National Library of Energy BETA

Sample records for thermodynamik pfaffenwaldring 38-40

  1. Biochemical & Thermochemical High Throughput Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    20 40 60 80 100 120 140 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 Frequency Corn Stover Corn Cob Miscanthus Wheat

  2. Appendix A. Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    Persian Gulf Share of World Production 29% 29% 31% 32% 35% 38% 40% 42% a Crude and lease condensate includes tight oil, shale oil, extra-heavy oil, field condensate, and bitumen. b ...

  3. Biochemical & Thermochemical High Throughput Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    20 40 60 80 100 120 140 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 Frequency Corn Stover Corn Cob Miscanthus Wheat...

  4. 18-24.tex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 from (1995TI07): Energy levels of 18 F a E x J π ; T K π τ or Decay Reactions (MeV ± keV) Γ c.m. 0 1 + ; 0 0 + τ 1/2 = 109.77 ± 0.05 min β + 1, 4, 5, 6, 9, 10, 12, 13, 15, 21, 23, 24, 25, 29, 31, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44 0.93720 ± 0.06 3 + ; 0 0 + τ m = 67.6 ± 2.5 ps (g = +0.56 ± 0.05) γ 2, 6, 9, 10, 13, 21, 23, 25, 30, 31, 35, 36, 38, 40, 41, 42, 44 1.04155 ± 0.08 0 + ; 1 τ m = 2.55 ± 0.45 fs γ 6, 9, 21, 25, 30, 31, 34, 35, 37, 38, 40, 42, 43 1.08054 ± 0.12 0 -

  5. Number of Existing Natural Gas Salt Caverns Storage Fields

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    34 35 37 38 40 40 1999-2013 Alabama 1 1 1 1 1 1 1999-2013 California 0 1999-2012 Kansas 1 1 1 1 1 1999-2012 Louisiana 9 10 10 10 11 11 1999-2013 Michigan 2 2 2 2 2 2 1999-2013...

  6. U.S. Natural Gas Number of Underground Storage Salt Caverns Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    (Number of Elements) Salt Caverns Capacity (Number of Elements) U.S. Natural Gas Number of Underground Storage Salt Caverns Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 29 2000's 28 28 29 30 30 30 31 31 34 35 2010's 37 38 40 40 39 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages:

  7. Table 11.2e Carbon Dioxide Emissions From Energy Consumption: Electric Power Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    e Carbon Dioxide Emissions From Energy Consumption: Electric Power Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Natural Gas 3 Petroleum Geo- thermal Non- Biomass Waste 5 Total 2 Biomass 2 Distillate Fuel Oil 4 Petroleum Coke Residual Fuel Oil Total Wood 6 Waste 7 Total 1949 187 30 2 NA 30 33 NA NA 250 1 NA 1 1950 206 35 2 NA 35 37 NA NA 278 1 NA 1 1951 235 42 2 NA 29 31 NA NA 308 1 NA 1 1952 240 50 2 NA 31 33 NA NA 323 1 NA 1 1953 260 57 3 NA 38 40 NA NA 358 (s) NA (s)

  8. Pulsed particle beam vacuum-to-air interface

    DOE Patents [OSTI]

    Cruz, Gilbert E.; Edwards, William F.

    1988-01-01

    A vacuum-to-air interface (10) is provided for a high-powered, pulsed particle beam accelerator. The interface comprises a pneumatic high speed gate valve (18), from which extends a vacuum-tight duct (26), that termintes in an aperture (28). Means (32, 34, 36, 38, 40, 42, 44, 46, 48) are provided for periodically advancing a foil strip (30) across the aperture (28) at the repetition rate of the particle pulses. A pneumatically operated hollow sealing band (62) urges foil strip (30), when stationary, against and into the aperture (28). Gas pressure means (68, 70) periodically lift off and separate foil strip (30) from aperture (28), so that it may be readily advanced.

  9. Kansas Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 63 63 63 61 62 57 57 55 56 58 59 61 1997 60 55 60 59 62 60 58 54 50 54 54 54 1998 55 50 54 52 52 52 45 48 48 51 49 50 1999 52 44 47 46 46 47 46 46 44 45 44 46 2000 47 43 45 50 45 44 45 45 42 42 41 41 2001 42 37 41 40 41 39 41 41 39 40 39 40 2002 40 36 40 38 40 39 39 39 36 37 36 37 2003 36 32 36 35 36 34 36 36 35 35 34 34 2004 34 32 34 33 34 33 35 34 33 33 32 32 2005 32 30 32 32 32 30 32 33 31 32 31 31 2006 30 27 30 30 30 30 31 32 31 30 31

  10. Connecticut Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Connecticut Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 38 40,886 41,594 43,703 1990's 45,364 45,925 46,859 45,529 45,042 45,935 47,055 48,195 47,110 49,930 2000's 52,384 49,815 49,383 50,691 50,839 52,572 52,982 52,389 53,903 54,510 2010's 54,842 55,028 55,407 55,500 56,591 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  11. TOTAL WORKFORCE Males

    National Nuclear Security Administration (NNSA)

    9 Females Male Female Male Female Male Female Male Female Male Female 1 1 10 11 4 3 14 8 78 26 PAY PLAN SES 10 EX 1 EJ/EK 2 EN 05 8 EN 04 15 EN 03 6 NN (Engineering) 63 NQ (Prof/Tech/Admin) 51 White 31.4% Deputy Administrator for Defense Programs (NA-10) As of March 21, 2015 DIVERSITY 156 107 68.6% American Indian Alaska Native African American Asian American Pacific Islander Hispanic SES EX EJ/EK EN 05 EN 04 EN 03 NN NQ 6.4% 0.6% 1.3% 5.1% 9.6% 3.8% 40.4% 32.7% 0.6% 0.6% 6.4% 7.1% 2.6% 1.9%

  12. Illinois Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 41 38 40 39 38 37 37 38 37 40 40 41 1992 31 28 30 29 28 27 28 28 28 30 30 31 1993 30 29 29 27 27 27 27 28 28 29 27 30 1994 30 29 29 27 27 27 26 28 27 28 26 29 1995 30 29 29 27 27 27 27 28 27 28 26 29 1996 29 28 28 26 27 27 21 22 22 23 21 24 1997 23 22 22 20 21 21 17 17 17 18 16 18 1998 21 20 20 18 19 19 15 16 15 16 15 17 1999 19 18 18 17 17 17 14 14 14 15 14 15 2000 19 18 18 17 17 17 14 14 14 15 13 15 2001 18 18 17 16 17 17 13 14 14 14 13

  13. Indiana Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 21 18 20 19 19 19 19 18 19 20 19 21 1992 15 14 15 14 14 14 14 14 14 15 15 15 1993 17 15 16 16 16 15 15 15 15 17 17 17 1994 9 8 9 9 9 8 9 9 8 9 9 10 1995 4 34 22 42 21 13 22 18 8 21 28 16 1996 14 15 28 33 34 30 30 29 27 33 45 41 1997 38 40 34 34 40 29 30 40 34 39 115 52 1998 37 52 51 45 11 21 85 75 74 69 66 28 1999 76 69 79 70 82 70 66 75 59 52 79 77 2000 75 60 76 77 73 74 85 82 76 77 68 76 2001 83 63 97 97 16 96 102 100 93 111 102 104

  14. 3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (dollars per barrel) West Texas Intermediate Spot Average .............................. 48.48 57.85 46.55 41.94 33.35 45.46 41.78 43.69 45.37 50.06 53.00 57.94 48.67 41.16 51.58 Brent Spot Average ............................................................. 53.91 61.65 50.43 43.55 33.89 45.57 42.56 44.02 45.37 50.06 53.00 57.94 52.32 41.60 51.58 U.S. Imported Average ........................................................ 46.38 56.07 45.59 37.88 28.83 41.21 38.38 40.18 41.85 46.49 49.50 54.51

  15. CMC vane assembly apparatus and method

    DOE Patents [OSTI]

    Schiavo, Anthony L; Gonzalez, Malberto F; Huang, Kuangwei; Radonovich, David C

    2012-10-23

    A metal vane core or strut (64) is formed integrally with an outer backing plate (40). An inner backing plate (38) is formed separately. A spring (74) with holes (75) is installed in a peripheral spring chamber (76) on the strut. Inner and outer CMC shroud covers (46, 48) are formed, cured, then attached to facing surfaces of the inner and outer backing plates (38, 40). A CMC vane airfoil (22) is formed, cured, and slid over the strut (64). The spring (74) urges continuous contact between the strut (64) and airfoil (66), eliminating vibrations while allowing differential expansion. The inner end (88) of the strut is fastened to the inner backing plate (38). A cooling channel (68) in the strut is connected by holes (69) along the leading edge of the strut to peripheral cooling paths (70, 71) around the strut. Coolant flows through and around the strut, including through the spring holes.

  16. Imports of Crude Oil, Commercial

    Gasoline and Diesel Fuel Update (EIA)

    Illinois

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 41 38 40 39 38 37 37 38 37 40 40 41 1992 31 28 30 29 28 27 28 28 28 30 30 31 1993 30 29 29 27 27 27 27 28 28 29 27 30 1994 30 29 29 27 27 27 26 28 27 28 26 29 1995 30 29 29 27 27 27 27 28 27 28 26 29 1996 29 28 28 26 27 27 21 22 22 23 21 24 1997 23 22 22 20 21 21 17 17 17 18 16 18 1998 21 20 20 18 19 19 15 16 15 16 15 17 1999 19 18 18 17 17 17 14 14 14 15 14 15 2000 19 18 18 17 17 17 14 14 14 15 13 15 2001 18 18 17 16 17 17 13

  17. U.S. Lower 48 States Onshore Maximum Number of Active Crews Engaged in

    Gasoline and Diesel Fuel Update (EIA)

    Seismic Surveying (Number of Elements) Onshore Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) U.S. Lower 48 States Onshore Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2000 0 0 41 41 38 43 44 45 43 46 46 48 2001 44 45 45 47 45 42 42 41 39 39 42 41 2002 38 40 35 32 32 32 34 33 37 38 35 31 2003 28 29 28 27 24 25 28 30 30 31 31 32 2004 33 35 35 36 35 39 38 39 40 42 42 41

  18. Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 21 18 20 19 19 19 19 18 19 20 19 21 1992 15 14 15 14 14 14 14 14 14 15 15 15 1993 17 15 16 16 16 15 15 15 15 17 17 17 1994 9 8 9 9 9 8 9 9 8 9 9 10 1995 4 34 22 42 21 13 22 18 8 21 28 16 1996 14 15 28 33 34 30 30 29 27 33 45 41 1997 38 40 34 34 40 29 30 40 34 39 115 52 1998 37 52 51 45 11 21 85 75 74 69 66 28 1999 76 69 79 70 82 70 66 75 59 52 79 77 2000 75 60 76 77 73 74 85 82 76 77 68 76 2001 83 63 97 97 16 96 102 100 93 111 102 104

  19. Illinois at Urbana-Champaign, Professor Michael J.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Illinois Natural Gas Gross Withdrawals (Million Cubic Feet) Illinois Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 41 38 40 39 38 37 37 38 37 40 40 41 1992 31 28 30 29 28 27 28 28 28 30 30 31 1993 30 29 29 27 27 27 27 28 28 29 27 30 1994 30 29 29 27 27 27 26 28 27 28 26 29 1995 30 29 29 27 27 27 27 28 27 28 26 29 1996 29 28 28 26 27 27 21 22 22 23 21 24 1997 23 22 22 20 21 21 17 17 17 18 16 18 1998 21 20 20 18 19 19 15 16 15 16 15 17

  20. Study of the operational conditions for anaerobic digestion of urban solid wastes

    SciTech Connect (OSTI)

    Castillo M, Edgar Fernando . E-mail: efcastil@uis.edu.co; Cristancho, Diego Edison; Victor Arellano, A.

    2006-07-01

    This paper describes an experimental evaluation of anaerobic digestion technology as an option for the management of organic solid waste in developing countries. As raw material, a real and heterogeneous organic waste from urban solid wastes was used. In the first experimental phase, seed selection was achieved through an evaluation of three different anaerobic sludges coming from wastewater treatment plants. The methanization potential of these sludges was assessed in three different batch digesters of 500 mL, at two temperature levels. The results showed that by increasing the temperature to 15 deg. C above room temperature, the methane production increases to three times. So, the best results were obtained in the digester fed with a mixed sludge, working at mesophilic conditions (38-40 deg. C). Then, this selected seed was used at the next experimental phase, testing at different digestion times (DT) of 25, 20 and 18 days in a bigger batch digester of 20 L with a reaction volume of 13 L. The conversion rates were registered at the lowest DT (18 days), reaching 44.9 L/kg{sup -1} of wet waste day{sup -1}. Moreover, DT also has a strong influence over COD removal, because there is a direct relationship between solids removal inside the reactor and DT.

  1. Pygmy dipole mode in deformed neutron-rich Mg isotopes close to the drip line

    SciTech Connect (OSTI)

    Yoshida, Kenichi

    2009-10-15

    We investigate the microscopic structure of the low-lying isovector-dipole excitation mode in neutron-rich {sup 36,38,40}Mg close to the drip line by means of the deformed quasiparticle random-phase approximation employing the Skyrme and the local pairing energy-density functionals. It is found that the low-lying bump structure above the neutron emission-threshold energy develops when the drip line is approached, and that the isovector dipole strength at E{sub x}<10 MeV exhausts about 6.0% of the classical Thomas-Reiche-Kuhn dipole sum rule in {sup 40}Mg. We obtained the collective dipole modes at around 8-10 MeV in Mg isotopes, that consist of many two-quasiparticle excitations of the neutron. The transition density clearly shows an oscillation of the neutron skin against the isoscalar core. We found significant coupling effects between the dipole and octupole excitation modes due to the nuclear deformation. It is also found that the responses for the compressional dipole and isoscalar octupole excitations are much enhanced in the lower energy region.

  2. Particle separating apparatus and method

    DOE Patents [OSTI]

    Van den Engh, Gerrit J.

    1998-01-01

    A disposable first tube (68) extends axially through, and is detachably connected to, an annular main body (10'). An input piezo electric element (38) is attached to a first end of the tubular main body (10'). A second, sensor piezo electric element (40) is attached to the opposite end of the main body (10'). A nozzle (20') having a nozzle passageway (110) and a discharge opening (112) is detachably secured to an outlet end of the first tube (68). A second tube (102) within the first tube (68) delivers a core liquid to the nozzle passageway (110). A sheath liquid is delivered through a space in the first tube (68) surrounding the second tube (102). The nozzle passageway (110) forms the core and sheath liquids into a small diameter jet stream. Electrical energy is delivered to the input piezo electric element (38), to vibrate the nozzle (20') and break the jet stream into droplets. The sensor element (40) determines the amplitude of vibration at the nozzle (20') and delivers this information to a control circuit that adjusts the electrical energy input to the input piezo electric element (38) for maintaining a desired amplitude of vibration at the nozzle (20'). The frequency of vibration is determined by the length of the main body (10') between the two piezo electric elements (38, 40). The first and second tubes (68, 102) are disposable and are replaced after a use rather than being cleaned and sterilized.

  3. Particle separating apparatus and method

    DOE Patents [OSTI]

    Van den Engh, Gerrit J.

    1999-01-01

    A disposable first tube (68) extends axially through, and is detachably connected to, an annular main body (10'). An input piezo electric element (38) is attached to a first end of the tubular main body (10'). A second, sensor piezo electric element (40) is attached to the opposite end of the main body (10'). A nozzle (20') having a nozzle passageway (110) and a discharge opening (112) is detachably secured to an outlet end of the first tube (68). A second tube (102) within the first tube (68) delivers a core liquid to the nozzle passageway (110). A sheath liquid is delivered through a space in the first tube (68) surrounding the second tube (102). The nozzle passageway (110) forms the core and sheath liquids into a small diameter jet stream. Electrical energy is delivered to the input piezo electric element (38), to vibrate the nozzle (20') and break the jet stream into droplets. The sensor element (40) determines the amplitude of vibration at the nozzle (20') and delivers this information to a control circuit that adjusts the electrical energy input to the input piezo electric element (38) for maintaining a desired amplitude of vibration at the nozzle (20'). The frequency of vibration is determined by the length of the main body (10') between the two piezo electric elements (38, 40). The first and second tubes (68, 102) are disposable and are replaced after a use rather than being cleaned and sterilized.

  4. Turbine airfoil with controlled area cooling arrangement

    DOE Patents [OSTI]

    Liang, George

    2010-04-27

    A gas turbine airfoil (10) includes a serpentine cooling path (32) with a plurality of channels (34,42,44) fluidly interconnected by a plurality of turns (38,40) for cooling the airfoil wall material. A splitter component (50) is positioned within at least one of the channels to bifurcate the channel into a pressure-side channel (46) passing in between the outer wall (28) and the inner wall (30) of the pressure side (24) and a suction-side channel (48) passing in between the outer wall (28) and the inner wall (30) of the suction side (26) longitudinally downstream of an intermediate height (52). The cross-sectional area of the pressure-side channel (46) and suction-side channel (48) are thereby controlled in spite of an increasing cross-sectional area of the airfoil along its longitudinal length, ensuring a sufficiently high mach number to provide a desired degree of cooling throughout the entire length of the airfoil.