosing the thermoelectric elements has been built. Measurements of thermoelectric voltage output and flow and surface temperatures were acquired and analyzed to investigate the power generation and heat transfer properties of the apparatus. Effects of inserting aluminum wool packing material inside the hot side duct on augmentation of heat transfer from the gas stream to duct walls were studied. Data were collected for both the unpacked and packed cases to allow for detection of packing influence on flow and surface temperatures. Effects of gas and coolant inlet temperatures as well as gas flow rate on the thermoelectric power output were examined. The results indicate that thermoelectric power production is increased at higher gas inlet temperature or flow rate. However, thermoelectric power generation decreases with a higher coolant temperature as a consequence of the reduced hot-cold side temperature differential. For the hot-side duct, a large temperature gradient exists between the gas and solid surface temperature due to poor heat transfer through the gaseous medium. Adding the packing material inside the exhaust duct enhanced heat transfer and hence raised hot-side duct surface temperatures and thermoelectric power compared to the unpacked duct, particularly where the gas-to-surface temperature differential is highest. Therefore it is recommended that packing of exhaust duct becomes common practice in thermoelectric waste energy harvesting applications.

Ibrahim, Essam [Alabama A& M University, Normal; Szybist, James P [ORNL; Parks, II, James E [ORNL

2010-01-01T23:59:59.000Z

342

Performance Study of Thermoelectric Solar-Assisted Heat Pump with Reflectors  

Science Journals Connector (OSTI)

The simultaneous conversion of solar radiation into thermal and electrical energy in a thermoelectric (TE) solar-assisted heat pump is, for the purposes of ... plate reflectors have been mounted on a TE solar col...

C. Lertsatitthanakorn; S. Soponronnarit…

2014-06-01T23:59:59.000Z

343

Correlation Between Structure and Thermoelectric Properties of Bulk High Performance Materials for Energy Conversion  

Energy.gov (U.S. Department of Energy (DOE))

Rapid solidified precursor converted into crystalline bulks under pressure produced thermoelectric materials of nano-sized grains with strongly coupled grain boundaries, achieving reduced lattice thermal conductivity and increased power factor

344

Modeling and characterization of thermoelectric properties of SiGe nanocomposites  

E-Print Network (OSTI)

Direct energy conversion between thermal and electrical energy based on thermoelectric effects is attractive for potential applications in waste heat recovery and environmentally-friendly refrigeration. The energy conversion ...

Lee, Hohyun, 1978-

2009-01-01T23:59:59.000Z

345

Solar Thermal Group Research School of Engineering  

E-Print Network (OSTI)

DEVELOPMENT OF COMPLEX OXIDE-BASED MATERIALS FOR HYBRID SOLAR THERMOELECTRIC GENERATOR Speaker: Dr Ruoming- and n- type thermoelectric materials. A number of strategies for enhancing the material efficiency were interests are in the development of oxide-based thermoelectric materials via ad- vanced synthesis

346

High electric field effects on the thermal generation in hydrogenated amorphous silicon  

SciTech Connect

The authors have studied the electric field dependence of the electron-hole thermal generation process in hydrogenated amorphous silicon. A model was developed which takes into account the Poole-Frenkel effect and the thermally assisted tunneling. In order to explain the experimental results it was necessary to consider a strong electron-lattice interaction describing the carrier tunneling mechanism. Deep defects relaxation is also discussed.

Ilie, A.; Equer, B.

1997-07-01T23:59:59.000Z

347

Thermoelectric Temperature Control  

E-Print Network (OSTI)

the controller can supply the power required to bring the device to the desired temperature and maintain a stableNOTE 201TM TECHNICAL Optimizing Thermoelectric Temperature Control Systems #12;2 May 1995 92 of applications that require extremely stable temperature control. System design can be complex, but improved

Saffman, Mark

348

Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries  

SciTech Connect

The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

Adam Polcyn; Moe Khaleel

2009-01-06T23:59:59.000Z

349

Metal Hydride Thermal Storage: Reversible Metal Hydride Thermal Storage for High-Temperature Power Generation Systems  

SciTech Connect

HEATS Project: PNNL is developing a thermal energy storage system based on a Reversible Metal Hydride Thermochemical (RMHT) system, which uses metal hydride as a heat storage material. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. PNNL’s metal hydride material can reversibly store heat as hydrogen cycles in and out of the material. In a RHMT system, metal hydrides remain stable in high temperatures (600- 800°C). A high-temperature tank in PNNL’s storage system releases heat as hydrogen is absorbed, and a low-temperature tank stores the heat until it is needed. The low-cost material and simplicity of PNNL’s thermal energy storage system is expected to keep costs down. The system has the potential to significantly increase energy density.

None

2011-12-05T23:59:59.000Z

350

Summary of the nano-related thermoelectric activities in BGU for the year of 2011  

E-Print Network (OSTI)

energy into electrical energy, plays an important role, particularly for the exploitation of waste heat of thermoelectric (TE) power generation. Alloys of type IV-VI, namely PbTe-, GeTe-, and SnTe- based, with ZT(=2 /)>1Summary of the nano-related thermoelectric activities in BGU for the year of 2011 Dr. Yaniv

Vardi, Amichay

351

REVIEW OF SCIENTIFIC INSTRUMENTS 83, 045116 (2012) Multi-layer thermoelectric-temperature-mapping microbial incubator  

E-Print Network (OSTI)

. [http://dx.doi.org/10.1063/1.4705748] I. INTRODUCTION Thermoelectric (TE) modules are advantageous of current flow- ing through the TE modules, heating and cooling functions of the TE modules can be generatedREVIEW OF SCIENTIFIC INSTRUMENTS 83, 045116 (2012) Multi-layer thermoelectric

Lin, Pei-Chun

352

2009 Thermoelectrics Applications Workshop | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Activities in Europe D. Michael Rowe Cardiff University Overview of Thermoelectrics in Germany Harald Bottner Fraunhofer Institute Overview of Research on Thermoelectric Materials...

353

Development of Thermoelectric Technology for Automotive Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery Overview and status of project to develop...

354

Development of Thermoelectric Technology for Automotive Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery Presentation from the U.S. DOE Office of...

355

Nanostructured Thermoelectrics. The New Paradigm | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

figure of merit of bulk nanostructured thermoelectric and materials using low cost earth abundant elements kanatzidis.pdf More Documents & Publications DOENSF Thermoelectric...

356

Project Profile: Concentrated Solar Thermoelectric Power | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Thermoelectric Power Project Profile: Concentrated Solar Thermoelectric Power MIT logo The Rohsenow-Kendall Heat Transfer Lab at Massachusetts Institute of...

357

Thermoelectric Properties of Nanostructured Silicon Films.  

E-Print Network (OSTI)

??Based on the Seebeck effect, thermoelectric materials can convert temperature heat into electrical energy. Alternatively, based on the Peltier effect, thermoelectric cooling can be achieved… (more)

Guo, Xiao

2014-01-01T23:59:59.000Z

358

Thermoelectrics: The New Green Automotive Technology | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermoelectrics: The New Green Automotive Technology Thermoelectrics: The New Green Automotive Technology 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program...

359

Thermoelectrics: The New Green Automotive Technology | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermoelectrics: The New Green Automotive Technology Thermoelectrics: The New Green Automotive Technology 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program...

360

Vehicular Thermoelectrics: The New Green Technology | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicular Thermoelectrics: The New Green Technology Vehicular Thermoelectrics: The New Green Technology Presentation given at the 16th Directions in Engine-Efficiency and Emissions...

Note: This page contains sample records for the topic "thermoelectric generators thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Vehicle Technologies Office Merit Review 2014: Thermoelectric...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Vehicle Technologies Office Merit Review 2014: Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...

362

Overview of Japanese Activities in Thermoelectrics | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...

363

Project Profile: High-Temperature Thermal Array for Next-Generation Solar Thermal Power Production  

Energy.gov (U.S. Department of Energy (DOE))

The Los Alamos National Laboratory (ORNL), under the National Laboratory R&D competitive funding opportunity, is developing a megawatt-scale heat pipe–based technology designed to bridge the heliostat reflector field and the power cycle by replacing both the solar receiver and the heat transfer fluid (HTF) system used in concentrating solar power (CSP) systems. The technology, called the high-temperature thermal array, aims to achieve the SunShot Initiative's goals by addressing technical challenges, reducing capital and operating expenses, and increasing net photon-to-electricity conversion efficiency.

364

Development of New Generation of Thermally-Enhanced Fiber Glass Insulation  

SciTech Connect

This report presents experimental and numerical results from thermal performance studies. The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC and John s Manville was to design a basic concept of a new generation of thermally-enhanced fiber glass insulation. Different types of Phase Change Materials (PCMs) have been tested as dynamic components in buildings during the last 4 decades. Most historical studies have found that PCMs enhance building energy performance. Some PCM-enhanced building materials, like PCM-gypsum boards or PCM-impregnated concretes have already found their limited applications in different countries. Today, continued improvements in building envelope technologies suggest that throughout Southern and Central U.S. climates, residences may soon be routinely constructed with PCM in order to maximize insulation effectiveness and maintain low heating and cooling loads. The proposed thermally-enhanced fiber glass insulation will maximize this integration by utilizing a highly-efficient building envelope with high-R thermal insulation, active thermal mass and superior air-tightness. Improved thermal resistance will come from modifications in infrared internal characteristics of the fiber glass insulation. Thermal mass effect can be provided by proprietary thermally-active microencapsulated phase change material (PCM). Work carried out at the Oak Ridge National Laboratory (ORNL) on the CRADA is described in this report.

Kosny, Jan [ORNL; Yarbrough, David W [ORNL; Childs, Phillip W [ORNL; Miller, William A [ORNL; Atchley, Jerald Allen [ORNL; Shrestha, Som S [ORNL

2010-03-01T23:59:59.000Z

365

4th Generation District Heating (4GDH): Integrating smart thermal grids into future sustainable energy systems  

Science Journals Connector (OSTI)

Abstract This paper defines the concept of 4th Generation District Heating (4GDH) including the relations to District Cooling and the concepts of smart energy and smart thermal grids. The motive is to identify the future challenges of reaching a future renewable non-fossil heat supply as part of the implementation of overall sustainable energy systems. The basic assumption is that district heating and cooling has an important role to play in future sustainable energy systems – including 100 percent renewable energy systems – but the present generation of district heating and cooling technologies will have to be developed further into a new generation in order to play such a role. Unlike the first three generations, the development of 4GDH involves meeting the challenge of more energy efficient buildings as well as being an integrated part of the operation of smart energy systems, i.e. integrated smart electricity, gas and thermal grids.

Henrik Lund; Sven Werner; Robin Wiltshire; Svend Svendsen; Jan Eric Thorsen; Frede Hvelplund; Brian Vad Mathiesen

2014-01-01T23:59:59.000Z

366

Evaluation of stack criteria pollutant gas absorption in the new generation thermoelectric water condenser fitted with laminar impinger type heat exchangers  

SciTech Connect

Title IV of the Clean Air Act Amendments of 1990 authorized the Environmental Protection Agency to establish an Acid Rain Program to reduce the adverse effects of acidic deposition. The Act specifically stipulated that CEMS (continuous emissions monitoring systems) be used to measure the stack emissions under this program. Along with these rules, comes the task of the Stack Tester (Reference Method) to routinely perform RATA (Relative Accuracy Test Audit) tests on the installed CEMS. This paper presents a laboratory and field test sequence to evaluate the signal attenuation through the gas sample conditioning, water condensation removal process, using laminar flow impinger heat exchangers. This method is compared to the EPA CFR 40, Part 60, Appendix A, Method 6, glass impinger train, commonly used by RATA stack testers. CFR 40, Part 75 revisions as of the CAAA 1990, requires more stringent certification and CEMS performance standards. These standards are summarized and related to gas absorption in both the thermoelectric cooler heat exchanger and the Method 6 glass impinger train system. As an incentive to reduce the frequency of RATA tests required per year, emitters are encouraged to achieve relative accuracies of 7.5% or less compared to the reference method. This incentive requires better reference method test apparatus definition. This paper will explore these alternatives and provide test data for comparison to the currently available apparatus. Also discussed is the theory of Electronic Gas Sample Coolers and their practical application to the removal of water from stack gas.

Baldwin, T. [Baldwin Environmental, Inc., Reno, NV (United States)

1995-12-31T23:59:59.000Z

367

Transport in charged colloids driven by thermoelectricity Alois Wrger  

E-Print Network (OSTI)

by the thermoelectric response of the electrolyte solution. The thermally induced salinity gradient leads in general by showing how the Soret e¤ect of the mobile ions leads to a salinity gradient and a macro- scopic of a charged colloid in a temperature gradient, and ...nd that it is to a large extent determined

Paris-Sud XI, Université de

368

Remarkable Reduction of Thermal Conductivity in Silicon Nanotubes  

E-Print Network (OSTI)

localization, thermoelectric material T hermoelectric (TE) materials can provide electricity when subjected materials can be characterized by the dimen- sionless thermoelectric figure of merit ZT ) S2 T/, where S to be responsible for the reduction of thermal conductivity. Our study suggests SiNT is a promising thermoelectric

Li, Baowen

369

A search for thermal isomerization of olefins to carbenes: Thermal generations of the silicon-nitrogen double bond  

SciTech Connect

The first part of this thesis will search for the thermal isomerization of olefins to carbenes which is predicted to be a high energy process by calculations and has only been observed in a few strained olefins. The possibility of thermal isomerization of simple olefins to carbenes will be explored. Substitution of a silyl group on the double bond of an olefin allows a potential intermediate which has a {beta}-radical to the silyl group during the cis-trans isomerization. The effects of a trimethylsilyl group on this isomerization are the subject of this study. The second part of this thesis will include the generation and chemistry of intermediates containing a silicon-nitrogen double bond. The isomerization of parent silanimine to the aminosilylene was calculated to be a high energy process. New approaches to the silicon-nitrogen double bond will also be presented. 92 refs., 12 figs., 11 tabs.

Zhang, Xianping.

1990-09-21T23:59:59.000Z

370

Thermoelectric Materials, Devices and Systems:  

Office of Environmental Management (EM)

41 thermopower) (Tritt, 2011). However the use of thermoelectric modules as solid state heat pumps for 42 heating and cooling applications using the opposite Peltier effect is...

371

Special Application Thermoelectric Micro Isotope Power Sources  

SciTech Connect

Promising design concepts for milliwatt (mW) size micro isotope power sources (MIPS) are being sought for use in various space and terrestrial applications, including a multitude of future NASA scientific missions and a range of military applications. To date, the radioisotope power sources (RPS) used on various space and terrestrial programs have provided power levels ranging from one-half to several hundred watts. In recent years, the increased use of smaller spacecraft and planned new scientific space missions by NASA, special terrestrial and military applications suggest the need for lower power, including mW level, radioisotope power sources. These power sources have the potential to enable such applications as long-lived meteorological or seismological stations distributed across planetary surfaces, surface probes, deep space micro-spacecraft and sub-satellites, terrestrial sensors, transmitters, and micro-electromechanical systems. The power requirements are in the range of 1 mW to several hundred mW. The primary technical requirements for space applications are long life, high reliability, high specific power, and high power density, and those for some special military uses are very high power density, specific power, reliability, low radiological induced degradation, and very low radiation leakage. Thermoelectric conversion is of particular interest because of its technological maturity and proven reliability. This paper summarizes the thermoelectric, thermal, and radioisotope heat source designs and presents the corresponding performance for a number of mW size thermoelectric micro isotope power sources.

Heshmatpour, Ben; Lieberman, Al; Khayat, Mo; Leanna, Andrew; Dobry, Ted [Teledyne Energy Systems, Incorporated, 10707 Gilroy Road, Hunt Valley, MD 21031 (United States)

2008-01-21T23:59:59.000Z

372

Geek-Up[04.01.2011]: Charting Wind, Thermal, Hydro Generation  

Energy.gov (U.S. Department of Energy (DOE))

Check out Bonneville Power Administration’s new near real-time energy monitoring – it displays the output of all wind, thermal and hydro generation in the agency’s balancing authority against its load. Updated every five minutes, it’s a great resource for universities, research laboratories and other utilities.

373

Generation of pulse-modulated induction thermal plasma at atmospheric pressure  

Science Journals Connector (OSTI)

The radio frequency induction thermal plasma of sufficiently high electric power for materials processing has been successfully generated with a pulsemodulated operating condition. A solid-stateamplifier which supplies the electric power with a nominal frequency of 1 MHz was employed for the pulsing plasma generation. The Ar–H 2 plasma was generated at a high power level of 17 kW at atmospheric pressure. Typically the plasma remained stable until the pulse duty factor went down to 30% when the period of the high power level was 5 ms and the low power level was about 6 kW.

Takamasa Ishigaki; Xiaobao Fan; Tadahiro Sakuta; Toshiyuki Banjo; Yukihito Shibuya

1997-01-01T23:59:59.000Z

374

The modelling of biochemical-thermal coupling effect on gas generation and transport in MSW landfill  

Science Journals Connector (OSTI)

The landfill gas generation was investigated based on the theories of the thermodynamics, microbial dynamics and chemical dynamics. The coupling model was developed for describing the gas transport and heat release. And the relationship between the gas generation rate and the temperature was proposed. The parameters in the gas generation model were obtained by bioreactor test in order to evaluate the volume of gas production of the Erfeishan landfill in China. The simulation results shown that the operating life of the landfill will be overestimated if the model does not consider the thermal effect during degradation of the solid substrate.

Liu Lei; Liang Bing; Xue Qiang; Zhao Ying; Yang Chun

2011-01-01T23:59:59.000Z

375

High Heat Flux Thermoelectric Module Using Standard Bulk Material...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heat Flux Thermoelectric Module Using Standard Bulk Material High Heat Flux Thermoelectric Module Using Standard Bulk Material Presents high heat flux thermoelectric module design...

376

ThermoElectric Power System Simulator (TEPSS) | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ThermoElectric Power System Simulator (TEPSS) ThermoElectric Power System Simulator (TEPSS) It describes the tool ThermoElectric Power System Simulator (TEPSS) which enables...

377

Development of a Thermoelectric Device for an Automotive Zonal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a Thermoelectric Device for an Automotive Zonal HVAC System Development of a Thermoelectric Device for an Automotive Zonal HVAC System Presents development of a thermoelectric...

378

NSF/DOE Thermoelectric Partnership: Inorganic-Organic Hybrid...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Inorganic-Organic Hybrid Thermoelectrics NSFDOE Thermoelectric Partnership: Inorganic-Organic Hybrid Thermoelectrics 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle...

379

Microsoft PowerPoint - High Temperature Thermoelectric_Ohuchi  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermoelectric Oxides Engineered Thermoelectric Oxides Engineered at Multiple Length Scales for Energy Harvesting Program Manager: Patricia Rawls Fumio S. Ohuchi (PI) and Rajendra K. Bordia(Co-PI) Department of Materials Science and Engineering University of Washington Box 352120 Seattle, WA 98195 Grant No. DE-FE0007272 (June 1, 2012-May 31, 2013) Graduate Students: Christopher Dandeneau and YiHsun Yang June 10, 2013 The UCR Contractors Review Conference Introduction/Motivation for Research * Thermoelectric (TE) oxides for waste heat recovery  Good high-temperature stability  Stable in hostile environments  Low cost/toxicity * Oxides with complex structure:  Low thermal conductivity,   Tailor stoichiometry to maximize S

380

Nanocomposites of Semimetallic ErAs Nanoparticles Epitaxially Embedded within InGaAlAs-based Semiconductors for Thermoelectric Materials  

E-Print Network (OSTI)

GaAlAs-based Semiconductors for Thermoelectric Materials J.M.O. Zide', G. Zeng2, J.H. Bahk2, W. Kim3, S. L. Singer3, D array based on these materials for thermoelectric power generation; a power density > 1 W/cm2 is demonstrated with a temperature gradient of 120°C. Solid-state thermionics Efficient thermoelectric materials

Note: This page contains sample records for the topic "thermoelectric generators thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Design of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation  

E-Print Network (OSTI)

Design of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation Mike He on the design of a Stirling engine for distributed solar thermal ap- plications. In particular, we design renewable energy applications. A key advantage of a solar thermal system is that they can incorporate

Sanders, Seth

382

Fabrication and testing of thermoelectric thin film devices  

SciTech Connect

Two thin-film thermoelectric devices are experimentally demonstrated. The relevant thermal loads on the cold junction of these devices are determined. The analytical form of the equation that describes the thermal loading of the device enables one to model the performance based on the independently measured electronic properties of the films forming the devices. This model elucidates which parameters determine device performance, and how they can be used to maximize performance.

Wagner, A.V.; Foreman, R.J.; Summers, L.J.; Barbee, T.W. Jr.; Farmer, J.C. [Lawrence Livermore National Lab., CA (United States). Chemistry and Materials Science Dept.

1996-03-01T23:59:59.000Z

383

Research Program - Center for Solar and Thermal Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

below. Organic and Hybrid Systems for TE Improving Thermoelectric Efficiency via Low Thermal Boundary Conductance Heat dissipation in Atomic-Scale Junctions A General Strategy to...

384

A boron nitride nanotube peapod thermal rectifier  

SciTech Connect

The precise guidance of heat from one specific location to another is paramount in many industrial and commercial applications, including thermal management and thermoelectric generation. One of the cardinal requirements is a preferential conduction of thermal energy, also known as thermal rectification, in the materials. This study introduces a novel nanomaterial for rectifying heat—the boron nitride nanotube peapod thermal rectifier. Classical non-equilibrium molecular dynamics simulations are performed on this nanomaterial, and interestingly, the strength of the rectification phenomenon is dissimilar at different operating temperatures. This is due to the contingence of the thermal flux on the conductance at the localized region around the scatterer, which varies with temperature. The rectification performance of the peapod rectifier is inherently dependent on its asymmetry. Last but not least, the favourable rectifying direction in the nanomaterial is established.

Loh, G. C., E-mail: jgloh@mtu.edu [Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States); Institute of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632 (Singapore); Baillargeat, D. [CNRS-International-NTU-Thales Research Alliance (CINTRA), 50 Nanyang Drive, Singapore 637553 (Singapore)

2014-06-28T23:59:59.000Z

385

Geek-Up[6.10.2011]: Thermoelectrics' Great Power, Key Ingredient in Bone's  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10.2011]: Thermoelectrics' Great Power, Key Ingredient in 10.2011]: Thermoelectrics' Great Power, Key Ingredient in Bone's Nanostructure Geek-Up[6.10.2011]: Thermoelectrics' Great Power, Key Ingredient in Bone's Nanostructure June 10, 2011 - 5:07pm Addthis Data image on lead telluride thermal conductivity | Photo Courtesy of Oak Ridge National Laboratory Data image on lead telluride thermal conductivity | Photo Courtesy of Oak Ridge National Laboratory Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What does this mean for me? Identifying a key ingredient in bone's nanostructure may help treat and prevent bone diseases such as osteoporosis and develop new light-weight, high-strength materials for innovative technologies. Advanced thermoelectric materials could be used to develop vehicle

386

Novel thermoelectric materials development, existing and potential applications, and commercialization routes  

E-Print Network (OSTI)

Thermoelectrics (TE) are devices which can convert heat in the form of a temperature gradient into electricity, or alternatively generate and absorb heat when an electrical current is run through them. It was established ...

Bertreau, Philippe

2006-01-01T23:59:59.000Z

387

An on-line information system for radioisotope thermal generator production  

SciTech Connect

An on-line production information system has been designed to support radioisotope thermal generator assembly and testing in a new facility being built at the Department of Energy Hanford Site in Washington State. This system is intended to make handling the large volumes of information associated with radioisotope thermal generator production and certification more efficient with less opportunity for error than traditional paper methods. It provides for tracking materials, implementing work procedures directly from computer terminals, and cross referencing among materials, procedures, and other documents related to production. This system will be implemented on a network of microcomputers using UNIX{sup TM} for its operating system. It has been designed to allow increased capabilities to be added as operating experience with the new facility dictates.

Kiebel, G.R.; Wiemers, M.J. (Westinghouse Hanford Company, P.O. Box 1970, Mail Stop N1-42, Richland, Washington 99352 (US))

1991-01-01T23:59:59.000Z

388

Impact of wind power on generation economy and emission from coal based thermal power plant  

Science Journals Connector (OSTI)

The major chunk of power generation is based on coal fueled thermal power plant. Due to increasing demand of power there will be future crises of coal reservoirs and its costing. Apart from this, coal based thermal power plant is the main source of environmental emissions like carbon dioxides (CO2), sulfur dioxides (SO2) and oxides of nitrogen (NOx) which not only degrades the air quality but also is responsible for global warming, acid rain etc. This paper proposes a combined working of Doubly Fed Induction Generator (DFIG) with coal based Synchronous Generator (SG) in the MATLAB environment. STATCOM is suggested at common coupling point to maintain voltage stability and also maintain the system in synchronism. Analysis have been made for environmental emissions, coal requirement and system economy for both the cases, when the total load supplied by only SG and with the combination. Emission analysis have been also made with the application of washed coal in SG. With the impact of DFIG energy generation from SG have been reduces which proportionally affects on coal requirement, generation cost and environmental emissions. Application of washed coal improves the performance of SG and also reduces the environmental emissions.

K.B. Porate; K.L. Thakre; G.L. Bodhe

2013-01-01T23:59:59.000Z

389

Thermoelectric properties of chalcopyrite type CuGaTe2 and chalcostibite CuSbS2 Vijay Kumar Gudelli, V. Kanchana, G. Vaitheeswaran, A. Svane, and N. E. Christensen  

E-Print Network (OSTI)

of zT ¼ 1.4, confirming that CuGaTe2 is a promising material for high temperature thermoelectric and concentration suggests that CuSbS2 will be a good thermoelectric material at low temperatures, similarly Thermoelectric (TE) materials with potential applica- tions within power generation and refrigeration have repre

Svane, Axel Torstein

390

Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux  

DOE Patents (OSTI)

Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

Bowman, C.D.

1992-11-03T23:59:59.000Z

391

Study on generating of thermal neutron scattering cross sections for LiH  

SciTech Connect

LiH is designated as a promising moderator and shielding material because of its low density, high melting point and large fraction of H atoms. However, lack of the thermal neutron cross sections of LiH makes numerical calculation deviate from experimental data to some extent. As a result, it is necessary to study LiH thermal kernel effect. The phonon property of LiH has been investigated by first-principles calculations using the plane-wave pseudo potential method with CASTEP code. The scattering law and the thermal neutron scattering cross sections for Li and H have been generated using this distribution. The results have been compared with zirconium hydride data. The GASKET and NJOY/LEAPR codes have been used in the calculation of scattering law, whose results have been compared with the reference; the discrepancy mainly comes from phonon spectrums and its expansion. LEAPR had the capability to compute scattering through larger energy and momentum transfers than GASKET did. By studying LiH phonon spectrum and constructing the model of LiH thermal kernel and scattering matrix, the ACE format LiH thermal neutron cross sections for MCNP software could be made and used for reactor Neutronics calculation. (authors)

Wang, L.; Jiang, X.; Zhao, Z.; Chen, L. [Northwest Institute of Nuclear Technology, Xi'an 710024 (China)

2013-07-01T23:59:59.000Z

392

Potential of Thermoelectrics forOccupant Comfort and Fuel Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Documents & Publications Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Caterpillar Diesel Racing: Yesterday & Today Thermoelectric Conversion of...

393

NSF/DOE Thermoelectrics Partnership: Purdue ? GM Partnership...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces NSFDOE Thermoelectics Partnership: Thermoelectrics for Automotive Waste...

394

NSF/DOE Thermoelectics Partnership: Thermoelectrics for Automotive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectics Partnership: Thermoelectrics for Automotive Waste Heat Recovery NSFDOE Thermoelectics Partnership: Thermoelectrics for Automotive Waste Heat Recovery 2011 DOE...

395

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Documents & Publications Development of Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery...

396

Research on Short-term Load Forecasting of the Thermoelectric Boiler Based on a Dynamic RBF Neural Network  

E-Print Network (OSTI)

As thermal inertia is the key factor for the lag of thermoelectric utility regulation, it becomes very important to forecast its short-term load according to running parameters. In this paper, dynamic radial basis function (RBF) neural network...

Dai, W.; Zou, P.; Yan, C.

2006-01-01T23:59:59.000Z

397

Proceedings of the XVI International Conference on Thermoelectrics, Dresden, Germany, August 26-29, 1997 Skutterudites: An Update  

E-Print Network (OSTI)

be meaningful for near room temperature applications [1], thermoelectric power generators which could operate technologies. This is true in particular for high power (over 200 W) automobile waste heat recovery and spaceProceedings of the XVI International Conference on Thermoelectrics, Dresden, Germany, August 26

398

Fluctuating local thermoelectric heat in dirty metals  

SciTech Connect

Using a recently developed multilead theory of dephasing in mesoscopic conductors, the mean-squared magnitude of the local Peltier heat in a uniform disordered metal is calculated diagrammatically. A heuristic estimate based on conductance fluctuation theory is also developed, and gives the same results. The generation and absorption of local thermoelectric heats require both phase-coherent elastic scattering to produce local conductance fluctuations and phase-breaking inelastic scattering to transport heat to and from the reservoirs. This phenomenon can cause substantial spatial variations in the electron temperature of low-carrier-density, clean, quasi-two-dimensional metals.

DiVincenzo, D.P. (IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (United States))

1993-07-15T23:59:59.000Z

399

Power plants coordination for economic and environmental load dispatch of thermal power plants with wind generation systems  

Science Journals Connector (OSTI)

Economic load dispatch (ELD) and economic emission dispatch (EED) have been applied to obtain generation scheduling of thermal power plants at optimum fuel cost and emissions. Due to limited availability of quality coal, issue of environmental emissions and high prices of coal, installation of renewable energy systems are suggested in power grid. Renewable energy system preferably wind generators are used in co-working with thermal plant which reduces generation cost, coal requirement and environmental emissions. This paper presents Newton-Raphson method to obtain ELD and EED. System simulation and programming is carried out in MATLAB® environment. Analysis has been made on generation cost and for nitrous oxides emissions only due to its harmful effects and its rising tendency with excess air. Price penalty factor is also calculated to determine emission cost. Doubly fed induction generator (DFIG) is suggested as wind energy systems in combination with coal-based thermal plant. Performance results related to generation scheduling, transmission line loading, bus voltages, total cost and environmental emissions are shown for coal-based thermal power plant and with co-generation. The investigation shows that with co-generation, coal-based thermal power plant runs at minimum emissions level which further reflects on the generation economy.

Kishor B. Porate; Krishna L. Thakre; Ghanashyam Bodhe

2013-01-01T23:59:59.000Z

400

Thermoelectric Materials for Automotive Applications  

Energy.gov (U.S. Department of Energy (DOE))

Discusses the background information on what makes a good thermoelectric material, then the findings of three recent ORNL field report studies focused at PbSe, Bi2Se3, CrSi2, respectively

Note: This page contains sample records for the topic "thermoelectric generators thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

WASTE HEAT RECOVERY USING THERMOELECTRIC DEVICES IN THE LIGHT METALS INDUSTRY  

SciTech Connect

Recently discovered thermoelectric materials and associated manufacturing techniques (nanostructures, thin-film super lattice, quantum wells...) have been characterized with thermal to electric energy conversion efficiencies of 12-25+%. These advances allow the manufacture of small-area, high-energy flux (350 W/cm2 input) thermoelectric generating (TEG) devices that operate at high temperatures (~750°C). TEG technology offers the potential for large-scale conversion of waste heat from the exhaust gases of electrolytic cells (e.g., Hall-Hèroult cells) and from aluminum, magnesium, metal and glass melting furnaces. This paper provides an analysis of the potential energy recovery and of the engineering issues that are expected when integrating TEG systems into existing manufacturing processes. The TEG module must be engineered for low-cost, easy insertion and simple operation in order to be incorporated into existing manufacturing operations. Heat transfer on both the hot and cold-side of these devices will require new materials, surface treatments and design concepts for their efficient operation.

Choate, William T.; Hendricks, Terry J.; Majumdar, Rajita

2007-05-01T23:59:59.000Z

402

Prescription to Improve Thermoelectric Efficiency  

E-Print Network (OSTI)

PRESCRIPTION TO IMPROVE THERMOELECTRIC EFFICIENCY A Thesis by SHIV AKARSH MEKA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... May 2010 Major Subject: Materials Science and Engineering PRESCRIPTION TO IMPROVE THERMOELECTRIC EFFICIENCY A Thesis by SHIV AKARSH MEKA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...

Meka, Shiv Akarsh

2012-07-16T23:59:59.000Z

403

Thermal and Electrical Analysis of MARS Rover RTG, and Performance Comparison of Alternative Design Options.  

SciTech Connect

The paper describes the thermal, thermoelectric and electrical analysis of Radioisotope Thermoelectric Generators (RTGs) for powering the MARS Rover vehicle, which is a critical element of the unmanned Mars Rover and Sample Return mission (MRSR). The work described was part of an RTG design study conducted by Fairchild Space Company for the U.S. Department of Energy, in support of the Jet Propulsion Laboratory's MRSR Project.; A companion paper presented at this conference described a reference mission scenario, al illustrative Rover design and activity pattern on Mars, its power system requirements and environmental constraints, a design approach enabling RTG operation in the Martian atmosphere, and the design and the structural and mass analysis of a conservative baseline RTG employing safety-qualified heat source modules and reliability-proven thermoelectric converter elements.; The present paper presents a detailed description of the baseline RTG's thermal, thermoelectric, and electrical analysis. It examines the effect of different operating conditions (beginning versus end of mission, water-cooled versus radiation-cooled, summer day versus winter night) on the RTG's performance. Finally, the paper describes and analyzes a number of alternative RTG designs, to determine the effect of different power levels (250W versus 125W), different thermoelectric element designs (standard versus short unicouples versus multicouples) and different thermoelectric figures of merit (0.00058K(superscript -1) to 0.000140K (superscript -1) on the RTG's specific power.; The results presented show the RTG performance achievable with current technology, and the performance improvements that would be achievable with various technology developments. It provides a basis for selecting the optimum strategy for meeting the Mars Rover design goals with minimal programmatic risk and cost.; There is a duplicate copy and also a duplicate copy in the ESD files.

Schock, Alfred; Or, Chuen T; Skrabek, Emanuel A

1989-09-29T23:59:59.000Z

404

ErAs:,,InGaAs...1-x,,InAlAs...x alloy power generator modules Gehong Zeng,a  

E-Print Network (OSTI)

p-type ErAs:InGaAs alloy thermoelectric elements. The thermoelectric properties of the materials power and efficiency of a thermoelectric generator module depend largely on the material. Thermoelectric properties can be improved by introducing nanometer scale structure into materials.2 In this way

Bowers, John

405

Generation of non-thermal plasma at atmospheric pressure in hetero-phase media of air with water aerosol  

Science Journals Connector (OSTI)

The results of experimental investigations on non-thermal plasma generation using of high-voltage discharge in hetero-phase media of airflow at atmospheric pressure with liquid aerosol are presented in...B. subti...

Yu. S. Akishev; G. I. Aponin; M. E. Grushin…

2006-10-01T23:59:59.000Z

406

Numerical study of the thermoelectric power factor in ultra-thin Si nanowires  

E-Print Network (OSTI)

conductivity, respectively. The interrelation between , S, and e in bulk materials keeps ZT low [1]. Some thermoelectric (TE) performance because of a drastic reduction in their thermal conductivity, l. This has been conductivity, S is the Seebeck coefficient, and e and l are the electronic and lattice part of the thermal

407

Evaluation of distributed building thermal energy storage in conjunction with wind and solar electric power generation  

Science Journals Connector (OSTI)

Abstract Energy storage is often seen as necessary for the electric utility systems with large amounts of solar or wind power generation to compensate for the inability to schedule these facilities to match power demand. This study looks at the potential to use building thermal energy storage as a load shifting technology rather than traditional electric energy storage. Analyses are conducted using hourly electric load, temperature, wind speed, and solar radiation data for a 5-state central U.S. region in conjunction with simple computer simulations and economic models to evaluate the economic benefit of distributed building thermal energy storage (TES). The value of the TES is investigated as wind and solar power generation penetration increases. In addition, building side and smart grid enabled utility side storage management strategies are explored and compared. For a relative point of comparison, batteries are simulated and compared to TES. It is found that cooling TES value remains approximately constant as wind penetration increases, but generally decreases with increasing solar penetration. It is also clearly shown that the storage management strategy is vitally important to the economic value of TES; utility side operating methods perform with at least 75% greater value as compared to building side management strategies. In addition, TES compares fairly well against batteries, obtaining nearly 90% of the battery value in the base case; this result is significant considering TES can only impact building thermal loads, whereas batteries can impact any electrical load. Surprisingly, the value of energy storage does not increase substantially with increased wind and solar penetration and in some cases it decreases. This result is true for both TES and batteries and suggests that the tie between load shifting energy storage and renewable electric power generation may not be nearly as strong as typically thought.

Byron W. Jones; Robert Powell

2015-01-01T23:59:59.000Z

408

Thermoelectric energy conversion using nanostructured materials  

E-Print Network (OSTI)

High performance thermoelectric materials in a wide range of temperatures are essential to broaden the application spectrum of thermoelectric devices. This paper presents experiments on the power and efficiency characteristics ...

Chen, Gang

409

An improved absorption generator for solar-thermal powered heat pumps. Part 1: Feasibility  

SciTech Connect

Solar heated absorption chiller installations have been, typically, very expensive for their rating. The need to keep the liquid flowing within the collectors as cool as possible to enhance collector thermal efficiency, conflicts with the need to operate the absorption chiller at a higher temperature. The compromise usually results in poor collector efficiency as well as a relatively poor specific chiller effect. The proposed vortex generator permits a heat pump to operate efficiently with relatively low temperature solar heated fluid (70--80 C). As a result, the collectors are cooler and much more efficient. In addition, the specific heat pumping capacity is about 27% greater than conventional systems operating at the same reduced generator temperatures and, therefore, a smaller chiller is required. The economic consequences of these benefits will be presented in Part 2.

Fineblum, S. [Megadyne Inc., Rochester, NY (United States)

1997-12-31T23:59:59.000Z

410

An improved absorption generator for solar-thermal powered heat pumps. Part 2: Energy and economics  

SciTech Connect

Solar heated absorption chiller installations have been very expensive for their rating. To enhance collector thermal efficiency the liquid flowing within the collectors must be kept as cool as possible. However, there is also a need to operate the absorption reported earlier. The compromise usually results in poor collector efficiency as well as a relatively poor specific chiller effect. The proposed vortex generator permits a heat pump to operate efficiently with relatively low temperature solar heated fluid (70--80 C). As a result, the collectors are cooler and more efficient. As noted in Part 1, the specific heat pumping capacity is about 27% greater than conventional systems operating at the same reduced generator temperatures. Therefore, a smaller, less expensive chiller is required. The reduced investment in solar arrays and absorption chillers is estimated along with a range of paybacks.

Fineblum, S. [Megadyne Inc., Rochester, NY (United States)

1997-12-31T23:59:59.000Z

411

Security constrained generation scheduling for grids incorporating wind, photovoltaic and thermal power  

Science Journals Connector (OSTI)

Abstract In this paper, security constrained generation scheduling (SCGS) problem for a grid incorporating thermal, wind and photovoltaic (PV) units is formulated. The formulation takes into account the stochastic nature of both wind and PV power output and imbalance charges due to mismatch between the actual and scheduled wind and PV power outputs. A hybrid technique in which the basic elements are a genetic algorithm (GA) with artificial neural network (ANN) and a priority list (PL) is used to minimize the total operating costs while satisfying all operational constraints considering both conventional and renewable energy generators. Numerical results are reported and discussed based on the simulation performed on the IEEE 24-bus reliability test system. The results demonstrate the efficiency of the proposed approach to reduce the total production cost for real time operation. Moreover, the results verified that the proposed approach can be applied to different problem dimensions and can score more favorably compared with analytical techniques.

Azza A. ElDesouky

2014-01-01T23:59:59.000Z

412

Insulators and Materials for Closed-Spaced Thermoelectric Modules  

SciTech Connect

The primary goal of this Phase I program has been accomplished: to demonstrate a ceramic, injection-molded eggcrate which will form the support structure for a close-spaced thermoelectric module which can operate at significantly higher temperatures than presently possible with such modules. It has been shown that yttria-stabilized zirconia is compatible at high temperatures with typical thermoelectric materials (TAGS, SnTE and PbTe) and that it can serve as a barrier between them to preclude cross-contamination and doping of the constituents of one leg type by those from the other. Using a 2 x 2 ceramic eggcrate, thermally sprayed molybdenum electrodes have been deposited on a test module which effectively seal each pocket, further reducing the possibility of migration of elements. Based on these results the next tasks are to refine the design of the injection tool and the injection parameters to produce consistent results and to allow increase in the size of the module to that on which commercial, high-temperature thermoelectric modules can be based. In addition, development of the fabrication techniques for segmented thermoelectric legs for use with these ceramic eggcrates at high temperatures must be continued.

Donald P. Snowden

2003-07-20T23:59:59.000Z

413

Thermoelectric effects in organic conductors in a strong magnetic field  

SciTech Connect

The linear response of the electron system of a layered conductor to the temperature gradient in this system in a strong magnetic field is investigated theoretically. Thermoelectric emf is studied as a function of the magnitude and orientation of a strong external magnetic field; the experimental investigation of this function, combined with the study of the electric and thermal resistance, allows one to completely determine the structure of the energy spectrum of charge carriers.

Kirichenko, O. V.; Peschanskii, V. G. [National Academy of Sciences of Ukraine, Verkin Institute for Low Temperature Physics and Engineering (Ukraine)], E-mail: vpeschansky@ilt.kharkov.ua; Hasan, R. A. [Bir-Zeit University (Autonomy of Palestine) (Country Unknown)

2007-07-15T23:59:59.000Z

414

Reliability of Transport Properties for Bulk Thermoelectrics  

Energy.gov (U.S. Department of Energy (DOE))

Presents international round-robin study to ensure quality of transport data and figure of merit of thermoelectric materials

415

Thermoelectric Bulk Materials from the Explosive Consolidation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

explosively consolidating nanopowders to yield fully dense, consolidated, nanostructured thermoelectric material nemir.pdf More Documents & Publications Enhancing the...

416

Thermoelectrics Interests and Research: ARL and TARDEC  

Energy.gov (U.S. Department of Energy (DOE))

Discusses US Army Applications of Thermoelectrics, including accurate measurements of TE coefficients, device parasitic and field emissions and ARL role.

417

High-Temperature Thermoelectric Materials Characterization for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies Program's subprograms in Lightweight Materials, Propulsion Materials, Energy Storage, and Thermoelectric Conversion at the Oak Ridge National Laboratory. * This...

418

AbstractAbstract Improving efficiency of thermoelectric  

E-Print Network (OSTI)

-classical transport models used to predict ZT can effectively predict thermoelectric performance of bulk materials Material PerformanceThermoelectric Material Performance 0 0.5 1 1.5 2 2.5 3 1950 1960 1970 1980 1990 2000AbstractAbstract · Improving efficiency of thermoelectric energy conversion devices is a major

Walker, D. Greg

419

CONFERENCE PROCEEDINGS Low-dimensional thermoelectric materials  

E-Print Network (OSTI)

CONFERENCE PROCEEDINGS Low-dimensional thermoelectric materials M. S. Dresselhaus Department of low dimensional thermoelectric materials for enhanced performance is reviewed, with particular-dimensional thermoelectric material is discussed. © 1999 American Institute of Physics. S1063-7834 99 00105-7 Professor Abram

Cronin, Steve

420

Nanoscale Thermal Transport andMicrorefrigeratorsonaChip  

E-Print Network (OSTI)

are promising candidates as thermal vias and thermal interface materials due to their inherently high thermal; superlattices; thermal boundary resistance; thermionics; thermotunneling; thermoelectrics I. INTRODUCTIONINVITED P A P E R Nanoscale Thermal Transport andMicrorefrigeratorsonaChip Devices for cooling high

Note: This page contains sample records for the topic "thermoelectric generators thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Self-Assembled Nanometer Lamellae of Thermoelectric PbTe and Sb2Te3 with Epitaxy-like Interfaces  

E-Print Network (OSTI)

coefficient, the electrical conductivity, and the thermal conductivity. Materials investigated and optimized and thermal contact resistances. Such losses could be avoided if nanostructured thermoelectric elements could. Such an approach is justified by the observation that the thermal conductivity reductions responsible for high z

422

Program Final Report - Develop Thermoelectric Technology for Automotive Waste Heat Recovery  

SciTech Connect

We conducted a vehicle analysis to assess the feasibility of thermoelectric technology for waste heat recovery and conversion to useful electrical power and found that eliminating the 500 W of electrical power generated by the alternator corresponded to about a 7% increase in fuel economy (FE) for a small car and about 6% for a full size truck. Electric power targets of 300 W were established for city and highway driving cycles for this project. We obtained critical vehicle level information for these driving cycles that enabled a high-level design and performance analysis of radiator and exhaust gas thermoelectric subsystems for several potential vehicle platforms, and we identified the location and geometric envelopes of the radiator and exhaust gas thermoelectric subsystems. Based on this analysis, we selected the Chevrolet Suburban as the most suitable demonstration vehicle for this project. Our modeling and thermal analysis assessment of a radiator-based thermoelectric generator (TEG), however, revealed severe practical limitations. Specifically the small temperature difference of 100°C or less between the engine coolant and ambient air results in a low Carnot conversion efficiency, and thermal resistance associated with air convection would reduce this conversion efficiency even further. We therefore decided not to pursue a radiator-based waste heat recovery system and focused only on the exhaust gas. Our overall approach was to combine science and engineering: (1) existing and newly developed TE materials were carefully selected and characterized by the material researcher members of our team, and most of the material property results were validated by our research partners, and (2) system engineers worked closely with vehicle engineers to ensure that accurate vehicle-level information was used for developing subsystem models and designs, and the subsystem output was analyzed for potential fuel economy gains. We incorporated material, module, subsystem, and integration costs into the material selection criteria in order to balance various materials, module and subsystem design, and vehicle integration options. Our work on advanced TE materials development and on TEG system design, assembly, vehicle integration, and testing proceeded in parallel efforts. Results from our two preliminary prototype TEGs using only Bi-Te TE modules allowed us to solve various mechanical challenges and to finalize and fine tune aspects of the design and implementation. Our materials research effort led us to quickly abandon work on PbTe and focus on the skutterudite materials due to their superior mechanical performance and suitability at automotive exhaust gas operating temperatures. We synthesized a sufficiently large quantity of skutterudite material for module fabrication for our third and final prototype. Our TEG#3 is the first of its kind to contain state-of-the-art skutterudite-based TE modules to be installed and tested on a production vehicle. The design, which consisted of 24 skutterudite modules and 18 Bi-Te modules, attempted to optimize electrical power generation by using these two kinds of TE modules that have their peak performance temperatures matched to the actual temperature profile of the TEG during operation. The performance of TEG#3 was limited by the maximum temperature allowable for the Bi-Te TE modules located in the colder end of the TEG, resulting in the operating temperature for the skutterudite modules to be considerably below optimum. We measured the power output for (1) the complete TEG (25 Watts) and (2) an individual TE module series string (1/3 of the TEG) operated at a 60°C higher temperature (19 Watts). We estimate that under optimum operating temperature conditions, TEG#3 will generate about 235 Watts. With additional improvements in thermal and electrical interfaces, temperature homogeneity, and power conditioning, we estimate TEG#3 could deliver a power output of about 425 Watts.

Gregory Meisner

2011-08-31T23:59:59.000Z

423

Engineering and Materials for Automotive Thermoelectric Applications  

Energy.gov (U.S. Department of Energy (DOE))

Design and optimization of TE exhaust generator, vehicle integration, and thermal management; distributed cooling and heating with TE devices; discovery and development of highly efficient TE materials.

424

Exergoeconomic analysis of high concentration photovoltaic thermal co-generation system for space cooling  

Science Journals Connector (OSTI)

Abstract This paper provides an exergetic analysis of a 10 MW high concentration photovoltaic thermal (HCPVT) power plant case study located in Hammam Bou Hadjar, Algeria. The novel HCPVT multi-energy carrier plant converts 25% of the direct normal irradiance (DNI) into electrical energy and 62.5% to low grade heat for a combined efficiency of 87.5%. The HCPVT system employs a point focus dish concentrator with a cooled PV receiver module. The novel “hot-water” cooling approach is used for energy reuse purposes and is enabled by our state-of-the-art substrate integrated micro-cooling technology. The high performance cooler of the receiver with a thermal resistance of <0.12 cm2 K/W enables the receiver module to handle concentrations of up to 5000 suns. In the present study, a concentration of 2000 suns allows using coolant fluid temperatures of up to 80 °C. This key innovation ensures reliable operation of the triple junction PV (3JPV) cells used and also allows heat recovery for utilization in other thermal applications such as space cooling, heating, and desalination. Within this context, an exergoeconomics analysis of photovoltaic thermal co-generation for space cooling is presented in this manuscript. The valuation method presented here for the HCPVT multi-energy carrier plant comprises both the technical and economic perspectives. The proposed model determines how the cost structure is evolving in four different scenarios by quantifying the potential thermal energy demand in Hammam Bou Hadjar. The model pins down the influence of technical details such as the exergetic efficiency to the economic value of the otherwise wasted heat. The thermal energy reuse boosts the power station?s overall yield, reduces total average costs and optimizes power supply as fixed capital is deployed more efficiently. It is observed that even though potential cooling demand can be substantial (19,490 MWh per household), prices for cooling should be 3 times lower than those of electricity in Algeria (18 USD/MWh) to be competitive. This implies a need to reach economies of scale in the production of individual key components of the HCPVT system. The net present value (NPV) is calculated taking growth rates and the system?s modular efficiencies into account, discounted over 25 years. Scenario 1 shows that even though Algeria currently has no market for thermal energy, a break-even quantity (49,728 MWh) can be deduced by taking into account the relation between fixed costs and the marginal profit. Scenario 2 focuses on the national growth rate needed to break even, i.e. +10.92%. Scenario 3 illustrates thermal price variations given an increase in the Coefficient of Performance (COP) of a thermally driven adsorption chiller after year 10. In this case, the price for cooling will decrease from 18 USD/MWh to 14 USD/MWh. Finally, scenario 4 depicts Hammam Bou Hadjar?s potential cooling demand per household and the growth rate needed to break even if a market for heat would exist.

Veronica Garcia-Heller; Stephan Paredes; Chin Lee Ong; Patrick Ruch; Bruno Michel

2014-01-01T23:59:59.000Z

425

Thermoelectric refrigerator having improved temperature stabilization means  

DOE Patents (OSTI)

A control system for thermoelectric refrigerators is disclosed. The thermoelectric refrigerator includes at least one thermoelectric element that undergoes a first order change at a predetermined critical temperature. The element functions as a thermoelectric refrigerator element above the critical temperature, but discontinuously ceases to function as a thermoelectric refrigerator element below the critical temperature. One example of such an arrangement includes thermoelectric refrigerator elements which are superconductors. The transition temperature of one of the superconductor elements is selected as the temperature control point of the refrigerator. When the refrigerator attempts to cool below the point, the metals become superconductors losing their ability to perform as a thermoelectric refrigerator. An extremely accurate, first-order control is realized.

Falco, Charles M. (Woodridge, IL)

1982-01-01T23:59:59.000Z

426

A Study of Heat Sink Performance in Air and Soil for Use in a Thermoelectric Energy Harvesting Device  

E-Print Network (OSTI)

conductance of a passive heat sink buried in soil. Introduction Solid state thermoelectric generators offer a battery cell at low power. Sensors and communication devices would use the charged battery to operate

427

Ultralow thermal conductivity and the thermal d t f i t fconductance of interfaces  

E-Print Network (OSTI)

are critical at the nanoscale · Low thermal conductivity in nanostructured materials ­ improved thermoelectric to the thermal conductivity of materials. · Ultralow thermal conductivity: beating the amorphous limitUltralow thermal conductivity and the thermal d t f i t fconductance of interfaces David G. Cahill

Braun, Paul

428

A comparison of thermoelectric phenomena in diverse alloy systems  

SciTech Connect

The study of thermoelectric phenomena in solids provides a wealth of opportunity for exploration of the complex interrelationships between structure, processing, and properties of materials. As thermoelectricity implies some type of coupled thermal and electrical behavior, it is expected that a basic understanding of transport behavior in materials is the goal of such a study. However, transport properties such as electrical resistivity and thermal diffusivity cannot be fully understood and interpreted without first developing an understanding of the material's preparation and its underlying structure. It is the objective of this dissertation to critically examine a number of diverse systems in order to develop a broad perspective on how structure-processing-property relationships differ from system to system, and to discover the common parameters upon which any good thermoelectric material is based. The alloy systems examined in this work include silicon-germanium, zinc oxide, complex intermetallic compounds such as the half-Heusler MNiSn, where M = Ti, Zr, or Hf, and rare earth chalcogenides.

Cook, Bruce

1999-01-01T23:59:59.000Z

429

Coupled Thermal and Electrical Analysis of Obstructed RTGs  

SciTech Connect

A Radioisotope Thermoelectric Generator (RTG) with an unsymmetrically obstructed heat rejection path can have significant axial and circumferential variations in the temperatures, currents, and voltages of its thermoelectric couple network. The present paper describes a methodology for analyzing the thermal and electrical performance of such an RTG, and the development of a computer code for implementing that emthodology. The code derives coupled solutions of the RTG's thermal, thermoelectric, and electrical equations. It accounts for the Peltier effect, Ohmic heating, and the Thomson effect, and treats the electrical power produced in each couple as an effective heat sink. It satisfies the condition that all parallel couples produce the same voltage, and that all series-connected couple groups produce the same current. Finally, the paper illustrates the use of the code by applying it to the detailed analysis of the RTGs for the CRAF and Cassini missions. In each of these, there are two adjacent RTGs which are obstructed by each other and by the nearby spacecraft. The results of the analysis will be used by the spacecraft designers in selecting the location, orientation, and spacing of the two RTGs. There are two copies in the file.

Schock, Alfred; Noravian, Heros; Or, Chuen T.

1990-01-01T23:59:59.000Z

430

Advanced Thermoelectric Materials and Generator Technology for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Automotive Waste Heat at GM Overview of design, fabrication, integration, and test of working prototype TEG for engine waste heat recovery on Suburban test vehicle, and...

431

Thermoelectric Generator Performance for Passenger Vehicles  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

modeling and architecture evaluation * Phase 2: Subsystem design, build and bench test * Phase 3: System integration. Planar configuration TEG with primary HEX and secondary...

432

Thermoelectric Generator (TEG) Fuel Displacement Potential using...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5, and 7 calculated by recording exhaust and coolant temperatures entering individual modules. is the figure of merit for the TEG Material. 10 From John W Fairbanks, 'Automotive...

433

High-Temperature Solar Thermoelectric Generators (STEG)  

Energy.gov (U.S. Department of Energy (DOE))

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

434

Time dependent evolution of RF-generated non-thermal particle distributions in fusion plasmas  

Science Journals Connector (OSTI)

We describe fully self-consistent time-dependent simulations of radio frequency (RF) generated ion distributions in the ion cyclotron range of frequencies and RF-generated electron distributions in the lower hybrid range of frequencies using combined Fokker–Planck and full wave electromagnetic field solvers. In each regime, the non-thermal particle distributions have been used in synthetic diagnostic codes to compare with diagnostic measurements from experiment, thus providing validation of the simulation capability. The computational intensive simulations require multiple full wave code runs that iterate with a Fokker–Planck code. We will discuss advanced algorithms that have been implemented to accelerate both the massively parallel full wave simulations as well as the iteration with the distribution code. A vector extrapolation method (Sidi A 2008 Comput. Math. Appl. 56) that permits Jacobian-free acceleration of the traditional fixed point iteration technique is used to reduce the number of iterations needed between the distribution and wave codes to converge to self-consistency. The computational burden of the parallel full wave codes has been reduced by using a more efficient two level parallel decomposition that improves the strong scaling of the codes and reduces the communication overhead.

J C Wright; A Bader; L A Berry; P T Bonoli; R W Harvey; E F Jaeger; J-P Lee; A Schmidt; E D'Azevedo; I Faust; C K Phillips; E Valeo

2014-01-01T23:59:59.000Z

435

Nanostructured Thermoelectric Materials: From Superlattices to Nanocomposites Ronggui Yang1  

E-Print Network (OSTI)

Nanostructured Thermoelectric Materials: From Superlattices to Nanocomposites Ronggui Yang1. Materials with a large thermoelectric figure of merit can be used to develop efficient solid-state devices nanocomposites, aiming at developing high efficiency thermoelectric energy conversion materials. 1. Introduction

Chen, Gang

436

Role of anisotropy in noncontacting thermoelectric materials characterization  

E-Print Network (OSTI)

Role of anisotropy in noncontacting thermoelectric materials characterization Adnan H. Nayfeh by the intrinsic thermoelectric anisotropy and inhomogeneity of the material to be inspected. This article presents for non- destructive evaluation NDE and materials characterization. Most existing thermoelectric NDE

Nagy, Peter B.

437

Phase Transition Enhanced Thermoelectrics From the Resnick Sustainability Institute  

E-Print Network (OSTI)

class of thermoelectric materials, mixed ion-electron conductors. It examines a new method thermoelectric material, Cu2 Se, that shows enhanced efficiency near its structural phase transition temperature and enhancing the thermoelectric effect. Via material engineering, including electrochemical investigations

438

Electron and Phonon Engineering in Nanostructured Thermoelectric Materials Zhifeng Ren  

E-Print Network (OSTI)

2.00pm Electron and Phonon Engineering in Nanostructured Thermoelectric Materials Zhifeng Ren Department of Physics, Boston College, Chestnut Hill, Massachusetts Abstract Thermoelectric materials a successful case for potentially large scale application using thermoelectric materials. Biography Dr Zhifeng

Levi, Anthony F. J.

439

Enhancement of thermopower of TAGS-85 high-performance thermoelectric materials by doping with the rare earth Dy  

SciTech Connect

Enhancement of thermopower is achieved by doping the narrow-band semiconductor Ag{sub 6.52}Sb{sub 6.52}Ge{sub 36.96}Te{sub 50} (acronym TAGS-85), one of the best p-type thermoelectric materials, with 1 or 2% of the rare earth dysprosium (Dy). Evidence for the incorporation of Dy into the lattice is provided by X-ray diffraction and increased orientation-dependent local fields detected by {sup 125}Te NMR spectroscopy. Since Dy has a stable electronic configuration, the enhancement cannot be attributed to 4f-electron states formed near the Fermi level. It is likely that the enhancement is due to a small reduction in the carrier concentration, detected by {sup 125}Te NMR spectroscopy, but mostly due to energy filtering of the carriers by potential barriers formed in the lattice by Dy, which has large both atomic size and localized magnetic moment. The interplay between the thermopower, the electrical resistivity, and the thermal conductivity of TAGS-85 doped with Dy results in an enhancement of the power factor (PF) and the thermoelectric figure of merit (ZT) at 730 K, from PF = 28 ?W cm{sup ?1} K{sup ?2} and ZT ? 1.3 in TAGS-85 to PF = 35 ?W cm{sup ?1} K{sup ?2} and ZT ? 1.5 in TAGS-85 doped with 1 or 2% Dy for Ge. This makes TAGS-85 doped with Dy a promising material for thermoelectric power generation.

Levin, Evgenii; Budko, Serfuei; Schmidt-Rohr, Klaus

2012-04-10T23:59:59.000Z

440

Vehicle Technologies Office: 3rd Thermoelectrics Applications Workshop 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

3rd Thermoelectrics 3rd Thermoelectrics Applications Workshop 2012 to someone by E-mail Share Vehicle Technologies Office: 3rd Thermoelectrics Applications Workshop 2012 on Facebook Tweet about Vehicle Technologies Office: 3rd Thermoelectrics Applications Workshop 2012 on Twitter Bookmark Vehicle Technologies Office: 3rd Thermoelectrics Applications Workshop 2012 on Google Bookmark Vehicle Technologies Office: 3rd Thermoelectrics Applications Workshop 2012 on Delicious Rank Vehicle Technologies Office: 3rd Thermoelectrics Applications Workshop 2012 on Digg Find More places to share Vehicle Technologies Office: 3rd Thermoelectrics Applications Workshop 2012 on AddThis.com... Publications Key Publications Plans & Roadmaps Partnership Documents Annual Progress Reports Success Stories

Note: This page contains sample records for the topic "thermoelectric generators thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Presents successful...

442

Thermoelectric Conversion of Waste Heat to Electricity in an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

truck system. schock.pdf More Documents & Publications Thermoelectric Conversion of Wate Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Waste...

443

Combustion Exhaust Gas Heat to Power usingThermoelectric Engines...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solutions Combustion Exhaust Gas Heat to Power using Thermoelectric Engines John LaGrandeur October 5, 2011 Advanced Thermoelectric Solutions - 1 - Market motivation based on CO 2...

444

Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines Discusses a novel TEG which utilizes a...

445

Thermoelectrics: From Space Power Systems to Terrestrial Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications...

446

Progress toward Development of a High-Efficiency Zonal Thermoelectric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

toward Development of a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications Progress toward Development of a High-Efficiency Zonal Thermoelectric HVAC...

447

Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy...

448

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2013 DOE Hydrogen and Fuel Cells Program and...

449

High-Performance Thermoelectric Devices Based on Abundant Silicide...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Development of high-performance thermoelectric devices for vehicle waste heat recovery will include fundamental research to use abundant promising low-cost thermoelectric...

450

Nano-structures Thermoelectric Materals - Part 2 | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nano-structures Thermoelectric Materals - Part 2 Nano-structures Thermoelectric Materals - Part 2 2002 DEER Conference Presentation: RTI International 2002deervenkatasubramanian2...

451

Nano-structures Thermoelectric Materals - Part 1 | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nano-structures Thermoelectric Materals - Part 1 Nano-structures Thermoelectric Materals - Part 1 2002 DEER Conference Presentation: RTI International 2002deervenkatasubramanian1...

452

Innovative Nano-structuring Routes for Novel ThermoelectricMaterials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nano-structuring Routes for Novel Thermoelectric Materials;Phonon Blocking & DOS Engineering Innovative Nano-structuring Routes for Novel Thermoelectric Materials;Phonon Blocking &...

453

An Overview of Thermoelectric Waste Heat Recovery Activities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An overview presentation of R&D...

454

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2012 DOE Hydrogen and Fuel Cells Program and...

455

Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC)  

Energy.gov (U.S. Department of Energy (DOE))

Introduction to the solid-state solar-thermal energy conversion center plus discussion on phonon transport and solar thermoelectric energy conversion

456

Project Profile: Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation  

Energy.gov (U.S. Department of Energy (DOE))

The University of Alabama, under the Thermal Storage FOA, is developing thermal energy storage (TES) media consisting of low melting point (LMP) molten salt with high TES density for sensible heat storage systems.

457

DOI: 10.1002/adma.200602674 Synthesis and Thermoelectrical Characterization of Lead  

E-Print Network (OSTI)

* Thermoelectricity is the phenomenon of conversion be- tween thermal and electrical energy. Compared with other have reached an upper limit of Z T at approximately 1. Hicks and Dresselhaus proposed that conversion to the reaction temperature for 10 minutes under a carrier gas flow of N2, 5 % H2 balance N2, Ar, or 10 % H2

Yang, Peidong

458

Comparison of different pressing techniques for the preparation of n-type silicon-germanium thermoelectric alloys  

SciTech Connect

Improvements to state-of-the-art Si{sub 80}Ge{sub 20} thermoelectric alloys have been observed in laboratory-scale samples by the powder metallurgy techniques of mechanical alloying and hot pressing. Incorporating these improvements in large scale compacts for the production of thermoelectric generator elements is the next step in achieving higher efficiency RTGs. This paper discusses consolidation of large quantities of mechanically alloyed powders into production size compacts. Differences in thermoelectric properties are noted between the compacts prepared by the standard technique of hot uniaxial pressing and hot isostatic pressing. Most significant is the difference in carrier concentration between the alloys prepared by the two consolidation techniques.

Harringa, J.L.; Cook, B.A.

1996-06-01T23:59:59.000Z

459

Improvement of thermoelectric properties of alkaline-earth hexaborides  

SciTech Connect

Thermoelectric (TE) and transport properties of alkaline-earth hexaborides were examined to investigate the possibility of improvement in their TE performance. As carrier concentration increased, electrical conductivity increased and the absolute value of the Seebeck coefficient decreased monotonically, while carrier mobility was almost unchanged. These results suggest that the electrical properties of the hexaboride depend largely on carrier concentration. Thermal conductivity of the hexaboride was higher than 10 W/m K even at 1073 K, which is relatively high among TE materials. Alloys of CaB{sub 6} and SrB{sub 6} were prepared in order to reduce lattice thermal conductivity. Whereas the Seebeck coefficient and electrical conductivity of the alloys were intermediate between those of CaB{sub 6} and SrB{sub 6} single phases, the thermal conductivities of the alloys were lower than those of both single phases. The highest TE performance was obtained in the vicinity of Ca{sub 0.5}Sr{sub 0.5}B{sub 6}, indicating that alloying is effective in improving the performance. - Graphical abstract: Thermoelectric figure-of-merit, ZT, for (Ca,Sr)B{sub 6} alloys. The highest ZT value of 0.35 at 1073 K was obtained due to effective reduction of thermal conductivity by alloying.

Takeda, Masatoshi [Department of Mechanical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188 (Japan)]. E-mail: takeda@mech.nagaokaut.ac.jp; Terui, Manabu [Department of Mechanical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188 (Japan); Takahashi, Norihito [Department of Mechanical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188 (Japan); Ueda, Noriyoshi [Department of Mechanical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188 (Japan)

2006-09-15T23:59:59.000Z

460

Thermoelectric Properties of Scaled Silicon Nanowires Using the s*-SO Atomistic Tight-Binding Model and Boltzmann  

E-Print Network (OSTI)

experimental values for the lattice thermal conductivity in nanowires, the expected ZT value is computed. We coefficient, and ke and kl are the electronic and lattice part of the thermal conductivity, respectively and superlattices [1, 2, 3, 4]. Low-dimensional materials offer the possibility of improved thermoelectric

Note: This page contains sample records for the topic "thermoelectric generators thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Thermoelectric Activities of European Community within Framework...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of European Community within Framework Programme 7 and additional activities in Germany Thermoelectric Activities of European Community within Framework Programme 7 and...

462

Thermoelectric Materials by Design, Computational Theory and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Design, Computational Theory and Structure Thermoelectric Materials by Design, Computational Theory and Structure 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual...

463

Thermoelectric Materials by Design: Computational Theory and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Design: Computational Theory and Structure Thermoelectric Materials by Design: Computational Theory and Structure Presentation from the U.S. DOE Office of Vehicle Technologies...

464

High Temperature Thermoelectric Materials Characterization for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2009 -- Washington D.C. lmp06wang.pdf More Documents & Publications High-Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success...

465

Scientists Connect Thermoelectric Materials and Topological Insulators...  

NLE Websites -- All DOE Office Websites (Extended Search)

and relativity in combination produce a unique conducting state on the surface. Excellent thermoelectric performance depends on a material having both high conductivity and high...

466

Concentrated Thermoelectric Power | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Concentrated Thermoelectric Power This fact sheet describes a concentrated solar hydroelectric power project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D...

467

Electrical and Thermoelectrical Transport Properties of Graphene  

E-Print Network (OSTI)

OF CALIFORNIA RIVERSIDE Electrical and ThermoelectricalIn addition to the electrical conductivity, thermoelectricthe energy-dependent electrical conductivity under certain

Wang, Deqi

2011-01-01T23:59:59.000Z

468

Trends in Thermoelectric Properties with Nanostructure: Ferecrystals...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to interleave on the nanoscale two or more compounds with different crystal structures johnson.pdf More Documents & Publications Ferecrystals: Thermoelectric Materials Poised...

469

Vehicular Thermoelectrics: A New Green Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Performance: Figure of Merit (ZT) Oregon State Vehicle Technologies Program eere.energy.gov Nanoscale Effects for Thermoelectrics (courtesy Millie Dresselhaus, MIT)...

470

Thermoelectric Mechanical Reliability | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Mechanical Reliability Thermoelectric Mechanical Reliability 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

471

Thermoelectric Materials By Design: Mechanical Reliability (Agreement...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Materials By Design: Mechanical Reliability (Agreement 14957) Thermoelectric Materials By Design: Mechanical Reliability (Agreement 14957) Presentation from the U.S. DOE Office of...

472

Vehicular Thermoelectrics: A New Green Technology | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

with the NSF deer11fairbanks.pdf More Documents & Publications Thermoelectrics: The New Green Automotive Technology Solid-State Energy Conversion Overview Automotive...

473

Recent Device Developments with Advanced Bulk Thermoelectric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

at RTI Reviews work in engineered thin-film nanoscale thermoelectric materials and nano-bulk materials with high ZT undertaken by RTI in collaboration with its research...

474

Nanoscale thermal transport. II. 2003–2012  

SciTech Connect

A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ?1?nm, the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interfaces between materials. Major advances in the physics of phonons include first principles calculation of the phonon lifetimes of simple crystals and application of the predicted scattering rates in parameter-free calculations of the thermal conductivity. Progress in the control of thermal transport at the nanoscale is critical to continued advances in the density of information that can be stored in phase change memory devices and new generations of magnetic storage that will use highly localized heat sources to reduce the coercivity of magnetic media. Ultralow thermal conductivity—thermal conductivity below the conventionally predicted minimum thermal conductivity—has been observed in nanolaminates and disordered crystals with strong anisotropy. Advances in metrology by time-domain thermoreflectance have made measurements of the thermal conductivity of a thin layer with micron-scale spatial resolution relatively routine. Scanning thermal microscopy and thermal analysis using proximal probes has achieved spatial resolution of 10?nm, temperature precision of 50 mK, sensitivity to heat flows of 10 pW, and the capability for thermal analysis of sub-femtogram samples.

Cahill, David G., E-mail: d-cahill@illinois.edu; Braun, Paul V. [Department of Materials Science and Engineering and the Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States); Chen, Gang [Department of Mechanical Engineering, MIT, Cambridge, Massachusetts 02139 (United States); Clarke, David R. [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Fan, Shanhui [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Goodson, Kenneth E. [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Keblinski, Pawel [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); King, William P. [Department of Mechanical Sciences and Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Mahan, Gerald D. [Department of Physics, Penn State University, University Park, Pennsylvania 16802 (United States); Majumdar, Arun [Department of Mechanical Engineering, University of California, Berkeley, California 94720 (United States); Maris, Humphrey J. [Department of Physics, Brown University, Providence, Rhode Island 02912 (United States); Phillpot, Simon R. [Department of Materials Science and Engineering, University of Florida, Gainseville, Florida 32611 (United States); Pop, Eric [Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Shi, Li [Department of Mechanical Engineering, University of Texas, Autin, Texas 78712 (United States)

2014-03-15T23:59:59.000Z

475

Thermoelectric materials ternary penta telluride and selenide compounds  

DOE Patents (OSTI)

Ternary tellurium compounds and ternary selenium compounds may be used in fabricating thermoelectric devices with a thermoelectric figure of merit (ZT) of 1.5 or greater. Examples of such compounds include Tl.sub.2 SnTe.sub.5, Tl.sub.2 GeTe.sub.5, K.sub.2 SnTe.sub.5 and Rb.sub.2 SnTe.sub.5. These compounds have similar types of crystal lattice structures which include a first substructure with a (Sn, Ge) Te.sub.5 composition and a second substructure with chains of selected cation atoms. The second substructure includes selected cation atoms which interact with selected anion atoms to maintain a desired separation between the chains of the first substructure. The cation atoms which maintain the desired separation between the chains occupy relatively large electropositive sites in the resulting crystal lattice structure which results in a relatively low value for the lattice component of thermal conductivity (.kappa..sub.g). The first substructure of anion chains indicates significant anisotropy in the thermoelectric characteristics of the resulting semiconductor materials.

Sharp, Jeffrey W. (Richardson, TX)

2001-01-01T23:59:59.000Z

476

Thermoelectric materials: ternary penta telluride and selenide compounds  

DOE Patents (OSTI)

Ternary tellurium compounds and ternary selenium compounds may be used in fabricating thermoelectric devices with a thermoelectric figure of merit (ZT) of 1.5 or greater. Examples of such compounds include Tl.sub.2 SnTe.sub.5, Tl.sub.2 GeTe.sub.5, K.sub.2 SnTe.sub.5 and Rb.sub.2 SnTe.sub.5. These compounds have similar types of crystal lattice structures which include a first substructure with a (Sn, Ge) Te.sub.5 composition and a second substructure with chains of selected cation atoms. The second substructure includes selected cation atoms which interact with selected anion atoms to maintain a desired separation between the chains of the first substructure. The cation atoms which maintain the desired separation between the chains occupy relatively large electropositive sites in the resulting crystal lattice structure which results in a relatively low value for the lattice component of thermal conductivity (.kappa..sub.g). The first substructure of anion chains indicates significant anisotropy in the thermoelectric characteristics of the resulting semiconductor materials.

Sharp, Jeffrey W. (Richardson, TX)

2002-06-04T23:59:59.000Z

477

NETL: News Release - DOE Estimates Future Water Needs for Thermoelectric  

NLE Websites -- All DOE Office Websites (Extended Search)

December 6, 2007 December 6, 2007 DOE Estimates Future Water Needs for Thermoelectric Power Plants 2007 Analysis Adds Projected Water Requirements for Carbon Capture WASHINGTON, DC - The Office of Fossil Energy's National Energy Technology Laboratory (NETL) has released a 2007 update to its groundbreaking study, Estimating Freshwater Needs to Meet Future Thermoelectric Generation Requirements. The updated analysis increases understanding of regional and national water needs and usage in the power industry, and provides input for research and development aimed at water-use reduction. MORE INFO Link to the updated study NETL's Water-Energy Interface web page New in this year's report is a response to heightened concerns over atmospheric carbon dioxide. The report examines the possibility that future

478

QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY  

SciTech Connect

New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce the technology for fabricating a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices. In this quarter Hi-Z has continued fabrication of the QW films and also continued development of joining techniques for fabricating the N and P legs into a couple. The upper operating temperature limit for these films is unknown and will be determined via the isothermal aging studies that are in progress. We are reporting on these studies in this report. The properties of the QW films that are being evaluated are Seebeck, thermal conductivity and thermal-to-electricity conversion efficiency.

Saeid Ghamaty

2004-01-01T23:59:59.000Z

479

QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY  

SciTech Connect

New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce the technology for fabricating a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices. In this quarter Hi-Z has continued fabrication of the QW films and also continued development of joining techniques for fabricating the N and P legs into a couple. The upper operating temperature limit for these films is unknown and will be determined via the isothermal aging studies that are in progress. We are reporting on these studies in this report. The properties of the QW films that are being evaluated are Seebeck, thermal conductivity and thermal-to-electricity conversion efficiency.

Saeid Ghamaty

2005-05-01T23:59:59.000Z

480

Advanced Thin Film Thermoelectric Systems forEfficient Air-Conditioner...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thin Film Thermoelectric Systems forEfficient Air-Conditioners Advanced Thin Film Thermoelectric Systems forEfficient Air-Conditioners Presents recent advances in thermoelectric...

Note: This page contains sample records for the topic "thermoelectric generators thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Chapter 10 - Novel Power Generating Systems  

Science Journals Connector (OSTI)

Abstract In this chapter, some novel power generating systems are discussed. It is believed that sustainable thermal energy sources such as industrial waste heat recovery, concentrated solar radiation, ocean thermal energy, nuclear heat, and biomass combustion will gradually become more important. The first part of the chapter presents a novel system for power conversion from low-grade heat. This is an advanced ammonia–water-based power cycle able to operate with minimal exergy destruction due to an excellent match of temperature profiles at the heat source and sink. The chapter continues with thermoelectric power generators that can address the challenge of efficient power generation from high-grade thermal energy. Chemical looping combustion systems for power generation are treated thereafter for situations when carbon emissions must be reduced by carbon dioxide separation and sequestration or partial recycling. The last section of the chapter presents a number of selected novel systems for power generation, including magneto-hydrodynamic generators, thermoacoustic generators, and cryogenic compression oxy-combustion power plants with supercritical carbon dioxide and some novel integrated systems.

Ibrahim Dincer; Calin Zamfirescu

2014-01-01T23:59:59.000Z

482

Making the Right Substitution for Better Thermoelectrics | U.S. DOE Office  

Office of Science (SC) Website

Making the Right Substitution for Better Thermoelectrics Making the Right Substitution for Better Thermoelectrics Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) News & Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » February 2013 Making the Right Substitution for Better Thermoelectrics Exploiting the self-organizing nature of atoms to block heat transfer and improve thermal-to-electrical energy conversion. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Image courtesy of Ctirad Uher

483

Theoretical study of the thermoelectric properties of SiGe nanotubes  

E-Print Network (OSTI)

The thermoelectric properties of two typical SiGe nanotubes are investigated using a combination of density functional theory, Boltzmann transport theory, and molecular dynamics simulations. Unlike carbon nanotubes, these SiGe nanotubes tend to have gear-like geometry, and both the (6, 6) and (10, 0) tubes are semiconducting with direct band gaps. The calculated Seebeck coefficients as well as the relaxation time of these SiGe nanotubes are significantly larger than those of bulk thermoelectric materials. Together with smaller lattice thermal conductivity caused by phonon boundary and alloy scattering, these SiGe nanotubes can exhibit very good thermoelectric performance. Moreover, there are strong chirality and temperature dependence of the ZT values, which can be optimized to 4.9 at room temperature and further enhanced to 5.4 at 400 K for the armchair (6, 6) tube.

Wei, J; Tan, X J; Cheng, L; Zhang, J; Fan, D D; Shi, J; Tang, X F

2014-01-01T23:59:59.000Z

484

Interface Driven Energy Filtering of Thermoelectric Power in Spark Plasma Sintered Bi2Te2.7Se0.3 Nanoplatelet Composites  

E-Print Network (OSTI)

and electrical and thermal conductivities is essential for the high performance of thermoelectric materials. Bulk, the electronic and lattice contributions to the thermal conductivity.5 Thus a good TE material should have a high Seebeck coefficient, a high electrical conductivity, and a low thermal conductivity. Combining

Xiong, Qihua

485

IMPROVING THERMOELECTRIC TECHNOLOGY PERFORMANCE AND DURABILITY WITH AEROGEL  

E-Print Network (OSTI)

aerogel as an effective sublimation barrier for a wide range of thermoelectric technologies based on Si

Jeff Sakamoto; Thierry Caillat; Jean-pierre Fleurial; Steve Jones; Jong-ah Paik; Winny Dong

486

Develop Thermoelectric Technology for Automotive Waste Heat Recovery  

Energy.gov (U.S. Department of Energy (DOE))

Develop thermoelectric technology for waste heat recovery with a 10% fuel economy improvement without increasing emissions.

487

Thermoelectric Bulk Materials from the Explosive Consolidation of Nanopowders  

Energy.gov (U.S. Department of Energy (DOE))

Describes technique of explosively consolidating nanopowders to yield fully dense, consolidated, nanostructured thermoelectric material

488

Project Profile: Novel Thermal Storage Technologies for Concentrating Solar Power Generation  

Energy.gov (U.S. Department of Energy (DOE))

Lehigh University, under the Thermal Storage FOA, is working to establish the technical feasibility of using phase change materials (PCM) at elevated temperatures and to acquire engineering results that will lead to the demonstration of large-scale thermal storage systems.

489

Numerical study of porous media thermoelectric converter  

SciTech Connect

Thermoelectric conversion is direct conversion technology that has characteristics of being maintenance free. However, the efficiency of the conventional bulk semiconductor thermoelectric device is about 20% for ideal theoretical calculation, and less than 5% for an actual application. The efficiency is very low because the heat conduction in the device and the Joule loss are too large compared with the Peltier heat which is changed into the electric power. The thermoelectric device made by porous media is heated by the radiation and maintains a large temperature difference by the gas which passes in the porous device. Therefore, the influence of the heat conduction in the thermoelectric device is small and the improvement of the conversion efficiency can be attempted. In this paper, the authors report the calculated results and the performance of thermoelectric converter made with porous media.

Kosaka, Kenichirou; Yamada, Akira

1996-12-31T23:59:59.000Z

490

I n s i t u thermal oxidation for surface cleaning and mask generation prior to selective area epitaxy  

Science Journals Connector (OSTI)

Dry thermal oxidation of GaAs and AlAs has been carried out in an organometallic chemical vapor deposition system. This i n s i t u process performed either before or after an epitaxialgrowth serves the purposes of surface cleaning and mask generation for selective area epitaxy of various III?V semiconductors.AlAsoxidized immediately after growth and patterned for the next regrowth provides better oxide?semiconductor interfaces and minimizes wafer handling. Pre?epitaxy oxidation at 435?°C on a patterned wafer with AlAs/GaAs areas resulted in a selective oxide mask. Since thermal oxides of GaAssublime at temperatures >600?°C a 700?°C pregrowth annealing thus thermally cleans the oxidizedGaAs areas while the oxides of AlAs remain as a mask for the following regrowth. Photoluminescence results indicate that high quality regrown interfaces have been obtained.

Stephen H. Jones; Kei May Lau

1988-01-01T23:59:59.000Z

491

First-principles calculations of the vibrational and thermal properties of the type-I clathrates Ba8Ga16SixGe30-x and Sr8Ga16SixGe30-x  

E-Print Network (OSTI)

,7 At present, the best materials for thermoelectric applications are semicon- ductors which have low thermal heavy atoms, such as antimony tel- luride or bismuth telluride. An ideal thermoelectric material should of the recent research on clath- rate materials has been the search for a clathrate with good thermoelectric

Myles, Charles W.

492

From coal to wood thermoelectric energy production: a review and discussion of potential socio-economic impacts with implications for Northwestern Ontario, Canada  

Science Journals Connector (OSTI)

The province of Ontario in Canada is the first North American jurisdiction with legislation in place to eliminate coal-fired thermoelectric production by the end of 2014. Ontario Power Generation (OPG) operates coal

Jason Ernest Elvin Dampier; Chander Shahi…

2013-05-01T23:59:59.000Z

493

Thermal, Electrical and Mechanical Response to a Quench in Nb3Sn Superconducting Coils  

E-Print Network (OSTI)

53129 4A-a07 Thermal, Electrical and Mechanical Response tofocuses on thermal, electrical and mechanical conditions inevaluated by the thermo-electrical model is transferred to a

Ferracin, P.

2011-01-01T23:59:59.000Z

494

Thermoelectric properties of polycrystalline In4Se3 and In4Te3  

SciTech Connect

High thermoelectric performance of a single crystal layered compound In{sub 4}Se{sub 3} was reported recently. We present here an electrical and thermal transport property study over a wide temperature range for polycrystalline samples of In{sub 4}Se{sub 3} and In{sub 4}Te{sub 3}. Our data demonstrate that these materials are lightly doped semiconductors, leading to large thermopower and resistivity. Very low thermal conductivity, below 1 W/m K, is observed. The power factors for In{sub 4}Se{sub 3} and In{sub 4}Te{sub 3} are much smaller when compared with state-of-the-art thermoelectric materials. This combined with the very low thermal conductivity results in the maximum ZT value of less than 0.6 at 700 K for In{sub 4}Se{sub 3}.

Shi, Xun [Optimal Inc., Plymouth, Michigan 48170, USA; Cho, Jung Y [GM R& D and Planning, Warren, Michigan; Salvador, James R. [GM R& D and Planning, Warren, Michigan; Yang, Jihui [General Motors Corporation-R& D; Wang, Hsin [Oak Ridge National Laboratory (ORNL)

2010-01-01T23:59:59.000Z

495

Development of a solar receiver for a high-efficiency thermionic/thermoelectric conversion system  

SciTech Connect

Solar energy is one of the most promising energy resources on Earth and in space, because it is clean and inexhaustible. Therefore, we have been developing a solar-powered high-efficiency thermionic-thermoelectric conversion system which combines a thermionic converter (TIC) with a thermoelectric converter (TEC) to use thermal energy efficiently and to achieve high efficiency conversion. The TIC emitter must uniformly heat up to 1800 K. The TIC emitter can be heated using thermal radiation from a solar receiver maintained at a high temperature by concentrated solar irradiation. A cylindrical cavity-type solar receiver constructed from graphite was designed and heated in a vacuum by using the solar concentrator at Tohoku University. The maximum temperature of the solar receiver enclosed by a molybdenum cup reached 1965 K, which was sufficiently high to heat a TIC emitter using thermal radiation from the receiver. 4 refs., 6 figs., 1 tab.

Naito, H.; Kohsaka, Y.; Cooke, D.; Arashi, H. [Tohoku Univ., Aramaki (Japan)] [Tohoku Univ., Aramaki (Japan)

1996-10-01T23:59:59.000Z

496

Thermoelectric power in carbon nanotubes  

SciTech Connect

The theoretical results for the temperature dependence of the thermoelectric power of graphite and semimetal carbon nanotubes are reported. In the calculations, the cylindrical superatomic range structure of nanotubes is taken into account. The Boltzmann equation and the {pi}-electron model of semimetal carbon nanotubes are used. The basic parameters of the calculation are the concentration of electrons, the Fermi energy, and the energy of the local level associated with the cylindrical structure of carbon nanotubes. The theoretical results are compared with the available experimental data.

Mavrinskiy, A. V., E-mail: mavrinsky@gmail.com; Baitinger, E. M. [Chelyabinsk State Pedagogical University (Russian Federation)

2009-04-15T23:59:59.000Z

497

Phase transition enhanced thermoelectric figure-of-merit in copper chalcogenides  

SciTech Connect

While thermoelectric materials can be used for solid state cooling, waste heat recovery, and solar electricity generation, low values of the thermoelectric figure of merit, zT, have led to an efficiency too low for widespread use. Thermoelectric effects are characterized by the Seebeck coefficient or thermopower, which is related to the entropy associated with charge transport. For example, coupling spin entropy with the presence of charge carriers has enabled the enhancement of zT in cobalt oxides. We demonstrate that the coupling of a continuous phase transition to carrier transport in Cu{sub 2}Se over a broad (360–410 K) temperature range results in a dramatic peak in thermopower, an increase in phonon and electron scattering, and a corresponding doubling of zT (to 0.7 at 406 K), and a similar but larger increase over a wider temperature range in the zT of Cu{sub 1.97}Ag{sub .03}Se (almost 1.0 at 400 K). The use of structural entropy for enhanced thermopower could lead to new engineering approaches for thermoelectric materials with high zT and new green applications for thermoelectrics.

Brown, David R.; Day, Tristan; Snyder, G. Jeffrey, E-mail: jsnyder@caltech.edu [Department of Applied Physics and Materials Science, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125 (United States); Borup, Kasper A.; Christensen, Sebastian; Iversen, Bo B. [Department of Chemistry and iNano, Aarhus University, Aarhus 8000 (Denmark)

2013-11-01T23:59:59.000Z

498

Atomic-level control of the thermoelectric properties in polytypoid nanowires Sean C. Andrews,ab  

E-Print Network (OSTI)

electrical power is generated through the scavenging of waste heat. The efficiency of this conversion the scavenging of waste heat. Materials containing nanometer-sized structural and compositional features canAtomic-level control of the thermoelectric properties in polytypoid nanowires Sean C. Andrews

Yang, Peidong

499

Geographic, Technologic, And Economic Analysis of Using Reclaimed Water for Thermoelectric Power Plant Cooling  

Science Journals Connector (OSTI)

Additionally, several thermoelectric power plants in Texas currently use reclaimed water for at least some portion of their cooling water needs, including Austin Energy’s Sand Hill Energy Center; CPS Energy’s J K Spruce, J T Deely, and O W Sommers plants; Xcel Energy’s Nichols, Harrington, and Jones facilities; and the Spencer Generating Station near Denton, among others. ...

Ashlynn S. Stillwell; Michael E. Webber

2014-03-13T23:59:59.000Z

500

Stresa, Italy, 26-28 April 2006 THERMOELECTRIC AND MICROBATTERY HYBRID SYSTEM WITH ITS POWER  

E-Print Network (OSTI)

developed. It consists in hybriding an energy storage system (thin film solid state battery change depending on the outside conditions) and required by the thin film solid state battery conversion and energy storage. A hybrid system comprising a thermoelectric generator, a thin film solid state

Paris-Sud XI, Université de