Powered by Deep Web Technologies
Note: This page contains sample records for the topic "thermal-to-electrical energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

Nanoporous Thermal-to-Electrical Energy Conversion System (hand, the indirect energy conversion systems tend to beIn a direct energy conversion system, heat can be converted

Lim, Hyuck

2011-01-01T23:59:59.000Z

2

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

SAN DIEGO Recycling of Wasted Energy : Thermal to ElectricalRecycling of Wasted Energy : Thermal to Electrical Energyenergy, geothermal energy, wasted heat from a nuclear

Lim, Hyuck

2011-01-01T23:59:59.000Z

3

Recycling of wasted energy : thermal to electrical energy conversion.  

E-Print Network (OSTI)

??Harvesting useful electric energy from ambient thermal gradients and/or temperature fluctuations is immensely important. For many years, a number of direct and indirect thermal-to-electrical energy… (more)

Lim, Hyuck

2011-01-01T23:59:59.000Z

4

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

Mahkamov, Renewable and Sustainable Energy Reviews, Vol. 11(S. Wongwises, Renewable and Sustainable Energy Reviews, Vol.E. Barbier, Renewable Sustainable Energy Review, Vol. 6, pp.

Lim, Hyuck

2011-01-01T23:59:59.000Z

5

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

the portion of thermal energy that can be converted toof high-performance thermal energy harvesting systems, butreferred to as the thermal energy from low- temperature heat

Lim, Hyuck

2011-01-01T23:59:59.000Z

6

Thermal to Electrical Energy Conversion of Skutterudite-Based Thermoelectric Modules  

SciTech Connect

The performance of thermoelectric (TE) materials has improved tremendously over the past decade. The intrinsic thermal and electrical properties of state-of-the-art TE materials demonstrate that the potential for widespread practical TE applications is very large and includes TE generators (TEGs) for automotive waste heat recovery. TE materials for automotive TEG applications must have good intrinsic performance, be thermomechanically compatible, and be chemically stable in the 400 K to 850 K temperature range. Both n-type and p-type varieties must be available at low cost, easily fabricated, and durable. They must also form robust junctions and develop good interfaces with other materials to permit efficient flows of electrical and thermal energy. Among the TE materials of interest for automotive waste heat recovery systems are the skutterudite compounds, which are the antimony-based transition-metal compounds RTE4Sb12, where R can be an alkali metal (e.g., Na, K), alkaline earth (e.g., Ba), or rare earth (e.g., La, Ce, Yb), and TE can be a transition metal (e.g., Co, Fe). We synthesized a considerable quantity of n-type and p-type skutterudites, fabricated TE modules, incorporated these modules into a prototype TEG, and tested the TEG on a production General Motors (GM) vehicle. We discuss our progress on skutterudite TE module fabrication and present module performance data for electrical power output under simulated operating conditions for automotive waste heat recovery systems. We also present preliminary durability results on our skutterudite modules.

Salvador, James R. [GM R& D and Planning, Warren, Michigan; Cho, Jung Y [GM R& D and Planning, Warren, Michigan; Ye, Zuxin [GM Research and Development Center; Moczygemba, Joshua E. [Marlow Industries, Inc; Thompson, Alan [Marlow Industries, Inc; Sharp, Jeff W. [Marlow Industries, Inc; Konig, Jan [Fraunhofer-Institute, Freiburg, Germany; Maloney, Ryan [Michigan State University; Thompson, Travis [Michigan State University; Sakamoto, Jeff [Michigan State University; Wang, Hsin [ORNL; Wereszczak, Andrew A [ORNL; Meisner, G P [General Motors Corporation-R& D

2013-01-01T23:59:59.000Z

7

Thermal to electricity conversion using thermal magnetic properties  

DOE Patents (OSTI)

A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.

West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID

2010-04-27T23:59:59.000Z

8

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

components and moving parts, such as pumps, heat exchangers,as heat exchangers and pumps. The numerous moving parts alsopumps and heat exchangers as well as the large number of moving parts.

Lim, Hyuck

2011-01-01T23:59:59.000Z

9

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

various types of Stirling engine have been developed, whichThermogalvanic cell Stirling Engine ORC Internal Combustion

Lim, Hyuck

2011-01-01T23:59:59.000Z

10

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

Thermally-Chargeable Supercapacitor Fluctuating Low-GradeThermally-Chargeable Supercapacitor for Fluctuating Low-Thermally-Chargeable Supercapacitor for Fluctuating Low-

Lim, Hyuck

2011-01-01T23:59:59.000Z

11

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

the overall efficiency. The heat source can be solar thermalefficiency of the vehicles can be considerably enhanced [105]. Other examples of LGH include solar thermal

Lim, Hyuck

2011-01-01T23:59:59.000Z

12

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

various types of Stirling engine have been developed, whichThermogalvanic cell Stirling Engine ORC Internal Combustionof Sterling engine [17] year inventor Robert Stirling John

Lim, Hyuck

2011-01-01T23:59:59.000Z

13

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

of Amorphous Gallium Indium Zinc Oxide NonvolatileAmorphous gallium indium zinc oxide thin film transistors:Effects in Amorphous Gallium–Indium Zinc- xv Oxide Thin Film

Lim, Hyuck

2011-01-01T23:59:59.000Z

14

Ocean Thermal Energy Conversion  

Energy.gov (U.S. Department of Energy (DOE))

A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity.

15

Wave Energy Conversion Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Wave Energy Conversion Technology Wave Energy Conversion Technology Speaker(s): Mirko Previsic Date: August 2, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn Scientists have been working on wave power conversion for the past twenty years, but recent advances in offshore and IT technologies have made it economically competitive. Sea Power & Associates is a Berkeley-based renewable energy technology company. We have developed patented technology to generate electricity from ocean wave energy using a system of concrete buoys and highly efficient hydraulic pumps. Our mission is to provide competitively priced, non-polluting, renewable energy for coastal regions worldwide. Mirko Previsic, founder and CEO, of Sea Power & Associates will discuss ocean wave power, existing technologies for its conversion into

16

Direct energy conversion systems  

SciTech Connect

The potential importance of direct energy conversion to the long-term development of fusion power is discussed with stress on the possibility of alleviating waste heat problems. This is envisioned to be crucial for any central power station in the 21st century. Two approaches to direct conversion, i.e., direct collection and magnetic expansion, are reviewed. While other techniques may be possible, none have received sufficient study to allow evaluation. It is stressed that, due to the intimate connection between the type of fusion fuel, the confinement scheme, direct conversion, and the coupling technique, all four element must be optimized simultaneously for high overall efficiency.

Miley, G.H.

1978-01-01T23:59:59.000Z

17

Photovoltaic Energy Conversion  

E-Print Network (OSTI)

Photovoltaic Energy Conversion Frank Zimmermann #12;Solar Electricity Generation Consumes no fuel Buy Solar Energy Stocks? Make Photovoltaics your Profession! #12;Challenges Make solar cells more and fossil fuel depletion problems! #12;Photovoltaics: Explosive Growth #12;Take Advantage of Solar Megatrend

Glashausser, Charles

18

Ocean Thermal Energy Conversion | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Energy Conversion Ocean Thermal Energy Conversion August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in...

19

Energy Basics: Ocean Thermal Energy Conversion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Energy Conversion A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when...

20

Conversion factors for energy equivalents  

Science Conference Proceedings (OSTI)

... Conversion factors for energy equivalents, For your convenience, you may convert energies online below. Or display factors as: ...

Note: This page contains sample records for the topic "thermal-to-electrical energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Session: Energy Conversion  

DOE Green Energy (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hydrothermal Energy Conversion Technology'' by David Robertson and Raymond J. LaSala; ''Materials for Geothermal Production'' by Lawrence E. Kukacka; ''Supersaturated Turbine Expansions for Binary Geothermal Power Plants'' by Carl J. Bliem; ''Geothermal Waster Treatment Biotechnology: Progress and Advantages to the Utilities'' by Eugen T. Premuzic; and ''Geothermal Brine Chemistry Modeling Program'' by John H. Weare.

Robertson, David; LaSala, Raymond J.; Kukacka, Lawrence E.; Bliem, Carl J.; Premuzic, Eugene T.; Weare, John H.

1992-01-01T23:59:59.000Z

22

Energy Conversion, Storage, and Transport News  

Science Conference Proceedings (OSTI)

NIST Home > Energy Conversion, Storage, and Transport News. Energy Conversion, Storage, and Transport News. (showing ...

2010-10-26T23:59:59.000Z

23

Energy Conversion, Storage, and Transport Portal  

Science Conference Proceedings (OSTI)

NIST Home > Energy Conversion, Storage, and Transport Portal. Energy Conversion, Storage, and Transport Portal. Programs ...

2013-04-08T23:59:59.000Z

24

Model Energy Conversion Efficiency of Biological Systems  

Science Conference Proceedings (OSTI)

MML Researchers Model Energy Conversion Efficiency of Biological Systems. Novel, highly efficient energy conversion ...

2013-03-15T23:59:59.000Z

25

Solar energy conversion.  

SciTech Connect

If solar energy is to become a practical alternative to fossil fuels, we must have efficient ways to convert photons into electricity, fuel, and heat. The need for better conversion technologies is a driving force behind many recent developments in biology, materials, and especially nanoscience. The Sun has the enormous untapped potential to supply our growing energy needs. The barrier to greater use of the solar resource is its high cost relative to the cost of fossil fuels, although the disparity will decrease with the rising prices of fossil fuels and the rising costs of mitigating their impact on the environment and climate. The cost of solar energy is directly related to the low conversion efficiency, the modest energy density of solar radiation, and the costly materials currently required. The development of materials and methods to improve solar energy conversion is primarily a scientific challenge: Breakthroughs in fundamental understanding ought to enable marked progress. There is plenty of room for improvement, since photovoltaic conversion efficiencies for inexpensive organic and dye-sensitized solar cells are currently about 10% or less, the conversion efficiency of photosynthesis is less than 1%, and the best solar thermal efficiency is 30%. The theoretical limits suggest that we can do much better. Solar conversion is a young science. Its major growth began in the 1970s, spurred by the oil crisis that highlighted the pervasive importance of energy to our personal, social, economic, and political lives. In contrast, fossil-fuel science has developed over more than 250 years, stimulated by the Industrial Revolution and the promise of abundant fossil fuels. The science of thermodynamics, for example, is intimately intertwined with the development of the steam engine. The Carnot cycle, the mechanical equivalent of heat, and entropy all played starring roles in the development of thermodynamics and the technology of heat engines. Solar-energy science faces an equally rich future, with nanoscience enabling the discovery of the guiding principles of photonic energy conversion and their use in the development of cost-competitive new technologies.

Crabtree, G. W.; Lewis, N. S. (Materials Science Division); (California Inst. of Tech.)

2008-03-01T23:59:59.000Z

26

ENERGY CONVERSION Spring 2011  

E-Print Network (OSTI)

in this course: Week 1: Review Week 2: Entropy and exergy Week 3: Power cycles, Otto and Diesel Week 4 resources including: wind, wave energy conversion devices, and fuel cell technologies Week12: Introduction will work in groups as assigned. Experiment: Diesel Engine Assessment: Projects 20% Lab Reports

Bahrami, Majid

27

Review of pyroelectric thermal energy harvesting and new MEMs based resonant energy conversion techniques  

Science Conference Proceedings (OSTI)

Harvesting electrical energy from thermal energy sources using pyroelectric conversion techniques has been under investigation for over 50 years, but it has not received the attention that thermoelectric energy harvesting techniques have during this time period. This lack of interest stems from early studies which found that the energy conversion efficiencies achievable using pyroelectric materials were several times less than those potentially achievable with thermoelectrics. More recent modeling and experimental studies have shown that pyroelectric techniques can be cost competitive with thermoelectrics and, using new temperature cycling techniques, has the potential to be several times as efficient as thermoelectrics under comparable operating conditions. This paper will review the recent history in this field and describe the techniques that are being developed to increase the opportunities for pyroelectric energy harvesting. The development of a new thermal energy harvester concept, based on temperature cycled pyroelectric thermal-to-electrical energy conversion, are also outlined. The approach uses a resonantly driven, pyroelectric capacitive bimorph cantilever structure that can be used to rapidly cycle the temperature in the energy harvester. The device has been modeled using a finite element multi-physics based method, where the effect of the structure material properties and system parameters on the frequency and magnitude of temperature cycling, and the efficiency of energy recycling using the proposed structure, have been modeled. Results show that thermal contact conductance and heat source temperature differences play key roles in dominating the cantilever resonant frequency and efficiency of the energy conversion technique. This paper outlines the modeling, fabrication and testing of cantilever and pyroelectric structures and single element devices that demonstrate the potential of this technology for the development of high efficiency thermal-to-electrical energy conversion devices.

Hunter, Scott Robert [ORNL; Lavrik, Nickolay V [ORNL; Mostafa, Salwa [ORNL; Rajic, Slobodan [ORNL; Datskos, Panos G [ORNL

2012-01-01T23:59:59.000Z

28

Wind energy conversion system  

DOE Patents (OSTI)

The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

Longrigg, Paul (Golden, CO)

1987-01-01T23:59:59.000Z

29

Energy Basics: Ocean Thermal Energy Conversion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

30

Energy Conversion/Fuel Cells  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2011. Symposium, Energy Conversion/Fuel Cells. Sponsorship, MS&T Organization.

31

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

Ocean Thermal Energy Conversion (OTEC) Draft Programmaticof ocean thermal energy conversion technology. U.S. Depart~on Ocean TherUial Energy Conversion, June 18, 1979. Ocean

Sands, M.Dale

2013-01-01T23:59:59.000Z

32

Semiconductor Nanowires and Nanotubes for Energy Conversion  

E-Print Network (OSTI)

notably energy conversion. As research continues in thisnanowires for energy conversion. Chemical Reviews, 2010.for solar energy conversion. Physical Review Letters, 2004.

Fardy, Melissa Anne

2010-01-01T23:59:59.000Z

33

Energy conversion system  

DOE Patents (OSTI)

The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weathproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction and operational with a minimal power draw.

Murphy, L.M.

1985-09-16T23:59:59.000Z

34

Energy conversion system  

DOE Patents (OSTI)

The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weatherproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction, and operational with a minimal power draw.

Murphy, Lawrence M. (Lakewood, CO)

1987-01-01T23:59:59.000Z

35

Basis of conversion factors for energy equivalents  

Science Conference Proceedings (OSTI)

... Basis of conversion factors for energy equivalents Conversion factors for energy equivalents are derived from the following relations: ...

36

Conversion factors for energy equivalents: All factors  

Science Conference Proceedings (OSTI)

... Conversion factors for energy equivalents Return to online conversions. Next page of energy equivalents. Definition of uncertainty ...

37

Energy Basics: Biofuel Conversion Processes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

from the EERE Bioenergy Technologies Office. Thermochemical Conversion Processes Heat energy and chemical catalysts can be used to break down biomass into intermediate compounds...

38

Hydrothermal Energy Conversion Technology  

SciTech Connect

The goal of the Hydrothermal Program is to develop concepts which allow better utilization of geothermal energy to reduce the life-cycle cost of producing electricity from liquid-dominated, hydrothermal resources. Research in the program is currently ongoing in three areas: (1) Heat Cycle Research, which is looking at methods to increase binary plant efficiencies; (2) Materials Development, which is developing materials for use in geothermal associated environments; and (3) Advanced Brine Chemistry, with work taking place in both the brine chemistry modeling area and waste disposal area. The presentations during this session reviewed the accomplishments and activities taking place in the hydrothermal energy conversion program. Lawrence Kukacka, Brookhaven National Laboratory, discussed advancements being made to develop materials for use in geothermal applications. This research has identified a large number of potential materials for use in applications from pipe liners that inhibit scale buildup and reduce corrosion to elastomers for downhole use. Carl J. Bliem, Idaho National Engineering Laboratory, discussed preparations currently underway to conduct field investigations of the condensation behavior of supersaturated turbine expansions. The research will evaluate whether the projected 8% to 10% improvement in brine utilization can be realized by allowing these expansions. Eugene T. Premuzic, Brookhaven National Laboratory, discussed advancements being made using biotechnology for treatment of geothermal residual waste; the various process options were discussed in terms of biotreatment variables. A treatment scenario and potential disposal costs were presented. John H. Weare, University of California, San Diego, discussed the present capabilities of the brine chemistry model he has developed for geothermal applications and the information it can provide a user. This model is available to industry. The accomplishments from the research projects presented in this session have been many. It is hoped that these accomplishments can be integrated into industrial geothermal power plant sites to assist in realizing the goal of reducing the cost of energy produced from the geothermal resource.

Robertson, David W.; LaSala, Raymond J.

1992-03-24T23:59:59.000Z

39

Vehicle Technologies Office: Solid State Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Conversion to someone by E-mail Share Vehicle Technologies Office: Solid State Energy Conversion on Facebook Tweet about Vehicle Technologies Office: Solid State Energy...

40

NREL-Ocean Energy Thermal Conversion | Open Energy Information  

Open Energy Info (EERE)

Ocean Energy Thermal Conversion Jump to: navigation, search Logo: NREL-Ocean Energy Thermal Conversion Name NREL-Ocean Energy Thermal Conversion AgencyCompany Organization...

Note: This page contains sample records for the topic "thermal-to-electrical energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

DOE-EPA Working Group on Ocean TherUial Energy Conversion,Sands, M.D. (editor) Ocean Thermal Energy Conversion (OTEC)r:he comnercialization of ocean thermal energy conversion

Sands, M.Dale

2013-01-01T23:59:59.000Z

42

Converse, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Converse, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

43

Vehicle Technologies Office: Solid State Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid State Energy Conversion The Solid State Energy Conversion R&D activity is focused on developing advanced thermoelectric technologies for utilizing engine waste heat by...

44

Nanostructures for Energy Conversion  

Science Conference Proceedings (OSTI)

... These nanoelectrochemical energy systems hold particular promise for enabling ... photoelectrochemical cells for solar hydrogen production, fuel cells ...

2012-07-10T23:59:59.000Z

45

Energy Conversion – Photovoltaic, Concentrating Solar Power, and ...  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2012. Symposium, Energy Conversion – Photovoltaic, Concentrating Solar Power, and  ...

46

Energy Conversion and Storage Program  

DOE Green Energy (OSTI)

The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

Cairns, E.J.

1992-03-01T23:59:59.000Z

47

Solar energy conversion.  

SciTech Connect

The Sun provides Earth with a staggering amount of energy - enough to power the great oceanic and atmospheric currents, the cycle of evaporation and condensation that brings fresh water inland and drives river flow, and the typhoons, hurricanes, and tornadoes that so easily destroy the natural and built landscape. The San Francisco earthquake of 1906, with magnitude 7.8, released an estimated 10{sup 17} joules of energy, the amount the Sun delivers to Earth in one second. Earth's ultimate recoverable resource of oil, estimated at 3 trillion barrels, contains 1.7 x 10{sup 22} joules of energy, which the Sun supplies to Earth in 1.5 days. The amount of energy humans use annually, about 4.6 x 10{sup 20} joules, is delivered to Earth by the Sun in one hour. The enormous power that the Sun continuously delivers to Earth, 1.2 x 10{sup 5} terawatts, dwarfs every other energy source, renewable or nonrenewable. It dramatically exceeds the rate at which human civilization produces and uses energy, currently about 13 TW.

Crabtree, G. W.; Lewis, N. S.; Materials Science Division; Cal Tech

2007-03-01T23:59:59.000Z

48

Conversion Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conversion Plan Conversion Plan This template is used to document the conversion plan that clearly defines the system or project's conversion procedures; outlines the installation...

49

Energy Storage, Transport, and Conversion in CNST  

Science Conference Proceedings (OSTI)

Energy Storage, Transport, and Conversion in CNST. Nanotribology ... Theory and Modeling of Materials for Renewable Energy. Nanostructures ...

2013-05-02T23:59:59.000Z

50

Conversion Spacetime in Energy  

E-Print Network (OSTI)

English: This article is a small part of a larger one that has been called TOP (Theory Of Potentials) and in which is shown broadly as energy can be obtained in various ways. Although what Nature does sometimes not be imitated, or at least as effectively. But it describes as it does. Appendices are also included in this article in order to understand certain details that without them you would understand, and the description of them is an experiment (in Appendix C) which dilates the period of an oscillator, causing decrease in frequency simply applying a voltage in the vicinity, and which coincides well with the theory. Spanish: Este artículo es una pequeña porción de otro más grande que se ha dado en denominar TOP (Theory Of Potentials), y en el cual se demuestra ampliamente como se puede obtener energía de diversas maneras. Aunque lo que la naturaleza hace, a veces no se puede imitar, o al menos con tanta eficacia. Pero en él se describe como lo hace. Se incluyen además los Apéndices de dicho artículo, a fin de entender ciertos pormenores que sin ellos no se comprenderían, y en ellos está la descripción de un experimento

Florentino Muñiz Ania

2013-01-01T23:59:59.000Z

51

Energy Basics: Biofuel Conversion Processes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biodiesel Biofuel Conversion Processes Biopower Bio-Based Products Biomass Resources Geothermal Hydrogen Hydropower Ocean Solar Wind Biofuel Conversion Processes The conversion of...

52

OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

l OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTAL ASSESSMENTOcean Thermal Energy Conversion Draft Programmatic Environ-Ocean Thermal Energy Conversion. U.S. DOE Assistant Secre-

Sands, M.Dale

2013-01-01T23:59:59.000Z

53

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

Thermal Energy Conversion Conference. Ocean Systems Branch,Thermal Energy Conversion Conference. Ocean Systems Branch,thermal energy conversion, June 18, 1979. Ocean Systems

Sands, M. D.

2011-01-01T23:59:59.000Z

54

OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

M.D. (editor). 1980. Ocean Thermal Energy Conversion Draft1980 :. i l OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTALDevelopment Plan. Ocean Thermal Energy Conversion. U.S. DOE

Sands, M.Dale

2013-01-01T23:59:59.000Z

55

Direct Conversion Technology  

DOE Green Energy (OSTI)

The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)

Back, L.H.; Fabris, G.; Ryan, M.A.

1992-07-01T23:59:59.000Z

56

"Approaches to Ultrahigh Efficiency Solar Energy Conversion"...  

Office of Science (SC) Website

"Approaches to Ultrahigh Efficiency Solar Energy Conversion" Webinar Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News...

57

"Fundamental Challenges in Solar Energy Conversion" workshop...  

Office of Science (SC) Website

Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events...

58

Conversion factors for energy equivalents: All factors  

Science Conference Proceedings (OSTI)

... Previous page of energy equivalents. Definition of uncertainty notation eg, 123(45) | Basis of conversion factors for energy equivalents. Top. ...

59

Explorations of Novel Energy Conversion and Storage Systems  

E-Print Network (OSTI)

of Novel Energy Conversion and Storage Systems By Andrewof Novel Energy Conversion and Storage Systems by Andrew

Duffin, Andrew Mark

2010-01-01T23:59:59.000Z

60

Energy Calculator- Common Units and Conversions  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Calculator - Common Units and Conversions Energy Calculator - Common Units and Conversions Calculators for Energy Used in the United States: Coal Electricity Natural Gas Crude Oil Gasoline Diesel & Heating Oil Coal Conversion Calculator Short Tons Btu Megajoules Metric Tons Clear Calculate 1 Short Ton = 20,169,000 Btu (based on U.S. consumption, 2007) Electricity Conversion Calculator KilowattHours Btu Megajoules million Calories Clear Calculate 1 KilowattHour = 3,412 Btu Natural Gas Conversion Calculator Cubic Feet Btu Megajoules Cubic Meters Clear Calculate 1 Cubic Foot = 1,028 Btu (based on U.S. consumption, 2007); 1 therm = 100,000 Btu; 1 terajoule = 1,000,000 megajoules Crude Oil Conversion Calculator Barrels Btu Megajoules Metric Tons* Clear Calculate 1 Barrel = 42 U.S. gallons = 5,800,000 Btu (based on U.S. consumption,

Note: This page contains sample records for the topic "thermal-to-electrical energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Assessment of ocean thermal energy conversion  

E-Print Network (OSTI)

Ocean thermal energy conversion (OTEC) is a promising renewable energy technology to generate electricity and has other applications such as production of freshwater, seawater air-conditioning, marine culture and chilled-soil ...

Muralidharan, Shylesh

2012-01-01T23:59:59.000Z

62

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

energy conversion systems ..on thermal energy conversion systems As energy demandsefficient energy conversion in power systems," in Thermal

Ho, Tony

2012-01-01T23:59:59.000Z

63

Global Waste to Energy Conversion Company GWECC | Open Energy Information  

Open Energy Info (EERE)

Waste to Energy Conversion Company GWECC Waste to Energy Conversion Company GWECC Jump to: navigation, search Name Global Waste to Energy Conversion Company (GWECC) Place Washington, DC Product GWECC is a global alternative energy company headquartered in Washington DC, USA. References Global Waste to Energy Conversion Company (GWECC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Global Waste to Energy Conversion Company (GWECC) is a company located in Washington, DC . References ↑ "Global Waste to Energy Conversion Company (GWECC)" Retrieved from "http://en.openei.org/w/index.php?title=Global_Waste_to_Energy_Conversion_Company_GWECC&oldid=345924" Categories: Clean Energy Organizations

64

Advanced Energy Conversion LLC AEC | Open Energy Information  

Open Energy Info (EERE)

Energy Conversion LLC (AEC) Place New York Zip 12020 Product R&D company focused on power electronics, motion control systems and embedded control. References Advanced Energy...

65

Utilizing Nature's Designs for Solar Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Nature's Designs for Solar Energy Conversion Nature's Designs for Solar Energy Conversion Create new materials that: capture, convert, store sunlight Learn from Nature... ...build with chemistry ANL Photosynthesis Group Fundamental Studies  Solar energy conversion in natural and artificial photosynthesis Resolve mechanisms, design principles  Unique capabilities Time-resolved, multi-frequency EPR Time-resolved synchrotron X-ray Ultrafast spectroscopy Multi-molecular: Artificial systems for H 2 photocatalysis  Limitations:  Large solvent, molecular dependencies  Diffusion  Lifetimes  Uncontrolled back-reactions  Most PS contain noble metals  Organic solvent/high proton

66

Energy Conversion & Storage Program, 1993 annual report  

DOE Green Energy (OSTI)

The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: production of new synthetic fuels; development of high-performance rechargeable batteries and fuel cells; development of high-efficiency thermochemical processes for energy conversion; characterization of complex chemical processes and chemical species; and the study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

Cairns, E.J.

1994-06-01T23:59:59.000Z

67

Energy conversion & storage program. 1994 annual report  

DOE Green Energy (OSTI)

The Energy Conversion and Storage Program investigates state-of-the-art electrochemistry, chemistry, and materials science technologies for: (1) development of high-performance rechargeable batteries and fuel cells; (2) development of high-efficiency thermochemical processes for energy conversion; (3) characterization of complex chemical processes and chemical species; (4) study and application of novel materials for energy conversion and transmission. Research projects focus on transport process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

Cairns, E.J.

1995-04-01T23:59:59.000Z

68

Hybrid staging of geothermal energy conversion process  

DOE Green Energy (OSTI)

Progress in the demonstration of the feasibility of hybrid staging in geothermal energy conversion is described, particularly processes involving the Lysholm engine. The performance limitations of the Lysholm engine were studied. (MHR)

Steidel, R.F. Jr.

1984-05-07T23:59:59.000Z

69

Energy Conversion | Global and Regional Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Conversion Group Energy Conversion Group The Energy Conversion Group offers advanced technical solutions to achieve reduced fossil fuel use in geothermal power and building energy applications. Focus is on advanced materials, biofuel end use, combustion and system concepts. We seek to continuously improve the capabilities of relevant research tools being applied in collaborative initiatives to achieving these goals. Capabilities The group conducts research in a number of energy-related areas. These include advanced materials for geothermal energy, applications of biofuels and alternative fuels, efficiency in heating/cooling equipment, advanced oil burner development and particulate emissions for wood boilers. Advanced Materials for Geothermal Energy Supercritical carbon dioxide has properties midway between a gas and a

70

University of Delaware Institute of Energy Conversion | Open...  

Open Energy Info (EERE)

Energy Conversion Jump to: navigation, search Name University of Delaware Institute of Energy Conversion Place Delaware Product String representation "University rese ... dium tin...

71

North Dakota Energy Conversion and Transmission Facility Siting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dakota Energy Conversion and Transmission Facility Siting Act (North Dakota) North Dakota Energy Conversion and Transmission Facility Siting Act (North Dakota) < Back Eligibility...

72

Ocean Thermal Energy Conversion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Energy Conversion Basics Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when the temperature difference between the warmer, top layer of the ocean and the colder, deep ocean water is about 36°F (20°C). These conditions exist in tropical coastal areas, roughly between the Tropic of Capricorn and the Tropic of Cancer. To bring the cold water to the surface, ocean thermal energy conversion plants require an expensive, large-diameter intake pipe, which is submerged a mile or more into the ocean's depths. Some energy experts believe that if ocean thermal energy conversion can become cost-competitive with conventional power technologies, it could be

73

Ocean Thermal Energy Conversion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Energy Conversion Basics Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when the temperature difference between the warmer, top layer of the ocean and the colder, deep ocean water is about 36°F (20°C). These conditions exist in tropical coastal areas, roughly between the Tropic of Capricorn and the Tropic of Cancer. To bring the cold water to the surface, ocean thermal energy conversion plants require an expensive, large-diameter intake pipe, which is submerged a mile or more into the ocean's depths. Some energy experts believe that if ocean thermal energy conversion can become cost-competitive with conventional power technologies, it could be

74

Energy Conversion Devices Inc aka ECD Ovonics | Open Energy Information  

Open Energy Info (EERE)

Conversion Devices Inc aka ECD Ovonics Conversion Devices Inc aka ECD Ovonics Jump to: navigation, search Name Energy Conversion Devices Inc (aka ECD Ovonics) Place Rochester Hills, Michigan Zip 48309 Sector Solar Product Michigan-based materials developer and holding company for thin-film silicon PV manufacturer United Solar Ovonics. References Energy Conversion Devices Inc (aka ECD Ovonics)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Energy Conversion Devices Inc (aka ECD Ovonics) is a company located in Rochester Hills, Michigan . References ↑ "Energy Conversion Devices Inc (aka ECD Ovonics)" Retrieved from "http://en.openei.org/w/index.php?title=Energy_Conversion_Devices_Inc_aka_ECD_Ovonics&oldid=34484

75

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network (OSTI)

Report, (unpublished, 1979). Biomass Project Progress 31.Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

76

Direct conversion technology  

DOE Green Energy (OSTI)

The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.

Massier, P.F.; Back, L.H.; Ryan, M.A.; Fabris, G.

1992-01-07T23:59:59.000Z

77

Semiconductor Metrology for Energy Conversion  

Science Conference Proceedings (OSTI)

... lasers, LEDs, photodetectors, and high-efficiency solar cells critical to optical communication, display, data storage, and energy conservation and ...

2012-08-21T23:59:59.000Z

78

MHK Technologies/Mobil Stabilized Energy Conversion Platform | Open Energy  

Open Energy Info (EERE)

MHK Technologies/Mobil Stabilized Energy Conversion Platform MHK Technologies/Mobil Stabilized Energy Conversion Platform < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Mobil Stabilized Energy Conversion Platform.jpg Technology Profile Primary Organization Aqua Magnetics Inc Technology Resource Click here Wave Technology Type Click here Reciprocating Device Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Stabilized Energy Conversion Platform SECOP consists of submersible hulls supporting a raised work platform containing a number of AMI s reciprocating electric generators Technology Dimensions Device Testing Date Submitted 34:44.5 << Return to the MHK database homepage Retrieved from

79

Electrochemical Energy Storage and Conversion  

Science Conference Proceedings (OSTI)

Mar 4, 2013 ... Design and Discovery of Novel Energy Materials: Stephan Lany1; 1NREL ... determine and characterise the state of an electrochemical system, ...

80

Energy conversion & storage program. 1995 annual report  

DOE Green Energy (OSTI)

The 1995 annual report discusses laboratory activities in the Energy Conversion and Storage (EC&S) Program. The report is divided into three categories: electrochemistry, chemical applications, and material applications. Research performed in each category during 1995 is described. Specific research topics relate to the development of high-performance rechargeable batteries and fuel cells, the development of high-efficiency thermochemical processes for energy conversion, the characterization of new chemical processes and complex chemical species, and the study and application of novel materials related to energy conversion and transmission. Research projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials and deposition technologies, and advanced methods of analysis.

Cairns, E.J.

1996-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal-to-electrical energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Electro-mechanical energy conversion system having a permanent ...  

Electro-mechanical energy conversion system having a permanent magnet machine with stator, resonant transfer link and energy converter controls

82

US energy conversion and use characteristics  

SciTech Connect

The long-range goal of the Energy Conversion and Utilization Technology (ECUT) Program is to enhance energy productivity in all energy-use sectors by supporting research on improved efficiency and fuel switching capability in the conversion and utilization of energy. Regardless of the deficiencies of current information, a summary of the best available energy-use information is needed now to support current ECUT program planning. This document is the initial draft of this type of summary and serves as a data book that will present current and periodically updated descriptions of the following aspects of energy use: gross US energy consumption in each major energy-use sector; energy consumption by fuel type in each sector; energy efficiency of major equipment/processes; and inventories, replacement rates, and use patterns for major energy-using capital stocks. These data will help the ECUT program staff perform two vital planning functions: determine areas in which research to improve energy productivity might provide significant energy savings or fuel switching and estimate the actual effect that specific research projects may have on energy productivity and conservation. Descriptions of the data sources and examples of the uses of the different types of data are provided in Section 2. The energy-use information is presented in the last four sections; Section 3 contains general, national consumption data; and Sections 4 through 6 contain residential/commercial, industrial, and transportation consumption data, respectively. (MCW)

Imhoff, C.H.; Liberman, A.; Ashton, W.B.

1982-02-01T23:59:59.000Z

83

The Conversion of Waste to Energy  

E-Print Network (OSTI)

Almost every industrial operation produces some combustible waste, but conversion of this to useful energy is often more difficult than with other energy recovery projects and requires careful attention to design, operating and maintaining the facilities. Each application requires a careful approach tailored to the installation, but some general design and economic principles do exist. Several waste to energy projects will be discussed to illustrate these principles.

John, T.; Cheek, L.

1980-01-01T23:59:59.000Z

84

On the Energy Conversion during Geostrophic Adjustment  

Science Conference Proceedings (OSTI)

It is found that for a continuously stratified fluid which remains so during the geostrophic adjustment, the energy conversion ratio ? (??KE/?PE) is ½, in contrast to the value of ? for a two-layer fluid. Since the two-layer fluid is an ...

Hsien Wang Ou

1986-12-01T23:59:59.000Z

85

DIRECT ENERGY CONVERSION DEVICES. A Literature Search  

SciTech Connect

A bibliography comprising 208 unclassified references is presented on nuclear direct energy conversion devices. Major emphasis is placed on auxiliary power devices suitable for use in satellites including reports on nuclear batteries, thermoelectric cells, thermionic conversron and aspects of the SNAP program. (J.R.D.)

Raleigh, H.D. comp.

1961-03-01T23:59:59.000Z

86

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

for the commercialization of ocean thermal energy conversionOpen cycle ocean thermal energy conversion. A preliminary1978. 'Open cycle thermal energy converS1on. A preliminary

Sands, M. D.

2011-01-01T23:59:59.000Z

87

Wind Energy Conversion Systems (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Conversion Systems (Minnesota) Wind Energy Conversion Systems (Minnesota) Wind Energy Conversion Systems (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Wind Buying & Making Electricity Program Info State Minnesota Program Type Siting and Permitting This section distinguishes between large (capacity 5,000 kW or more) and small (capacity of less than 5,000 kW) wind energy conversion systems (WECS), and regulates the siting of large conversion systems. The statute

88

Ocean Thermal Energy Conversion: An overview  

DOE Green Energy (OSTI)

Ocean thermal energy conversion, or OTEC is a technology that extracts power from the ocean's natural thermal gradient. This technology is being pursued by researchers from many nations; in the United States, OTEC research is funded by the US Department of Energy's Ocean Energy Technology program. The program's goal is to develop the technology so that industry can make a competent assessment of its potential -- either as an alternative or as a supplement to conventional energy sources. Federally funded research in components and systems will help OTEC to the threshold of commercialization. This publication provides an overview of the OTEC technology. 47 refs., 25 figs.

Not Available

1989-11-01T23:59:59.000Z

89

Novel Nuclear Powered Photocatalytic Energy Conversion  

DOE Green Energy (OSTI)

The University of Massachusetts Lowell Radiation Laboratory (UMLRL) is involved in a comprehensive project to investigate a unique radiation sensing and energy conversion technology with applications for in-situ monitoring of spent nuclear fuel (SNF) during cask transport and storage. The technology makes use of the gamma photons emitted from the SNF as an inherent power source for driving a GPS-class transceiver that has the ability to verify the position and contents of the SNF cask. The power conversion process, which converts the gamma photon energy into electrical power, is based on a variation of the successful dye-sensitized solar cell (DSSC) design developed by Konarka Technologies, Inc. (KTI). In particular, the focus of the current research is to make direct use of the high-energy gamma photons emitted from SNF, coupled with a scintillator material to convert some of the incident gamma photons into photons having wavelengths within the visible region of the electromagnetic spectrum. The high-energy gammas from the SNF will generate some power directly via Compton scattering and the photoelectric effect, and the generated visible photons output from the scintillator material can also be converted to electrical power in a manner similar to that of a standard solar cell. Upon successful implementation of an energy conversion device based on this new gammavoltaic principle, this inherent power source could then be utilized within SNF storage casks to drive a tamper-proof, low-power, electronic detection/security monitoring system for the spent fuel. The current project has addressed several aspects associated with this new energy conversion concept, including the development of a base conceptual design for an inherent gamma-induced power conversion unit for SNF monitoring, the characterization of the radiation environment that can be expected within a typical SNF storage system, the initial evaluation of Konarka's base solar cell design, the design and fabrication of a range of new cell materials and geometries at Konarka's manufacturing facilities, and the irradiation testing and evaluation of these new cell designs within the UML Radiation Laboratory. The primary focus of all this work was to establish the proof of concept of the basic gammavoltaic principle using a new class of dye-sensitized photon converter (DSPC) materials based on KTI's original DSSC design. In achieving this goal, this report clearly establishes the viability of the basic gammavoltaic energy conversion concept, yet it also identifies a set of challenges that must be met for practical implementation of this new technology.

White,John R.; Kinsmen,Douglas; Regan,Thomas M.; Bobek,Leo M.

2005-08-29T23:59:59.000Z

90

January 2013 Most Viewed Documents for Energy Storage, Conversion...  

Office of Scientific and Technical Information (OSTI)

January 2013 Most Viewed Documents for Energy Storage, Conversion, And Utilization Energy Technology Perspectives 2012: Executive Summary Portuguese version NONE Energy...

91

MHK Technologies/Direct Energy Conversion Method DECM | Open Energy  

Open Energy Info (EERE)

Conversion Method DECM Conversion Method DECM < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Direct Energy Conversion Method DECM.jpg Technology Profile Primary Organization Trident Energy Ltd Project(s) where this technology is utilized *MHK Projects/TE4 Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Description The Direct Energy Conversion Method DECM device has four major components 1 linear generators that convert straight line mechanical motion directly into electricity 2 floats placed in the sea to capture wave energy through a rising and falling action which drives linear generators resulting in the immediate generation of electricity 3 a sea platform used to support the floats and generators and 4 a conventional anchoring system to moor the rig

92

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

for the commercialization of ocean thermal energy conversionR. E. Hathaway. Open cycle ocean thermal energy conversion.of sewage effluent in an ocean current. Inst. of Tech. ,

Sands, M. D.

2011-01-01T23:59:59.000Z

93

Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques  

E-Print Network (OSTI)

Biointerfaces, and Renewable Energy Conversion bychemistry) and develop renewable energy based processes.biointerfaces, and renewable energy conversion chemistry. In

Somorjai, G.A.

2010-01-01T23:59:59.000Z

94

COMMERCIAL FISHERY DATA FROM A PROPOSED OCEAN THERMAL ENERGY CONVERSION (OTEC) SITE IN PUERTO RICO  

E-Print Network (OSTI)

Ocean Thermal Energy Conversion (OTEC) sites to identify thethermal energy conversion (OTEC) program; preoperationalOCEAN THERHAL _ENERGY _CONVERSION(OTEC) --:siTE IN PUERTO

Ryan, Constance J.

2013-01-01T23:59:59.000Z

95

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

a working molecular solar energy conversion system where noEnergy Storage and Conversion System ..74Thermal (MOST) Energy Storage and Conversion System In this

Coso, Dusan

2013-01-01T23:59:59.000Z

96

Ocean energy conversion systems annual research report  

DOE Green Energy (OSTI)

Alternative power cycle concepts to the closed-cycle Rankine are evaluated and those that show potential for delivering power in a cost-effective and environmentally acceptable fashion are explored. Concepts are classified according to the ocean energy resource: thermal, waves, currents, and salinity gradient. Research projects have been funded and reported in each of these areas. The lift of seawater entrained in a vertical steam flow can provide potential energy for a conventional hydraulic turbine conversion system. Quantification of the process and assessment of potential costs must be completed to support concept evaluation. Exploratory development is being completed in thermoelectricity and 2-phase nozzles for other thermal concepts. Wave energy concepts are being evaluated by analysis and model testing with present emphasis on pneumatic turbines and wave focussing. Likewise, several conversion approaches to ocean current energy are being evaluated. The use of salinity resources requires further research in membranes or the development of membraneless processes. Using the thermal resource in a Claude cycle process as a power converter is promising, and a program of R and D and subsystem development has been initiated to provide confirmation of the preliminary conclusion.

Not Available

1981-03-01T23:59:59.000Z

97

Novel Energy Conversion Equipment for Low Temperature Geothermal...  

Open Energy Info (EERE)

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Novel Energy...

98

Advanced Materials for Energy Conversion II TABLE OF CONTENTS  

Science Conference Proceedings (OSTI)

This Table of Contents is from Advanced Materials for Energy Conversion II ... Energy Crisis – Fact or Fiction? [pp. .... W.-M. Chien, A. Price and D. Chandra.

99

Hybrid staging of geothermal energy conversion processes  

SciTech Connect

A hybrid system consists of two or more energy conversion processes. This study examines the use of three energy conversion machines in hybrid systems: the conventional single-phase turbine, and the two-phase expanders known as the Lysholm engine and the radial outflow reaction turbine. Two hybrid systems are presented. The first is a two-stage, single-flash system with the Lysholm engine as the first stage, and a separator and conventional turbine as the second stage. The second system adds a radial outflow reaction turbine to recover a part of the energy rejected in the second stage. A theoretical specific power of 41.3 kW.s/lb is predicted for the two-stage, single-flash hybrid system. The addition of the radial outflow rotary turbine increases performance to 44.8 kW.s/lb. Both are superior to the double-flash system, with a specific power of 37.8 kW.s/lb. In addition, the hybrid system offers operating flexibility.

Steidel, R.F.

1978-09-01T23:59:59.000Z

100

Energy conversion device with improved seal  

DOE Patents (OSTI)

An energy conversion device comprising an improved sealing member adapted to seal a cation-permeable casing to the remainder of the device. The sealing member comprises a metal substrate which (i) bears a nonconductive and corrosion resistant coating on the major surface to which said casing is sealed, and (ii) is corrugated so as to render it flexible, thereby allowing said member to move relative to said casing without cracking the seal therebetween. Corrugations may be circumferential, radial, or both radial and circumferential so as to form dimples. The corrugated member may be in form of a bellows or in a substantially flat form, such as a disc.

Miller, Gerald R. (Salt Lake City, UT); Virkar, Anil V. (Midvale, UT)

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal-to-electrical energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Carbon aerogel electrodes for direct energy conversion  

DOE Patents (OSTI)

A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome.

Mayer, Steven T. (San Leandro, CA); Kaschmitter, James L. (Pleasanton, CA); Pekala, Richard W. (Pleasant Hill, CA)

1997-01-01T23:59:59.000Z

102

Carbon aerogel electrodes for direct energy conversion  

DOE Patents (OSTI)

A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes is described, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome. 1 fig.

Mayer, S.T.; Kaschmitter, J.L.; Pekala, R.W.

1997-02-11T23:59:59.000Z

103

Energy transfer processes in solar energy conversion  

DOE Green Energy (OSTI)

By combining picosecond optical experiments and detailed statistical mechanics theory we continue to increase our understanding of the complex interplay of structure and dynamics in important energy transfer situations. A number of different types of problems will be focused on experimentally and theoretically. They are excitation transport among chromophores attached to finite size polymer coils; excitation transport among chromophores in monolayers, bilayers, and finite and infinite stacks of layers; excitation transport in large vesicle systems; and photoinduced electron transfer in glasses and liquids, focusing particularly on the back transfer of the electron from the photogenerated radical anion to the radical cation. 33 refs., 13 figs.

Fayer, M.D.

1986-11-01T23:59:59.000Z

104

Sustainable Energy Science and Engineering Center Solar Thermal Conversion  

E-Print Network (OSTI)

Sustainable Energy Science and Engineering Center Solar Thermal Conversion Major Functions: · Solar #12;Sustainable Energy Science and Engineering Center Solar Thermal Conversion Solar energy a surface is heated by a certain flux of incident solar energy is determined by the balance of incident

Krothapalli, Anjaneyulu

105

Ocean Thermal Energy Conversion: Potential Environmental Impacts and Fisheries  

E-Print Network (OSTI)

Ocean Thermal Energy Conversion: Potential Environmental Impacts and Fisheries Christina M Comfort Institute #12;Ocean Thermal Energy Conversion (OTEC) · Renewable energy ­ ocean thermal gradient · Large, M.Sc. Candidate University of Hawaii at Manoa Department of Oceanography Hawaii Natural Energy

Hawai'i at Manoa, University of

106

On the conversion of rest energy in horizon energy  

E-Print Network (OSTI)

It is shown that the Verlinde formula for the entropy variation of a holographic screen is a consequence of the conversion of the particle energy in horizon energy. The special role played by the particular displacement $\\Delta x = c^{2}/a$ is emphasized, $a$ being the particle acceleration. Using the Heisenberg Principle we show that the energy on the causal horizon (viewed as a holographic screen) of an inertial observer is proportional to its radius, as for a black hole.

Hristu Culetu

2010-05-10T23:59:59.000Z

107

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

and Techniques,” Energy Conversion and Management, 39 (11),Applications,” Energy Conversion and Management, 45 , pp.2011, “Low-grade Heat Conversion into Power Using Organic

Coso, Dusan

2013-01-01T23:59:59.000Z

108

A PRELIMINARY EVALUATION OF IMPINGEMENT AND ENTRAINMENT BY OCEAN THERMAL ENERGY CONVERSION (OTEC) PLANTS  

E-Print Network (OSTI)

Thermal Energy Conversion (OTEC) Program PreoperationalOcean Thermal Energy Conversion (OTEC), U.S. Department ofOregon State University. Conversion Power Plants. Corvallis,

Sullivan, S.M.

2013-01-01T23:59:59.000Z

109

Compact harsh environment energy conversion systems  

E-Print Network (OSTI)

The quest for energy is leading the industry into drilling deeper wells. Typically, a temperature gradient of 1°C/150 ft can be expected, with bottom hole temperatures reaching beyond 200°C in many areas of the world. Moreover, the increased recovery benefits and cost reductions possible with the use of horizontal and multilateral wells has triggered a need for higher power energy conversion systems in bottom hole assemblies, such as rotary steerable tools and downhole tractors. The concepts developed throughout this work address some of these new needs. This research investigated improvements, novel solutions and considerations that will lead to significant advantages in terms of reliability, extended temperature operation, increased power capability and reduced size and cost of compact harsh environment energy conversion systems. Improvements to both the electromechanical subsystem and the power electronic subsystem are introduced. Air gap viscous losses were shown to a have a significant effect on the optimal design of submersible PM (permanent magnet) machines, and a design procedure to account for this loss component in the design was developed. The application of a dual winding exterior rotor PM machine in a downhole environment enabled a significant increase in the application’s torque capability, provided protection against generator winding over voltage, and reduced parts count. Comprehensive switching device qualification, testing, and simulation lead to a simple failure mitigation technique for the operation of the most suitable devices at elevated temperature. A flying capacitor multilevel inverter was then successfully constructed and temperature tested. A novel motor drive concept suited for elevated temperature oil filled environment applications concluded the research.

Ahmed, Shehab

2007-05-01T23:59:59.000Z

110

Energy Conversion and Transmission Facilities (South Dakota) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Conversion and Transmission Facilities (South Dakota) Energy Conversion and Transmission Facilities (South Dakota) Energy Conversion and Transmission Facilities (South Dakota) < Back Eligibility Utility Commercial Investor-Owned Utility Industrial Construction Municipal/Public Utility Installer/Contractor Rural Electric Cooperative Retail Supplier Institutional Systems Integrator Fuel Distributor Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Dakota Program Type Siting and Permitting Provider South Dakota Public Utilities Commission This legislation applies to energy conversion facilities designed for or capable of generating 100 MW or more of electricity, wind energy facilities with a combined capacity of 100 MW, certain transmission facilities, and

111

Energy Conversion and Thermal Efficiency Sales Tax Exemption | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Conversion and Thermal Efficiency Sales Tax Exemption Energy Conversion and Thermal Efficiency Sales Tax Exemption Energy Conversion and Thermal Efficiency Sales Tax Exemption < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Bioenergy Biofuels Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Wind Solar Water Heating Maximum Rebate None Program Info State Ohio Program Type Sales Tax Incentive Rebate Amount 100% exemption Provider Ohio Department of Taxation Ohio may provide a sales and use tax exemption for certain tangible personal property used in energy conversion, solid waste energy conversion, or thermal efficiency improvement facilities designed, constructed, or installed after December 31, 1974. Qualifying energy conversion facilities are those that are used for the

112

Biofuel Conversion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuel Conversion Basics Biofuel Conversion Basics Biofuel Conversion Basics August 14, 2013 - 12:31pm Addthis The conversion of biomass solids into liquid or gaseous biofuels is a complex process. Today, the most common conversion processes are biochemical- and thermochemical-based. However, researchers are also exploring photobiological conversion processes. Biochemical Conversion Processes In biochemical conversion processes, enzymes and microorganisms are used as biocatalysts to convert biomass or biomass-derived compounds into desirable products. Cellulase and hemicellulase enzymes break down the carbohydrate fractions of biomass to five- and six-carbon sugars in a process known as hydrolysis. Yeast and bacteria then ferment the sugars into products such as ethanol. Biotechnology advances are expected to lead to dramatic

113

Modeling and analysis of energy conversion systems  

DOE Green Energy (OSTI)

An investigation was conducted to assess the need for and the feasibility of developing a computer code that could model thermodynamic systems and predict the performance of energy conversion systems. To assess the market need for this code, representatives of a few industrial organizations were contacted, including manufacturers, system and component designers, and research personnel. Researchers and small manufacturers, designers, and installers were very interested in the possibility of using the proposed code. However, large companies were satisfied with the existing codes that they have developed for their own use. Also, a survey was conduced of available codes that could be used or possibly modified for the desired purpose. The codes were evaluated with respect to a list of desirable features, which was prepared as a result of the survey. A few publicly available codes were found that might be suitable. The development, verification, and maintenance of such a code would require a substantial, ongoing effort. 21 refs.

Den Braven, K.R. (Idaho Univ., Moscow, ID (USA). Dept. of Mechanical Engineering); Stanger, S. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1990-10-01T23:59:59.000Z

114

Will lecture on: Understanding and Controlling Solar Energy Conversion  

E-Print Network (OSTI)

Will lecture on: Understanding and Controlling Solar Energy Conversion: The relationship between, and their relationship to their ability to harvest solar energy in the form of electricity. In particular, morphology low carbon electricity (solar and thermal energy conversion, off-shore wind, biofuels, nuclear

Rimon, Elon

115

Power conversion from environmentally scavenged energy sources.  

DOE Green Energy (OSTI)

As the power requirements for modern electronics continue to decrease, many devices which were once dependent on wired power are now being implemented as portable devices operating from self-contained power sources. The most prominent source of portable power is the electrochemical battery, which converts chemical energy into electricity. However, long lasting batteries require large amounts of space for chemical storage, and inevitably require replacement when the chemical reaction no longer takes place. There are many transducers and scavenging energy sources (SES) that are able to exploit their environment to generate low levels of electrical power over a long-term time period, including photovoltaic cells, thermoelectric generators, thermionic generators, and kinetic/piezoelectric power generators. This generated power is sustainable as long as specific environmental conditions exist and also does not require the large volume of a long lifetime battery. In addition to the required voltage generation, stable power conversion requires excess energy to be efficiently stored in an ultracapacitor or similar device and monitoring control algorithms to be implemented, while computer modeling and simulation can be used to complement experimental testing. However, building an efficient and stable power source scavenged from a varying input source is challenging.

Druxman, Lee Daniel

2007-09-01T23:59:59.000Z

116

NETL: Third Annual Solid State Energy Conversion Alliance (SECA...  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Conference Proceedings Third Annual Solid State Energy Conversion Alliance (SECA) Workshop March 21-22, 2002 Table of Contents Disclaimer Papers and Presentations Disclaimer This...

117

Liquid Metal MHD Energy Conversion in Fusion Reactors  

Science Conference Proceedings (OSTI)

Innovative Concepts for Power Conversion / Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 15–19, 1986)

L. Blumenau; H. Branover; A. El-Boher; E Spero; S. Sukoriansky; G. Talmage; E. Greenspan

118

In-Situ MHD Energy Conversion for Fusion  

Science Conference Proceedings (OSTI)

Innovative Concepts for Power Conversion / Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 15–19, 1986)

R. B. Campbell; M. A. Hoffman; B. G. Logan

119

A Study of Conversion Reactions Using Electron Energy Loss  

Science Conference Proceedings (OSTI)

In this study, conversion mechanism in NiO was studied using high resolution transmission electron microscopy and electron energy loss spectroscopy (EELS).

120

Method for conversion of beta-hydroxy carbonyl compounds - Energy ...  

Conversion products find use, e.g., ... United States Patent ... as operator of Pacific Northwest National Laboratory under U.S. Department of Energy Contract DE ...

Note: This page contains sample records for the topic "thermal-to-electrical energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

September 2013 Most Viewed Documents for Energy Storage, Conversion...  

Office of Scientific and Technical Information (OSTI)

September 2013 Most Viewed Documents for Energy Storage, Conversion, And Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III...

122

Chromium Alloys for More Efficient Fossil Energy Conversion ...  

Science Conference Proceedings (OSTI)

Abstract Scope, In order to improve efficiency and reduce environmental emissions in fossil energy conversion systems, new technologies such as oxy- fuel gas ...

123

Most Viewed Documents - Energy Storage, Conversion, and Utilization...  

Office of Scientific and Technical Information (OSTI)

Most Viewed Documents - Energy Storage, Conversion, and Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002)...

124

Photovoltaic Cell Conversion Efficiency Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conversion Efficiency Basics Conversion Efficiency Basics Photovoltaic Cell Conversion Efficiency Basics August 20, 2013 - 2:58pm Addthis The conversion efficiency of a photovoltaic (PV) cell, or solar cell, is the percentage of the solar energy shining on a PV device that is converted into electrical energy, or electricity. Improving this conversion efficiency is a key goal of research and helps make PV technologies cost-competitive with more traditional sources of energy. Factors Affecting Conversion Efficiency Much of the energy from sunlight reaching a PV cell is lost before it can be converted into electricity. But certain characteristics of solar cell materials also limit a cell's efficiency to convert the sunlight it receives. Wavelength of Light Light is composed of photons-or packets of energy-that range in

125

Photonic Crystals for Enhancing Thermophotovoltaic Energy Conversion  

DOE Green Energy (OSTI)

Thermophotovoltaics (TPV) converts the radiant energy of a thermal source into electrical energy using photovoltaic cells. TPV has a number of attractive features, including: fuel versatility (nuclear, fossil, solar, etc.), quiet operation, low maintenance, low emissions, light weight, high power density, modularity, and possibility for cogeneration of heat and electricity. Some of these features are highly attractive for military applications (Navy and Army). TPV could also be used for distributed power and automotive applications wherever fuel cells, microturbines, or cogeneration are presently being considered if the efficiencies could be raised to around 30%. This proposal primarily examine approaches to improving the radiative efficiency. The ideal irradiance for the PV cell is monochromatic illumination at the bandgap. The photonic crystal approach allows for the tailoring of thermal emission spectral bandwidth at specific wavelengths of interest. The experimental realization of metallic photonic crystal structures, the optical transmission, reflection and absorption characterization of it have all been carried out in detail and will be presented next. Additionally, comprehensive models of TPV conversion has been developed and applied to the metallic photonic crystal system.

LIN, SHAWN-YU; FLEMING, JAMES G.; MORENO, JOSEPH A.

2003-03-01T23:59:59.000Z

126

Share of Conversion Capacity - Energy Information Administration  

U.S. Energy Information Administration (EIA)

In the early to mid 1980’s, Atlantic Basin refiners rapidly expanded their conversion capacity as a consequence of the belief that world crude production would get ...

127

E2I EPRI Assessment Offshore Wave Energy Conversion Devices  

E-Print Network (OSTI)

of offshore wave power to provide efficient, reliable, cost-effective, and environmentally friendly electrical definition study in CY 2004. This study will produce system designs for wave energy conversion device power plants, performance estimate and economic assessments for one site ­ wave energy conversion device per

128

Converse County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Converse County, Wyoming: Energy Resources Converse County, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.0489425°, -105.4068079° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0489425,"lon":-105.4068079,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

129

Theoretical investigation of solar energy conversion and water oxidation catalysis  

E-Print Network (OSTI)

Solar energy conversion and water oxidation catalysis are two great scientific and engineering challenges that will play pivotal roles in a future sustainable energy economy. In this work, I apply electronic structure ...

Wang, Lee-Ping

2011-01-01T23:59:59.000Z

130

Solid State Energy Conversion Alliance (SECA) Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL Publications NETL Publications 2001 Conference Proceedings Solid State Energy Conversion Alliance (SECA) Workshop March 29-30, 2001 Table of Contents Disclaimer Papers and Presentations Plenary Session Selected Presentations on Current DOE Work Supporting SECA Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

131

Introduction to electric energy conversion systems for geothermal energy resources  

SciTech Connect

The types of geothermal energy conversion systems in use are classified as follows: direct, dry steam; separated steam; single-flash steam; double-flash steam; multi-flash steam; brine/Freon binary cycle; and brine/isobutane binary cycle. The thermodynamics of each of these is discussed with reference to simplified flow diagrams. Typical existing power plants are identified for each type of system. (MHR)

DiPippo, R.

1978-06-01T23:59:59.000Z

132

Direct Energy Conversion for Fast Reactors  

DOE Green Energy (OSTI)

Thermoelectric generators (TEG) are a well-established technology for compact low power output long-life applications. Solid state TEGs are the technology of choice for many space missions and have also been used in remote earth-based applications. Since TEGs have no moving parts and can be hermetically sealed, there is the potential for nuclear reactor power systems using TEGs to be safe, reliable and resistant to proliferation. Such power units would be constructed in a manner that would provide decades of maintenance-free operation, thereby minimizing the possibility of compromising the system during routine maintenance operations. It should be possible to construct an efficient direct energy conversion cascade from an appropriate combination of solid-state thermoelectric generators, with each stage in the cascade optimized for a particular range of temperature. Performance of cascaded thermoelectric devices could be further enhanced by exploitation of compositionally graded p-n couples, as well as radial elements to maximize utilization of the heat flux. The Jet Propulsion Laboratory in Pasadena has recently reported segmented unicouples that operate between 300 and 975 K and have conversion efficiencies of 15 percent [Caillat, 2000]. TEGs are used in nuclear-fueled power sources for space exploration, in power sources for the military, and in electrical generators on diesel engines. Second, there is a wide variety of TE materials applicable to a broad range of temperatures. New materials may lead to new TEG designs with improved thermoelectric properties (i.e. ZT approaching 3) and significantly higher efficiencies than in designs using currently available materials. Computational materials science (CMS) has made sufficient progress and there is promise for using these techniques to reduce the time and cost requirements to develop such new TE material combinations. Recent advances in CMS, coupled with increased computational power afforded by the Accelerated Strategic Computing Initiative (ASCI), should improve the speed and decrease the cost of developing new TEGs. The system concept to be evaluated is shown in Figure 1. Liquid metal is used to transport heat away from the nuclear heat source and to the TEG. Air or liquid (water or a liquid metal) is used to transport heat away from the cold side of the TEG. Typical reactor coolants include sodium or eutectic mixtures of lead-bismuth. These are coolants that have been used to cool fast neutron reactors. Heat from the liquid metal coolant is rejected through the thermal electric materials, thereby producing electrical power directly. The temperature gradient could extend from as high as 1300 K to 300 K, although fast reactor structural materials (including those used to clad the fuel) currently used limit the high temperature to about 825K.

Brown, N.; Cooper, J.; Vogt, D.; Chapline, G.; Turchi, P.; Barbee Jr., T.; Farmer, J.

2000-07-01T23:59:59.000Z

133

Atlantic Biomass Conversions Inc | Open Energy Information  

Open Energy Info (EERE)

Conversions Inc Conversions Inc Jump to: navigation, search Name Atlantic Biomass Conversions Inc Place Frederick, Maryland Sector Biomass Product Atlantic Biomass Conversions is working on a system and a genetically modified bacteria to convert sugar beet pulp waste into methanol. Coordinates 45.836395°, -98.507249° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.836395,"lon":-98.507249,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

134

Energy Conversion Materials Through Chemical Synthesis Route  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Materials Through Chemical Synthesis Route Speaker(s): Lionel Vayssieres Date: April 27, 2004 - 12:00pm Location: Bldg. 90 Seminar HostPoint of Contact: Samuel Mao The...

135

Open cycle ocean thermal energy conversion system  

DOE Patents (OSTI)

An improved open cycle ocean thermal energy conversion system including a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirt-conduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flowpath of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a transversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure. The turbine blades are substantially radially coextensive with the steam flowpath and receive steam from the evaporator through an annular array of prestressed concrete stationary vanes which extend between the inner and outer casings to provide structural support therefor and impart a desired flow direction to the steam.

Wittig, J. Michael (West Goshen, PA)

1980-01-01T23:59:59.000Z

136

MHK Technologies/Wave Energy Conversion Activator WECA | Open Energy  

Open Energy Info (EERE)

Activator WECA Activator WECA < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Energy Conversion Activator WECA.jpg Technology Profile Primary Organization Daedalus Informatics Ltd Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The full scale WECA design is ideally fabricated with steel so as to be suitable for mounting on the run up wall of breakwaters or other rigid or floating structures The oscillating wave surge converter absorbs most of the energy of the impacting waves and turn it into compressed air which is subsequently converted into electric power or other forms of energy The device utilizes the Critical Momentum Wedge principle where the water rushing into the device resembles a virtual Wedge of kinetic energy

137

Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system  

DOE Patents (OSTI)

This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

Dziendziel, Randolph J. (Middle Grove, NY); Baldasaro, Paul F. (Clifton Park, NY); DePoy, David M. (Clifton Park, NY)

2010-09-07T23:59:59.000Z

138

Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system  

DOE Patents (OSTI)

This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

Dziendziel, Randolph J. (Middle Grove, NY); DePoy, David Moore (Clifton Park, NY); Baldasaro, Paul Francis (Clifton Park, NY)

2007-01-23T23:59:59.000Z

139

North Dakota Energy Conversion and Transmission Facility Siting Act (North  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dakota Energy Conversion and Transmission Facility Siting Act Dakota Energy Conversion and Transmission Facility Siting Act (North Dakota) North Dakota Energy Conversion and Transmission Facility Siting Act (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Dakota Program Type Line Extension Analysis

140

Direct Conversion Technology. Progress report, January 1, 1992--June 30, 1992  

DOE Green Energy (OSTI)

The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)

Back, L.H.; Fabris, G.; Ryan, M.A.

1992-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal-to-electrical energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Sustainable Energy Science and Engineering Center Solar Thermal Conversion  

E-Print Network (OSTI)

Sustainable Energy Science and Engineering Center Solar Thermal Conversion Major Functions: · Solar Center Collection The temperature to which a surface is heated by a certain flux of incident solar energy - 1914 Between 1880 and 1910, there were 48 articles on solar energy as a world energy source

Krothapalli, Anjaneyulu

142

Ris Energy Report 2 Bioenergy conversion  

E-Print Network (OSTI)

Electricity production by SOFC fuel cells is one road to obtain a high efficiency in electricity production. In order to meet this demand in a sustainable way, gasifica- tion and SOFC fuel cell conversion systems gasfication gas has the potential to be used directly in SOFC cells or alternatively steam- reformed

143

Energy Basics: Photovoltaic Cell Conversion Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

144

STATEMENT OF CONSIDERATIONS REQUEST BY ENERGY CONVERSION DEVICES...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CH 630 252 2779 TO AGCP-HQ P.0204 * * STATEMENT OF CONSIDERATIONS REQUEST BY ENERGY CONVERSION DEVICES, INC. FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER...

145

Organic Membranes for Energy Conversion and "Green" Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Organic Membranes for Energy Conversion and "Green" Manufacturing Speaker(s): John Kerr Date: January 17, 2002 - 12:00pm Location: Bldg. 90 Seminar HostPoint of Contact: Cynthia...

146

Neutral beam based on positive ions with direct energy conversion  

DOE Green Energy (OSTI)

Positive ions can make efficient neutral beams when direct energy conversion is incorporated at energies up to 150 keV for D/sup 0/, 225 keV for T/sup 0/ and 300 keV for /sup 3/He/sup 0/. Above these energies the efficiency is low (<50%) and falling rapidly, requiring other means for making neutral beams such as negative ions. The virtues of /sup 3/He/sup 0/ beams as a heater are discussed. The role of direct conversion is discussed and the various conversion concepts and the experimental data base are reviewed. The development problems facing direct conversion are: space charge handling, secondary and primary electron suppression, and the fractional energy ions. The next step in the development of efficient neutral beams based on positive ions is argued to be a developmental beam which integrates an advanced ion source with a neutralizer, cryopump, direct converter, heat removal system, and power conditioning system.

Moir, R.W.; Barr, W.L.; Blum, A.S.; Hamilton, G.W.

1977-12-01T23:59:59.000Z

147

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

cycle ocean thermal difference power plant. M.S. Thesis,ocean thermal energy conversion power plants. M.S. Thesis.comments on the thermal effects of power plants on fish eggs

Sands, M. D.

2011-01-01T23:59:59.000Z

148

A New Earth-Abundant Semiconductor for Solar Energy Conversion  

Science Conference Proceedings (OSTI)

Presentation Title, G2, ZnSnN2: A New Earth-Abundant Semiconductor for Solar Energy Conversion. Author(s), Lise Lahourcade, Naomi C Coronel, Harry A ...

149

WIND ENERGY POWER CONVERSION SYSTEM REDUCING GEARBOX STRESS ...  

A wind energy power conversion system includes a gearbox, a generator, an AC to DC power converter, a DC link, and a DC to AC power converter, and at least one ...

150

Energy conversion device with support member having pore channels  

DOE Patents (OSTI)

Energy devices such as energy conversion devices and energy storage devices and methods for the manufacture of such devices. The devices include a support member having an array of pore channels having a small average pore channel diameter and having a pore channel length. Material layers that may include energy conversion materials and conductive materials are coaxially disposed within the pore channels to form material rods having a relatively small cross-section and a relatively long length. By varying the structure of the materials in the pore channels, various energy devices can be fabricated, such as photovoltaic (PV) devices, radiation detectors, capacitors, batteries and the like.

Routkevitch, Dmitri [Longmont, CO; Wind, Rikard A [Johnstown, CO

2014-01-07T23:59:59.000Z

151

Direct conversion technology: Annual summary report CY 1988  

DOE Green Energy (OSTI)

The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct thermal-to-electric energy conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1988 through December 1988. Research on these concepts was initiated during October 1987. In addition, status reviews and assessments are presented for thermomagnetic converter concepts and for thermoelastic converters (Nitinol heat engines). Reports prepared on previous occasions contain discussions on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic thermophotovoltaic and thermoacoustic; and also, more complete discussions of AMTEC and LMMHD systems. A tabulated summary of the various systems which have been reviewed thus far has been prepared. Some of the important technical research needs are listed and a schematic of each system is shown. These tabulations are included herein as figures. 43 refs., 26 figs., 1 tab.

Massier, P.F.; Bankston, C.P.; Fabris, G.; Kirol, L.D.

1988-12-01T23:59:59.000Z

152

Energy Conversion Materials Through Chemical Synthesis Route  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Materials Through Chemical Synthesis Route Conversion Materials Through Chemical Synthesis Route Speaker(s): Lionel Vayssieres Date: April 27, 2004 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Samuel Mao The ability to design anisotropic nanoparticles with tailored aspect ratio and to order them into large 3-D arrays is an important challenge that scientists have to face to create functionalized nanomaterials. Our approach to control the size and shape of nanoparticles as well as the overall texture of nanoparticulate thin films is to tune their direct aqueous hydrolysis-condensation growth onto substrates by monitoring the interfacial thermodynamics of nanocrystals as well as their kinetics of heteronucleation. Growing materials at very low interfacial tension, i.e. at thermodynamically stable conditions, allows the experimental control of

153

Energy Conversion Facilities Property Tax Exemption (Ohio) |...  

Open Energy Info (EERE)

Biomass, Municipal Solid Waste, CHPCogeneration Active Incentive No Implementing Sector StateTerritory Energy Category Renewable Energy Incentive Programs Amount 100% exemption...

154

Energy Conversion Facilities Corporate Tax Exemption (Ohio) ...  

Open Energy Info (EERE)

Biomass, Municipal Solid Waste, CHPCogeneration Active Incentive No Implementing Sector StateTerritory Energy Category Renewable Energy Incentive Programs Amount 100% Exemption...

155

Multi-objective design and optimization of district energy systems including polygeneration energy conversion technologies.  

E-Print Network (OSTI)

??In the present context of finding ways to decrease CO2 emissions linked with human activity, district energy systems including polygeneration energy conversion technologies are likely… (more)

Weber, Céline Isabelle

2008-01-01T23:59:59.000Z

156

Portfolio Manager Technical Reference: Thermal Conversion Factors | ENERGY  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Conversion Factors Thermal Conversion Factors Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

157

Energy Conversion and Storage Program: 1992 Annual report  

Science Conference Proceedings (OSTI)

This report is the 1992 annual progress report for the Energy Conversion and Storage Program, a part of the Energy and Environment Division of the Lawrence Berkeley Laboratory. Work described falls into three broad areas: electrochemistry; chemical applications; and materials applications. The Energy Conversion and Storage Program applies principles of chemistry and materials science to solve problems in several areas: (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes and chemical species, and (5) study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Chemical applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing product and waste streams from synfuel plants, coal gasifiers, and biomass conversion processes. Materials applications research includes evaluation of the properties of advanced materials, as well as development of novel preparation techniques. For example, techniques such as sputtering, laser ablation, and poised laser deposition are being used to produce high-temperature superconducting films.

Cairns, E.J.

1993-06-01T23:59:59.000Z

158

Ocean Thermal Energy Conversion (OTEC) A New Secure Renewable Energy Source  

E-Print Network (OSTI)

Ocean Thermal Energy Conversion (OTEC) A New Secure Renewable Energy Source For Defense New Ventures #12;What is OTEC? OTEC B fiOTEC Benefits: Large Renewable Energy Source 3-5 Terawatts Water Temperature Delta 2 A New Clean Renewable 24/7 Energy Source #12;Ocean Thermal Energy Conversion

159

Energy Basics: Photovoltaic Cell Conversion Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

efficiency of a photovoltaic (PV) cell, or solar cell, is the percentage of the solar energy shining on a PV device that is converted into electrical energy, or electricity....

160

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources  

Open Energy Info (EERE)

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description Using mass-produced chiller equipment for "reverse refrigeration" to generate electricity: This approach allows Johnson Controls to take advantage of the economies of scale and manufacturing experience gained from current products while minimizing performance risks. Process efficiencies will be increased over the current state of the art in two ways: better working fluids and improved cycle heat management.

Note: This page contains sample records for the topic "thermal-to-electrical energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Biomimetic approach to solar energy conversion: artificial photosynthesis  

DOE Green Energy (OSTI)

Results of efforts to devise apparatus and systems for using solar energy for chemical purposes by methods that mimic those used by photosynthetic organisms are reported. Sufficient progress has been made in the understanding of plant photosynthesis to make artificial photosynthesis a reasonable goal. Artificial photoreaction centers, the apparatus used by photosynthetic organisms for light energy conversion to chemical oxidizing and reducing capacity, have been made in the laboratory. The synthetic reaction centers mimic with remarkable fidelity the properties of their in vivo prototypes. Some of the formidable problems that must still be solved and the future prospects for biomimetic devices for solar energy conversion are discussed.

Katz, J.J.

1978-01-01T23:59:59.000Z

162

Standard Terminology Relating to Photovoltaic Solar Energy Conversion  

E-Print Network (OSTI)

1.1 This terminology pertains to photovoltaic (radiant-to-electrical energy conversion) device performance measurements and is not a comprehensive list of terminology for photovoltaics in general. 1.2 Additional terms used in this terminology and of interest to solar energy may be found in Terminology E 772.

American Society for Testing and Materials. Philadelphia

2005-01-01T23:59:59.000Z

163

Optimization of Oxygen Purity for Coal Conversion Energy Reduction  

E-Print Network (OSTI)

The conversion of coal into gaseous and liquid fuels and chemical feedstock will require large quantities of oxygen. This oxygen will be produced in large multi-train air separation plants which will consume about 350 kilowatt hours of energy for each ton of coal processed. Thus, the oxygen plants in a commercial coal conversion facility may require 150 megawatts. Design of the oxygen plants will require close attention to energy consumption. Many coal conversion processes can accept oxygen at less than the historical 99.5% purity with significant savings in energy and cost. The air separation process is reviewed with emphasis on optimum oxygen purity. An energy reduction of 8.4% can be achieved when oxygen purity is reduced from 99.5% to 95%. Oxygen is a major tonnage chemical which is also highly energy intensive. The current United States capacity of about 80 thousand tons per day places it in the top five of basic chemicals, and its energy requirement of 350 to 450 kilowatt hours per ton makes it a major energy consumer. The growing synfuels industry -- conversion of coal into hydrocarbon fuels and chemical feed-stocks -- will greatly increase the production of oxygen and presents major opportunities for energy conservation.

Baker, C. R.; Pike, R. A.

1982-01-01T23:59:59.000Z

164

Pin stack array for thermoacoustic energy conversion  

DOE Patents (OSTI)

A thermoacoustic stack for connecting two heat exchangers in a thermoacoustic energy converter provides a convex fluid-solid interface in a plane perpendicular to an axis for acoustic oscillation of fluid between the two heat exchangers. The convex surfaces increase the ratio of the fluid volume in the effective thermoacoustic volume that is displaced from the convex surface to the fluid volume that is adjacent the surface within which viscous energy losses occur. Increasing the volume ratio results in an increase in the ratio of transferred thermal energy to viscous energy losses, with a concomitant increase in operating efficiency of the thermoacoustic converter. The convex surfaces may be easily provided by a pin array having elements arranged parallel to the direction of acoustic oscillations and with effective radial dimensions much smaller than the thicknesses of the viscous energy loss and thermoacoustic energy transfer volumes.

Keolian, Robert M. (Monterey, CA); Swift, Gregory W. (Santa Fe, NM)

1995-01-01T23:59:59.000Z

165

Energy Conversion Devices Fuel Cell Electrocatalyst Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell(tm) Texaco Ovonic Fuel Cell Company, LLC non-precious metal catalysts regenerative braking energy absorption capability wide temperature range instant...

166

Biomass energy conversion workshop for industrial executives  

DOE Green Energy (OSTI)

The rising costs of energy and the risks of uncertain energy supplies are increasingly familiar problems in industry. Bottom line profits and even the simple ability to operate can be affected by spiralling energy costs. An often overlooked alternative is the potential to turn industrial waste or residue into an energy source. On April 9 and 10, 1979, in Claremont, California, the Solar Energy Research Institute (SERI), the California Energy Commission (CEC), and the Western Solar Utilization Network (WSUN) held a workshop which provided industrial managers with current information on using residues and wastes as industrial energy sources. Successful industrial experiences were described by managers from the food processing and forest product industries, and direct combustion and low-Btu gasification equipment was described in detail. These speakers' presentations are contained in this document. Some major conclusions of the conference were: numerous current industrial applications of wastes and residues as fuels are economic and reliable; off-the-shelf technologies exist for converting biomass wastes and residues to energy; a variety of financial (tax credits) and institutional (PUC rate structures) incentives can help make these waste-to-energy projects more attractive to industry. However, many of these incentives are still being developed and their precise impact must be evaluated on a case-by-case basis.

None

1979-01-01T23:59:59.000Z

167

Energy Conversion, Storage, and Transport Programs and ...  

Science Conference Proceedings (OSTI)

... The Society of Automotive Engineers International (SAE) has proposed a ... hydrogen storage material satisfies the Department of Energy (DoE) goal ...

2010-05-24T23:59:59.000Z

168

Energy Conversion, Mixing Energy, and Neutral Surfaces with a Nonlinear Equation of State  

E-Print Network (OSTI)

Energy Conversion, Mixing Energy, and Neutral Surfaces with a Nonlinear Equation of State JONAS energy, it is generally assumed that it does not produce a restoring buoyancy force. However, it is here effect) such a neutral displacement is accompanied by a conversion between internal energy E

Nycander, Jonas

169

Electrostatic Conversion for Vibration Energy Harvesting  

E-Print Network (OSTI)

This chapter focuses on vibration energy harvesting using electrostatic converters. It synthesizes the various works carried out on electrostatic devices, from concepts, models and up to prototypes, and covers both standard (electret-free) and electret-based electrostatic vibration energy harvesters (VEH).

Boisseau, S; Seddik, B Ahmed

2012-01-01T23:59:59.000Z

170

Energy Conversion and Storage Program. 1990 annual report  

DOE Green Energy (OSTI)

The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

Cairns, E.J.

1992-03-01T23:59:59.000Z

171

Novel, Integrated Reactor / Power Conversion System (LMR-AMTEC)  

DOE Green Energy (OSTI)

The main features of this project were the development of a long life (up to 10 years) Liquid Metal Reactor (LMR) and a static conversion subsystem comprising an Alkali Metal Thermal-to-Electric (AMTEC) topping cycle and a ThermoElectric (TE) Bottom cycle. Various coupling options of the LMR with the energy conversion subsystem were explored and, base in the performances found in this analysis, an Indirect Coupling (IC) between the LMR and the AMTEC/TE converters with Alkali Metal Boilers (AMB) was chosen as the reference design. The performance model of the fully integrated sodium-and potassium-AMTEC/TE converters shows that a combined conversion efficiency in excess of 30% could be achieved by the plant. (B204)

Pablo Rubiolo, Principal Investigator

2003-03-21T23:59:59.000Z

172

Ocean Thermal Energy Conversion LUIS A. VEGA  

E-Print Network (OSTI)

demand due to emerging economies like China, India, and Brazil. Coal and natural gas resources 7296 O. It seems sensible toconsider OTEC as one of the renewable energy technologies of the future. Introduction

173

Nanostructured Functional Materials for Energy Conversion and ...  

Science Conference Proceedings (OSTI)

... V: Clean Coal-, Hydrogen Based-Technologies, Fuel Cells, and Materials for Energy Storage ... Deployment of New High Temperature Alloys for Power Generation Systems ... Materials Metrology for a Hydrogen Distribution Infrastructure.

174

Polymer Based Nanocomposites for Solar Energy Conversion  

DOE Green Energy (OSTI)

Organic semiconductor-based photovoltaic devices offer the promise of low cost photovoltaic technology that can be manufactured via large-scale, roll-to-roll printing techniques. Existing organic photovoltaic devices are currently limited to solar power conversion efficiencies of 3?5%. This is because of poor overlap between the absorption spectrum of the organic chromophores and the solar spectrum, non-ideal band alignment between the donor and acceptor species, and low charge carrier mobilities. To address these issues, we are investigating the development of dendrimeric organic semiconductors that are readily synthesized with high purity. They also benefit from optoelectronic properties, such as band gap and band positions, which can be easily tuned by substituting different chemical groups into the molecule. Additionally, we are developing nanostructured oxide/conjugated polymer composite photovoltaics. These composites take advantage of the high electron mobilities attainable in oxide semiconductors and can be fabricated using low-temperature solution-based growth techniques. Here, we discuss the synthesis and preliminary device results of these novel materials and composites.

Shaheen, S.; Olson, D.; White, M.; Mitchell, W.; Miedaner, A.; Curtis, C.; Rumbles, G.; Gregg, B.; Ginley, D.

2005-01-01T23:59:59.000Z

175

Thermionic energy conversion (TEC) topping thermoelectrics  

DOE Green Energy (OSTI)

Long-respected international experts on thermoelectrics (Dixon, Ertl and Goldsmid supported by Ure) determine the probable maximum figure of merit (ZT) for fully matured thermoelectric generators as about unity from ordiary temperatures to 2000 K. Thus the maximum efficiency for fully matured thermoelectrics would be approximately 0.414 (l - r/sub T/)/(1.414 + r/sub T/) where r/sub T/ is the ratio of cold and hot junction temperatures. This limitation contrasts with the recent burst of enthusiasm for high-temperature thermoelectrics - based on calculated figures of merit and efficiencies that increase more and more rapidly with rising temperatures. Unfortunately these calculations neglect internal radiation effects which diminish thermoelectric figures of merit significantly at 1000 K and substantially at 2000 K: The effective thermal-conductivity contribution of intrathermoelectric radiative dissipation increases with the third power of temperature. Therefore the quotation from Thermoelectricy: Science and Engineering by Heikes and Ure apparently still prevails: ...thermoelectric devices appear difficult to extend in the direction of high temperature, while thermionic devices become inefficient at low temperature. Accordingly consideration of thermoelectric power generation with high-temperature heat sources should include utilization of TEC topping thermoelectrics. However TEC alone or TEC topping more-efficient conversion systems like steam or gas turbines, combined cycles or Stirling engines would be more desirable generally.

Morris, J.F.

1981-01-01T23:59:59.000Z

176

Supramolecular Structures for Photochemical Energy Conversion  

DOE Green Energy (OSTI)

OAK B188 The goal of this project is to mimic the energy transduction processes by which photosynthetic organisms harvest sunlight and convert it to forms of energy that are more easily used and stored. The results may lead to new technologies for solar energy harvesting based on the natural photosynthetic process. They may also enrich our understanding and control of photosynthesis in living organisms, and lead to methods for increasing natural biomass production, carbon dioxide removal, and oxygen generation. In our work to date, we have learned how to make synthetic antenna and reaction center molecules that absorb light and undergo photoinduced electron transfer to generate long-lived, energetic charge-separated states. We have assembled a prototype system in which artificial reaction centers are inserted into liposomes (artificial cell-like constructs), where they carry out light-driven transmembrane translocation of hydrogen ions to generate proton motive force. By insertion of natural ATP synthase into the liposomal bilayer, this proton motive force has been used to power the synthesis of ATP. ATP is a natural biological energy currency. We are carrying out a systematic investigation of these artificial photosynthetic energy harvesting constructs in order to understand better how they operate. In addition, we are exploring strategies for reversing the direction of the light-powered proton pumping. Most recently, we have extended these studies to develop a light-powered transmembrane calcium ion pump that converts sunlight into energy stored as a calcium ion concentration gradient across a lipid bilayer.

Gust, Devens; Moore, Thomas A.; Moore, Ana L.

2003-08-26T23:59:59.000Z

177

Argonne Chemical Sciences & Engineering - Catalysis & Energy Conversion -  

NLE Websites -- All DOE Office Websites (Extended Search)

Ceramic Electrochemistry Ceramic Electrochemistry * Members * Contact * Publications * Overview * Solid Oxide Fuel Cells * Steam Electrolysis Catalysis & Energy Conversion Home Ceramic Electrochemistry Dave Carter and solid oxide fuel cell Materials scientist John David Carter prepares a solid oxide electrochemical cell for high temperature testing. Research activities in the Ceramic Electrochemistry Group are focused on the development of ceramic-based electrochemical devices and components, such as Solid Oxide Fuel Cells (SOFC) and High Temperature Steam Electrolyzers (HTSE). This extends to materials synthesis, fabrication, and characterization. Solid Oxide Fuel Cell Research As part of the Solid State Energy Conversion Alliance (SECA) Core Technology Program, the goal of this research is the development of solid

178

Commercialization analysis of large wind energy conversion systems. Final report  

DOE Green Energy (OSTI)

The framework is described that can be used to evaluate potential new federal incentives to facilitate the market acceptance of utility-scale wind energy conversion systems. The insights gained from utilizing this framework to evaluate a variety of hypothetical federal incentives are discussed. The heart of the evaluation framework is an explicit representation of the decisions made by utility purchasers, suppliers, and government agencies with respect to the utilization and fabrication of large wind energy conversion systems. The demand-side and supply-side aspects of the multiparty commercialization model are described, and the model's struture is explained. (LEW)

Boyd, D.W.; Buckley, O.E.; Haas, S.M.

1980-06-01T23:59:59.000Z

179

Controlling Energy Costs with Coal Conversion  

E-Print Network (OSTI)

Even with a decade of substantial energy reduction in America's manufacturing plants and a temporary 'oil glut', energy often represents the largest plant expense, higher than labor or raw materials. Energy is not only a major plant expense; it is usually regarded as the most controllable. Fluidized bed combustion technology allows industrial steam users to use low-grade coals that are outside of mainstream coal markets, are abundant, and are very inexpensive, being one-quarter to one-third the price of oil or gas. This paper discusses the economics of low-grade coal, what is fluidized bed technology and its comparison to conventional coal and gas/oil fired systems, and one coal-fired FBC installation in Texas.

Sadowski, R. S.; von Hippel, C. S.

1984-01-01T23:59:59.000Z

180

Ocean Thermal Energy Conversion Mostly about USA  

E-Print Network (OSTI)

Structures (Plantships) · Bottom-Mounted Structures · Model Basin Tests/ At-Sea Tests · 210 kW OC-OTEC systems and with an investment payback period estimated at 3 to 4 years. #12;OTEC 12 Energy Carriers & Attachments #12;#12;#12;#12;Bottom-Mounted Structures · Fixed Towers · Guyed Towers · TLP not shown · Causeway

Note: This page contains sample records for the topic "thermal-to-electrical energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

This paper is published as part of a Dalton Transactions themed issue on: Solar Energy Conversion  

E-Print Network (OSTI)

This paper is published as part of a Dalton Transactions themed issue on: Solar Energy Conversion and Paul King, Dalton Trans., 2009, DOI: 10.1039/b913426n Solar energy conversion in a photoelectrochemical and the optimization of solar energy conversion using DSSCs.7­9 Currently, the maximum solar conversion efficiency

182

Proceedings of the 25th intersociety energy conversion engineering conference  

SciTech Connect

This book contains the proceedings of the 25th Intersociety Energy Conversion Engineering Conference. Volume 5 is organized under the following headings: Photovoltaics I, Photovoltaics II, Geothermal power, Thermochemical conversion of biomass, Energy from waste and biomass, Solar thermal systems for environmental applications, Solar thermal low temperature systems and components, Solar thermal high temperature systems and components, Wind systems, Space power sterling technology Stirling cooler developments, Stirling solar terrestrial I, Stirling solar terrestrial II, Stirling engine generator sets, Stirling models and simulations, Stirling engine analysis, Stirling models and simulations, Stirling engine analysis, Stirling engine loss understanding, Novel engine concepts, Coal conversion and utilization, Power cycles, MHD water propulsion I, Underwater vehicle powerplants - performance, MHD underwater propulsion II, Nuclear power, Update of advanced nuclear power reactor concepts.

Nelson, P.A.; Schertz, W.W.; Till, R.H.

1990-01-01T23:59:59.000Z

183

Energy conversion in Purple Bacteria Photosynthesis  

E-Print Network (OSTI)

The study of how photosynthetic organisms convert light offers insight not only into nature's evolutionary process, but may also give clues as to how best to design and manipulate artificial photosynthetic systems -- and also how far we can drive natural photosynthetic systems beyond normal operating conditions, so that they can harvest energy for us under otherwise extreme conditions. In addition to its interest from a basic scientific perspective, therefore, the goal to develop a deep quantitative understanding of photosynthesis offers the potential payoff of enhancing our current arsenal of alternative energy sources for the future. In the following Chapter, we consider the trade-off between dynamics, structure and function of light harvesting membranes in Rps. Photometricum purple bacteria, as a model to highlight the priorities that arise when photosynthetic organisms adapt to deal with the ever-changing natural environment conditions.

Caycedo-Soler, Felipe; Quiroga, Luis; Zhao, Guannan; Johnson, Neil F

2011-01-01T23:59:59.000Z

184

Energy conversion in Purple Bacteria Photosynthesis  

E-Print Network (OSTI)

The study of how photosynthetic organisms convert light offers insight not only into nature's evolutionary process, but may also give clues as to how best to design and manipulate artificial photosynthetic systems -- and also how far we can drive natural photosynthetic systems beyond normal operating conditions, so that they can harvest energy for us under otherwise extreme conditions. In addition to its interest from a basic scientific perspective, therefore, the goal to develop a deep quantitative understanding of photosynthesis offers the potential payoff of enhancing our current arsenal of alternative energy sources for the future. In the following Chapter, we consider the trade-off between dynamics, structure and function of light harvesting membranes in Rps. Photometricum purple bacteria, as a model to highlight the priorities that arise when photosynthetic organisms adapt to deal with the ever-changing natural environment conditions.

Felipe Caycedo-Soler; Ferney J. Rodriguez; Luis Quiroga; Guannan Zhao; Neil F. Johnson

2011-07-01T23:59:59.000Z

185

Introduction to Solar Energy Conversion Solar energy represents the largest energy input into the terrestrial system. Despite its  

E-Print Network (OSTI)

of the resource to allow supply to meet demand at all times. Photovoltaic energy conversion efficiency hasIntroduction to Solar Energy Conversion Solar energy represents the largest energy input the global energy demand on its own. The challenges that need to be addressed to make solar energy viable

Nur, Amos

186

Nanowire silicon as a material for thermoelectric energy conversion  

Science Conference Proceedings (OSTI)

In order to use silicon as an efficient thermoelectric (TE) material for TE energy conversion, it is necessary to reduce its relatively high thermal conductivity, while maintaining the high power factor. This can be done by structuring silicon into 1-D ...

A. Stranz; J. Kähler; S. Merzsch; A. Waag; E. Peiner

2012-08-01T23:59:59.000Z

187

Future of photovoltaic energy conversion in developing countries  

DOE Green Energy (OSTI)

Recent studies reveal that photovoltaic energy conversion will be economically viable for usage in developing countries. An overview of programs designed to lower the costs of such conversion systems is presented. Government goals are reviewed, as well as application projects relative to rural usage. A summary of the state-of-the-art in both advanced research and commercially available technology is presented. It is concluded that with the range of the work being done, such systems will be viable for many rural applications within 5 years.

Hogan, S.

1980-04-01T23:59:59.000Z

188

Ocean Thermal Energy Conversion Program Management Plan  

DOE Green Energy (OSTI)

The Office of the Associate Laboratory Director for Energy and Environmental Technology has established the OTEC Program Management Office to be responsible for the ANL-assigned tasks of the OTEC Program under DOE's Chicago Operations and Regional Office (DOE/CORO). The ANL OTEC Program Management Plan is essentially a management-by-objective plan. The principal objective of the program is to provide lead technical support to CORO in its capacity as manager of the DOE power-system program. The Argonne OTEC Program is divided into three components: the first deals with development of heat exchangers and other components of OTEC power systems, the second with development of biofouling counter-measures and corrosion-resistant materials for these components in seawater service, and the third with environmental and climatic impacts of OTEC power-system operation. The essential points of the Management Plan are summarized, and the OTEC Program is described. The organization of the OTEC Program at ANL is described including the functions, responsibilities, and authorities of the organizational groupings. The system and policies necessary for the support and control functions within the organization are discussed. These functions cross organizational lines, in that they are common to all of the organization groups. Also included are requirements for internal and external reports.

Combs, R E

1980-01-01T23:59:59.000Z

189

SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOFC  

Science Conference Proceedings (OSTI)

The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with piped-in water (Demonstration System A); and Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from July through December 2002 under Department of Energy Cooperative Agreement DE-FC-02NT41246 for the 5 kW mass-market automotive (gasoline) auxiliary power unit. This report highlights technical results of the work performed under the following tasks for the automotive 5 kW system: Task 1--System Design and Integration; Task 2--Solid Oxide Fuel Cell Stack Developments; Task 3--Reformer Developments; Task 4--Development of Balance of Plant (BOP) Components; Task 5--Manufacturing Development (Privately Funded); Task 6--System Fabrication; and Task 7--System Testing.

Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; H. Skip Mieney

2003-06-09T23:59:59.000Z

190

SPS energy conversion and power management workshop. Final report  

Science Conference Proceedings (OSTI)

In 1977 a four year study, the concept Development and Evaluation Program, was initiated by the US Department of Energy and the National Aeronautics and Space Administration. As part of this program, a series of peer reviews were carried out within the technical community to allow available information on SPS to be sifted, examined and, if need be, challenged. The SPS Energy Conversion and Power Management Workshop, held in Huntsville, Alabama, February 5 to 7, 1980, was one of these reviews. The results of studies in this particular field were presented to an audience of carefully selected scientists and engineers. This first report summarizes the results of that peer review. It is not intended to be an exhaustive treatment of the subject. Rather, it is designed to look at the SPS energy conversion and power management options in breadth, not depth, to try to foresee any troublesome and/or potentially unresolvable problems and to identify the most promising areas for future research and development. Topics include photovoltaic conversion, solar thermal conversion, and electric power distribution processing and power management. (WHK)

Not Available

1980-06-01T23:59:59.000Z

191

Contributions to Key Energy Conversion Technologies and Advanced Methods  

NLE Websites -- All DOE Office Websites (Extended Search)

Contributions to Key Energy Conversion Technologies and Advanced Methods Contributions to Key Energy Conversion Technologies and Advanced Methods for Optimum Energy Systems Design and Planning Speaker(s): Daniel Favrat Date: February 27, 2003 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Kristina LaCommare This presentation reviews some of EPFL-LENI's recent contributions to advanced cogeneration and heat pump technologies as well as to new system design approaches based on multimodal evolutionar algorithms. In the field of cogeneration, theoretical and experimental results show that gas engines with unscavenged ignition prechambers can, without the need of a catalyst, achieve high efficiencies with reasonable emissions with both natural gas and biogas. Combination with Organic Rankine Cycle (ORC) heat recovery

192

April 2013 Most Viewed Documents for Energy Storage, Conversion, And  

Office of Scientific and Technical Information (OSTI)

April 2013 Most Viewed Documents for Energy Storage, Conversion, And April 2013 Most Viewed Documents for Energy Storage, Conversion, And Utilization Seventh Edition Fuel Cell Handbook NETL (2004) 628 Continuously variable transmissions: theory and practice Beachley, N.H.; Frank, A.A. (null) 205 A study of lead-acid battery efficiency near top-of-charge and the impact on PV system design Stevens, J.W.; Corey, G.P. (1996) 173 Energy Saving Potentials and Air Quality Benefits of Urban HeatIslandMitigation Akbari, Hashem (2005) 153 Building a secondary containment system Broder, M.F. (1994) 144 An Improved Method of Manufacturing Corrugated Boxes: Lateral Corrugator Frank C. Murray Ph.D.; , Roman Popil Ph.D.; Michael Shaepe (formerly with IPST, now at Cargill. Inc) (2008) 141 Ammonia usage in vapor compression for refrigeration and air-conditioning in the United States

193

Table B1. Metric Conversion Factors - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

334 U.S. Energy Information Administration / Annual Energy Review 2011 aExact conversion. bCalculated by the U.S. Energy Information Administration.

194

Direct Solar Energy Conversion by the Reduction of CO2  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Solar Energy Conversion by the Reduction of CO2 Direct Solar Energy Conversion by the Reduction of CO2 Speaker(s): Reed Jensen Date: August 25, 2005 - 12:00pm Location: Bldg. 90 Reed Jensen has successfully demonstrated the direct solar reduction of CO2 to CO and O2 using a solar concentrator dish and ceramic converter that grew out of his work at Los Alamos National Laboratory. He will discuss the thermochemical, kinetic and spectral properties of the CO2 /CO/ O2 system that enable this process and how the CO is subsequently converted to useful fuels by a range of catalytic processes. He will also discuss the technical difficulties associated with the design, construction and operation of a multi-component optical system that must operate at high temperatures. Results from a prototype system will be discussed defining the efficiencies

195

September 2013 Most Viewed Documents for Energy Storage, Conversion, And  

Office of Scientific and Technical Information (OSTI)

September 2013 Most Viewed Documents for Energy Storage, Conversion, And September 2013 Most Viewed Documents for Energy Storage, Conversion, And Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) 169 Evaluation of the 2010 Toyota Prius Hybrid Synergy Drive System Burress, Timothy A [ORNL]; Campbell, Steven L [ORNL]; Coomer, Chester [ORNL]; Ayers, Curtis William [ORNL]; Wereszczak, Andrew A [ORNL]; Cunningham, Joseph Philip [ORNL]; Marlino, Laura D [ORNL]; Seiber, Larry Eugene [ORNL]; Lin, Hua-Tay [ORNL] (2011) 116 Evaluation of the 2007 Toyota Camry Hybrid Syneregy Drive System Burress, T.A.; Coomer, C.L.; Campbell, S.L.; Seiber, L.E.; Marlino, L.D.; Staunton, R.H.; Cunningham, J.P. (2008) 102 A study of lead-acid battery efficiency near top-of-charge and the impact on PV system design

196

Most Viewed Documents - Energy Storage, Conversion, and Utilization | OSTI,  

Office of Scientific and Technical Information (OSTI)

Most Viewed Documents - Energy Storage, Conversion, and Utilization Most Viewed Documents - Energy Storage, Conversion, and Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) Continuously variable transmissions: theory and practice Beachley, N.H.; Frank, A.A. () Review of air flow measurement techniques McWilliams, Jennifer (2002) Building a secondary containment system Broder, M.F. (1994) Cost benefit analysis of the night-time ventilative cooling in office building Seppanen, Olli; Fisk, William J.; Faulkner, David (2003) Evaluation of the 2007 Toyota Camry Hybrid Syneregy Drive System Burress, T.A.; Coomer, C.L.; Campbell, S.L.; et al. (2008) Nanofluid technology : current status and future research. Choi, S. U.-S. (1998) An Improved Method of Manufacturing Corrugated Boxes: Lateral

197

Thermophotovoltaic energy conversion using photonic bandgap selective emitters  

DOE Patents (OSTI)

A method for thermophotovoltaic generation of electricity comprises heating a metallic photonic crystal to provide selective emission of radiation that is matched to the peak spectral response of a photovoltaic cell that converts the radiation to electricity. The use of a refractory metal, such as tungsten, for the photonic crystal enables high temperature operation for high radiant flux and high dielectric contrast for a full 3D photonic bandgap, preferable for efficient thermophotovoltaic energy conversion.

Gee, James M. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM); Fleming, James G. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

2003-06-24T23:59:59.000Z

198

DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD JUNE 1, 2001 THROUGH SEPTEMBER 30, 2001  

DOE Green Energy (OSTI)

OAK-B135 DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD JUNE 1, 2001 THROUGH SEPTEMBER 30, 2001

L.C. BROWN

2001-09-30T23:59:59.000Z

199

Direct Energy Conversion Fission Reactor for the period December 1, 1999 through February 29, 2000  

DOE Green Energy (OSTI)

OAK B135 Direct Energy Conversion Fission Reactor for the period December 1, 1999 through February 29, 2000

Brown, L.C.

2000-03-20T23:59:59.000Z

200

Applied research on energy storage and conversion for photovoltaic and wind energy systems. Volume III. Wind conversion systems with energy storage. Final report  

DOE Green Energy (OSTI)

The variability of energy output inherent in wind energy conversion systems (WECS) has led to the investigation of energy storage as a means of managing the available energy when immediate, direct use is not possible or desirable. This portion of the General Electric study was directed at an evaluation of those energy storage technologies deemed best suited for use in conjunction with a wind energy conversion system in utility, residential and intermediate applications. Break-even cost goals are developed for several storage technologies in each application. These break-even costs are then compared with cost projections presented in Volume I of this report to show technologies and time frames of potential economic viability. The report summarizes the investigations performed and presents the results, conclusions and recommendations pertaining to use of energy storage with wind energy conversion systems.

Not Available

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal-to-electrical energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

(Small scale wind energy conversion programmatic equipment. Final report)  

SciTech Connect

The purpose of this project is to provide South Dakota citizens with a case study of the institutional and technical problems encountered in the installation, maintenance and use of a small wind energy system. The project will provide information on wind turbine reliability, maintenance requirements and power production to demonstrate the feasibility of small-scale wind energy conversion projects for South Dakota. The system was installed by vocational students and instructors at Mitchell Vocational School. It has been in operation since the fall of 1983.

Wegman, S.

1985-05-20T23:59:59.000Z

202

Optimisation of a Small Non Controlled Wind Energy Conversion System for Stand-Alone Applications  

E-Print Network (OSTI)

Optimisation of a Small Non Controlled Wind Energy Conversion System for Stand-Alone Applications. This article proposes a method to optimize the design of a small fixed-voltage wind energy conversion system are shown and discussed. Key words Wind energy conversion system, stand-alone application, nonlinear

Paris-Sud XI, Université de

203

The State of the Art of Generators for Wind Energy Conversion Systems  

E-Print Network (OSTI)

The State of the Art of Generators for Wind Energy Conversion Systems Yassine Amirat, Mohamed Benbouzid, Bachir Bensaker and René Wamkeue Abstract--Wind Energy Conversion Systems (WECS) have become. I. INTRODUCTION Wind energy conversion is the fastest-growing source of new electric generation

Paris-Sud XI, Université de

204

OCEAN THERMAL ENERGY CONVERSION PRELIMINARY DATA REPORT FOR THE NOVEMBER 1977 GOTEC-02 CRUISE TO THE GULF OF MEXICO MOBILE SITE  

E-Print Network (OSTI)

02 OCEAN THERMAL ENERGY CONVERSION PRELIMINARY DATA REPORTOcean Thermal Energy Conversion (OTEC) sites in the Gulf ofOcean Thermal Energy Conversion (OTEC) Sites: Puerto Rico,

Commins, M.L.

2010-01-01T23:59:59.000Z

205

OCEAN THERMAL ENERGY CONVERSION ECOLOGICAL DATA REPORT FROM 0. S. S. RESEARCHER IN GULF OF MEXICO, JULY 12-23, 1977.  

E-Print Network (OSTI)

01 OCEAN THERMAL ENERGY CONVERSION ECOLOGICAL DATA REPORTOcean Thermal Energy Conversion (OTEC) Sites: Puerto Rico,Ocean Thermal Energy Conversion plant were in- itiated in

Quinby-Hunt, M.S.

2008-01-01T23:59:59.000Z

206

ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM  

E-Print Network (OSTI)

B. Dawley, I. Wind Energy Conversion System Monitoring &ment of Wind Energy Conversion Systems, Los AlamosCommerical Wind Energy Conversion System Monitoring and

Kay, J.

2009-01-01T23:59:59.000Z

207

OCEAN THERMAL ENERGY CONVERSION PRELIMINARY DATA REPORT FOR THE NOVEMBER 1977 GOTEC-02 CRUISE TO THE GULF OF MEXICO MOBILE SITE  

E-Print Network (OSTI)

9437 GOTEC-02 OCEAN THERMAL ENERGY CONVERSION PRELIMINARYto potential Ocean Thermal Energy Conversion (OTEC) sites inThree Proposed Ocean Thermal Energy Conversion (OTEC) Sites:

Commins, M.L.

2010-01-01T23:59:59.000Z

208

Static power conversion techniques for unique energy devices  

E-Print Network (OSTI)

Solar power, fuel cells, and supercapacitors are some hics. of the new energy devices that are being used today in various power applications. The first two of these devices are exciting alternative sources of clean energy. The third device is an important new energy storage device that has some properties of a battery and a capacitor allowing it to be used in applications where attributes of both are needed. To realize the full potential of these energy sources, novel engineering strategies have to be implemented to manage the conversion of power. Since these devices are relatively new and their development is constantly maturing, a introduction to these devices will be a useful to those unfamiliar with the state of the art of solar cells, fuel cells, and supercapacitors. In this paper characteristics of each technology will be reviewed and design consideration will be discussed, and methods of utilizing each of these devices will be offered.

Welch, Richard Andrew

1998-01-01T23:59:59.000Z

209

Complex Oxides for Highly Efficient Solid-State Energy ...  

Complex Oxides for Highly Efficient Solid-State Energy ... Using complex oxides to directly convert thermal to electrical energy is both ... Thermal P ...

210

Assessment of Methods to Manipulate Thermal Emission and Evaluate the Quality of Thermal Radiation for Direct Energy Conversion.  

E-Print Network (OSTI)

??ABSTRACT Control of spectral thermal emission from surfaces may be desirable in some energy related applications, such as nano-scale antenna energy conversion and thermophotovoltaic conversion.… (more)

Wijewardane, Samantha

2012-01-01T23:59:59.000Z

211

Direct conversion technology. Annual summary report CY 1991, January 1, 1991--December 31, 1991  

DOE Green Energy (OSTI)

The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.

Massier, P.F.; Back, L.H.; Ryan, M.A.; Fabris, G.

1992-01-07T23:59:59.000Z

212

SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Next-Generation Thermionic Solar Next-Generation Thermionic Solar Energy Conversion to someone by E-mail Share SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Facebook Tweet about SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Twitter Bookmark SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Google Bookmark SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Delicious Rank SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Digg Find More places to share SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload

213

Argonne Chemical Sciences & Engineering - Catalysis & Energy Conversion -  

NLE Websites -- All DOE Office Websites (Extended Search)

Atom-Efficient Chemical Transformations Atom-Efficient Chemical Transformations iact logo Argonne National Laboratory along with its academic partners has established an Energy Frontier Research Center, the Institute for Atom-efficient Chemical Transformations (IACT) whose focus is to advance the science of catalysis for the efficient conversion of energy resources into usable forms. IACT is one of 46 Energy Frontier Research Centers that DOE has established in the United States. IACT is a partnership among world-class scientists at Argonne National Laboratory, Northwestern University, Purdue University, University of Wisconsin-Madison, and Brookhaven National Laboratory. Using a multidisciplinary approach involving integrated catalyst synthesis, advanced characterization, catalytic experimentation, and computation, IACT is addressing key

214

Focus Area 2 - Biomass Deconstruction and Conversion : BioEnergy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Deconstruction and Conversion BESC research in biomass deconstruction and conversion targets CBP by studying model organisms and thermophilic anaerobes to understand novel...

215

Penrose Landfill Gas Conversion LLC | Open Energy Information  

Open Energy Info (EERE)

Penrose Landfill Gas Conversion LLC Jump to: navigation, search Name Penrose Landfill Gas Conversion LLC Place Los Angeles, California Product Owner of landfill gas plant....

216

Carbon dioxide release from ocean thermal energy conversion (OTEC) cycles  

DOE Green Energy (OSTI)

This paper presents the results of recent measurements of CO{sub 2} release from an open-cycle ocean thermal energy conversion (OTEC) experiment. Based on these data, the rate of short-term CO{sub 2} release from future open-cycle OTEC plants is projected to be 15 to 25 times smaller than that from fossil-fueled electric power plants. OTEC system that incorporate subsurface mixed discharge are expected to result in no long-term release. OTEC plants can significantly reduce CO{sub 2} emissions when substituted for fossil-fueled power generation. 12 refs., 4 figs., 3 tabs.

Green, H.J. (Solar Energy Research Inst., Golden, CO (USA)); Guenther, P.R. (Scripps Institution of Oceanography, La Jolla, CA (USA))

1990-09-01T23:59:59.000Z

217

Photovoltaic energy conversion The objective of this laboratory is for you to explore the science and engineering of the conversion of  

E-Print Network (OSTI)

Photovoltaic energy conversion Objective The objective of this laboratory is for you to explore the photovoltaic energy conversion process is optimal only for photons with energies above, but not too far the science and engineering of the conversion of light to electricity by photovoltaic devices. Preparation

Braun, Paul

218

EIA Renewable Energy- Average Energy Conversion Efficiency of ...  

U.S. Energy Information Administration (EIA)

Renewables and Alternate Fuels > Solar Photovoltaic Cell/Module Annual Report > Annual Shipments of Photovoltaic Cells and Modules by Source: Average Energy ...

219

IEEE TRANSACTIONS ON ENERGY CONVERSION, 2006 1 Distributed Control Agents Approach to Energy  

E-Print Network (OSTI)

IEEE TRANSACTIONS ON ENERGY CONVERSION, 2006 1 Distributed Control Agents Approach to Energy a new scheme for an energy management system in the form of distributed control agents. The control and a minimum amount of communication. A case study using the distributed agents within a multilayer system

Lai, Hong-jian

220

Combustion and direct energy conversion in a micro-combustor  

E-Print Network (OSTI)

The push toward the miniaturization of electromechanical devices and the resulting need for micro-power generation (milliwatts to watts) with low-weight, long-life devices has led to the recent development of the field of micro-scale combustion. Since batteries have low specific energy (~200 kJ/kg) and liquid hydrocarbon fuels have a very high specific energy (~50000 kJ/kg), a miniaturized power-generating device, even with a relatively inefficient conversion of hydrocarbon fuels to power, would result in increased lifetime and/or reduced weight of an electronic or mechanical system that currently requires batteries for power. Energy conversion from chemical energy to electrical energy without any moving parts can be achieved by a thermophotovoltaic (TPV) system. The TPV system requires a radiation source which is provided by a micro-combustor. Because of the high surface area to volume ratio for micro-combustor, there is high heat loss (proportional to area) compared to heat generation (proportional to volume). Thus the quenching and flammability problems are more critical in a micro-scale combustor. Hence innovative schemes are required to improve the performance of micro-combustion. In the current study, a micro-scale counter flow combustor with heat recirculation is adapted to improve the flame stability in combustion modeled for possible application to a TPV system. The micro-combustor consists of two annular tubes with an inner tube of diameter 3 mm and 30 mm long and an outer tube of 4.2 mm diameter and 30 mm long. The inner tube is supplied with a cold premixed combustible mixture, ignited and burnt. The hot produced gases are then allowed to flow through outer tube which supplies heat to inner tube via convection and conduction. The hot outer tube radiates heat to the TPV system. Methane is selected as the fuel. The model parameters include the following: diameter d , inlet velocity u , equivalence ratio Ï� and heat recirculation efficiency �· between the hot outer flow and cold inner flow. The predicted performance results are as followings: the lean flammability limit increased from 7.69% to 7.86% and the quenching diameter decreased from 1.3 mm to 0.9 mm when heat recirculation was employed. The overall energy conversion efficiency of current configuration is about 2.56.

Lei, Yafeng

2005-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal-to-electrical energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

in thermal energy conversion efficiency over present solarsolar thermal- photovoltaic co-generation scheme could have potentially very high solar-to-electric efficiency.solar-to-electric conversion efficiencies are attained and no thermal

Ho, Tony

2012-01-01T23:59:59.000Z

222

Plasmadynamics and ionization kinetics of thermionic energy conversion  

DOE Green Energy (OSTI)

To reduce the plasma arc-drop, thermionic energy conversion is studied with both analytical and numerical tools. Simplifications are made in both the plasmadynamic and ionization-recombination theories. These are applied to a scheme proposed presently using laser irradiation to enhance the ionization kinetics of the thermionic plasma and thereby reduce the arc-drop. It is also predicted that it is possible to generate the required laser light from a thermionic-type cesium plasma. The analysis takes advantage of theoretical simplifications derived for the ionization-recombination kinetics. It is shown that large laser ionization enhancements can occur and that collisional cesium recombination lasing is expected. To complement the kinetic theory, a numerical method is developed to solve the thermionic plasma dynamics. To combine the analysis of ionization-recombination kinetics with the plasma dynamics of thermionic conversion, a finite difference computer program is constructed. It is capable of solving for both unsteady and steady thermionic converter behavior including possible laser ionization enhancement or atomic recombination lasing. A proposal to improve thermionic converter performance using laser radiation is considered. In this proposed scheme, laser radiation impinging on a thermionic plasma enhances the ionization process thereby raising the plasma density and reducing the plasma arc-drop. A source for such radiation may possibly be a cesium recombination laser operating in a different thermionic converter. The possibility of this being an energy efficient process is discussed. (WHK)

Lawless, J.L. Jr.; Lam, S.H.

1982-02-01T23:59:59.000Z

223

Proceedings of the Chornobyl phytoremediation and biomass energy conversion workshop  

DOE Green Energy (OSTI)

Many concepts, systems, technical approaches, technologies, ideas, agreements, and disagreements were vigorously discussed during the course of the 2-day workshop. The workshop was successful in generating intensive discussions on the merits of the proposed concept that includes removal of radionuclides by plants and trees (phytoremediation) to clean up soil in the Chornobyl Exclusion Zone (CEZ), use of the resultant biomass (plants and trees) to generate electrical power, and incorporation of ash in concrete casks to be used as storage containers in a licensed repository for low-level waste. Twelve years after the Chornobyl Nuclear Power Plant (ChNPP) Unit 4 accident, which occurred on April 26, 1986, the primary 4radioactive contamination of concern is from radioactive cesium ({sup 137}Cs) and strontium ({sup 90}Sr). The {sup 137}Cs and {sup 90}Sr were widely distributed throughout the CEZ. The attendees from Ukraine, Russia, Belarus, Denmark and the US provided information, discussed and debated the following issues considerably: distribution and characteristics of radionuclides in CEZ; efficacy of using trees and plants to extract radioactive cesium (Cs) and strontium (Sr) from contaminated soil; selection of energy conversion systems and technologies; necessary infrastructure for biomass harvesting, handling, transportation, and energy conversion; radioactive ash and emission management; occupational health and safety concerns for the personnel involved in this work; and economics. The attendees concluded that the overall concept has technical and possibly economic merits. However, many issues (technical, economic, risk) remain to be resolved before a viable commercial-scale implementation could take place.

Hartley, J. [Pacific Northwest National Lab., Richland, WA (United States)] [Pacific Northwest National Lab., Richland, WA (United States); Tokarevsky, V. [State Co. for Treatment and Disposal of Mixed Hazardous Waste (Ukraine)] [State Co. for Treatment and Disposal of Mixed Hazardous Waste (Ukraine)

1998-06-01T23:59:59.000Z

224

Contribution of chemistry to energy. [Fuels from coal; solar energy storage/conversion  

DOE Green Energy (OSTI)

Chemistry has contributed in many ways to energy production and conversion in the fossil fuel era. The challenges facing chemists and chemical engineers as we look forward to the 21st Century are addressed. This paper discusses some of the means that can be employed to meet this challenge both in the near-term and long-term, particularly alternate fuels from coal and solar energy storage and conversion. A leading candidate for an energy supply medium is hydrogen; implementing this concept may well be the greatest challenge faced by chemists as we leave the age of fossil fuels and enter the era of renewable energy. (DLC)

Cox, K.E.

1978-01-01T23:59:59.000Z

225

Reversible information-energy conversions in a quantum hybrid system  

E-Print Network (OSTI)

We investigate the properties of a quantum hybrid opto-mechanical transducer in the context of information thermodynamics, and show that it provides a valuable platform to monitor information- to-energy conversions at the quantum level. An optically active emitter interacts with the electromagnetic field, that plays the role of an out-of-equilibrium heat bath. The bit of information encoded in the emitter is reversibly converted into mechanical energy stored in a nano-resonator whose displacement is measurable in time, offering direct access to the elementary work exchanged. The study of the complete thermodynamical cycle described over a full mechanical period reveals a new type of Landauer's erasure that produces, instead of costing, work. We finally show that this device can be turned into a powerful heat engine operating at Carnot efficiency.

Cyril Elouard; Maxime Richard; Alexia Auffèves

2013-09-20T23:59:59.000Z

226

Segregated tandem filter for enhanced conversion efficiency in a thermophotovoltaic energy conversion system  

DOE Patents (OSTI)

A filter system to transmit short wavelength radiation and reflect long wavelength radiation for a thermophotovoltaic energy conversion cell comprises an optically transparent substrate segregation layer with at least one coherent wavelength in optical thickness; a dielectric interference filter deposited on one side of the substrate segregation layer, the interference filter being disposed toward the source of radiation, the interference filter including a plurality of alternating layers of high and low optical index materials adapted to change from transmitting to reflecting at a nominal wavelength .lambda..sub.IF approximately equal to the bandgap wavelength .lambda..sub.g of the thermophotovoltaic cell, the interference filter being adapted to transmit incident radiation from about 0.5.lambda..sub.IF to .lambda..sub.IF and reflect from .lambda..sub.IF to about 2.lambda..sub.IF ; and a high mobility plasma filter deposited on the opposite side of the substrate segregation layer, the plasma filter being adapted to start to become reflecting at a wavelength of about 1.5.lambda..sub.IF.

Brown, Edward J. (Clifton Park, NY); Baldasaro, Paul F. (Clifton Park, NY); Dziendziel, Randolph J. (Middlegrove, NY)

1997-01-01T23:59:59.000Z

227

Segregated tandem filter for enhanced conversion efficiency in a thermophotovoltaic energy conversion system  

DOE Patents (OSTI)

A filter system to transmit short wavelength radiation and reflect long wavelength radiation for a thermophotovoltaic energy conversion cell comprises an optically transparent substrate segregation layer with at least one coherent wavelength in optical thickness; a dielectric interference filter deposited on one side of the substrate segregation layer, the interference filter being disposed toward the source of radiation, the interference filter including a plurality of alternating layers of high and low optical index materials adapted to change from transmitting to reflecting at a nominal wavelength {lambda}{sub IF} approximately equal to the bandgap wavelength {lambda}{sub g} of the thermophotovoltaic cell, the interference filter being adapted to transmit incident radiation from about 0.5{lambda}{sub IF} to {lambda}{sub IF} and reflect from {lambda}{sub IF} to about 2{lambda}{sub IF}; and a high mobility plasma filter deposited on the opposite side of the substrate segregation layer, the plasma filter being adapted to start to become reflecting at a wavelength of about 1.5{lambda}{sub IF}.

Brown, E.J.; Baldasaro, P.F.; Dziendziel, R.J.

1996-12-31T23:59:59.000Z

228

Segregated tandem filter for enhanced conversion efficiency in a thermophotovoltaic energy conversion system  

DOE Patents (OSTI)

A filter system to transmit short wavelength radiation and reflect long wavelength radiation for a thermophotovoltaic energy conversion cell comprises an optically transparent substrate segregation layer with at least one coherent wavelength in optical thickness; a dielectric interference filter deposited on one side of the substrate segregation layer, the interference filter being disposed toward the source of radiation, the interference filter including a plurality of alternating layers of high and low optical index materials adapted to change from transmitting to reflecting at a nominal wavelength {lambda}{sub IF} approximately equal to the bandgap wavelength {lambda}{sub g} of the thermophotovoltaic cell, the interference filter being adapted to transmit incident radiation from about 0.5{lambda}{sub IF} to {lambda}{sub IF} and reflect from {lambda}{sub IF} to about 2{lambda}{sub IF}; and a high mobility plasma filter deposited on the opposite side of the substrate segregation layer, the plasma filter being adapted to start to become reflecting at a wavelength of about 1.5{lambda}{sub IF}. 10 figs.

Brown, E.J.; Baldasaro, P.F.; Dziendziel, R.J.

1997-12-23T23:59:59.000Z

229

Biochemical Conversion Pilot Plant (Fact Sheet), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Biochemical Conversion Biochemical Conversion Pilot Plant A pilot-scale conversion plant for researchers, industry partners, and stakeholders to test a variety of biochemical conversion processes and technologies. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. In the biochemical conversion pilot plant, NREL's engineers and scientists focus on all aspects of the efficiency and cost reduction of biochemical conversion processes. Our capabilities accommodate research from bench-scale to pilot-scale (up to one ton per day). NREL's biochemical conversion pilot plant is located in the Integrated Biorefinery Research Facility (IBRF). Photo by Dennis Schroeder, NREL/PIX 20248

230

Argonne Chemical Sciences & Engineering - Catalysis & Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen and Fuel Cell Materials Hydrogen and Fuel Cell Materials * Members * Contact * Publications * Overview * Alternative Electrocatalysts * Electrocatalyst Durability * Hydrogen Storage * Electrocatalyst Degradation Catalysis & Energy Conversion Home Hydrogen and Fuel Cell Materials Polymer electrolyte fuel cell (PEFC) systems are promising alternatives to conventional power systems for transportation, portable, and stationary applications due to their high efficiency of converting fuel to electricity, low emissions, and low operating temperatures. Three major issues for PEFC systems, especially for portable and transportation use, are cost, lifetime, and fuel storage, with the fuel of choice being hydrogen. Argonne's Hydrogen and Fuel Cell Materials group has active research projects in these three areas, to enable the use of this promising technology in a variety of applications.

231

Land-use implications of wind-energy-conversion systems  

DOE Green Energy (OSTI)

An estimated 20 utilities in the United States are now investigating potential wind machine sites in their areas. Identifying sites for wind machine clusters (wind farms) involves more than just finding a location with a suitable wind resource. Consideration must also be given to the proximity of sites to existing transmission lines, environmental impacts, aesthetics, and legal concerns as well as the availability of and alternative uses for the land. These issues have made it increasingly difficult for utilities to bring conventional power plants on-line quickly. Utilities are now required, however, to give careful consideration to specific legal, social, and environmental questions raised by the siting of wind energy conversion systems (WECS).

Noun, R.J.

1981-02-01T23:59:59.000Z

232

Siting handbook for small wind energy conversion systems  

DOE Green Energy (OSTI)

This handbook was written to serve as a siting guide for individuals wishing to install small wind energy conversion systems (WECS); that is, machines having a rated capacity of less than 100 kilowatts. It incorporates half a century of siting experience gained by WECS owners and manufacturers, as well as recently developed siting techniques. The user needs no technical background in meteorology or engineering to understand and apply the siting principles discussed; he needs only a knowledge of basic arithmetic and the ability to understand simple graphs and tables. By properly using the siting techniques, an owner can select a site that will yield the most power at the least installation cost, the least maintenance cost, and the least risk of damage or accidental injury.

Wegley, H.L.; Ramsdell, J.V.; Orgill, M.M.; Drake, R.L.

1980-03-01T23:59:59.000Z

233

Standards for photovoltaic energy conversion systems. Final report  

DOE Green Energy (OSTI)

This report provides the results of a search for existing domestic standards and related documents for possible application in the development of a standards base for photovoltaic energy conversion systems. The search resulted in locating about 150 test methods, recommended practices, standards, solar-thermal performance criteria, and other standards-related documents. They are listed by topic areas in the appendix. The listing was prepared to assist those involved in developing performance criteria for photovoltaic systems and in identifying methods to test system performance against these criteria. It is clear from the results of the search that few standards are directly applicable to terrestrial solar photovoltaic systems and that much standards development is required to support the commercialization of such systems.

Schafft, H. A.

1980-04-01T23:59:59.000Z

234

Photochemical energy conversion by membrane-bound photoredox systems  

DOE Green Energy (OSTI)

Most of our effort during the past grant period has been directed towards investigating electron transfer processes involving redox proteins at lipid bilayer/aqueous interfaces. This theme, as was noted in our previous three year renewal proposal, is consistent with our goal of developing biomimetic solar energy conversion systems which utilize the unique properties of biological electron transfer molecules. Thus, small redox proteins such as cytochrome c, plastocyanin and ferredoxin function is biological photosynthesis as mediators of electron flow between the photochemical systems localized in the membrane, and more complex soluble or membrane-bound redox proteins which are designed to carry out specific biological tasks such as transbilayer proton gradient formation, dinitrogen fixation, ATP synthesis, dihydrogen synthesis, generation of strong reductants, etc. In these studies, we have utilized two principal experimental techniques, laser flash photolysis and cyclic voltammetry, both of which permit direct measurements of electron transfer processes.

Tollin, G.

1992-03-01T23:59:59.000Z

235

WATER CONSUMPTION OF ENERGY RESOURCE EXTRACTION, PROCESSING, AND CONVERSION  

E-Print Network (OSTI)

A review of the literature for estimates of water intensity of energyresource extraction, processing to fuels, and conversion to electricity

Erik Mielke; Laura Diaz Anadon; Venkatesh Narayanamurti; Erik Mielke; Laura Diaz Anadon; Venkatesh Narayanamurti

2010-01-01T23:59:59.000Z

236

M13 bacteriophage-enabled assembly of nanocomposites : synthesis and application in energy conversion devices  

E-Print Network (OSTI)

Lack of energy supply and non-uniform distribution of traditional energy sources, such as coal, oil, and natural gas, have brought up tremendous social issues. To solve these issues, highly efficient energy conversion ...

Dang, Xiangnan

2013-01-01T23:59:59.000Z

237

AC conductivity of nanoporous metal-oxide photoanodes for solar energy conversion  

E-Print Network (OSTI)

AC conductivity of nanoporous metal-oxide photoanodes for solar energy conversion Steven J. Konezny and SnO2 play a central role in solar energy conversion applications.1­7 In fact, the discovery of low-cost high-efficiency dye-sensitized solar cells (DSSCs) (i.e., exceeding 10% solar-to-electric energy

238

Modeling and controller design of a wind energy conversion system with matrix converter  

Science Conference Proceedings (OSTI)

In order to meet increasing power demand, taking into account economical and environmental factors, wind energy conversion is gradually gaining interest as a suitable source of renewable energy. In this paper, The modeling of the Wind Energy Conversion ... Keywords: FCC, PWM, SPVM, WECS, induction generator, matrix converter CSCF, power control, variable speed, wind turbine

Y. S. Rao; A. J. laxmi; K. M. S. N. Krishna

2011-02-01T23:59:59.000Z

239

Sliding Mode Power Control of Variable Speed Wind Energy Conversion Systems  

E-Print Network (OSTI)

Sliding Mode Power Control of Variable Speed Wind Energy Conversion Systems B. Beltran, T. Ahmed power generation in variable speed wind energy conversion systems (VS-WECS). These systems have two (National Renewable Energy Laboratory) wind turbine simulator FAST (Fatigue, Aerodynamics, Structures

Brest, Université de

240

Transmission and Conversion of Energy by Coupled Soft Gears  

E-Print Network (OSTI)

Dynamical aspects of coupled deformable gears are investigated to clarify the differences of mechanical properties between the machines consist of hard materials and those of soft materials. In particular, the performances of two functions, the transmission and the conversion of the energy, are compared between the hard and soft gears systems. First, the responses of the coupled gears against a constant torque working on one of gears are focused for two types of couplings; P) a pair gears are coupled, and T) three gears are coupled with forming a regular triangle. In systems with the coupling P), we obtain trivial results that the rotational energy can be transmitted to other gear only if these gears are hard enough. On the other hand, in systems with the coupling T), the transmission of the rotational energy to one of the other gears appears only if these gears are soft enough. Second, we show the responses of this system in which one of gears have contact with a high temperature heat bath and the other gears have contact with a 0 temperature heat bath. With the coupling T), the directional rotations appear in two gears having contact with 0 temperature heat bath. Here, the direction of these rotations change depending on the noise strength.

Akinori Awazu

2005-03-14T23:59:59.000Z

Note: This page contains sample records for the topic "thermal-to-electrical energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Characterization and Modeling of Electrochemical Energy Conversion Systems by Impedance Techniques.  

E-Print Network (OSTI)

??This thesis introduces (i) amendments to basic electrochemical measurement techniques in the time and frequency domain suitable for electrochemical energy conversion systems like fuel cells… (more)

Klotz, Dino

2012-01-01T23:59:59.000Z

242

Dynamic average-value modeling of doubly-fed induction generator wind energy conversion systems.  

E-Print Network (OSTI)

??In a Doubly-fed Induction Generator (DFIG) wind energy conversion system, the rotor of a wound rotor induction generator is connected to the grid via a… (more)

Shahab, Azin

2013-01-01T23:59:59.000Z

243

"Fundamental Challenges in Solar Energy Conversion" workshop hosted by  

Office of Science (SC) Website

Fundamental Challenges in Solar Energy Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications Contact BES Home 06.02.10 "Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Print Text Size: A A A Subscribe FeedbackShare Page July 7, 2010 :: The Light-Material Interactions in Energy Conversion EFRC at the California Institute of Technology will host a one day "Fundamental Challenges in Solar Energy Conversion" workshop for faculty, staff, postdoctoral, and graduate researchers from EFRCs focused on solar energy conversion. More information can be found here .pdf file (553KB

244

Modeling the Q-cycle mechanism of transmembrane energy conversion  

E-Print Network (OSTI)

The Q-cycle mechanism plays an important role in the conversion of the redox energy into the energy of the proton electrochemical gradient across the biomembrane. The bifurcated electron transfer reaction, which is built into this mechanism, recycles one electron, thus, allowing to translocate two protons per one electron moving to the high-potential redox chain. We study a kinetic model of the Q-cycle mechanism in an artificial system which mimics the bf complex of plants and cyanobacteria in the regime of ferredoxin-dependent cyclic electron flow. Using methods of condensed matter physics, we derive a set of master equations and describe a time sequence of electron and proton transfer reactions in the complex. We find energetic conditions when the bifurcation of the electron pathways at the positive side of the membrane occurs naturally, without any additional gates. For reasonable parameter values, we show that this system is able to translocate more than 1.8 protons, on average, per one electron, with a thermodynamic efficiency of the order of 32% or higher.

Anatoly Yu. Smirnov; Franco Nori

2011-06-29T23:59:59.000Z

245

Modeling the Q-cycle mechanism of transmembrane energy conversion  

E-Print Network (OSTI)

The Q-cycle mechanism plays an important role in the conversion of the redox energy into the energy of the proton electrochemical gradient across the biomembrane. The bifurcated electron transfer reaction, which is built into this mechanism, recycles one electron, thus, allowing to translocate two protons per one electron moving to the high-potential redox chain. We study a kinetic model of the Q-cycle mechanism in an artificial system which mimics the bf complex of plants and cyanobacteria in the regime of ferredoxin-dependent cyclic electron flow. Using methods of condensed matter physics, we derive a set of master equations and describe a time sequence of electron and proton transfer reactions in the complex. We find energetic conditions when the bifurcation of the electron pathways at the positive side of the membrane occurs naturally, without any additional gates. For reasonable parameter values, we show that this system is able to translocate more than 1.8 protons, on average, per one electron, with a t...

Smirnov, Anatoly Yu

2011-01-01T23:59:59.000Z

246

Environmental programs for ocean thermal energy conversion (OTEC)  

Science Conference Proceedings (OSTI)

The environmental research effort in support of the US Department of Energy's Ocean Thermal Energy Conversion (OTEC) program has the goal of providing documented information on the effect of proposed operations on the ocean and the effect of oceanic conditions on the plant. The associated environment program consists of archival studies in potential areas serial oceanographic cruises to sites or regions of interest, studies from various fixed platforms at sites, and compilation of such information for appropriate legal compliance and permit requirements and for use in progressive design of OTEC plants. Site/regions investigated are south of Mobile and west of Tampa, Gulf of Mexico; Punta Tuna, Puerto Rico; St. Croix, Virgin Islands; Kahe Point, Oahu and Keahole Point, Hawaii, Hawaiian Islands; and off the Brazilian south Equatorial Coast. Four classes of environmental concerns identified are: redistribution of oceanic properties (ocean water mixing, impingement/entrainment etc.); chemical pollution (biocides, working fluid leaks, etc.); structural effects (artificial reef, aggregation, nesting/migration, etc.); socio-legal-economic (worker safety, enviromaritime law, etc.).

Wilde, P.

1981-07-01T23:59:59.000Z

247

Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 1, Overview  

DOE Green Energy (OSTI)

Pacific Northwest Laboratory has completed an initial investigation of the effects of physical and chemical properties of biomass feedstocks relative to their performance in biomass energy conversion systems. Both biochemical conversion routes (anaerobic digestion and ethanol fermentation) and thermochemical routes (combustion, pyrolysis, and gasification) were included in the study. Related processes including chemical and physical pretreatment to improve digestibility, and size and density modification processes such as milling and pelletizing were also examined. This overview report provides background and discussion of feedstock and conversion relationships, along with recommendations for future research. The recommendations include (1) coordinate production and conversion research programs; (2) quantify the relationship between feedstock properties and conversion priorities; (3) develop a common framework for evaluating and characterizing biomass feedstocks; (4) include conversion effects as part of the criteria for selecting feedstock breeding programs; and (5) continue emphasis on multiple feedstock/conversion options for biomass energy systems. 9 refs., 3 figs., 2 tabs.

Butner, R.S.; Elliott, D.C.; Sealock, L.J. Jr.; Pyne, J.W.

1988-12-01T23:59:59.000Z

248

Power conversion effectiveness and generation | Open Energy Informatio...  

Open Energy Info (EERE)

Linked Data Page Edit History Share this page on Facebook icon Twitter icon Power conversion effectiveness and generation Jump to: navigation, search Retrieved from...

249

Photovoltaic effect in InSe Application to Solar Energy Conversion  

E-Print Network (OSTI)

253 Photovoltaic effect in InSe Application to Solar Energy Conversion A. Segura, J. P. Guesdon, J are reported. Photovoltaic spectra are fitted with measured values oftransport and optical parameters. InSe is shown to be a new material with attractive characteristics for solar energy conversion. Performance

Paris-Sud XI, Université de

250

Author's personal copy Maximizing the solar to H2 energy conversion efficiency  

E-Print Network (OSTI)

Author's personal copy Maximizing the solar to H2 energy conversion efficiency of outdoor, Cockrell School of Engineering, The University of Texas at Austin ­ Austin, TX 78712, USA b Mechanical t A numerical study is presented aiming to maximize the solar to hydrogen energy conversion efficiency

Pilon, Laurent

251

Reliability analysis of fault tolerant wind energy conversion system with doubly fed induction generator  

Science Conference Proceedings (OSTI)

This paper deals with the design of a reliable fault tolerant converter topology for grid connected Wind Energy Conversion System (WECS) with Double Fed Induction Generator (DFIG) based on functional redundancy. The main contribution of the developed ... Keywords: Markov chain model, fault tolerant system, reliability analysis, wind energy conversion system

Philippe Weber; Florent Becker; Antoine Mathias; Didier Theilliol; Youmin M. Zhang

2012-10-01T23:59:59.000Z

252

Overview of biomass thermochemical conversion activities funded by the biomass energy systems branch of DOE  

DOE Green Energy (OSTI)

The US Department of Energy (DOE) is actively involved in the development of renewable energy sources through research and development programs sponsored by the Biomass Energy Systems Branch. The overall objective of the thermochemical conversion element of the Biomass Energy Systems Program is to develop competitive processes for the conversion of renewable biomass resources into clean fuels and chemical feedstocks which can supplement fuels from conventional sources. An overview of biomass thermochemical conversion projects sponsored by the Biomass Energy Systems Branch is presented in this paper.

Schiefelbein, G.F.; Sealock, L.J. Jr.; Ergun, S.

1979-01-01T23:59:59.000Z

253

Ocean thermal energy conversion plants : experimental and analytical study of mixing and recirculation  

E-Print Network (OSTI)

Ocean thermal energy conversion (OTEC) is a method of generating power using the vertical temperature gradient of the tropical ocean as an energy source. Experimental and analytical studies have been carried out to determine ...

Jirka, Gerhard H.

254

Modeling and analysis of hybrid geothermal-solar thermal energy conversion systems  

E-Print Network (OSTI)

Innovative solar-geothermal hybrid energy conversion systems were developed for low enthalpy geothermal resources augmented with solar energy. The goal is to find cost-effective hybrid power cycles that take advantage of ...

Greenhut, Andrew David

2010-01-01T23:59:59.000Z

255

Draft environmental assessment: Ocean Thermal Energy Conversion (OTEC) Pilot Plants  

DOE Green Energy (OSTI)

This Environmental Assessment (EA) has been prepared, in accordance with the National Environmental Policy Act of 1969, for the deployment and operation of a commercial 40-Megawatt (MW) Ocean Thermal Energy Conversion (OTEC) Pilot Plant (hereafter called the Pilot Plant). A description of the proposed action is presented, and a generic environment typical of the candidate Pilot Plant siting regions is described. An assessment of the potential environmental impacts associated with the proposed action is given, and the risk of credible accidents and mitigating measures to reduce these risks are considered. The Federal and State plans and policies the proposed action will encompass are described. Alternatives to the proposed action are presented. Appendix A presents the navigation and environmental information contained in the US Coast Pilot for each of the candidate sites; Appendix B provides a brief description of the methods and calculations used in the EA. It is concluded that environmental disturbances associated with Pilot Plant activities could potentially cause significant environmental impacts; however, the magnitude of these potential impacts cannot presently be assessed, due to insufficient engineering and environmental information. A site- and design-specific OTEC Pilot Plant Environmental Impact Statement (EIS) is required to resolve the potentially significant environmental effects associated with Pilot Plant deployment and operation. (WHK)

Sullivan, S.M.; Sands, M.D.; Donat, J.R.; Jepsen, P.; Smookler, M.; Villa, J.F.

1981-02-01T23:59:59.000Z

256

Estimation of wind characteristics at potential wind energy conversion sites  

DOE Green Energy (OSTI)

A practical method has been developed and applied to the problem of determining wind characteristics at candidate wind energy conversion sites where there are no available historical data. The method uses a mass consistent wind flow model (called COMPLEX) to interpolate between stations where wind data are available. The COMPLEX model incorporates the effects of terrain features and airflow. The key to the practical application of COMPLEX to the derivation of wind statistics is the model's linearity. This allows the input data sets to be resolved into orthogonal components along the set of eigenvectors of the covariance matrix. The solution for each eigenvector is determined with COMPLEX; the hourly interpolated winds are then formed from linear combinations of these solutions. The procedure requires: acquisition and merger of wind data from three to five stations, application of COMPLEX to each of the seven to 11 (depending on the number of stations for which wind data are available) eigenvectors, reconstruction of the hourly interpolated winds at the site from the eigenvector solutions, and finally, estimating the wind characteristics from the simulated hourly values. The report describes the methodology and the underlying theory. Possible improvements to the procedure are also discussed.

Not Available

1979-10-01T23:59:59.000Z

257

Ocean Thermal Energy Conversion (OTEC) Programmatic Environmental Analysis--Appendices  

SciTech Connect

The programmatic environmental analysis is an initial assessment of Ocean Thermal Energy Conversion (OTEC) technology considering development, demonstration and commercialization. It is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties. This volume contains these appendices: Appendix A -- Deployment Scenario; Appendix B -- OTEC Regional Characterization; and Appendix C -- Impact and Related Calculations.

Authors, Various

1980-01-01T23:59:59.000Z

258

Estimation of wind characteristics at potential wind energy conversion sites  

SciTech Connect

A practical method has been developed and applied to the problem of determining wind characteristics at candidate wind energy conversion sites where there are no available historical data. The method uses a mass consistent wind flow model (called COMPLEX) to interpolate between stations where wind data are available. The COMPLEX model incorporates the effects of terrain features and airflow. The key to the practical application of COMPLEX to the derivation of wind statistics is the model's linearity. This allows the input data sets to be resolved into orthogonal components along the set of eigenvectors of the covariance matrix. The solution for each eigenvector is determined with COMPLEX; the hourly interpolated winds are then formed from linear combinations of these solutions. The procedure requires: acquisition and merger of wind data from three to five stations, application of COMPLEX to each of the seven to 11 (depending on the number of stations for which wind data are available) eigenvectors, reconstruction of the hourly interpolated winds at the site from the eigenvector solutions, and finally, estimating the wind characteristics from the simulated hourly values. The report describes the methodology and the underlying theory. Possible improvements to the procedure are also discussed.

1979-10-01T23:59:59.000Z

259

Efficiency evaluation of oxygen enrichment in energy conversion processes  

SciTech Connect

The extent to which energy conversion efficiencies can be increased by using oxygen or oxygen-enriched air for combustion was studied. Combustion of most fuels with oxygen instead of air was found to have five advantages: increases combustion temperature and efficiency, improves heat transfer at high temperatures, reduces nitrous oxide emissions, permits a high ration of exhaust gas recirculation and allows combustion of certain materials not combustible in air. The same advantages, although to a lesser degree, are apparent with oxygen-enriched air. The cost-effectiveness of the process must necessarily be improved by about 10% when using oxygen instead of air before such use could become justifiable on purely economic terms. Although such a modest increase appears to be attainable in real situations, this study ascertained that it is not possible to generally assess the economic gains. Rather, each case requires its own evaluation. For certain processes industry has already proven that the use of oxygen leads to more efficient plant operation. Several ideas for essentially new applications are described. Specifically, when oxygen is used with exhaust gas recirculation in external or internal combustion engines. It appears also that the advantages of pulse combustion can be amplified further if oxygen is used. When burning wet fuels with oxygen, direct steam generation becomes possible. Oxygen combustion could also improve processes for in situ gasification of coals, oil shales, peats, and other wet fuels. Enhanced oil recovery by fire flooding methods might also become more effective if oxygen is used. The cold energy contained in liquid oxygen can be substantially recovered in the low end of certain thermodynamic cycles. Further efforts to develop certain schemes for using oxygen for combustion appear to be justified from both the technical and economic viewpoints.

Bomelburg, H.J.

1983-12-01T23:59:59.000Z

260

A Review of Previous Research in Direct Energy Conversion Fission Reactors  

DOE Green Energy (OSTI)

From the earliest days of power reactor development, direct energy conversion was an obvious choice to produce high efficiency electric power generation. Directly capturing the energy of the fission fragments produced during nuclear fission avoids the intermediate conversion to thermal energy and the efficiency limitations of classical thermodynamics. Efficiencies of more than 80% are possible, independent of operational temperature. Direct energy conversion fission reactors would possess a number of unique characteristics that would make them very attractive for commercial power generation. These reactors would be modular in design with integral power conversion and operate at low pressures and temperatures. They would operate at high efficiency and produce power well suited for long distance transmission. They would feature large safety margins and passively safe design. Ideally suited to production by advanced manufacturing techniques, direct energy conversion fission reactors could be produced more economically than conventional reactor designs. The history of direct energy conversion can be considered as dating back to 1913 when Moseleyl demonstrated that charged particle emission could be used to buildup a voltage. Soon after the successful operation of a nuclear reactor, E.P. Wigner suggested the use of fission fragments for direct energy conversion. Over a decade after Wigner's suggestion, the first theoretical treatment of the conversion of fission fragment kinetic energy into electrical potential appeared in the literature. Over the ten years that followed, a number of researchers investigated various aspects of fission fragment direct energy conversion. Experiments were performed that validated the basic physics of the concept, but a variety of technical challenges limited the efficiencies that were achieved. Most research in direct energy conversion ceased in the US by the late 1960s. Sporadic interest in the concept appears in the literature until this day, but there have been no recent significant programs to develop the technology.

DUONG,HENRY; POLANSKY,GARY F.; SANDERS,THOMAS L.; SIEGEL,MALCOLM D.

1999-09-22T23:59:59.000Z

Note: This page contains sample records for the topic "thermal-to-electrical energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Summary of State-of-the-Art Power Conversion Systems for Energy Storage Applications  

DOE Green Energy (OSTI)

The power conversion system (PCS) is a vital part of many energy storage systems. It serves as the interface between the storage device, an energy source, and an AC load. This report summarizes the results of an extensive study of state-of-the-art power conversion systems used for energy storage applications. The purpose of the study was to investigate the potential for cost reduction and performance improvement in these power conversion systems and to provide recommendations for fiture research and development. This report provides an overview of PCS technology, a description of several state-of-the-art power conversion systems and how they are used in specific applications, a summary of four basic configurations for l:he power conversion systems used in energy storage applications, a discussion of PCS costs and potential cost reductions, a summary of the stancku-ds and codes relevant to the technology, and recommendations for future research and development.

Atcitty, S.; Gray-Fenner, A.; Ranade, S.

1998-09-01T23:59:59.000Z

262

ME 599-001: Fundamentals of Energy Conversion Professor Angela Violi  

E-Print Network (OSTI)

ME 599-001: Fundamentals of Energy Conversion Professor Angela Violi Department of Mechanical: This class is a journey on energy. The goal is to provide information and analysis tools on the development of energy technology, energy resources and energy technologies available today. After an overview

Violi, Angel

263

Methane Gas Conversion Property Tax Exemption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Gas Conversion Property Tax Exemption Methane Gas Conversion Property Tax Exemption Methane Gas Conversion Property Tax Exemption < Back Eligibility Agricultural Commercial Industrial Residential Savings Category Bioenergy Program Info Start Date 01/01/2008 (retroactive) State Iowa Program Type Property Tax Incentive Rebate Amount 100% exemption for 10 years Provider Iowa Economic Development Authority '''''Note: This exemption is only available to facilities operated in connection or conjunction with a publicly-owned sanitary landfill. The exemption was available to other entities only for systems placed in service by December 31, 2012. Systems in place before this date are eligible to receive the property tax exemption for 10 years.''''' Under Iowa's methane gas conversion property tax exemption, real and

264

Recovery Act: Carbon Dioxide Conversion to Fuels and Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

would have been evaluated for suitability as a pyrolysis feedstock using benchmark-scale pyrolysis tests. The conversion of the residual biomass to bio-oil and char would then...

265

NREL: Power Technologies Energy Data Book - Chapter 12. Conversion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Databook Home More Search Options Search Site Map Featured Links Biomass Energy Data Book Buildings Energy Data Book Hydrogen Energy Data Book Transportation Energy Data Book...

266

Rankine cycle energy conversion system design considerations for low and intermediate temperature sensible heat sources. Geothermal, waste heat, and solar thermal conversion  

DOE Green Energy (OSTI)

Design considerations are described for energy conversion systems for low and intermediate temperature sensible heat sources such as found in geothermal, waste heat, and solar-thermal applications. It is concluded that the most cost effective designs for the applications studied did not require the most efficient thermodynamic cycle, but that the efficiency of the energy conversion hardware can be a key factor.

Abbin, J.P. Jr.

1976-10-01T23:59:59.000Z

267

Biomass conversion Task 4 1988 program of work: International Energy Agency Bioenergy Agreement  

DOE Green Energy (OSTI)

For biomass to meet its potential as an energy resource, conversion processes must be available which are both efficient and environmentally acceptable. Conversion can include direct production of heat and electricity as well as production of intermediate gaseous, liquid, and solid fuels. While many biomass conversion processes are commercially available at present, others are still in the conceptual stage. Additional research and development activities on these advanced concepts will be necessary to fully use biomass resources. Ongoing research on biomass conversion processes is being conducted by many nations throughout the world. In an effort to coordinate this research and improve information exchange, several countries have agreed to a cooperative effort through the International Energy Agency's Bioenergy Agreement (IEA/BA). Under this Agreement, Task IV deals specifically with biomass conversion topics. The cooperative activities consists of information exchange and coordination of national research programs on specific topics. The activities address biomass conversion in a systematic manner, dealing with the pretreatment of biomass prior to conversion, the subsequent conversion of the biomass to intermediate fuels or end-product energy, and then the environmental aspects of the conversion process. This document provides an outline of cooperative work to be performed in 1988. 1 fig., 2 tabs.

Stevens, D.J.

1987-12-01T23:59:59.000Z

268

Biomass conversion Task 4 1988 program of work: International Energy Agency Bioenergy Agreement  

SciTech Connect

For biomass to meet its potential as an energy resource, conversion processes must be available which are both efficient and environmentally acceptable. Conversion can include direct production of heat and electricity as well as production of intermediate gaseous, liquid, and solid fuels. While many biomass conversion processes are commercially available at present, others are still in the conceptual stage. Additional research and development activities on these advanced concepts will be necessary to fully use biomass resources. Ongoing research on biomass conversion processes is being conducted by many nations throughout the world. In an effort to coordinate this research and improve information exchange, several countries have agreed to a cooperative effort through the International Energy Agency's Bioenergy Agreement (IEA/BA). Under this Agreement, Task IV deals specifically with biomass conversion topics. The cooperative activities consists of information exchange and coordination of national research programs on specific topics. The activities address biomass conversion in a systematic manner, dealing with the pretreatment of biomass prior to conversion, the subsequent conversion of the biomass to intermediate fuels or end-product energy, and then the environmental aspects of the conversion process. This document provides an outline of cooperative work to be performed in 1988. 1 fig., 2 tabs.

Stevens, D.J.

1987-12-01T23:59:59.000Z

269

Explorations of Novel Energy Conversion and Storage Systems  

E-Print Network (OSTI)

alternative energy sources. Hydrogen has been investigated to become a major component of world energy solutions

Duffin, Andrew Mark

2010-01-01T23:59:59.000Z

270

Biomass Conversion Task IV 1987 program of work: International Energy Agency Bioenergy Agreement  

DOE Green Energy (OSTI)

Biomass is a major, renewable energy resource through out the world, and extensive research is being conducted by many countries on bioenergy technologies. In an effort to improve communications and cooperation in the area of biomass energy, several nations have agreed to a cooperative program of work under the International Energy Agency's Bioenergy Agreement (IEA/BA). Three areas of major importance have been identified including Short Rotation Forestry, Conventional Forestry, and Biomass Conversion. This document describes the 1987 Program of Work for cooperative activities in the area of Biomass Conversion. The background of the cooperation and descriptions of specific conversion projects are presented. Details of activity funding are also provided. 3 tabs.

Stevens, D.J.

1986-12-01T23:59:59.000Z

271

Efficient energy conversion from laser to proton beam in a laser-foil interaction  

Science Conference Proceedings (OSTI)

Demonstrated is a remarkable improvement on the energy conversion efficiency from laser to protons in a laser-foil interaction by particle simulations. The total laser-proton energy conversion efficiency becomes 16.7%, although a conventional plane foil target serves a rather low efficiency. In our previous study we found that Al multihole thin-foil target was efficient for the energy conversion from laser to protons [Y. Nodera and S. Kawata, Phys. Rev. E 78, 046401 (2008)], and the energy conversion efficiency was 9.3%. In our 2.5-dimensional particle-in-cell simulations the Al multihole structure is also employed, and the parameters of the Al multihole wing width and length are optimized in the paper. The present results clarify the roles of the target Al hole width and depth in the laser-proton energy conversion. The main physical reason for the enhancement of the conversion efficiency is a reduction of the laser reflection at the target surface area. The optimized multihole foil target provides a remarkable increase in the laser-proton energy conversion efficiency as shown above.

Takahashi, K.; Kawata, S.; Satoh, D.; Barada, D. [Graduate School of Engineering, Utsunomiya University, 7-1-2 Yohtoh, 321-8585 Utsunomiya (Japan); Ma, Y. Y. [Graduate School of Engineering, Utsunomiya University, 7-1-2 Yohtoh, 321-8585 Utsunomiya (Japan); Department of Physics, College of Science, National University of Defense Technology, 410073 Changsha (China); Kong, Q.; Wang, P. X. [Institute of Modern Physics, Fudan University, 200433 Shanghai (China)

2010-09-15T23:59:59.000Z

272

Validation of MPPT strategy for a wind energy conversion system using a hardware-in-the-loop  

E-Print Network (OSTI)

Validation of MPPT strategy for a wind energy conversion system using a hardware - A hardware-in-the-loop simulation of a wind energy conversion system is used to assess a MPPT strategy of wind energy conversion systems (WECS) have been studied [1, 2]. In most of case, simulation has been

Hansen, René Rydhof

273

A Conversation With Tribal Leaders in Denver | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Conversation With Tribal Leaders in Denver A Conversation With Tribal Leaders in Denver A Conversation With Tribal Leaders in Denver June 27, 2012 - 2:29pm Addthis Senior Advisor for Environmental Management David Huizenga, fifth from left, and EM Office of External Affairs Director Paul Seider, first from left, stand for a photo with leaders and staff members of the Tribal Nations while on a tour of the Rocky Flats site following the Tribal Leader Dialogue in Denver on Tuesday. Senior Advisor for Environmental Management David Huizenga, fifth from left, and EM Office of External Affairs Director Paul Seider, first from left, stand for a photo with leaders and staff members of the Tribal Nations while on a tour of the Rocky Flats site following the Tribal Leader Dialogue in Denver on Tuesday.

274

Energy Conversion Facilities Sales Tax Exemption (Ohio) | Open...  

Open Energy Info (EERE)

Thermal Process Heat, Solar Water Heat, Wind Active Incentive Yes Implementing Sector StateTerritory Energy Category Energy Efficiency Incentive Programs, Renewable Energy...

275

Experimental and Analytical Studies on Pyroelectric Waste Heat Energy Conversion  

E-Print Network (OSTI)

3 Pyroelectric Waste Heat Energy Harvesting Using Heat4 Pyroelectric Waste Heat Energy Harvesting Using RelaxorWaste heat Pyroelectric energy

Lee, Felix

2012-01-01T23:59:59.000Z

276

Explorations of Novel Energy Conversion and Storage Systems  

E-Print Network (OSTI)

hydrogen. Energy storage via molecular hydrogen is, ofhydrogen storage. International Journal of Hydrogen Energy,hydrogen storage. International Journal of Hydrogen Energy,

Duffin, Andrew Mark

2010-01-01T23:59:59.000Z

277

Explorations of Novel Energy Conversion and Storage Systems  

E-Print Network (OSTI)

as energy/hydrogen carrier, its history. Comptes Rendusas energy/hydrogen carrier, its history. Comptes Rendus

Duffin, Andrew Mark

2010-01-01T23:59:59.000Z

278

Exploring electron and phonon transport at the nanoscale for thermoelectric energy conversion  

E-Print Network (OSTI)

Thermoelectric materials are capable of solid-state direct heat to electricity energy conversion and are ideal for waste heat recovery applications due to their simplicity, reliability, and lack of environmentally harmful ...

Minnich, Austin Jerome

2011-01-01T23:59:59.000Z

279

Recent developments in high-temperature photonic crystals for energy conversion  

E-Print Network (OSTI)

After decades of intense studies focused on cryogenic and room temperature nanophotonics, scientific interest is also growing in high-temperature nanophotonics aimed at solid-state energy conversion. These latest extensive ...

Rinnerbauer, Veronika

280

Contributions of Barotropic Energy Conversion to Northwest Pacific Tropical Cyclone Activity during ENSO  

Science Conference Proceedings (OSTI)

The contribution of barotropic energy conversion to tropical cyclone (TC) activity over the western North Pacific (WNP) during warm and cold phases of El Niño–Southern Oscillation (ENSO) is investigated by separating TC vortices from reanalysis ...

Yao Ha; Zhong Zhong; Yimin Zhu; Yijia Hu

2013-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal-to-electrical energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

A Cascade-Type Global Energy Conversion Diagram Based on Wave–Mean Flow Interactions  

Science Conference Proceedings (OSTI)

A cascade-type energy conversion diagram is proposed for the purpose of diagnosing the atmospheric general circulation based on wave–mean flow interactions. Mass-weighted isentropic zonal means facilitate the expression of nongeostrophic wave ...

Sachiyo Uno; Toshiki Iwasaki

2006-12-01T23:59:59.000Z

282

Efficiency calculations for the direct energy conversion system of the Cadarache neutral beam injectors  

DOE Green Energy (OSTI)

A prototype energy conversion system is presently in operation at Cadarache, France. Such a device is planned for installation on each six neutral beam injectors for use in the Tore Supra experiment in 1989. We present calculations of beam performance that may influence design considerations. The calculations are performed with the DART charged particle beam code. We investigate the effects of cold plasma, direct energy conversion and neutral beam production. 4 refs., 6 figs., 4 tabs.

White, R.C.

1988-06-08T23:59:59.000Z

283

Analysis of a direct energy conversion system using medium energy helium ions  

E-Print Network (OSTI)

A scaled direct energy conversion device was built to convert kinetic energy of singly ionized helium ions into an electric potential by the process of direct conversion. The experiments in this paper aimed to achieve higher potentials and higher efficiencies than ever before. The predicted maximum potential that could be produced by the 150 kV accelerator at the Texas A&M Ion Beam Lab was 150 kV, which was achieved with 92% collection efficiency. Also, an investigation into factors affecting collection efficiency was made. It was concluded that charge was being lost due to charge exchange occurring near the surface of the target which caused positive target atoms to be ejected from the face and accelerated away. Introducing a wire mesh near the face of the target with an electric potential, positive or negative, which aimed to control secondary ion emissions, did not have an effect on the collection efficiency of the system. Also, it was found that the gas pressure inside the chamber did not have an effect on the collection efficiency. The goal of achieving higher electric potentials and higher efficiencies than previous direct conversion work was met.

Carter, Jesse James

2005-05-01T23:59:59.000Z

284

Performance Improvement of Doubly Fed Induction Generator-based Wind Energy Conversion System during Various Internal Converter Faults.  

E-Print Network (OSTI)

??The doubly fed induction generator (DFIG)-based wind energy conversion system (WECS) currently dominates the wind energy market due to its advantages over other WECSs. In… (more)

Abdou, Ahmed

2013-01-01T23:59:59.000Z

285

Thermophotovoltaic energy conversion system having a heavily doped n-type region  

DOE Patents (OSTI)

A thermophotovoltaic (TPV) energy conversion semiconductor device is provided which incorporates a heavily doped n-type region and which, as a consequence, has improved TPV conversion efficiency. The thermophotovoltaic energy conversion device includes an emitter layer having first and second opposed sides and a base layer in contact with the first side of the emitter layer. A highly doped n-type cap layer is formed on the second side of the emitter layer or, in another embodiment, a heavily doped n-type emitter layer takes the place of the cap layer.

DePoy, David M. (Clifton Park, NY); Charache, Greg W. (Clifton Park, NY); Baldasaro, Paul F. (Clifton Park, NY)

2000-01-01T23:59:59.000Z

286

Abstract--This paper addresses the problem of controlling wind energy conversion systems (WECS) which involve  

E-Print Network (OSTI)

Abstract-- This paper addresses the problem of controlling wind energy conversion systems (WECS-inverter. The goal of control is to maximize wind energy extraction and this needs letting the wind turbine rotor wind energy extraction) only for one wind speed value depending on the considered value of turbine

Paris-Sud XI, Université de

287

Electric resonance-rectifier circuit for renewable energy conversion  

Science Conference Proceedings (OSTI)

Variable speed generators are used more frequently for converting the energy from renewable energy sources to electric energy. The power production form a variable speed generator is dependent on the electrical damping of the generator. In this paper

C. Boström; B. Ekergård; M. Leijon

2012-01-01T23:59:59.000Z

288

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

for Western Gulf of Mexico. Energy Research and Developmentfor central Gulf of Mexico. Energy Research and DevelopmentGulf of Mexico, - IV-34 in Proc. Fourth Ocean Thermal Energy

Sands, M. D.

2011-01-01T23:59:59.000Z

289

Organic Membranes for Energy Conversion and "Green" Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Organic Membranes for Energy Conversion and "Green" Manufacturing Organic Membranes for Energy Conversion and "Green" Manufacturing Speaker(s): John Kerr Date: January 17, 2002 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Cynthia Tast Organic materials are central to the operation of energy conversion devices such as lithium batteries and fuel cells. Use of organic polymer membranes has been well established in the chlor-alkali and separations industries for several decades now. New applications such as light emitting diodes for displays and area lighting, organic photovoltaics for solar conversion and electrochromics illustrate the growing importance of organic materials in energetic applications. Understanding the operation of these materials, their limitations and advantages is of major importance to the successful

290

April 2013 Most Viewed Documents for Energy Storage, Conversion...  

Office of Scientific and Technical Information (OSTI)

Stop news scroll Most Visited Adopt-A-Doc DOE Data Explorer DOE Green Energy DOepatents DOE R&D Accomplishments .EDUconnections Energy Science and Technology Software Center...

291

DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD APRIL 1, 2002 THROUGH JUNE 30, 2002  

DOE Green Energy (OSTI)

Direct energy conversion is the only potential means for producing electrical energy from a fission reactor without the Carnot efficiency limitations. This project was undertaken by Sandia National Laboratories, Los Alamos National Laboratories, The University of Florida, Texas A&M University and General Atomics to explore the possibilities of direct energy conversion. Other means of producing electrical energy from a fission reactor, without any moving parts, are also within the statement of proposed work. This report documents the efforts of General Atomics. Sandia National Laboratories, the lead laboratory, provides overall project reporting and documentation.

L.C. BROWN

2002-06-30T23:59:59.000Z

292

DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD JULY 1, 2002 THROUGH SEPTEMBER 30, 2002  

DOE Green Energy (OSTI)

Direct energy conversion is the only potential means for producing electrical energy from a fission reactor without the Carnot efficiency limitations. This project was undertaken by Sandia National Laboratories, Los Alamos National Laboratories, The University of Florida, Texas A&M University and General Atomics to explore the possibilities of direct energy conversion. Other means of producing electrical energy from a fission reactor, without any moving parts, are also within the statement of proposed work. This report documents the efforts of General Atomics. Sandia National Laboratories, the lead laboratory, provides overall project reporting and documentation.

L.C. BROWN

2002-09-30T23:59:59.000Z

293

An Assessment of Solar Energy Conversion Technologies and Research Opportunities  

E-Print Network (OSTI)

(25%). The energy quality of diffused radiation is lower (75.2% of exergy content instead of 93 for the production of electricity and hot water. Similar estimates are shown for wind energy (0.06TW), ocean thermal of Solar Energy Deployment The global solar energy potential ranges from 2.5 to 80TW (see Appendix

Nur, Amos

294

OCEAN THERMAL ENERGY CONVERSION PRELIMINARY DATA REPORT FOR THE NOVEMBER 1977 GOTEC-02 CRUISE TO THE GULF OF MEXICO MOBILE SITE  

E-Print Network (OSTI)

Energy Conversion (OTEC) sites in the Gulf of Mexico. TheENERGY CONVERSION PRELIMINARY DATA REPORT FOR THE NOVEMBER 1977 GOTEC-02 CRUISE TO THE GULF OF MEXICOEnergy Conversion (OTEC) Sites: Puerto Rico, St. Croix and Northern Gulf of Mexico.

Commins, M.L.

2010-01-01T23:59:59.000Z

295

Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 2, Appendices  

DOE Green Energy (OSTI)

This report presents an exploration of the relationships between biomass feedstocks and the conversion processes that utilize them. Specifically, it discusses the effect of the physical and chemical structure of biomass on conversion yields, rates, and efficiencies in a wide variety of available or experimental conversion processes. A greater understanding of the complex relationships between these conversion systems and the production of biomass for energy uses is required to help optimize the complex network of biomass production, collection, transportation, and conversion to useful energy products. The review of the literature confirmed the scarcity of research aimed specifically at identifying the effect of feedstock properties on conversion. In most cases, any mention of feedstock-related effects was limited to a few brief remarks (usually in qualitative terms) in the conclusions, or as a topic for further research. Attempts to determine the importance of feedstock parameters from published data were further hampered by the lack of consistent feedstock characterization and the difficulty of comparing results between different experimental systems. Further research will be required to establish quantitative relationships between feedstocks and performance criteria in conversion. 127 refs., 4 figs., 7 tabs.

Butner, R.S.; Elliott, D.C.; Sealock, L.J., Jr.; Pyne, J.W.

1988-12-01T23:59:59.000Z

296

OPTIMAL POWER DISPATCH AND CONVERSION IN SYSTEMS WITH MULTIPLE ENERGY CARRIERS  

E-Print Network (OSTI)

This paper introduces a general optimization approach for power dispatch and conversion in power systems that include multiple energy carriers such as electricity, natural gas, and district heating. The classical Economic Dispatch method is modified in order to account for certain system properties, such as the possibility of conversion between the different energy carriers, or local overproduction and power feedback to the grid. In this work both a system model as well as an optimization approach are developed which are suitable for the integration of an arbitrary number of energy carriers. Analytical results show how the optimal conversion of power affects the marginal prices related to the different energy carriers. Finally the proposed optimization procedure is demonstrated in numerical examples.

Martin Geidl; Göran Andersson

2005-01-01T23:59:59.000Z

297

Graphene-based photovoltaic cells for near-field thermal energy conversion  

E-Print Network (OSTI)

Graphene-based photovoltaic cells for near-field thermal energy conversion Riccardo Messina to a photovoltaic cell can be largely enhanced because of the contribution of evanescent photons, in particular important source of energy. By approaching a photovoltaic (PV) cell3 in proximity of a thermal emitter

Paris-Sud XI, Université de

298

Evaluation of Power Extraction to Linear Gain Scheduling Controllers in a Small Wind Energy Conversion System  

Science Conference Proceedings (OSTI)

Renewable energy sources have focused a special attention in wind energy conversion systems, where the goal is maximal power extraction. This paper presents an evaluation of the linear controllers eigen structure assingment, linear quadratic regulator, ... Keywords: Wind turbines, permanent magnet synchronous generator, eigenstructure assingment, linear quadratic regulator, loop shaping design procedure

Santiago Sanchez Acevedo; Eduardo Giraldo; Edilson Delgado Trejos

2010-09-01T23:59:59.000Z

299

Improvement of Energy Conversion Efficiency on Pulsed Wire ...  

Science Conference Proceedings (OSTI)

Recently, several studies were carried out to the improvement of the energy ... Geopolymer Products from Jordan for Sustainability of the Environment.

300

Direct Conversion of Light into Work - Energy Innovation Portal  

Alex Zettl, Jean M. J. Fréchet, and a team of Berkeley Lab researchers have discovered a mechanism for converting solar energy directly into mechanical work, thus ...

Note: This page contains sample records for the topic "thermal-to-electrical energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Doubly fed induction machine control for wind energy conversion .  

E-Print Network (OSTI)

??Due to increasing concerns about CO2 emissions and the shortage of fossil fuels, renewable energy has become a major topic in economic discussions. One renewable… (more)

Massey, Jason G.

2009-01-01T23:59:59.000Z

302

February 2013 Most Viewed Documents for Energy Storage, Conversion...  

Office of Scientific and Technical Information (OSTI)

Urban HeatIslandMitigation Akbari, Hashem (2005) 138 Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Final Report Michael Schuller; Frank...

303

Advanced Materials for Energy Conversion III TABLE OF CONTENTS  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy's Hydrogen Storage Program: The Grand Challenge of Vehicular Hydrogen Storage [pp. 25] C. Read, J. Petrovic, G. Ordaz, and ...

304

Rapid Solar-Thermal Conversion of Biomass to Syngas - Energy ...  

Production of synthesis gas or hydrogen by gasification or pyrolysis of biological feedstocks using solar-thermal energy. The invention provides processes that ...

305

Thermochemical conversion of biomass: an overview of R and D activities sponsored by the Biomass Energy Systems Branch of DOE  

DOE Green Energy (OSTI)

The US Department of Energy (DOE) is actively developing renewable energy sources through research and development programs sponsored by the Biomass Energy Systems Branch. The mission of the thermochemical conversion element of the Biomass Energy Systems Program is to develop competitive processes for the conversion of renewable biomass resources into clean fuels and chemical feedstocks which can supplement those produced from conventional sources. A description of thermochemical conversion program areas and an overview of specific thermochemical conversion projects sponsored by the Biomass Energy Systems Branch are presented in this paper.

Schiefelbein, G.F.; Sealock, L.J. Jr.; Ergun, S.

1979-10-01T23:59:59.000Z

306

Turbine speed control for an ocean wave energy conversion system  

Science Conference Proceedings (OSTI)

In this work, a hydraulic turbine speed governor is proposed in view of its application in an isolated electric generation system based on an ocean wave energy converter (WEC). The proposed strategy is based on cascade closed-loop control combined with ... Keywords: Pelton turbine, cascade control, feedforward control, ocean wave energy, speed governor

Paula B. Garcia-Rosa; José Paulo V. S. Cunha; Fernando Lizarralde

2009-06-01T23:59:59.000Z

307

Biomass Conversion Task IV 1986-1988 Program of Work. International Energy Agency Bioenergy Agreement  

DOE Green Energy (OSTI)

Biomass is a major, renewable energy resource throughout much of the world, and extensive research is being conducted on bioenergy technologies. In an effort to improve communications and cooperation in the area of biomass energy, several countries have agreed to a cooperative program of work under the International Energy Agency's Bioenergy Agreement (IEA/BA). Three areas of major importance have been identified including Short Rotation Forestry, Conventional Forestry, and Biomass Conversion. This document describes a Program of Work for cooperative activities in the area of Biomass Conversion. The background of the cooperation and general descriptions of specific conversion projects are presented. Details of activity funding are also provided. Finally, individual Activity Plans for specific cooperative activities are attached for reference. These plans describe projected work for the period 1986 to 1988.

Stevens, D.J.

1986-08-01T23:59:59.000Z

308

A Legacy of Energy Evaluation: A Conversation with Ed Vine  

NLE Websites -- All DOE Office Websites (Extended Search)

or invest in energy efficiency technology; and the administration and analysis of household surveys. Q: I know a recent focus of your work has been on climate change. Tell us...

309

NETL: Solid State Energy Conversion Alliance (SECA) Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

and are capable of operating on a wide variety of fuels, from coal and natural gas to landfill waste and hydrogen. 01.31.2013 News Fossil Energy-Developed Fuel Cell...

310

Fundamental Principle of Information-to-Energy Conversion  

E-Print Network (OSTI)

The equivalence of 1 bit of information to entropy was given by Landauer in 1961 as kln2, k the Boltzmann constant. Erasing information implies heat dissipation and the energy of 1 bit would then be (the Landauers limit) kT ln 2, T being the ambient temperature. From a quantum-cosmological point of view the minimum quantum of energy in the universe corresponds today to a temperature of 10^(-29) degrees K, probably forming a cosmic background of a Bose condensate [1]. Then, the bit with minimum energy today in the Universe is a quantum of energy 10^(-45)ergs, with an equivalent mass of 10^(-66)g. Low temperature implies low energy per bit and, of course, this is the way for faster and less energy dissipating computing devices. Our conjecture is this: the possibility of a future access to the CBBC (a coupling/channeling?) would mean a huge jump in the performance of these devices.

Alfonso-Faus, Antonio

2014-01-01T23:59:59.000Z

311

Fundamental Principle of Information-to-Energy Conversion  

E-Print Network (OSTI)

The equivalence of 1 bit of information to entropy was given by Landauer in 1961 as kln2, k the Boltzmann constant. Erasing information implies heat dissipation and the energy of 1 bit would then be (the Landauers limit) kT ln 2, T being the ambient temperature. From a quantum-cosmological point of view the minimum quantum of energy in the universe corresponds today to a temperature of 10^(-29) degrees K, probably forming a cosmic background of a Bose condensate [1]. Then, the bit with minimum energy today in the Universe is a quantum of energy 10^(-45)ergs, with an equivalent mass of 10^(-66)g. Low temperature implies low energy per bit and, of course, this is the way for faster and less energy dissipating computing devices. Our conjecture is this: the possibility of a future access to the CBBC (a coupling/channeling?) would mean a huge jump in the performance of these devices.

Antonio Alfonso-Faus

2013-06-30T23:59:59.000Z

312

Bulk single crystal ternary substrates for a thermophotovoltaic energy conversion system  

DOE Patents (OSTI)

A thermophotovoltaic energy conversion device and a method for making the device are disclosed. The device includes a substrate formed from a bulk single crystal material having a bandgap (E{sub g}) of 0.4 eV < E{sub g} < 0.7 eV and an emitter fabricated on the substrate formed from one of a p-type and an n-type material. Another thermophotovoltaic energy conversion device includes a host substrate formed from a bulk single crystal material and lattice-matched ternary or quaternary III-V semiconductor active layers.

Charache, G.W.; Baldasaro, P.F.; Nichols, G.J.

1996-12-31T23:59:59.000Z

313

Bulk single crystal ternary substrates for a thermophotovoltaic energy conversion system  

DOE Patents (OSTI)

A thermophotovoltaic energy conversion device and a method for making the device are disclosed. The device includes a substrate formed from a bulk single crystal material having a bandgap (E{sub g}) of 0.4 eV < E{sub g} < 0.7 eV and an emitter fabricated on the substrate formed from one of a p-type or an n-type material. Another thermophotovoltaic energy conversion device includes a host substrate formed from a bulk single crystal material and lattice-matched ternary or quaternary III-V semiconductor active layers. 12 figs.

Charache, G.W.; Baldasaro, P.F.; Nichols, G.J.

1998-06-23T23:59:59.000Z

314

Bulk single crystal ternary substrates for a thermophotovoltaic energy conversion system  

DOE Patents (OSTI)

A thermophotovoltaic energy conversion device and a method for making the device. The device includes a substrate formed from a bulk single crystal material having a bandgap (E.sub.g) of 0.4 eVenergy conversion device includes a host substrate formed from a bulk single crystal material and lattice-matched ternary or quaternary III-V semiconductor active layers.

Charache, Greg W. (Clifton Park, NY); Baldasaro, Paul F. (Clifton Park, NY); Nichols, Greg J. (Burnt Hills, NY)

1998-01-01T23:59:59.000Z

315

Application of genetic algorithm to improve voltage regulation of self-excited induction generator in a wind energy conversion system  

Science Conference Proceedings (OSTI)

Self-excited induction generators have been found to be most suitable for wind energy conversion in remote locations. In this paper, an attempt has been made to improve the voltage regulation of self-excited induction generator (SEIG) using series compensation. ... Keywords: genetic algorithms, intelligent systems, modelling, renewable energy, self-excited induction generators, simulation, voltage regulation, wind energy conversion systems, wind power

Dheeraj Joshi; K. S. Sandhu; M. K. Soni

2007-02-01T23:59:59.000Z

316

DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD DECEMBER 1,2000 THROUGH FEBRUARY 28,2001  

DOE Green Energy (OSTI)

OAK-B135 DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD DECEMBER 1,2000 THROUGH FEBRUARY 28,2001

L.C. BROWN

2000-02-28T23:59:59.000Z

317

DIRECT ENERGY CONVERSION FISSION REACTOR ANNUAL REPORT FOR THE PERIOD OCTOBER 1, 2001 THROUGH DECEMBER 31, 2002  

DOE Green Energy (OSTI)

OAK-B135 DIRECT ENERGY CONVERSION FISSION REACTOR ANNUAL REPORT FOR THE PERIOD OCTOBER 1, 2001 THROUGH DECEMBER 31, 2002

L.C. BROWN

2003-04-07T23:59:59.000Z

318

DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD DECEMBER 1,1999 THRIUGH FEBRUARY 29,2000  

DOE Green Energy (OSTI)

OAK-B135 DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD DECEMBER 1,1999 THRIUGH FEBRUARY 29,2000

LC BROWN

2000-02-29T23:59:59.000Z

319

DIRECT ENERGY CONVERSION FISSION REACTOR ANNUAL REPORT FOR THE PERIOD AUGUST 15,2000 THROUGH SEPTEMBER 30,2001  

DOE Green Energy (OSTI)

OAK-B135 DIRECT ENERGY CONVERSION FISSION REACTOR ANNUAL REPORT FOR THE PERIOD AUGUST 15,2000 THROUGH SEPTEMBER 30,2001

L.C. BROWN

2002-02-01T23:59:59.000Z

320

DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD OCTOBER 1,2001 THROUGH DECEMBER 31,2001  

DOE Green Energy (OSTI)

OAK-B135 DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD OCTOBER 1,2001 THROUGH DECEMBER 31,2001

L.C. BROWN

2001-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "thermal-to-electrical energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Maximally concentrating optics for photovoltaic solar energy conversion  

DOE Green Energy (OSTI)

The use of a two-stage concentrator with a fresnel lens primary and a non-imaging dielectric totally internally reflecting secondary, has unique advantages for photovoltaic concentration. This new design has a much larger acceptance angle than the conventional lens-cell concentrating system. In the continuation of this research, an optimally designed prototype which employs a 13.6-cm diameter flat fresnel tons as the primary focusing device, a dielectric compound hyperbolic concentrator (DCHC) as secondary and a 1-cm diameter high-concentration cell for electricity conversion has been built, tested and analyzed. Measurements under sunlight show that it has an angular acceptance of [plus minus]3.6 degrees, which is dramatically better than the [plus minus]0.5 degree achievable without a secondary concentrator. This performance agrees well with theoretical ray-tracing predictions. The secondary shows an optical efficiency of (91[plus minus]2)% at normal incidence. Combining with the primary fresnel tens which has an optical efficiency of (82[plus minus]2)%, tho two-stage system yields a total optical efficiency of (7l[plus minus]2)%. The measurement of the system electrical performance yielded a net electrical efficiency of 11.9%. No problems associated with non-uniform cell illumination were found, as evidenced by the excellent fill factor of (79[plus minus]2)% measured under concentration. The secondary geometrical properties and the optimal two-stage design procedures for various primary- cell combinations were systematical studied. A general design principle has been developed.

Winston, R.; O'Gallagher, J.; Ning, X.

1986-02-27T23:59:59.000Z

322

Thermo-chemical energy conversion and storage. Final report  

DOE Green Energy (OSTI)

Research support for the cyclohexane/benzene heat pipe development program at Sandia Laboratories is reported. The apparent kinetics of the gas-phase catalytic dehydrogenation of cyclohexane to benzene in an internally recirculated (gradientless) reactor over the temperature range from 500 to 800/sup 0/F at 1 atm at various space velocities was studied. A kinetic model was developed based on a reversible mass-action rate expression and a catalyst effectiveness factor which is able to correlate both the conversion and reaction rate data very well over the temperature range 500 to 750/sup 0/F. The data taken at 800/sup 0/F appear to be qualitatively and quantitatively different than the data taken at the lower temperatures. It is not as yet clear, whether this can be attributed to a change in kinetic mechanism or some reversible alteration of the catalyst surface at the higher temperature. The formation of side products in this system over the same temperature range was also studied. Both the number and amount of side product(s) formed increases with increasing temperature and residence time. Over the temperature range from 500 to 600/sup 0/F the side products produced appear to be strongly related to the presence of low molecular weight unsaturated hydrocarbon impurities in the (reagent grade) cyclohexane feed and it is possible that no side products would be formed were it not for the presence of these impurities. At temperatures above 600/sup 0/F, both the number and amount of side product(s) produced increases markedly. A test loop was designed and partially fabricated which will permit the study of the effects of long term continuous cycling of the system on catalyst activity and side product formation.

Ritter, A.B.; DeLancey, G.B.; Schneider, J.; Silla, H.

1978-09-01T23:59:59.000Z

323

Radiant energy collection and conversion apparatus and method  

SciTech Connect

The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

Hunt, Arlon J. (Oakland, CA)

1982-01-01T23:59:59.000Z

324

STATEMENT OF CONSIDERATIONS REQUEST BY ENERGY CONVERSION DEVICES, INC. FOR AN ADVANCE WAIVER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MAY 01 2007 11:22 FR IPL DOE CH 630 252 2779 TO AGCP-HQ P.02/04 MAY 01 2007 11:22 FR IPL DOE CH 630 252 2779 TO AGCP-HQ P.02/04 * * STATEMENT OF CONSIDERATIONS REQUEST BY ENERGY CONVERSION DEVICES, INC. FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC26-06NT43026; W(A)-06-034; CH-1392 The Petitioner, Energy Conversion Devices, Inc. (ECD) was awarded this cooperative agreement for the performance of work entitled, "Development of Advanced Small Hydrogen Internal Combustion Engines (ICEs)." The purpose of the cooperative agreement is to develop advanced, low cost conversions of small (<25 hp) gasoline internal combustion engines (ICEs) to run on hydrogen fuel while maintaining the performance and durability equivalent to, or superior to, the unmodified gasoline engine. The advanced hydrogen engines developed in this program will

325

Open cycle ocean thermal energy conversion system structure  

DOE Patents (OSTI)

A generally mushroom-shaped, open cycle OTEC system and distilled water producer which has a skirt-conduit structure extending from the enlarged portion of the mushroom to the ocean. The enlarged part of the mushroom houses a toroidal casing flash evaporator which produces steam which expands through a vertical rotor turbine, partially situated in the center of the blossom portion and partially situated in the mushroom's stem portion. Upon expansion through the turbine, the motive steam enters a shell and tube condenser annularly disposed about the rotor axis and axially situated beneath the turbine in the stem portion. Relatively warm ocean water is circulated up through the radially outer skirt-conduit structure entering the evaporator through a radially outer portion thereof, flashing a portion thereof into motive steam, and draining the unflashed portion from the evaporator through a radially inner skirt-conduit structure. Relatively cold cooling water enters the annular condenser through the radially inner edge and travels radially outwardly into a channel situated along the radially outer edge of the condenser. The channel is also included in the radially inner skirt-conduit structure. The cooling water is segregated from the potable, motive steam condensate which can be used for human consumption or other processes requiring high purity water. The expansion energy of the motive steam is partially converted into rotational mechanical energy of the turbine rotor when the steam is expanded through the shaft attached blades. Such mechanical energy drives a generator also included in the enlarged mushroom portion for producing electrical energy. Such power generation equipment arrangement provides a compact power system from which additional benefits may be obtained by fabricating the enclosing equipment, housings and component casings from low density materials, such as prestressed concrete, to permit those casings and housings to also function as a floating support vessel.

Wittig, J. Michael (West Goshen, PA)

1980-01-01T23:59:59.000Z

326

Advanced, High Power, Next Scale, Wave Energy Conversion Device  

SciTech Connect

The project conducted under DOE contract DE?EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven?stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy? technology to deliver a device with much increased power delivery. Scaling?up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke? unlimited Power Take?Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

Mekhiche, Mike [Principal Investigator] [Principal Investigator; Dufera, Hiz [Project Manager] [Project Manager; Montagna, Deb [Business Point of Contact] [Business Point of Contact

2012-10-29T23:59:59.000Z

327

Electric utility application of wind energy conversion systems on the island of Oahu  

DOE Green Energy (OSTI)

This wind energy application study was performed by The Aerospace Corporation for the Wind Systems Branch of the Department of Energy. The objective was to identify integration problems for a Wind Energy Conversion System (WECS) placed into an existing conventional utility system. The integration problems included environmental, institutional and technical aspects as well as economic matters, but the emphasis was on the economics of wind energy. The Hawaiian Electric Company utility system on the island of Oahu was selected for the study because of the very real potential for wind energy on that island, and because of the simplicity afforded in analyzing that isolated utility.

Lindley, C.A.; Melton, W.C.

1979-02-23T23:59:59.000Z

328

Photovoltaic engineering services pertinent to solar energy conversion  

SciTech Connect

The application of the compound parabolic concentrator (CPC) for use with solar cells has been investigated. Experiments with state-of-the-art Si cells in a CPC and under solar concentration were performed. A theoretical model for calculating the behavior of Si solar cells with concentration was developed. Detailed calculations of the energy distribution in the CPC were made. Finally a cost effectiveness analysis shows that the CPC system will produce power at very much lower cost than will flat panel solar cell arrays. (auth)

Bell, R O; Ho, J C.T.; Kurth, W; Surek, T

1975-06-01T23:59:59.000Z

329

Low Cost Solar Energy Conversion (Carbon Cycle 2.0)  

DOE Green Energy (OSTI)

Ramamoorthy Ramesh from LBNL's Materials Science Division speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Ramesh, Ramamoorthy

2010-02-04T23:59:59.000Z

330

Compressed Natural Gas and Liquefied Petroleum Gas Conversions: The National Renewable Energy Laboratory's Experience  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas and Liquefied Petroleum Gas Conversions: Compressed Natural Gas and Liquefied Petroleum Gas Conversions: The National Renewable Energy Laboratory's Experience N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Compressed Natural Gas and Liquefied Petroleum Gas Conversions: The National Renewable Energy Laboratory's Experience N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Robert C. Motta Kenneth J. Kelly William W. Warnock Executive Summary The National Renewable Energy Laboratory (NREL) contracted with conversion companies in six states to convert approximately 900 light-duty Federal fleet vehicles to operate on compressed natural gas (CNG) or liquefied petroleum gas (LPG). The contracts were initiated in order to help the Federal government meet the vehicle acquisition requirements of the Energy Policy Act of 1992 (EPACT) during a period of limited

331

Compilation of Failure Data and Fault Tree Analysis for Geothermal Energy Conversion Systems  

DOE Green Energy (OSTI)

The failure data for geothermal energy conversion facilities collected to date are compiled and tabled. These facilities have not accumulated sufficient production history to reliably estimated component failure rates. In addition, the improvements made in drilling technology in recent years may have made less pertinent the accumulation of data on well failures.

Miller, F.L., Jr.; Zimmerman, D.E.

1990-11-01T23:59:59.000Z

332

Heat exchanger cleaning in support of ocean thermal energy conversion (OTEC) - electronics subsystems  

DOE Green Energy (OSTI)

Electronics systems supporting the development of biofouling countermeasures for Ocean Thermal Energy Conversion (OTEC) are described. Discussed are the thermistor/thermopile amplifiers, heaters, flowmeters, temperature measurement, control systems for chlorination, flow driven brushes, and recirculating sponge rubber balls. The operation and troubleshooting of each electronic subsystem is documented.

Lott, D.F.

1980-12-01T23:59:59.000Z

333

The integrated design of a permanent-magnet generator for small wind energy conversion system  

Science Conference Proceedings (OSTI)

This paper presents the integrated design, analysis and performance test of a 1.4 kW, radial-flux, permanent-magnet generator applied to small wind energy conversion system (WECS). In a small WECS, the three major components, i.e., turbine, generator ...

Min-Fu Hsieh; Yu-Han Yeh

2012-12-01T23:59:59.000Z

334

Dynamic characteristics and graphic monitoring design of photovoltaic energy conversion system  

Science Conference Proceedings (OSTI)

This study explored the dynamic characteristics and monitoring design of the photovoltaic energy conversion system, which is a system model of an independent power supply. This study first established the non-linear differential equation of the system ... Keywords: dynamic characteristics, eigenvalue, monitoring system, photovoltaic, programmable logic controller, solar cell

Kuo-Hua Liu

2011-08-01T23:59:59.000Z

335

19th International Conference on Photochemical Conversion and Storage of Solar Energy  

E-Print Network (OSTI)

IPS-19 19th International Conference on Photochemical Conversion and Storage of Solar Energy 29@caltech.edu Prof. Harry Gray hbg@caltech.edu Prof. Jonas Peters jpeters@caltech.edu Dye-Sensitized & Polymer Solar Cells Advanced Photovoltaics Photocatalysis Solar Fuels Production Photoelectrochemistry

Goddard III, William A.

336

January 2011: ME 533-Energy Conversion Dr. William M. Carey, Professor of Mechanical Engineering  

E-Print Network (OSTI)

, Vapor Power Systems, Gas Power Systems, Refrigeration and Heat Pump Systems 2. Thermodynamic Relations and Ideal Gas Mixtures. 3) Energy Conversion systems-Coal-Oil-Nuclear, Oceanic, Solar, Geothermal and Wind and Heat Pump Systems-using solar, geothermal, and/or conventiaonal methods. 4.) Combined and flexible fuel

337

2012: ME 533-Energy Conversion Dr. William M. Carey, Professor of Mechanical Engineering  

E-Print Network (OSTI)

, Vapor Power Systems, Gas Power Systems, Refrigeration and Heat Pump Systems 2. Thermodynamic Relations and Ideal Gas Mixtures. 3) Energy Conversion systems-Coal-Oil-Nuclear, Oceanic, Solar, Geothermal and Wind and Heat Pump Systems-using solar, geothermal, and/or conventiaonal methods. 4.) Combined and flexible fuel

338

Condition Monitoring and Fault Diagnosis in Wind Energy Conversion Systems: A Review  

E-Print Network (OSTI)

and it is expected to remain so for some time. At the end of 2003 the installed wind capacity stands at over 40000 MW the need for future research, this paper is intended as a tutorial overview based on a review of the state. INTRODUCTION Wind energy conversion is the fastest-growing source of new electric generation in the world

Paris-Sud XI, Université de

339

Coal Energy Conversion with Aquifer-Based Carbon Sequestration: An Approach to Electric Power Generation with  

E-Print Network (OSTI)

Coal Energy Conversion with Aquifer-Based Carbon Sequestration: An Approach to Electric Power an impermeable seal to prevent it from escaping the aquifer. The proposed alternative technology processes coal carbon and non-mineral coal combustion products in the process. This stream is denser than the aquifer

Nur, Amos

340

DIRECT ENERGY CONVERSION DEVICES AND SYSTEMS FOR NUCLEAR AUXILIARY POWER (SNAP). A Literature Search  

SciTech Connect

A total of 553 references are listed on the SNAP program and related topics. The references were taken from Nuclear Science Abstracts to Dec. 31, 1962. The contents are arranged in sections on radioisotope-fueled units, reactorfueled units, direct energy conversion, and general topics on nuclear auxiliary power. (J.R.D.)

Lanier, S.F.; Raleigh, H.D.

1963-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal-to-electrical energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Optimal control in energy conversion of small wind power systems with permanent-magnet-synchronous-generators  

Science Conference Proceedings (OSTI)

This paper presents the results of experimental investigation of a low-power wind energy conversion system (WECS), based on a permanent-magnet synchronous generator (PMSG) connected directly to the turbine. A development system was built in order to ... Keywords: hardware-in-the-loop simulation, maximum power point tracking, optimal control, permanent-magnet synchronous generator, wind system

C. Vlad; I. Munteanu; A. I. Bratcu; E. Ceanga

2008-07-01T23:59:59.000Z

342

Argonne Chemical Sciences & Engineering - Catalysis & Energy Conversion -  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Temperature Steam Electrolysis High-Temperature Steam Electrolysis High-temperature steam electrolysis (HTSE) can be used to make hydrogen for use in automotive fuel cells or other portable applications. HTSE takes advantage of solid oxide fuel cell (SOFC) technology to split steam into hydrogen and oxygen at high temperatures. This process can use the waste heat from high-temperature industrial processes to lower the need for electrical energy to split water, which gives it an advantage over conventional water electrolysis. Also, unlike steam methane reforming, the current state-of-the-art method for making hydrogen, HTSE does not release any greenhouse gases. As part of the Nuclear Hydrogen Initiative, Argonne has conducted studies of the causes of HTSE component degradation over extended operation time periods. We have developed methods for determining areas where degradation has occurred using X-ray fluorescence mapping, and X-ray Absorption Near Edge Structure (XANES) spectroscopic techniques at the Advanced Photon Source (APS). APS results were complimented by electron microscopy and energy dispersive spectroscopy, as shown in the figure.

343

Recovery of Carbon Dioxide in Advanced Fossil Energy Conversion Processes Using a Membrane Reactor  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide in Advanced Fossil Energy Conversion Processes Carbon Dioxide in Advanced Fossil Energy Conversion Processes Using a Membrane Reactor Ashok S. Damle * Research Triangle Institute P.O. Box 12194 Research Triangle Park, NC 27709 Phone: (919) 541-6146 Fax: (919) 541-6965 E-mail: adamle@rti.org Thomas P. Dorchak National Energy Technology Laboratory P.O. Box 880, Mail Stop C04 Morgantown, WV 26507-0880 Phone: (304) 285-4305 E-mail: tdorch@netl.doe.gov Abstract Increased awareness of the global warming trend has led to worldwide concerns regarding "greenhouse gas" emissions, with CO 2 being the single greatest contributor to global warming. Fossil fuels (i.e., coal, oil, and natural gas) currently supply over 85% of the world's energy needs, and their utilization is the major source of the anthropogenic greenhouse gas emissions of

344

Low energy conversion electron detection in superfluid He3 at ultra-low temperature  

E-Print Network (OSTI)

We report on the first results of the MACHe3 (MAtrix of Cells of Helium 3) prototype experiment concerning the measurement of low energy conversion electrons at ultra-low temperature. For the first time, the feasibility of the detection of low energy electrons is demonstrated in superfluid He3-B cooled down to 100 microK. Low energy electrons at 7.3 keV coming from the K shell conversion of the 14.4 keV nuclear transition of a low activity Co57 source are detected, opening the possibility to use a He3-based detector for the detection of Weakly Interacting Massive Particles (WIMPs) which are expected to release an amount of energy higher-bounded by 5.6 keV.

E. Moulin; C. Winkelmann; J. F. Macias-Perez; Yu. M. Bunkov; H. Godfrin; D. Santos

2005-04-12T23:59:59.000Z

345

Argonne Chemical Sciences & Engineering - Catalysis & Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage Hydrogen Storage Hydrogen Storage Scott Kirklin, a co-op student researcher, closely examines a polymer sample before characterizing its surface structure. The capacity of on-board hydrogen storage is critical to the development of hydrogen-powered fuel cell vehicles. To be practical, the 2010 performance targets of the hydrogen storage system set by the U.S. Department of Energy (DOE) include a gravimetric capacity of at least 0.06 kg H2/kg and a volumetric capacity of 0.045 kg H2/L at ambient temperature. Furthermore, the adsorbent cost must be less than $4/kWh. These requirements pose significant challenges to the storage material development. Argonne, in collaboration with the University of Chicago (U of C), is addressing these challenges by exploring a new class of hydrogen adsorbent,

346

Argonne Chemical Sciences & Engineering - Catalysis & Energy Conversion -  

NLE Websites -- All DOE Office Websites (Extended Search)

Production of Hydrogen using Copper-Chlorine Cycle Production of Hydrogen using Copper-Chlorine Cycle In view of the upcoming hydrogen economy, Argonne researchers are studying thermochemical cycles to determine their potential to produce hydrogen effectively with respect to energy usage and cost. Most emphasis has been placed on baseline sulfur cycles, though a small effort is currently ongoing for alternative cycles, one of which is the copper chloride (Cu-Cl) cycle. The chemistry of this cycle is illustrated in the figure below. Heat/electricity and water are the only inputs, while oxygen and hydrogen are the only products. All of the chemicals are recycled. Production of hydrogen using copper-chlorine cycle diagram The Copper Chloride Cycle Researcher Magali Ferrandon sets up a copper-chloride cycle experiment

347

Energy Conversion of Fully Random Thermal Relaxation Times  

E-Print Network (OSTI)

Thermodynamic random processes in thermal systems are generally associated with one or several relaxation times, the inverse of which are formally homogeneous with energy. Here, we show in a precise way that the periodic modification of relaxation times during temperature-constant thermodynamic cycles can be thermodynamically beneficiary to the operator. This result holds as long as the operator who adjusts relaxation times does not attempt to control the randomness associated with relaxation times itself as a Maxwell 'demon' would do. Indirectly, our result also shows that thermal randomness appears satisfactorily described within a conventional quantum-statistical framework, and that the attempts advocated notably by Ilya Prigogine to go beyond a Hilbert space description of quantum statistics do not seem justified - at least according to the present state of our knowledge. Fundamental interpretation of randomness, either thermal or quantum mechanical, is briefly discussed.

François Barriquand

2005-07-26T23:59:59.000Z

348

Energy conversion device and method of reducing friction therein  

DOE Patents (OSTI)

A device configured for converting energy includes a first surface, a second surface configured for moving with respect to the first surface during operation of the device, and a coating disposed on at least one of the first surface and the second surface. The coating includes a first layer of a ceramic alloy represented by the general formula AlMgB.sub.14--X, wherein X is present in an amount of from 0 to 70 parts by weight based on 100 parts by weight of the ceramic alloy and is a doping agent selected from the group of Group IV elements and borides and nitrides thereof, and a second layer disposed on the first layer and including carbon in a gradient concentration. The coating has a hardness of from 10 to 20 GPa and a coefficient of friction of less than or equal to 0.12.

Solovyeva, Lyudmila Mikhaylovna; Jansson, Kyle S; Elmoursi, Alaa AbdelAzim; Zhu, Dong; Milner, Robert; Daughterty, Early Eugene; Higdon, Clifton Baxter; Elagamy, Kamel Abdel-Khalik; Hicks, Aaron Michael

2013-10-08T23:59:59.000Z

349

DIEGO FAZI Mailing address: Solar Energy Conversion Group Chemical Sciences & Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

DIEGO FAZI DIEGO FAZI Mailing address: Solar Energy Conversion Group Chemical Sciences & Engineering Division Bldg 200, Room E105 Argonne National Laboratory 9700 South Cass Ave. Argonne IL 60439-4831 E-mail addresses: dfazi@anl.gov Office Number: 630-252-5796 Fax: 630-252-9289 Personal Pages: http://faculty.wcas.northwestern.edu/diego-fazi/ http://www.fazid.org Research Interests Diego Fazi comes from a theoretical Physics background and he performed research in gravitational-wave astronomy within the project LIGO from 2005 to 2012. In October 2012 Dr. Fazi joined the CSE division at Argonne as a postdoctoral appointee in the Solar Conversion

350

Maximal spin and energy conversion efficiency in a symbiotic system of black hole, disk and jet  

E-Print Network (OSTI)

We study the mass and spin evolution in a symbiotic system consisting of a black hole with magnetosphere and jets, surrounded by a steady-state, thin accretion disk. We analyze how the limiting value of the spin parameter and the conversion efficiency of accreted mass into radiation depend on the interplay of electromagnetic radiation reaction, magnetosphere characteristics and jet cross-section. As a main result, we find that the presence of the jets increases the spin limit (basically obstructing the reverse effect of radiation in the innermost region of the accretion disk) and enhances the energy conversion efficiency.

Kovács, Zoltán; Biermann, Peter L

2010-01-01T23:59:59.000Z

351

Photobiological production of hydrogen: a solar energy conversion option  

DOE Green Energy (OSTI)

This literature survey of photobiological hydrogen production covers the period from its discovery in relatively pure cultures during the early 1930s to the present. The focus is hydrogen production by phototrophic organisms (and their components) which occurs at the expense of light energy and electron-donating substrates. The survey covers the major contributions in the area; however, in many cases, space has limited the degree of detail provided. Among the topics included is a brief historical overview of hydrogen metabolism in photosynthetic bacteria, eucaryotic algae, and cyanobacteria (blue--green algae). The primary enzyme systems, including hydrogenase and nitrogenase, are discussed along with the manner in which they are coupled to electron transport and the primary photochemistry of photosynthesis. A number of in vivo and in vitro photobiological hydrogen evolving schemes including photosynthetic bacterial, green algal, cyanobacterial, two-stage, and cell-free systems are examined in some detail. The remainder of the review discusses specific technical problem areas that currently limit the yield and duration of many of the systems and research that might lead to progress in these specific areas. The final section outlines, in broadest terms, future research directions necessary to develop practical photobiological hydrogen-producing systems. Both whole cell (near- to mid-term) and cell-free (long-term) systems should be emphasized. Photosynthetic bacteria currently show the most promise for near-term applied systems.

Weaver, P.; Lien, S.; Seibert, M.

1979-01-01T23:59:59.000Z

352

SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL  

DOE Green Energy (OSTI)

The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from January 1, 2003 to June 30, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; and Task 9 Stack Testing with Coal-Based Reformate.

Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; Gail Geiger; Kevin Keegan; John Noetzel; Larry Chick

2003-12-08T23:59:59.000Z

353

Design of a Power Oscillation Damper for DFIG-based Wind Energy Conversion System Using Modified Particle Swarm Optimizer  

Science Conference Proceedings (OSTI)

This paper presents a method to design a Power Oscillation Damper (POD) for Double-Fed Induction Generator (DFIG) based Wind Energy Conversion System (WECS), operating with voltage control loop. Based on eigen values information from Small Signal Stability ... Keywords: Computational Intelligence, double fed induction generator, power oscillation damper, modified particle swarm optimizer, small signal stability analysis, wind energy conversion system

Huazhang Huang; C. Y. Chung

2012-05-01T23:59:59.000Z

354

SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL  

DOE Green Energy (OSTI)

The objective of this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from July 1, 2003 to December 31, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; Task 9 Stack Testing with Coal-Based Reformate; and Task 10 Technology Transfer from SECA CORE Technology Program. In this reporting period, unless otherwise noted Task 6--System Fabrication and Task 7--System Testing will be reported within Task 1 System Design and Integration. Task 8--Program Management, Task 9--Stack Testing with Coal Based Reformate, and Task 10--Technology Transfer from SECA CORE Technology Program will be reported on in the Executive Summary section of this report.

Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; Gail Geiger; Kevin Keegan; Larry Chick

2004-05-07T23:59:59.000Z

355

Near and far field models of external fluid mechanics of Ocean Thermal Energy Conversion (OTEC) power plants  

E-Print Network (OSTI)

The world is facing the challenge of finding new renewable sources of energy - first, in response to fossil fuel reserve depletion, and second, to reduce greenhouse gas emissions. Ocean Thermal Energy Conversion (OTEC) can ...

Rodríguez Buño, Mariana

2013-01-01T23:59:59.000Z

356

Review of solar thermoelectric energy conversion and analysis of a two cover flat-plate solar collector  

E-Print Network (OSTI)

The process of solar thermoelectric energy conversion was explored through a review of thermoelectric energy generation and solar collectors. Existing forms of flat plate collectors and solar concentrators were surveyed. ...

Hasan, Atiya

2007-01-01T23:59:59.000Z

357

Energy and Society (ER100/PP184/ER200/PP284)Fall 2012 Topics: Energy Units & Conversions, Global Energy Use Problem Set #1  

E-Print Network (OSTI)

Energy and Society (ER100/PP184/ER200/PP284)Fall 2012 Topics: Energy Units & Conversions, Global Energy Use Problem Set #1 Due September 6, in class, or before 5pm outside 310 Barrows Total Points: 80 For all problem sets in Energy and Society: 1) Please clearly state any assumptions (e.g., the price

Kammen, Daniel M.

358

Effect of Electro-Osmotic Flow on Energy Conversion on Superhydrophobic Surfaces  

E-Print Network (OSTI)

It has been suggested that superhydrophobic surfaces, due to the presence of a no-shear zone, can greatly enhance transport of surface charges, leading to a considerable increase in the streaming potential. This could find potential use in micro-energy harvesting devices. In this paper, we show using analytical and numerical methods, that when a streaming potential is generated in such superhydrophobic geometries, the reverse electro-osmotic flow and hence current generated by this, is significant. A decrease in streaming potential compared to what was earlier predicted is expected. We also show that, due to the electro-osmotic streaming-current, a saturation in both the power extracted and efficiency of energy conversion is achieved in such systems for large values of the free surface charge densities. Nevertheless, under realistic conditions, such microstructured devices with superhydrophobic surfaces have the potential to even reach energy conversion efficiencies only achieved in nanostructured devices so ...

Seshadri, Gowrishankar

2013-01-01T23:59:59.000Z

359

Compressed natural gas and liquefied petroleum gas conversions: The National Renewable Energy Laboratory`s experience  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) contracted with conversion companies in six states to convert approximately 900 light-duty Federal fleet vehicles to operate on compressed natural gas (CNG) or liquefied petroleum gas (LPG). The contracts were initiated in order to help the Federal government meet the vehicle acquisition requirements of the Energy Policy Act of 1992 (EPACT) during a period of limited original equipment manufacturer (OEM) model availability. Approximately 90% of all conversions were performed on compact of full-size vans and pickups, and 90% of the conversions were to bi-fuel operation. With a positive response from the fleet managers, this program helped the Federal government meet the vehicle acquisition requirements of EPACT for fiscal years 1993 and 1994, despite limited OEM model availability. The conversions also helped to establish the infrastructure needed to support further growth in the use of alternative fuel vehicles. In conclusion, the program has been successful in helping the Federal government meet the vehicle acquisition requirements of EPACT, establishing infrastructure, increasing the displacement of imported oil, and evaluating the emissions performance of converted vehicles. With the relatively widespread availability of OEM vehicles in the 1996 model year, the program is now being phased out.

Motta, R.C.; Kelly, K.J.; Warnock, W.W.

1996-04-01T23:59:59.000Z

360

Current Research on Thermochemical Conversion of Biomass at the National Renewable Energy Laboratory  

DOE Green Energy (OSTI)

The thermochemical research platform at the National Bioenergy Center, National Renewable Energy Laboratory (NREL) is primarily focused on conversion of biomass to transportation fuels using non-biological techniques. Research is conducted in three general areas relating to fuels synthesis via thermochemical conversion by gasification: (1) Biomass gasification fundamentals, chemistry and mechanisms of tar formation; (2) Catalytic tar reforming and syngas cleaning; and (3) Syngas conversion to mixed alcohols. In addition, the platform supports activities in both technoeconomic analysis (TEA) and life cycle assessment (LCA) of thermochemical conversion processes. Results from the TEA and LCA are used to inform and guide laboratory research for alternative biomass-to-fuels strategies. Detailed process models are developed using the best available material and energy balance information and unit operations models created at NREL and elsewhere. These models are used to identify cost drivers which then form the basis for research programs aimed at reducing costs and improving process efficiency while maintaining sustainability and an overall net reduction in greenhouse gases.

Baldwin, R. M.; Magrini-Bair, K. A.; Nimlos, M. R.; Pepiot, P.; Donohoe, B. S.; Hensley, J. E.; Phillips, S. D.

2012-04-05T23:59:59.000Z

Note: This page contains sample records for the topic "thermal-to-electrical energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

System for thermal energy storage, space heating and cooling and power conversion  

DOE Patents (OSTI)

An integrated system for storing thermal energy, for space heating and cong and for power conversion is described which utilizes the reversible thermal decomposition characteristics of two hydrides having different decomposition pressures at the same temperature for energy storage and space conditioning and the expansion of high-pressure hydrogen for power conversion. The system consists of a plurality of reaction vessels, at least one containing each of the different hydrides, three loops of circulating heat transfer fluid which can be selectively coupled to the vessels for supplying the heat of decomposition from any appropriate source of thermal energy from the outside ambient environment or from the spaces to be cooled and for removing the heat of reaction to the outside ambient environment or to the spaces to be heated, and a hydrogen loop for directing the flow of hydrogen gas between the vessels. When used for power conversion, at least two vessels contain the same hydride and the hydrogen loop contains an expansion engine. The system is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators, but may be used with any source of heat, including a source of low-grade heat.

Gruen, Dieter M. (Downers Grove, IL); Fields, Paul R. (Chicago, IL)

1981-04-21T23:59:59.000Z

362

Solar energy conversion systems engineering and economic analysis radiative energy input/thermal electric output computation. Volume III  

DOE Green Energy (OSTI)

The direct energy flux analytical model, an analysis of the results, and a brief description of a non-steady state model of a thermal solar energy conversion system implemented on a code, SIRR2, as well as the coupling of CIRR2 which computes global solar flux on a collector and SIRR2 are presented. It is shown how the CIRR2 and, mainly, the SIRR2 codes may be used for a proper design of a solar collector system. (LEW)

Russo, G.

1982-09-01T23:59:59.000Z

363

Ocean thermal energy conversion power system development-I. Phase I. Final report  

DOE Green Energy (OSTI)

The objective of the Ocean Thermal Energy Conversion (OTEC) Power System Development-I (PSD-I), Phase I, study was to develop conceptual and preliminary designs of closed-cycle ammonia power system modules for the 100-MW(e) OTEC Demonstration Plant, the 400-MW(e) Commercial Size Plant, and Heat Exchanger Test Articles representative of the full-size power system module design. Results are presented.

Not Available

1978-12-18T23:59:59.000Z

364

Recommended methods for evaluating the benefits of ECUT Program outputs. [Energy Conversion and Utilization  

SciTech Connect

This study was conducted to define and develop techniques that could be used to assess the complete spectrum of positive effects resulting from the Energy Conversion and Utilization Technologies (ECUT) Program activities. These techniques could then be applied to measure the benefits from past ECUT outputs. In addition, the impact of future ECUT outputs could be assessed as part of an ongoing monitoring process, after sufficient time has elapsed to allow their impacts to develop.

Levine, L.O.; Winter, C.

1986-03-01T23:59:59.000Z

365

DIRECT ENERGY CONVERSION (DEC) FISSION REACTORS - A U.S. NERI PROJECT  

DOE Green Energy (OSTI)

The direct conversion of the electrical energy of charged fission fragments was examined early in the nuclear reactor era, and the first theoretical treatment appeared in the literature in 1957. Most of the experiments conducted during the next ten years to investigate fission fragment direct energy conversion (DEC) were for understanding the nature and control of the charged particles. These experiments verified fundamental physics and identified a number of specific problem areas, but also demonstrated a number of technical challenges that limited DEC performance. Because DEC was insufficient for practical applications, by the late 1960s most R&D ceased in the US. Sporadic interest in the concept appears in the literature until this day, but there have been no recent programs to develop the technology. This has changed with the Nuclear Energy Research Initiative that was funded by the U.S. Congress in 1999. Most of the previous concepts were based on a fission electric cell known as a triode, where a central cathode is coated with a thin layer of nuclear fuel. A fission fragment that leaves the cathode with high kinetic energy and a large positive charge is decelerated as it approaches the anode by a charge differential of several million volts, it then deposits its charge in the anode after its kinetic energy is exhausted. Large numbers of low energy electrons leave the cathode with each fission fragment; they are suppressed by negatively biased on grid wires or by magnetic fields. Other concepts include magnetic collimators and quasi-direct magnetohydrodynamic generation (steady flow or pulsed). We present the basic principles of DEC fission reactors, review the previous research, discuss problem areas in detail and identify technological developments of the last 30 years relevant to overcoming these obstacles. A prognosis for future development of direct energy conversion fission reactors will be presented.

D. BELLER; G. POLANSKY; ET AL

2000-11-01T23:59:59.000Z

366

New type of thermoelectric conversion of energy by semiconducting liquid anisotropic media  

E-Print Network (OSTI)

The paper describes preliminary investigations of a new effect in conducting anisotropic liquids, which leads to thermoelectric conversion of energy. Nematic liquid crystals with semiconducting dopes are used. A thermoelectric figure of merit ZT = 0.2 is obtained in experiments. The effect can be explained by assuming that the thermocurrent in semiconducting nematics, in contrast to the Seebeck effect, is a nonlinear function of the temperature gradient and of the temperature itself. Though the discovered effect has to be further investigated, the data obtained suggest that it can be effectively used in alternative energy engineering.

Sergey I. Trashkeev; Alexey N. Kudryavtsev

2012-11-02T23:59:59.000Z

367

Chapter 1.12: Solar Radiation Resource Assessment for Renewable Energy Conversion  

SciTech Connect

This chapter addresses measurements, modeling, and databases of solar energy potential that may serve as fuel for solar energy conversion systems. Developing innovative designs for capturing and converting solar radiation is only one part of the equation for solar system deployment. Identifying, locating, and prospecting for the appropriate quantity and quality of solar resources to fuel these systems is critical to system designers, investors, financial backers, utilities, governments, and owner/operators. This chapter addresses the fundamentals and state of the art for measuring, modeling, and applying solar radiation resource data to meet decision-making needs.

Myers, D. R.

2012-01-01T23:59:59.000Z

368

Graphene-based Electrochemical Energy Conversion and Storage: Fuel cells, Supercapacitors and Lithium Ion Batteries  

SciTech Connect

Graphene has attracted extensive research interest due to its strictly 2-dimensional (2D) structure, which results in its unique electronic, thermal, mechanical, and chemical properties and potential technical applications. These remarkable characteristics of graphene, along with the inherent benefits of a carbon material, make it a promising candidate for application in electrochemical energy devices. This article reviews the methods of graphene preparation, introduces the unique electrochemical behavior of graphene, and summarizes the recent research and development on graphene-based fuel cells, supercapacitors and lithium ion batteries. In addition, promising areas are identified for the future development of graphene-based materials in electrochemical energy conversion and storage systems.

Hou, Junbo; Shao, Yuyan; Ellis, Michael A.; Moore, Robert; Yi, Baolian

2011-09-14T23:59:59.000Z

369

Paducah DUF6 Conversion Final EIS - Appendix G: Responses to U.S. Department of Energy Letters to State Agencies and Native American Groups  

NLE Websites -- All DOE Office Websites (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS RESPONSES TO U.S. DEPARTMENT OF ENERGY LETTERS TO STATE AGENCIES AND NATIVE AMERICAN GROUPS Consultation Letters G-32 Paducah DUF 6 Conversion Final EIS Consultation Letters G-33 Paducah DUF 6 Conversion Final EIS Consultation Letters G-34 Paducah DUF 6 Conversion Final EIS Consultation Letters G-35 Paducah DUF 6 Conversion Final EIS Consultation Letters G-36 Paducah DUF 6 Conversion Final EIS Consultation Letters G-37 Paducah DUF 6 Conversion Final EIS Consultation Letters G-38 Paducah DUF 6 Conversion Final EIS Consultation Letters G-39 Paducah DUF 6 Conversion Final EIS Consultation Letters G-40 Paducah DUF 6 Conversion Final EIS Consultation Letters G-41 Paducah DUF 6 Conversion Final EIS Consultation Letters G-42 Paducah DUF 6 Conversion Final EIS Consultation Letters

370

Electron to Muon Conversion in Low-Energy Electron-Nucleus Scattering  

E-Print Network (OSTI)

We present an estimate of the electron to muon conversion cross section in fixed-target elastic electron scattering. The matrix element $$ is calculated analytically in two scenarios introducing suitable approximations. We consider on the one hand side the case of three light Dirac neutrinos with CKM-type leptonic mixing and on the other hand a typical see-saw scenario. We evaluate the coulombic contribution to the scattering cross section in the limit of vanishing energy transfer to the nucleus and, thus, obtain a realistic estimate for the total conversion cross section. Although we find that in the see-saw scenario the cross section can be enhanced by as much as twenty orders of magnitude in comparison to the Dirac case, it is still not experimentally accessible.

Kai-Peer O. Diener

2004-03-24T23:59:59.000Z

371

The magnesium silicide germanide stannide alloy: A new concept in ocean thermal energy conversion  

Science Conference Proceedings (OSTI)

In devices hitherto used for the direct conversion of heat into electricity, commonly known as ''thermoelectric energy converters'', the efficiency of conversion is appreciably lower than that of conventional reciprocating or rotary heat engines. This low efficiency is brought about by the physical properties of the materials selected for the manufacture of these devices. The materials that are currently being used for this purpose are either simple elements and alloys thereof, such as silicon and germanium, or intermetallic compounds, either simple or alloys and solid solutions thereof. Of the latter, mention may be made of bismuth telluride, antimony telluride, lead telluride, antimony silver telluride, lead selenide, bismuth selenide, antimony selenide, etc., as well as mixtures and solid solutions of these and other compounds. A search in respect of these materials carried out in the U.S. Patent literature indicates indeed a quite substantial and impressive record.

Nicolaou, M.C.

1983-12-01T23:59:59.000Z

372

Highly-Efficient Thermoelectronic Conversion of Solar Energy and Heat into Electric Power  

E-Print Network (OSTI)

Electric power may, in principle, be generated in a highly efficient manner from heat created by focused solar irradiation, chemical combustion, or nuclear decay by means of thermionic energy conversion. As the conversion efficiency of the thermionic process tends to be degraded by electron space charges, the efficiencies of thermionic generators have amounted to only a fraction of those fundamentally possible. We show that this space-charge problem can be resolved by shaping the electric potential distribution of the converter such that the static electron space-charge clouds are transformed into an output current. Although the technical development of practical generators will require further substantial efforts, we conclude that a highly efficient transformation of heat to electric power may well be achieved.

Meir, S; Geballe, T H; Mannhart, J

2013-01-01T23:59:59.000Z

373

Commercial application of thermionic conversion using a fusion reactor energy source. A preliminary assessment  

DOE Green Energy (OSTI)

A preliminary assessment of using thermionic conversion as a topping cycle for fusion reactors is presented. Because of the absence of restrictive temperature limitations for fusion-reactor blankets, fusion reactors may offer significant advantages, compared to fission reactors and fossil-fuel energy sources, for utilizing thermionic topping cycles. A system with a thermionic topping cycle and a conventional steam-turbine generator that utilizes the heat rejected by the thermionic converters is presented for illustration. This system consists of conceptual laser-fusion reactors with high-temperature radiating reactor blankets serving as heat sources for the thermionic topping cycle. The design concept appears to be equally adaptable to magnetically confined fusion reactors. For the example analyzed, net conversion efficiencies of combined thermionic and steam-turbine cycles are high, exceeding 50 percent for some values of the operating parameters, and the cost of producing low-voltage direct current for electrochemical processing is low.

Frank, T.G.; Kern, E.A.; Booth, L.A.

1977-01-01T23:59:59.000Z

374

Piezoelectric coupling in energy-harvesting fluttering flexible plates : linear stability analysis and conversion efficiency  

E-Print Network (OSTI)

This paper investigates the energy harvested from the flutter of a plate in an axial flow by making use of piezoelectric materials. The equations for fully-coupled linear dynamics of the fluid-solid and electrical systems are derived. The continuous limit is then considered, when the characteristic length of the plate's deformations is large compared to the piezoelectric patches' length. The linear stability analysis of the coupled system is addressed from both a local and global point of view. Piezoelectric energy harvesting adds rigidity and damping on the motion of the flexible plate, and destabilization by dissipation is observed for negative energy waves propagating in the medium. This result is confirmed in the global analysis of fluttering modes of a finite-length plate. It is finally observed that waves or modes destabilized by piezoelectric coupling maximize the energy conversion efficiency.

Doare, Olivier

2011-01-01T23:59:59.000Z

375

Exceeding the solar cell Shockley-Queisser limit via thermal up-conversion of low-energy photons  

E-Print Network (OSTI)

Maximum efficiency of ideal single-junction photovoltaic (PV) cells is limited to 33% (for one sun illumination) by intrinsic losses such as band edge thermalization, radiative recombination, and inability to absorb below-bandgap photons. This intrinsic thermodynamic limit, named after Shockley and Queisser (S-Q), can be exceeded by utilizing low-energy photons either via their electronic up-conversion or via thermophotovoltaic (TPV) conversion process. However, electronic up-conversion systems have extremely low efficiencies, and practical temperature considerations limit the operation of TPV converters to the narrow-gap PV cells. Here we develop a conceptual design of a hybrid TPV platform, which exploits thermal up-conversion of low-energy photons and is compatible with conventional silicon PV cells by using spectral and directional selectivity of the up-converter. The hybrid platform offers sunlight-to-electricity conversion efficiency exceeding that imposed by the S-Q limit on the corresponding PV cells ...

Boriskina, Svetlana V

2013-01-01T23:59:59.000Z

376

Research on the external fluid mechanics of ocean thermal energy conversion plants : report covering experiments in a current  

E-Print Network (OSTI)

This report describes a set of experiments in a physical model study to explore plume transport and recirculation potential for a range of generic Ocean Thermal Energy Conversion (OTEC) plant designs and ambient conditions. ...

Fry, David J.

1981-01-01T23:59:59.000Z

377

DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD JANUARY 1, 2002 THROUGH MARCH 31, 2002  

DOE Green Energy (OSTI)

Direct energy conversion is the only potential means for producing electrical energy from a fission reactor without the Carnot efficiency limitations. This project was undertaken by Sandia National Laboratories, Los Alamos National Laboratories, The University of Florida, Texas A&M University and General Atomics to explore the possibilities of direct energy conversion. Other means of producing electrical energy from a fission reactor, without any moving parts, are also within the statement of proposed work. This report documents the efforts of General Atomics. Sandia National Laboratories, the lead laboratory, provides overall project reporting and documentation. The highlights of this reporting period are: (1) Cooling of the vapor core reactor and the MHD generator was incorporated into the Vapor Core Reactor model using standard heat transfer calculation methods. (2) Fission product removal, previously modeled as independent systems for each class of fission product, was incorporated into the overall fuel recycle loop of the Vapor Core Reactor. The model showed that the circulating activity levels are quite low. (3) Material distribution calculations were made for the ''pom-pom'' style cathode for the Fission Electric Cell. Use of a pom-pom cathode will eliminate the problem of hoop stress in the thin spherical cathode caused by the electric field.

L.C. BROWN

2002-03-31T23:59:59.000Z

378

Design and cost of near-term OTEC (Ocean Thermal Energy Conversion) plants for the production of desalinated water and electric power. [Ocean Thermal Energy Conversion (OTEC)  

DOE Green Energy (OSTI)

There currently is an increasing need for both potable water and power for many islands in the Pacific and Caribbean. The Ocean Thermal Energy Conversion (OTEC) technology fills these needs and is a viable option because of the unlimited supply of ocean thermal energy for the production of both desalinated water and electricity. The OTEC plant design must be flexible to meet the product-mix demands that can be very different from site to site. This paper describes different OTEC plants that can supply various mixes of desalinated water and vapor -- the extremes being either all water and no power or no water and all power. The economics for these plants are also presented. The same flow rates and pipe sizes for both the warm and cold seawater streams are used for different plant designs. The OTEC plant designs are characterized as near-term because no major technical issues need to be resolved or demonstrated. The plant concepts are based on DOE-sponsored experiments dealing with power systems, advanced heat exchanger designs, corrosion and fouling of heat exchange surfaces, and flash evaporation and moisture removal from the vapor using multiple spouts. In addition, the mature multistage flash evaporator technology is incorporated into the plant designs were appropriate. For the supply and discharge warm and cold uncertainties do exist because the required pipe sizes are larger than the maximum currently deployed -- 40-inch high-density polyethylene pipe at Keahole Point in Hawaii. 30 refs., 6 figs., 8 tabs.

Rabas, T.; Panchal, C.; Genens, L.

1990-01-01T23:59:59.000Z

379

Theoretical thermodynamic analysis of a closed-cycle process for the conversion of heat into electrical energy  

E-Print Network (OSTI)

into electrical energy by means of a distiller and an electrochemical cell. A. Caratia , M. Marinoa , D. Brogiolib) Abstract We analyse a device aimed at the conversion of heat into electrical energy, based on a closed with different concentrations can be tapped and converted into electrical energy, e.g. by means

Carati, Andrea

380

Selected legal and institutional issues related to Ocean Thermal Energy Conversion (OTEC) development  

DOE Green Energy (OSTI)

Ocean Thermal Energy Conversion (OTEC), an attractive alternative to traditional energy sources, is still in the early stages of development. To facilitate OTEC commercialization, it is essential that a legal and institutional framework be designed now so as to resolve uncertainties related to OTEC development, primarily involving jurisdictional, regulatory, and environmental issues. The jurisdictional issues raised by OTEC use are dependent upon the site of an OTEC facility and its configuration; i.e., whether the plant is a semipermanent fixture located offshore or a migrating plant ship that provides a source of energy for industry at sea. These issues primarily involve the division of authority between the Federal Government and the individual coastal states. The regulatory issues raised are largely speculative: they involve the adaptation of existing mechanisms to OTEC operation. Finally, the environmental issues raised center around compliance with the National Environmental Policy Act (NEPA) as well as international agreements. 288 references.

Nanda, V. P.

1979-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal-to-electrical energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

SOLID STATE ENERGY CONVERSION ALLIANCE (SECA) SOLID OXIDE FUEL CELL PROGRAM  

DOE Green Energy (OSTI)

This report summarizes the work performed for April 2003--September 2003 reporting period under Cooperative Agreement DE-FC26-01NT41245 for the U.S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid State Energy Conversion Alliance (SECA) Solid oxide Fuel Cell Program''. During this reporting period, the conceptual system design activity was completed. The system design, including strategies for startup, normal operation and shutdown, was defined. Sealant and stack materials for the solid oxide fuel cell (SOFC) stack were identified which are capable of meeting the thermal cycling and degradation requirements. A cell module was tested which achieved a stable performance of 0.238 W/cm{sup 2} at 95% fuel utilization. The external fuel processor design was completed and fabrication begun. Several other advances were made on various aspects of the SOFC system, which are detailed in this report.

Nguyen Minh; Jim Powers

2003-10-01T23:59:59.000Z

382

A FRAMEWORK FOR ASSESSING THE RELIABILITY OF WIND ENERGY CONVERSION SYSTEMS  

E-Print Network (OSTI)

During the last decade, wind power generation has seen rapid development. According to the U.S. Department of Energy, achieving 20 % wind power penetration in the U.S. by 2030 will require: (i) enhancement of the transmission infrastructure, (ii) improvement of reliability and operability of wind systems and (iii) increased U.S. manufacturing capacity of wind generation equipment. This research will concentrate on improvement of reliability and operability of wind energy conversion systems (WECSs). The increased penetration of wind energy into the grid imposes new operating conditions on power systems. This change requires development of an adequate reliability framework. This thesis proposes a framework for assessing WECS reliability in the face of external disturbances, e.g., grid faults and internal component faults. The framework is illustrated using a detailed model of type C WECS- doubly fed induction generator with corresponding deterministic and random variables in a simplified grid model. Fault parameters and performance requirements essential to

Sebastian S?awomir Smater

2009-01-01T23:59:59.000Z

383

SOLID STATE ENERGY CONVERSION ALLIANCE (SECA) SOLID OXIDE FUEL CELL PROGRAM  

DOE Green Energy (OSTI)

This report summarizes the progress made during the September 2001-March 2002 reporting period under Cooperative Agreement DE-FC26-01NT41245 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program''. The program focuses on the development of a low-cost, high-performance 3-to-10-kW solid oxide fuel cell (SOFC) system suitable for a broad spectrum of power-generation applications. The overall objective of the program is to demonstrate a modular SOFC system that can be configured to create highly efficient, cost-competitive, and environmentally benign power plants tailored to specific markets. When fully developed, the system will meet the efficiency, performance, life, and cost goals for future commercial power plants.

Unknown

2003-06-01T23:59:59.000Z

384

GEOTEC (Geothermal-Enhanced Ocean Thermal Energy Conversion) engineering concept study  

DOE Green Energy (OSTI)

The project was to provide a conceptual design for a modular state-of-the-art geothermal-enhanced ocean thermal energy conversion (GEOTEC) plant for implementation at a Navy site on Adak Island, Alaska. This report includes the following appendices: (1) statement of work; (2) geothermal resource assessment; (3) assessment of environmental issues; (4) design optimization program formulations for GEOTEC; (5) calculation of geofluid temperature drop in brine collection system; (6) pressure losses and pumping requirements for seawater pipeline system; (7) geocost comparison of single and dual binary cycle systems; (8) description of seawater pipeline system; and (9) plant system installed cost estimates. (ACR)

Not Available

1984-03-01T23:59:59.000Z

385

Kinematic Stirling engine as an energy conversion subsystem for paraboloidal dish solar thermal power plants  

DOE Green Energy (OSTI)

The potential of a suitably designed and economically manufactured Stirling engine as the energy conversion subsystem of a paraboloidal dish-Stirling solar thermal power module has been estimated. Results obtained by elementary cycle analyses have been shown to match quite well the performance characteristics of an advanced kinematic Stirling engine, the United Stirling P-40, as established by current prototypes of the engine and by a more sophisticated analytic model of its advanced derivative. In addition to performance, brief consideration has been given to other Stirling engine criteria such as durability, reliability, and serviceability. Production costs have not been considered here.

Bowyer, J.M.

1984-04-15T23:59:59.000Z

386

Lapped substrate for enhanced backsurface reflectivity in a thermophotovoltaic energy conversion system  

DOE Patents (OSTI)

A method is described for fabricating a thermophotovoltaic energy conversion cell including a thin semiconductor wafer substrate having a thickness ({beta}) calculated to decrease the free carrier absorption on a heavily doped substrate; wherein the top surface of the semiconductor wafer substrate is provided with a thermophotovoltaic device, a metallized grid and optionally an antireflective (AR) overcoating; and, the bottom surface (10 ft) of the semiconductor wafer substrate is provided with a highly reflecting coating which may comprise a metal coating or a combined dielectric/metal coating.

Baldasaro, P.F.; Brown, E.J.; Charache, G.W.; DePoy, D.M.

1996-12-31T23:59:59.000Z

387

Electric utility application of wind energy conversion systems on the island of Oahu  

DOE Green Energy (OSTI)

The objective of this study was to assess the potential for the application of Wind Energy Conversion Systems (a field of interconnected WTGs denoted in this report by the acronym WECS) in a specific utility contest to gain advance information concerning their economic feasibility; their optional problems; the criteria and procedures for site selection; environmental impacts; legal, social, and other problems; and the balance of cost and benefits from the point of view of the consumer and the utility. This study addresses the circumstances of the Hawaiian Electric Company operations onthe Island of Oahu.

Lindley, C.A.; Melton, W.C.

1979-02-23T23:59:59.000Z

388

Lapped substrate for enhanced backsurface reflectivity in a thermophotovoltaic energy conversion system  

DOE Patents (OSTI)

A method for fabricating a thermophotovoltaic energy conversion cell including a thin semiconductor wafer substrate (10) having a thickness (.beta.) calculated to decrease the free carrier absorption on a heavily doped substrate; wherein the top surface of the semiconductor wafer substrate is provided with a thermophotovoltaic device (11), a metallized grid (12) and optionally an antireflective (AR) overcoating; and, the bottom surface (10') of the semiconductor wafer substrate (10) is provided with a highly reflecting coating which may comprise a metal coating (14) or a combined dielectric/metal coating (17).

Baldasaro, Paul F (Clifton Park, NY); Brown, Edward J (Clifton Park, NY); Charache, Greg W (Clifton Park, NY); DePoy, David M (Clifton Park, NY)

2000-01-01T23:59:59.000Z

389

Conversion Tables  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Information Analysis Center - Conversion Tables Carbon Dioxide Information Analysis Center - Conversion Tables Contents taken from Glossary: Carbon Dioxide and Climate, 1990. ORNL/CDIAC-39, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee. Third Edition. Edited by: Fred O'Hara Jr. 1 - International System of Units (SI) Prefixes 2 - Useful Quantities in CO2 3 - Common Conversion Factors 4 - Common Energy Unit Conversion Factors 5 - Geologic Time Scales 6 - Factors and Units for Calculating Annual CO2 Emissions Using Global Fuel Production Data Table 1. International System of Units (SI) Prefixes Prefix SI Symbol Multiplication Factor exa E 1018 peta P 1015 tera T 1012 giga G 109 mega M 106 kilo k 103 hecto h 102 deka da 10 deci d 10-1 centi c 10-2

390

STATEMENT OF CONSIDERATIONS REQUEST BY ENERGY CONVERSION DEVICES, INC. FOR AN ADVANCE WAIVER OF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31 2005 09:36 FR IPL. DOE CH 630 252 2779 TO flGCP-HQ P.02/05 31 2005 09:36 FR IPL. DOE CH 630 252 2779 TO flGCP-HQ P.02/05 * * STATEMENT OF CONSIDERATIONS REQUEST BY ENERGY CONVERSION DEVICES, INC. FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC26-04NT42060; W(A)-04-026; CH-1195 The Petitioner, Energy Conversion Devices, Inc. (ECD) was awarded this cooperative agreement for the performance of work entitled, "Clean Hydrogen Technology for 3-Wheel Transportation in India." The purpose of the cooperative agreement is to develop and demonstrate a hydrogen/internal combustion engine (ICE) three-wheeled vehicle for use in India and other developing countries. The vehicle will be fueled with on-board hydrogen carried in proprietary Ovonic® hydrogen storage systems. ECD will work with a major Indian automotive company, Bajaj

391

Novel Solar Energy Conversion Materials by Design of Mn(II) Oxides  

Science Conference Proceedings (OSTI)

Solar energy conversion materials need to fulfill simultaneously a number of requirements in regard of their band-structure, optical properties, carrier transport, and doping. Despite their desirable chemical properties, e.g., for photo-electrocatalysis, transition-metal oxides usually do not have desirable semiconducting properties. Instead, oxides with open cation d-shells are typically Mott or charge-transfer insulators with notoriously poor transport properties, resulting from large effective electron/hole masses or from carrier self-trapping. Based on the notion that the electronic structure features (p-d interaction) supporting the p-type conductivity in d10 oxides like Cu2O and CuAlO2 occurs in a similar fashion also in the d5 (high-spin) oxides, we recently studied theoretically the band-structure and transport properties of the prototypical binary d5 oxides MnO and Fe2O3 [PRB 85, 201202(R)]. We found that MnO tends to self-trap holes by forming Mn+III, whereas Fe2O3 self-traps electrons by forming Fe+II. However, the self-trapping of holes is suppressed by when Mn is tetrahedrally coordinated, which suggests specific routes to design novel solar conversion materials by considering ternary Mn(II) oxides or oxide alloys. We are presenting theory, synthesis, and initial characterization for these novel energy materials.

Lany, S.; Peng, H.; Ndione, P.; Zakutayev, A.; Ginley, D. S.

2013-01-01T23:59:59.000Z

392

Use of a Conversational Computer Program in Operator Training for Improved Energy Efficiency  

E-Print Network (OSTI)

Energy efficient operation of process equipment requires attentive operation by well-trained personnel. Use of a computer simulation model together with a conversational computer program, which provides dynamic game playing opportunities for the trainee, has proven a very effective training tool. The programs have been used in plants and refineries, and they demonstrate the ability to develop rapidly within the Operator Trainee a real understanding of the variables affecting process performance. Experience with a furnace firing computer training program is described. Using a time-share computer terminal, the Operator participates in a conversational training experience in which he is taught startup, routine operation, and to cope with operating problems on a gas and/or oil fired process furnace. Specific operator-oriented problems are encountered and solved by making control adjustments in the simulator program which has been developed. In using the program, the trainee is challenged to achieve or exceed firing efficiency goals set for the furnace. A variety of operating conditions are presented. As an extension of the success experienced with the furnace program, a new program has been developed simulating a crude oil distillation unit. The Distillation Column Operator training program is designed to facilitate an understanding of distillation principles and the effect on energy efficiency for the various product quality and yields achieved. The results of Operator acceptance of these programs is that a wider application of the principle's computer simulator training to other industry processes is warranted.

Brickman, S. W.; Mergens, E. H.

1980-01-01T23:59:59.000Z

393

LDRD final report : energy conversion using chromophore-functionalized carbon nanotubes.  

SciTech Connect

With the goal of studying the conversion of optical energy to electrical energy at the nanoscale, we developed and tested devices based on single-walled carbon nanotubes functionalized with azobenzene chromophores, where the chromophores serve as photoabsorbers and the nanotube as the electronic read-out. By synthesizing chromophores with specific absorption windows in the visible spectrum and anchoring them to the nanotube surface, we demonstrated the controlled detection of visible light of low intensity in narrow ranges of wavelengths. Our measurements suggested that upon photoabsorption, the chromophores isomerize to give a large change in dipole moment, changing the electrostatic environment of the nanotube. All-electron ab initio calculations were used to study the chromophore-nanotube hybrids, and show that the chromophores bind strongly to the nanotubes without disturbing the electronic structure of either species. Calculated values of the dipole moments supported the notion of dipole changes as the optical detection mechanism.

Vance, Andrew L.; Zifer, Thomas; Zhou, Xinjian; Leonard, Francois Leonard; Wong, Bryan Matthew; Kane, Alexander; Katzenmeyer, Aaron Michael; Krafcik, Karen Lee

2010-09-01T23:59:59.000Z

394

In-situ biofouling of ocean thermal energy conversion (OTEC) evaporator tubes  

Science Conference Proceedings (OSTI)

The Puerto Rico Center for Energy and Environmental Research equipped a LCU facility in 1100 m of water near Punta Tuna, Puerto Rico to measure in situ biofouling of simulated Ocean Thermal Energy Conversion evaporator tubes. The system consisted of two 5052 aluminum alloy and two titanium tubes, through which a continuous flow of ocean water was maintained. The tubes were cleaned three times and the fouling resistance was measured, showing only slight differences between the tubes with respect to heat transfer loss resulting from biofouling. In all units, the average fouling rate after cleaning was greater than before cleaning, and only after the first cleaning did the aluminum units show greater fouling rates than did the titanium. The titanium units showed a progressive increase in the fouling rates with each cleaning. The subsequent average fouling rates for all units after eight months were between 4 and 4.6 x 0.000010 sq m-k/W-day.

Sasscer, D.S. (Univ. of Puerto Rico, Mayaguez); Morgan, T. (Argonne National Lab., IL)

1981-05-01T23:59:59.000Z

395

Corrosion and biofouling on the non-heat-exchanger surfaces of an ocean thermal energy conversion power plant: a survey  

DOE Green Energy (OSTI)

Of the many foreseeable problems confronting economical ocean thermal energy conversion operation, two major items are the deterioration of the structural and functional components, which prevents efficient operation, and the biofouling of the surfaces, which adds excess weight to the floating ocean platform. The techniques required for effective long-term control of deterioration and corrosion have been investigated actively for many years, and successful solutions for most situations have been developed. For the most part, these solutions can be directly transferred to the ocean thermal energy conversion plant. The majority of problems in these areas are expected to be associated with scale-up and will require some advanced development due to the immensity of the ocean thermal energy conversion platform. Current antifouling control systems are not effective for long-term fouling prevention. Commercially available antifouling coatings are limited to a 3-year service life in temperate waters, and even shorter in tropical waters. However, underwater cleaning techniques and some fouling-control systems presently being used by conventional power plants may find utility on an ocean thermal energy conversion plant. In addition, some recent major advances in long-term antifouling coatings sponsored by the Navy may be applicable to ocean thermal energy conversion. 132 references.

Castelli, V.J. (ed.)

1979-05-01T23:59:59.000Z

396

The Geopressured-Geothermal Program: Energy conversion status and future possibilities  

DOE Green Energy (OSTI)

The Geopressured-Geothermal Program, sponsored by the Department of Energy (DOE) began in 1976 with the Wells of Opportunity. This early research concentrated on resource characterization at several locations in Texas and Louisiana. More recently, the program has included well operations and supporting university research in geoscience and engineering. Long term flow testing, reinjection of brine, and scale prevention were accomplished at the Gladys McCall Well. The Pleasant Bayou Well provided additional data for modeling and predicting geopressured reservoir behavior. This year a hybrid power system (HPS) was constructed at Pleasant Bayou in cooperation with the Electric Power Research Institute (EPRI). This is the first conversion of the geopressured-geothermal resource to electricity. An economic review of geopressured-geothermal resource development concludes that using off-the-shelf technology, electricity can be produced for $0.125/kWh from a Gladys McCall type resource (40,000 bpd brine production, 27 scf methane/bbl, 288{degree}F brine, and 10-year resource life). The Pleasant Bayou type resource can produce electricity for $0.32/kWh. Advanced technology could reduce the cost to $0.16/kWh. A review and status of the HPS is presented with future possibilities for the program, including (1) recovery of medium and heavy oil with hot geopressured brine, (2) direct use, especially aquaculture, and (3) development and use of advanced technology for conversion at the Hulin Well, the deepest, hottest well in the program. The estimated improvement in efficiencies with advanced conversion technology range from 100 to 160%. This would greatly reduce the cost to produce electricity. 6 refs., 7 figs., 2 tabs.

Negus-de Wys, J.; Lawford, T.W.; Faulder, D.D. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1989-01-01T23:59:59.000Z

397

Advanced thermionic energy conversion. Joint highlights and status report, April-June 1979  

DOE Green Energy (OSTI)

The DOE portion of the effort at Rasor Associates is directed primarily toward terrestrial applications of thermionic energy conversion. It focuses on the development of converters suitable for use with fossil fueled heat sources in power plants. The NASA program is directed at establishing the technical feasibility of an advanced light-weight long-life thermionic conversion system compatible with a remote nuclear or solar heat source. The principal application forseen at this time is in nuclear electric propulsion (NEP) missions in the mid-1990's. Significant accomplishments for the three month period include: (1) devised a blade-type distributed lead design with many advantages compared to the stud-type distributed lead; (2) completed design of Marchuk tube test apparatus; (3) concluded, based on current understanding, that residual hydrogen should not contribute to a negative space charge barrier at the collector; (4) modified THX design program to include series-coupled designs as well as inductively-coupled designs; (5) initiated work on the heat transfer technology, THX test module, output power transfer system, heat transfer system, and conceptual plant design tasks; and (6) reached 2200 hours of operation in JPL-5 cylindrical converter envelope test. (WHK)

Not Available

1979-01-01T23:59:59.000Z

398

Potential effects of geothermal energy conversion on Imperial Valley ecosystems. [Seven workshop presentations  

DOE Green Energy (OSTI)

This workshop on potential effcts of geothermal energy conversion on the ecology of Imperial Valley brought together personnel of Lawrence Livermore Laboratory and many collaborators under the sponsorship of the ERDA Imperial Valley Environmental Project (IVEP). The LLL Integrated Assessment Team identified the electric power potential and its associated effluents, discharges, subsidence, water requirements, land use, and noise. The Working Groups addressed the ecological problems. Water resource management problems include forces on water use, irrigation methods and water use for crops, water production, and water allocation. Agricultural problems are the contamination of edible crops and the reclamation of soil. A strategy is discussed for predevelopment baseline data and for identification of source term tracers. Wildlife resources might be threatened by habitat destruction, powerline impacts, noise and disturbance effects, gas emissions, and secondary impacts such as population pressure. Aquatic ecosystems in both the Salton Sea and fresh waters have potential hazards of salinity and trace metal effects, as well as existing stresses; baseline and bioassay studies are discussed. Problems from air pollution resulting from geothermal resource development might occur, particularly to vegetation and pollinator insects. Conversion of injury data to predicted economic damage isneeded. Finally, Imperial Valley desert ecosystems might be threatened by destruction of habitat and the possible effects on community structure such as those resulting from brine spills.

Shinn, J.H. (ed.)

1976-12-17T23:59:59.000Z

399

Applied research on energy storage and conversion for photovoltaic and wind energy systems. Volume II. Photovoltaic systems with energy storage. Final report  

DOE Green Energy (OSTI)

This volume of the General Electric study was directed at an evaluation of those energy storage technologies deemed best suited for use in conjunction with a photovoltaic energy conversion system in utility, residential and intermediate applications. Break-even cost goals are developed for several storage technologies in each application. These break-even costs are then compared with cost projections presented in Volume I of this report to show technologies and time frames of potential economic viability. The form of the presentation allows the reader to use more accurate storage system cost data as they become available. The report summarizes the investigations performed and presents the results, conclusions and recommendations pertaining to use of energy storage with photovoltaic energy conversion systems. Candidate storage concepts studied include (1) above ground and underground pumped hydro, (2) underground compressed air, (3) electric batteries, (4) flywheels, and (5) hydrogen production and storage. (WHK)

Not Available

1978-01-01T23:59:59.000Z

400

General reliability and safety methodology and its application to wind energy conversion systems  

DOE Green Energy (OSTI)

In conventional system reliability calculations, each component may be in the Operable state or the Under Repair state. These calculations derive system unavailability, or the probability of the system's being down for repairs. By introducing a third component state between Operable and Under Repair - namely, Defective, But Defect Undetected - the methods developed in this report enable system safety projections to be made in addition to availability projections. Also provided is a mechanism for computing the effect of inspection schedules on both safety and availability. A Reliability and Safety Program (RASP) is detailed which performs these computations and also calculates costs for system inspections and repairs. RASP is applied to a simplified wind energy conversion system example.

Edesess, M.; McConnell, R. D.

1979-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal-to-electrical energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Resonant high energy graviton to photon conversion at post recombination epoch  

E-Print Network (OSTI)

Resonant conversion of high energy gravitons into photons in large scale cosmological magnetic fields at the post recombination epoch is considered. It is shown that the probability of the resonance photon production is much higher than the non-resonant one. As a result an observable isotropic background of cosmic gamma rays might be created. As shown in our previous paper, an early population of primordial black holes (PBHs) prior to big bang nucleosynthesis (BBN) could be an efficient source of high frequency gravitational waves. For the primordial black hole mass about $10^8$ g the produced photons would be the dominant component of the soft to hard Cosmic X-ray Background (CXB) and for lower masses the spectrum is shifted down to the ultraviolet and optic.

Alexander D. Dolgov; Damian Ejlli

2013-03-06T23:59:59.000Z

402

Optimizing conversion efficiency and reducing ion energy in a laser-produced Gd plasma  

Science Conference Proceedings (OSTI)

We have demonstrated an efficient extreme ultraviolet (EUV) source at 6.7 nm by irradiating Gd targets with 0.8 and 1.06 {mu}m laser pulses of 140 fs to 10 ns duration. Maximum conversion efficiency of 0.4% was observed within a 0.6% bandwidth. A Faraday cup observed ion yield and time of flight signals for ions from plasmas generated by each laser. Ion kinetic energy was lower for shorter pulse durations, which yielded higher electron temperatures required for efficient EUV emission, due to higher laser intensity. Picosecond laser pulses were found to be the best suited to 6.7 nm EUV source generation.

Cummins, Thomas; Li Bowen; O'Gorman, Colm; Dunne, Padraig; Sokell, Emma; O'Sullivan, Gerry [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Otsuka, Takamitsu [Department of Advanced Interdisciplinary Sciences, Center for Optical Research and Education (CORE), and Optical Technology Innovation Center (OpTIC), Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Yugami, Noboru; Higashiguchi, Takeshi [Department of Advanced Interdisciplinary Sciences, Center for Optical Research and Education (CORE), and Optical Technology Innovation Center (OpTIC), Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Japan Science and Technology Agency, CREST, 4-1-8 Honcho, Kanagawa, Saitama 332-0012 (Japan); Jiang Weihua [Department of Electrical Engineering, Nagaoka University of Technology, Kami-tomiokamachi 1603-1, Nagaoka, Niigata 940-2188 (Japan); Endo, Akira [Research Institute for Science and Engineering, Waseda University, Okubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan)

2012-02-06T23:59:59.000Z

403

Ocean Thermal Energy Conversion (OTEC) Program. Volume 1. Preoperatinal ocean test platform  

DOE Green Energy (OSTI)

An environmental impact assessment for the field test of the first preoperational Ocean Thermal Energy Conversion, referred to as OTEC-1, is presented. The conceptual design of OTEC-1 is described, and the existing environments at the four OTEC-1 study sites (Punta Tuna, Keahole Point, offshore New Orleans, and offshore Tampa) are discussed. The environmental impacts considered include organism impingement, organism entrainment, ocean water mixing, metallic ion release, chlorine release, ammonia leakage, oil release, and platform attraction. The development of a risk assessment model for credible accidents at OTEC-1 is discussed. Also, the federal and state legal, safety, and health policies pertinent to OTEC-1 are presented. A glossary is included. (WHK)

Not Available

1979-03-01T23:59:59.000Z

404

Fundamental Studies of Charge Migration and Delocalization Relevant to Solar Energy Conversion  

DOE Green Energy (OSTI)

This program aimed to understand the molecular-level principles by which complex chemical systems carry out photochemical charge separation, transport, and storage, and how these insights could impact the design of practical solar energy conversion and storage devices. Towards these goals, this program focused on: (1) carrying out fundamental mechanistic and transient dynamical studies of proton-coupled electron-transfer (PCET) reactions; (2) characterizing and interrogating via electron paramagnetic resonance (EPR) spectroscopic methods novel conjugated materials that feature large charge delocalization lengths; and (3) exploring excitation delocalization and migration, as well as polaron transport properties of meso-scale assemblies that are capable of segregating light-harvesting antennae, nanoscale wire-like conduction elements, and distinct oxidizing and reducing environments.

Michael J. Therien

2012-06-01T23:59:59.000Z

405

Graphene-based photovoltaic cells for near-field thermal energy conversion  

E-Print Network (OSTI)

Thermophotovoltaic devices are energy-conversion systems generating an electric current from the thermal photons radiated by a hot body. In far field, the efficiency of these systems is limited by the thermodynamic Schockley-Queisser limit corresponding to the case where the source is a black body. On the other hand, in near field, the heat flux which can be transferred to a photovoltaic cell can be several orders of magnitude larger because of the contribution of evanescent photons. This is particularly true when the source supports surface polaritons. Unfortunately, in the infrared where these systems operate, the mismatch between the surface-mode frequency and the semiconductor gap reduces drastically the potential of this technology. Here we show that graphene-based hybrid photovoltaic cells can significantly enhance the generated power paving the way to a promising technology for an intensive production of electricity from waste heat.

Riccardo Messina; Philippe Ben-Abdallah

2012-07-05T23:59:59.000Z

406

Wind energy conversion. Volume X. Aeroelastic stability of wind turbine rotor blades  

DOE Green Energy (OSTI)

The nonlinear equations of motion of a general wind turbine rotor blade are derived from first principles. The twisted, tapered blade may be preconed out of the plane of rotation, and its root may be offset from the axis of rotation by a small amount. The aerodynamic center, center of mass, shear center, and area centroid are distinct in this derivation. The equations are applicable to studies of forced response or of aeroelastic flutter, however, neither gravity forcing, nor wind shear and gust forcing are included. The equations derived are applied to study the aeroelastic stability of the NASA-ERDA 100 kW wind turbine, and solved using the Galerkin method. The numerical results are used in conjunction with a mathematical comparison to prove the validity of an equivalent hinge model developed by the Wind Energy Conversion Project at the Massachusetts Institute of Technology.

Wendell, J.

1978-09-01T23:59:59.000Z

407

Deep water pipe, pump, and mooring study: Ocean Thermal Energy Conversion program. Final report  

DOE Green Energy (OSTI)

The ocean engineering issues affecting the design, construction, deployment, and operation of Ocean Thermal Energy Conversion (OTEC) power plants are of key importance. This study addressed the problems associated with the conceptual design of the deep-water pipe, cold-water-pumping, and platform mooring arrangements. These subsystems fall into a natural grouping since the parameters affecting their design are closely related to each other and to the ocean environment. Analysis and evaluations are provided with a view toward judging the impact of the various subsystems on the overall plant concept and to provide an estimate of material and construction cost. Parametric data is provided that describes mooring line configurations, mooring line loads, cold water pipe configurations, and cold water pumping schemes. Selected parameters, issues, and evaluation criteria are used to judge the merits of candidate concepts over a range of OTEC plant size from 100 MWe to 1000 MWe net output power.

Little, T.E.; Marks, J.D.; Wellman, K.H.

1976-06-01T23:59:59.000Z

408

Join The Conversation: Apps for Energy Twitter Q&A with U.S. CTO Todd Park  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Join The Conversation: Apps for Energy Twitter Q&A with U.S. CTO Join The Conversation: Apps for Energy Twitter Q&A with U.S. CTO Todd Park Join The Conversation: Apps for Energy Twitter Q&A with U.S. CTO Todd Park April 16, 2012 - 9:15am Q&A Submit your Apps for Energy Twitter Q&A questions for U.S. CTO Todd Park Ask Us Addthis Join our Apps for Energy Twitter Q&A Today (@ENERGY) at 2 PM EDT by following the hashtag #appsforenergy. Join our Apps for Energy Twitter Q&A Today (@ENERGY) at 2 PM EDT by following the hashtag #appsforenergy. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs How can I participate? Join us for a live Twitter Q&A (@Energy) this Tuesday, April 17, at 2 PM EDT Submit questions now using hashtag #appsforenergy Have questions about Apps for Energy? Want to know more about government

409

ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM  

E-Print Network (OSTI)

W.R. (May 1977), Wind Energy tics for Large Arrays Statis-land-use related permits. Wind Energy Report (May 1981) p.2.R. Cappelli, B. Dawley, I. Wind Energy Conversion System

Kay, J.

2009-01-01T23:59:59.000Z

410

Sustainable Energy Science and Engineering Center EML 4930/EML 5930 Sustainable Energy Conversion  

E-Print Network (OSTI)

-thermal systems 7. Hydrogen production 8. Energy storage 9. Hydrogen handling & safety 10. Hydrogen use - fuel for distributed applications. The use of photovoltaics, electrolytic hydrogen production and storage, fuel cells cells 11. Hydrogen based transportation 12. Socio-economic assessment of solar-hydrogen energy supply

Krothapalli, Anjaneyulu

411

Recovery Act: Integrated DC-DC Conversion for Energy-Efficient Multicore Processors  

SciTech Connect

In this project, we have developed the use of thin-film magnetic materials to improve in energy efficiency of digital computing applications by enabling integrated dc-dc power conversion and management with on-chip power inductors. Integrated voltage regulators also enables fine-grained power management, by providing dynamic scaling of the supply voltage in concert with the clock frequency of synchronous logic to throttle power consumption at periods of low computational demand. The voltage converter generates lower output voltages during periods of low computational performance requirements and higher output voltages during periods of high computational performance requirements. Implementation of integrated power conversion requires high-capacity energy storage devices, which are generally not available in traditional semiconductor processes. We achieve this with integration of thin-film magnetic materials into a conventional complementary metal-oxide-semiconductor (CMOS) process for high-quality on-chip power inductors. This project includes a body of work conducted to develop integrated switch-mode voltage regulators with thin-film magnetic power inductors. Soft-magnetic materials and inductor topologies are selected and optimized, with intent to maximize efficiency and current density of the integrated regulators. A custom integrated circuit (IC) is designed and fabricated in 45-nm CMOS silicon-on-insulator (SOI) to provide the control system and power-train necessary to drive the power inductors, in addition to providing a digital load for the converter. A silicon interposer is designed and fabricated in collaboration with IBM Research to integrate custom power inductors by chip stacking with the 45-nm CMOS integrated circuit, enabling power conversion with current density greater than 10A/mm2. The concepts and designs developed from this work enable significant improvements in performance-per-watt of future microprocessors in servers, desktops, and mobile devices. These new approaches to scaled voltage regulation for computing devices also promise significant impact on electricity consumption in the United States and abroad by improving the efficiency of all computational platforms. In 2006, servers and datacenters in the United States consumed an estimated 61 billion kWh or about 1.5% of the nation's total energy consumption. Federal Government servers and data centers alone accounted for about 10 billion kWh, for a total annual energy cost of about $450 million. Based upon market growth and efficiency trends, estimates place current server and datacenter power consumption at nearly 85 billion kWh in the US and at almost 280 billion kWh worldwide. Similar estimates place national desktop, mobile and portable computing at 80 billion kWh combined. While national electricity utilization for computation amounts to only 4% of current usage, it is growing at a rate of about 10% a year with volume servers representing one of the largest growth segments due to the increasing utilization of cloud-based services. The percentage of power that is consumed by the processor in a server varies but can be as much as 30% of the total power utilization, with an additional 50% associated with heat removal. The approaches considered here should allow energy efficiency gains as high as 30% in processors for all computing platforms, from high-end servers to smart phones, resulting in a direct annual energy savings of almost 15 billion kWh nationally, and 50 billion kWh globally. The work developed here is being commercialized by the start-up venture, Ferric Semiconductor, which has already secured two Phase I SBIR grants to bring these technologies to the marketplace.

Shepard, Kenneth L

2013-03-31T23:59:59.000Z

412

Direct energy conversion in fission reactors: A U.S. NERI project  

DOE Green Energy (OSTI)

In principle, the energy released by a fission can be converted directly into electricity by using the charged fission fragments. The first theoretical treatment of direct energy conversion (DEC) appeared in the literature in 1957. Experiments were conducted over the next ten years, which identified a number of problem areas. Research declined by the late 1960's due to technical challenges that limited performance. Under the Nuclear Energy Research Initiative the authors are determining if these technical challenges can be overcome with todays technology. The authors present the basic principles of DEC reactors, review previous research, discuss problem areas in detail, and identify technological developments of the last 30 years that can overcome these obstacles. As an example, the fission electric cell must be insulated to avoid electrons crossing the cell. This insulation could be provided by a magnetic field as attempted in the early experiments. However, from work on magnetically insulated ion diodes they know how to significantly improve the field geometry. Finally, a prognosis for future development of DEC reactors will be presented .

SLUTZ,STEPHEN A.; SEIDEL,DAVID B.; POLANSKY,GARY F.; ROCHAU,GARY E.; LIPINSKI,RONALD J.; BESENBRUCH,G.; BROWN,L.C.; PARISH,T.A.; ANGHAIE,S.; BELLER,D.E.

2000-05-30T23:59:59.000Z

413

Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program  

DOE Green Energy (OSTI)

This report summarizes the work performed for Phase I (October 2001 - August 2006) under Cooperative Agreement DE-FC26-01NT41245 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled 'Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program'. The program focuses on the development of a low-cost, high-performance 3-to-10-kW solid oxide fuel cell (SOFC) system suitable for a broad spectrum of power-generation applications. During Phase I of the program significant progress has been made in the area of SOFC technology. A high-efficiency low-cost system was designed and supporting technology developed such as fuel processing, controls, thermal management, and power electronics. Phase I culminated in the successful demonstration of a prototype system that achieved a peak efficiency of 41%, a high-volume cost of $724/kW, a peak power of 5.4 kW, and a degradation rate of 1.8% per 500 hours. . An improved prototype system was designed, assembled, and delivered to DOE/NETL at the end of the program. This prototype achieved an extraordinary peak efficiency of 49.6%.

Nguyen Minh

2006-07-31T23:59:59.000Z

414

Thermal Conductivity Measurements of Thermoelectric Films  

Science Conference Proceedings (OSTI)

... which allow solid-state conversion of thermal to electrical energy, have a ... and exhaust system, which can run either an electric motor or accessories ...

2013-03-15T23:59:59.000Z

415

Mission analysis of photovoltaic solar energy conversion. Volume I. Executive summary  

DOE Green Energy (OSTI)

An investigation of terrestrial applications for the photovoltaic conversion of solar energy is summarized. The specific objectives of the study were: (a) to survey and evaluate near-term (1976--1985) civilian photovoltaic applications in the United States; (b) to evaluate the most promising major missions for the mid-term period (1986--2000) and to determine the conditions under which photovoltaic technology can compete in those applications at array prices consistent with ERDA goals; (c) to address critical external issues and identify the sensitivity of photovoltaic system technical requirements to such factors; and (d) to quantify the societal costs of alternative energy sources and identify equalizing incentives. The study was divided into six separate but interrelated tasks: Task 1, Analysis of Near-Term Applications; Task 2, Analysis of Major Mid-Term Missions; Task 3, Review and Updating of the ERDA Technology Implementation Plan; Task 4, Critical External Issues; Task 5, The Impact of Incentives; and Task 6, The Societal Costs of Conventional Power Generation. The emphasis of the study was on the first two of these tasks, the other four serving to provide supplementary information.

Leonard, S.L.; Rattin, E.J.; Siegel, B.

1977-03-01T23:59:59.000Z

416

Energy conversion based on molecular excited states: Redox splitting in soluble polymers. Final report  

DOE Green Energy (OSTI)

A general method was developed for preparing complexes of Ru(II) with three different bidentate ligands; it is being extended to monodentate ligands for more synthetic versatility. This method was used to prepare a series of complexes with pre-designed absorption properties, with the goal of ``black absorbers`` for use as antenna chromophores in a light-to-chemical energy conversion array. The energy gap law for nonradiative decay was studied for preparing near-IR luminophores with long excited state lifetimes. The problem of destructive dd excited states in Ru(II) polypyridyl complexes was focused on, with success in preparing an extremely photo-inert complex with monodentate pyridine ligands. Time-resolved resonance Raman and infrared spectroscopy were used to study subtle excited state properties of complexes of Ru(II), Os(II), and Re(I). Success was achieved in controlled immobilization of d{sup 6} chromophores and quenchers on styrenic polymers. Having perfected our synthetic technique, we have begun to optimize the ground and excited state properties such as chromophore density, dipole orientation, and lifetime.

Meyer, T.J.

1995-12-31T23:59:59.000Z

417

Sustainable Energy Science and Engineering Center EML 4930/EML 5930 Energy Conversion Systems II  

E-Print Network (OSTI)

. District heating - distributing heat from waste heat from power generating plants. Water heating: passive Energy Science and Engineering Center Solar Heating Quadrillion Btu 1 Btu = 1,055.0559 joule 1 Quadrillion = 1015 Domestic active solar heating: Space heating - Cost effective to invest in home insulation

Krothapalli, Anjaneyulu

418

Abstract--The use of doubly fed induction generators (DFIGs) in large wind energy conversion systems (WECS) has  

E-Print Network (OSTI)

1 Abstract--The use of doubly fed induction generators (DFIGs) in large wind energy conversion systems (WECS) has significantly increased during the last few years. The DFIG is interfaced to the AC to the AC grid during disturbances. The sensitivity of DFIGs to external faults has motivated researchers

Pota, Himanshu Roy

419

Abstract--In doubly fed induction generator (DFIG) based wind energy conversion systems (WECS), the DFIG is interfaced to the  

E-Print Network (OSTI)

Abstract--In doubly fed induction generator (DFIG) based wind energy conversion systems (WECS), the DFIG is interfaced to the AC network through grid side voltage source converter (GSC) and rotor side-link within permissible limits. The sensitivity of DFIG to external faults has motivated researchers

Pota, Himanshu Roy

420

Adaptive fuzzy regulation of the DC-bus capacitor voltage in a wind energy conversion system (WECS)  

Science Conference Proceedings (OSTI)

This paper proposes a new voltage regulator of the DC-bus capacitor of a variable speed wind power generation system based on adaptive fuzzy system. The change in the fuzzy rule base is done using a variable-structure direct adaptive control algorithm ... Keywords: Adaptive control, Fuzzy systems, Wind energy conversion systems

A. L. Elshafei; M. A. Azzouz

2011-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal-to-electrical energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

A peak power tracker for low-power permanent-magnet-synchronous-generator-based wind energy conversion systems  

Science Conference Proceedings (OSTI)

This paper presents the results of experimental investigation of a low-power wind energy conversion system (WECS), based on a permanent-magnet synchronous generator (PMSG) connected directly to the turbine. A test rig was built in order to carry out ... Keywords: hardware-in-the-loop simulation, maximum power point tracking, optimal control, permanent-magnet synchronous generator, wind system

C. Vlad; I. Munteanu; A. I. Bratcu; E. Ceanga

2008-07-01T23:59:59.000Z

422

IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 24, NO. 1, MARCH 2009 125 Short-Term Prediction of Wind Farm Power  

E-Print Network (OSTI)

IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 24, NO. 1, MARCH 2009 125 Short-Term Prediction of Wind Farm Power: A Data Mining Approach Andrew Kusiak, Member, IEEE, Haiyang Zheng, and Zhe Song, Student Member, IEEE Abstract--This paper examines time series models for predicting the power of a wind

Kusiak, Andrew

423

Progress on Enabling an Interactive Conversation Between Commercial Building Occupants and Their Building To Improve Comfort and Energy Efficiency: Preprint  

SciTech Connect

Many studies have reported energy savings after installing a dashboard, but dashboards provide neither individual feedback to the occupant nor the ability to report individual comfort. The Building Agent (BA) provides an interface to engage the occupant in a conversation with the building control system and the building engineer. Preliminary outcomes of the BA-enabled feedback loop are presented, and the effectiveness of the three display modes will be compared to other dashboard studies to baseline energy savings in future research.

Schott, M.; Scheib, J.; Long, N.; Fleming, K.; Benne, K.; Brackney, L.

2012-06-01T23:59:59.000Z

424

Coal conversion and biomass conversion: Volume 1: Final report on USAID (Agency for International Development)/GOI (Government of India) Alternate Energy Resources and Development Program  

DOE Green Energy (OSTI)

The United States Agency for International Development (AID), in joint collaboration with the Government of India (GOI), supported a research and development program in Alternate Energy Resources during the period March 1983 to June 1987. The primary emphasis of this program was to develop new and advanced coal and biomass conversion technologies for the efficient utilization of coal and biomass feedstocks in India. This final ''summary'' report is divided into two volumes. This Report, Volume I, covers the program overview and coal projects and Volume II summarizes the accomplishments of the biomass projects. The six projects selected in the area of coal were: Evaluation of the Freeboard Performance in a Fluidized-Bed Combustor; Scale-up of AFBC boilers; Rheology, Stability and Combustion of Coal-Water Slurries; Beneficiation of Fine Coal in Dense Medium Cyclones; Hot Gas Cleanup and Separation; and Cold Gas Cleanup and Separation.

Kulkarni, A.; Saluja, J.

1987-06-30T23:59:59.000Z

425

HYCSOS: a chemical heat pump and energy conversion system based on metal hydrides. 1979 status report  

DOE Green Energy (OSTI)

The current status of the HYCSOS chemical heat pump and energy conversion system based on metal hydrides is described. Heat transfer fluid loops were insulated and modified for isothermal operation. Software development for HYCSOS manual mode operation was completed. Routines to handle data acquisition, logging, compression, correction and plotting, using a Tektronix Graphics system with flexible disk data storage, provide a rapid and versatile means of presenting HYCSOS data for analysis. Advanced concept heat exchangers to improve the heat transfer of the hydride bed with the heat transfer fluid are discussed. Preliminary tests made with a LaNi/sub 5/ loaded aluminum foam test unit showed that heat transfer properties are very markedly improved. Thermodynamic expressions are applied to the selection of alloys for use in HYCSOS. The substitution of aluminum for nickel in AB/sub 5/ type alloys is shown to reduce hysteresis and permits the use of potentially lower cost materials with added flexibility for the optimization of engineering design and performance characteristics of the hydride heat pump system. Transient thermal measurements on hydride beds of CaNi/sub 5/ and LaNi/sub 5/ show no deterioration with cycling. Relatively slow heat transfer between the hydride beds and heat transfer fluid in the coiled tube heat exchangers is indicated by temperature lag of the bed and heat transfer fluid. Improved heat transfer is anticipated with aluminum foam heat exchangers.

Sheft, I.; Gruen, D.M.; Lamich, G.

1979-04-01T23:59:59.000Z

426

Environmental studies related to the operation of wind energy conversion systems. Final report  

DOE Green Energy (OSTI)

This biophysical impact assessment explores the environmental consequences of the emerging wind energy conversion technology through field studies done at the DOE/NASA 100-kW Experimental Wind Turbine located at NASA Lewis Research Center's Plum Brook Station near Sandusky, Ohio. A micrometeorological field program monitored changes in the downwind wake of the wind turbine. Horizontal and/or vertical measurements of wind speed, temperature, carbon dioxide concentration, precipitation, and incident solar radiation showed measurable variation within the wake only for precipitation and wind speed. The changes were minor and not likely to result in any secondary effects to vegetation, including crops, because they are within the natural range of variability in the site environment. Effects are negligible beyond the physically altered area of the tower pad, access, and control structures. The wind turbine has not proved to be a high risk to airborne fauna, including the most vulnerable night-migrating songbirds. Behavioral studies indicate the birds will avoid the turbine if they can see it.

Rogers, S.E.; Cornaby, B.W.; Rodman, C.W.; Sticksel, P.R.; Tolle, D.A.

1977-12-01T23:59:59.000Z

427

Simulation of wind-speed time series for wind-energy conversion analysis.  

DOE Green Energy (OSTI)

In order to investigate operating characteristics of a wind energy conversion system it is often desirable to have a sequential record of wind speeds. Sometimes a long enough actual data record is not available at the time an analysis is needed. This may be the case if, e.g., data are recorded three times a day at a candidate wind turbine site, and then the hourly performance of generated power is desired. In such cases it is often possible to use statistical characteristics of the wind speed data to calibrate a stochastic model and then generate a simulated wind speed time series. Any length of record may be simulated by this method, and desired system characteristics may be studied. A simple wind speed simulation model, WEISIM, is developed based on the Weibull probability distribution for wind speeds with a correction based on the lag-one autocorrelation value. The model can simulate at rates from one a second to one an hour, and wind speeds can represent short-term averages (e.g., 1-sec averages) or longer-term averages (e.g., 1-min or 1 hr averages). The validity of the model is verified with PNL data for both histogram characteristics and persistance characteristics.

Corotis, R.B.

1982-06-01T23:59:59.000Z

428

Ocean Thermal Energy Conversion power system development. Phase I: preliminary design. Final report  

DOE Green Energy (OSTI)

Westinghouse has completed the Preliminary Design Phase for the Power System Development of the Ocean Thermal Energy Conversion (OTEC) Demonstration Plant project. This study included the development of a preliminary design for a Modular Application scaled power system (10MWe) and Heat Exchanger Test Articles, both based on the concept developed in the Conceptual Design Phase. The results of this study were used to improve the baseline design of the 50MWe module for the Commercial Size Power System, which was recommended for the demonstration plant by the conceptual design study. The 50MWe module was selected since it has the lowest cost, and since its size convincingly demonstrates that future economically viable commercial plants, having reliable operation with credible anticipated costs, are possible. Additional optimization studies on the size of the power system plus hull continue to identify 50MWe as the preferred minimum cost configuration. This study was limited to a closed cycle ammonia power system module, using a seawater temperature difference of 40/sup 0/F, and a surface platform/ship reference hull. This volume describes system operation, a complete test program to verify mechanical reliability and thermal performance, fabrication and installation operations, and a cost analysis. (WHK)

Not Available

1978-12-04T23:59:59.000Z

429

Development of plastic heat exchangers for ocean thermal energy conversion. Final report, August 1976--December 1978  

DOE Green Energy (OSTI)

Materials and processes have been selected and design information obtained for plastic ocean thermal energy conversion (OTEC) heat exchangers as the result of a program comprising five types of laboratory experiments. Tests to evaluate the chemical resistance of seven commercially available thermoplastics to sea water and several possible working fluids were conducted with emphasis placed on compatibility with ammonia. Environmental rupture tests involving exposure of stressed specimens to sea water or liquid ammonia indicated that the high density polyethylene (HDPE) is the best suited candidate and produced an extrapolated 100,000 hour failure stress of 1060 psi for HDPE. Long term durability tests of extruded HDPE plate-tube panel confirmed that plastic heat transfer surface is mechanically reliable in an OTEC environment. Thermal conductivity measurements of acetylene black filled HDPE indicated that conductivity may be increased by 50% with a 35% by weight filler loading. The permeability coefficient measured for liquid ammonia through HDPE was higher than previous estimates. Test showed that the rate can be significantly reduced by sulfonation of HDPE. A review of biofouling mechanisms revealed that the permeable nature of the plastic heat exchanger surface may be used to control primary biofouling form formation by allowing incorporation of non-toxic organic repellents into the plastic. A preliminary design and fabrication development program suggests that construction of an ammonia condenser test unit is feasible using currently available materials and manufacturing techniques.

Hart, G.K.; Lee, C.O.; Latour, S.R.

1979-01-01T23:59:59.000Z

430

Ocean Thermal Energy Conversion power system development. Phase I. Final report  

DOE Green Energy (OSTI)

This report covers the conceptual and preliminary design of closed-cycle, ammonia, ocean thermal energy conversion power plants by Westinghouse Electric Corporation. Preliminary designs for evaporator and condenser test articles (0.13 MWe size) and a 10 MWe modular experiment power system are described. Conceptual designs for 50 MWe power systems, and 100 MWe power plants are also descirbed. Design and cost algorithms were developed, and an optimized power system design at the 50 MWe size was completed. This design was modeled very closely in the test articles and in the 10 MWe Modular Application. Major component and auxiliary system design, materials, biofouling, control response, availability, safety and cost aspects are developed with the greatest emphasis on the 10 MWe Modular Application Power System. It is concluded that all power plant subsystems are state-of-practice and require design verification only, rather than continued research. A complete test program, which verifies the mechanical reliability as well as thermal performance, is recommended and described.

Not Available

1978-12-04T23:59:59.000Z

431

Seawater pump study: Ocean Thermal Energy Conversion Program. Final report. [For ocean thermal power plants  

DOE Green Energy (OSTI)

The pumping power required to move cold seawater and warm seawater through an Ocean Thermal Energy Conversion (OTEC) power plant is a significant portion of the plant power output; therefore, seawater pump performance, sizing, and cost information are very influential inputs into any power plant system design optimizations. The analysis and evaluation of large seawater pumping systems selected specifically for the OTEC application are provided with a view toward judging the impact of pump selection on overall OTEC power plant performance. A self-contained bulb, direct drive, axial flow pump was found to have a distinct advantage in performance and arrangement flexibility. A design of a pump operating at a net total head rise of 3.5 meters and a flow capacity of 100 m/sup 3//s is presented including pump blade geometry (profiles), pump diffuser geometry, and pump/diffuser configuration and performance. Results are presented in terms of the geometric and power requirements of several related pump designs over a range of seawater capacity from 25 m/sup 3//s to 100 m/sup 3//s. Summary analysis and evaluations include pump design weights and cost estimates.

Little, T.E.

1978-01-01T23:59:59.000Z

432

Advanced thermionic energy conversion. Joint highlights and status report, July-September 1979  

DOE Green Energy (OSTI)

The DOE portion of the effort is directed primarily toward terrestrial applications of thermionic energy converters suitable for use with fossil fueled heat sources in power plants. The NASA program is directed at establishing the technical feasibility of an advanced, light-weight, long-life thermionic conversion system compatible with a remote nuclear or solar heat source. The principal application foreseen at this time is in nuclear electric propulsion (NEP) missions in the mid-1990's. Significant accomplishments for the DOE program include: (1) successfully operating a thermionic converter using a cold insulator seal (Plexiglass and Viton); (2) completed fabrication and testing of SPC-9, a reference planar converter with smooth molybdenum electrodes; (3) created a shooting type analytical ignited mode converter computer model; (4) projected the operating conditions needed to achieve advanced converter performance with a thick cesium oxide collector; and (5) invented a cellular ceramic heat exchanger for obtaining high radiant heat flux from a hot gas. Accomplishments for the NASA program include: (1) achieved over 3100 hours of operation with the cylindrical converter JPL-5 (STR/STR); (2) provided guidelines for definition of optimum lead characteristics in the JPL NEP computer program; and (3) performed a preliminary NEP optimization study which suggests a 400 kWe system with a specific mass of 26 kg/kWe is possible with present converter performance (V/sub B/ = 2.0). Details are presented. (WHK)

Not Available

1979-01-01T23:59:59.000Z

433

Solar-MHD energy conversion system. [tower focus collector with closed-cycle MHD generator  

SciTech Connect

A solar energy conversion system includes a centrally positioned tower supporting a solar receiver, and an array of pivotally mounted reflectors disposed circumferentially therearound which reflect earth incident solar radiation onto the receiver which thermally excites and photo-ionizes a working fluid to form a plasma. The plasma is accelerated and further heated through a ceramic turbo-compressor into a magnetohydrodynamic (MHD) generator to produce direct current. The working fluid is then passed through a heat exchanger channel where the waste heat is removed by another working fluid which drives a vapor turbine connected to the ceramic turbo-compressor and an AC generator. Seed may then be removed and the working fluid is recycled in the closed cycle MHD system. The electrical power is distributed, part of it being used to electrolyze water into hydrogen and oxygen which are stored and allowed to exothermally recombine to drive the system during low solar radiation intervals. In a further embodiment the MHD working fluid receives its velocity from an external turbo-compressor drivem by the second working fluid, and an alternative thermal and photo-ionization chamber is employed. 16 claims, 10 figures.

Rathbun, K.R.

1978-06-13T23:59:59.000Z

434

Ocean Thermal Energy Conversion power system development. Phase I: preliminary design. Final report  

DOE Green Energy (OSTI)

Westinghouse has completed the Preliminary Desigh Phase for the Power System Development of the Ocean Thermal Energy Conversion (OTEC) Demonstration Plant project. This study included the development of a preliminary design for a Modular Application scaled power system (10MWe) and Heat Exchanger Test Articles, both based on the concept developed in the Conceptual Design Phase. The results of this study were used to improve the baseline design of the 50MWe module for the Commercial Size Power System, which was recommended for the demonstration plant by the conceptual design study. The 50MWe module was selected since it has the lowest cost, and since its size convincingly demonstrates that future economically viable commercial plants, having reliable operation with credible anticipated costs, are possible. Additional optimization studies on the size of the power system plus hull continue to identify 50MWe as the preferred minimum cost configuration. This study was limited to a closed cycle ammonia power system module, using a seawater temperature difference of 40/sup 0/F, and a surface platform/ship reference hull. This volume presents the preliminary design configuration and system optimization. (WHK)

Not Available

1978-12-04T23:59:59.000Z

435

Catalytic conversion of biomass.  

E-Print Network (OSTI)

?? Catalytic processes for conversion of biomass to transportation fuels have gained an increasing attention in sustainable energy production. The biomass can be converted to… (more)

Calleja Aguado, Raquel

2013-01-01T23:59:59.000Z

436

Advanced Coal Conversion Process Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Technology Program Advanced Coal Conversion Process Demonstration A DOE Assessment DOENETL-20051217 U.S. Department of Energy Office of Fossil Energy National Energy...

437

Reactive Ballistic Deposition of Nanostructured Model Materials for Electrochemical Energy Conversion and Storage  

SciTech Connect

Finely structured, supported thin films offer a host of opportunities for fundamental and applied research. Nanostructured materials often exhibit physical properties which differ from their bulk counterparts due to the increased importance of the surface in determining the thermodynamics and behavior of the system. Thus, control of the characteristic size, porosity, morphology, and surface area presents opportunities to tailor new materials which are useful platforms for elucidating the fundamental processes related to energy conversion and storage. The ability to produce high purity materials with direct control of relevant film parameters such as porosity, film thickness, and film morphology is of immediate interest in the fields of electrochemistry, photocatalysis, and thermal catalysis. Studies of various photoactive materials have introduced questions concerning the effects of film architecture and surface structure on the performance of the materials, while recent work has demonstrated that nanostructured, mesoporous, or disordered materials often deform plastically, making them robust in applications where volumetric expansion and phase transformations occur, such as in materials for lithium-ion batteries. Moreover, renewed emphasis has been placed on the formation of semi-conductive electrodes with controlled pore-size and large surface areas for the study and application of pseudo-capacitance and cation insertion processes for electrical energy storage. Understanding how the performance of such materials depends on morphology, porosity, and surface structure and area requires a synthesis technique which provides for incremental variations in structure and facilitates assessment of the performance with the appropriate analytical tools, preferably those that provide both structural information and kinetic insight into photoelectrochemical processes.

Flaherty, David W.; Hahn, Nathan T.; May, Robert A.; Berglund, Sean P.; Lin, Yong-Mao; Stevenson, Keith J.; Dohnalek, Zdenek; Kay, Bruce D.; Mullins, C. Buddie

2012-03-20T23:59:59.000Z

438

Solid State Energy Conversion Alliance 2009 Meeting (10th annual SECA Workshop): Scientific Poster Presentations  

DOE Data Explorer (OSTI)

SECA, founded in 1999, is a collaboration between the federal government, private industry, academic institutions and national laboratories devoted to the development of low-cost, modular, and fuel-flexible solid oxide fuel cell (SOFC) technology suitable for a variety of power generation applications. The 2009 annual meeting, the tenth workshop in the annual SECA series, was held in Pittsburgh, PA in July of 2009. Scientific and technical poster presentations from the poster session are made available online by DOE’s National Energy and Technology Laboratory (NETL). Titles include: 1) X-Ray, AFM, and Electrochemical Studies of Cation Segregation in Thin-Film Perovskite Cathode Materials for SOFC; 2) Effect of SOFC Interconnect-Coating Interactions on Coating Properties and Performance; 3) Epitaxial Cathode Thin-films to explore the fundamental science of Cathode interfaces in SOFCs; 4) Synthesis of High Surface Area Materials for Solid Oxide Fuel Cells; 5) Effect of Sheet Resistance on Performance of Solid Oxide Fuel Cells with Thin Film Mixed-Conducting Cathodes; 6) Role of Volatile Glass Species on Cathode Performance; 7) Develop Novel Coating for SOFC Interconnect; 8) Viscous Glass Sealants for SOFC Applications; 9) Proton Conductors Based Solid Oxide Fuel Cells; 10) Oxidation of Ferritic Stainless Steel Interconnects: Thermodynamic Assessment and Experimental Validation; 11) Cathode/Electrolyte Interface Material Studies; 12) Water Neutral Diesel Reforming; 13) Stationary Fuel Cell Installation Codes and Standards; 14) Conceptual Direct Coal Conversion Using Liquid Tin Anode Fuel Cell - Alternative System Configurations; 15) SOFC Stack Operating Strategies; 16) NexTech's FlexCell Planar SOFC Cell Technology; 17) SOFC Materials and Components Technologies; 18) Fuel Cells in Locomotive Applications; 19) Solid Oxide Fuel Cell Design Guide; 20) Recent Advances in Coal Gas Impurity Interactions with SOFC Anodes at PNNL; 21) Coal Conversion in a Fluidized Bed Direct Carbon Fuel Cell; 22) Hybrid Ceramic/ Metallic Recuperator for SOFC Generators; 23) Green Blowers for Green Technology; 24) Evaluation of Ag-Perovskite Composites as SOFC Cathode-Interconnect Contact; 25) Solid Oxide Fuel Cell System for Air-Independent Applications; 26) Simplified Modeling for SOFC Integration into IGFC Systems; 27) Power Conditioning Systems for High-Megawatt Fuel Cell Plants.

439

Comments on the DOE Hydrothermal Energy Conversion R&D Program  

DOE Green Energy (OSTI)

In his closing remarks at last year's program review, Roland Kessler pointed out two critical questions that must be asked with regard to any program funding: (1) What specifically will be accomplished with the funds requested and why does it matter? (2) What important accomplishments have been made with the funds you have spent? These seem to be good questions, whether in times of tight budgets or not. I kept these questions in mind as I reviewed the papers summarizing this year's progress in the Energy Conversion Program. The Materials research effort appears to be accomplishing useful results, some of which are already being tested by industry. In many ways, the past and present achievements of the geothermal industry are a direct result of materials problems overcome. The future growth of this industry will be facilitated by new and improved materials. It often follows from such developments that an industry will leapfrog itself. I therefore support the continuation of this work. The Brine Chemistry research project is of great value. Plant designers and permitting agencies alike benefit from predictive modeling tools which are both accurate and easy to use. I am especially pleased with UCSDs efforts at information transfer. The tutorials and free distribution of source code are to be commended. The preliminary models dealing with H{sub 2}S gas/liquid distributions and acid-base properties should be tested and finished as soon as possible. The work in progress which will allow better prediction of gas-liquid distributions after flashing is valuable and it too should be expedited.

Mendive, David L.

1992-03-24T23:59:59.000Z

440

Optimal thermionic energy conversion with established electrodes for high-temperature topping and process heating  

DOE Green Energy (OSTI)

Advantages of thermionic energy conversion (TEC) have been counted and are recounted with emphasis on high-temperature service in coal-combustion products. Efficient, economical, nonpolluting utilization of coal here and now is a critically important national goal. And TEC can augment this capability not only by the often proposed topping of steam power plants but also by higher-temperature topping and process heating. For these applications, applied-research-and-technology (ART) work reveals that optimal TEC with approx. 1000-to approx. 1100 K collectors is possible using well-established tungsten electrodes. Such TEC with 1800 K emitters could approach 26.6% efficiency at 27.4 W/cm/sup 2/ with approx. 1000 K collectors and 21.7% at 22.6 W/cm/sup 2/ with approx. 1100 K collectors. These performances require 1.5- and 1.7-eV collector work functions (not the 1-eV ultimate) with nearly negligible interelectrode losses. Such collectors correspond to tungsten electrode systems in approx. 0.9-to approx. 6-torr cesium pressures with 1600-to-1900 K emitters. Because higher heat-rejection temperatures for TEC allow greater collector work functions, interelectrode-loss reduction becomes an increasingly important target for applications aimed at elevated temperatures. Studies of intragap modifications and new electrodes that will allow better electron emission and collection with lower cesium pressures are among the TEC-ART approaches to reduced interelectrode losses. These solutions will provide very effective TEC to serve directly in coal-combustion products for high-temperature topping and process heating. In turn this will help to use coal-and to use it well.

Morris, J.F.

1980-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal-to-electrical energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Comments on the DOE Hydrothermal Energy Conversion R&D Program  

SciTech Connect

In his closing remarks at last year's program review, Roland Kessler pointed out two critical questions that must be asked with regard to any program funding: (1) What specifically will be accomplished with the funds requested and why does it matter? (2) What important accomplishments have been made with the funds you have spent? These seem to be good questions, whether in times of tight budgets or not. I kept these questions in mind as I reviewed the papers summarizing this year's progress in the Energy Conversion Program. The Materials research effort appears to be accomplishing useful results, some of which are already being tested by industry. In many ways, the past and present achievements of the geothermal industry are a direct result of materials problems overcome. The future growth of this industry will be facilitated by new and improved materials. It often follows from such developments that an industry will leapfrog itself. I therefore support the continuation of this work. The Brine Chemistry research project is of great value. Plant designers and permitting agencies alike benefit from predictive modeling tools which are both accurate and easy to use. I am especially pleased with UCSDs efforts at information transfer. The tutorials and free distribution of source code are to be commended. The preliminary models dealing with H{sub 2}S gas/liquid distributions and acid-base properties should be tested and finished as soon as possible. The work in progress which will allow better prediction of gas-liquid distributions after flashing is valuable and it too should be expedited.

Mendive, David L.

1992-03-24T23:59:59.000Z

442

Novel Biomass Conversion Process Results in Commercial Joint Venture, The Spectrum of Clean Energy Innovation (Fact Sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel Biomass Conversion Process Novel Biomass Conversion Process Results in Commercial Joint Venture A novel biomass-to-ethanol process developed, integrated, and demonstrated at pilot scale at the National Renewable Energy Laboratory (NREL) is the basis for one of the world's first cellulosic ethanol demonstration plants. The 74,000-ft 2 plant in Vonore, Tennessee, began production in January 2010. Through a Cooperative Research and Development Agreement (CRADA) with DuPont, NREL and DuPont scientists and engineers developed a unique low-cost pretreatment process that converts raw biomass to ethanol in high yields. The process was developed to facilitate the commercial readiness of lignocellulosic ethanol, which is ethanol produced from nonfood biomass feedstocks such as corn stover, agricultural waste, and energy crops.

443

Micropower chemical fuel-to-electric conversion : a "regenerative flip" hydrogen concentration cell promising near carnot efficiency.  

DOE Green Energy (OSTI)

Although battery technology is relatively mature, power sources continue to impose serious limitations for small, portable, mobile, or remote applications. A potentially attractive alternative to batteries is chemical fuel-to-electric conversion. Chemical fuels have volumetric energy densities 4 to 10 times those of batteries. However, realizing this advantage requires efficient chemical fuel-to-electric conversion. Direct electrochemical conversion would be the ideal, but, for most fuels, is generally not within the state-of-the-science. Next best, chemical-to-thermal-to-electric conversion can be attractive if efficiencies can be kept high. This small investigative project was an exploration into the feasibility of a novel hybrid (i.e., thermal-electrochemical) micropower converter of high theoretical performance whose demonstration was thought to be within near-term reach. The system is comprised of a hydrogen concentration electrochemical cell with physically identical hydrogen electrodes as anode and cathode, with each electrode connected to physically identical hydride beds each containing the same low-enthalpy-of-formation metal hydride. In operation, electrical power is generated by a hydrogen concentration differential across the electrochemical cell. This differential is established via coordinated heating and passive cooling of the corresponding hydride source and sink. Heating is provided by the exothermic combustion (i.e., either flame combustion or catalytic combustion) of a chemical fuel. Upon hydride source depletion, the role of source and sink are reversed, heating and cooling reversed, electrodes commutatively reversed, cell operation reversed, while power delivery continues unchanged. This 'regenerative flip' of source and sink hydride beds can be cycled continuously until all available heating fuel is consumed. Electricity is efficiently generated electrochemically, but hydrogen is not consumed, rather the hydrogen is regeneratively cycled as an electrochemical 'working fluid'.

Wally, Karl

2006-05-01T23:59:59.000Z

444

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

reclamation and solar thermal energy," Energy [accepted]. [and M Dennis, "Solar thermal energy systems in Australia,"and M Dennis, "Solar thermal energy systems in Australia,"

Ho, Tony

2012-01-01T23:59:59.000Z

445

Unit Conversion  

Science Conference Proceedings (OSTI)

Unit Conversion. ... Unit Conversion Example. "If you have an amount of unit of A, how much is that in unit B?"; Dimensional Analysis; ...

2012-12-04T23:59:59.000Z

446

Photovoltaic Cell Conversion Efficiency  

Energy.gov (U.S. Department of Energy (DOE))

The conversion efficiency of a photovoltaic (PV) cell, or solar cell, is the percentage of the solar energy shining on a PV device that is converted into electrical energy, or electricity....

447

Conversion electrons used to monitor the energy scale of electron spectrometer near tritium endpoint - a simulation study  

E-Print Network (OSTI)

Measurements of the endpoint region of the tritium beta-decay spectrum provides good possibility to determine neutrino mass. This, however, needs a perfect monitoring of the spectrometer energy scale. A parallel measurement of electron line of known energy - in particular the 83mKr conversion K-line - may serve well to this purpose. The 83Rb decaying to 83mKr seems to be a very suitable radioactive source due to its halflife of 86.2 day. In this work, we determine the amount of 83Rb which is necessary for a successful monitoring.

M. Rysavy

2006-01-15T23:59:59.000Z

448

Synthesis of Titanium Dioxide Hetero-Structures for Photovoltaic Energy Conversion  

E-Print Network (OSTI)

The photovoltaic energy conversion system (PV cells or solar cells) has been researched over the last few decades, and new technologies have been proposed. At the same time, the synthesis of nano-scale materials has been investigated intensively from the 1990s. These new types of materials encourage the development of new PV technologies with extensive research. Dye-sensitized solar cells (DSSCs) can be a part of these efforts. Since first presented in 1991, DSSCs have become the center of attention due to their great advantages to the traditional silicon solar cells. However, it remains a challenge to develop better performing DSSCs since the efficiency of DSSCs is still much lower than that of high performance solar cells. To meet this challenge, the different types of TiO2 nanostructures in DSSCs have been studied. This thesis presents the synthesis of TiO2 hetero-structures. These structures can achieve two important factors in DSSCs. One is the electron pathway for high electron transport rate, and the other is the large surface area for the dye absorption. TiO2 hetero-structures were successfully synthesized by using a simple thermal annealing method. The synthesis method required neither a high reaction temperature nor complicated reaction processes and produced dense TiO2 nanowires and incorporating TiO2 nanoparticles with relatively short reaction time. The key parameters of growing 1-D TiO2 nanostructures were the Cu eutectic catalyst, the reaction temperatures, and the annealing time. The repetition time and the reaction temperatures were important factors for incorporating TiO2 nanoparticles. The structure and composition of as-grown samples were analyzed using an x-ray diffractometer, a scanning electron microscope, a field emission scanning electron microscope, a transmission electron microscope and an ultraviolet-visible spectroscopy. The results showed they were crystalline structures in rutile phase of TiO2. From this research, we can utilize hetero-structures as an electrode of DSSCs. We also expect that our simple and effective synthesis method can be used for growing other kinds of metal oxide nanostructures, especially for those melting temperature are high.

Park, Jongbok

2009-08-01T23:59:59.000Z

449

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

of Photochemical and Photovoltaic Solar Energy Converters,”of solar energy in either photovoltaic or solar thermalphotovoltaic (PV) systems,[13,82,83] and solar thermal systems (energy

Coso, Dusan

2013-01-01T23:59:59.000Z

450

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

Renewable and Sustainable Energy Reviews, 13 (2), pp. 318–and Challenges for a Sustainable Energy Future,” Nature,Storage,” Renewable and Sustainable Energy Reviews, 14 (3),

Coso, Dusan

2013-01-01T23:59:59.000Z

451

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

Review on Sustainable thermal Energy Storage Technologies,D. , 2009, “Review on Thermal Energy Storage with PhaseW. , 2002, “Survey of Thermal Energy Storage for Parabolic

Coso, Dusan

2013-01-01T23:59:59.000Z

452

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

Organometallic Frames for Solar Energy Storage, Berkeley. [and Photovoltaic Solar Energy Converters,” American ChemicalNocera D. G. , 2010, “Solar Energy Supply and Storage for

Coso, Dusan

2013-01-01T23:59:59.000Z

453

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

collectors," Journal of Solar Energy Engineering, vol. 121,receivers," Journal of Solar Energy Engineering, vol. 117,Towers," ASME Journal of Solar Energy Engineering, vol. 129,

Ho, Tony

2012-01-01T23:59:59.000Z

454

Progress on Enabling an Interactive Conversation Between Commercial Building Occupants and Their Building To Improve Comfort and Energy Efficiency: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Progress on Enabling an Progress on Enabling an Interactive Conversation Between Commercial Building Occupants and Their Building To Improve Comfort and Energy Efficiency Preprint M. Schott, N. Long, J. Scheib, K. Fleming, K. Benne, and L. Brackney National Renewable Energy Laboratory To be presented at ACEEE Summer Study on Energy Efficiency in Buildings Pacific Grove, California August 12-17, 2012 Conference Paper NREL/CP-5500-55197 June 2012 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

455

Genetic Regulation of Grass Biomass Accumulation and Biological Conversion Quality (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)  

SciTech Connect

Sam Hazen of the University of Massachusetts on "Genetic Regulation of Grass Biomass Accumulation and Biological Conversion Quality" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

Hazen, Sam [University of Massachusetts

2013-03-01T23:59:59.000Z

456

Design and Test of DC Voltage Link Conversion System and Brushless Doubly-Fed Induction Generator for Variable-Speed Wind Energy Applications: August 1999--May 2003  

SciTech Connect

This report describes four low-cost alternative power converters for processing the power developed by a doubly fed wound-rotor induction generator for wind energy conversion systems.

Lipo, T.A.; Panda, D.; Zarko, D.

2005-11-01T23:59:59.000Z

457

Nowadays, a large spectrum of knowledge is required from PhD students working within the area of Energy Conversion Systems. Nevertheless, typical PhD  

E-Print Network (OSTI)

of Energy Conversion Systems. Nevertheless, typical PhD comptetences are often restricted to their fieldTech Summer School « Integrated Approach to Energy Systems » is to make up for those lacks, bring out the main challenges and provide methodological approaches to address multi-disciplinary energy-related challenges

458

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

159] B Sternlicht, "Waste energy recover: an excellentThis high quality waste energy though has the potential torecovery of low-grade waste heat," Energy, vol. 22, pp. 661-

Ho, Tony

2012-01-01T23:59:59.000Z

459

Novel design and implementation of a permanent magnet linear tubular generator for ocean wave energy conversion.  

E-Print Network (OSTI)

??The world’s energy consumption is growing at an alarming rate and the need for renewable energy is apparent now more than ever. Estimates have shown… (more)

[No author

2007-01-01T23:59:59.000Z

460

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

R. a. , 2012, “Molecular Solar Thermal (MOST) Energy Storageand Nocera D. G. , 2010, “Solar Energy Supply and Storage20] Kalogirou S. a. , 2004, “Solar Thermal Collectors and

Coso, Dusan

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal-to-electrical energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

NREL Demonstrates Photocatalytic Conversion With Mutant Microbe (Fact Sheet), Highlights in Science, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Breakthrough will facilitate future research on Breakthrough will facilitate future research on photosynthetic production of biofuels. Oxygenic photosynthetic microbes (i.e., algae and cyanobacteria) have great potential to produce fuels from sunlight, water, and carbon dioxide. However, cellular growth competes with conversion of carbon dioxide (CO 2 ) into biofuels and necessitates disposal or recycling of biomass. A solution would be to arrest biomass accumulation, while simultaneously redirecting photosynthetically fixed carbon to products of interest. Scientists at the National Renewable Energy Laboratory (NREL) have achieved a dramatic redirection of carbon allocation from biomass growth to organic acids excretion in a photosyn- thetic microbe blocked for glycogen synthesis. NREL demonstrated that under nitrogen-

462

Hybrid chromophore/template nanostructures: A customizable platform material for solar energy storage and conversion  

E-Print Network (OSTI)

Challenges with cost, cyclability, and/or low energy density have largely prevented the development of solar thermal fuels, a potentially attractive alternative energy technology based on molecules that can capture and ...

Kolpak, Alexie M.

463

Vibration-to-electric energy conversion using a mechanically-varied capacitor  

E-Print Network (OSTI)

Past research in vibration energy harvesting has focused on the use of variable capacitors, magnets, or piezoelectric materials as the basis of energy transduction. How- ever, few of these studies have explored the detailed ...

Yen, Bernard Chih-Hsun, 1981-

2005-01-01T23:59:59.000Z

464

Efficient power conversion for ultra low voltage micro scale energy transducers  

Science Conference Proceedings (OSTI)

Energy harvesting has emerged as a feasible and attractive option to improve battery lifetime in micro-scale electronic systems such as biomedical implants and wireless sensor nodes. A key challenge in designing micro-scale energy harvesting systems ...

Chao Lu; Sang Phill Park; Vijay Raghunathan; Kaushik Roy

2010-03-01T23:59:59.000Z

465

Ab initio study on noncompensated CrO codoping of GaN for enhanced solar energy conversion  

SciTech Connect

We describe a novel photocatalyst obtained by codoping GaN with CrO, according to a new "noncompensated" codoping concept based on first-principles calculations. The approach enables controllable narrowing of the GaN band gap with significantly enhanced carrier mobility and photocatalytic activity in the visible light region and thus offers immense potential for application in solar energy conversion, water splitting, and a variety of solar-assisted photocatalysis. Our calculations indicate that the formation energy for the cation doping is greatly reduced by noncompensated codoping with an anion. Although Cr doping alone can split the band gap with the formation of an intermediate band, the mobility is low due to carrier trapping by the localized states. The first-principles calculations also demonstrate that CrO codoping of GaN shifts the Fermi level into the conduction band resulting in high carrier density and mobility.

Pan, Hui [ORNL; Gu, Baohua [ORNL; Eres, Gyula [ORNL; Zhang, Zhenyu [ORNL

2010-03-01T23:59:59.000Z

466

Solar Hydrogen Conversion Background  

E-Print Network (OSTI)

Solar Hydrogen Conversion Background: The photoelectrochemical production of hydrogen has drawn properties In order to develop better materials for solar energy applications, in-depth photoelectrochemical simulated solar irradiance. Hydrogen production experiments are conducted in a sealed aluminum cell

Raftery, Dan

467

Performance of Double-Output Induction Generator for Wind Energy Conversion Systems  

Science Conference Proceedings (OSTI)

With growing concerns about environmental pollution and a possible energy shortage, great efforts have been taken by the governments around the world to implement renewable energy programs, based mainly on wind power, solar energy, small hydro-electric ... Keywords: Double-output induction generator (DOIG), steady state model, field-oriented control, dynamic model, PWM converters

B. Chitti Babu; K. B. Mohanty; C. Poongothai

2008-07-01T23:59:59.000Z

468

Controlled operation of variable speed driven permanent magnet synchronous generator for wind energy conversion systems  

Science Conference Proceedings (OSTI)

The introduction of distributed generation through renewable sources of energy has opened a challenging area for power engineers. As these sources are intermittent in nature, variable speed electric generators are employed for harnessing electrical energy ... Keywords: permanent magnet synchronous generator, power conditioners, power quality, variable speed generators, wind energy

Rajveer Mittal; K. S. Sandhu; D. K. Jain

2009-02-01T23:59:59.000Z

469

Theoretical analysis of natural-convection towers for solar-energy conversion  

DOE Green Energy (OSTI)

A theoretical study of solar-powered natural convection tower (chimney) performance is presented. Both heated and cooled towers are analyzed, the latter using evaporating water as the cooling mechanism. The results, which are applicable to any open-cycle configuration, show that the ideal conversion efficiencies of both heated and cooled natural convection towers are linear functions of height. The performance of a heated tower in an adiabatic atmospheric ideally approaches the Carnot efficiency limit of approx. 3.4%/km(1.0%/1000 ft). Including water pumping requirements, the ideal limit to cooled tower performance is approx. 2.75%/km(0.85%/1000 ft). Ambient atmospheric conditions such as vertical temperature gradient (lapse rate) and relative humidity can have significantly adverse effects on natural convection tower performance. The combined effects of lapse rate and ambient relative humidity are especially important for cooled natural convection towers.

Lasier, D.D.; Jacobs, E.W.

1983-05-01T23:59:59.000Z

470

Theoretical analysis of solar-driven natural convection energy conversion systems  

DOE Green Energy (OSTI)

This report presents a theoretical study of solar-powered natural convection tower (chimney) performance. Both heated and cooled towers are analyzed; the latter uses evaporating water as the cooling mechanism. The results, which are applicable to any open-cycle configuration, show that the ideal conversion efficiencies of both heated and cooled natural convection towers are linear functions of height. The performance of a heated tower in an adiabatic atmosphere ideally approaches the Carnot efficiency limit of approx. = 3.4%/km (1.0%/1000 ft). Including water pumping requirements, the ideal limit to cooled tower performance is approx. = 2.75%/km (0.85%/1000 ft). Ambient atmospheric conditions such as vertical temperature gradient (lapse rate) and relative humidity can have significantly adverse effects on natural convection tower performance. The combined effects of lapse rate and ambient relative humidity are especially important to cooled natural convection towers.

Jacobs, E.W.; Lasier, D.D.

1984-01-01T23:59:59.000Z

471

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

Energy Storage for Power Generation. Part 1—Concepts,effectively. Thus, in power generation systems, phase changeIn addition to power generation, phase change heat transfer

Coso, Dusan

2013-01-01T23:59:59.000Z

472

Energy Conversion Application of Chemicurrents Induced in Metal-Semiconductor Nanostuctured Devices.  

E-Print Network (OSTI)

??Hydrogen is one the most attractive and suitable energy systems for generation of power in the future with high efficiencies and renewable properties. Nanoscale materials,… (more)

Dasari, Suhas Kiran K.

2013-01-01T23:59:59.000Z

473

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

2009, “Solar Thermal Power Plants,” The European PhysicalThermal Energy Storage for Parabolic Trough Power Plants,”fuel based power plants, and most nuclear and solar thermal

Coso, Dusan

2013-01-01T23:59:59.000Z

474

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

of low-grade heat," Renewable and Sustainable Energyof various applications," Renewable and Sustainable Energyorganic Rankine cycle," Renewable Energy, vol. 4, pp. 1196-

Ho, Tony

2012-01-01T23:59:59.000Z

475

Assessment of Solar Energy Conversion Technologies-Application of Thermoelectric Devices in Retrofit an Office Building  

E-Print Network (OSTI)

Thermo electric (TE) devices offer an opportunity to introduce renewable energy into existing and new buildings. TE devices harvest energy from the temperature differential between the hot and cold side of a semiconductor material. In this study, the feasibility of integration of TE devices using the model of a generic enclosure will be explored. Some of these applications will involve the use of these devices as heat exchangers. However, these devices will be examined for their use in harvesting energy to provide the electric service for an office. Since demanded energy for some electronic devices can be generated directly, provided energy has the potential to take those loads off from the distribution. Besides, generated electricity expected to be replaced a greater amount of grid electricity for the periods when TE is generating. This paper represents a critical step for performing an analysis of using the proposed TE system in an office.

Azarbayjani, M.; Anderson, J.

2008-12-01T23:59:59.000Z

476

Conceptual design of an open-cycle ocean thermal energy conversion net power-producing experiment (OC-OTEC NPPE)  

DOE Green Energy (OSTI)

This report describes the conceptual design of an experiment to investigate heat and mass transfer and to assess the viability of open-cycle ocean thermal energy conversion (OC-OTEC). The experiment will be developed in two stages, the Heat- and Mass-Transfer Experimental Apparatus (HMTEA) and the Net Power-Producing Experiment (NPPE). The goal for the HMTEA is to test heat exchangers. The goal for the NPPE is to experimentally verify OC-OTEC's feasibility by installing a turbine and testing the power-generating system. The design effort met the goals of both the HMTEA and the NPPE, and duplication of hardware was minimal. The choices made for the design resource water flow rates are consistent with the availability of cold and warm seawater as a result of the seawater systems upgrade carried out by the US Department of Energy (DOE), the state of Hawaii, and the Pacific International Center for High Technology Research. The choices regarding configuration of the system were made based on projected performance, degree of technical risk, schedule, and cost. The cost for the future phase of the design and the development of the HMTEA/NPPE is consistent with the projected future program funding levels. The HMTEA and NPPE were designed cooperatively by PICHTR, Argonne National Laboratory, and Solar Energy Research Institute under the guidance of DOE. The experiment will be located at the DOE's Seacoast Test Facility at the Natural Energy Laboratory of Hawaii, Kailua-Kona, Hawaii. 71 refs., 41 figs., 34 tabs.

Bharathan, D.; Green, H.J.; Link, H.F.; Parsons, B.K.; Parsons, J.M.; Zangrando, F.

1990-07-01T23:59:59.000Z

477

A Novel Supercritical CO2 Power Cycle for Energy Conversion in Fusion Power Plants  

Science Conference Proceedings (OSTI)

DEMO and Next-Step Facilities / Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 2) Nashville, Tennessee, August 27-31, 2012

I. P. Serrano; J. I. Linares; A. Cantizano; B. Y. Moratilla

478

Energy-efficient analog-to-digital conversion for ultra-wideband radio  

E-Print Network (OSTI)

In energy constrained signal processing and communication systems, a focus on the analog or digital circuits in isolation cannot achieve the minimum power consumption. Furthermore, in advanced technologies with significant ...

Ginsburg, Brian P. (Brian Paul), 1980-

2007-01-01T23:59:59.000Z

479

A scrape-through piezoelectric MEMS energy harvester with frequency broadband and up-conversion behaviors  

Science Conference Proceedings (OSTI)

We propose a MEMS piezoelectric energy harvester with a wide operating frequency range by incorporating a high-frequency piezoelectric cantilever and a metal base as the top and bottom stoppers with a low-frequency piezoelectric cantilever. Frequency ...

Huicong Liu; Cho Jui Tay; Chenggen Quan; Takeshi Kobayashi; Chengkuo Lee

2011-12-01T23:59:59.000Z

480

Modeling and Controller Design of a Wind Energy Conversion System Including a Matrix Converter.  

E-Print Network (OSTI)

??In this thesis, a grid-connected wind-energy converter system including a matrix converter is proposed. The matrix converter, as a power electronic converter, is used to… (more)

Barakati, Seyed Masoud

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal-to-electrical energy conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.