Powered by Deep Web Technologies
Note: This page contains sample records for the topic "thermoelectric energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Solar Thermoelectric Energy Conversion  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SOLID-STATE SOLAR-THERMAL ENERGY CONVERSION CENTER NanoEngineering Group Solar Thermoelectric Energy Conversion Gang Chen, 1 Daniel Kraemer, 1 Bed Poudel, 2 Hsien-Ping Feng, 1 J....

2

Solar Thermoelectric Energy Conversion  

Energy.gov (U.S. Department of Energy (DOE))

Efficiencies of different types of solar thermoelectric generators were predicted using theoretical modeling and validated with measurements using constructed prototypes under different solar intensities

3

Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy...

4

Proceedings of the sixth international conference on thermoelectric energy conversion  

SciTech Connect

This book presents the papers given at a conference on thermoelectric energy conversion. Topics considered at the conference included thermoelectric materials, the computer calculation of thermoelectric properties, the performance of crss-flow thermoelectric liquid coolers, thermoelectric cooler performance corrections for soft heat sinks, heat exchange in a thermoelectric cooling system, the optimal efficiency of a solar pond and thermoelectric generator system, and thermoelectric generation utilizing industrial waste heat as an energy source.

Rao, K.R.

1986-01-01T23:59:59.000Z

5

Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Documents & Publications Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Vehicle Technologies Office...

6

Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Project Overview 2 * Start: October 2011 * End: September 2015 * Percent complete -...

7

Improving efficiency of thermoelectric energy conversion devices is a major  

E-Print Network (OSTI)

Abstract · Improving efficiency of thermoelectric energy conversion devices is a major challenge Interdisciplinary Program in Material Science Thermal Physics Lab Vanderbilt University, Nashville, TN 2 S T ZT dominates over increase in Seebeck coefficient leading to poor device performance. Thermoelectric figure

Walker, D. Greg

8

Complex oxides useful for thermoelectric energy conversion  

DOE Patents (OSTI)

The invention provides for a thermoelectric system comprising a substrate comprising a first complex oxide, wherein the substrate is optionally embedded with a second complex oxide. The thermoelectric system can be used for thermoelectric power generation or thermoelectric cooling.

Majumdar, Arunava (Orinda, CA); Ramesh, Ramamoorthy (Moraga, CA); Yu, Choongho (College Station, TX); Scullin, Matthew L. (Berkeley, CA); Huijben, Mark (Enschede, NL)

2012-07-17T23:59:59.000Z

9

Thermoelectric energy conversion using nanostructured materials  

E-Print Network (OSTI)

High performance thermoelectric materials in a wide range of temperatures are essential to broaden the application spectrum of thermoelectric devices. This paper presents experiments on the power and efficiency characteristics ...

Chen, Gang

10

Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficient Automotive Waste Heat Recovery Multi-physics modeling of thermoelectric generators for waste heat recovery applications Nanostructured High-Temperature Bulk...

11

Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity & Solar Thermal HW Module Electricity Solar thermal space heating Baseline Solar Thermal Inverte r To Grid 2012 GMZ Energy, Proprietary and Confidential Bosch -...

12

Thermoelectric, thermionic and thermophotovoltaic energy conversion Ali Shakouri  

E-Print Network (OSTI)

of thermoelectric, ballistic thermionic and quasi diffusive thermionic energy converters are compared. First-state thermionic energy converters would be able to alleviate this trade off, thereby achieving a very high Single Barrier Heterostructure Thermionic Energy Converter Material 1 Mat

13

Review of solar thermoelectric energy conversion and analysis of a two cover flat-plate solar collector  

E-Print Network (OSTI)

The process of solar thermoelectric energy conversion was explored through a review of thermoelectric energy generation and solar collectors. Existing forms of flat plate collectors and solar concentrators were surveyed. ...

Hasan, Atiya

2007-01-01T23:59:59.000Z

14

New type of thermoelectric conversion of energy by semiconducting liquid anisotropic media  

E-Print Network (OSTI)

The paper describes preliminary investigations of a new effect in conducting anisotropic liquids, which leads to thermoelectric conversion of energy. Nematic liquid crystals with semiconducting dopes are used. A thermoelectric figure of merit ZT = 0.2 is obtained in experiments. The effect can be explained by assuming that the thermocurrent in semiconducting nematics, in contrast to the Seebeck effect, is a nonlinear function of the temperature gradient and of the temperature itself. Though the discovered effect has to be further investigated, the data obtained suggest that it can be effectively used in alternative energy engineering.

Sergey I. Trashkeev; Alexey N. Kudryavtsev

2012-11-02T23:59:59.000Z

15

Modeling Energy Recovery Using Thermoelectric Conversion Integrated with an Organic Rankine Bottoming Cycle  

SciTech Connect

Hot engine exhaust represents a resource that is often rejected to the environment without further utilization. This resource is most prevalent in the transportation sector, but stationary engine-generator systems also typically do not utilize this resource. Engine exhaust is a source of high grade thermal energy that can potentially be utilized by various approaches to produce electricity or to drive heating and cooling systems. This paper describes a model system that employs thermoelectric conversion as a topping cycle integrated with an organic Rankine bottoming cycle for waste heat utilization. This approach is being developed to fully utilize the thermal energy contained in hot exhaust streams. The model is composed of a high temperature heat exchanger which extracts thermal energy for driving the thermoelectric conversion elements. However, substantial sensible heat remains in the exhaust stream after emerging from the heat exchanger. The model incorporates a closely integrated bottoming cycle to utilize this remaining thermal energy in the exhaust stream. The model has many interacting parameters that define combined system quantities such as overall output power, efficiency, and total energy utilization factors. In addition, the model identifies a maximum power operating point for the system. That is, the model can identify the optimal amount of heat to remove from the exhaust flow to run through the thermoelectric elements. Removing too much or too little heat from the exhaust stream in this stage will reduce overall cycle performance. The model has been developed such that heat exchanger UAh values, thermal resistances, ZT values, and multiple thermoelectric elements can be investigated in the context of system operation. The model also has the ability to simultaneously determine the effect of each cycle design parameter on the performance of the overall system, thus giving the ability to utilize as much waste heat as possible. Key analysis results are presented showing the impact of critical design parameters on power output, system performance and inter-relationships between design parameters in governing performance.

Miller, Erik W.; Hendricks, Terry J.; Peterson, Richard B.

2009-07-01T23:59:59.000Z

16

A nonlinear thermodynamic model for a breakdown of the Onsager symmetry and the efficiency of thermoelectric conversion in nanowires  

Science Journals Connector (OSTI)

...the thermoelectric energy conversion which, under some...the thermoelectric energy-conversion efficiency, one should...which remains the main factor responsible for high...the thermoelectric energy conversion. However, this does...

2014-01-01T23:59:59.000Z

17

The key role of charge carriers scattering on polar optical phonons in semiconductors for thermoelectric energy conversion  

Science Journals Connector (OSTI)

Abstract The Boltzmann equation for charge carriers in n-type InSb is solved by numerical procedure. Temperature and donor atoms concentration dependences of kinetic coefficients are studied with respect to the thermoelectric energy conversion efficiency. It is found that the mechanism of the charge carriers scattering on polar optical phonons is of crucial importance for thermoelectric figure of merit of semiconductors. High thermoelectric efficiency of compounds and alloys comprising such heavy atoms as Pb or Bi is explained by weakening of the above mentioned scattering mechanism due to gigantic values of dielectric constants of substances caused by high polarizability of heavy atoms.

V.G. Orlov; G.S. Sergeev

2013-01-01T23:59:59.000Z

18

Potential Impact of ZT = 4 Thermoelectric Materials on Solar Thermal Energy Conversion Technologies  

Science Journals Connector (OSTI)

Photovoltaic and solar-thermal are two conversion technologies receiving a great deal of attention. ... Solar-thermal conversion uses the full solar spectrum and generates electricity by conventional electromagnetic induction methods. ... Resource and environmental impact considerations will play an increasingly important role in reaching decisions concerning the practicality of thermoelectric power generation systems. ...

Ming Xie; Dieter M. Gruen

2010-03-02T23:59:59.000Z

19

Thermoelectric energy conversion The objective of this laboratory is for you to explore the physics and practical aspects of solidsate heat  

E-Print Network (OSTI)

Thermoelectric energy conversion Objective The objective of this laboratory is for you to explore, plotting software Introduction Most largescale conversion of thermaltoelectrical energy uses a gas cycle the physics and practical aspects of solidsate heat pumps, the direct conversion of thermaltoelectrical

Braun, Paul

20

Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Presents successful...

Note: This page contains sample records for the topic "thermoelectric energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Thermoelectric Conversion of Waste Heat to Electricity in an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

truck system. schock.pdf More Documents & Publications Thermoelectric Conversion of Wate Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Waste...

22

Dependence of Seebeck coefficient on a load resistance and energy conversion efficiency in a thermoelectric composite  

SciTech Connect

The thermo-emf {delta}V and current {delta}I generated by imposing the alternating temperature gradients (ATG) at a period of T and the steady temperature gradient (STG) on a thermoelectric (TE) composite were measured as a function of t, where t is the lapsed time and T was varied from 60 to or {infinity} s. The STG and ATG were produced by imposing steadily and alternatively a source voltage V in the range from 1.0 to 4.0 V on two Peltier modules sandwiching a composite. {delta}T, {delta}V, {delta}I and V{sub P} oscillate at a period T and their waveforms vary significantly with a change of T, where {delta}V and V{sub P} are the voltage drops in a load resistance R{sub L} and in resistance R{sub P} of two modules. The resultant Seebeck coefficient |{alpha}| = |{delta}V|/{delta}T of a composite under the STG was found to be expressed as |{alpha}| = |{alpha}{sub 0}|(1 - R{sub comp}/R{sub T}), where R{sub T} is the total resistance of a circuit for measuring the output signals and R{sub comp} is the resistance of a composite. The effective generating power {delta}W{sub eff} has a local maximum at T = 960 s for the p-type composite and at T = 480 s for the n-type one. The maximum energy conversion efficiency {eta} of the p- and n-type composites under the ATG produced by imposing a voltage of 4.0 V at an optimum period were 0.22 and 0.23% at {delta}T{sub eff} = 50 K, respectively, which are 42 and 43% higher than those at {delta}T = 42 K under the STG. These maximum {eta} for a TE composite sandwiched between two Peltier modules, were found to be expressed theoretically in terms of R{sub P}, R{sub T}, R{sub L}, {alpha}{sub P} and {alpha}, where {alpha}{sub P} and {alpha} are the resultant Seebeck coefficients of Peltier modules and a TE composite.

Yamashita, Osamu [Materials Science Co. Ltd., 5-5-44 Minamikasugaoka, Ibaraki, Osaka 567-0046 (Japan)], E-mail: yamashio567@yahoo.co.jp; Odahara, Hirotaka [Advanced Materials Co. Ltd., 4-6-10 Kizuri, Higashiosaka, Osaka 577-0827 (Japan); Ochi, Takahiro; Satou, Kouji [Faculty of Engineering, Ehime University, Bunkyocho, Matsuyama 790-8577 (Japan)

2007-10-02T23:59:59.000Z

23

Intersociety Energy Conversion Engineering Conference Proc., Vancouver, BC, Canada, 992569 (1999) Miniaturized Thermoelectric Power Sources  

E-Print Network (OSTI)

thermoelectric microdevices combining high thermal conductivity substrate materials such as diamond or even is the discovery and infusion of novel thermoelectric materials more efficient above room temperature than 10 15 0.5 1.0 1.5 2.0 2.5 3 average ZT of thermoelectric material Materialsconversionefficiency(%) .0

24

Definition: Thermoelectric power generation | Open Energy Information  

Open Energy Info (EERE)

Thermoelectric power generation Thermoelectric power generation Jump to: navigation, search Dictionary.png Thermoelectric power generation The conversion of thermal energy into electrical energy. Thermoelectric generation relies on a fuel source (e.g. fossil, nuclear, biomass, geothermal, or solar) to heat a fluid to drive a turbine[1] View on Wikipedia Wikipedia Definition The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice-versa. A thermoelectric device creates voltage when there is a different temperature on each side. Conversely, when a voltage is applied to it, it creates a temperature difference. At the atomic scale, an applied temperature gradient causes charge carriers in the material to diffuse from the hot side to the cold

25

Thermal to Electrical Energy Conversion of Skutterudite-Based Thermoelectric Modules  

Science Journals Connector (OSTI)

The performance of thermoelectric (TE) materials has improved tremendously over the past decade. The intrinsic thermal and electrical properties of state-of-the-art TE materials demonstrate that the potential ...

James R. Salvador; Jung Y. Cho; Zuxin Ye…

2013-07-01T23:59:59.000Z

26

Correlation Between Structure and Thermoelectric Properties of Bulk High Performance Materials for Energy Conversion  

Energy.gov (U.S. Department of Energy (DOE))

Rapid solidified precursor converted into crystalline bulks under pressure produced thermoelectric materials of nano-sized grains with strongly coupled grain boundaries, achieving reduced lattice thermal conductivity and increased power factor

27

Evaluation of Thermal to Electrical Energy Conversion of High...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules Evaluation of Thermal to Electrical Energy Conversion of High Temperature...

28

Assessment of Solar Energy Conversion Technologies-Application of Thermoelectric Devices in Retrofit an Office Building  

E-Print Network (OSTI)

Thermo electric (TE) devices offer an opportunity to introduce renewable energy into existing and new buildings. TE devices harvest energy from the temperature differential between the hot and cold side of a semiconductor material. In this study...

Azarbayjani, M.; Anderson, J.

29

High Temperature Experimental Characterization of Microscale Thermoelectric Effects  

E-Print Network (OSTI)

of thermoelectric energy conversion devices. J. Appl.convection cooling. Energy Conversion and Mangement, 46:for energy conversion .. 1

Favaloro, Tela

2014-01-01T23:59:59.000Z

30

Overview of Japanese Activities in Thermoelectrics | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...

31

Thermoelectric Conversion of Wate Heat to Electricity in an IC...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Wate Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Wate Heat to Electricity in an IC Engine Powered Vehicle Presentation given at the 16th...

32

Atomic Layer-by-Layer Thermoelectric Conversion in Topological Insulator Bismuth/Antimony Tellurides  

E-Print Network (OSTI)

the hot carrier conduction near the Fermi energy (EF) through the band states or other localized statesAtomic Layer-by-Layer Thermoelectric Conversion in Topological Insulator Bismuth Supporting Information ABSTRACT: Material design for direct heat-to-electricity conversion with substantial

Jo, Moon-Ho

33

Science Highlights- Center for Solar and Thermal Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

1 - Abstracts and Highlight Slides Efficiency of Thermoelectric Energy Conversion in Biphenyl-dithiol Junctions: Effect of Electron-Phonon Interactions Plasmonic Backscattering...

34

Progress in Thermoelectrical Energy Recovery from a Light Truck...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of an Exhaust Thermoelectric Generator of a GM Sierra Pickup Truck Thermoelectrical Energy Recovery From the Exhaust of a Light Truck Automotive Thermoelectric Generators and HVAC...

35

Gate-modulated thermoelectric conversion in disordered nanowires: I. Low temperature coherent regime  

E-Print Network (OSTI)

Gate-modulated thermoelectric conversion in disordered nanowires: I. Low temperature coherent of a disordered nanowire in the presence of an external gate electrode which can be used for depleting the carrier and Gardner for describing the energy dependence of the localization length around the band edges allowing us

Recanati, Catherine

36

Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC)  

Energy.gov (U.S. Department of Energy (DOE))

Introduction to the solid-state solar-thermal energy conversion center plus discussion on phonon transport and solar thermoelectric energy conversion

37

Vehicle Technologies Office Merit Review 2014: Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by GMZ Energy Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about nanostructured high...

38

Development of a solar receiver for a high-efficiency thermionic/thermoelectric conversion system  

SciTech Connect

Solar energy is one of the most promising energy resources on Earth and in space, because it is clean and inexhaustible. Therefore, we have been developing a solar-powered high-efficiency thermionic-thermoelectric conversion system which combines a thermionic converter (TIC) with a thermoelectric converter (TEC) to use thermal energy efficiently and to achieve high efficiency conversion. The TIC emitter must uniformly heat up to 1800 K. The TIC emitter can be heated using thermal radiation from a solar receiver maintained at a high temperature by concentrated solar irradiation. A cylindrical cavity-type solar receiver constructed from graphite was designed and heated in a vacuum by using the solar concentrator at Tohoku University. The maximum temperature of the solar receiver enclosed by a molybdenum cup reached 1965 K, which was sufficiently high to heat a TIC emitter using thermal radiation from the receiver. 4 refs., 6 figs., 1 tab.

Naito, H.; Kohsaka, Y.; Cooke, D.; Arashi, H. [Tohoku Univ., Aramaki (Japan)] [Tohoku Univ., Aramaki (Japan)

1996-10-01T23:59:59.000Z

39

Thermoelectrical Energy Recovery From the Exhaust of a Light...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications The Effects of an Exhaust Thermoelectric Generator of a GM Sierra Pickup Truck Progress in Thermoelectrical Energy Recovery from a...

40

Thermoelectric energy converter for generation of electricity from low-grade heat  

DOE Patents (OSTI)

A thermoelectric energy conversion device which includes a plurality of thermoelectric elements is described. A hot liquid is supplied to one side of each element and a cold liquid is supplied to the other side of each element. The thermoelectric generator may be utilized to produce power from low-grade heat sources such as ocean thermal gradients, solar ponds, and low-grade geothermal resources. (WHK)

Jayadev, T.S.; Benson, D.K.

1980-05-27T23:59:59.000Z

Note: This page contains sample records for the topic "thermoelectric energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

High-Temperature Thermoelectric Materials Characterization for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies Program's subprograms in Lightweight Materials, Propulsion Materials, Energy Storage, and Thermoelectric Conversion at the Oak Ridge National Laboratory. * This...

42

Science Highlights- Center for Solar and Thermal Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Applied Physics Letters, 97, 171908 (2010) Sb2Te3 is a key material for thermoelectric energy conversion technology. We have found that the crystal structure of Sb2Te3 thin...

43

Nanostructured Thermoelectric Materials: From Superlattices to Nanocomposites Ronggui Yang1  

E-Print Network (OSTI)

Nanostructured Thermoelectric Materials: From Superlattices to Nanocomposites Ronggui Yang1. Materials with a large thermoelectric figure of merit can be used to develop efficient solid-state devices nanocomposites, aiming at developing high efficiency thermoelectric energy conversion materials. 1. Introduction

Chen, Gang

44

On thermoelectric power conversion from heat re-circulating combustion systems F. J. Weinberg  

E-Print Network (OSTI)

On thermoelectric power conversion from heat re-circulating combustion systems F. J. Weinberg for the Second Law heat engine cycles the maximum power that can be extracted is independent of layout Fax: 4420 7594 5604 Word count: 3750 Diags. equivalent: 1600 5350 #12;On thermoelectric power

45

FRONTIERS ARTICLE Fundamentals of energy transport, energy conversion, and thermal properties  

E-Print Network (OSTI)

FRONTIERS ARTICLE Fundamentals of energy transport, energy conversion, and thermal properties, thermoelectrics, and photovoltaics. However, energy transport and conversion, at the organic­inorganic interface and as an energy conversion technology. Aviram and Ratner's revolutionary suggestion that molecules could behave

Malen, Jonathan A.

46

Plasmonic conversion of solar energy  

E-Print Network (OSTI)

a novel method of solar energy conversion that can lead tofundamentals of plasmonic energy conversion are reviewed in3. Plasmonic energy conversion fundamentals Surface plasmons

Clavero, Cesar

2014-01-01T23:59:59.000Z

47

Thermoelectric Mechanical Reliability | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectric Mechanical Reliability Thermoelectric Mechanical Reliability 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting,...

48

Thermoelectric Mechanical Reliability | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectric Mechanical Reliability Thermoelectric Mechanical Reliability 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

49

Photoelectrochemical solar energy conversion  

Science Journals Connector (OSTI)

In the present paper the progress in the field of solar energy conversion for the production of electricity and storable ... critically analyzed in view of their stability and conversion efficiency. A number of factors

Rüdiger Memming

1988-01-01T23:59:59.000Z

50

Encapsulation Strategies in Energy Conversion Materials  

Science Journals Connector (OSTI)

For instance, light is converted to electrical energy in photovoltaic devices and back to light in LEDs, electrical energy is converted to chemical energy and vice versa in batteries or fuel cells, light is converted to chemical energy in water splitting catalysts or related systems, or one form of chemical energy is converted to another form over various types of catalysts. ... Thermoelectric materials are an interesting class of energy conversion materials that convert thermal gradients directly to electricity. ... energy densities ranging up to a factor of 5 beyond conventional Li-ion systems. ...

Ferdi Schüth

2013-10-24T23:59:59.000Z

51

Modular Isotopic Thermoelectric Generator (MITG) Design and Development, Part A-E. Original was presented at 1983 Intersociety Energy Conversion Engineering Conference (IECEC)  

SciTech Connect

Advanced RTG concepts utilizing improved thermoelectric materials and converter concepts are under study at Fairchild for DOE. The design described here is based on DOE's newly developed radioisotope heat source, and on an improved silicon-germanium material and a multicouple converter module under development at Syncal. Fairchild's assignment was to combine the above into an attractive power system for use in space, and to assess the specific power and other attributes of that design. The resultant design is highly modular, consisting of standard RTG slices, each producing 24 watts at the desired output voltage of 28 volt. Thus, the design could be adapted to various space missions over a wide range of power levels, with little or no redesign. Each RTG slice consists of a 250-watt heat source module, eight multicouple thermoelectric modules, and standard sections of insulator, housing, radiator fins, and electrical circuit. The design makes it possible to check each thermoelectric module for electrical performance, thermal contact, leaktightness, and performance stability, after the generator is fully assembled; and to replace any deficient modules without disassembling the generator or perturbing the others. The RTG end sections provide the spring-loaded supports required to hold the free-standing heat source stack together during launch vibration. Detailed analysis indicates that the present generation of RTGs, using the same heat source modules. There is a duplicate copy of this document. OSTI has a copy of this paper.

Schock, A.

1983-04-29T23:59:59.000Z

52

ENERGY PAYBACK OPTIMIZATION OF THERMOELECTRIC POWER GENERATOR SYSTEMS  

E-Print Network (OSTI)

and the thermoelectric module should be performed. Active cooling and the design of the heat sink are customized to findENERGY PAYBACK OPTIMIZATION OF THERMOELECTRIC POWER GENERATOR SYSTEMS Kazuaki Yazawa Dept model for optimizing thermoelectric power generation system is developed and utilized for parametric

53

Thermoelectric Power Generation as an Alternative Green Technology of Energy Harvesting  

E-Print Network (OSTI)

The vast majority of heat that is generated from computer processor chips to car engines to electric power plants, the need to use of excess heat creates a major source of inefficiency. Energy harvesters are thermoelectric materials which are solid-state energy converters used to convert waste heat into electricity. Significant improvements to the thermoelectric materials measured by figure of merit (ZT).forconverting waste-heat energy directly into electrical power, application of this alternative green technology can be made and also it will improve the overall efficiencies of energy conversion systems. In this paper, the basic concepts of thermoelectric material and its power generation is presented and recent patents of thermoelectric material are reviewed and discussed.

Ravi R. Nimbalkar; Sanket S. Kshirsagar

54

Photovoltaic Energy Conversion  

E-Print Network (OSTI)

Photovoltaic Energy Conversion Frank Zimmermann #12;Solar Electricity Generation Consumes no fuel Make solar cells more efficient Theoretical energy conversion efficiency limit of single junction-bandgap photons are not absorbed: Carrier relaxation to band edges: Photon energy exceeding bandgap is lost

Glashausser, Charles

55

Algae Harvest Energy Conversion  

Science Journals Connector (OSTI)

Resolution of many workshops on algae harvest energy conversion is that low productivity, high capital intensity ... and maintenance, respiration, and photoinhibition are few factors militating against viability ...

Yung-Tse Hung Ph.D.; P.E.; DEE; O. Sarafadeen Amuda Ph.D.…

2010-01-01T23:59:59.000Z

56

2009 Thermoelectrics Applications Workshop | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Activities in Europe D. Michael Rowe Cardiff University Overview of Thermoelectrics in Germany Harald Bottner Fraunhofer Institute Overview of Research on Thermoelectric Materials...

57

DOE/NSF Thermoelectric Partnership Project SEEBECK Saving Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Research and Sharing Knowledge DOENSF Thermoelectric Partnership Project SEEBECK Saving Energy Effectively By Engaging in Collaborative Research and Sharing Knowledge 2012 DOE...

58

DOE/NSF Thermoelectric Partnership Project SEEBECK Saving Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

research and sharing Knowledge DOENSF Thermoelectric Partnership Project SEEBECK Saving Energy Effectively By Engaging in Collaborative research and sharing Knowledge 2011 DOE...

59

Wave Energy Conversion Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Wave Energy Conversion Technology Wave Energy Conversion Technology Speaker(s): Mirko Previsic Date: August 2, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn Scientists have been working on wave power conversion for the past twenty years, but recent advances in offshore and IT technologies have made it economically competitive. Sea Power & Associates is a Berkeley-based renewable energy technology company. We have developed patented technology to generate electricity from ocean wave energy using a system of concrete buoys and highly efficient hydraulic pumps. Our mission is to provide competitively priced, non-polluting, renewable energy for coastal regions worldwide. Mirko Previsic, founder and CEO, of Sea Power & Associates will discuss ocean wave power, existing technologies for its conversion into

60

New nano structure approaches for bulk thermoelectric materials  

E-Print Network (OSTI)

Thermoelectrics: Direct Solar Thermal Energy Conversion”,are working on solar thermal energy to generate electriccooling for CPUs, solar thermal energy harvesting, solid-

Kim, Jeonghoon

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermoelectric energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Vehicular Thermoelectrics: A New Green Technology | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

with the NSF deer11fairbanks.pdf More Documents & Publications Thermoelectrics: The New Green Automotive Technology Solid-State Energy Conversion Overview Automotive...

62

Semiconductor Nanowires and Nanotubes for Energy Conversion  

E-Print Network (OSTI)

of applications, notably energy conversion. As researchnanowires for energy conversion. Chemical Reviews, 2010.Implications for solar energy conversion. Physical Review

Fardy, Melissa Anne

2010-01-01T23:59:59.000Z

63

Plasmonic conversion of solar energy  

E-Print Network (OSTI)

of solar energy into electricity in photovoltaic cells orsolar energy conversion aimed at photovoltaic applicationsenergy conversion, opening a new venue for photovoltaic and

Clavero, Cesar

2014-01-01T23:59:59.000Z

64

Plasmonic conversion of solar energy  

E-Print Network (OSTI)

of carriers allows maintaining the energy conversionenergy conversion 8 Timescale of charge separation, carrierin this energy conversion method, i.e. carrier regeneration

Clavero, Cesar

2014-01-01T23:59:59.000Z

65

Energy Conversion to Electricity  

Science Journals Connector (OSTI)

30 May 1974 research-article Energy Conversion to Electricity D. Clark...continuing growth in the demand for energy, and of electricity as the route...the electricity share of the total energy market and of the substitution of electricity...

1974-01-01T23:59:59.000Z

66

Pyroelectric Nanogenerators for Harvesting Thermoelectric Energy Ken C. Pradel,  

E-Print Network (OSTI)

Pyroelectric Nanogenerators for Harvesting Thermoelectric Energy Ya Yang, Wenxi Guo, Ken C. Pradel, Guang Zhu, Yusheng Zhou, Yan Zhang, Youfan Hu, Long Lin, and Zhong Lin Wang*,, School of Material Information ABSTRACT: Harvesting thermoelectric energy mainly relies on the Seebeck effect that utilizes

Wang, Zhong L.

67

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network (OSTI)

Jones and w.s. Fong, Biomass Conversion of Biomass to Fuels11902 UC-61a BIOMASS ENERGY CONVERSION IN HAWAII RonaldLBL-11902 Biomass Energy Conversion in Hawaii Ronald 1.

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

68

Energy harvesting using a thermoelectric material  

DOE Patents (OSTI)

A novel energy harvesting system and method utilizing a thermoelectric having a material exhibiting a large thermally induced strain (TIS) due to a phase transformation and a material exhibiting a stress induced electric field is introduced. A material that exhibits such a phase transformation exhibits a large increase in the coefficient of thermal expansion over an incremental temperature range (typically several degrees Kelvin). When such a material is arranged in a geometric configuration, such as, for a example, a laminate with a material that exhibits a stress induced electric field (e.g. a piezoelectric material) the thermally induced strain is converted to an electric field.

Nersessian, Nersesse (Van Nuys, CA); Carman, Gregory P. (Los Angeles, CA); Radousky, Harry B. (San Leandro, CA)

2008-07-08T23:59:59.000Z

69

Photoacoustic measurement of bandgaps of thermoelectric materials  

E-Print Network (OSTI)

Thermoelectric materials are a promising class of direct energy conversion materials, usually consisting of highly doped semiconductors. The key to maximizing their thermal to electrical energy conversion lies in optimizing ...

Ni, George (George Wei)

2014-01-01T23:59:59.000Z

70

Session: Energy Conversion  

SciTech Connect

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hydrothermal Energy Conversion Technology'' by David Robertson and Raymond J. LaSala; ''Materials for Geothermal Production'' by Lawrence E. Kukacka; ''Supersaturated Turbine Expansions for Binary Geothermal Power Plants'' by Carl J. Bliem; ''Geothermal Waster Treatment Biotechnology: Progress and Advantages to the Utilities'' by Eugen T. Premuzic; and ''Geothermal Brine Chemistry Modeling Program'' by John H. Weare.

Robertson, David; LaSala, Raymond J.; Kukacka, Lawrence E.; Bliem, Carl J.; Premuzic, Eugene T.; Weare, John H.

1992-01-01T23:59:59.000Z

71

AbstractAbstract Improving efficiency of thermoelectric  

E-Print Network (OSTI)

-classical transport models used to predict ZT can effectively predict thermoelectric performance of bulk materials Material PerformanceThermoelectric Material Performance 0 0.5 1 1.5 2 2.5 3 1950 1960 1970 1980 1990 2000AbstractAbstract · Improving efficiency of thermoelectric energy conversion devices is a major

Walker, D. Greg

72

Solar energy conversion.  

SciTech Connect

If solar energy is to become a practical alternative to fossil fuels, we must have efficient ways to convert photons into electricity, fuel, and heat. The need for better conversion technologies is a driving force behind many recent developments in biology, materials, and especially nanoscience. The Sun has the enormous untapped potential to supply our growing energy needs. The barrier to greater use of the solar resource is its high cost relative to the cost of fossil fuels, although the disparity will decrease with the rising prices of fossil fuels and the rising costs of mitigating their impact on the environment and climate. The cost of solar energy is directly related to the low conversion efficiency, the modest energy density of solar radiation, and the costly materials currently required. The development of materials and methods to improve solar energy conversion is primarily a scientific challenge: Breakthroughs in fundamental understanding ought to enable marked progress. There is plenty of room for improvement, since photovoltaic conversion efficiencies for inexpensive organic and dye-sensitized solar cells are currently about 10% or less, the conversion efficiency of photosynthesis is less than 1%, and the best solar thermal efficiency is 30%. The theoretical limits suggest that we can do much better. Solar conversion is a young science. Its major growth began in the 1970s, spurred by the oil crisis that highlighted the pervasive importance of energy to our personal, social, economic, and political lives. In contrast, fossil-fuel science has developed over more than 250 years, stimulated by the Industrial Revolution and the promise of abundant fossil fuels. The science of thermodynamics, for example, is intimately intertwined with the development of the steam engine. The Carnot cycle, the mechanical equivalent of heat, and entropy all played starring roles in the development of thermodynamics and the technology of heat engines. Solar-energy science faces an equally rich future, with nanoscience enabling the discovery of the guiding principles of photonic energy conversion and their use in the development of cost-competitive new technologies.

Crabtree, G. W.; Lewis, N. S. (Materials Science Division); (California Inst. of Tech.)

2008-03-01T23:59:59.000Z

73

Solar Energy Conversion  

Science Journals Connector (OSTI)

If solar energy is to become a practical alternative to fossil fuels we must have efficient ways to convert photons into electricity fuel and heat. The need for better conversion technologies is a driving force behind many recent developments in biology materials and especially nanoscience.

George W. Crabtree; Nathan S. Lewis

2008-01-01T23:59:59.000Z

74

Compositional ordering and stability in nanostructured, bulk thermoelectric alloys.  

SciTech Connect

Thermoelectric materials have many applications in the conversion of thermal energy to electrical power and in solid-state cooling. One route to improving thermoelectric energy conversion efficiency in bulk material is to embed nanoscale inclusions. This report summarize key results from a recently completed LDRD project exploring the science underpinning the formation and stability of nanostructures in bulk thermoelectric and the quantitative relationships between such structures and thermoelectric properties.

Hekmaty, Michelle A.; Faleev, S.; Medlin, Douglas L.; Leonard, F.; Lensch-Falk, J.; Sharma, Peter Anand; Sugar, J. D.

2009-09-01T23:59:59.000Z

75

Energy Conversion Devices | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name: Energy Conversion Devices Place: Rochester Hills, MI Website: http:www.energyconversiondev References: Energy Conversion Devices1...

76

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network (OSTI)

Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _LBL-11902 UC-61a BIOMASS ENERGY CONVERSION IN HAWAII

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

77

Wind energy conversion system  

DOE Patents (OSTI)

The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

Longrigg, Paul (Golden, CO)

1987-01-01T23:59:59.000Z

78

Concentrated Thermoelectric Power | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Concentrated Thermoelectric Power This fact sheet describes a concentrated solar hydroelectric power project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D...

79

Thermoelectric Mechanical Reliability | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Mechanical Reliability Thermoelectric Mechanical Reliability 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

80

Semiconductor Nanowires and Nanotubes for Energy Conversion  

E-Print Network (OSTI)

Nanowires and Nanotubes for Energy Conversion By MelissaNanowires and Nanotubes for Energy Conversion by MelissaNanowires and Nanotubes for Energy Conversion by Melissa

Fardy, Melissa Anne

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermoelectric energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

Ocean Thermal Energy Conversion (OTEC) Draft Programmaticof ocean thermal energy conversion technology. U.S. Depart~on Ocean TherUial Energy Conversion, June 18, 1979. Ocean

Sands, M.Dale

2013-01-01T23:59:59.000Z

82

Novel thermoelectric generator for stationary power waste heat recovery .  

E-Print Network (OSTI)

??Internal combustion engines produce much excess heat that is vented to the atmosphere through the exhaust fluid. Use of solid-state thermoelectric (TE) energy conversion technology… (more)

Engelke, Kylan Wynn.

2010-01-01T23:59:59.000Z

83

Glasses for solar energy conversion systems  

Science Journals Connector (OSTI)

Solar technologies are projected to increase tremendously over the next 10 years. Glasses are playing an important role as transparent materials of photovoltaic (PV) cells and concentrating solar power (CSP) systems. Glasses are materials of short energy payback time and environmental compatibility suitable for sustainable energy concepts. The paper reviews recent solar applications. Surface structuring and coating of glasses are shown to improve energy efficiency for solar conversion systems substantially. Encapsulated glass-to-glass PV modules and solar photocatalytic glass surfaces are identified as elements of a green architecture combining renewable power generating and destruction of air pollutants of urban environments. Emerging solar technologies for power generation, including transparent PV modules, solar chimney and thermoelectric systems may become significant areas of future solar glass applications.

J. Deubener; G. Helsch; A. Moiseev; H. Bornhöft

2009-01-01T23:59:59.000Z

84

Experimental and Analytical Studies on Pyroelectric Waste Heat Energy Conversion  

E-Print Network (OSTI)

energy conversion . . . . . . . . . . . . . . . . . . . . . . . . . .other pyroelectric energy conversion methods . . . . Chapter6 Pyroelectric Energy Conversion using PLZT and

Lee, Felix

2012-01-01T23:59:59.000Z

85

Energy conversion system  

DOE Patents (OSTI)

The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weatherproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction, and operational with a minimal power draw.

Murphy, Lawrence M. (Lakewood, CO)

1987-01-01T23:59:59.000Z

86

Energy conversion system  

DOE Patents (OSTI)

The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weathproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction and operational with a minimal power draw.

Murphy, L.M.

1985-09-16T23:59:59.000Z

87

Wind energy conversion system  

SciTech Connect

This patent describes a wind energy conversion system comprising: a propeller rotatable by force of wind; a generator of electricity mechanically coupled to the propeller for converting power of the wind to electric power for use by an electric load; means coupled between the generator and the electric load for varying the electric power drawn by the electric load to alter the electric loading of the generator; means for electro-optically sensing the speed of the wind at a location upwind from the propeller; and means coupled between the sensing means and the power varying means for operating the power varying means to adjust the electric load of the generator in accordance with a sensed value of wind speed to thereby obtain a desired ratio of wind speed to the speed of a tip of a blade of the propeller.

Longrigg, P.

1987-03-17T23:59:59.000Z

88

Plasmonic conversion of solar energy  

E-Print Network (OSTI)

Basic Research Needs for Solar Energy Utilization, BasicS. Pillai and M. A. Green, Solar Energy Materials and SolarPlasmonic conversion of solar energy César Clavero Plasma

Clavero, Cesar

2014-01-01T23:59:59.000Z

89

Energy conversion by gravitational waves  

Science Journals Connector (OSTI)

... out that if such particles are charged, the accelerations will constitute a mechanism for the conversion of gravitational ... of gravitational energy into electromagnetic ...

H. BONDI; F. A. E. PIRANI

1988-03-17T23:59:59.000Z

90

Anneng Thermoelectricity Group | Open Energy Information  

Open Energy Info (EERE)

Anneng Thermoelectricity Group Anneng Thermoelectricity Group Jump to: navigation, search Name Anneng Thermoelectricity Group Place Wuhan, Hubei Province, China Zip 430071 Sector Biomass Product China-based biomass project developer. Coordinates 30.572399°, 114.279121° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.572399,"lon":114.279121,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

91

Ocean energy conversion systems annual research report  

SciTech Connect

Alternative power cycle concepts to the closed-cycle Rankine are evaluated and those that show potential for delivering power in a cost-effective and environmentally acceptable fashion are explored. Concepts are classified according to the ocean energy resource: thermal, waves, currents, and salinity gradient. Research projects have been funded and reported in each of these areas. The lift of seawater entrained in a vertical steam flow can provide potential energy for a conventional hydraulic turbine conversion system. Quantification of the process and assessment of potential costs must be completed to support concept evaluation. Exploratory development is being completed in thermoelectricity and 2-phase nozzles for other thermal concepts. Wave energy concepts are being evaluated by analysis and model testing with present emphasis on pneumatic turbines and wave focussing. Likewise, several conversion approaches to ocean current energy are being evaluated. The use of salinity resources requires further research in membranes or the development of membraneless processes. Using the thermal resource in a Claude cycle process as a power converter is promising, and a program of R and D and subsystem development has been initiated to provide confirmation of the preliminary conclusion.

Not Available

1981-03-01T23:59:59.000Z

92

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

Nanoporous Thermal-to-Electrical Energy Conversion System (of Wasted Energy : Thermal to Electrical Energy Conversion AArticles: 1. “ Thermal to electrical energy conversion” , Yu

Lim, Hyuck

2011-01-01T23:59:59.000Z

93

Studies on the Bi[subscript 2]Te[subscript 3]–Bi[subscript 2]Se[subscript 3]–Bi[subscript 2]S[subscript 3] system for mid-temperature thermoelectric energy conversion  

E-Print Network (OSTI)

Bismuth telluride (Bi[subscript 2]Te[subscript 3]) and its alloys have been widely investigated as thermoelectric materials for cooling applications at around room temperature. We report a systematic study on many compounds ...

Liu, Weishu

94

Photovoltaic and photoelectrochemical conversion of solar energy  

Science Journals Connector (OSTI)

...multiple carrier generation...renewable energy|solar energy conversion|photovoltaic...photovoltaic energy conversion process...minority carriers in the p-type...efficiency carrier multiplication...for solar energy conversion. Phys...

2007-01-01T23:59:59.000Z

95

PSPICE-Compatible Equivalent Circuit of Thermoelectric Coolers Simon Lineykin and Sam Ben-Yaakov*  

E-Print Network (OSTI)

. The thermoelectric module (TEM) can be used for cooling, heating, and energy generation [1] - [3]. The objective OF OPERATION Five energy-conversion processes take place in a thermoelectric module: conductive heat transfer of thermodynamics, one can express the energy equilibrium at both sides of the thermoelectric module

96

Course: ECE 597EN/697EN Energy Transport and Conversion at the Nanoscale Instructor: Zlatan Aksamija (zlatana@engin.umass.edu)  

E-Print Network (OSTI)

Course: ECE 597EN/697EN Energy Transport and Conversion at the Nanoscale Instructor: Zlatan simulation. Suggested Textbook: Nanoscale Energy Transport and Conversion by Gang Chen (Oxford University. Energy Conversion and Coupled Transport Processes 9. Special Topics I: Thermoelectric and Photovoltaic

Massachusetts at Amherst, University of

97

The effect of a multivalley energy band structure on the thermoelectric figure of merit  

E-Print Network (OSTI)

value of the thermoelectric figure of merit Z than a similar material which has only a single valleyL-49 The effect of a multivalley energy band structure on the thermoelectric figure of merit D. M A comparison is drawn between the dimensionless thermoelectric figure of merit of a multivalleyed semiconductor

Boyer, Edmond

98

Solar Energy Conversion Efficiency Project  

Science Journals Connector (OSTI)

Report of a discussion on possible collaborative experimentation to test and refine biomass production models based on the conversion of solar energy by plant stands, and to evaluate alternative models.

J. S. Pereira; J. J. Landsberg

1989-01-01T23:59:59.000Z

99

Energy Conversion, an Energy Frontier Research  

NLE Websites -- All DOE Office Websites (Extended Search)

electricity, will become increasingly important. Indeed enhancements in efficiencies of energy conversion technologies that are readily adaptable in any environment will con-...

100

Energy Conversion, an Energy Frontier Research  

NLE Websites -- All DOE Office Websites (Extended Search)

most pressing problems. Indeed, our success at discovering new paradigms for efficient energy conversion, with minimal environmental impact, will largely determine humankind's...

Note: This page contains sample records for the topic "thermoelectric energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Modeling and characterization of thermoelectric properties of SiGe nanocomposites  

E-Print Network (OSTI)

Direct energy conversion between thermal and electrical energy based on thermoelectric effects is attractive for potential applications in waste heat recovery and environmentally-friendly refrigeration. The energy conversion ...

Lee, Hohyun, 1978-

2009-01-01T23:59:59.000Z

102

Biomass Conversion to Energy  

Science Journals Connector (OSTI)

Sunlight is an infinitely abundant source of energy on this earth and all energy on this planet, in principle, is renewable. However, considering the factor of time frame, the present sources of energy such as co...

Maneesha Pande; Ashok N. Bhaskarwar

2012-01-01T23:59:59.000Z

103

3 Wind energy conversion  

Science Journals Connector (OSTI)

This document is part of Subvolume C 'Renewable Energy' of Volume 3 'Energy Technologies' of Landolt-Börnstein Group VIII 'Advanced Materials and Technologies'.

H.-J. Wagner

2006-01-01T23:59:59.000Z

104

Solar energy conversion apparatus  

SciTech Connect

Apparatus is disclosed for converting solar energy to more useful forms, I.E., thermal and electrical energy. Such apparatus includes a photoelectric transducer (E.G., an array of photovoltaic cells), means for concentrating solar energy on the transducer, and means for circulating a liquid between the transducer and the solar energy concentrator. The spectral properties of the liquid are such that the liquid functions as a bandpass filter, transmitting solar energy to which the transducer is responsive and absorbing solar energy to which the transducer is non-responsive. The transmitted solar energy is converted to electrical energy by the transducer, and the absorbed solar energy is converted to heat by the liquid. Preferably, the liquid is circulated through a container which, in the vicinity of the transducer, is constructed so as to provide optical gain to the system and to integrate incident solar energy for the purpose of eliminating ''hot spots'' which could overheat, and thereby damage, the transducer.

Powell, R.A.

1981-07-14T23:59:59.000Z

105

53119782000 Solar Energy Conversion  

E-Print Network (OSTI)

; · · 1100019000 1300 #12; · · 93 #12; · 1880 · · 1989 · #12;-1 · · #12;Solar Energy: 3 trillion barrels, 1.7 x 1022 joules = energy of the Sun supplied to Earth in 1.5 days The amount of energy humans use annually: 4.6 x 1020 joules = energy of the Sun supplied to Earth in 1 hour #12;How

Chen, Yang-Yuan

106

HELIOPHYSICS II. ENERGY CONVERSION PROCESSES  

E-Print Network (OSTI)

of a solar flare 11 2.3.1 Flare luminosity and mechanical energy 11 2.3.2 The impulsive phase (hard X with the term "solar flare" dominate our thinking about energy conversion from magnetic storage to other forms approaches to the problems involved in phys- ically characterizing the solar atmosphere; see also the lecture

Hudson, Hugh

107

WEC up! Energy Department Announces Wave Energy Conversion Prize...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WEC up Energy Department Announces Wave Energy Conversion Prize Administrator WEC up Energy Department Announces Wave Energy Conversion Prize Administrator September 24, 2014 -...

108

Photovoltaic and photoelectrochemical conversion of solar energy  

Science Journals Connector (OSTI)

...photoelectrochemical conversion of solar energy Michael Gratzel * * ( michael...industry, have dominated photovoltaic solar energy converters. These systems have...promising perspectives. renewable energy|solar energy conversion|photovoltaic...

2007-01-01T23:59:59.000Z

109

Combustion-thermoelectric tube  

SciTech Connect

In direct combustion-thermoelectric energy conversion, direct fuel injection and reciprocation of the air flowing in a solid matrix are combined with the solid conduction to allow for obtaining super-adiabatic temperatures at the hot junctions. While the solid conductivity is necessary, the relatively large thermal conductivity of the available high-temperature thermoelectric materials (e.g., Si-Ge alloys) results in a large conduction loss from the hot junctions and deteriorates the performance. Here a combustion-thermoelectric tube is introduced and analyzed. Radially averaged temperatures are used for the fluid and solid phases. A combination of external cooling of the cold junctions, and direct injection of the fuel, has been used to increase the energy conversion efficiency for low thermal conductivity, high-melting temperature thermoelectric materials. The parametric study (geometry, flow, stoichiometry, materials) shows that with the current high figure of merit, high temperature Si{sub 0.7}Ge{sub 0.3} properties, a conversion efficiency of about 11% is achievable. With lower thermal conductivities for these high-temperature materials, efficiencies about 25% appear possible. This places this energy conversion in line with the other high efficiency, direct electric power generation methods.

Park, C.W.; Kaviany, M.

1999-07-01T23:59:59.000Z

110

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...

111

Potential of Thermoelectrics forOccupant Comfort and Fuel Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Documents & Publications Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Caterpillar Diesel Racing: Yesterday & Today Thermoelectric Conversion of...

112

Effects of environmental factors on the conversion efficiency of solar thermoelectric co-generators comprising parabola trough collectors and thermoelectric modules without evacuated tubular collector  

Science Journals Connector (OSTI)

Abstract Solar thermoelectric co-generators (STECGs) are an attractive means of supplying electric power and heat simultaneously and economically. Here we examine the effects of environmental factors on the conversion efficiencies of a new type of STECG comprising parabolic trough concentrators and thermoelectric modules (TEMs). Each TEM array was bonded with a solar selective absorber plate and directly positioned on the focal axis of the parabolic concentrator. Glass tubular collectors were not used to encase the TEMs. Although this makes the overall system simpler, the environmental effects become significant. Simulations show that the performance of such a system strongly depends on ambient conditions such as solar insolation, atmospheric temperature and wind velocity. As each of these factors increases, the thermal losses of the STECG system also increase, resulting in reduced solar conversion efficiency, despite the increased radiation absorption. However, the impact of these factors is relatively complicated. Although the electrical efficiency of the system increases with increasing solar insolation, it decreases with increasing ambient temperature and wind velocity. These results serve as a useful guide to the selection and installation of STECGs, particularly in Guangzhou or similar climate region.

Chao Li; Ming Zhang; Lei Miao; Jianhua Zhou; Yi Pu Kang; C.A.J. Fisher; Kaoru Ohno; Yang Shen; Hong Lin

2014-01-01T23:59:59.000Z

113

Thermostat for high temperature and transient characterization of thin film thermoelectric materials  

E-Print Network (OSTI)

Institute of Physics. DOI: 10.1063/1.3072603 I. INTRODUCTION Thermoelectric materials have the potential-limited world. An impor- tant application of thermoelectric materials is in direct thermal-to-electrical energy conversion efficiency of a thermoelectric material is a func- tion of its dimensionless figure of merit

114

Thermoelectric Effect across the Metal-Insulator Domain Walls in VO2  

E-Print Network (OSTI)

-performance thermoelectric materials are currently one of the focuses in materials research for energy conversion technologies.1-4 A good thermoelectric material should have a relatively high thermopower (Seebeck coefficient perpendicular to the current and heat flow direction. This offers a material platform where the thermoelectric

Wu, Junqiao

115

Direct measurement of thin-film thermoelectric figure of merit Rajeev Singh,1,a  

E-Print Network (OSTI)

conductivity of the thermoelectric material. Self-consistent finite-element simulations of the three. © 2009 American Institute of Physics. DOI: 10.1063/1.3094880 Thermoelectric materials are playing application of thermoelectric materials is in direct thermal-to-electrical energy conversion. Because

Bowers, John

116

Thermionic energy conversion plasmas  

SciTech Connect

In this paper the history, application options, and ideal basic performance of the thermionic energy converter are outlined. The basic plasma types associated with various modes of converter operation are described, with emphasis on identification and semi-quantitative characterization of the dominant physical processes and utility of each plasma type. The frontier plasma science issues in thermionic converter applications are briefly summarized.

Rasor, N.S. (Rasor Associates, Inc., Sunnyvale, CA (United States))

1991-12-01T23:59:59.000Z

117

Thermoelectric-Generator-Based DC-DC Conversion Network for Automotive Applications.  

E-Print Network (OSTI)

?? As waste heat recovering techniques, especially thermoelectric generator (TEG technologies, develop during recent years?its utilization in automotive industry is attempted from many aspects. Previous… (more)

Li, Molan

2011-01-01T23:59:59.000Z

118

A novel thermally biased mechanical energy conversion cycle Ian M. McKinley, Sam Goljahi, Christopher S. Lynch, and Laurent Pilona)  

E-Print Network (OSTI)

organic Rankine cycles,3 and thermoelectric devices.4,5 Stirling engines and organic Rankine cyclesA novel thermally biased mechanical energy conversion cycle Ian M. McKinley, Sam Goljahi) This paper demonstrates a new power cycle for direct conversion of mechanical energy into electrical energy

Pilon, Laurent

119

Energy Conversion, an Energy Frontier Research  

NLE Websites -- All DOE Office Websites (Extended Search)

11 Awards ... 12 S p r I N g 2 0 1 1 Intermediate Band Solar Energy Conversion in ZnTe:O and ZnTeZnSe Affordable photovoltaic solar cells are highly...

120

Photochemical conversion and storage of solar energy  

Science Journals Connector (OSTI)

Photochemical conversion and storage of solar energy ... In this article, the author considers the use of inorganic photochemical reactions for the conversion and storage of solar energy. ... HOMO?LUMO energy difference values compared ... ...

Charles Kutal

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermoelectric energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Energy Conversion Technologies 1.0 Introduction  

E-Print Network (OSTI)

1 Energy Conversion Technologies 1.0 Introduction In these notes, we describe the infrastructure. By "energy conversion," we mean the conversion of energy into some form of electric energy. By "available now that is available to be considered in the generation and planning functions. We classify this information by Energy

McCalley, James D.

122

Ocean Thermal Energy Conversion LUIS A. VEGA  

E-Print Network (OSTI)

Ocean Thermal Energy Conversion LUIS A. VEGA Hawaii Natural Energy Institute, School of Ocean depths of 20 m (surface water) and 1,000 m. OTEC Ocean Thermal Energy Conversion, the process Energy Conversion. At first, OTEC plantships providing electricity, via submarine power cables, to shore

123

3. Energy conversion, balances, efficiency, equilibrium  

E-Print Network (OSTI)

1/124 3. Energy conversion, balances, efficiency, equilibrium (Introduction to Thermodynamics) Ron h�dm, h = u + p/ Picture: SEHB06 56/124 3.5: Energy balances; Conversion work work, work heat 96/124 Energy conversion heat work /1 "the essential rules" Picture:IO06 #12;97/124 Energy

Zevenhoven, Ron

124

Solid-State Energy Conversion Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

eere.energy.gov 1 Solid-State Energy Conversion Overview John W. Fairbanks Department of Energy Vehicle Technologies Annual Merit Review June 11, 2010 Vehicle Technologies Program...

125

Thermal Energy Harvesting with Thermoelectrics for Self-powered Sensors: With Applications to Implantable Medical Devices, Body Sensor Networks and Aging in Place  

E-Print Network (OSTI)

By scavenging waste heat, thermoelectric generators mightfor new thermoelectric generators to harvest waste heat fromthermoelectric energy generators (TEGs) that scavenge waste heat,

Chen, Alic

2011-01-01T23:59:59.000Z

126

OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

1980. Ocean Thermal Energy Conversion Draft ProgrammaticPlan. Ocean Thermal Energy Conversion. U.S. DOE Assistantl OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTAL ASSESSMENT

Sands, M.Dale

2013-01-01T23:59:59.000Z

127

Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion  

E-Print Network (OSTI)

cost and improve the energy conversion efficiency, to enableefficiency solar energy conversion devices. AcknowledgementsPhotoelectrochemical Energy Conversion Neil P. Dasgupta and

Dasgupta, Neil

2014-01-01T23:59:59.000Z

128

Explorations of Novel Energy Conversion and Storage Systems  

E-Print Network (OSTI)

of Steady-State Energy Conversion. Applied ScientificElectrokinetic energy conversion efficiency in nanofluidicElectrokinetic energy conversion efficiency in nanofluidic

Duffin, Andrew Mark

2010-01-01T23:59:59.000Z

129

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

of ocean thermal energy conversion technology. U.S. DOE.ocean thermal energy conversion. A preliminary engineeringCompany. Ocean thermal energy conversion mission analysis

Sands, M. D.

2011-01-01T23:59:59.000Z

130

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network (OSTI)

Commercial ocean thermal energy conversion (OTEC) plants byFifth Ocean Thermal Energy Conversion Conference, February1980. Ocean thermal energy conversion (OTEC) pilot plant

Sullivan, S.M.

2014-01-01T23:59:59.000Z

131

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network (OSTI)

Commercial ocean thermal energy conversion ( OTEC) plants byfield of ocean thermal energy conversion discharges. I~. L.Sixth Ocean Thermal Energy conversion Conference. June 19-

Sullivan, S.M.

2014-01-01T23:59:59.000Z

132

Solar Energy, Its Conversion and Utilization  

Science Journals Connector (OSTI)

The basis of the discussions is the University of Florida Solar Energy and Energy Conversion Laboratory with its Solar House and its Solar-Electric Car.

Erich A. Farber

1974-01-01T23:59:59.000Z

133

"Approaches to Ultrahigh Efficiency Solar Energy Conversion"...  

Office of Science (SC) Website

"Approaches to Ultrahigh Efficiency Solar Energy Conversion" Webinar Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News...

134

"Fundamental Challenges in Solar Energy Conversion" workshop...  

Office of Science (SC) Website

Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events...

135

Conversion Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

document the conversion plan that clearly defines the system or project's conversion procedures; outlines the installation of new and converted filesdatabases; coordinates the...

136

Thermophotovoltaic Energy Conversion for Space  

Science Journals Connector (OSTI)

Heat is converted to electricity by using a heated surface (the emitter) that radiates infrared (IR) photons to an adjacent low bandgap photovoltaic cell (typically made with binary, ternary, or quaternary semiconductors such as InGaAs, GaSb, InAs, or InGaAsSb), which converts these IR photons to electricity. ... Solid-state TPV energy conversion uses photovoltaic devices in the form of a p?n diode to convert radiant thermal photons directly into electricity. ... The overall system efficiency of a TPV system is the product of factors attributable to the TPV cell efficiency, the spectral filter, and the cell module factor which includes effects of parasitic photon absorption in the nonactive diode area and is defined as the total photonic energy absorbed in the active diode area divided by the total photonic energy absorption. ...

V. L. Teofilo; P. Choong; J. Chang; Y.-L. Tseng; S. Ermer

2008-05-22T23:59:59.000Z

137

Heilongjiang Mudanjiang Nongken Xinneng Thermoelectric Co Ltd | Open Energy  

Open Energy Info (EERE)

Mudanjiang Nongken Xinneng Thermoelectric Co Ltd Mudanjiang Nongken Xinneng Thermoelectric Co Ltd Jump to: navigation, search Name Heilongjiang Mudanjiang Nongken Xinneng Thermoelectric Co., Ltd. Place Mishan, Heilongjiang Province, China Zip 158308 Sector Biomass Product Heilongjiang-based developer of a CDM biomass plant. References Heilongjiang Mudanjiang Nongken Xinneng Thermoelectric Co., Ltd.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Heilongjiang Mudanjiang Nongken Xinneng Thermoelectric Co., Ltd. is a company located in Mishan, Heilongjiang Province, China . References ↑ "[ Heilongjiang Mudanjiang Nongken Xinneng Thermoelectric Co., Ltd.]" Retrieved from "http://en.openei.org/w/index.php?title=Heilongjiang_Mudanjiang_Nongken_Xinneng_Thermoelectric_Co_Ltd&oldid=346439"

138

Thermoelectric Energy Harvesting Using Phase Change Materials (PCMs) in High Temperature Environments in Aircraft  

Science Journals Connector (OSTI)

Wireless, energy-autonomous structural health-monitoring systems in aircraft have the potential of reducing total maintenance costs. Thermoelectric energy harvesting, which seems the best choice for creating t...

A. Elefsiniotis; Th. Becker; U. Schmid

2014-06-01T23:59:59.000Z

139

From Heat to Electricity: How "nano" Saved Thermoelectrics  

E-Print Network (OSTI)

, reliable #12;Thermoelectric applications Waste heat recovery · Automobiles · Over the road trucks% of energy becomes waste heat, even a 10% capture and conversion to useful forms can have huge impactFrom Heat to Electricity: How "nano" Saved Thermoelectrics Sponsored by Mercouri Kanatzidis

Kanatzidis, Mercouri G

140

Effect of the energy dependence of the carrier scattering time on the thermoelectric power factor of quantum wells and nanowires  

E-Print Network (OSTI)

of Physics. [http://dx.doi.org/10.1063/1.4729381] The efficiency of a thermoelectric material is deter- minedEffect of the energy dependence of the carrier scattering time on the thermoelectric power factor thermoelectric performance of solid solutions CuGa1-xInxTe2 (x=0­1.0) Appl. Phys. Lett. 100, 231903 (2012

Anlage, Steven

Note: This page contains sample records for the topic "thermoelectric energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Light-Material Interactions in Energy Conversion - Energy Frontier...  

NLE Websites -- All DOE Office Websites (Extended Search)

conversion efficiency for non-tracking converters must be reasonably independent of light incidence angle. To improve energy conversion efficiency with photonic design and...

142

Powering a Cat Warmer Using Thin-Film Thermoelectric Conversion of Microprocessor  

E-Print Network (OSTI)

towards one end, creating a difference in potential. The efficiency of thermo- electric generators (TEG efficiencies when converting heat to electricity using the thermoelectric ef- fect. Applied to microprocessors produced by laptops [14], [17], climate-change inducing electricity consumption [11], and unhappy house

Yang, Junfeng

143

Reducing industrial energy use with thermoelectric diffusion heat pumps  

SciTech Connect

The described Peltier Effect Diffusion System (PEDS) employs an innovative unit geometry in conjunction with thermoelectric (TE) heat pumps having high operational efficiency. Significant system design dynamics are explored, including heat and mass transfer mechanisms, fluid dynamics, and unit sizing methodology. Finally, estimated operating performance is presented for some representative industrial applications which are well suited to availability-based efficiency evaluations, namely: desalination, multi-stage absorption cycle refrigeration systems and freeze-concentration processes. Peltier effect TE heat pumps provide multi-stage work input to separations. The PEDS utilizes electrically generated heat as the separating agent, and pumps this energy to successively higher availability levels, resulting in high overall COP and greatly improved thermodynamic efficiency. Process costs in terms of availability utilization can be identified. The described PEDS process offers a meaningful alternative to conventional mass transfer methods.

Meckler, M.

1982-08-01T23:59:59.000Z

144

Principles of photoelectrochemical, solar energy conversion  

Science Journals Connector (OSTI)

Photoelectrochemical devices for conversion of solar energy into both electrical energy and chemical energy are discussed with emphasis on how the ... parameters as band gap, doping level, minority carrier lifeti...

M. A. Butler; D. S. Ginley

1980-01-01T23:59:59.000Z

145

Approaches for biological and biomimetic energy conversion  

Science Journals Connector (OSTI)

...biological and biomimetic energy conversion 10.1073...that are related to energy conversion: specifically...synthetic and/or hybrid devices is still...systems that produce energy in an efficient...costs are related to infrastructure, such as supporting...inverters, and grid connections. For...

David A. LaVan; Jennifer N. Cha

2006-01-01T23:59:59.000Z

146

Next-Generation Thermionic Solar Energy Conversion  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermionic Solar Energy Conversion SLAC National Accelerator Laboratory Award Number: CPS 25659 | April 15, 2013 | Melosh * Fabricate heterostructure semiconductor cathodes based...

147

THERMOELECTRICAL ENERGY RECOVERY FROM THE EXHAUST OF A LIGHT TRUCK  

SciTech Connect

A team formed by Clarkson University is engaged in a project to design, build, model, test, and develop a plan to commercialize a thermoelectric generator (TEG) system for recovering energy from the exhaust of light trucks and passenger cars. Clarkson University is responsible for project management, vehicle interface design, system modeling, and commercialization plan. Hi-Z Technology, Inc. (sub-contractor to Clarkson) is responsible for TEG design and construction. Delphi Corporation is responsible for testing services and engineering consultation and General Motors Corporation is responsible for providing the test vehicle and information about its systems. Funds were supplied by a grant from the Transportation Research Program of the New York State Energy Research and Development Authority (NYSERDA), through Joseph R. Wagner. Members of the team and John Fairbanks (Project Manager, Office of Heavy Vehicle Technology). Currently, the design of TEG has been completed and initial construction of the TEG has been initiated by Hi-Z. The TEG system consists of heat exchangers, thermoelectric modules and a power conditioning unit. The heat source for the TEG is the exhaust gas from the engine and the heat sink is the engine coolant. A model has been developed to simulate the performance of the TEG under varying operating conditions. Preliminary results from the model predict that up to 330 watts can be generated by the TEG which would increase fuel economy by 5 percent. This number could possibly increase to 20 percent with quantum-well technology. To assess the performance of the TEG and improve the accuracy of the modeling, experimental testing will be performed at Delphi Corporation. A preliminary experimental test plan is given. To determine the economic and commercial viability, a business study has been conducted and results from the study showing potential areas for TEG commercialization are discussed.

Karri, M; Thacher, E; Helenbrook, B; Compeau, M; Kushch, A; Elsner, N; Bhatti, M; O' Brien, J; Stabler, F

2003-08-24T23:59:59.000Z

148

Biochemical Conversion | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

by enhancing fuel yields in integrated biorefineries which combine conversion types with heat and power efficiencies to produce fuel and products. Lignocellulose (mainly lignin,...

149

Light-Material Interactions in Energy Conversion - Energy Frontier...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy Steven Chu visits Caltech labs For more information or questions about the Light-Material Interactions in Energy Conversion Energy Frontier Research Center, please...

150

Energy Conversion DevicesEnergy Conversion Devices Fuel Cell Electrocatalyst Development Program  

E-Print Network (OSTI)

for several groups of electrocatalysts ECD PEMFC Catalyst Development Evaluation programs exist for severalEnergy Conversion Devices PEMFC Electrocatalyst Development Program Contact information: Dr. Peter Faguy pfaguyEnergy Conversion DevicesEnergy Conversion Devices Fuel Cell Electrocatalyst Development Program

151

Nanograined half-Heusler semiconductors as advanced thermoelectrics: an ab-initio high-throughput statistical study  

E-Print Network (OSTI)

@duke.edu Abstract Nanostructuring has spurred a revival in the field of direct thermoelectric energy conversion. This leads to increased conversion efficiencies. Despite considerable effort in opti- mizing the known materials re- mains elusive due to several challenging factors.1,2 Effective thermoelectrics must have

Curtarolo, Stefano

152

Parameterizing energy conversion on rough topography  

E-Print Network (OSTI)

Parameterizing energy conversion on rough topography using bottom pressure sensors to measure form and mixing U0 Form drag pressure Tidal energy conversion Form drag causes: - internal wave generation - eddy Sound, WA Point Three Tree Previous work McCabe et al., 2006 > Measured the internal form drag

Warner, Sally

153

Energy Calculator- Common Units and Conversions  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Calculator - Common Units and Conversions Energy Calculator - Common Units and Conversions Calculators for Energy Used in the United States: Coal Electricity Natural Gas Crude Oil Gasoline Diesel & Heating Oil Coal Conversion Calculator Short Tons Btu Megajoules Metric Tons Clear Calculate 1 Short Ton = 20,169,000 Btu (based on U.S. consumption, 2007) Electricity Conversion Calculator KilowattHours Btu Megajoules million Calories Clear Calculate 1 KilowattHour = 3,412 Btu Natural Gas Conversion Calculator Cubic Feet Btu Megajoules Cubic Meters Clear Calculate 1 Cubic Foot = 1,028 Btu (based on U.S. consumption, 2007); 1 therm = 100,000 Btu; 1 terajoule = 1,000,000 megajoules Crude Oil Conversion Calculator Barrels Btu Megajoules Metric Tons* Clear Calculate 1 Barrel = 42 U.S. gallons = 5,800,000 Btu (based on U.S. consumption,

154

Thermoelectrics Partnership: High Performance Thermoelectric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Performance Thermoelectric Waste Heat Recovery System Based on Zintl Phase Materials with Embedded Nanoparticles Thermoelectrics Partnership: High Performance Thermoelectric...

155

Thermoelectrics Partnership: Automotive Thermoelectric Modules...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solution for Automotive Thermoelectric Modules Application Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces...

156

Energy Balances for Biomass Conversion Systems  

Science Journals Connector (OSTI)

Biomass conversion systems of any type, irrespective of ... measured on a consistent scale which identifies the energy efficiency of the process and of the overall system. Accurate energy balances, as well as mat...

Raphael Katzen

1983-01-01T23:59:59.000Z

157

Energy conversions of a desert depression  

Science Journals Connector (OSTI)

This work is concerned with the energy conversions of a developing atmospheric system in subtropical ... and temporal variations of various components of the energy budget are presented in a detailed analysis. T...

H. Abdel Basset

2001-04-01T23:59:59.000Z

158

The Conversion of Waste to Energy  

E-Print Network (OSTI)

Almost every industrial operation produces some combustible waste, but conversion of this to useful energy is often more difficult than with other energy recovery projects and requires careful attention to design, operating and maintaining...

John, T.; Cheek, L.

1980-01-01T23:59:59.000Z

159

Assessment of ocean thermal energy conversion  

E-Print Network (OSTI)

Ocean thermal energy conversion (OTEC) is a promising renewable energy technology to generate electricity and has other applications such as production of freshwater, seawater air-conditioning, marine culture and chilled-soil ...

Muralidharan, Shylesh

2012-01-01T23:59:59.000Z

160

A continuum theory of thermoelectric bodies and effective properties of thermoelectric composites  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 A constitutive model for thermoelectric materials . . . . . . . . . . . . . . . . . . . . 6 2 composites. 1 Introduction Thermoelectric (TE) materials directly convert heat into electric energyA continuum theory of thermoelectric bodies and effective properties of thermoelectric composites

Liu, Liping

Note: This page contains sample records for the topic "thermoelectric energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Advanced, High Power, Next Scale, Wave Energy Conversion Device...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy...

162

Global Waste to Energy Conversion Company GWECC | Open Energy Information  

Open Energy Info (EERE)

Waste to Energy Conversion Company GWECC Waste to Energy Conversion Company GWECC Jump to: navigation, search Name Global Waste to Energy Conversion Company (GWECC) Place Washington, DC Product GWECC is a global alternative energy company headquartered in Washington DC, USA. References Global Waste to Energy Conversion Company (GWECC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Global Waste to Energy Conversion Company (GWECC) is a company located in Washington, DC . References ↑ "Global Waste to Energy Conversion Company (GWECC)" Retrieved from "http://en.openei.org/w/index.php?title=Global_Waste_to_Energy_Conversion_Company_GWECC&oldid=345924" Categories: Clean Energy Organizations

163

Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and mechanical) with three characterization systems: - Scanning probe for high-resolution spatial resistance characterization (contact resistance, diffusion of contacts and joints...

164

Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

* Vertical symmetry layers Electrical Module Connection * SeriesParallel connection Heat Exchanger * Lengthwidth per channel * Height of gas and water channel * Wall...

165

High temperature thermoelectric characterization of III-V semiconductor thin films by oxide bonding  

E-Print Network (OSTI)

energy conversion, and other high temperature applications.[1-5] Since the efficiency of those energy conversion applications relies heavily on the carrier transport properties of the materials used, it is very by Molecular Beam Epitaxy (MBE) has demonstrated its usefulness in thermoelectric energy conversion

Bowers, John

166

High-Temperature Thermoelectric Characterization of IIIV Semiconductor Thin Films by Oxide Bonding  

E-Print Network (OSTI)

energy conversion, and other high-temperature applications.1­4 Since the efficiency of these energy conversion applications relies heavily on the carrier transport properties of the materials used, it is very by molecular beam epitaxy (MBE) has demonstrated its useful- ness in thermoelectric energy conversion

167

Light-Material Interactions in Energy Conversion - Energy Frontier...  

NLE Websites -- All DOE Office Websites (Extended Search)

The recorded presentations and panel discussion are now available for online viewing. The Light-Material Interactions in Energy Conversion Energy Frontier Research Center...

168

Light-Material Interactions in Energy Conversion - Energy Frontier...  

NLE Websites -- All DOE Office Websites (Extended Search)

Si as part of RG-3 research efforts (Chris Gladden, LBNL) The Scientific Vision of the "Light-Material Interactions in Energy Conversion Energy Frontier Research Center"...

169

Light-Material Interactions in Energy Conversion - Energy Frontier...  

NLE Websites -- All DOE Office Websites (Extended Search)

Millikan Board Room map California Institute of Technology Pasadena, CA The Light-Material Interactions in Energy Conversion (LMI) Energy Frontier Research Center...

170

Utilizing Nature's Designs for Solar Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Nature's Designs for Solar Energy Conversion Nature's Designs for Solar Energy Conversion Create new materials that: capture, convert, store sunlight Learn from Nature... ...build with chemistry ANL Photosynthesis Group Fundamental Studies  Solar energy conversion in natural and artificial photosynthesis Resolve mechanisms, design principles  Unique capabilities Time-resolved, multi-frequency EPR Time-resolved synchrotron X-ray Ultrafast spectroscopy Multi-molecular: Artificial systems for H 2 photocatalysis  Limitations:  Large solvent, molecular dependencies  Diffusion  Lifetimes  Uncontrolled back-reactions  Most PS contain noble metals  Organic solvent/high proton

171

Thermoelectric recovery of waste heat -- Case studies  

SciTech Connect

The use of waste heat as an energy source for thermoelectric generation largely removes the constraint for the wide scale application of this technology imposed by its relatively low conversion efficiency (typically about 5%). Paradoxically, in some parasitic applications, a low conversion efficiency can be viewed as a distinct advantage. However, commercially available thermoelectric modules are designed primarily for refrigerating applications and are less reliable when operated at elevated temperatures. Consequently, a major factor which determines the economic competitiveness of thermoelectric recovery of waste heat is the cost per watt divided by the mean-time between module failures. In this paper is reported the development of a waste, warm water powered thermoelectric generator, one target in a NEDO sponsored project to economically recover waste heat. As an application of this technology case studies are considered in which thermoelectric generators are operated in both active and parasitic modes to generate electrical power for a central heating system. It is concluded that, in applications when the supply of heat essentially is free as with waste heat, thermoelectrics can compete economically with conventional methods of electrical power generation. Also, in this situation, and when the generating system is operated in a parasitic mode, conversion efficiency is not an important consideration.

Rowe, M.D.; Min, G.; Williams, S.G.K.; Aoune, A. [Cardiff School of Engineering (United Kingdom). Div. of Electronic Engineering; Matsuura, Kenji [Osaka Univ., Suita, Osaka (Japan). Dept. of Electrical Engineering; Kuznetsov, V.L. [Ioffe Physical-Technical Inst., St. Petersburg (Russian Federation); Fu, L.W. [Tsinghua Univ., Beijing (China). Microelectronics Inst.

1997-12-31T23:59:59.000Z

172

Ocean Thermal Energy Conversion Mostly about USA  

E-Print Network (OSTI)

Ocean Thermal Energy Conversion History Mostly about USA 1980's to 1990's and bias towards Vega or other energy carriers to be delivered to shore... 13luisvega@hawaii.edu #12;US Federal Government OTEC period estimated at 3 to 4 years. #12;luisvega@hawaii.edu 20 Energy Carriers · OTEC energy could

173

Nanoscale -structural domains in the phonon-glass thermoelectric material -Zn4Sb3 H. J. Kim,1 E. S. Bozin,1 S. M. Haile,2 G. J. Snyder,2 and S. J. L. Billinge1,  

E-Print Network (OSTI)

Nanoscale -structural domains in the phonon-glass thermoelectric material -Zn4Sb3 H. J. Kim,1 E. S April 2007 A study of the local atomic structure of the promising thermoelectric material -Zn4Sb3, using Thermoelectric materials allow for direct conversion of heat into electrical energy and vice versa. They hold

174

Micro Electret Energy Harvesting Device with Analogue Impedance Conversion Circuit  

E-Print Network (OSTI)

Micro Electret Energy Harvesting Device with Analogue Impedance Conversion Circuit Yuji Suzuki1 using a low-power-consumption impedance conversion circuit. Key words: Energy harvesting, Electret, CYTOP, Parylene spring, Impedance conversion 1. INTRODUCTION Energy harvesting from environmental

Kasagi, Nobuhide

175

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network (OSTI)

Analysis of Giant Koa Energy Tree Farms," Hawaii Naturalfor a 1000 acre irrigated energy tree farm on Molokai usingof using eucalyptus trees for energy farming in Hawaii.

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

176

Ris Energy Report 2 Bioenergy conversion  

E-Print Network (OSTI)

6.3 Risø Energy Report 2 Bioenergy conversion There is a wide range of technologies to derive operate automatically and are in many regions an economic alternative, e.g. Austria and Finland

177

Materials aspects of photoelectrochemical energy conversion  

Science Journals Connector (OSTI)

Stabilization of the light-harvesting semiconductor electrode is a key factor in the design of a photoelectrochemical (PEC) system for solar energy conversion. Approaches to circumvent the problem of PEC...

K. Rajeshwar

1985-01-01T23:59:59.000Z

178

Network Analysis of Photovoltaic Energy Conversion  

Science Journals Connector (OSTI)

Photovoltaic energy conversion in photovoltaic cells has been analyzed by the detailed balance approach or by thermodynamic arguments. Here we introduce a network representation to analyze the performance of such systems once a suitable kinetic model (...

Mario Einax; Abraham Nitzan

2014-11-03T23:59:59.000Z

179

Energy Conversion | Global and Regional Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Conversion Group Energy Conversion Group The Energy Conversion Group offers advanced technical solutions to achieve reduced fossil fuel use in geothermal power and building energy applications. Focus is on advanced materials, biofuel end use, combustion and system concepts. We seek to continuously improve the capabilities of relevant research tools being applied in collaborative initiatives to achieving these goals. Capabilities The group conducts research in a number of energy-related areas. These include advanced materials for geothermal energy, applications of biofuels and alternative fuels, efficiency in heating/cooling equipment, advanced oil burner development and particulate emissions for wood boilers. Advanced Materials for Geothermal Energy Supercritical carbon dioxide has properties midway between a gas and a

180

Development of Cost-Competitive Advanced Thermoelectric Generators...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power Development of Cost-Competitive Advanced Thermoelectric...

Note: This page contains sample records for the topic "thermoelectric energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Cost-Competitive Advanced Thermoelectric Generators for Direct...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power Cost-Competitive Advanced Thermoelectric Generators for...

182

Ocean Thermal Energy Conversion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Energy Conversion Basics Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when the temperature difference between the warmer, top layer of the ocean and the colder, deep ocean water is about 36°F (20°C). These conditions exist in tropical coastal areas, roughly between the Tropic of Capricorn and the Tropic of Cancer. To bring the cold water to the surface, ocean thermal energy conversion plants require an expensive, large-diameter intake pipe, which is submerged a mile or more into the ocean's depths. Some energy experts believe that if ocean thermal energy conversion can become cost-competitive with conventional power technologies, it could be

183

Ocean Thermal Energy Conversion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Energy Conversion Basics Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when the temperature difference between the warmer, top layer of the ocean and the colder, deep ocean water is about 36°F (20°C). These conditions exist in tropical coastal areas, roughly between the Tropic of Capricorn and the Tropic of Cancer. To bring the cold water to the surface, ocean thermal energy conversion plants require an expensive, large-diameter intake pipe, which is submerged a mile or more into the ocean's depths. Some energy experts believe that if ocean thermal energy conversion can become cost-competitive with conventional power technologies, it could be

184

Thermoelectric power source utilizing ambient energy harvesting for remote sensing and transmitting  

DOE Patents (OSTI)

A method and apparatus for providing electrical energy to an electrical device wherein the electrical energy is originally generated from temperature differences in an environment having a first and a second temperature region. A thermoelectric device having a first side and a second side wherein the first side is in communication with a means for transmitting ambient thermal energy collected or rejected in the first temperature region and the second side is in communication with the second temperature region thereby producing a temperature gradient across the thermoelectric device and in turn generating an electrical current.

DeSteese, John G

2010-11-16T23:59:59.000Z

185

Novel Energy Conversion Equipment for Low Temperature Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Project objective: Develop...

186

Potential Impacts of Hydrokinetic and Wave Energy Conversion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on...

187

Energy Conversion Devices Inc aka ECD Ovonics | Open Energy Information  

Open Energy Info (EERE)

Conversion Devices Inc aka ECD Ovonics Conversion Devices Inc aka ECD Ovonics Jump to: navigation, search Name Energy Conversion Devices Inc (aka ECD Ovonics) Place Rochester Hills, Michigan Zip 48309 Sector Solar Product Michigan-based materials developer and holding company for thin-film silicon PV manufacturer United Solar Ovonics. References Energy Conversion Devices Inc (aka ECD Ovonics)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Energy Conversion Devices Inc (aka ECD Ovonics) is a company located in Rochester Hills, Michigan . References ↑ "Energy Conversion Devices Inc (aka ECD Ovonics)" Retrieved from "http://en.openei.org/w/index.php?title=Energy_Conversion_Devices_Inc_aka_ECD_Ovonics&oldid=34484

188

Defect Tolerant Semiconductors for Solar Energy Conversion  

Science Journals Connector (OSTI)

Defect Tolerant Semiconductors for Solar Energy Conversion ... He obtained his Ph.D. in Physics at Paris-Sud University where he modeled Hot Carrier Solar Cells by means of Ensemble Monte Carlo methods. ... These surface energies are significantly lower compared to 96 and 102 meV/Å2 for (1010) and (1120) low energy nonpolar GaN surfaces respectively. ...

Andriy Zakutayev; Christopher M. Caskey; Angela N. Fioretti; David S. Ginley; Julien Vidal; Vladan Stevanovic; Eric Tea; Stephan Lany

2014-03-13T23:59:59.000Z

189

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

clean and efficient energy conversion in power systems," inSteam Power Plant," in Energy conversion, YG Goswami and Fazeotropic mixture energy conversion," Energy Conversion and

Ho, Tony

2012-01-01T23:59:59.000Z

190

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network (OSTI)

Report, (unpublished, 1979). Biomass Project Progress 31.Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

191

Superconducting thermoelectric generator  

DOE Patents (OSTI)

An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

Metzger, J.D.; El-Genk, M.S.

1996-01-01T23:59:59.000Z

192

Superconducting thermoelectric generator  

DOE Patents (OSTI)

An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

Metzger, John D. (Eaton's Neck, NY); El-Genk, Mohamed S. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

193

Superconducting thermoelectric generator  

DOE Patents (OSTI)

An apparatus and method for producing electricity from heat is disclosed. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device. 4 figs.

Metzger, J.D.; El-Genk, M.S.

1998-05-05T23:59:59.000Z

194

Performance Study of Thermoelectric Solar-Assisted Heat Pump with Reflectors  

Science Journals Connector (OSTI)

The simultaneous conversion of solar radiation into thermal and electrical energy in a thermoelectric (TE) solar-assisted heat pump is, for the purposes of ... plate reflectors have been mounted on a TE solar col...

C. Lertsatitthanakorn; S. Soponronnarit…

2014-06-01T23:59:59.000Z

195

Thermal Conductivity Reduction and Thermoelectric Figure of Merit Increase by Embedding Nanoparticles in Crystalline Semiconductors  

E-Print Network (OSTI)

, 63.22.+m, 65.80.+n, 66.60.+a The performance of thermoelectric energy conversion devices depends to achieve high carrier mobility. The lowest thermal conduc- tivity in crystalline solids is generally

196

STRUCTURE ORIGIN OF THE ENHANCED THERMOELECTRIC POWER Today approximately 60% of the energy consumption in the US is lost, mostly through waste  

E-Print Network (OSTI)

consumption in the US is lost, mostly through waste heat. Development on thermoelectric technologySTRUCTURE ORIGIN OF THE ENHANCED THERMOELECTRIC POWER Today approximately 60% of the energy to significant energy savings. Many recent advances in thermoelectric materials are attributed to nanoscale

Homes, Christopher C.

197

Energy from the Biological Conversion of Solar Energy [and Discussion  

Science Journals Connector (OSTI)

7 February 1980 research-article Energy from the Biological Conversion of Solar Energy [and Discussion] N. K. Boardman M...are well designed for the collection and storage of solar energy. Moreover, photosynthetic organisms show...

1980-01-01T23:59:59.000Z

198

Light-Material Interactions in Energy Conversion - Energy Frontier...  

NLE Websites -- All DOE Office Websites (Extended Search)

academia and government to discuss new technologies for redefining the limits of solar energy conversion efficiency. download flyer Invited Speakers Include: Harry...

199

Light-Material Interactions in Energy Conversion - Energy Frontier...  

NLE Websites -- All DOE Office Websites (Extended Search)

government gathered together and discussed new technologies for redefining the limits of solar energy conversion efficiency. The program featured invited talks, a poster session,...

200

MHK Technologies/Mobil Stabilized Energy Conversion Platform | Open Energy  

Open Energy Info (EERE)

MHK Technologies/Mobil Stabilized Energy Conversion Platform MHK Technologies/Mobil Stabilized Energy Conversion Platform < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Mobil Stabilized Energy Conversion Platform.jpg Technology Profile Primary Organization Aqua Magnetics Inc Technology Resource Click here Wave Technology Type Click here Reciprocating Device Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Stabilized Energy Conversion Platform SECOP consists of submersible hulls supporting a raised work platform containing a number of AMI s reciprocating electric generators Technology Dimensions Device Testing Date Submitted 34:44.5 << Return to the MHK database homepage Retrieved from

Note: This page contains sample records for the topic "thermoelectric energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Light-Material Interactions in Energy Conversion - Energy Frontier...  

NLE Websites -- All DOE Office Websites (Extended Search)

Caltech Harry Atwater Introduction to the Workshop on Fundamental Challenges in Solar Energy Conversion Harry A. Atwater, Caltech Eli Yablonovitch Fundamental Limits to Light...

202

Light-Material Interactions in Energy Conversion - Energy Frontier...  

NLE Websites -- All DOE Office Websites (Extended Search)

broad importance in many thermal conversion and efficiency applications beyond solar energy. The RG3 team is establishing fundamental principles for thermal photon harvesting...

203

NSF/DOE Thermoelectrics Partnership: Purdue ? GM Partnership on Thermoelectrics for Automotive Waste Heat Recovery  

Energy.gov (U.S. Department of Energy (DOE))

Reviews results in developing commercially viable thermoelectric generators for efficient conversion of automotive exhaust waste heat to electricity

204

Photochemical conversion of solar energy  

Science Journals Connector (OSTI)

... THE energy crisis of the early 1970s has stimulated considerable growth in ... crisis of the early 1970s has stimulated considerable growth in solar ...

Anthony Harriman

1978-11-02T23:59:59.000Z

205

Laser spectroscopy of primary energy conversion in  

Science Journals Connector (OSTI)

A review is given of the current status of research on primary processes of energy conversion in photosynthesis. The structural and functional organization of photosynthetic apparatus of higher plants is considered. A description is given of laser probing methods, applications of high-speed optical shutters, and picosecond spectrofluorometry involving the use of image converters. A functional scheme of primary energy conversion by Rhodopseudomonas sphaeroides bacteria is given for the 10?12–10?4 sec range of time intervals. Some nonlinear processes resulting from intense excitation of the pigment apparatus of photosynthesizing organisms are considered.

V Z Pashchenko; L B Rubin

1978-01-01T23:59:59.000Z

206

Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion  

E-Print Network (OSTI)

research on conversion and storage of solar energy, with anof the solar resource, energy storage is a critical

Dasgupta, Neil

2014-01-01T23:59:59.000Z

207

Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion  

E-Print Network (OSTI)

of the solar resource, energy storage is a criticalon conversion and storage of solar energy, with an emphasis

Dasgupta, Neil

2014-01-01T23:59:59.000Z

208

US energy conversion and use characteristics  

SciTech Connect

The long-range goal of the Energy Conversion and Utilization Technology (ECUT) Program is to enhance energy productivity in all energy-use sectors by supporting research on improved efficiency and fuel switching capability in the conversion and utilization of energy. Regardless of the deficiencies of current information, a summary of the best available energy-use information is needed now to support current ECUT program planning. This document is the initial draft of this type of summary and serves as a data book that will present current and periodically updated descriptions of the following aspects of energy use: gross US energy consumption in each major energy-use sector; energy consumption by fuel type in each sector; energy efficiency of major equipment/processes; and inventories, replacement rates, and use patterns for major energy-using capital stocks. These data will help the ECUT program staff perform two vital planning functions: determine areas in which research to improve energy productivity might provide significant energy savings or fuel switching and estimate the actual effect that specific research projects may have on energy productivity and conservation. Descriptions of the data sources and examples of the uses of the different types of data are provided in Section 2. The energy-use information is presented in the last four sections; Section 3 contains general, national consumption data; and Sections 4 through 6 contain residential/commercial, industrial, and transportation consumption data, respectively. (MCW)

Imhoff, C.H.; Liberman, A.; Ashton, W.B.

1982-02-01T23:59:59.000Z

209

Light-Material Interactions in Energy Conversion - Energy Frontier...  

NLE Websites -- All DOE Office Websites (Extended Search)

which authors are part of the LMI-EFRC: "A.A.A. was supported as part of the DOE "Light-Material Interactions in Energy Conversion' Energy Frontier Research Center under...

210

Thermoelectric Properties of Nanostructured Silicon Films.  

E-Print Network (OSTI)

??Based on the Seebeck effect, thermoelectric materials can convert temperature heat into electrical energy. Alternatively, based on the Peltier effect, thermoelectric cooling can be achieved… (more)

Guo, Xiao

2014-01-01T23:59:59.000Z

211

WEC up! Energy Department Announces Wave Energy Conversion Prize Administrator  

Office of Energy Efficiency and Renewable Energy (EERE)

The Water Power Program today awarded $6.5 million to a Prize Administration Team for the development and execution of the Energy Department’s Wave Energy Conversion (WEC) Prize Competition. The WEC Prize will continue to advance marine and hydrokinetic (MHK) technology as a viable source for America’s clean energy future, in part by providing an opportunity for developers to test their innovative wave energy conversion (WEC) devices in a wave generating basin.

212

Solar energy conversion by chloroplast photoelectrochemical cells  

Science Journals Connector (OSTI)

... the photochemical cell has proved advantageous because of their ease of preparation and their power conversion efficiency of close to 1 %. Fig. l Time course of potential development. ... h even after the light was turned off, illustrated the system's ability to store energy. The ability of the cell to generate a voltage is equivalent to a generator ...

Ravindra Bhardwaj; Rong L. Pan; Elizabeth L. Gross

1981-01-29T23:59:59.000Z

213

On the Energy Conversion during Geostrophic Adjustment  

Science Journals Connector (OSTI)

It is found that for a continuously stratified fluid which remains so during the geostrophic adjustment, the energy conversion ratio ? (??KE/?PE) is ½, in contrast to the value of ? for a two-layer fluid. Since the two-layer fluid is an ...

Hsien Wang Ou

1986-12-01T23:59:59.000Z

214

Wind Energy Conversion Systems (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Conversion Systems (Minnesota) Wind Energy Conversion Systems (Minnesota) Wind Energy Conversion Systems (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Wind Buying & Making Electricity Program Info State Minnesota Program Type Siting and Permitting This section distinguishes between large (capacity 5,000 kW or more) and small (capacity of less than 5,000 kW) wind energy conversion systems (WECS), and regulates the siting of large conversion systems. The statute

215

Magnetic energy storage and conversion in the solar atmosphere  

Science Journals Connector (OSTI)

A review of the theoretical problems associated with preflare magnetic energy storage and conversion is presented. The review consists of three parts; preflare magnetic energy storage, magnetic energy conversion ...

D. S. Spicer

1982-01-01T23:59:59.000Z

216

Thermoelectrics Partnership: Automotive Thermoelectric Modules...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Novel Nanostructured Interface Solution for Automotive Thermoelectric...

217

Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle  

Energy.gov (U.S. Department of Energy (DOE))

Describes TEG systems built at MSU to mitigate couple failures and a cost-benefit analysis for a system used as an energy recovery system ? auxiliary power unit in an over-the-road truck system.

218

Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

219

Advanced Conversion Roadmap Workshop | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Conversion Roadmap Workshop DOE introduction slides to the Advanced Conversion Roadmap Workshop webinar. ctabwebinardoe.pdf More Documents & Publications Conversion...

220

2007 Survey of Energy Resources World Energy Council 2007 Ocean Thermal Energy Conversion COUNTRY NOTES  

E-Print Network (OSTI)

2007 Survey of Energy Resources World Energy Council 2007 Ocean Thermal Energy Conversion 573 and personal communication. Valuable inputs were provided by Don Lennard of Ocean Thermal Energy Conversion in the technology. #12;2007 Survey of Energy Resources World Energy Council 2007 Ocean Thermal Energy Conversion 574

Note: This page contains sample records for the topic "thermoelectric energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Semiconductor Nanowires for Energy Conversion Allon I. Hochbaum*,  

E-Print Network (OSTI)

Semiconductor Nanowires for Energy Conversion Allon I. Hochbaum*, and Peidong Yang* Department. Introduction: Role of Materials in Energy Conversion 527 2. Why Are Semiconductor Nanowires Special? 527 3 of Materials in Energy Conversion Between 2004 and 2030 the annual global consumption of energy is estimated

Wu, Zhigang

222

MHK Technologies/Direct Energy Conversion Method DECM | Open Energy  

Open Energy Info (EERE)

Conversion Method DECM Conversion Method DECM < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Direct Energy Conversion Method DECM.jpg Technology Profile Primary Organization Trident Energy Ltd Project(s) where this technology is utilized *MHK Projects/TE4 Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Description The Direct Energy Conversion Method DECM device has four major components 1 linear generators that convert straight line mechanical motion directly into electricity 2 floats placed in the sea to capture wave energy through a rising and falling action which drives linear generators resulting in the immediate generation of electricity 3 a sea platform used to support the floats and generators and 4 a conventional anchoring system to moor the rig

223

Advanced Energy Conversion LLC AEC | Open Energy Information  

Open Energy Info (EERE)

LLC AEC Jump to: navigation, search Name: Advanced Energy Conversion LLC (AEC) Place: New York Zip: 12020 Product: R&D company focused on power electronics, motion control systems...

224

Light-Material Interactions in Energy Conversion - Energy Frontier...  

NLE Websites -- All DOE Office Websites (Extended Search)

Get Involved The LMI-EFRC is a synergistic, engaged team of researchers devoted to light management for solar energy conversion. If you are interested in learning more about the...

225

The magnesium silicide germanide stannide alloy: A new concept in ocean thermal energy conversion  

SciTech Connect

In devices hitherto used for the direct conversion of heat into electricity, commonly known as ''thermoelectric energy converters'', the efficiency of conversion is appreciably lower than that of conventional reciprocating or rotary heat engines. This low efficiency is brought about by the physical properties of the materials selected for the manufacture of these devices. The materials that are currently being used for this purpose are either simple elements and alloys thereof, such as silicon and germanium, or intermetallic compounds, either simple or alloys and solid solutions thereof. Of the latter, mention may be made of bismuth telluride, antimony telluride, lead telluride, antimony silver telluride, lead selenide, bismuth selenide, antimony selenide, etc., as well as mixtures and solid solutions of these and other compounds. A search in respect of these materials carried out in the U.S. Patent literature indicates indeed a quite substantial and impressive record.

Nicolaou, M.C.

1983-12-01T23:59:59.000Z

226

Issues related to wind energy conversion systems  

Science Journals Connector (OSTI)

There is growing interest in the development of more sustainable electricity systems employing renewable, low-emission resources. In this context, the number of wind power generators installed in the world is increasing, and there are strong indicators that such growth should continue in the next decades. The intensity of wind power expansion depends on different factors related to technical, economic, environmental, governmental, and regulatory issues. This paper presents an overview on various issues related to wind energy conversion systems.

Walmir Freitas; Ahmed Faheem Zobaa; Jose C.M. Vieira; James S. McConnach

2005-01-01T23:59:59.000Z

227

High Energy Utilization, Co-Generation Nuclear power Plants With Static Energy Conversion  

SciTech Connect

In addition to being cost effective, very small nuclear power plants with static energy conversion could meet the needs and the energy mix in underdeveloped countries and remote communities, which may include electricity, residential and industrial space heating, seawater desalination, and/or high temperature process heat or steam for industrial uses. These plants are also an attractive option in naval, marine, and undersea applications, when the absence of a sound signature is highly desirable. An Analysis is performed of Gas Cooled Reactor (CGR) and Liquid Metal Cooled Reactor (LMR), very small nuclear power plants with static energy conversion, using a combination of options. These include Alkali Metal Thermal-to-Electric Converters (AMTECs) and both single segment and segmented thermoelectric converters. The total energy utilization of these plants exceeds 88%. It includes the fraction of the reactor's thermal power converted into electricity and delivered to the Grid at 6.6 kVA and those used for residential and industrial space heating at {approx}370 K, seawater desalination at 400 K, and/or high temperature process heat or steam at {approx}850 K. In addition to its inherently high reliability, modularity, low maintenance and redundancy, static energy conversion used in the present study could deliver electricity to the Grid at a net efficiency of 29.5%. A LMR plant delivers 2-3 times the fraction of the reactor thermal power converted into electricity in a GCR plant, but could not provide for both seawater desalination and high temperature process heat/steam concurrently, which is possible in GCR plants. The fraction of the reactor's thermal power used for non-electrical power generation in a GCR plant is {approx} 10 - 15% higher than in a LMR plant. (authors)

El-Genk, Mohamed S.; Tournier, Jean-Michel P. [Institute for Space and Nuclear Power Studies and Chemical and Nuclear Engineering Department, The University of New Mexico, Albuquerque, NM (United States)

2002-07-01T23:59:59.000Z

228

Functionalization of Graphene for Efficient Energy Conversion and Storage  

Science Journals Connector (OSTI)

Functionalization of Graphene for Efficient Energy Conversion and Storage ... Although the efficiency of energy conversion and storage devices depends on a variety of factors, their overall performance strongly relies on the structure and properties of the component materials. ...

Liming Dai

2012-10-03T23:59:59.000Z

229

Next-Generation Thermionic Solar Energy Conversion  

Energy.gov (U.S. Department of Energy (DOE))

This fact sheet describes a next-generation thermionic solar energy conversion project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by Stanford University, seeks to demonstrate the feasibility of photon-enhanced, microfabricated thermionic energy converters as a high-efficiency topping cycle for CSP electricity generation. With the potential to double the electricity output efficiency of solar-thermal power stations, this topping cycle application can significantly reduce the cost of solar-thermal electricity below that of the lowest-cost, fossil-fuel generated electricity.

230

Energy from the Biological Conversion of Solar Energy [and Discussion  

Science Journals Connector (OSTI)

...The average efficiency of solar energy conversion on a global scale is estimated as about 0.15%. The energy content of the annual biomass residues in...about one-quarter of the primary energy use in those countries, but only...

1980-01-01T23:59:59.000Z

231

E2I EPRI Assessment Offshore Wave Energy Conversion Devices  

E-Print Network (OSTI)

E2I EPRI Assessment Offshore Wave Energy Conversion Devices Report: E2I EPRI WP ­ 004 ­ US ­ Rev 1 #12;E2I EPRI Assessment - Offshore Wave Energy Conversion Devices Table of Contents Introduction Assessment - Offshore Wave Energy Conversion Devices Introduction E2I EPRI is leading a U.S. nationwide

232

Chalmers University of Technology Henrik Thunman Department of Energy Conversion  

E-Print Network (OSTI)

Chalmers University of Technology Henrik Thunman Department of Energy Conversion ModellingSpecies #12;Chalmers University of Technology Henrik Thunman Department of Energy Conversion Continuity Department of Energy Conversion MomentumEquation Momentum the forces of movement g x p x u x u x u u t u µ

233

Chalmers University of Technology Henrik Thunman Department of Energy Conversion  

E-Print Network (OSTI)

Chalmers University of Technology Henrik Thunman Department of Energy Conversion Modelling Thunman Department of Energy Conversion Continuity equation 0= + x u t (Conservation of mass) 0 of the volume #12;Chalmers University of Technology Henrik Thunman Department of Energy Conversion Momentum

234

Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion  

E-Print Network (OSTI)

Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency Chieh have shown repeatable and consistent electrical outputs with energy conversion efficiency an order for efficient conversion of mechanical energy into electricity. Recent work in the field of nanomaterials has

Lin, Liwei

235

A PRELIMINARY EVALUATION OF IMPINGEMENT AND ENTRAINMENT BY OCEAN THERMAL ENERGY CONVERSION (OTEC) PLANTS  

E-Print Network (OSTI)

Assessment, Ocean Thermal Energy Conversion (OTEC) ProgramOcean Thermal Energy Conversion (OTEC), U.S. Department offor Ocean Thermal Energy Conversion (OTEC) plants. Argonne,

Sullivan, S.M.

2013-01-01T23:59:59.000Z

236

Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques  

E-Print Network (OSTI)

Figure 21. (a) Schemes of energy conversion from exothermicand Renewable Energy Conversion by Innovations of Surfacebiointerfaces, and renewable energy conversion chemistry. In

Somorjai, G.A.

2010-01-01T23:59:59.000Z

237

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

and Techniques,” Energy Conversion and Management, 39 (11),and Applications,” Energy Conversion and Management, 45 ,and direct solar energy conversion to work. Focus should be

Coso, Dusan

2013-01-01T23:59:59.000Z

238

Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems /  

E-Print Network (OSTI)

77 5.2 Wind Energy Conversion System . . . . .Optimization and Control in Wind Energy Conversion SystemsAC matrix con- verter for wind energy conversion system,” in

Ghaffari, Azad

2013-01-01T23:59:59.000Z

239

Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion  

Science Journals Connector (OSTI)

Semiconductor nanowires (NW) possess several beneficial properties for efficient conversion of solar energy into electricity and chemical energy. Due to their efficient absorption of light, short distances for...

Neil P. Dasgupta; Peidong Yang

2014-06-01T23:59:59.000Z

240

Beilstein-Institut Reflections on Energy Conversion in  

E-Print Network (OSTI)

Beilstein-Institut Reflections on Energy Conversion in Biological and Biomimetic Systems Athel by conversion of the heat into work, chemical energy or electrical power, and the inevitable energy losses 2011 Abstract In principle any form of energy (light, electrical, potential, chemical, kinetic energy

Note: This page contains sample records for the topic "thermoelectric energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

On the conversion of rest energy in horizon energy  

E-Print Network (OSTI)

It is shown that the Verlinde formula for the entropy variation of a holographic screen is a consequence of the conversion of the particle energy in horizon energy. The special role played by the particular displacement $\\Delta x = c^{2}/a$ is emphasized, $a$ being the particle acceleration. Using the Heisenberg Principle we show that the energy on the causal horizon (viewed as a holographic screen) of an inertial observer is proportional to its radius, as for a black hole.

Hristu Culetu

2010-05-10T23:59:59.000Z

242

DOI: 10.1002/adma.200602674 Synthesis and Thermoelectrical Characterization of Lead  

E-Print Network (OSTI)

* Thermoelectricity is the phenomenon of conversion be- tween thermal and electrical energy. Compared with other have reached an upper limit of Z T at approximately 1. Hicks and Dresselhaus proposed that conversion to the reaction temperature for 10 minutes under a carrier gas flow of N2, 5 % H2 balance N2, Ar, or 10 % H2

Yang, Peidong

243

Profiling the Thermoelectric Power of Semiconductor Junctions with  

E-Print Network (OSTI)

sources realize energy conversion between heat and electricity without the use of moving me- chanical the thermoelectric power, band struc- tures, and carrier concentrations of semiconductor junctions that constitute S is governed by local carrier statistics, SThEM allows us to profile precise elec- tronic junction locations

244

Heat transfer in a thermoelectric generator for diesel engines  

SciTech Connect

This paper discusses the design and test results obtained for a 1kW thermoelectric generator used to convert the waste thermal energy in the exhaust of a Diesel engine directly to electric energy. The paper focuses on the heat transfer within the generator and shows what had to be done to overcome the heat transfer problems encountered in the initial generator testing to achieve the output goal of 1kW electrical. The 1kW generator uses Bismuth-Telluride thermoelectric modules for the energy conversion process. These modules are also being evaluated for other waste heat applications. Some of these applications are briefly addressed.

Bass, J.C. [Hi-Z Technology, Inc., San Diego, CA (United States)

1995-12-31T23:59:59.000Z

245

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling  

E-Print Network (OSTI)

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling telluride TEMs. Key words: Thermoelectric generators, waste heat recovery, automotive exhaust, skutterudites bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from

Xu, Xianfan

246

Determination of Thermoelectric Module Efficiency A Survey  

SciTech Connect

The development of thermoelectrics (TE) for energy conversion is in the transition phase from laboratory research to device development. There is an increasing demand to accurately determine the module efficiency, especially for the power generation mode. For many thermoelectrics, the figure of merit, ZT, of the material sometimes cannot be fully realized at the device level. Reliable efficiency testing of thermoelectric modules is important to assess the device ZT and provide the end-users with realistic values on how much power can be generated under specific conditions. We conducted a general survey of efficiency testing devices and their performance. The results indicated the lack of industry standards and test procedures. This study included a commercial test system and several laboratory systems. Most systems are based on the heat flow meter method and some are based on the Harman method. They are usually reproducible in evaluating thermoelectric modules. However, cross-checking among different systems often showed large errors that are likely caused by unaccounted heat loss and thermal resistance. Efficiency testing is an important area for the thermoelectric community to focus on. A follow-up international standardization effort is planned.

Wang, Hsin [ORNL; McCarty, Robin [Marlow Industries, Inc; Salvador, James R. [GM R& D and Planning, Warren, Michigan; Yamamoto, Atsushi [AIST, Japan; Konig, Jan [Fraunhofer-Institute, Freiburg, Germany

2014-01-01T23:59:59.000Z

247

Energy Conversion and Transmission Facilities (South Dakota) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Conversion and Transmission Facilities (South Dakota) Energy Conversion and Transmission Facilities (South Dakota) Energy Conversion and Transmission Facilities (South Dakota) < Back Eligibility Utility Commercial Investor-Owned Utility Industrial Construction Municipal/Public Utility Installer/Contractor Rural Electric Cooperative Retail Supplier Institutional Systems Integrator Fuel Distributor Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Dakota Program Type Siting and Permitting Provider South Dakota Public Utilities Commission This legislation applies to energy conversion facilities designed for or capable of generating 100 MW or more of electricity, wind energy facilities with a combined capacity of 100 MW, certain transmission facilities, and

248

Biofuel Conversion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuel Conversion Basics Biofuel Conversion Basics Biofuel Conversion Basics August 14, 2013 - 12:31pm Addthis The conversion of biomass solids into liquid or gaseous biofuels is a complex process. Today, the most common conversion processes are biochemical- and thermochemical-based. However, researchers are also exploring photobiological conversion processes. Biochemical Conversion Processes In biochemical conversion processes, enzymes and microorganisms are used as biocatalysts to convert biomass or biomass-derived compounds into desirable products. Cellulase and hemicellulase enzymes break down the carbohydrate fractions of biomass to five- and six-carbon sugars in a process known as hydrolysis. Yeast and bacteria then ferment the sugars into products such as ethanol. Biotechnology advances are expected to lead to dramatic

249

Energy Conversion and Thermal Efficiency Sales Tax Exemption | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Conversion and Thermal Efficiency Sales Tax Exemption Energy Conversion and Thermal Efficiency Sales Tax Exemption Energy Conversion and Thermal Efficiency Sales Tax Exemption < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Bioenergy Biofuels Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Wind Solar Water Heating Maximum Rebate None Program Info State Ohio Program Type Sales Tax Incentive Rebate Amount 100% exemption Provider Ohio Department of Taxation Ohio may provide a sales and use tax exemption for certain tangible personal property used in energy conversion, solid waste energy conversion, or thermal efficiency improvement facilities designed, constructed, or installed after December 31, 1974. Qualifying energy conversion facilities are those that are used for the

250

Vibrational energy redistribution in glyoxal following internal conversion  

E-Print Network (OSTI)

Vibrational energy redistribution in glyoxal following internal conversion R. Naaman,a) D. M, more than 50% of the energy in S1 is transferred to the ground state by internal conversion 4 June 1979; accepted 10 August 1979) The vibrational redistribution of energy following internal

Zare, Richard N.

251

Conversion of Solar to Electrical Energy  

Science Journals Connector (OSTI)

A photovoltaic device has been developed which converts solar radiation directly into electrical energy with an over-all efficiency of 11%. This consists of a p-n junction formed by gaseous diffusion near the front surface of a silicon plate. In full sunlight a single cell furnishes approximately 30 ma of short circuit current per square centimeter of surface 0.6 v of open circuit voltage and 12 mw of power into a matched load per square centimeter of surface. Like other electric batteries individual cells may be connected in series or parallel to obtain an increase in terminal voltage or current. The spectral response is a maximum near 0.7 µ and the long wavelength cutoff is at approximately 1.1 µ. The efficiency of this new siliconp-n junctionphotovoltaic cell is greater by a factor of 20 than that previously reported for other types of photocells and makes the conversion of the sun's energy directly into electricity possible for a number of interesting applications. A Bell System field trial at Americus Georgia in which solar batteries are used to power a rural carrier telephone communication system is described. A number of other possible applications for this new solar energy converter are discussed.

G. L. Pearson

1957-01-01T23:59:59.000Z

252

Plasmonic enhancement of catalysis and solar energy conversion.  

E-Print Network (OSTI)

??This thesis is dedicated to exploring the potential applications of plasmonic metal nanoparticles and understanding their fundamental enhancement mechanisms. Photocatalysis and solar energy conversion are… (more)

Hung, Wei Hsuan

2011-01-01T23:59:59.000Z

253

Nx-TEC: Next-Generation Thermionic Solar Energy Conversion  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(MSE), ZX Shen (SIMES), Roger Howe (EE) Nx-TEC: Next-Generation Thermionic Solar Energy Conversion SLAC National Accelerator Laboratory Award Number:CPS 25659 Start date:...

254

Liquid Metal MHD Energy Conversion in Fusion Reactors  

Science Journals Connector (OSTI)

Innovative Concepts for Power Conversion / Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 15–19, 1986)

L. Blumenau; H. Branover; A. El-Boher; E Spero; S. Sukoriansky; G. Talmage; E. Greenspan

255

Multiple-junction quantum cascade photodetectors for thermophotovoltaic energy conversion  

Science Journals Connector (OSTI)

The use of intersubband transitions in quantum cascade structures for thermophotovoltaic energy conversion is investigated numerically. The intrinsic cascading scheme, spectral...

Yin, Jian; Paiella, Roberto

2010-01-01T23:59:59.000Z

256

Plasmonic and High Index Nanostructures for Efficient Solar Energy Conversion  

Science Journals Connector (OSTI)

I will discuss the use of nanometallic and high-index dielectric nanostructures in boosting the energy conversion efficiency of photovoltaic and photo-electrochemical cells.

Brongersma, Mark L

257

Novel Energy Conversion Equipment for Low Temperatures Geothermal Resources  

Energy.gov (U.S. Department of Energy (DOE))

Novel Energy Conversion Equipment for Low Temperatures Geothermal Resources presentation at the April 2013 peer review meeting held in Denver, Colorado.

258

Research Program - Center for Solar and Thermal Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

We investigate the molecular and structural origins of energy conversion (absorption, carrier generation and recombination processes, transport) phenomena in organic and hybrid...

259

Research Program - Center for Solar and Thermal Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

In the Inorganic PV thrust, we develop nanostructured materials architectures for solar energy conversion by engineering absorption and transport properties not available in the...

260

An overview of the progress in photoelectrochemical energy conversion  

Science Journals Connector (OSTI)

An overview of the progress in photoelectrochemical energy conversion ... Kinetic studies of carrier transport and recombination at the n-silicon methanol interface ...

Bruce Parkinson

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermoelectric energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Designing Semiconductor Metal Oxides for Photoelectrochemical Energy Conversion  

Science Journals Connector (OSTI)

Innovative materials hold the key for renewable energy conversion. In this talk, we will introduce our recent progress in semiconducting metal oxides, which underpin a number of...

Wang, Lianzhou

262

Photovoltaic Cell Conversion Efficiency Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conversion Efficiency Basics Conversion Efficiency Basics Photovoltaic Cell Conversion Efficiency Basics August 20, 2013 - 2:58pm Addthis The conversion efficiency of a photovoltaic (PV) cell, or solar cell, is the percentage of the solar energy shining on a PV device that is converted into electrical energy, or electricity. Improving this conversion efficiency is a key goal of research and helps make PV technologies cost-competitive with more traditional sources of energy. Factors Affecting Conversion Efficiency Much of the energy from sunlight reaching a PV cell is lost before it can be converted into electricity. But certain characteristics of solar cell materials also limit a cell's efficiency to convert the sunlight it receives. Wavelength of Light Light is composed of photons-or packets of energy-that range in

263

Synergistic energy conversion processes using nuclear energy and fossil fuels  

Science Journals Connector (OSTI)

This paper reviews the methods of producing energy carriers, such as electricity, hydrocarbons and hydrogen, by utilising both nuclear energy and fossil fuels synergistically. There are many possibilities for new, innovative, synergistic processes, which combine chemical and nuclear systems for efficient, clean and economical production of energy carriers. Besides the individual processes by each form of energy to produce the energy carriers, the synergistic processes which use two primary energies to produce the energy carriers will become important with the features of resource saving, CO2 emission reduction and economic production, due to the higher conversion efficiency and low cost of nuclear heat. The synergistic processes will be indispensable to the 21st century, when efficient best-mixed supplies of available primary energies are crucial.

Masao Hori

2009-01-01T23:59:59.000Z

264

Assessment of dynamic energy conversion systems for radioisotope heat sources  

SciTech Connect

The use of dynamic conversion systems to convert the heat generated in a 7500 W(t) 90 Sr radioisotopic heat source to electricity is examined. The systems studies were Stirling; Brayton Cycle; three organic Rankines (ORCs) (Barber-Nichols/ORMAT, Sundstrand, and TRW); and an organic Rankine plus thermoelectrics. The systems were ranked for a North Warning System mission using a Los Alamos Multiattribute Decision Theory code. Three different heat source designs were used: case I with a beginning of life (BOL) source temperature of 640 C, case II with a BOL source temperature of 745/sup 0/C, and case III with a BOL source temperature of 945/sup 0/C. The Stirling engine system was the top-ranked system of cases I and II, closely followed by the ORC systems in case I and ORC plus thermoelectrics in case II. The Brayton cycle system was top-ranked for case III, with the Stirling engine system a close second. The use of /sup 238/Pu in heat source sizes of 7500 W(t) was examined and found to be questionable because of cost and material availability and because of additional requirements for analysis of safeguards and critical mass.

Thayer, G.R.; Mangeng, C.A.

1985-06-01T23:59:59.000Z

265

Overview of Thermoelectric Power Generation Technologies in Japan...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Thermoelectric Power Generation Technologies in Japan Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy...

266

Nontoxic and Abundant Copper Zinc Tin Sulfide Nanocrystals for Potential High-Temperature Thermoelectric Energy Harvesting  

E-Print Network (OSTI)

materials is of great interest due to its simplicity and reliability. However, many thermoelectric materials thermoelectric (TE) materials for waste heat recovery and solid-state cooling. However, most of these TE, the best-commercialized thermoelectric bulk material (Bi2Te3-based alloy) has a ZT around 1,2,3 whereas

Chen, Yong P.

267

Thermal energy conversion to motive power  

SciTech Connect

Performance evaluations of both ideal and actual organic Rankine cycle (ORC) and steam Rankine cycles (SRC) are presented for systems that may be candidates for Solar Total Energy Systems (STES). Many organic fluids and heat engines (turbines or expanders) are being developed; therefore, performance of a few representative ORCs are evaluated. The electrical power outputs range from several kW to <10 MW with maximum cycle temperatures of 482/sup 0/C (900 F). Conclusions from basic Rankine cycle analyses are that the Carnot cycle concept should not be used as a standard of comparison for different cycle fluids, even when they are operating at the same inlet and exhaust temperatures. The ideal Rankine cycle with the maximum conversion efficiency, when based on exact physical properties of fluids, should provide a better standard for actual cycles. Three sets of maximum (ideal) Rankine cycle efficiency (n/sub r/) curves are estimated for steam and several organic fluids for exhaust temperatures of 38/sup 0/C, 100/sup 0/C, and 149/sup 0/C (100 F, 212 F, and 300F). These curves of n/sub r/ versus peak temperature at the expander inlet are referred to as Criterion Curves for basic Rankine cycles, in which corresponding inlet pressures are selected such that n/sub r/ will be a maximum. Basic cycle efficiencies indicate some fluids preferred for solar total energy applications.

Meador, J.T.

1980-01-01T23:59:59.000Z

268

Next-Generation Thermionic Solar Energy Conversion  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Microscale-enhanced thermionic emitters will enable high-efficiency, solar-to-electrical conversion by taking advantage of both heat and light. Image from Stanford University...

269

Thermochemical Conversion Related Links | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

website's Information Resources section. Some key publications are: Using Heat and Chemistry to Make Fuel and Power: Thermochemical Conversion (January 2011) Thermochemical...

270

Design and Performance of Linear Biomechanical Energy Conversion Devices Penglin Niu, Student Member  

E-Print Network (OSTI)

Design and Performance of Linear Biomechanical Energy Conversion Devices Penglin Niu, Student, energy conversion, synchronous rectifier, voltage tripler, energy harvesting, human power. I investigated motions as energy sources for biomechanical energy conversion [1-7]. Until recently, most efforts

Chapman, Patrick

271

Effects of Confinement and Orientation on the Thermoelectric Power Factor of Silicon Nanowires  

E-Print Network (OSTI)

further shown that thermoelectric energy conversion through a single energy level (zero, in [100], [110], and [111] transport orientations at different carrier concentrations. We find improve S, as this quantity is proportional to the energy derivative of DOS(E). Mahan and Sofo have

272

Plasmon Enhanced Solar-to-Fuel Energy Conversion  

Science Journals Connector (OSTI)

Plasmon Enhanced Solar-to-Fuel Energy Conversion ... As a result, many photoexcited carriers are generated too far from a reactive surface and recombine instead of participating in solar-to-fuel conversion. ... attractive approach is to store solar-converted energy as chem. ...

Isabell Thomann; Blaise A. Pinaud; Zhebo Chen; Bruce M. Clemens; Thomas F. Jaramillo; Mark L. Brongersma

2011-07-12T23:59:59.000Z

273

Converse County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Converse County, Wyoming: Energy Resources Converse County, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.0489425°, -105.4068079° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0489425,"lon":-105.4068079,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

274

Solid State Energy Conversion Alliance (SECA) Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL Publications NETL Publications 2001 Conference Proceedings Solid State Energy Conversion Alliance (SECA) Workshop March 29-30, 2001 Table of Contents Disclaimer Papers and Presentations Plenary Session Selected Presentations on Current DOE Work Supporting SECA Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

275

Energy Conversion, Mixing Energy, and Neutral Surfaces with a Nonlinear Equation of State  

E-Print Network (OSTI)

Energy Conversion, Mixing Energy, and Neutral Surfaces with a Nonlinear Equation of State JONAS effect) such a neutral displacement is accompanied by a conversion between internal energy E and gravitational potential energy U, and an equal conversion between U and kinetic energy K. While there is thus

Nycander, Jonas

276

Theoretical investigation of solar energy conversion and water oxidation catalysis  

E-Print Network (OSTI)

Solar energy conversion and water oxidation catalysis are two great scientific and engineering challenges that will play pivotal roles in a future sustainable energy economy. In this work, I apply electronic structure ...

Wang, Lee-Ping

2011-01-01T23:59:59.000Z

277

Research Program - Center for Solar and Thermal Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

thrust of CSTEC focuses on fundamental transport processes that govern solid state energy conversion, i.e., how the charge and energy flow through the atomic lattice or an...

278

Energy Down-Conversion and Thermalization in Metal Absorbers  

Science Journals Connector (OSTI)

There are the two significant factors associated with down-conversion phonons. The first is the dependence of the energy loss on the distance of the absorption ... from the escape interface. A photon of energy E....

A. Kozorezov

2012-05-01T23:59:59.000Z

279

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network (OSTI)

screens for ocean thermal energy conversion power plants.cold deep-ocean waters to produce electric power via eitherOffice of Solar Power Applications. Division of Ocean Energy

Sullivan, S.M.

2014-01-01T23:59:59.000Z

280

Demonstrating Energy Conversion with Piezoelectric Crystals and a Paddle Fan  

Science Journals Connector (OSTI)

A simple energy conversion system—particularly the conversion of mechanical energy into electrical energy by using shaker flashlights—has recently been presented. 1 This system uses hand generators consisting of a magnet in a tube with a coil wrapped around it and acts as an ac source when the magnet passes back and forth through the coil. Additionally this system includes an LED a capacitor a switch and a full-wave bridge rectifier. We were inspired by this work to design a simpler demonstrator made for teaching energy conversion concepts to science students using piezoelectric material. 2 3

Prissana Rakbamrung; Chatchai Putson

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermoelectric energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Atlantic Biomass Conversions Inc | Open Energy Information  

Open Energy Info (EERE)

Conversions Inc Conversions Inc Jump to: navigation, search Name Atlantic Biomass Conversions Inc Place Frederick, Maryland Sector Biomass Product Atlantic Biomass Conversions is working on a system and a genetically modified bacteria to convert sugar beet pulp waste into methanol. Coordinates 45.836395°, -98.507249° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.836395,"lon":-98.507249,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

282

Chapter 24 - Fuel Cells: Energy Conversion Technology  

Science Journals Connector (OSTI)

The drive for fuel cell technology research and development stems from cleanliness of the technology, high chemical to electrical conversion efficiency and versatile applications ranging from large-scale, stand-alone stationary power plant to modular distributed generation systems to advanced mobile auxiliary power units. Portable systems and those that can be carried are also currently being designed for civilian and military markets. Fuel cells are capable of generating electricity with virtually negligible to zero pollution (e.g. SOx, NOx, volatile organic compounds (VOC), particulate matters (PMs)). They also offer a reduced carbon footprint and have the potential to be engineered for ‘zero carbon’ systems. Despite the potential to meet the pressing needs for clean and efficient fuel cell–based power generation systems, high capital and maintenance cost remains a challenge for large-scale commercialisation and global market entry. Solid oxide fuel cell (SOFC) is one of the most promising fuel cell technologies as it offers significantly higher electrical efficiency as well as co-production of high-quality process heat. The system lifetime, its reliability and cost, however, remain a concern due to the performance degradation with time, commonly associated with the instability of materials in complex operating environment and high exposure temperature (650–1000)°C. New materials, systems design and operating conditions are being developed to increase the lifetime. Centralised and distributed SOFC power systems in the range of hundreds of kilowatt to megawatt are being considered for integration with advanced coal power plants, hybrid systems integrated with energy storage and carbon-capture technologies to fully exploit the commercial potential.

Manoj K. Mahapatra; Prabhakar Singh

2014-01-01T23:59:59.000Z

283

Graduate School of Energy Science Outlines of Laboratories Department of ENERGY CONVERSION SCIENCE  

E-Print Network (OSTI)

Graduate School of Energy Science ­ Outlines of Laboratories Department of ENERGY CONVERSION SCIENCE 1 / 2 Group Code: H-1 Group Name: Thermal Energy Conversion Takuji ISHIYAMA, Professor; Hiroshi energy conversion systems with high efficiency and safety while protecting the environment

Takada, Shoji

284

MHK Technologies/Wave Energy Conversion Activator WECA | Open Energy  

Open Energy Info (EERE)

Activator WECA Activator WECA < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Energy Conversion Activator WECA.jpg Technology Profile Primary Organization Daedalus Informatics Ltd Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The full scale WECA design is ideally fabricated with steel so as to be suitable for mounting on the run up wall of breakwaters or other rigid or floating structures The oscillating wave surge converter absorbs most of the energy of the impacting waves and turn it into compressed air which is subsequently converted into electric power or other forms of energy The device utilizes the Critical Momentum Wedge principle where the water rushing into the device resembles a virtual Wedge of kinetic energy

285

Stresa, Italy, 26-28 April 2006 THERMOELECTRIC AND MICROBATTERY HYBRID SYSTEM WITH ITS POWER  

E-Print Network (OSTI)

developed. It consists in hybriding an energy storage system (thin film solid state battery change depending on the outside conditions) and required by the thin film solid state battery conversion and energy storage. A hybrid system comprising a thermoelectric generator, a thin film solid state

Paris-Sud XI, Université de

286

Resonant carrier scattering by core-shell nanoparticles for thermoelectric power factor enhancement  

E-Print Network (OSTI)

to the formation of quasi-bound states inside the nanoparticles, which strongly scatter carriers near these energy on various nanostructured materials for ther- moelectric energy conversion.6,7 The ErAs nanoparticles emResonant carrier scattering by core-shell nanoparticles for thermoelectric power factor enhancement

287

Atomistic calculations of the electronic, thermal, and thermoelectric properties of ultra-thin Si layers  

E-Print Network (OSTI)

]. Mahan and Sofo have further shown that thermoelectric energy conversion through a single energy level (0 of a drastic reduction in their thermal conductivity, l, and possibilities of enhanced power factors temperature electrical conductivity, Seebeck coefficient, power factor, thermal conductivity, and ZT figure

288

North Dakota Energy Conversion and Transmission Facility Siting Act (North  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dakota Energy Conversion and Transmission Facility Siting Act Dakota Energy Conversion and Transmission Facility Siting Act (North Dakota) North Dakota Energy Conversion and Transmission Facility Siting Act (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Dakota Program Type Line Extension Analysis

289

Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system  

DOE Patents (OSTI)

This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

Dziendziel, Randolph J. (Middle Grove, NY); DePoy, David Moore (Clifton Park, NY); Baldasaro, Paul Francis (Clifton Park, NY)

2007-01-23T23:59:59.000Z

290

Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion  

SciTech Connect

Semiconductor nanowires (NW) possess several beneficial properties for efficient conversion of solar energy into electricity and chemical energy. Due to their efficient absorption of light, short distances for minority carriers to travel, high surface-to-volume ratios, and the availability of scalable synthesis methods, they provide a pathway to address the low cost-to-power requirements for wide-scale adaptation of solar energy conversion technologies. Here we highlight recent progress in our group towards implementation of NW components as photovoltaic and photoelectrochemical energy conversion devices. An emphasis is placed on the unique properties of these one-dimensional (1D) structures, which enable the use of abundant, low-cost materials and improved energy conversion efficiency compared to bulk devices.

Dasgupta, Neil; Yang, Peidong

2013-01-23T23:59:59.000Z

291

Thermoelectric Generators 1. Thermoelectric generator  

E-Print Network (OSTI)

. Cold Hot I - -- - - - - -- Figure 1 Electron concentration in a thermoelectric material. #12;2 A large1 Thermoelectric Generators HoSung Lee 1. Thermoelectric generator 1.1 Basic Equations In 1821 on the direction of current and material [3]. This is called the Thomson effect (or Thomson heat). These three

Lee, Ho Sung

292

Standardization of Transport Properties Measurements: Internal Energy Agency (IEA-AMT) Annex on Thermoelectric  

Energy.gov (U.S. Department of Energy (DOE))

Thermoelectric materials transport properties measurements improvement and standardization is undertaken by new IEA annex under the Advanced Materials for Transportation implementing agreement

293

Analysis of a direct energy conversion system using medium energy helium ions  

E-Print Network (OSTI)

in Direct Energy Conversion Fission Electric Cells", Transactions of the American Nuclear Society, 91, 2(2004). 2) G. H. Miley, Fusion Energy Conversion, American Nuclear Society, Hinsdale, IL, 77 (1976). 3) G. I. Budker, ?Thermonuclear Reactions... in Direct Energy Conversion Fission Electric Cells", Transactions of the American Nuclear Society, 91, 2(2004). 2) G. H. Miley, Fusion Energy Conversion, American Nuclear Society, Hinsdale, IL, 77 (1976). 3) G. I. Budker, ?Thermonuclear Reactions...

Carter, Jesse James

2006-08-16T23:59:59.000Z

294

Prospects for conversion of solar energy into chemical fuels: the concept of a solar fuels industry  

Science Journals Connector (OSTI)

...associated with solar energy conversion in a non-intense...clear that solar energy conversion could be invaluable...to 30 per cent conversion efficiency are...breakdown of our energy needs (DECC...biggest single factor. This is critical...

2013-01-01T23:59:59.000Z

295

Soft materials for linear electromechanical energy conversion  

E-Print Network (OSTI)

We briefly review the literature of linear electromechanical effects of soft materials, especially in synthetic and biological polymers and liquid crystals (LCs). First we describe results on direct and converse piezoelectricity, and then we discuss a linear coupling between bending and electric polarization, which maybe called bending piezoelectricity, or flexoelectricity.

Antal Jakli; Nandor Eber

2014-07-29T23:59:59.000Z

296

Quantum Solar Energy Conversion and Application to Organic Solar Cells  

Science Journals Connector (OSTI)

When studying the limits of solar energy conversion, either by thermal or quantum processes, the sun has traditionally been treated as a blackbody (thermal equilibrium) radiator with surface temperature 5 800 ...

Gottfried H. Bauer; Peter Würfel

2003-01-01T23:59:59.000Z

297

Magnetic energy conversion, magnetospheric substorms and solar flares  

Science Journals Connector (OSTI)

... The magnetospheric substorm has been thought to be the manifestation of a sudden conversion of the magnetic ... of the magnetic energy stored in the magnetotail before substorm onset. It has been believed that solar flares ...

S.-I. Akasofu

1980-03-20T23:59:59.000Z

298

Optimization of Oxygen Purity for Coal Conversion Energy Reduction  

E-Print Network (OSTI)

The conversion of coal into gaseous and liquid fuels and chemical feedstock will require large quantities of oxygen. This oxygen will be produced in large multi-train air separation plants which will consume about 350 kilowatt hours of energy...

Baker, C. R.; Pike, R. A.

1982-01-01T23:59:59.000Z

299

Science Highlights- Center for Solar and Thermal Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Emission in Type-II GaSbGaAs Quantum Dots and Prospects for intermediate band solar energy conversion Angular Selective Semi-Transparent Photovoltaics Mechanisms of Nanorod...

300

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

of an open cycle ocean thermal difference power plant. M.S.screens for ocean thermal energy conversion power plants.1958. Ocean cooling water system for 800 MW power station.

Sands, M. D.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermoelectric energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network (OSTI)

screens for ocean thermal energy conversion power plants.cold deep-ocean waters to produce electric power via eitherpower from the temperature differential between warm surface and cold deep-ocean

Sullivan, S.M.

2014-01-01T23:59:59.000Z

302

Appropriate Technology Approach to Solar Energy Conversion  

Science Journals Connector (OSTI)

When we want to introduce Solar Energy into the energy system, there are two main approaches possible. The first one consists in transforming Solar energy into some traditional primary or secondary energy form...

B. Bartoli

1980-01-01T23:59:59.000Z

303

Energy conversion device with support member having pore channels  

DOE Patents (OSTI)

Energy devices such as energy conversion devices and energy storage devices and methods for the manufacture of such devices. The devices include a support member having an array of pore channels having a small average pore channel diameter and having a pore channel length. Material layers that may include energy conversion materials and conductive materials are coaxially disposed within the pore channels to form material rods having a relatively small cross-section and a relatively long length. By varying the structure of the materials in the pore channels, various energy devices can be fabricated, such as photovoltaic (PV) devices, radiation detectors, capacitors, batteries and the like.

Routkevitch, Dmitri [Longmont, CO; Wind, Rikard A [Johnstown, CO

2014-01-07T23:59:59.000Z

304

Energy and reliability benefits of wind energy conversion systems  

Science Journals Connector (OSTI)

The electrical energy production and reliability benefits of a wind energy conversion system (WECS) at a specific site depend on many factors, including the statistical characteristics of the site wind speed and the design characteristics of the wind turbine generator (WTG) itself, particularly the cut-in, rated and cut-out wind speed parameters. In general, the higher the degree of the wind site matching with a WECS is, the more are the energy and reliability benefits. An electrical energy production and reliability benefit index designated as the Equivalent Capacity Ratio (ECR) is introduced in this paper. This index can be used to indicate the electrical energy production, the annual equivalent utilization time and the credit of a WECS, and quantify the degree of wind site matching with a WECS. The equivalent capacity of a WECS is modeled as the expected value of the power output random variable with the probability density function of the site wind speed. The analytical formulation of the ECR is based on a mathematical derivation with high accuracy. Twelve WTG types and two test systems are used to demonstrate the effectiveness of the proposed model. The results show that the ECR provides a useful index for a WTG to evaluate the energy production and the relative reliability performance in a power system, and can be used to assist in the determination of the optimal WTG type for a specific wind site.

Kaigui Xie; Roy Billinton

2011-01-01T23:59:59.000Z

305

Green thermoelectrics: Observation and analysis of plant thermoelectric response  

E-Print Network (OSTI)

Plants are sensitive to thermal and electrical effects; yet the coupling of both, known as thermoelectricity, and its quantitative measurement in vegetal systems never were reported. We recorded the thermoelectric response of bean sprouts under various thermal conditions and stress. The obtained experimental data unambiguously demonstrate that a temperature difference between the roots and the leaves of a bean sprout induces a thermoelectric voltage between these two points. Basing our analysis of the data on the force-flux formalism of linear response theory, we found that the strength of the vegetal equivalent to the thermoelectric coupling is one order of magnitude larger than that in the best thermoelectric materials. Experimental data also show the importance of the thermal stress variation rate in the plant's electrophysiological response. Therefore, thermoelectric effects are sufficiently important to partake in the complex and intertwined processes of energy and matter transport within plants.

Goupil, C; Khamsing, A; Apertet, Y; Bouteau, F; Mancuso, S; Patino, R; Lecoeur, Ph

2015-01-01T23:59:59.000Z

306

A computational analysis of the evaporator/artery of an alkali metal thermal to electric conversion (AMTEC) PX series cell  

E-Print Network (OSTI)

, while minimizing mass. Current technology, such as Radioisotope Thermoelectric Generators (RTG's) are reliable, but do not supply the power conversion efficiencies desired for future space missions. That leads to Alkali Metal Thermal to Electric...-series cells to generate electricity for the deep space vehicle. The higher efficiency of AMTEC compared to other conversion technologies, such as Radioisotope Thermoelectric Generators (RTG's), results in less energy source material being launched...

Pyrtle, Frank

1999-01-01T23:59:59.000Z

307

Energy Conversion Materials Through Chemical Synthesis Route  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Materials Through Chemical Synthesis Route Conversion Materials Through Chemical Synthesis Route Speaker(s): Lionel Vayssieres Date: April 27, 2004 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Samuel Mao The ability to design anisotropic nanoparticles with tailored aspect ratio and to order them into large 3-D arrays is an important challenge that scientists have to face to create functionalized nanomaterials. Our approach to control the size and shape of nanoparticles as well as the overall texture of nanoparticulate thin films is to tune their direct aqueous hydrolysis-condensation growth onto substrates by monitoring the interfacial thermodynamics of nanocrystals as well as their kinetics of heteronucleation. Growing materials at very low interfacial tension, i.e. at thermodynamically stable conditions, allows the experimental control of

308

Enzymatic Hydrogen Production:? Conversion of Renewable Resources for Energy Production  

Science Journals Connector (OSTI)

Enzymatic Hydrogen Production:? Conversion of Renewable Resources for Energy Production ... Steam-exploded aspen wood containing 60% cellulose was a gift from Michael Himmel of the National Renewable Energy Laboratory, Golden, Colorado. ... The previous data demonstrate that the two primary components of renewable sources of energy such as biomassglucose and xyloseare capable of oxidiation by GDH, resulting in hydrogen production if hydrogenase is present. ...

Jonathan Woodward; Kimberley A. Cordray; Robert J. Edmonston; Maria Blanco-Rivera; Susan M. Mattingly; Barbara R. Evans

1999-11-20T23:59:59.000Z

309

Portfolio Manager Technical Reference: Thermal Conversion Factors | ENERGY  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Conversion Factors Thermal Conversion Factors Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

310

Research Program - Center for Solar and Thermal Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

below. Organic and Hybrid Systems for TE Improving Thermoelectric Efficiency via Low Thermal Boundary Conductance Heat dissipation in Atomic-Scale Junctions A General Strategy to...

311

Ocean Thermal Energy Conversion (OTEC) A New Secure Renewable Energy Source  

E-Print Network (OSTI)

Ocean Thermal Energy Conversion (OTEC) A New Secure Renewable Energy Source For Defense Water Temperature Delta 2 A New Clean Renewable 24/7 Energy Source #12;Ocean Thermal Energy Conversion and Commercial Applications 1 Dr. Ted Johnson Director of Alternative Energy Programs Development Lockheed Martin

312

Development of a 500 Watt High Temperature Thermoelectric Generator...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Documents & Publications Development of a 100-Watt High Temperature Thermoelectric Generator Automotive Waste Heat Conversion to Power Program Automotive Waste Heat...

313

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Automotive Waste Heat Recovery Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power Development...

314

Overview of Thermoelectric Power Generation Technologies in Japan  

Energy.gov (U.S. Department of Energy (DOE))

Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy sources, and energy harvesting

315

Sustainable systems for the storage and conversion of energy are dependent on interconnected  

E-Print Network (OSTI)

SEMTE abstract Sustainable systems for the storage and conversion of energy are dependent performance buildings, renewable energy conversion, and energy storage can be streamlined by identifying energy systems for harvesting low availability thermal energy and for providing integrated power, cooling

Reisslein, Martin

316

Numerical study of porous media thermoelectric converter  

SciTech Connect

Thermoelectric conversion is direct conversion technology that has characteristics of being maintenance free. However, the efficiency of the conventional bulk semiconductor thermoelectric device is about 20% for ideal theoretical calculation, and less than 5% for an actual application. The efficiency is very low because the heat conduction in the device and the Joule loss are too large compared with the Peltier heat which is changed into the electric power. The thermoelectric device made by porous media is heated by the radiation and maintains a large temperature difference by the gas which passes in the porous device. Therefore, the influence of the heat conduction in the thermoelectric device is small and the improvement of the conversion efficiency can be attempted. In this paper, the authors report the calculated results and the performance of thermoelectric converter made with porous media.

Kosaka, Kenichirou; Yamada, Akira

1996-12-31T23:59:59.000Z

317

Risks in the Conversion of Energy  

Science Journals Connector (OSTI)

Modern society is dependent upon the availability of an abundant supply of cheap energy. The use of energy is basically a positive factor necessary for our prosperity, but like all other industrial activities,...

Monica Gullberg; Torbjörn Thedéen

2010-01-01T23:59:59.000Z

318

Thermodynamic Optimization in Ocean Thermal Energy Conversion  

Science Journals Connector (OSTI)

As alternative energy sources to oil and uranium, we can consider well known alternative sources such as solar power, geothermal power and wind power. However when we consider the 21st century energy sources, ocean

Y. Ikegami; H. Uehara

1999-01-01T23:59:59.000Z

319

Light energy conversion in Halobacterium halobium.  

Science Journals Connector (OSTI)

...function for lightJ/dark adaptation has...132-134) energy-transducing...other means in the dark. In the envelope...ment of ATP in energy coupling is miniimal...this time. A survey of maximal transport...arranged in the dark by appro- priately...other sources of energy, it has been...

J K Lanyi

1978-12-01T23:59:59.000Z

320

One-Dimensional Quantum Confinement Effect Modulated Thermoelectric Properties in InAs Nanowires  

E-Print Network (OSTI)

, Faculty of Science, Alexandria University, Egypt *S Supporting Information ABSTRACT: We report electrical thermoelectrics research. Moreover, we point out the scattering (or disorder) induced energy level broadening to electricity or vice versa.1 This conversion efficiency is described by one fundamental parameter

Gao, Hongjun

Note: This page contains sample records for the topic "thermoelectric energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources  

Open Energy Info (EERE)

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description Using mass-produced chiller equipment for "reverse refrigeration" to generate electricity: This approach allows Johnson Controls to take advantage of the economies of scale and manufacturing experience gained from current products while minimizing performance risks. Process efficiencies will be increased over the current state of the art in two ways: better working fluids and improved cycle heat management.

322

Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells  

Science Journals Connector (OSTI)

The device converted more than 60% of the incident photons to electric current at the absorption maximum of the sensitizer near 470 nm, and the overall conversion efficiency in full sunlight was between 1 and 2%. ... This striking performance defies expectations because such large-area junctions should fare poorly in photovoltaic energy conversion in the presence of defects at the disordered surface, enhancing the recombination of photogenerated charge carriers. ... less than one exciton is initially generated per NC, gave ?2 excitons (carrier multiplication) when pump photon energies are >3 times the NC band gap energy. ...

Michael Grätzel

2005-09-26T23:59:59.000Z

323

Managing Complex Photophysical Pathways for Solar Energy Conversion  

Science Journals Connector (OSTI)

Managing Complex Photophysical Pathways for Solar Energy Conversion ... Zhu provides us with a refreshing discussion of the advantages and limitations of models presently employed to depict the interconversion of excitons and charge carriers and proposes a new energy level diagram for this purpose based exclusively on single-particle energies of ground and optically excited states. ... For example, in photosynthesis, antenna complexes capture sunlight and direct the energy to reaction centers that then carry out the assocd. ...

Ryan D. Pensack; Gregory D. Scholes

2014-07-03T23:59:59.000Z

324

Energy Conversion from Salinity Gradients by Forward Osmosis–Electrokinetics  

Science Journals Connector (OSTI)

Energy Conversion from Salinity Gradients by Forward Osmosis–Electrokinetics ... Through the use of a salinity gradient, a suction force is created to induce a hydrodynamic flow in the FO submodule based on the principle of FO. ... Kiviat, F. E.Energy Recovery from Saline Water by Means of Electrochemical Cells Science 1976, 194, 719– 720 ...

Yanmei Jiao; Chun Yang; Yuejun Kang

2014-03-12T23:59:59.000Z

325

Pin stack array for thermoacoustic energy conversion  

DOE Patents (OSTI)

A thermoacoustic stack for connecting two heat exchangers in a thermoacoustic energy converter provides a convex fluid-solid interface in a plane perpendicular to an axis for acoustic oscillation of fluid between the two heat exchangers. The convex surfaces increase the ratio of the fluid volume in the effective thermoacoustic volume that is displaced from the convex surface to the fluid volume that is adjacent the surface within which viscous energy losses occur. Increasing the volume ratio results in an increase in the ratio of transferred thermal energy to viscous energy losses, with a concomitant increase in operating efficiency of the thermoacoustic converter. The convex surfaces may be easily provided by a pin array having elements arranged parallel to the direction of acoustic oscillations and with effective radial dimensions much smaller than the thicknesses of the viscous energy loss and thermoacoustic energy transfer volumes.

Keolian, Robert M. (Monterey, CA); Swift, Gregory W. (Santa Fe, NM)

1995-01-01T23:59:59.000Z

326

Nanostructured materials for solar energy conversion.  

E-Print Network (OSTI)

??The energy requirements of our planet will continue to grow with increasing world population and the modernization of currently underdeveloped countries. This will force us… (more)

Hoang, Son Thanh

2013-01-01T23:59:59.000Z

327

Utilizing Nature's Designs for Solar Energy Conversion  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by Lisa Utschig, Argonne National Laboratory, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

328

ITP Industrial Distributed Energy: Microturbine Power Conversion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http:www.osti.govbridge Not available...

329

The maximum efficiency of the conversion of solar energy into wind energy  

Science Journals Connector (OSTI)

In the present paper the Gordon and Zarmi model is applied for the conversion of solar energy into wind energy in such a way that simple calculations lead to a universal result: The upper bound for the conversion efficiency of solar energy into wind energy equals 8.3%.

Alexis De Vos; Guust Flater

1991-01-01T23:59:59.000Z

330

Energy Conversion Efficiency of Nanofluidic Batteries: Hydrodynamic Slip and Access Resistance  

E-Print Network (OSTI)

Energy Conversion Efficiency of Nanofluidic Batteries: Hydrodynamic Slip and Access Resistance Yu and concentration polarization) on the energy conversion efficiency of pressure-driven electrolyte flow through battery system is its low energy conversion efficiency. Up to now, the energy conversion efficiencies have

Chang, Hsueh-Chia

331

Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates  

E-Print Network (OSTI)

Solar energy conversion via hot electron internal photoemission in metallic nanostructures://scitation.aip.org/termsconditions. Downloaded to ] IP: 131.215.44.236 On: Tue, 01 Apr 2014 22:46:10 #12;Solar energy conversion via hot electron for the construction of solar energy-conversion devices. Herein, we evaluate theoretically the energy-conversion

Atwater, Harry

332

Better Buildings: Workforce, Spotlight on Maine: Contractor Sales Training Boosts Energy Upgrade Conversions  

Energy.gov (U.S. Department of Energy (DOE))

Better Buildings: Workforce, Spotlight on Maine: Contractor Sales Training Boosts Energy Upgrade Conversions

333

Making the Right Substitution for Better Thermoelectrics | U.S. DOE Office  

Office of Science (SC) Website

Making the Right Substitution for Better Thermoelectrics Making the Right Substitution for Better Thermoelectrics Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) News & Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » February 2013 Making the Right Substitution for Better Thermoelectrics Exploiting the self-organizing nature of atoms to block heat transfer and improve thermal-to-electrical energy conversion. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Image courtesy of Ctirad Uher

334

Guidelines in Wave Energy Conversion System Design  

E-Print Network (OSTI)

This paper presents an investigational study on wave energy converters (WECs). The types of WEC available from the market are studied first. The design considerations for implementing a WEC in the Gulf of Mexico (GOM) are then evaluated...

Guiberteau, K. L.; Liu, Y.; Lee, J.; Kozman, T.

2014-01-01T23:59:59.000Z

335

Electromagnetic Energy Conversion at Reconnection Fronts  

Science Journals Connector (OSTI)

...active galactic nuclei, and planetary magnetospheres. In Earth’s space environment, reconnection facilitates solar wind energy input into the magnetosphere by enabling solar wind field lines to cross the magnetopause and be directly connected...

V. Angelopoulos; A. Runov; X.-Z. Zhou; D. L. Turner; S. A. Kiehas; S.-S. Li; I. Shinohara

2013-09-27T23:59:59.000Z

336

Light-Material Interactions in Energy Conversion - Energy Frontier...  

NLE Websites -- All DOE Office Websites (Extended Search)

2: Solar Spectrum Control and Conversion RG Leader: John Rogers Affiliated PIs: Paul Alivisatos, Harry Atwater, Paul Braun, Mark Brongersma, Jennifer Dionne, Shanhui Fan, Ralph...

337

Argonne Chemical Sciences & Engineering - Catalysis & Energy Conversion -  

NLE Websites -- All DOE Office Websites (Extended Search)

Ceramic Electrochemistry Ceramic Electrochemistry * Members * Contact * Publications * Overview * Solid Oxide Fuel Cells * Steam Electrolysis Catalysis & Energy Conversion Home Ceramic Electrochemistry Dave Carter and solid oxide fuel cell Materials scientist John David Carter prepares a solid oxide electrochemical cell for high temperature testing. Research activities in the Ceramic Electrochemistry Group are focused on the development of ceramic-based electrochemical devices and components, such as Solid Oxide Fuel Cells (SOFC) and High Temperature Steam Electrolyzers (HTSE). This extends to materials synthesis, fabrication, and characterization. Solid Oxide Fuel Cell Research As part of the Solid State Energy Conversion Alliance (SECA) Core Technology Program, the goal of this research is the development of solid

338

Engineering Molecular Transformations for Sustainable Energy Conversion  

Science Journals Connector (OSTI)

Nature’s enzymes can exquisitely integrate highly active catalytic centers within flexible environments that can adaptively guide reactants to products with very high activities and selectivities. ... The sustainable production of energy presents one of the greatest societal challenges that we will face over the next few decades. ... We assess these four functionals by comparing their performance to that of 12 other functionals and Hartree-Fock theory for 403 energetic data in 29 diverse databases, including ten databases for thermochem., four databases for kinetics, eight databases for noncovalent interactions, three databases for transition metal bonding, one database for metal atom excitation energies, and three databases for mol. ...

Matthew Neurock

2010-10-11T23:59:59.000Z

339

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

solar radiation, and the geothermal energy. [16] Fig. 1.1.thermal energy, geothermal energy, wasted heat from athermal energy, geothermal energy, ocean thermal energy,

Lim, Hyuck

2011-01-01T23:59:59.000Z

340

Proceedings of the 25th intersociety energy conversion engineering conference  

SciTech Connect

This book contains the proceedings of the 25th Intersociety Energy Conversion Engineering Conference. Volume 5 is organized under the following headings: Photovoltaics I, Photovoltaics II, Geothermal power, Thermochemical conversion of biomass, Energy from waste and biomass, Solar thermal systems for environmental applications, Solar thermal low temperature systems and components, Solar thermal high temperature systems and components, Wind systems, Space power sterling technology Stirling cooler developments, Stirling solar terrestrial I, Stirling solar terrestrial II, Stirling engine generator sets, Stirling models and simulations, Stirling engine analysis, Stirling models and simulations, Stirling engine analysis, Stirling engine loss understanding, Novel engine concepts, Coal conversion and utilization, Power cycles, MHD water propulsion I, Underwater vehicle powerplants - performance, MHD underwater propulsion II, Nuclear power, Update of advanced nuclear power reactor concepts.

Nelson, P.A.; Schertz, W.W.; Till, R.H.

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermoelectric energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Modulated reconnection rate and energy conversion at the magnetopause under steady IMF conditions  

E-Print Network (OSTI)

Modulated reconnection rate and energy conversion at the magnetopause under steady IMF conditions L conversion across the dayside high-latitude magnetopause. The energy conversion is estimated during eleven describe a new method to determine the reconnection rate from the magnitude of the local energy conversion

California at Berkeley, University of

342

Superconducting thermoelectric generator  

DOE Patents (OSTI)

Thermoelectricity is produced by applying a temperature differential to dissimilar electrically conducting or semiconducting materials, thereby producing a voltage that is proportional to the temperature difference. Thermoelectric generators use this effect to directly convert heat into electricity; however, presently-known generators have low efficiencies due to the production of high currents which in turn cause large resistive heating losses. Some thermoelectric generators operate at efficiencies between 4% and 7% in the 800{degrees} to 1200{degrees}C range. According to its major aspects and bradly stated, the present invention is an apparatus and method for producing electricity from heat. In particular, the invention is a thermoelectric generator that juxtaposes a superconducting material and a semiconducting material - so that the superconducting and the semiconducting materials touch - to convert heat energy into electrical energy without resistive losses in the temperature range below the critical temperature of the superconducting material. Preferably, an array of superconducting material is encased in one of several possible configurations within a second material having a high thermal conductivity, preferably a semiconductor, to form a thermoelectric generator.

Metzger, J.D.; El-Genk, M.S.

1994-01-01T23:59:59.000Z

343

Energy conversion in Purple Bacteria Photosynthesis  

E-Print Network (OSTI)

The study of how photosynthetic organisms convert light offers insight not only into nature's evolutionary process, but may also give clues as to how best to design and manipulate artificial photosynthetic systems -- and also how far we can drive natural photosynthetic systems beyond normal operating conditions, so that they can harvest energy for us under otherwise extreme conditions. In addition to its interest from a basic scientific perspective, therefore, the goal to develop a deep quantitative understanding of photosynthesis offers the potential payoff of enhancing our current arsenal of alternative energy sources for the future. In the following Chapter, we consider the trade-off between dynamics, structure and function of light harvesting membranes in Rps. Photometricum purple bacteria, as a model to highlight the priorities that arise when photosynthetic organisms adapt to deal with the ever-changing natural environment conditions.

Felipe Caycedo-Soler; Ferney J. Rodriguez; Luis Quiroga; Guannan Zhao; Neil F. Johnson

2011-07-01T23:59:59.000Z

344

Energy conversion in Purple Bacteria Photosynthesis  

E-Print Network (OSTI)

The study of how photosynthetic organisms convert light offers insight not only into nature's evolutionary process, but may also give clues as to how best to design and manipulate artificial photosynthetic systems -- and also how far we can drive natural photosynthetic systems beyond normal operating conditions, so that they can harvest energy for us under otherwise extreme conditions. In addition to its interest from a basic scientific perspective, therefore, the goal to develop a deep quantitative understanding of photosynthesis offers the potential payoff of enhancing our current arsenal of alternative energy sources for the future. In the following Chapter, we consider the trade-off between dynamics, structure and function of light harvesting membranes in Rps. Photometricum purple bacteria, as a model to highlight the priorities that arise when photosynthetic organisms adapt to deal with the ever-changing natural environment conditions.

Caycedo-Soler, Felipe; Quiroga, Luis; Zhao, Guannan; Johnson, Neil F

2011-01-01T23:59:59.000Z

345

Silicon Microwire Arrays for Solar Energy-Conversion Applications  

Science Journals Connector (OSTI)

Silicon Microwire Arrays for Solar Energy-Conversion Applications ... The Si MW array geometry allows for efficient collection of photogenerated carriers from impure materials that have short minority-carrier diffusion lengths while simultaneously allowing for high optical absorption and high external quantum yields for charge-carrier collection. ...

Emily L. Warren; Harry A. Atwater; Nathan S. Lewis

2013-12-09T23:59:59.000Z

346

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

biological thermal energy, geothermal energy, wasted heatpower plants, solar thermal energy, geothermal energy, oceansolar radiation, and the geothermal energy. [16] Fig. 1.1.

Lim, Hyuck

2011-01-01T23:59:59.000Z

347

Multiscale effects and capillary interactions in functional biomimetic surfaces for energy conversion and green engineering  

Science Journals Connector (OSTI)

...biomimetic surfaces for energy conversion and green engineering Michael Nosonovsky...discussed with the emphasis on energy and environmental (green) issues: new ways of...biomimetic surfaces for energy conversion and green engineering. | Biological...

2009-01-01T23:59:59.000Z

348

Simulating the physiology of athletes during endurance sports events: modelling human energy conversion and metabolism  

Science Journals Connector (OSTI)

...somewhat slower to save energy for later). The motivational factors are represented by the...events: modelling human energy conversion and metabolism. | The...computational model for energy conversion during bicycle racing...

2011-01-01T23:59:59.000Z

349

Engineering Molecular Transformations for Sustainable Energy Conversion  

SciTech Connect

Future strategies for sustainable energy production will undoubtedly require processes and materials that can efficiently convert renewable resources into fuels. Nature’s enzymes can exquisitely integrate highly active catalytic centers within flexible environments that can adaptively guide reactants to products with very high activities and selectivities. They are limited, however, by their stability and ability to integrate into large scale production processes. The design of more robust heterogeneous catalytic materials that mimic the performance of enzymes, however, has been hindered by our limited understanding of how such transformations proceed. The tremendous advances in ab initio quantum mechanical methods, atomistic simulations, and high performance computing that have occurred over the past two decades, however, provide unprecedented ability to track molecular transformations and how they proceed at specific sites and within particular environments. This information together with the advances in in situ spectroscopic methods that follow such transformations can begin to enable the design of atomic surface ensembles and nanoscale reaction environments. This paper provides the author’s perspective on how theory and simulation can be used to move from current onedimensional design efforts based on catalytic descriptors to the design of two-dimensional surfaces, threedimensional reaction environments, and proton-coupled electron transfer systems that mimic enzymes in the transformation of molecules.

Neurock, Matthew

2010-12-03T23:59:59.000Z

350

Russian arms conversion and its impact on the energy problem  

Science Journals Connector (OSTI)

Conversion of the Russian arms industry to civil production poses a key issue in the overall context of the problem of economic transformation. Its impact is enormous and bears upon the energy problem in several ways. If it succeeds the conversion will largely determine the nature of economic development in Russia and the CIS, influence the prospects of economic recovery in eastern Europe in a positive way, and play a substantial role in securing Russia's future place in the world economy. Because of the novel opportunities provided by market reforms, which generally increase production efficiency and enable profound structural changes towards the environmentally benign energy consumption, the consequences of arms conversion should be put under closer scrutiny. At the same time the possibility of using the idle capacity of arms industries to revamp the energy sector itself and to enhance the construction of modem infrastructures to run an efficient market economy deserves greater attention. Although great uncertainties exist when one attempts to assess the impact of arms conversion, nonetheless, new opportunities for Western investment and trade should be pointed out. Hence, one should highlight the problem as worthy of closer monitoring.

Vadim Nikolajew

1996-01-01T23:59:59.000Z

351

Exceeding the Limit in Solar Energy Conversion with Multiple Excitons  

Science Journals Connector (OSTI)

The former comes from the transparence of the semiconductor material to solar radiation with photon energies below the bandgap (Eg), while the latter results from the cooling of hot carriers, initially generated by photon energies above Eg, to the band edges before they are extracted to do work. ... Carrier multiplication or singlet fission can be used to decrease the thermalization loss by converting part of the excess photon energy to multiple electron–hole pairs, thus increasing photocurrent. ... (9) However, such enhancement has little effect on the power conversion efficiency because significant carrier multiplication only occurs at photon energies as high as 4Eg. ...

Xiaoyang Zhu

2013-06-18T23:59:59.000Z

352

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

heat source can be solar thermal energy, biological thermaland concentrated solar thermal energy farms. They demandsources include solar thermal energy, geo-thermal energy,

Lim, Hyuck

2011-01-01T23:59:59.000Z

353

Electrical and Thermoelectrical Transport Properties of Graphene  

E-Print Network (OSTI)

OF CALIFORNIA RIVERSIDE Electrical and ThermoelectricalIn addition to the electrical conductivity, thermoelectricthe energy-dependent electrical conductivity under certain

Wang, Deqi

2011-01-01T23:59:59.000Z

354

Vehicular Thermoelectrics: A New Green Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Performance: Figure of Merit (ZT) Oregon State Vehicle Technologies Program eere.energy.gov Nanoscale Effects for Thermoelectrics (courtesy Millie Dresselhaus, MIT)...

355

Interfacial Reaction Between Nb Foil and n-Type PbTe Thermoelectric Materials During Thermoelectric Contact Fabrication  

Science Journals Connector (OSTI)

PbTe is a high-conversion-efficiency thermoelectric (TE) material that is commonly used in space exploration applications. Integration of PbTe in TE devices has a significant impact on the conversion efficienc...

Haiyang Xia; Cheng-Lung Chen; Fivos Drymiotis; Aiping Wu…

2014-11-01T23:59:59.000Z

356

April 2013 Most Viewed Documents for Energy Storage, Conversion, And  

Office of Scientific and Technical Information (OSTI)

April 2013 Most Viewed Documents for Energy Storage, Conversion, And April 2013 Most Viewed Documents for Energy Storage, Conversion, And Utilization Seventh Edition Fuel Cell Handbook NETL (2004) 628 Continuously variable transmissions: theory and practice Beachley, N.H.; Frank, A.A. (null) 205 A study of lead-acid battery efficiency near top-of-charge and the impact on PV system design Stevens, J.W.; Corey, G.P. (1996) 173 Energy Saving Potentials and Air Quality Benefits of Urban HeatIslandMitigation Akbari, Hashem (2005) 153 Building a secondary containment system Broder, M.F. (1994) 144 An Improved Method of Manufacturing Corrugated Boxes: Lateral Corrugator Frank C. Murray Ph.D.; , Roman Popil Ph.D.; Michael Shaepe (formerly with IPST, now at Cargill. Inc) (2008) 141 Ammonia usage in vapor compression for refrigeration and air-conditioning in the United States

357

Contributions to Key Energy Conversion Technologies and Advanced Methods  

NLE Websites -- All DOE Office Websites (Extended Search)

Contributions to Key Energy Conversion Technologies and Advanced Methods Contributions to Key Energy Conversion Technologies and Advanced Methods for Optimum Energy Systems Design and Planning Speaker(s): Daniel Favrat Date: February 27, 2003 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Kristina LaCommare This presentation reviews some of EPFL-LENI's recent contributions to advanced cogeneration and heat pump technologies as well as to new system design approaches based on multimodal evolutionar algorithms. In the field of cogeneration, theoretical and experimental results show that gas engines with unscavenged ignition prechambers can, without the need of a catalyst, achieve high efficiencies with reasonable emissions with both natural gas and biogas. Combination with Organic Rankine Cycle (ORC) heat recovery

358

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

power plants, solar thermal energy, geothermal energy, oceanpower plants, distributed solar thermal energy, geo/ocean-power plants [59]. Other LGH sources include solar thermal energy, geo-thermal energy, ocean

Lim, Hyuck

2011-01-01T23:59:59.000Z

359

Meeting the Clean Energy Demand:? Nanostructure Architectures for Solar Energy Conversion  

Science Journals Connector (OSTI)

Meeting the Clean Energy Demand:? Nanostructure Architectures for Solar Energy Conversion ... This account further highlights some of the recent developments in these areas and points out the factors that limit the efficiency optimization. ...

Prashant V. Kamat

2007-02-01T23:59:59.000Z

360

Power generation of a thermoelectric generator with phase change materials  

Science Journals Connector (OSTI)

In this paper, a thermoelectric generator that embeds phase change materials for wasted heat energy harvesting is proposed. The proposed thermoelectric generator embeds phase change materials in its device structure. The phase change materials store large amounts of heat energy using the latent heat of fusion. When the heat source contacts the thermoelectric generator, dissipated heat from the heat source is stored in the phase change materials. When the heat source is removed from the thermoelectric generator, the output power of the thermoelectric generator slowly decreases, while the output power of conventional thermoelectric generators decreases rapidly without the heat source. The additional air layer in the proposed thermoelectric generator disturbs the heat dissipation from the phase change materials, so the thermoelectric generator can maintain the power generation for longer without a heat source. The experimental results for the thermoelectric generator fabricated clearly show the latent heat effect of the phase change materials and the embedded air layer.

Sung-Eun Jo; Myoung-Soo Kim; Min-Ki Kim; Yong-Jun Kim

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermoelectric energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

NSF Workshop on Emerging Opportunities of Nanoscience to Energy Conversion and Storage  

E-Print Network (OSTI)

NSF Workshop on Emerging Opportunities of Nanoscience to Energy Conversion and Storage Download PDF: Nanoelectronics for Energy Conversion by Stuart Lindsay Section 6: BioNano Techniques for Energy Applications by T:NationalScienceFoundation(NSF)Sponsoredby:NationalScienceFoundation(NSF) #12;#12;NSF Workshop on Emerging Opportunities of Nanoscience to Energy Conversion and Storage Summary

Reif, John H.

362

Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems /  

E-Print Network (OSTI)

and Optimization of Photovoltaic and Wind Energy Conversionand Optimization of Photovoltaic and Wind Energy Conversionpower of Photovoltaic modules and Wind Energy Conversion

Ghaffari, Azad

2013-01-01T23:59:59.000Z

363

The 6th International Workshop on Micro and Nanotechnologies for Power Generation and Energy Conversion Applications (PowerMEMS 2006)  

Science Journals Connector (OSTI)

Energy is a sector of paramount importance over the coming decades if we are to ensure sustainable development that respects our environment. The research and development of novel approaches to convert available energy into usable forms using micro and nanotechnologies can contribute towards this goal and meet the growing need for power in small scale portable applications. The dominant power sources for handheld and other portable electronics are currently primary and rechargeable batteries. Their limited energy density and adverse effects on the environment upon disposal suggest that alternative approaches need to be explored. This special issue will showcase some of the leading work in this area, initially presented at PowerMEMS 2006, the 6th International Workshop on Micro and Nanotechnologies for Power Generation and Energy Conversion Applications. Power MEMS are defined as microsystems for electrical power generation and other energy conversion applications, including propulsion and cooling. The range of power MEMS technologies includes micro thermodynamic machines, such as microturbines, miniature internal combustion engines and micro-coolers; solid-state direct energy conversion, such as thermoelectric and photovoltaic microstructures; micro electrochemical devices, such as micro fuel cells and nanostructure batteries; vibration energy harvesting devices, such as piezoelectric, magnetic or electrostatic micro generators, as well as micro thrusters and rocket engines for propulsion. These can either be driven by scavenging thermal, mechanical or solar energy from the environment, or from a stored energy source, such as chemical fuel or radioactive material. The unique scope leads to unique challenges in the development of power MEMS, ranging from the integration of novel materials to the efficient small scale implementation of energy conversion principles. In this special issue, Mitcheson et al provide a comparative assessment of three inertial vibration energy harvesting approaches. Technologies and approaches for micro heat engines are shared, ranging from a complete microsystem for thermal energy harvesting (Cho et al) to core bearing and microturbomachinery technologies for rotating micro heat engines (Waits et al, Nakajima et al). Electrochemical microsystems are also presented, based on methanol as fuel (Morse et al), as well as novel micro and nanofabrication approaches (Chu et al). Fuel cell microsystems with integrated hydrogen generation approaches are also investigated by Peterson et al and Varady et al, illustrating the benefits and challenges of miniaturizing complete power sources. Finally, biological micro fuel cells that leverage the principles found in nature are presented, in contrast to chemical fuel cells (Chen et al, Morishima et al). We hope that this work will inspire others to pursue innovative research and development activities in the area of power MEMS, and consequently contribute to addressing our energy challenges for the 21st century.

Luc G Fréchette

2007-01-01T23:59:59.000Z

364

Solar Energy Conversion into Electricity and Hot Water by Thermoelectric Effect  

Science Journals Connector (OSTI)

In this talk, I will discuss our recent studies on a few materials systems such as half-Heuslers, lead selenide, skutterudites, silicon-germanium alloys, etc. that are interest for...

Ren, Zhifeng

365

Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery  

Energy.gov (U.S. Department of Energy (DOE))

Proposed two-stage TEG system with half-heusler as the first stage, and Bi2Te3 as the low temperature stage expected to show a 5% fuel efficiency improvement in vehicle platform under US06 drive cycle

366

Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

367

Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

368

Evaluation of Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules  

Energy.gov (U.S. Department of Energy (DOE))

Discusses progress toward the fabrication of a skutterudite-based TE module and provides module performance data under operating conditions similar to those for automotive applications

369

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

density, making direct thermal energy storage methods, e.g.reduced. Conventional thermal energy harvesting and storageharvesting, storage, and utilization of thermal energy has

Lim, Hyuck

2011-01-01T23:59:59.000Z

370

Thermal Energy Harvesting with Thermoelectrics for Self-powered Sensors: With Applications to Implantable Medical Devices, Body Sensor Networks and Aging in Place  

E-Print Network (OSTI)

Pu-238) radioisotope and a thermoelectric generator. The Pu-to radioisotopes. In designing thermoelectric generators for

Chen, Alic

2011-01-01T23:59:59.000Z

371

September 2013 Most Viewed Documents for Energy Storage, Conversion, And  

Office of Scientific and Technical Information (OSTI)

September 2013 Most Viewed Documents for Energy Storage, Conversion, And September 2013 Most Viewed Documents for Energy Storage, Conversion, And Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) 169 Evaluation of the 2010 Toyota Prius Hybrid Synergy Drive System Burress, Timothy A [ORNL]; Campbell, Steven L [ORNL]; Coomer, Chester [ORNL]; Ayers, Curtis William [ORNL]; Wereszczak, Andrew A [ORNL]; Cunningham, Joseph Philip [ORNL]; Marlino, Laura D [ORNL]; Seiber, Larry Eugene [ORNL]; Lin, Hua-Tay [ORNL] (2011) 116 Evaluation of the 2007 Toyota Camry Hybrid Syneregy Drive System Burress, T.A.; Coomer, C.L.; Campbell, S.L.; Seiber, L.E.; Marlino, L.D.; Staunton, R.H.; Cunningham, J.P. (2008) 102 A study of lead-acid battery efficiency near top-of-charge and the impact on PV system design

372

Most Viewed Documents - Energy Storage, Conversion, and Utilization | OSTI,  

Office of Scientific and Technical Information (OSTI)

Most Viewed Documents - Energy Storage, Conversion, and Utilization Most Viewed Documents - Energy Storage, Conversion, and Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) Continuously variable transmissions: theory and practice Beachley, N.H.; Frank, A.A. () Review of air flow measurement techniques McWilliams, Jennifer (2002) Building a secondary containment system Broder, M.F. (1994) Cost benefit analysis of the night-time ventilative cooling in office building Seppanen, Olli; Fisk, William J.; Faulkner, David (2003) Evaluation of the 2007 Toyota Camry Hybrid Syneregy Drive System Burress, T.A.; Coomer, C.L.; Campbell, S.L.; et al. (2008) Nanofluid technology : current status and future research. Choi, S. U.-S. (1998) An Improved Method of Manufacturing Corrugated Boxes: Lateral

373

Direct Solar Energy Conversion by the Reduction of CO2  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Solar Energy Conversion by the Reduction of CO2 Direct Solar Energy Conversion by the Reduction of CO2 Speaker(s): Reed Jensen Date: August 25, 2005 - 12:00pm Location: Bldg. 90 Reed Jensen has successfully demonstrated the direct solar reduction of CO2 to CO and O2 using a solar concentrator dish and ceramic converter that grew out of his work at Los Alamos National Laboratory. He will discuss the thermochemical, kinetic and spectral properties of the CO2 /CO/ O2 system that enable this process and how the CO is subsequently converted to useful fuels by a range of catalytic processes. He will also discuss the technical difficulties associated with the design, construction and operation of a multi-component optical system that must operate at high temperatures. Results from a prototype system will be discussed defining the efficiencies

374

Thermophotovoltaic energy conversion using photonic bandgap selective emitters  

DOE Patents (OSTI)

A method for thermophotovoltaic generation of electricity comprises heating a metallic photonic crystal to provide selective emission of radiation that is matched to the peak spectral response of a photovoltaic cell that converts the radiation to electricity. The use of a refractory metal, such as tungsten, for the photonic crystal enables high temperature operation for high radiant flux and high dielectric contrast for a full 3D photonic bandgap, preferable for efficient thermophotovoltaic energy conversion.

Gee, James M. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM); Fleming, James G. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

2003-06-24T23:59:59.000Z

375

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

CALIFORNIA, SAN DIEGO Recycling of Wasted Energy : ThermalOF THE DISSERTATION Recycling of Wasted Energy : Thermal to

Lim, Hyuck

2011-01-01T23:59:59.000Z

376

WaveBob (TRL 5 6 System) - Advanced Wave Energy Conversion Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WaveBob (TRL 5 6 System) - Advanced Wave Energy Conversion Project WaveBob (TRL 5 6 System) - Advanced Wave Energy Conversion Project WaveBob (TRL 5 6 System) - Advanced Wave...

377

Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC ) Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC )...

378

Thermoelectric Alloys and Devices for Radioisotope Space Power Systems: State of the Art and Current Developments  

SciTech Connect

Lead telluride and silicon germanium type alloys have served over the past several decades as the preferred thermoelectric conversion materials for U. S. radioisotope thermoelectric generator (RTG) power systems for planetary deep space exploration missions. The Pioneer missions to Jupiter and Jupiter/Saturn and the Viking Mars Lander missions employed TAGS-2N (lead and germanium telluride derivatives) power conversion devices. Since 1976, silicon germanium (SiGe) alloys, incorporated into the unicouple device, have evolved as the thermoelectric materials of choice for U. S. RTG powered space missions. These include the U. S. Air Force Lincoln Experimental Satellites 8 & 9 for communications, in 1976, followed in 1977 by the National Aeronautics and Space Administration Voyager 1 and 2 planetary missions. In 1989, advanced SiGe RTGs were used to power the Galileo exploration of Jupiter and, in 1990, will be used to power the Ulysses investigation of the Sun. In addition, SiGe technology has been chosen to provide RTG power for the 1995 Comet Rendezvous and Asteroid Flyby mission and the 1996 Cassini Saturn orbiter mission. Summaries of the flight performance data for these systems are presented.; Current U. S. Department of Energy thermoelectric development activities include (1) the development of conversion devices based on hi-density, close packed couple arrays and (2) the development of improved performance silicon germanium type thermoelectric materials. The silicon germanium type "multicouple", being developed in conjunction with the Modular RTG program, is discussed in a companion paper. A lead telluride type close-packed module, discussed herein, offers the promise of withstanding high velocity impacts and, thus, is a candidate for a Mars Penetrator application.; Recent projects sponsored by the U. S. Department of Energy, including the Improved Thermoelectric Materials and Modular Radioisotope Thermoelectric Generator programs, have shown that improvements in silicon germanium thermoelectric energy conversion capabilities of at least 50 percent can be achieved by tailoring the characteristics of the silicon germanium alloy materials and devices. This paper compares the properties and characteristics of the SiGe alloys now being developed with those used in the operational space power system.

Barnett, W.; Dick, P.; Beaudry, B.; Gorsuch, P.; Skrabek, E.

1989-01-01T23:59:59.000Z

379

Photovoltaic effect in InSe Application to Solar Energy Conversion  

E-Print Network (OSTI)

253 Photovoltaic effect in InSe Application to Solar Energy Conversion A. Segura, J. P. Guesdon, JSe is shown to be a new material with attractive characteristics for solar energy conversion. PerformanceV at 300 K and it is thus close to the theoretical optimum for solar energy conversion. Since its transport

Boyer, Edmond

380

Optical, electrical, and solar energy-conversion properties of gallium arsenide nanowire-array  

E-Print Network (OSTI)

Optical, electrical, and solar energy-conversion properties of gallium arsenide nanowire, and will aid in the design and optimization of nanowire-based systems for solar energy-conversion applications, and the photoelectrochemical energy-conversion properties of GaAs nanowire arrays were evaluated in contact with one

Zhou, Chongwu

Note: This page contains sample records for the topic "thermoelectric energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Energy Conversion Unit with Optimized Waveform Generation Sally Sajadian and Euzeli C. dos Santos Jr.  

E-Print Network (OSTI)

Energy Conversion Unit with Optimized Waveform Generation Sally Sajadian and Euzeli C. dos Santos to increase the efficiency of the devices dealing with energy conversion. The power supplies devices able and interleaved converters. This paper proposes an energy conversion unit constituted by a single-phase DC

Zhou, Yaoqi

382

Graphene-based photovoltaic cells for near-field thermal energy conversion  

E-Print Network (OSTI)

Graphene-based photovoltaic cells for near-field thermal energy conversion Riccardo Messina-Sud 11, 2, Avenue Augustin Fresnel, 91127 Palaiseau Cedex, France. Thermophotovoltaic devices are energy-conversion , IR sensing and spectroscopy11,12 and has paved the way to a new generation of NTPV energy-conversion

Paris-Sud XI, Université de

383

Assistant, Associate or Full Professor (Mid-Career)(10-657) Energy Conversion Position in MAE  

E-Print Network (OSTI)

Assistant, Associate or Full Professor (Mid-Career)(10-657) Energy Conversion Position in MAE of Energy Conversion. We are particularly interested in novel computational, theoretical, and experimental, and biofuels. Excellent candidates in other areas of energy conversion will also be given full consideration

Gleeson, Joseph G.

384

Energy conversion at the Earth's magnetopause using single and multispacecraft methods  

E-Print Network (OSTI)

Energy conversion at the Earth's magnetopause using single and multispacecraft methods C. R a small statistical data set, where we investigate energy conversion at the magnetopause using Cluster density and magnetopause orientation are needed to infer the energy conversion at the magnetopause

Bergen, Universitetet i

385

A Framework for Reliability and Performance Assessment of Wind Energy Conversion Systems  

E-Print Network (OSTI)

1 A Framework for Reliability and Performance Assessment of Wind Energy Conversion Systems proposes a framework for reliability and dynamic performance assessment of wind energy conversion systems--Reliability, Dynamic Performance, Wind Power, Wind Energy Conversion System (WECS), Doubly-Fed Induction Generator

Liberzon, Daniel

386

January 2011: ME 533-Energy Conversion Dr. William M. Carey, Professor of Mechanical Engineering  

E-Print Network (OSTI)

January 2011: ME 533-Energy Conversion Dr. William M. Carey, Professor of Mechanical Engineering for the determination of the importance of energy conversion technologies. 2.) Provide a comprehensive understanding and Ideal Gas Mixtures. 3) Energy Conversion systems-Coal-Oil-Nuclear, Oceanic, Solar, Geothermal and Wind

387

The State of the Art of Generators for Wind Energy Conversion Systems  

E-Print Network (OSTI)

243 1 The State of the Art of Generators for Wind Energy Conversion Systems Y. Amirat, M. E. H. Benbouzid, B. Bensaker, R. Wamkeue and H. Mangel Abstract--Wind Energy Conversion Systems (WECS) have become. I. INTRODUCTION IND energy conversion is the fastest-growing source of new electric generation

Paris-Sud XI, Université de

388

Scaling the energy conversion rate from magnetic field reconnection to different bodies  

E-Print Network (OSTI)

Scaling the energy conversion rate from magnetic field reconnection to different bodies F. S. Mozer reconnection is often invoked to explain electromagnetic energy conversion in planetary magnetospheres, stellar in these bodies, it is important to understand energy conversion as a function of magnetic field strength

California at Berkeley, University of

389

Energy conversion by autonomous regulation of chaos: Dynamical mechanism of loose coupling  

E-Print Network (OSTI)

Energy conversion by autonomous regulation of chaos: Dynamical mechanism of loose coupling Naoko by temporal three-body motion, is relevant to the energy conversion. © 2003 American Institute of Physics. DOI, the proposed mechanism is expected to be rather general and is applicable to other energy conversion problems

Kaneko, Kunihiko

390

Sliding Mode Power Control of Variable Speed Wind Energy Conversion Systems  

E-Print Network (OSTI)

Sliding Mode Power Control of Variable Speed Wind Energy Conversion Systems B. Beltran, T. Ahmed power generation in variable speed wind energy conversion systems (VS-WECS). These systems have two variations. Index Terms--Wind energy conversion system, power generation control, sliding mode control

Boyer, Edmond

391

The State of the Art of Generators for Wind Energy Conversion Systems  

E-Print Network (OSTI)

The State of the Art of Generators for Wind Energy Conversion Systems Yassine Amirat, Mohamed Benbouzid, Bachir Bensaker and René Wamkeue Abstract--Wind Energy Conversion Systems (WECS) have become. I. INTRODUCTION Wind energy conversion is the fastest-growing source of new electric generation

Boyer, Edmond

392

Dynamical mechanism for the conversion of energy at a molecular scale Naoko Nakagawa  

E-Print Network (OSTI)

Dynamical mechanism for the conversion of energy at a molecular scale Naoko Nakagawa Department mechanism of a molecular machine for energy conversion, by considering a simple model describing is thermal ratchet 4­7 , which gives one plausible mechanism for the conversion of energy to mechanical work

Kaneko, Kunihiko

393

Optimisation of a Small Non Controlled Wind Energy Conversion System for Stand-Alone Applications  

E-Print Network (OSTI)

Optimisation of a Small Non Controlled Wind Energy Conversion System for Stand-Alone Applications. This article proposes a method to optimize the design of a small fixed-voltage wind energy conversion system are shown and discussed. Key words Wind energy conversion system, stand-alone application, nonlinear

Paris-Sud XI, Université de

394

Journal of Power Sources 156 (2006) 677684 Thermodynamic analysis of electrokinetic energy conversion  

E-Print Network (OSTI)

is carried out for electrokinetic energy conversion. We demonstrate that the efficiencies depend solely Elsevier B.V. All rights reserved. Keywords: Electrokinetic energy conversion; Generator; Pump; Figure) are generated between the ends of the capillary, indicating a conversion of mechan- ical energy into electrical

Xuan, Xiangchun "Schwann"

395

2012: ME 533-Energy Conversion Dr. William M. Carey, Professor of Mechanical Engineering  

E-Print Network (OSTI)

2012: ME 533-Energy Conversion Dr. William M. Carey, Professor of Mechanical Engineering Office for the determination of the importance of energy conversion technologies. 2.) Provide a comprehensive understanding and Ideal Gas Mixtures. 3) Energy Conversion systems-Coal-Oil-Nuclear, Oceanic, Solar, Geothermal and Wind

396

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

Other LGH sources include solar thermal energy, geo-thermalThe heat source can be solar thermal energy, biologicalsources include the coolants in coal and nuclear power plants, solar thermal energy,

Lim, Hyuck

2011-01-01T23:59:59.000Z

397

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

total energy received by today’s solar panels and is beings best solar panels can convert only ~16% of solar energy to

Lim, Hyuck

2011-01-01T23:59:59.000Z

398

Molecular approaches to solar energy conversion: the energetic cost of charge separation from molecular-excited states  

Science Journals Connector (OSTI)

...Can Li Molecular approaches to solar energy conversion: the energetic cost...light-absorbing materials for solar energy conversion, namely the separation...loss in limiting the efficiency of solar energy conversion by such devices is emphasized...

2013-01-01T23:59:59.000Z

399

ER100/PPC184/ER200/PPC284, Fall 2014 Energy Units & Conversions, Global Energy Use  

E-Print Network (OSTI)

1 ER100/PPC184/ER200/PPC284, Fall 2014 Energy Units & Conversions, Global Energy Use Problem Set #1 Total Points: 100 for ER110/PPC184; 120 for ER200/PPC284 Energy Units The purpose of these problems is to begin to get comfortable with the wide array of energy units used, and to gain experience in both doing

Kammen, Daniel M.

400

IEEE TRANSACTIONS ON ENERGY CONVERSION, 2006 1 Distributed Control Agents Approach to Energy  

E-Print Network (OSTI)

IEEE TRANSACTIONS ON ENERGY CONVERSION, 2006 1 Distributed Control Agents Approach to Energy a new scheme for an energy management system in the form of distributed control agents. The control architecture to function as energy management system is presented. Index Terms-- integrated electric power

Lai, Hong-jian

Note: This page contains sample records for the topic "thermoelectric energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

OCEAN THERMAL ENERGY CONVERSION PRELIMINARY DATA REPORT FOR THE NOVEMBER 1977 GOTEC-02 CRUISE TO THE GULF OF MEXICO MOBILE SITE  

E-Print Network (OSTI)

02 OCEAN THERMAL ENERGY CONVERSION PRELIMINARY DATA REPORTto potential Ocean Thermal Energy Conversion (OTEC) sites inOcean Thermal Energy Conversion (OTEC) Sites: Puerto Rico,

Commins, M.L.

2010-01-01T23:59:59.000Z

402

Energy transfer up-conversion in Tm3+ -doped silica fibre  

E-Print Network (OSTI)

1 Energy transfer up-conversion in Tm3+ - doped silica fibre D. A. Simpson, G. W. Baxter and S. F responsible for the up-conversion: excited state absorption and energy transfer up-conversion. The decay equations, the energy transfer up- conversion process (3 F4,3 F43 H4,3 H6) is established at Tm2O3

Paris-Sud XI, Université de

403

Continuous optical discharge in a thermionic converter for conversion of laser radiation energy into electrical energy  

Science Journals Connector (OSTI)

A model is developed and calculations are made of the characteristics of a continuous optical discharge in the interelectrode gap of a thermionic converter for conversion of laser radiation energy into electrical

I. V. Alekseeva; A. P. Budnik; V. A. Zherebtsov…

1999-04-01T23:59:59.000Z

404

Left Coast Electric Formerly Left Coast Conversions | Open Energy...  

Open Energy Info (EERE)

Left Coast Electric Formerly Left Coast Conversions Jump to: navigation, search Name: Left Coast Electric (Formerly Left Coast Conversions) Place: California Sector: Services...

405

Golden Fuel Systems formerly Greasel Conversions Inc | Open Energy...  

Open Energy Info (EERE)

Golden Fuel Systems formerly Greasel Conversions Inc Jump to: navigation, search Name: Golden Fuel Systems (formerly Greasel Conversions Inc) Place: Drury, Montana Zip: 65638...

406

Penrose Landfill Gas Conversion LLC | Open Energy Information  

Open Energy Info (EERE)

Penrose Landfill Gas Conversion LLC Place: Los Angeles, California Product: Owner of landfill gas plant. References: Penrose Landfill Gas Conversion LLC1 This article is a stub....

407

High-temperature thermoelectric response of double-doped SrTiO3 epitaxial films  

Science Journals Connector (OSTI)

SrTiO3 is a promising n-type oxide semiconductor for thermoelectric energy conversion. Epitaxial thin films of SrTiO3 doped with both La and oxygen vacancies have been synthesized by pulsed laser deposition. The thermoelectric and galvanomagnetic properties of these films have been characterized at temperatures ranging from 300 to 900 K and are typical of a doped semiconductor. Thermopower values of double-doped films are comparable to previous studies of La-doped single crystals at similar carrier concentrations. The highest thermoelectric figure of merit (ZT) was measured to be 0.28 at 873 K at a carrier concentration of 2.5×1021?cm?3.

J. Ravichandran; W. Siemons; D.-W. Oh; J. T. Kardel; A. Chari; H. Heijmerikx; M. L. Scullin; A. Majumdar; R. Ramesh; D. G. Cahill

2010-10-28T23:59:59.000Z

408

High temperature thermoelectrics  

DOE Patents (OSTI)

In accordance with one embodiment of the present disclosure, a thermoelectric device includes a plurality of thermoelectric elements that each include a diffusion barrier. The diffusion barrier includes a refractory metal. The thermoelectric device also includes a plurality of conductors coupled to the plurality of thermoelectric elements. The plurality of conductors include aluminum. In addition, the thermoelectric device includes at least one plate coupled to the plurality of thermoelectric elements using a braze. The braze includes aluminum.

Moczygemba, Joshua E.; Biershcenk, James L.; Sharp, Jeffrey W.

2014-09-23T23:59:59.000Z

409

Proceedings of the 31. intersociety energy conversion engineering conference. Volume 2: Conversion technologies, electro-chemical technologies, Stirling engines, thermal management  

SciTech Connect

The 148 papers contained in Volume 2 are arranged topically as follows -- (A) Conversion Technologies: Superconductivity applications; Advanced cycles; Heat engines; Heat pumps; Combustion and cogeneration; Advanced nuclear reactors; Fusion Power reactors; Magnetohydrodynamics; Alkali metal thermal to electric conversion; Thermoelectrics; Thermionic conversion; Thermophotovoltaics; Advances in electric machinery; and Sorption technologies; (B) Electrochemical Technologies: Terrestrial fuel cell technology; and Batteries for terrestrial power; (C) Stirling Engines: Stirling machine analysis; Stirling machine development and testing; and Stirling component analysis and testing; (D) Thermal Management: Cryogenic heat transfer; Electronic components and power systems; Environmental control systems; Heat pipes; Numeric analysis and code verification; and Two phase heat and mass transfer. Papers within the scope of the data base have been processed separately.

Chetty, P.R.K.; Jackson, W.D.; Dicks, E.B. [eds.

1996-12-31T23:59:59.000Z

410

SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Next-Generation Thermionic Solar Next-Generation Thermionic Solar Energy Conversion to someone by E-mail Share SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Facebook Tweet about SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Twitter Bookmark SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Google Bookmark SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Delicious Rank SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Digg Find More places to share SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload

411

Argonne Chemical Sciences & Engineering - Catalysis & Energy Conversion -  

NLE Websites -- All DOE Office Websites (Extended Search)

Atom-Efficient Chemical Transformations Atom-Efficient Chemical Transformations iact logo Argonne National Laboratory along with its academic partners has established an Energy Frontier Research Center, the Institute for Atom-efficient Chemical Transformations (IACT) whose focus is to advance the science of catalysis for the efficient conversion of energy resources into usable forms. IACT is one of 46 Energy Frontier Research Centers that DOE has established in the United States. IACT is a partnership among world-class scientists at Argonne National Laboratory, Northwestern University, Purdue University, University of Wisconsin-Madison, and Brookhaven National Laboratory. Using a multidisciplinary approach involving integrated catalyst synthesis, advanced characterization, catalytic experimentation, and computation, IACT is addressing key

412

Phonon self-energy and origin of anomalous neutron scattering spectra in SnTe and PbTe thermoelectrics  

SciTech Connect

The anharmonic lattice dynamics of rock-salt thermoelectric compounds SnTe and PbTe are investigated with inelastic neutron scattering (INS) and first-principles calculations. The experiments show that, surprisingly, although SnTe is closer to the ferroelectric instability, phonon spectra in PbTe exhibit a more anharmonic character. This behavior is reproduced in first-principles calculations of the temperature-dependent phonon self-energy. Our simulations reveal how the nesting of phonon dispersions induces prominent features in the self-energy, which account for the measured INS spectra and their temperature dependence. We establish that the phase-space for three-phonon scattering processes, rather than just the proximity to the lattice instability, is the mechanism determining the complex spectrum of the transverse-optical ferroelectric mode.

Li, Chen [ORNL] [ORNL; Ma, Jie [ORNL] [ORNL; May, Andrew F [ORNL] [ORNL; Cao, Huibo [ORNL] [ORNL; Christianson, Andrew D [ORNL] [ORNL; Ehlers, Georg [ORNL] [ORNL; Singh, David J [ORNL] [ORNL; Sales, Brian C [ORNL] [ORNL; Delaire, Olivier A [ORNL] [ORNL

2014-01-01T23:59:59.000Z

413

Optimal energy-preserving conversions of quantum coherence  

E-Print Network (OSTI)

Given two coherent superpositions of energy eigenstates, we search for the best evolution that converts one superposition into the other without exchanging energy with the surrounding environment. We consider both deterministic and probabilistic evolutions, which can be obtained by measuring the environment and postselecting a subset of the outcomes. For every fixed value of the postselection probability, we characterize the process that maximizes the fidelity of the output state with the target, showing that the optimal measurement can be chosen without loss of generality to be binary and pure. We then construct a recursive protocol, which allows one to increase the success probability while reaching maximum fidelity at each step of the iteration. In turn, the recursive protocol is used to generate efficient approximations of the optimal fidelity-probability tradeoff, via a technique dubbed coherent coarse-graining. Such a technique can be applied not only to energy-preserving conversions, but also to general conversions of pure states under linear constraints. The recursive protocol and its coherent coarse-graining are illustrated in a series of applications to phase estimation, quantum cloning, coherent state amplification, and ancilla-driven computation.

Yuxiang Yang; Giulio Chiribella

2015-02-01T23:59:59.000Z

414

Conference Chair: Dr. Matthew Mench Condra Chair of Excellence in Energy Conversion & Storage  

E-Print Network (OSTI)

Conference Chair: Dr. Matthew Mench Condra Chair of Excellence in Energy Conversion & Storage Dept Electrochemical Energy Storage and Conversion Forum April 19-20 Knoxville, Tennessee Proudly sponsored by: The National Science Foundation Great Lakes Fuel Cell Education Partnership and Tennessee Solar Conversion

Tennessee, University of

415

Composite Thermoelectric Devices  

Energy.gov (U.S. Department of Energy (DOE))

Composite thermoelectric devices incorporating common conductors laminated between P- and N-type thermoelectric plates demonstrate internal ohmic loss reduction and enhanced performance

416

Light-Material Interactions in Energy Conversion - Energy Frontier...  

NLE Websites -- All DOE Office Websites (Extended Search)

Award, the Eni Italgas Prize for Energy and Environment, the Rank Prize for Optoelectronics, the Wilson Prize, the Coblentz Award for Advances in Molecular Spectroscopy, the...

417

Light-Material Interactions in Energy Conversion - Energy Frontier...  

NLE Websites -- All DOE Office Websites (Extended Search)

writing Malvern Nano Zetasizer AJA e-beam evaporator DOE Center facilities National Energy Research Scientific Computing Center (NERSC) National Center for Electron Microscopy...

418

Light-Material Interactions in Energy Conversion - Energy Frontier...  

NLE Websites -- All DOE Office Websites (Extended Search)

Eli Yablonovitch RG-1 Leader Eli Yablonovitch, Director of the NSF Center for Energy Efficient Electronics Science (E 3S) Lawrence Berkeley National Laboratory John A....

419

Light-Material Interactions in Energy Conversion - Energy Frontier...  

NLE Websites -- All DOE Office Websites (Extended Search)

Collaborator Albert Polman are awarded the Eni Award in Renewable and Nonconventional Energy Harry A. Atwater, Jr., Howard Hughes Professor and Professor of Applied Physics and...

420

Light-Material Interactions in Energy Conversion - Energy Frontier...  

NLE Websites -- All DOE Office Websites (Extended Search)

research interests center around two interwoven research themes: photovoltaics and solar energy; and plasmonics and optical metamaterials. Atwater and his group have been active...

Note: This page contains sample records for the topic "thermoelectric energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Light-Material Interactions in Energy Conversion - Energy Frontier...  

NLE Websites -- All DOE Office Websites (Extended Search)

event details 02.06.13 logo Redefining the Limits of Photovoltaic Efficiency The LMI Energy Frontier Research Center, along with the Resnick Sustainability Institute, is...

422

Light-Material Interactions in Energy Conversion - Energy Frontier...  

NLE Websites -- All DOE Office Websites (Extended Search)

Eli Yablonovitch RG-1 Leader Eli Yablonovitch, Director of the NSF Center for Energy Efficient Electronics Science (E 3S) Lawrence Berkeley National Laboratory Xiang Zhang...

423

Photovoltaic energy conversion The objective of this laboratory is for you to explore the science and engineering of the conversion of  

E-Print Network (OSTI)

Photovoltaic energy conversion Objective The objective of this laboratory is for you to explore the photovoltaic energy conversion process is optimal only for photons with energies above, but not too far the science and engineering of the conversion of light to electricity by photovoltaic devices. Preparation

Braun, Paul

424

Proceedings of the Chornobyl phytoremediation and biomass energy conversion workshop  

SciTech Connect

Many concepts, systems, technical approaches, technologies, ideas, agreements, and disagreements were vigorously discussed during the course of the 2-day workshop. The workshop was successful in generating intensive discussions on the merits of the proposed concept that includes removal of radionuclides by plants and trees (phytoremediation) to clean up soil in the Chornobyl Exclusion Zone (CEZ), use of the resultant biomass (plants and trees) to generate electrical power, and incorporation of ash in concrete casks to be used as storage containers in a licensed repository for low-level waste. Twelve years after the Chornobyl Nuclear Power Plant (ChNPP) Unit 4 accident, which occurred on April 26, 1986, the primary 4radioactive contamination of concern is from radioactive cesium ({sup 137}Cs) and strontium ({sup 90}Sr). The {sup 137}Cs and {sup 90}Sr were widely distributed throughout the CEZ. The attendees from Ukraine, Russia, Belarus, Denmark and the US provided information, discussed and debated the following issues considerably: distribution and characteristics of radionuclides in CEZ; efficacy of using trees and plants to extract radioactive cesium (Cs) and strontium (Sr) from contaminated soil; selection of energy conversion systems and technologies; necessary infrastructure for biomass harvesting, handling, transportation, and energy conversion; radioactive ash and emission management; occupational health and safety concerns for the personnel involved in this work; and economics. The attendees concluded that the overall concept has technical and possibly economic merits. However, many issues (technical, economic, risk) remain to be resolved before a viable commercial-scale implementation could take place.

Hartley, J. [Pacific Northwest National Lab., Richland, WA (United States)] [Pacific Northwest National Lab., Richland, WA (United States); Tokarevsky, V. [State Co. for Treatment and Disposal of Mixed Hazardous Waste (Ukraine)] [State Co. for Treatment and Disposal of Mixed Hazardous Waste (Ukraine)

1998-06-01T23:59:59.000Z

425

Plasmadynamics and ionization kinetics of thermionic energy conversion  

SciTech Connect

To reduce the plasma arc-drop, thermionic energy conversion is studied with both analytical and numerical tools. Simplifications are made in both the plasmadynamic and ionization-recombination theories. These are applied to a scheme proposed presently using laser irradiation to enhance the ionization kinetics of the thermionic plasma and thereby reduce the arc-drop. It is also predicted that it is possible to generate the required laser light from a thermionic-type cesium plasma. The analysis takes advantage of theoretical simplifications derived for the ionization-recombination kinetics. It is shown that large laser ionization enhancements can occur and that collisional cesium recombination lasing is expected. To complement the kinetic theory, a numerical method is developed to solve the thermionic plasma dynamics. To combine the analysis of ionization-recombination kinetics with the plasma dynamics of thermionic conversion, a finite difference computer program is constructed. It is capable of solving for both unsteady and steady thermionic converter behavior including possible laser ionization enhancement or atomic recombination lasing. A proposal to improve thermionic converter performance using laser radiation is considered. In this proposed scheme, laser radiation impinging on a thermionic plasma enhances the ionization process thereby raising the plasma density and reducing the plasma arc-drop. A source for such radiation may possibly be a cesium recombination laser operating in a different thermionic converter. The possibility of this being an energy efficient process is discussed. (WHK)

Lawless, J.L. Jr.; Lam, S.H.

1982-02-01T23:59:59.000Z

426

Wave Energy Resource Analysis for Use in Wave Energy Conversion  

E-Print Network (OSTI)

In order to predict the response of wave energy converters an accurate representation of the wave climate resource is crucial. This paper gives an overview of wave resource modeling techniques as well as detailing a methodology for estimating...

Pastor, J.; Liu, Y.; Dou, Y.

2014-01-01T23:59:59.000Z

427

Light-Material Interactions in Energy Conversion - Energy Frontier...  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Matters Video The LMI-EFRC Video "Light Matters" was the winner of the "Life at the Frontiers of Energy Research" video contest for striking photography and visual impact....

428

Light-Material Interactions in Energy Conversion - Energy Frontier...  

NLE Websites -- All DOE Office Websites (Extended Search)

July 18. Our submission captures the essence of what the LMI-EFRC is about: controlling light to make the most energy from the sun Many thanks to those who contributed to our...

429

Energy content of macrobenthic invertebrates: general conversion factors from weight to energy  

Science Journals Connector (OSTI)

In ecological studies, especially in those dealing with energy circulation in nature, determinations of the energy content of organisms are inevitable. Energy determinations are, however, laborious and time-consuming. Average conversion factors based on different species form various areas and seasons may often be a shortcut for overcoming this problem. To establish general energy conversion factors for aquatic invertebrate groups, we used 376 values of J · mg?1 DW and 255 values of J · mg?1 AFDW, representing 308 and 229 species, respectively. The dry-weight-to-energy factors were highly variable both within and between taxonomic groups, e.g.: Porifera, 6.1 J · mg?1 DW; insect larvae, 22.4 J · mg?1 DW (median values). The energy-conversion factors related to AFDW showed a much smaller dispersion with a minimum median value of 19.7 J · mg?1 AFDW (Ascidiacea) and a maximum of 23.8 J · mg?1 AFDW (insect larvae). Within taxonomic groups, the 95% confidence intervals (AFDW) were only a few percent of the median values. The use of energy-conversion factors based on AFDW is preferable due to their lower dispersion. For aquatic macrobenthic invertebrates, a general conversion factor of 23 J · mg?1 AFDW can be used.

Thomas Brey; Heye Rumohr; Sven Ankar

1988-01-01T23:59:59.000Z

430

The use of solar energy can enhance the conversion of carbon dioxide into energy-rich products: stepping towards artificial photosynthesis  

Science Journals Connector (OSTI)

...considered as a H2 carrier as equation...pressure) with energy recovery...16]. The conversion of methanol...Catalysis for Energy: New Challenges...2006 Solar conversion efficiency...cells with carrier multiplication...of solar energy conversion technologies...

2013-01-01T23:59:59.000Z

431

SunShot Initiative: Concentrated Solar Thermoelectric Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrated Solar Thermoelectric Concentrated Solar Thermoelectric Power to someone by E-mail Share SunShot Initiative: Concentrated Solar Thermoelectric Power on Facebook Tweet about SunShot Initiative: Concentrated Solar Thermoelectric Power on Twitter Bookmark SunShot Initiative: Concentrated Solar Thermoelectric Power on Google Bookmark SunShot Initiative: Concentrated Solar Thermoelectric Power on Delicious Rank SunShot Initiative: Concentrated Solar Thermoelectric Power on Digg Find More places to share SunShot Initiative: Concentrated Solar Thermoelectric Power on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment

432

Electron transport modeling and energy filtering for efficient thermoelectric Mg2Si1?xSnx solid solutions  

Science Journals Connector (OSTI)

We present a comprehensive electron transport model to analyze thermoelectric properties of both n- and p-type bulk Mg2Si1?xSnx (0?x?1) solid solutions. A temperature-dependent multiparabolic bands model is used to describe the band structures of the alloys, and the transport properties are calculated using the linearized Boltzmann transport equations under the relaxation time approximation. A variety of experimental data from literature are fitted very well by this model and analyzed for further material optimization. Our analysis shows that the compositions of x = 0.6 to 0.7 exhibit the highest thermoelectric figure of merit zT among n-type Mg2Si1?xSnx in the midtemperature range 600 to 900 K due to both the high power factors achieved by the convergence of the two conduction bands and low electronic thermal conductivities. For the p-type materials, we find that the bipolar electronic thermal conductivity is a major factor limiting the figure of merit. Low Sn content (x?p-type materials due mainly to their lower bipolar thermal conductivities with larger band gaps. Finally, we propose that hot carrier energy filtering can be very useful for these alloys as it can simultaneously reduce the electronic thermal conductivity and enhance the power factor. A zT greater than 3 is possible for n-type Mg2Si0.4Sn0.6 (x = 0.6) at 700 K, if electrons with energies lower than 0.4 eV are effectively prevented from participating in transport.

Je-Hyeong Bahk; Zhixi Bian; Ali Shakouri

2014-02-05T23:59:59.000Z

433

Segregated tandem filter for enhanced conversion efficiency in a thermophotovoltaic energy conversion system  

DOE Patents (OSTI)

A filter system to transmit short wavelength radiation and reflect long wavelength radiation for a thermophotovoltaic energy conversion cell comprises an optically transparent substrate segregation layer with at least one coherent wavelength in optical thickness; a dielectric interference filter deposited on one side of the substrate segregation layer, the interference filter being disposed toward the source of radiation, the interference filter including a plurality of alternating layers of high and low optical index materials adapted to change from transmitting to reflecting at a nominal wavelength .lambda..sub.IF approximately equal to the bandgap wavelength .lambda..sub.g of the thermophotovoltaic cell, the interference filter being adapted to transmit incident radiation from about 0.5.lambda..sub.IF to .lambda..sub.IF and reflect from .lambda..sub.IF to about 2.lambda..sub.IF ; and a high mobility plasma filter deposited on the opposite side of the substrate segregation layer, the plasma filter being adapted to start to become reflecting at a wavelength of about 1.5.lambda..sub.IF.

Brown, Edward J. (Clifton Park, NY); Baldasaro, Paul F. (Clifton Park, NY); Dziendziel, Randolph J. (Middlegrove, NY)

1997-01-01T23:59:59.000Z

434

39610 Energy Conversion & Supply (6) 39611 Energy Demand &Utilization (6)  

E-Print Network (OSTI)

. Energy & Environment (12) 19740 (24740) Combustion & Air Pollution Cntrl (12) 19612 Int. Life Cycle:20 12711 Adv. Project Management for Construction (12) 12742 Data Mining in Infrastructure (6) 12750 Infrastructure Systems (12) 12651/751 Air Quality Engr. (9/12) TR10:3011:50/NA 12740 Data Acq

McGaughey, Alan

435

39610 Energy Conversion & Supply (6) 39611 Energy Demand &Utilization (6)  

E-Print Network (OSTI)

() 19740 (24740) Comb. & Air Pollution Ctrl 19612 Int. Life Cycle Assessment (12) 19739 (18875) Econ& Engr Combustion & Air Pollution (12) 24642 Fuel Cell Systems (12)MW9:3011:20 24643 S.T. Electrochem. Energy Course (18) 12711 Adv. Project Management for Construction (12) 12742 Data Mining

McGaughey, Alan

436

Conversion of Concentrated Solar Thermal Energy into Chemical Energy  

Science Journals Connector (OSTI)

When a concentrated solar beam is irradiated to the ceramics such as Ni-ferrite, the high-energy flux in the range of 1500–2500 kW/m2 is absorbed by an excess Frenkel defect formation. This non-equilibrium state ...

Yutaka Tamaura

2012-03-01T23:59:59.000Z

437

Biochemical Conversion Pilot Plant (Fact Sheet), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Biochemical Conversion Biochemical Conversion Pilot Plant A pilot-scale conversion plant for researchers, industry partners, and stakeholders to test a variety of biochemical conversion processes and technologies. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. In the biochemical conversion pilot plant, NREL's engineers and scientists focus on all aspects of the efficiency and cost reduction of biochemical conversion processes. Our capabilities accommodate research from bench-scale to pilot-scale (up to one ton per day). NREL's biochemical conversion pilot plant is located in the Integrated Biorefinery Research Facility (IBRF). Photo by Dennis Schroeder, NREL/PIX 20248

438

Advanced Optical Materials for Energy Efficiency and Solar Conversion  

Science Journals Connector (OSTI)

Optical materials and coatings play an important role in determining the efficiency of solar conversion processes. At present the best known ... . Since they are of significant consequence to solar conversion and...

Carl M. Lampert

1987-01-01T23:59:59.000Z

439

Wave Energy Conversion Overview and it's Renewable Energy Potential for the Oil and Gas Industry  

E-Print Network (OSTI)

Ocean energy conversion has been of interest for many years. Recent developments such as concern over global warming have renewed interest in the topic. Part II provides an overview of the energy density found in ocean waves and how it is calculated...

Pastor, J.; Liu, Y.; Dou, Y.

2014-01-01T23:59:59.000Z

440

Photochemical Conversion of Solar Energy into Electrical Energy in an Eosin–Mannose System  

Science Journals Connector (OSTI)

Solar energy has been converted into electrical energy using an eosin–mannose system in a ... and 67.20 ?W, respectively. The observed conversion efficiency was 0.6461% and the fill factor was 0.3739 against an a...

Mukesh Kumar Bhimwal; K. M. Gangotri

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermoelectric energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Argonne Chemical Sciences & Engineering - Catalysis & Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen and Fuel Cell Materials Hydrogen and Fuel Cell Materials * Members * Contact * Publications * Overview * Alternative Electrocatalysts * Electrocatalyst Durability * Hydrogen Storage * Electrocatalyst Degradation Catalysis & Energy Conversion Home Hydrogen and Fuel Cell Materials Polymer electrolyte fuel cell (PEFC) systems are promising alternatives to conventional power systems for transportation, portable, and stationary applications due to their high efficiency of converting fuel to electricity, low emissions, and low operating temperatures. Three major issues for PEFC systems, especially for portable and transportation use, are cost, lifetime, and fuel storage, with the fuel of choice being hydrogen. Argonne's Hydrogen and Fuel Cell Materials group has active research projects in these three areas, to enable the use of this promising technology in a variety of applications.

442

Siting handbook for small wind energy conversion systems  

SciTech Connect

This handbook was written to serve as a siting guide for individuals wishing to install small wind energy conversion systems (WECS); that is, machines having a rated capacity of less than 100 kilowatts. It incorporates half a century of siting experience gained by WECS owners and manufacturers, as well as recently developed siting techniques. The user needs no technical background in meteorology or engineering to understand and apply the siting principles discussed; he needs only a knowledge of basic arithmetic and the ability to understand simple graphs and tables. By properly using the siting techniques, an owner can select a site that will yield the most power at the least installation cost, the least maintenance cost, and the least risk of damage or accidental injury.

Wegley, H.L.; Ramsdell, J.V.; Orgill, M.M.; Drake, R.L.

1980-03-01T23:59:59.000Z

443

Plasmadynamics and ionization kinetics of thermionic energy conversion  

SciTech Connect

To reduce the plasma arc-drop, thermionic energy conversion is studied with both analytical and numerical tools. Simplifications are made in both the plasmadynamic and ionization-recombination theories. These are applied to a scheme proposed presently using laser irradiation to enhance the ionization kinetics of the thermionic plasma and thereby reduce the arc-drop. It is also predicted that it is possible to generate the required laser light from a thermionic-type Cesium plasma. The analysis takes advantage of theoretical simplifications derived for the ionization-recombination kinetics. It is shown that large laser ionization enhancements can occur and that collisional Cesium recombination lasing is expected. To complement the kinetic theory, a numerical method is developed to solve the thermionic plasma dynamics. The effects of the complete system of electron-atom inelastic collisions on the ionization-recombination problem are shown to reduce to a system nearly as simple as the well-known one-quantum approximation. To combine the above analysis of ionization-recombination kinetics with the plasma dynamics of thermionic conversion, a finite difference computer program is constructed. Using the above developments, a proposal to improve thermionic converter performance using laser radiation is considered. In this proposed scheme, laser radiation impinging on a thermionic plasma enhances the ionization process thereby raising the plasma density and reducing the plasma arc-drop. A source for such radiation may possibly be a Cesium recombination laser operating in a different thermionic converter. The possibility of this being an energy efficient process is discussed.

Lawless, J.L. Jr.

1981-01-01T23:59:59.000Z

444

Norbornadiene-quadricyclane system in the photochemical conversion and storage of solar energy  

Science Journals Connector (OSTI)

Norbornadiene-quadricyclane system in the photochemical conversion and storage of solar energy ... Photoswitchable Molecular Rings for Solar-Thermal Energy Storage ... Photoswitchable Molecular Rings for Solar-Thermal Energy Storage ...

Constantine Philippopoulos; Dimitrios Economou; Constantine Economou; John Marangozis

1983-12-01T23:59:59.000Z

445

Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Center of the DOE Office of Basic Energy Sciences SOLID-STATE SOLAR-THERMAL ENERGY CONVERSION CENTER Progress from DOE EFRC: Solid-State Solar-Thermal Energy...

446

Assessment of Microbial Fouling in an Ocean Thermal Energy Conversion Experiment  

Science Journals Connector (OSTI)

...Press Inc., New York. 14. Hirshman...Ocean Thermal Energy Conversion...Press Inc., New York. 24. Mathis...Ocean thermal energy: the biggest...Department of Energy, part II. U...Pergamon Press, New York. 28. Perrigo...

R. Paul Aftring; Barrie F. Taylor

1979-10-01T23:59:59.000Z

447

A Unified Framework for Reliability Assessment of Wind Energy Conversion Systems  

E-Print Network (OSTI)

1 A Unified Framework for Reliability Assessment of Wind Energy Conversion Systems Sebastian S a framework for assessing wind energy conversion systems (WECS) reliability in the face of external based on wind energy are: the impact of wind speed variability on system reliability [1]; WECS' reaction

Liberzon, Daniel

448

Assessment of Microbial Fouling in an Ocean Thermal Energy Conversion Experiment  

Science Journals Connector (OSTI)

...publication 23 July 1979 A project to investigate biofouling...to ocean thermal energy conversion heat exchangers...in ocean thermal energy conversion heat exchangers...for man to harvest solar energy involves exploitation...exchanger units. The project was conducted from...

R. Paul Aftring; Barrie F. Taylor

1979-10-01T23:59:59.000Z

449

Thermal Sciences The thermal sciences area involves the study of energy conversion and transmission, power  

E-Print Network (OSTI)

Thermal Sciences The thermal sciences area involves the study of energy conversion and transmission in virtually all energy conversion devices and systems. One may think of the jet engine as a mechanical device, power generation, the flow of liquids and gases, and the transfer of thermal energy (heat) by means

New Hampshire, University of

450

Abstract: Wind Energy Conversion Systems (WECS) produce fluctuating output power, which may cause voltage fluctuations and  

E-Print Network (OSTI)

Abstract: Wind Energy Conversion Systems (WECS) produce fluctuating output power, which may cause, solar energy conversion, virtual test bed simulation. Preprint Order Number: PE-531EC (02- plying its market-clearing mechanism. This mechanism determines the accepted and unaccepted energy bids

Gross, George

451

DOI: 10.1002/cssc.200800087 Oriented Nanostructures for Energy Conversion and  

E-Print Network (OSTI)

DOI: 10.1002/cssc.200800087 Oriented Nanostructures for Energy Conversion and Storage Jun Liu, poor charge-carrier mobilities and narrow absorption in current semiconductors limit the energy-conversionSusChem 2008, 1, 676 ­ 697 #12;1. Introduction The tremendous challenges in energy and natural resources

Cao, Guozhong

452

Nanoscale Triboelectric-Effect-Enabled Energy Conversion for Sustainably Powering Portable Electronics  

E-Print Network (OSTI)

Nanoscale Triboelectric-Effect-Enabled Energy Conversion for Sustainably Powering Portable , and 128 mW/cm3 , respectively, and an energy conversion efficiency as high as 10-39% has been demonstrated: Harvesting energy from our living environment is an effective approach for sustainable, maintenance

Wang, Zhong L.

453

THE CONVERSION OF BIOMASS TO ETHANOL USING GEOTHERMAL ENERGY DERIVED FROM HOT DRY ROCK  

E-Print Network (OSTI)

97505 THE CONVERSION OF BIOMASS TO ETHANOL USING GEOTHERMAL ENERGY DERIVED FROM HOT DRY ROCK between a hot dry rock (HDR) geothermal energy source and the power requirements for the conversion of biomass to fuel ethanol is considerable. In addition, combining these two renewable energy resources

454

Volume 28A, number 2 PHYSICS LETTERS 4 November 1968 HIGH ENERGY K CONVERSION COEFFICIENTS  

E-Print Network (OSTI)

Volume 28A, number 2 PHYSICS LETTERS 4 November 1968 HIGH ENERGY K CONVERSION COEFFICIENTS C. 0V) Fig. 1. Theoretical values for K conversion coefficients for 2 = 48. gamma-ray transition energies 1 and Astronomy: Louisiana State University, Baton Rouge, Louisiana. USA Received 21 September 1968 High energy K

O'Connell, Robert F.

455

PROCESS DESIGN AND CONTROL Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two Methods  

E-Print Network (OSTI)

PROCESS DESIGN AND CONTROL Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two. The performance of energy conversion processes can be evaluated using several types of efficiencies.2 Nowadays Gross,*, Ad Verkooijen, and Signe Kjelstrup, Department of Process & Energy, Delft Uni

Kjelstrup, Signe

456

Economics of Ocean Thermal Energy Conversion Luis A. Vega, Ph.D.  

E-Print Network (OSTI)

Economics of Ocean Thermal Energy Conversion (OTEC) by Luis A. Vega, Ph.D. Published and 100 MW Plants 15 Co-Products of OTEC 16 OTEC Energy Carriers 19 Externalities in the Production Thermal Energy Conversion (OTEC) Luis A. Vega, Ph.D.1, 2 Abstract A straightforward analytical model

457

Assessment of Microbial Fouling in an Ocean Thermal Energy Conversion Experiment  

Science Journals Connector (OSTI)

...Proceedings of the Ocean Thermal Energy Conversion...Claude, G. 1930. Power from the tropical seas...Metz, W. D. 1977. Ocean thermal energy: the biggest gamble in solar power. Science 198:178-180...studies, p. 1-53. In Ocean Thermal Energy Conversion...

R. Paul Aftring; Barrie F. Taylor

1979-10-01T23:59:59.000Z

458

Transmission and Conversion of Energy by Coupled Soft Gears  

E-Print Network (OSTI)

Dynamical aspects of coupled deformable gears are investigated to clarify the differences of mechanical properties between the machines consist of hard materials and those of soft materials. In particular, the performances of two functions, the transmission and the conversion of the energy, are compared between the hard and soft gears systems. First, the responses of the coupled gears against a constant torque working on one of gears are focused for two types of couplings; P) a pair gears are coupled, and T) three gears are coupled with forming a regular triangle. In systems with the coupling P), we obtain trivial results that the rotational energy can be transmitted to other gear only if these gears are hard enough. On the other hand, in systems with the coupling T), the transmission of the rotational energy to one of the other gears appears only if these gears are soft enough. Second, we show the responses of this system in which one of gears have contact with a high temperature heat bath and the other gears have contact with a 0 temperature heat bath. With the coupling T), the directional rotations appear in two gears having contact with 0 temperature heat bath. Here, the direction of these rotations change depending on the noise strength.

Akinori Awazu

2005-03-14T23:59:59.000Z

459

Photo-mechanical energy conversion using polymer brush dissociation  

E-Print Network (OSTI)

A device is investigated that continuously and directly converts light into mechanical energy, using polymers and photodissociation. A polymer brush tethered to a surface, is brought into contact with a parallel plate a small distance above it that contains reaction sites where photodissociation of bound polymer and light can occur. Under the appropriate conditions, the collective effect of these polymers is to apply a force parallel to the plates, converting incoming light into mechanical work. Numerical work is carried out to understand this effect, a three dimensional Langevin simulation, solution to the Fokker Planck equation, and a one dimensional Monte Carlo simulation. Theoretical analysis of the Fokker Planck equation is used to study a model where equilibration of the unbound state occurs and equilibration to a metastable equilibrium is achieved in the bound state. It is shown that the work per cycle can be made much larger than the thermal energy but at the expense of requiring a greatly diminished photodissociation rate. Parameters are discussed in order optimize mechanical energy conversion.

J. M. Deutsch

2013-01-03T23:59:59.000Z

460

Designing New Alloys to be Used in New Energy Conversion Technologies  

ScienceCinema (OSTI)

Dr. Omer Dogan of NETL Albany discusses using computer simulation and modeling to design new alloys to be used in new energy conversion technologies.

Dr. Omer Dogan

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermoelectric energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

E-Print Network 3.0 - advanced energy conversion Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY Biomass Fuel Cell Battery Photovoltaic Stationary... Power A123 SYSTEMS BioGas Biomass Conversion Drying Zone ... Source: Choate, Paul M. - Department of Entomology...

462

One- and Two-Phase Conversion of Biomass to Furfural - Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

One- and Two-Phase Conversion of Biomass to Furfural Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing SummaryExploiting the energy...

463

Conversion efficiency of broad-band rectennas for solar energy harvesting applications  

Science Journals Connector (OSTI)

Optical antennas have been proposed as an alternative option for solar energy harvesting. In this work the power conversion efficiency of broadband antennas, log-periodic,...

Briones, Edgar; Alda, Javier; González, Francisco Javier

2013-01-01T23:59:59.000Z

464

Divergent–rotational Nonlinear Energy Conversions in Wavenumber–frequency Domain During Summer Monsoon  

Science Journals Connector (OSTI)

...—This work deals with computational modelling designed to understand the dynamical mechanism of low frequency monsoonal transients that results from nonlinear divergent–rotational (?-?) kinetic energy (KE) conversions

D. R. Chakraborty; N. K. Agarwal

2000-10-01T23:59:59.000Z

465

Energy conversions and storage caused by an unsteady poloidal flow in active solar regions  

Science Journals Connector (OSTI)

In this paper we discuss coupling processes between a magnetic field and an unsteady plasma motion, and analyze the features of energy storage and conversions in active region.

Zhongyuan Li; W. R. Hu

466

Solar Energy Conversion Processes in Nanostructured Materials Studied via Time-Resolved THz Spectroscopy  

Science Journals Connector (OSTI)

We discuss time-resolved THz spectroscopy measurements for three important solar energy conversion approaches; (1) electronically coupled semiconductor nanocrystals, (2) a bulk...

Beard, Matt; Blackburn, Jeffery; Heben, Michael; Ai, Xin; Rumbles, Garry; Ellingson, Randy J; Nozik, Arthur J

467

Symposium on the Physical Chemistry of Solar Energy Conversion, Indianapolis American Chemical Society Meetings, Fall 2013  

SciTech Connect

The Symposium on the Physical Chemistry of Solar Energy Conversion at the Fall ACS Meeting in Indianapolis, IN (Sept. 8-12) featured the following sessions (approx. 6 speakers per session): (1) Quantum Dots and Nanorods for Solar Energy Conversion (2 half-day sessions); (2) Artificial Photosynthesis: Water Oxidation; (3) Artificial Photosynthesis: Solar Fuels (2 half-day sessions); (4) Organic Solar Cells; (5) Novel Concepts for Solar Energy Conversion (2 half-day sessions); (6) Emerging Techniques for Solar Energy Conversion; (7) Interfacial Electron Transfer

Lian, Tianquan [PI, Emory Univ.

2013-09-01T23:59:59.000Z

468

C3Bio.org - Resources: NIFA - Carbon and Energy Efficient Conversion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentations NIFA - Carbon and Energy Efficient Conversion of Biomass to Biofuels About 0 review(s) (Review this) Share: ... Share this resource: Facebook Twitter...

469

Oxide based thermoelectric materials for large scale power generation  

E-Print Network (OSTI)

The thermoelectric (TE) devices are based on the Seebeck and Peltier effects, which describe the conversion between temperature gradient and electricity. The effectiveness of the material performance can be described by ...

Song, Yang, M. Eng. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

470

Vehicular Applications of Thermoelectrics  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Material Architectures for Energy Conversion * NANOTERM * Behr GmbH and Co KG -Germany (Brehn Holger) * Mensh- Marketing -Technik- Germany( Anett Dylla) * Consiglio...

471

Silicon-Based Thermoelectrics: Harvesting Low Quality Heat Using Economically Printed Flexible Nanostructured Stacked Thermoelectric Junctions  

SciTech Connect

Broad Funding Opportunity Announcement Project: UIUC is experimenting with silicon-based materials to develop flexible thermoelectric devices—which convert heat into energy—that can be mass-produced at low cost. A thermoelectric device, which resembles a computer chip, creates electricity when a different temperature is applied to each of its sides. Existing commercial thermoelectric devices contain the element tellurium, which limits production levels because tellurium has become increasingly rare. UIUC is replacing this material with microscopic silicon wires that are considerably cheaper and could be equally effective. Improvements in thermoelectric device production could return enough wasted heat to add up to 23% to our current annual electricity production.

None

2010-03-01T23:59:59.000Z

472

"Fundamental Challenges in Solar Energy Conversion" workshop hosted by  

Office of Science (SC) Website

Fundamental Challenges in Solar Energy Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications Contact BES Home 06.02.10 "Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Print Text Size: A A A Subscribe FeedbackShare Page July 7, 2010 :: The Light-Material Interactions in Energy Conversion EFRC at the California Institute of Technology will host a one day "Fundamental Challenges in Solar Energy Conversion" workshop for faculty, staff, postdoctoral, and graduate researchers from EFRCs focused on solar energy conversion. More information can be found here .pdf file (553KB

473

New developments in direct nuclear fission energy conversion devices  

SciTech Connect

Some experimental and theoretical results obtained in the investigations undertaken at the Central Institute of Physics (CIP) in Bucharest-Romania concerning the direct nuclear energy conversion into electrical energy are presented. Open-circuit voltages (U /SUB oc/ ) of tens of kV and short-circuit currents (J /SUB sc/ ) of several ..mu..A were obtained in experiments with vacuum fission-electric cells (FEC) developed in the CIP and irradiated in the VVR-S reactor at a 10/sup 9/ neutrons/cm/sup 2/s thermal neutron flux. A gas filled FEC (GAFFC) has been devised and tested in the reactor at the same neutron flux. With this GAFEC U /SUB oc/ of hundreds of kV, J /SUB sc/ of hundreds of ..mu..A and powers of hundreds of mW have been obtained. Our researches pointed out the essential part played by the electrons in the charge transport dynamics occuring in the FEC and the influence of the secondary emission on the FEC operation.

Ursu, I.; Badescu-Singureann, A.I.; Schachter, L.

1983-08-01T23:59:59.000Z

474

Modeling the Q-cycle mechanism of transmembrane energy conversion  

E-Print Network (OSTI)

The Q-cycle mechanism plays an important role in the conversion of the redox energy into the energy of the proton electrochemical gradient across the biomembrane. The bifurcated electron transfer reaction, which is built into this mechanism, recycles one electron, thus, allowing to translocate two protons per one electron moving to the high-potential redox chain. We study a kinetic model of the Q-cycle mechanism in an artificial system which mimics the bf complex of plants and cyanobacteria in the regime of ferredoxin-dependent cyclic electron flow. Using methods of condensed matter physics, we derive a set of master equations and describe a time sequence of electron and proton transfer reactions in the complex. We find energetic conditions when the bifurcation of the electron pathways at the positive side of the membrane occurs naturally, without any additional gates. For reasonable parameter values, we show that this system is able to translocate more than 1.8 protons, on average, per one electron, with a thermodynamic efficiency of the order of 32% or higher.

Anatoly Yu. Smirnov; Franco Nori

2011-06-29T23:59:59.000Z

475

Challenges and Opportunities in Thermoelectric Materials Research...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nanocomposites, plus Overview of Research on Thermoelectric Materials and Devices in China NSFDOE Thermoelectric Partnership: Inorganic-Organic Hybrid Thermoelectrics...

476

Waste Heat Recovery Opportunities for Thermoelectric Generators...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for...

477

Novel Nanostructured Interface Solution for Automotive Thermoelectric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Thermoelectrics Partnership: Automotive Thermoelectric Modules with...

478

Direct Conversion of Light into Work - Energy Innovation Portal  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Solar Thermal Industrial Technologies Industrial Technologies Find More Like This Return to Search Direct Conversion of Light into Work Lawrence Berkeley National...

479

Energy Conversion Advanced Heat Transport Loop and Power Cycle  

SciTech Connect

The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various operating conditions as well as trade offs between efficiency and capital cost. Prametric studies were carried out on reactor outlet temperature, mass flow, pressure, and turbine cooling. Recommendations on the optimal working fluid for each configuration were made. A steady state model comparison was made with a Closed Brayton Cycle (CBC) power conversion system developed at Sandia National Laboratory (SNL). A preliminary model of the CBC was developed in HYSYS for comparison. Temperature and pressure ratio curves for the Capstone turbine and compressor developed at SNL were implemented into the HYSYS model. A comparison between the HYSYS model and SNL loop demonstrated power output predicted by HYSYS was much larger than that in the experiment. This was due to a lack of a model for the electrical alternator which was used to measure the power from the SNL loop. Further comparisons of the HYSYS model and the CBC data are recommended. Engineering analyses were performed for several configurations of the intermediate heat transport loop that transfers heat from the nuclear reactor to the hydrogen production plant. The analyses evaluated parallel and concentric piping arrangements and two different working fluids, including helium and a liquid salt. The thermal-hydraulic analyses determined the size and insulation requirements for the hot and cold leg pipes in the different configurations. Economic analyses were performed to estimate the cost of the va

Oh, C. H.

2006-08-01T23:59:59.000Z

480

Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 1, Overview  

SciTech Connect

Pacific Northwest Laboratory has completed an initial investigation of the effects of physical and chemical properties of biomass feedstocks relative to their performance in biomass energy conversion systems. Both biochemical conversion routes (anaerobic digestion and ethanol fermentation) and thermochemical routes (combustion, pyrolysis, and gasification) were included in the study. Related processes including chemical and physical pretreatment to improve digestibility, and size and density modification processes such as milling and pelletizing were also examined. This overview report provides background and discussion of feedstock and conversion relationships, along with recommendations for future research. The recommendations include (1) coordinate production and conversion research programs; (2) quantify the relationship between feedstock properties and conversion priorities; (3) develop a common framework for evaluating and characterizing biomass feedstocks; (4) include conversion effects as part of the criteria for selecting feedstock breeding programs; and (5) continue emphasis on multiple feedstock/conversion options for biomass energy systems. 9 refs., 3 figs., 2 tabs.

Butner, R.S.; Elliott, D.C.; Sealock, L.J. Jr.; Pyne, J.W.

1988-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermoelectric energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

On the Use of Thermoelectric (TE) Applications Based on Commercial Modules: The Case of TE Generator and TE Cooler  

Science Journals Connector (OSTI)

In recent years thermoelectricity sees rapidly increasing usages in applications like portable refrigerators beverage coolers electronic component coolers etc. when used as Thermoelectric Cooler (TEC) and Thermoelectric Generators (TEG) which make use of the Seebeck effect in semiconductors for the direct conversion of heat into electrical energy and is of particular interest for systems of highest reliability or for waste heat recovery. In this work we examine the performance of commercially available TEC and TEG. A prototype TEC?refrigerator has been designed modeled and constructed for in?car applications. Additionally a TEG was made in order to measure the gained power and efficiency. Furthermore a TEG module was tested on a small size car (Toyota Starlet 1300 cc) in order to measure the gained power and efficiency for various engine loads. With the use of a modeling approach we evaluated the thermal contact resistances and their influence on the final device efficiency.

K. Zorbas; E. Hatzikraniotis; K. M. Paraskevopoulos; Th. Kyratsi

2010-01-01T23:59:59.000Z

482

Thermoelectric generator  

SciTech Connect

A thermoelectric generator unit is described comprising: a hot side heat exchanger including a plate having extruded retention posts projecting from one surface of the plate, and fins adapted for contact with a heating source. The fins are positioned between two of the retention posts. Retention rods are inserted between the retention posts and the base of the fins to retain the fin in thermal contact with the plate surface upon insertion of the retention rod between the engaging surface of the post and the corresponding fin. Thermoelectric semi-conductor modules are in thermal contact with the opposite side of the hot side heat exchanger plate from the contact with the fins. The modules are arranged in a grid pattern so that heat flow is directed into each of the modules from the hot side heat exchanger. The modules are connected electrically so as to combine their electrical output; and a cold side heat exchanger is in thermal contact with the modules acting as a heat sink on the opposite side of the module from the hot side heat exchanger plate so as to produce a thermal gradient across the modules.

Shakun, W.; Bearden, J.H.; Henderson, D.R.

1988-03-29T23:59:59.000Z

483

A thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO2 mitigation  

Science Journals Connector (OSTI)

...partial molar free energy of lattice oxygen...solar-to-fuel conversion efficiency, which...the mobilities on carrier concentrations...J. Hydrogen Energy 31 5561( doi...for new modes of energy conversion and CO2 mitigation...

2010-01-01T23:59:59.000Z

484

Frster resonance energy transfer enhanced color-conversion using colloidal semiconductor quantum dots for solid  

E-Print Network (OSTI)

F�rster resonance energy transfer enhanced color-conversion using colloidal semiconductor quantum August 2009; published online 15 October 2009 In this paper, we present F�rster resonance energy transfer FRET -enhanced color-conversion using colloidal semiconductor quantum dot nanocrystals NCs to make

Demir, Hilmi Volkan

485

An unusual pathway of excitation energy deactivation in carotenoids: Singlet-to-triplet conversion on an  

E-Print Network (OSTI)

An unusual pathway of excitation energy deactivation in carotenoids: Singlet-to-triplet conversion of this energy transfer process can be as low as 30%. Here, we present evidence that an unusual pathway direct obser- vation of a singlet-to-triplet conversion process on an ultrafast timescale

van Stokkum, Ivo

486

Self-oscillating modulators for direct energy conversion audio power amplifiers  

E-Print Network (OSTI)

Self-oscillating modulators for direct energy conversion audio power amplifiers Petar Ljusev1, Denmark Correspondence should be addressed to Petar Ljusev (pl@oersted.dtu.dk) ABSTRACT Direct energy conversion audio power amplifier represents total integration of switching-mode power supply and Class D

487

PHYSICAL REVIEW C 81, 024326 (2010) Resonance behavior of internal conversion coefficients at low -ray energy  

E-Print Network (OSTI)

February 2010) A resonance-like structure of internal conversion coefficients (ICCs) at low -ray energyPHYSICAL REVIEW C 81, 024326 (2010) Resonance behavior of internal conversion coefficients at low -ray energy M. B. Trzhaskovskaya,1 T. Kib´edi,2 and V. K. Nikulin3 1 Petersburg Nuclear Physics

488

AC conductivity of nanoporous metal-oxide photoanodes for solar energy conversion  

E-Print Network (OSTI)

AC conductivity of nanoporous metal-oxide photoanodes for solar energy conversion Steven J. Konezny% solar-to-electric energy conversion efficiency) exploited the large surface area of nanoporous thin of nanoporous thin films without increasing the recombination rate. To ensure efficient charge carrier

Konezny, Steven J.

489

The Activation Energy of the para-Hydrogen Conversion on Tungsten  

Science Journals Connector (OSTI)

...research-article The Activation Energy of the para-Hydrogen Conversion on Tungsten A. Couper D. D. Eley...has been made of the activation energy, E, and frequency factor, B , for the conversion of para-hydrogen on tungsten...

1952-01-01T23:59:59.000Z

490

A Study of Heat Sink Performance in Air and Soil for Use in a Thermoelectric Energy Harvesting Device  

E-Print Network (OSTI)

conductance of a passive heat sink buried in soil. Introduction Solid state thermoelectric generators offer a battery cell at low power. Sensors and communication devices would use the charged battery to operate

491

Thermal power plant efficiency enhancement with Ocean Thermal Energy Conversion  

Science Journals Connector (OSTI)

Abstract In addition to greenhouse gas emissions, coastal thermal power plants would gain further opposition due to their heat rejection distressing the local ecosystem. Therefore, these plants need to enhance their thermal efficiency while reducing their environmental offense. In this study, a hybrid plant based on the principle of Ocean Thermal Energy Conversion was coupled to a 740 MW coal-fired power plant project located at latitude 28°S where the surface to deepwater temperature difference would not suffice for regular OTEC plants. This paper presents the thermodynamical model to assess the overall efficiency gained by adopting an ammonia Rankine cycle plus a desalinating unit, heated by the power plant condenser discharge and refrigerated by cold deep seawater. The simulation allowed us to optimize a system that would finally enhance the plant power output by 25–37 MW, depending on the season, without added emissions while reducing dramatically the water temperature at discharge and also desalinating up to 5.8 million tons per year. The supplemental equipment was sized and the specific emissions reduction was estimated. We believe that this approach would improve the acceptability of thermal and nuclear power plant projects regardless of the plant location.

Rodrigo Soto; Julio Vergara

2014-01-01T23:59:59.000Z

492

Studies of Perovskite Materials for High-Performance Storage Media, Piezoelectric, and Solar Energy Conversion Devices  

E-Print Network (OSTI)

Studies of Perovskite Materials for High-Performance Storage Media, Piezoelectric, and Solar Energy of applications, such as sensing, data storage, and energy conversion. For example, perovskite solid solutions

Rappe, Andrew M.

493

Recent developments of thermoelectric power generation  

Science Journals Connector (OSTI)

One form of energy generation that is expected to be on the rise in the next several decades is thermoelectric power generation (TEPG) which converts heat directly to electricity. Compared with other methods, ...

Luan Weiling; Tu Shantung

2004-06-01T23:59:59.000Z

494

Device testing and characterization of thermoelectric nanocomposites  

E-Print Network (OSTI)

It has become evident in recent years that developing clean, sustainable energy technologies will be one of the world's greatest challenges in the 21st century. Thermoelectric materials can potentially make a contribution ...

Muto, Andrew (Andrew Jerome)

2008-01-01T23:59:59.000Z

495

Investigation into direct conversion with medium energy He-ion beams  

E-Print Network (OSTI)

INVESTIGATION INTO DIRECT ENERGY CONVERSION WITH MEDIUM ENERGY HELIUM-ION BEAMS A Thesis by AVERY ALLAN GUILD-BINGHAM Submitted to the Office of Graduate Studies of Texas A&M University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2004 Major Subject: Nuclear Engineering INVESTIGATION INTO DIRECT ENERGY CONVERSION WITH MEDIUM ENERGY HELIUM-ION BEAMS A Thesis...

Guild-Bingham, Avery A.

2005-02-17T23:59:59.000Z

496

Nanocomposites as thermoelectric materials  

E-Print Network (OSTI)

Thermoelectric materials have attractive applications in electric power generation and solid-state cooling. The performance of a thermoelectric device depends on the dimensionless figure of merit (ZT) of the material, ...

Hao, Qing

2010-01-01T23:59:59.000Z

497

Hybridizing Energy Conversion and Storage in a Mechanical-to-Electrochemical Process for Self-Charging Power Cell  

E-Print Network (OSTI)

Hybridizing Energy Conversion and Storage in a Mechanical-to- Electrochemical Process for Self-charging power cell, mechanical energy, piezoelectricity, lithium ion battery, electrochemistry Energy conversion physical units achieving the conversions from mechanical energy to electricity and then from electric

Wang, Zhong L.

498

Methane Gas Conversion Property Tax Exemption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Gas Conversion Property Tax Exemption Methane Gas Conversion Property Tax Exemption Methane Gas Conversion Property Tax Exemption < Back Eligibility Agricultural Commercial Industrial Residential Savings Category Bioenergy Program Info Start Date 01/01/2008 (retroactive) State Iowa Program Type Property Tax Incentive Rebate Amount 100% exemption for 10 years Provider Iowa Economic Development Authority '''''Note: This exemption is only available to facilities operated in connection or conjunction with a publicly-owned sanitary landfill. The exemption was available to other entities only for systems placed in service by December 31, 2012. Systems in place before this date are eligible to receive the property tax exemption for 10 years.''''' Under Iowa's methane gas conversion property tax exemption, real and

499

Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion  

E-Print Network (OSTI)

for Photovoltaic and Photoelectrochemical Energy Conversionas photovoltaic and photoelectrochemical energy conversionblock for solar photovoltaic and photoelectrochemical energy

Dasgupta, Neil

2014-01-01T23:59:59.000Z

500

Experimental and Analytical Studies on Pyroelectric Waste Heat Energy Conversion  

E-Print Network (OSTI)

Waste heat Pyroelectric energy3 Pyroelectric Waste Heat Energy Harvesting Using Heat4 Pyroelectric Waste Heat Energy Harvesting Using Relaxor

Lee, Felix

2012-01-01T23:59:59.000Z