Sample records for thermal waters rocks

  1. A Sr-Isotopic Comparison Between Thermal Waters, Rocks, And Hydrotherm...

    Open Energy Info (EERE)

    Sr-Isotopic Comparison Between Thermal Waters, Rocks, And Hydrothermal Calcites, Long Valley Caldera, California Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  2. Water Rock Interaction [WRI 14] Chemical weathering of granitic rocks: experimental approach and Pb-Li

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of water/rock interactions both in terms of source and extent of weathering, by measuring major and traceWater Rock Interaction [WRI 14] Chemical weathering of granitic rocks: experimental approach and Pb, France Abstract In order to characterize water/rock interactions of granite, we performed laboratory

  3. The thermal conductivity of rock under hydrothermal conditions: measurements and applications

    SciTech Connect (OSTI)

    Williams, Colin F.; Sass, John H.

    1996-01-24T23:59:59.000Z

    The thermal conductivities of most major rock-forming minerals vary with both temperature and confining pressure, leading to substantial changes in the thermal properties of some rocks at the high temperatures characteristic of geothermal systems. In areas with large geothermal gradients, the successful use of near-surface heat flow measurements to predict temperatures at depth depends upon accurate corrections for varying thermal conductivity. Previous measurements of the thermal conductivity of dry rock samples as a function of temperature were inadequate for porous rocks and susceptible to thermal cracking effects in nonporous rocks. We have developed an instrument for measuring the thermal conductivity of water-saturated rocks at temperatures from 20 to 350 °C and confining pressures up to 100 MPa. A transient line-source of heat is applied through a needle probe centered within the rock sample, which in turn is enclosed within a heated pressure vessel with independent controls on pore and confining pressure. Application of this technique to samples of Franciscan graywacke from The Geysers reveals a significant change in thermal conductivity with temperature. At reservoir-equivalent temperatures of 250 °C, the conductivity of the graywacke decreases by approximately 25% relative to the room temperature value. Where heat flow is constant with depth within the caprock overlying the reservoir, this reduction in conductivity with temperature leads to a corresponding increase in the geothermal gradient. Consequently, reservoir temperature are encountered at depths significantly shallower than those predicted by assuming a constant temperature gradient with depth. We have derived general equations for estimating the thermal conductivity of most metamorphic and igneous rocks and some sedimentary rocks at elevated temperature from knowledge of the room temperature thermal conductivity. Application of these equations to geothermal exploration should improve estimates of subsurface temperatures derived from heat flow measurements.

  4. Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field...

    Open Energy Info (EERE)

    Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  5. Adsorption of water vapor on reservoir rocks

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    Progress is reported on: adsorption of water vapor on reservoir rocks; theoretical investigation of adsorption; estimation of adsorption parameters from transient experiments; transient adsorption experiment -- salinity and noncondensible gas effects; the physics of injection of water into, transport and storage of fluids within, and production of vapor from geothermal reservoirs; injection optimization at the Geysers Geothermal Field; a model to test multiwell data interpretation for heterogeneous reservoirs; earth tide effects on downhole pressure measurements; and a finite-difference model for free surface gravity drainage well test analysis.

  6. Determining the modal mineralogy of mafic and ultramafic igneous rocks using thermal emission spectroscopy

    E-Print Network [OSTI]

    Hamilton, Victoria E.

    Determining the modal mineralogy of mafic and ultramafic igneous rocks using thermal emission, Tempe Abstract. The modal mineralogies of 20 mafic and ultramafic igneous rocks were determined from mineralogical information from thermal infrared emission spectra of bulk rock samples. Furthermore, convolution

  7. Geochemical Data on Waters, Gases, Scales, and Rocks from the...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geochemical Data on Waters, Gases, Scales, and Rocks from the Dixie Valley Region, Nevada (1996-1999)...

  8. Rock Hill Utilities- Water Heater and Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    Through the SmartChoice program, Rock Hill Utilities offers rebates for water heater and heat pump replacements. Information on financing for heat pumps can also be found on the web site listed...

  9. URTeC 1620617 Thermal Shock in Reservoir Rock Enhances the Hydraulic

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    URTeC 1620617 Thermal Shock in Reservoir Rock Enhances the Hydraulic Fracturing of Gas Shales Saeid through strain and stress. As the temperature diffuses from hydraulic fracture into reservoir the rock matrix beyond hydraulic fracturing stimulation by cooling down the rock. The physics

  10. Merguerian, Charles; and Ozdemir, Levent, 2003, Rock Mass Properties and Hard Rock TBM Penetration Rate Investigations, Queens Tunnel Complex, NYC Water Tunnel #3, Stage 2: p.

    E-Print Network [OSTI]

    Merguerian, Charles

    Merguerian, Charles; and Ozdemir, Levent, 2003, Rock Mass Properties and Hard Rock TBM Penetration Properties and Hard Rock TBM Penetration Rate Investigations, Queens Tunnel Complex, NYC Water Tunnel #3 quantification that the rock mass exhibited an unusually high degree of toughness and rock directional properties

  11. Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry Rock Geothermal Systems I. Fluid...

  12. Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry Rock Geothermal Systems II....

  13. Thermal Expansion Behavior of Cerro Prieto Sandstones and Other Sedimentary Rocks Under Stress

    SciTech Connect (OSTI)

    Contreras, E.; Bermejo, F.

    1983-12-15T23:59:59.000Z

    This paper describes the experimental work and presents the results of a research program carried out to investigate the thermal expansion behavior of sedimentary rocks under high stress conditions. The aspects that were investigated include the effects of temperature, temperature cycling, and confining pressure. Furthermore, the validity of the usual assumption on thermal expansion isotropy was investigated. On the other hand, the matrix thermal expansion concept is analyzed and its physical meaning and aplications are discussed. The effect of temperature on porosity is also a subject investigated regarding experimental methods for its estimation and comparison of earlier results. The experiments carried out consisted basically of thermal strain versus temperature measurements on jacketed and unjacketed samples subjected to different confining pressures and covering the temperature range from 25 C to 280 C and the pressure range from 3.0 MPa to 34.4 MPa. A review of earlier work is included as a reference frame to discuss and compare the results of this work, as well as to emphasize the limited extent of the research on thermal expansion behavior of sedimentary rocks that had been accomplished. Results are presented by means of thermal strain versus temperature curves and tabular data of thermal expansion coefficients. Several important conclusions for laborarory and field applications are reached from each of the aspects investigated. The wide research scope of considerable amount of data reported may represent an important contribution to the knowledge of thermal expansion behavior of sedimentary rocks.

  14. Thermal Conductivity of Ordered Molecular Water

    SciTech Connect (OSTI)

    W Evans; J Fish; P Keblinski

    2006-02-16T23:59:59.000Z

    We use molecular dynamics simulation to investigate thermal transport characteristics of water with various degree of orientational and translational order induced by the application of an electric field. We observe that orientational ordering of the water dipole moments has a minor effect on the thermal conductivity. However, electric-field induced crystallization and associated translational order results in approximately a 3-fold increase of thermal conductivity with respect to the base water, i.e., to values comparable with those characterizing ice crystal structures.

  15. Rocks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResources ResourcesRobust, High-ThroughputRocks Rocks

  16. Ghabezloo S., Sulem J. (2009) Stress dependent thermal pressurization of a fluid-saturated rock, Rock Mech Rock Eng 42, 1-24 Stress dependent thermal pressurization of a

    E-Print Network [OSTI]

    Boyer, Edmond

    2009-01-01T23:59:59.000Z

    of the effective mean stress and can lead to shear failure or hydraulic fracturing. The equations governing or hydraulic fracturing. This phenomenon is important in petroleum engineering where the reservoir rock et al. 2007). Important theoretical advances have been proposed in the study of thermal weakening

  17. Characterizing Hydraulic Properties and Ground-Water Chemistry in Fractured-Rock Aquifers: A User's Manual

    E-Print Network [OSTI]

    Characterizing Hydraulic Properties and Ground-Water Chemistry in Fractured-Rock Aquifers: A User source for science about the Earth, its natural and living resources, natural hazards., 2007, Characterizing hydraulic properties and ground-water chemistry in fractured-rock aquifers: A user

  18. Groundwater chemistry and water-rock interactions at Stripa

    SciTech Connect (OSTI)

    Nordstrom, D.K.; Ball, J.W. (Geological Survey, Menlo Park, CA (USA)); Donahoe, R.J. (Univ. of Alabama, Tuscaloosa (USA)); Whittemore, D. (Univ. of Kansas, Lawrence (USA))

    1989-08-01T23:59:59.000Z

    Ground waters from near surface to a depth of 1,232 m in the Stripa granite have been sampled and analyzed for major and trace constituents. The groundwater composition consists of two general types: a typical recharge water of Ca-HCO{sub 3} type (<300 m depth) and a deeper Na-Ca-Cl type (>700 m depth) of high pH (8-10) that reaches a maximum of 1,250 mg/L in total dissolved solids (TDS). Intermediate depths show mixtures of the two types that are highly fracture-dependent rather than depth-dependent. Any borehole can vary significantly and erratically in TDS for either a horizontal or vertical direction. The general transition from Ca-HCO{sub 3} type to Na-Ca-Cl type correlates with the depth profile for hydraulic conductivity that drops from 10{sup {minus}8} m/s to 10{sup {minus}11} m/s or lower. Thermomechanical stress (from heater experiments) clearly shows an effect on the groundwater composition that could be caused by changing flow paths, leakage of fluid inclusions or both. Dissolution and precipitation of calcite, fluorite and barite, aluminosilicate hydrolysis, and addition of a saline source (possibly fluid inclusion leakage) play the major roles in defining the groundwater composition. The low permeability of the Stripa granite has produced a groundwater composition that appears intermediate between the dilute, shallow ground waters typical of recharge in a crystalline rock terrain and the saline waters and brines typical of cratonic shield areas at depth.

  19. Practical Solar Thermal Chilled Water 

    E-Print Network [OSTI]

    Leavell, B.

    2010-01-01T23:59:59.000Z

    the potential to impact America's use of non-renewable energy beyond its own design capacity by applying it to the optimization of an existing building's system. Solar-thermal chilling systems are not new. However, few of them can be described as a practical...

  20. Practical Solar Thermal Chilled Water

    E-Print Network [OSTI]

    Leavell, B.

    2010-01-01T23:59:59.000Z

    the potential to impact America's use of non-renewable energy beyond its own design capacity by applying it to the optimization of an existing building's system. Solar-thermal chilling systems are not new. However, few of them can be described as a practical...

  1. Hydrological and water quality characteristics of three rock glaciers: Blanca Massif, Colorado, USA

    E-Print Network [OSTI]

    DeMorett, Joseph Lawrence

    1989-01-01T23:59:59.000Z

    interstitially or as discrete lenses. The geometry of a rock glacier is conducive not only to the formation and growth of ice, but also to the entrapment of water in the fluid state. It is the ice and the trapped water that are important in providing a source... and the trapped water that are important in providing a source for maintaining flow of many alpine streams during the summer. In many alpine areas of the world, streams flow from the frontal slopes of rock glaciers. Although rock glaciers have been studied...

  2. The effects of thermal cycling on the rock mechanics of carrara marble

    E-Print Network [OSTI]

    Hastedt, Margaret Jean

    1990-01-01T23:59:59.000Z

    December 1990 Major Subject: Geology THE EFFECTS OF THERMAL CYCLING ON THE ROCK MECHANICS OF CARRARA MARBLE A Thesis by MARGARET JEAN HASTEDT Approved as to style and content by: John M. an (Chair of C ittee) elvin F man (member) Earl R. Hoskins... of the marble, which is not reflected by the c-axis fabric and appears to be a ghost structure. Residual strain measurements performed on thermally cycled marble appear to show a cyclic pattern in that the amount of stored strain released is inversely...

  3. Analysis of a mesoscale infiltration and water seepage test in unsaturated fractured rock: Spatial variabilities

    E-Print Network [OSTI]

    Zhou, Quanlin

    Analysis of a mesoscale infiltration and water seepage test in unsaturated fractured rock: Spatial 2006 Abstract A mesoscale (21 m in flow distance) infiltration and seepage test was recently conducted flow in fractured rock at mesoscale or a larger scale is not necessarily conditional explicitly

  4. Rock-water interactions of the Madison Aquifer, Mission Canyon Formation, Williston Basin, North Dakota 

    E-Print Network [OSTI]

    Spicer, James Frank

    1994-01-01T23:59:59.000Z

    and provide an excellent framework in which to study rockwater interactions in highly saline aquifers. Geochemical speciation was coupled with data visualization interpretations in order to understand specific rock-water interactions that occur...

  5. Esimation of field-scale thermal conductivities of unsaturated rocks from in-situ temperature data

    E-Print Network [OSTI]

    Mukhopadhyay, Sumit; Tsang, Yvonne W.; Birkholzer, Jens T.

    2008-01-01T23:59:59.000Z

    vicinity of the heat source, and rock temperature exceededand the dry rock near the heat source. The other differencesources, heat transfer takes place through the wet rock (see

  6. ROCK PROPERTIES AND THEIR EFFECT ON THERMALLY-INDUCED DISPLACEMENTS AND STRESSES

    E-Print Network [OSTI]

    Chan, T.

    2010-01-01T23:59:59.000Z

    of laboratory rock property measurements. ACKNOWLEDGEMENT10517 u>ve-'zz&\\--lo ROCK PROPERTIES AND THEIR EFFECT OHin values i for the rock properties for an 1n-s1tu rock mass

  7. Modeling of thermally driven hydrological processes in partially saturated fractured rock

    SciTech Connect (OSTI)

    Tsang, Yvonne; Birkholzer, Jens; Mukhopadhyay, Sumit

    2009-03-15T23:59:59.000Z

    This paper is a review of the research that led to an in-depth understanding of flow and transport processes under strong heat stimulation in fractured, porous rock. It first describes the anticipated multiple processes that come into play in a partially saturated, fractured porous volcanic tuff geological formation, when it is subject to a heat source such as that originating from the decay of radionuclides. The rationale is then given for numerical modeling being a key element in the study of multiple processes that are coupled. The paper outlines how the conceptualization and the numerical modeling of the problem evolved, progressing from the simplified to the more realistic. Examples of numerical models are presented so as to illustrate the advancement and maturation of the research over the last two decades. The most recent model applied to in situ field thermal tests is characterized by (1) incorporation of a full set of thermal-hydrological processes into a numerical simulator, (2) realistic representation of the field test geometry, in three dimensions, and (3) use of site-specific characterization data for model inputs. Model predictions were carried out prior to initiation of data collection, and the model results were compared to diverse sets of measurements. The approach of close integration between modeling and field measurements has yielded a better understanding of how coupled thermal hydrological processes produce redistribution of moisture within the rock, which affects local permeability values and subsequently the flow of liquid and gases. The fluid flow in turn will change the temperature field. We end with a note on future research opportunities, specifically those incorporating chemical, mechanical, and microbiological factors into the study of thermal and hydrological processes.

  8. Isotope Geochemistry of Thermal and Nonthermal Waters in the...

    Open Energy Info (EERE)

    geothermal fluids display a positive oxygen 18 shift of not less than 2 because of rock-water isotopic exchange at 220-300C. The Valles geothermal system is capped by a...

  9. D/H isotope ratios of kerogen, bitumen, oil, and water in hydrous pyrolysis of source rocks containing kerogen types I, II, IIS, and III

    SciTech Connect (OSTI)

    Schimmelmann, A.; Lewan, M.D.; Wintsch, R.P.

    1999-11-01T23:59:59.000Z

    Immature source rock chips containing different types of kerogen (I,II,IIS,III) were artificially matured in isotopically distinct waters by hydrous pyrolysis and by pyrolysis in supercritical water. Converging isotopic trends of inorganic (water) and organic (kerogen, bitumen, oil) hydrogen with increasing time and temperature document that water-derived hydrogen is added to or exchanged with organic hydrogen, or both, during chemical reactions that take place during thermal maturation. Isotopic mass-balance calculations show that, depending on temperature (310--381 C), time (12--144h), and source rock type, between ca. 45 and 79% of carbon-bound hydrogen in kerogen is derived from water. Estimates for bitumen and oil range slightly lower, with oil-hydrogen being least affected by water-derived hydrogen. Comparative hydrous pyrolyses of immature source rocks at 330 C for 72h show that hydrogen in kerogen, bitumen, and expelled oil/wax ranks from most to least isotopically influenced by water-derived hydrogen in the order IIS {gt} II {approximately} III {gt} I. Pyrolysis of source rock containing type II kerogen in supercritical water at 381 C for 12 h yields isotopic results that are similar to those from hydrous pyrolysis at 250 C for 72 h or 330 C for 133 h. Bulk hydrogen in kerogen contains several percent of isotopically labile hydrogen that exchanges fast and reversibly with hydrogen in water vapor at 115 C. The isotopic equilibration of labile hydrogen in kerogen with isotopic standard water vapors significantly reduces the analytical uncertainty of D/H ratios when compared with simple D/H determination of bulk hydrogen in kerogen. If extrapolation of their results from hydrous pyrolysis is permitted to natural thermal maturation at lower temperatures, the authors suggest that organic D/H ratios of fossil fuels in contact with formation water are typically altered during chemical reactions, but that D/H ratios of generated hydrocarbons are subsequently little or not affected by exchange with water hydrogen at typical reservoir conditions over geologic time. It will be difficult to utilize D/H ratios of thermally mature bulk or fractions or organic matter to quantitatively reconstruct isotopic aspects of paleoclimate and paleoenvironment. Hope resides in compound-specific D/H ratio of thermally stable, extractable biomarkers (molecular fossils) that are less susceptible to hydrogen exchange with water-derived hydrogen.

  10. Theoretical relation between water flow rate in a vertical fracture and rock temperature in the surrounding massif

    E-Print Network [OSTI]

    Maréchal, Jean-Christophe

    2010-01-01T23:59:59.000Z

    A steady-state analytical solution is given describing the temperature distribution in a homogeneous massif perturbed by cold water flow through a discrete vertical fracture. A relation is derived to express the flow rate in the fracture as a function of the temperature measured in the surrounding rock. These mathematical results can be useful for tunnel drilling as it approaches a vertical cold water bearing structure that induces a thermal anomaly in the surrounding massif. During the tunnel drilling, by monitoring this anomaly along the tunnel axis one can quantify the flow rate in the discontinuity ahead before intersecting the fracture. The cases of the Simplon, Mont Blanc and Gotthard tunnels (Alps) are handled with this approach which shows very good agreement between observed temperatures and the theoretical trend. The flow rates before drilling of the tunnel predicted with the theoretical solution are similar in the Mont Blanc and Simplon cases, as well as the flow rates observed during the drilling....

  11. THERMO-HYDRO-MECHANICAL MODELING OF WORKING FLUID INJECTION AND THERMAL ENERGY EXTRACTION IN EGS FRACTURES AND ROCK MATRIX

    SciTech Connect (OSTI)

    Robert Podgorney; Chuan Lu; Hai Huang

    2012-01-01T23:59:59.000Z

    Development of enhanced geothermal systems (EGS) will require creation of a reservoir of sufficient volume to enable commercial-scale heat transfer from the reservoir rocks to the working fluid. A key assumption associated with reservoir creation/stimulation is that sufficient rock volumes can be hydraulically fractured via both tensile and shear failure, and more importantly by reactivation of naturally existing fractures (by shearing), to create the reservoir. The advancement of EGS greatly depends on our understanding of the dynamics of the intimately coupled rock-fracture-fluid-heat system and our ability to reliably predict how reservoirs behave under stimulation and production. Reliable performance predictions of EGS reservoirs require accurate and robust modeling for strongly coupled thermal-hydrological-mechanical (THM) processes. Conventionally, these types of problems have been solved using operator-splitting methods, usually by coupling a subsurface flow and heat transport simulators with a solid mechanics simulator via input files. An alternative approach is to solve the system of nonlinear partial differential equations that govern multiphase fluid flow, heat transport, and rock mechanics simultaneously, using a fully coupled, fully implicit solution procedure, in which all solution variables (pressure, enthalpy, and rock displacement fields) are solved simultaneously. This paper describes numerical simulations used to investigate the poro- and thermal- elastic effects of working fluid injection and thermal energy extraction on the properties of the fractures and rock matrix of a hypothetical EGS reservoir, using a novel simulation software FALCON (Podgorney et al., 2011), a finite element based simulator solving fully coupled multiphase fluid flow, heat transport, rock deformation, and fracturing using a global implicit approach. Investigations are also conducted on how these poro- and thermal-elastic effects are related to fracture permeability evolution.

  12. EGS rock reactions with Supercritical CO2 saturated with water and water saturated with Supercritical CO2

    SciTech Connect (OSTI)

    Earl D. Mattson; Travis L. McLing; William Smith; Carl Palmer

    2013-02-01T23:59:59.000Z

    EGS using CO2 as a working fluid will likely involve hydro-shearing low-permeability hot rock reservoirs with a water solution. After that process, the fractures will be flushed with CO2 that is maintained under supercritical conditions (> 70 bars). Much of the injected water in the main fracture will be flushed out with the initial CO2 injection; however side fractures, micro fractures, and the lower portion of the fracture will contain connate water that will interact with the rock and the injected CO2. Dissolution/precipitation reactions in the resulting scCO2/brine/rock systems have the potential to significantly alter reservoir permeability, so it is important to understand where these precipitates form and how are they related to the evolving ‘free’ connate water in the system. To examine dissolution / precipitation behavior in such systems over time, we have conducted non-stirred batch experiments in the laboratory with pure minerals, sandstone, and basalt coupons with brine solution spiked with MnCl2 and scCO2. The coupons are exposed to liquid water saturated with scCO2 and extend above the water surface allowing the upper portion of the coupons to be exposed to scCO2 saturated with water. The coupons were subsequently analyzed using SEM to determine the location of reactions in both in and out of the liquid water. Results of these will be summarized with regard to significance for EGS with CO2 as a working fluid.

  13. Modelling of unidirectional thermal diffusers in shallow water

    E-Print Network [OSTI]

    Lee, Joseph Hun-Wei

    1977-01-01T23:59:59.000Z

    This study is an experimental and theoretical investigation of the temperature field and velocity field induced by a unidirectional thermal diffuser in shallow water. A multiport thermal diffuser is essentially a pipe laid ...

  14. Connate Water Saturation -Irreducible or Not: the Key to Reliable Hydraulic Rock Typing in Reservoirs Straddling Multiple Capillary Windows

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    of flow capacity. High in-situ capillary pressure causes connate water saturation in reservoir rocks petrophysical analysis based solely on conventional logs, including gamma ray, neutron porosity, bulk densitySPE 166082 Connate Water Saturation - Irreducible or Not: the Key to Reliable Hydraulic Rock Typing

  15. Modeling of thermally driven hydrological processes in partially saturated fractured rock

    E-Print Network [OSTI]

    Tsang, Yvonne

    2010-01-01T23:59:59.000Z

    the heat source and encounters cooler rock, it condenses,fractured rock near the radioactive-decay heat source isrock, giving rise to a reflux of liquid back to the heat source.

  16. The thermal maturation degree of organic matter from source rocks revealed by wells logs including examples from Murzuk Basin, Libya

    SciTech Connect (OSTI)

    Negoita, V.; Gheorghe, A.

    1995-08-01T23:59:59.000Z

    The customary technique used to know the organic matter quantity per rock volume it as well as the organic matter maturation stage is based on geochemical analyses accomplished on a preselected number of samples and cuttings drawn from boreholes during the drilling period. But the same objectives can be approached without any extra cost using the continuous measurements of well logs recorded in each well from the ground surface to the total depth. During the diagenetic stage, the identification of potential source rocks out of which no hydrocarbon have been generated may be carried out using a well logging suite including Gamma Ray Spectrometry, the Compensated Neutron/Litho Density combination and a Dual Induction/Sonic Log. During the catagenetic stage the onset of oil generation brings some important changes in the organic matter structure as well as in the fluid distribution throughout the pore space of source rocks. The replacement of electric conductive water by electric non-conductive hydrocarbons, together with water and oil being expelled from source rocks represent a process of different intensities dependent of time/temperature geohistory and kerogen type. The different generation and expulsion scenarios of hydrocarbons taking place during the catagenetic and metagenetic stages of source rocks are very well revealed by Induction and Laterolog investigations. Several crossplots relating vitrinite reflectance, total organic carbon and log-derived physical parameters are illustrated and discussed. The field applications are coming from Murzuk Basin, where Rompetrol of Libya is operating.

  17. Geology, thermal maturation, and source rock geochemistry in a volcanic covered basin: San Juan sag, south-central Colorado

    SciTech Connect (OSTI)

    Gries, R.R. [Priority Oil & Gas, Denver, CO (United States); Clayton, J.L. [Geological Survey, Denver, CO (United States); Leonard, C. [Platte River Associates, Denver, CO (United States)

    1997-07-01T23:59:59.000Z

    The San Juan sag, concealed by the vast San Juan volcanic field of south-central Colorado, has only recently benefited from oil and gas wildcat drilling and evaluations. Sound geochemical analyses and maturation modeling are essential elements for successful exploration and development. Oil has been produced in minor quantities from an Oligocene sill in the Mancos Shale within the sag, and major oil and gas production occurs from stratigraphically equivalent rocks in the San Juan basin to the southwest and in the Denver basin to the northeast. The objectives of this study were to identify potential source rocks, assess thermal maturity, and determine hydrocarbon-source bed relationships. Source rocks are present in the San Juan sag in the upper and lower Mancos Shale (including the Niobrara Member), which consists of about 666 m (2184 ft) of marine shale with from 0.5 to 3.1 wt. % organic carbon. Pyrolysis yields (S{sub 1} + S{sub 2} = 2000-6000 ppm) and solvent extraction yields (1000-4000 ppm) indicate that some intervals within the Mancos Shale are good potential source rocks for oil, containing type II organic matter, according to Rock-Eval pyrolysis assay.

  18. Adsorption of water vapor on reservoir rocks. First quarterly report, January--March 1993

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    Progress is reported on: adsorption of water vapor on reservoir rocks; theoretical investigation of adsorption; estimation of adsorption parameters from transient experiments; transient adsorption experiment -- salinity and noncondensible gas effects; the physics of injection of water into, transport and storage of fluids within, and production of vapor from geothermal reservoirs; injection optimization at the Geysers Geothermal Field; a model to test multiwell data interpretation for heterogeneous reservoirs; earth tide effects on downhole pressure measurements; and a finite-difference model for free surface gravity drainage well test analysis.

  19. MODELLING RADIATIVELY ACTIVE WATER-ICE CLOUDS: IMPACT ON THE THERMAL STRUCTURE AND WATER CYCLE.

    E-Print Network [OSTI]

    Madeleine, Jean-Baptiste

    MODELLING RADIATIVELY ACTIVE WATER-ICE CLOUDS: IMPACT ON THE THERMAL STRUCTURE AND WATER CYCLE. J. The essential role of water-ice clouds in shaping the thermal structure of the martian atmosphere has been long presumed [1] but neglected in GCMs because of the lack of observations and difficulty to predict

  20. Marshall Municipal Utilities- Solar Thermal Water Heater Rebate Program

    Broader source: Energy.gov [DOE]

    Marshall Municipal Utilities (MMU) offers residential customers rebates for installing a ENERGY STAR Solar Thermal Water Heater. Rebates are based on the size of the system; MMU offers $20 per...

  1. Geochemical Data for 95 Thermal and Nonthermal Waters of the...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geochemical Data for 95 Thermal and Nonthermal Waters of the Valles Caldera - Southern Jemez Mountains...

  2. Minnesota Power- Solar-Thermal Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Minnesota Power offers a 25% rebate for qualifying solar thermal water heating systems. The maximum award for single-family customers is $2,000 per customer; $4,000 for 2-3 family unit buildings;...

  3. Investigations of Near-Field Thermal-Hydrologic-Mechanical-Chemical Models for Radioactive Waste Disposal in Clay/Shale Rock

    E-Print Network [OSTI]

    Liu, H.H.

    2012-01-01T23:59:59.000Z

    hydraulic rock properties 25  a variety of rock properties and their relationships to flowmechanical and/or hydraulic rock properties. The theoretical

  4. Supplement to the UMTRA project water sampling and analysis plan, Slick Rock, Colorado

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The water sampling and analysis plan (WSAP) provides the regulatory and technical basis for ground water and surface water sampling at the Uranium Mill Tailings Remedial Action (UMTRA) Project Union Carbide (UC) and North Continent (NC) processing sites and the Burro Canyon disposal site near Slick Rock, Colorado. The initial WSAP was finalized in August 1994 and will be completely revised in accordance with the WSAP guidance document (DOE, 1995) in late 1996. This version supplements the initial WSAP, reflects only minor changes in sampling that occurred in 1995, covers sampling scheduled for early 1996, and provides a preliminary projection of the next 5 years of sampling and monitoring activities. Once surface remedial action is completed at the former processing sites, additional and more detailed hydrogeologic characterization may be needed to develop the Ground Water Program conceptual ground water model and proposed compliance strategy. In addition, background ground water quality needs to be clearly defined to ensure that the baseline risk assessment accurately estimated risks from the contaminants of potential concern in contaminated ground water at the UC and NC sites.

  5. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Slick Rock, Colorado. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    Two UMTRA (Uranium Mill Tailings Remedial Action) Project sites are near Slick Rock, Colorado: the North Continent site and the Union Carbide site. Currently, no one uses the contaminated ground water at either site for domestic or agricultural purposes. However, there may be future land development. This risk assessment evaluates possible future health problems associated with exposure to contaminated ground water. Since some health problems could occur, it is recommended that the contaminated ground water not be used as drinking water.

  6. Stable isotope fractionation by thermal diffusion through partially molten wet and dry silicate rocks

    E-Print Network [OSTI]

    Bindeman, Ilya N.

    isotope redistribution by thermal diffusion leading to enrichment of light isotopes at the hot endStable isotope fractionation by thermal diffusion through partially molten wet and dry silicate 2012 Editor: T.M. Harrison Keywords: thermal diffusion hydrogen isotope separation oxygen isotopes

  7. Evaluation of Management of Water Release for Painted Rocks Reservoir, Bitterroot River, Montana, 1984 Annual Report.

    SciTech Connect (OSTI)

    Lere, Mark E. (Montana Department of Fish, Wildlife and Parks, Missoula, MT)

    1984-11-01T23:59:59.000Z

    Baseline fisheries and habitat data were gathered during 1983 and 1984 to evaluate the effectiveness of supplemental water releases from Painted Rocks Reservoir in improving the fisheries resource in the Bitterroot River. Discharge relationships among main stem gaging stations varied annually and seasonally. Flow relationships in the river were dependent upon rainfall events and the timing and duration of the irrigation season. Daily discharge monitored during the summers of 1983 and 1984 was greater than median values derived at the U.S.G.S. station near Darby. Supplemental water released from Painted Rocks Reservoir totaled 14,476 acre feet in 1983 and 13,958 acre feet in 1984. Approximately 63% of a 5.66 m{sup 3}/sec test release of supplemental water conducted during April, 1984 was lost to irrigation withdrawals and natural phenomena before passing Bell Crossing. A similar loss occurred during a 5.66 m{sup 3}/sec test release conducted in August, 1984. Daily maximum temperature monitored during 1984 in the Bitterroot River averaged 11.0, 12.5, 13.9 and 13.6 C at the Darby, Hamilton, Bell and McClay stations, respectively. Chemical parameters measured in the Bitterroot River were favorable to aquatic life. Population estimates conducted in the Fall, 1983 indicated densities of I+ and older rainbow trout (Salmo gairdneri) were significantly greater in a control section than in a dewatered section (p < 0.20). Numbers of I+ and older brown trout (Salmo trutta) were not significantly different between the control and dewatered sections (p > 0.20). Population and biomass estimates for trout in the control section were 631/km and 154.4 kg/km. In the dewatered section, population and biomass estimates for trout were 253/km and 122.8 kg/km. The growth increments of back-calculated length for rainbow trout averaged 75.6 mm in the control section and 66.9mm in the dewatered section. The growth increments of back-calculated length for brown trout averaged 79.5 mm in the control section and 82.3mm in the dewatered section. Population estimates conducted in the Spring, 1984 indicated densities of mountain whitefish (Prosopium williamsoni) greater than 254 mm in total length were not significantly different between the control and dewatered sections (p > 0.20). Young of the year rainbow trout and brown trout per 10m of river edge electrofished during 1984 were more abundant in the control section than the dewatered section and were more abundant in side channel habitat than main channel habitat. Minimum flow recommendations obtained from wetted perimeter-discharge relationships averaged 8.5m{sup 3}/sec in the control section and 10.6m{sup 3}/sec in the dewatered section of the Bitterroot River. The quantity of supplemental water from Painted Rocks Reservoir needed to maintain minimum flow recommendations is discussed in the Draft Water Management Plan for the Proposed Purchase of Supplemental Water from Painted Rocks Reservoir, Bitterroot River, Montana (Lere 1984).

  8. An experimental investigaion of seawater/basalt interactions: the role of water/rock ratios and temperature gradients 

    E-Print Network [OSTI]

    Archer, Paul Lawrence

    1978-01-01T23:59:59.000Z

    in the precipitation of Fe-sulfides (pyri te and pyrrhoti te) in both 5/1 and 50/1 water/rock ratio systems. As a result of this precipitation, Fe was effectively fractionated from Mn and the Fe/Mn ratio of the fluid decreased. Because the 50/1 systems had lower pH.... EPR). This investi- gation also provides data potentially useful in predicting the occur- rence and kind of mineralization at ocean spreading centers as a function of the temperature and water/rock ratio regime of that system. 11 METHODS Ex...

  9. GEOPHYSICS, VOL. 60, NO. 2 (MARCH-APRIL 1995); P. 431-436, 9 FIGS., 4 TABLES. Rock/water interaction in dielectric properties

    E-Print Network [OSTI]

    Knight, Rosemary

    properties. The focus of this study is the fact that the wetting of the rock solid by the waterGEOPHYSICS, VOL. 60, NO. 2 (MARCH-APRIL 1995); P. 431-436, 9 FIGS., 4 TABLES. Rock/water interaction in dielectric properties: Experiments with hydrophobic sandstones Rosemary Knight* and Ana Abad

  10. Solar-induced thermal activity and stratification in pond water

    E-Print Network [OSTI]

    Brownridge, James D

    2015-01-01T23:59:59.000Z

    Ponds are universally used to store water for a large number of uses. With the increasing demand for more fresh water, ponds, lakes and reservoirs are likely to be constructed on a larger scale. We must understand the effects of environmental changes on fresh water if we are to most efficiently utilize this resource. This study undertakes to increase our understanding of the rate of thermal response of ponds and other bodies of water to every-day environmental changes. The central research agenda is to investigate how the temperature of pond water from top to bottom responds to the day/night cycle, changes in air temperature just above the surface, cloud conditions, and other sudden environmental changes. Data collection for this study spanned October 2007 to June 2011 and had a continuous time resolution of 50 seconds.

  11. An overview of water disinfection in developing countries and the potential for solar thermal water pasteurization

    SciTech Connect (OSTI)

    Burch, J.; Thomas, K.E.

    1998-01-01T23:59:59.000Z

    This study originated within the Solar Buildings Program at the U.S. Department of Energy. Its goal is to assess the potential for solar thermal water disinfection in developing countries. In order to assess solar thermal potential, the alternatives must be clearly understood and compared. The objectives of the study are to: (a) characterize the developing world disinfection needs and market; (b) identify competing technologies, both traditional and emerging; (c) analyze and characterize solar thermal pasteurization; (d) compare technologies on cost-effectiveness and appropriateness; and (e) identify research opportunities. Natural consequences of the study beyond these objectives include a broad knowledge of water disinfection problems and technologies, introduction of solar thermal pasteurization technologies to a broad audience, and general identification of disinfection opportunities for renewable technologies.

  12. Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Slick Rock, Colorado

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    This baseline risk assessment of ground water contamination at the uranium mill tailings sites near Slick Rock, Colorado, evaluates potential public health and environmental impacts resulting from ground water contamination at the former North Continent (NC) and Union Carbide (UC) uranium mill processing sites. The tailings at these sites will be placed in a disposal cell at the proposed Burro Canyon, Colorado, site. The US Department of Energy (DOE) anticipates the start of the first phase remedial action by the spring of 1995 under the direction of the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project will evaluate ground water contamination. This baseline risk assessment is the first site-specific document for these sites under the Ground Water Project. It will help determine the compliance strategy for contaminated ground water at the site. In addition, surface water and sediment are qualitatively evaluated in this report.

  13. Thermal neutron flux perturbation due to indium foils in water

    E-Print Network [OSTI]

    Stinson, Ronald Calvin

    1961-01-01T23:59:59.000Z

    of MASTER OF SCIENCE August, i 96I Major Subject: Nuclear Engineering THERMAL NEUTRON FLUX PERTURBATION DUE TO INDIUM FOILS IN WATER A Thesis by Ronald C. Stinson, Jr. Approved as to style and content by: Chai man of Committee Head of Department.... 2. Tittle, C. N. , Nucleonics 8, (6), 5 (1951); Ibid 9 (1), 60 (1951). 3. Skyrme, T, H. R. , "Reduction in Neutron Density Caused by an Absorbing Disc. " MS-91 (N. D. ) 4. Dalton, G. R. and Osborn, R. K. , Nuclear Science and En ineerin 9, 19...

  14. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, Donald W. (Los Alamos, NM)

    1997-01-01T23:59:59.000Z

    A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

  15. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, D.W.

    1997-11-11T23:59:59.000Z

    A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

  16. Numerical simulation of the thermal conditions in a sea bay water area used for water supply to nuclear power plants

    SciTech Connect (OSTI)

    Sokolov, A. S. [JSC 'B. E. Vedeneev All-Russia Research Institute of Hydraulic Engineering (VNIIG)' (Russian Federation)] [JSC 'B. E. Vedeneev All-Russia Research Institute of Hydraulic Engineering (VNIIG)' (Russian Federation)

    2013-07-15T23:59:59.000Z

    Consideration is given to the numerical simulation of the thermal conditions in sea water areas used for both water supply to and dissipation of low-grade heat from a nuclear power plant on the shore of a sea bay.

  17. Thermal-chemical-mechanical feedback during fluid-rock interactions: Implications for chemical transport and scales of equilibria in the crust

    SciTech Connect (OSTI)

    Dutrow, Barbara

    2008-08-13T23:59:59.000Z

    Our research evaluates the hypothesis that feedback amongst thermal-chemical-mechanical processes operative in fluid-rock systems alters the fluid flow dynamics of the system which, in turn, affects chemical transport and temporal and spatial scales of equilibria, thus impacting the resultant mineral textural development of rocks. Our methods include computational experimentation and detailed analyses of fluid-infiltrated rocks from well-characterized terranes. This work focuses on metamorphic rocks and hydrothermal systems where minerals and their textures are utilized to evaluate pressure (P), temperature (T), and time (t) paths in the evolution of mountain belts and ore deposits, and to interpret tectonic events and the timing of these events. Our work on coupled processes also extends to other areas where subsurface flow and transport in porous media have consequences such as oil and gas movement, geothermal system development, transport of contaminants, nuclear waste disposal, and other systems rich in fluid-rock reactions. Fluid-rock systems are widespread in the geologic record. Correctly deciphering the products resulting from such systems is important to interpreting a number of geologic phenomena. These systems are characterized by complex interactions involving time-dependent, non-linear processes in heterogeneous materials. While many of these interactions have been studied in isolation, they are more appropriately analyzed in the context of a system with feedback. When one process impacts another process, time and space scales as well as the overall outcome of the interaction can be dramatically altered. Our goals to test this hypothesis are: to develop and incorporate algorithms into our 3D heat and mass transport code to allow the effects of feedback to be investigated numerically, to analyze fluid infiltrated rocks from a variety of terranes at differing P-T conditions, to identify subtle features of the infiltration of fluids and/or feedback, and to quantify the importance of feedback in complex fluid-rock systems and its affects on time and space scales and rates of reaction. We have made significant contributions toward understanding feedback and its impacts by numerical experimentation using 3D computational modeling of fluid-rock systems and by chemical and textural analyses of fluid-infiltrated rocks.

  18. Relationship of regional water quality to aquifer thermal energy storage

    SciTech Connect (OSTI)

    Allen, R.D.

    1983-11-01T23:59:59.000Z

    Ground-water quality and associated geologic characteristics may affect the feasibility of aquifer thermal energy storage (ATES) system development in any hydrologic region. This study sought to determine the relationship between ground-water quality parameters and the regional potential for ATES system development. Information was collected from available literature to identify chemical and physical mechanisms that could adversely affect an ATES system. Appropriate beneficiation techniques to counter these potential geochemical and lithologic problems were also identified through the literature search. Regional hydrology summaries and other sources were used in reviewing aquifers of 19 drainage regions in the US to determine generic geochemical characteristics for analysis. Numerical modeling techniques were used to perform geochemical analyses of water quality from 67 selected aquifers. Candidate water resources regions were then identified for exploration and development of ATES. This study identified six principal mechanisms by which ATES reservoir permeability may be impaired: (1) particulate plugging, (2) chemical precipitation, (3) liquid-solid reactions, (4) formation disaggregation, (5) oxidation reactions, and (6) biological activity. Specific proven countermeasures to reduce or eliminate these effects were found. Of the hydrologic regions reviewed, 10 were identified as having the characteristics necessary for ATES development: (1) Mid-Atlantic, (2) South-Atlantic Gulf, (3) Ohio, (4) Upper Mississippi, (5) Lower Mississippi, (6) Souris-Red-Rainy, (7) Missouri Basin, (8) Arkansas-White-Red, (9) Texas-Gulf, and (10) California.

  19. Susceptibility of Granite Rock to scCO2/Water at 200 degrees C and 250 degrees C

    SciTech Connect (OSTI)

    Sugama, T.; Gill, S., Ecker, L., Butcher, T., Warren, J.

    2011-01-01T23:59:59.000Z

    Granite rock comprising anorthoclase-type albite and quartz as its major phases and biotite mica as the minor one was exposed to supercritical carbon dioxide (scCO{sub 2})/water at 250 C and 13.78 MPa pressure for 104 hours. For comparison purpose, four other rocks, albite, hornblende, diorite, and quartz, also were exposed. During the exposure of granite, ionic carbonic acid, known as the wet carbonation reactant, preferentially reacted with anorthoclase-type albite and biotite, rather than with quartz. The susceptibility of biotite to wet carbonation was higher than that of anorthoclase-type albite. All the carbonation by-products of anorthoclase-type albite were amorphous phases including Na- and K-carbonates, a kaolinite clay-like compound, and silicon dioxide, while wet carbonation converted biotite into potassium aluminum silicate, siderite, and magnesite in crystalline phases and hydrogen fluoride (HF). Three of these reaction by-products, Na- and K-carbonates and HF, were highly soluble in water. Correspondingly, the carbonated top surface layer, about 1.27 mm thick as carbonation depth, developed porous microstructure with numerous large voids, some of which have a size of {>=} 10 {mu}m, reflecting the erosion of granite by the leaching of these water-soluble reaction by-products. Comparing with this carbonation depth, its depth of other minerals was considerable lower, particularly, for hornblende and diorite with 0.07 and 0.02 mm, while no carbonate compound was detected in quartz. The major factor governing these low carbonation depths in these rocks was the formation of water-insensitive scale-like carbonate by-products such as calcite (CaCO{sub 3}), siderite (FeCO{sub 3}), and magnesite (MgCO{sub 3}). Their formation within the superficial layer of these minerals served as protective barrier layer that inhibits and retards further carbonation of fresh underlying minerals, even if the exposure time was extended. Thus, the coverage by this barrier layer of the non-carbonated surfaces of the underlying rock was reason why the hornblende and diorite exhibited a minimum depth of carbonation. Under exposure to the scCO{sub 2}/water at 200 C and 10.34 MPa pressure for up to 42 days, the ranking of the magnitude of erosion caused by wet carbonation was in the following order; granite > albite > hornblende > diorite > quartz. The eroding-caused weight loss of granite (0.88 %) was {approx}2.4, {approx}5.2, {approx}9.8, and {approx}17.6 times greater than that of albite, hornblends, diorite, and quartz, respectively.

  20. The ASME handbook on water technology for thermal power systems

    SciTech Connect (OSTI)

    Cohen, P. (ed.)

    1989-01-01T23:59:59.000Z

    The idea that a handbook on water technology be developed was initially put forth in 1978 by the ASME Research Committee on Water in Thermal Power Systems. A prospectus was issued in 1979 to solicit funding from industry and government. The preparation of the handbook began in 1980 under the direct control of a Handbook Steering Subcommittee established by the Research Committee and an editor reporting to that subcommittee. Handbook content was carefully monitored by an editorial committee of industry experts and by a special honorary editorial committee from the Chemistry Committee of the Edison Electric Institute. This handbook summarizes the current state of the art of water technology for steam power plant cycles. It is intended to serve both as a training text and a reference volume for power station chemists, engineers, manufacturers, and research and development institutions. While the primary emphasis is on Electric Utility Power Generation cycles (fossil and nuclear), the book will also serve as a valuable reference on high pressure industrial steam system technology.

  1. An experimental investigaion of seawater/basalt interactions: the role of water/rock ratios and temperature gradients

    E-Print Network [OSTI]

    Archer, Paul Lawrence

    1978-01-01T23:59:59.000Z

    1978) Paul Lawrence Archer, B. S. , The Pennsylvania State University Chairman of Advisory Committee: Andrew Hajash Natural seawater and mid-ocean ridge tholeiitic basalt were allowed to react at 100-500'C, and 1000 bars at water/rock mass ratios... temperature experiments at 500'C and temperature- gradient experiments reacted from 200'C to 500 C 53 57 LIST OF FIGURES Figure Page Graphs of Na, Ca, K, and Mg concentrations in 5/1 and 50/1 seawater/basalt experiments as a function of temperature 17...

  2. Communication: Minimum in the thermal conductivity of supercooled water: A computer simulation study

    SciTech Connect (OSTI)

    Bresme, F., E-mail: f.bresme@imperial.ac.uk [Chemical Physics Section, Department of Chemistry, Imperial College, London SW7 2AZ, United Kingdom and Department of Chemistry, Norwegian University of Science and Technology, Trondheim 7491 (Norway); Biddle, J. W.; Sengers, J. V.; Anisimov, M. A. [Institute for Physical Science and Technology, and Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742 (United States)] [Institute for Physical Science and Technology, and Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742 (United States)

    2014-04-28T23:59:59.000Z

    We report the results of a computer simulation study of the thermodynamic properties and the thermal conductivity of supercooled water as a function of pressure and temperature using the TIP4P-2005 water model. The thermodynamic properties can be represented by a two-structure equation of state consistent with the presence of a liquid-liquid critical point in the supercooled region. Our simulations confirm the presence of a minimum in the thermal conductivity, not only at atmospheric pressure, as previously found for the TIP5P water model, but also at elevated pressures. This anomalous behavior of the thermal conductivity of supercooled water appears to be related to the maximum of the isothermal compressibility or the minimum of the speed of sound. However, the magnitudes of the simulated thermal conductivities are sensitive to the water model adopted and appear to be significantly larger than the experimental thermal conductivities of real water at low temperatures.

  3. Estimation of host rock thermal conductivities using the temperature data from the drift-scale test at Yucca Mountain, Nevada

    E-Print Network [OSTI]

    Mukhopadhyay, Sumitra; Tsang, Y.W.

    2008-01-01T23:59:59.000Z

    used for heating rock as heat input to the analytical model.these numbers as the total heat input in the system. In thesensitivity analysis with heat input into our model as ±5%

  4. Transport of Injected Isobutane by Thermal Groundwater in Long...

    Open Energy Info (EERE)

    Injected Isobutane by Thermal Groundwater in Long Valley Caldera, California, USA, In- Water-Rock Interaction-11 Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  5. Thermal Neutron Computed Tomography of Soil Water and Plant Roots

    E-Print Network [OSTI]

    Leanne G. Tumlinson; Hungyuan Liu; Wendy K. Silk; Jan W. Hopmans

    2007-01-01T23:59:59.000Z

    and L.A.G. Aylmore. 1986. Water extraction by a single plantgrowth, water uptake, and nutrient extraction (Asseng et

  6. A Sr-Isotopic Comparison Between Thermal Waters, Rocks, And Hydrothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 WindtheEnergy InformationOfand RangeOpen

  7. Solar heating and hot water system installed at Shoney's Restaurant, North Little Rock, Arkansas. Final report

    SciTech Connect (OSTI)

    None

    1980-08-01T23:59:59.000Z

    The solar heating system is designed to supply a major portion of the space and water heating requirements for a newly built Shoney's Big Boy Restaurant which was installed with completion occurring in December 1979. The restaurant has a floor space of approximately 4,650 square feet and requires approximately 1500 gallons of hot water daily. The solar energy system consists of 1,428 square feet of Chamberlain flat plate liquid collector subsystem, and a 1500 gallon storage subsystem circulating hot water producing 321 x 10/sup 6/ Btu/yr (specified) building heating and hot water heating. Designer - Energy Solutions, Incorporated. Contractor - Stephens Brothers, Incorporated. This report includes extracts from site files, specification references for solar modifications to existing building heating and hot water systems, drawings installation, operation and maintenance instructions.

  8. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado: Attachment 4, water resources protection strategy; Preliminary final

    SciTech Connect (OSTI)

    NONE

    1994-03-01T23:59:59.000Z

    This attachment contains a summary of the proposed water resources protection strategy developed to achieve compliance with US EPA ground water protection standards for the remedial action plan at the Slick Rock, CO uranium mill tailings sites. Included are the conceptual design considerations such as climate and infiltration, surface and subsurface drainage, and features for water resources protection such as disposal cell cover components, transient drainage and control of construction water, subsidence and disposal cell longevity. The disposal and control of radioactive materials and nonradioactive contaminants as it relates to ground water protection standards is discussed, and the plan for cleanup and control of existing contamination is outlined.

  9. Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

    Broader source: Energy.gov [DOE]

    Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

  10. Effects of in-situ oil-shale retorting on water quality near Rock Springs, Wyoming, Volume 1

    SciTech Connect (OSTI)

    Lindner-Lunsford, J.B.; Eddy, C.A.; Plafcan, M.; Lowham, H.W.

    1990-12-01T23:59:59.000Z

    Experimental in-situ retorting techniques (methods of extracting shale oil without mining) were used from 1969 to 1979 by the Department of Energy's (DOE) Laramie Energy Technology Center (LETC) at a test area near Rock Springs in southwestern Wyoming. The retorting experiments at site 9 have produced elevated concentrations of some contaminants in the ground water. During 1988 and 1989, the US Geological Survey, in cooperation with the US Department of Energy, conducted a site characterization study to evaluate the chemical contamination of ground water at the site. Water samples from 34 wells were analyzed; more than 70 identifiable organic compounds were detected using a combination of gas chromatography and mass spectrometry analytical methods. This report provides information that can be used to evaluate possible remedial action for the site. Remediation techniques that may be applicable include those techniques based on removing the contaminants from the aquifer and those based on immobilizing the contaminants. Before a technique is selected, the risks associated with the remedial action (including the no-action alternative) need to be assessed, and the criteria to be used for decisions regarding aquifer restoration need to be defined. 31 refs., 23 figs., 9 tabs.

  11. Final Environmental Assessment and Finding of No Significant Impact: Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Site

    SciTech Connect (OSTI)

    N /A

    2003-03-13T23:59:59.000Z

    This environmental assessment addresses the environmental effects of a proposed action and the no action alternative to comply with U.S. Environmental Protection Agency (EPA) ground water standards at the Slick Rock, Colorado, Uranium Mill Tailings Remedial Action Project sites. The sites consist of two areas designated as the North Continent (NC) site and the Union Carbide (UC) site. In 1996, the U.S. Department of Energy (DOE) completed surface cleanup at both sites and encapsulated the tailings in a disposal cell 5 miles east of the original sites. Maximum concentration limits (MCLs) referred to in this environmental assessment are the standards established in Title 40 ''Code of Federal Regulations'' Part 192 (40 CFR 192) unless noted otherwise. Ground water contaminants of potential concern at the NC site are uranium and selenium. Uranium is more prevalent, and concentrations in the majority of alluvial wells at the NC site exceed the MCL of 0.044 milligram per liter (mg/L). Selenium contamination is less prevalent; samples from only one well had concentrations exceeding the MCL of 0.01 mg/L. To achieve compliance with Subpart B of 40 CFR 192 at the NC site, DOE is proposing the strategy of natural flushing in conjunction with institutional controls and continued monitoring. Ground water flow and transport modeling has predicted that concentrations of uranium and selenium in the alluvial aquifer will decrease to levels below their respective MCLs within 50 years.

  12. Micromodel Investigations of CO2 Exsolution from Carbonated Water in Sedimentary Rocks

    SciTech Connect (OSTI)

    Zuo, Lin; Zhang, Changyong; Falta, Ronald W.; Benson, Sally M.

    2013-03-01T23:59:59.000Z

    In this study, carbon dioxide exsolution from carbonated water is directly observed under reservoir conditions (9MPa and 45oC). Fluorescence microscopy and image analysis are used to quantitatively characterize bubble formation, morphology, and mobility. Observations indicate the strong influence of interfacial tension and pore-geometry on bubble growth and evolution. Most of the gas exhibits little mobility during the course of depressurization and clogs water flow paths. However, a snap-off mechanism mobilizes a small portion of the trapped gas along the water flow paths. This feature contributes to the transport of the dispersed exsolved gas phase and the formation of intermittent gas flow. A new definition of critical gas saturation is proposed accordingly as the minimum saturation that snap-off starts to produce mobile bubbles. Low mobility of the water phase and CO2 phase in exsolution is explained by formation of dispersed CO2 bubbles which block water flow and lack the connectivity to create a mobile gas phase.

  13. Investigations of Near-Field Thermal-Hydrologic-Mechanical-Chemical Models for Radioactive Waste Disposal in Clay/Shale Rock

    SciTech Connect (OSTI)

    Liu, H.H.; Li, L.; Zheng, L.; Houseworth, J.E.; Rutqvist, J.

    2011-06-20T23:59:59.000Z

    Clay/shale has been considered as potential host rock for geological disposal of high-level radioactive waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus Clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at the Mol site, Belgium (Barnichon and Volckaert, 2003) have all been under intensive scientific investigation (at both field and laboratory scales) for understanding a variety of rock properties and their relationships to flow and transport processes associated with geological disposal of radioactive waste. Figure 1-1 presents the distribution of clay/shale formations within the USA.

  14. Development of an equivalent homogenous fluid model for pseudo-two-phase (air plus water) flow through fractured rock

    SciTech Connect (OSTI)

    Price, J.; Indraratna, B. [University of Wollongong, Wollongong, NSW (Australia). School of Civil Engineering

    2005-07-01T23:59:59.000Z

    Fracture flow of two-phase mixtures is particularly applicable to the coal mining and coal bed methane projects in Australia. A one-dimensional steady-state pseudo-two-phase flow model is proposed for fractured rock. The model considers free flow of a compressible mixture of air and water in an inclined planar fracture and is based upon the conservation of momentum and the 'cubic' law. The flow model is coupled to changes in the stress environment through the fracture normal stiffness, which is related to changes in fracture aperture. The model represents the individual air and water phases as a single equivalent homogenous fluid. Laboratory testing was performed using the two-phase high-pressure triaxial apparatus on 54 mm diameter (approximately 2: 1 height: diameter) borehole cores intersected by induced near-axial fractures. The samples were of Triassic arenaceous fine-medium grained sandstone (known as the Eckersley Formation) that is found locally in the Southern Coalfield of New South Wales. The sample fracture roughness was assessed using a technique based upon Fourier series analysis to objectively attribute a joint roughness coefficient. The proposed two-phase flow model was verified using the recorded laboratory data obtained over a range of triaxial confining pressures (i.e., fracture normal stresses).

  15. Energy Comparison Between Conventional and Chilled Water Thermal Storage Air Conditioning Systems

    E-Print Network [OSTI]

    Sebzali, M.; Hussain, H. J.; Ameer, B.

    2010-01-01T23:59:59.000Z

    , encouraged by government subsidies and driven by the rapid and continual expansion in building construction, urban development, and the heavy reliance on Air Conditioning (AC) systems for the cooling of buildings. The Chilled Water Thermal Storage (CWTS...

  16. Analysis of the Temporal Evolution of Thermal Conductivity in Alumina-Water Nanofluid 

    E-Print Network [OSTI]

    Fortenberry, Stephen

    2009-09-30T23:59:59.000Z

    In this effort, the temporal behavior of a manufactured alumina (Al2O3) – water nanofluid was evaluated. Measurements of nanofluid effective thermal conductivity were acquired over an extended time period. Analysis of acquired measurements...

  17. Analysis of the Temporal Evolution of Thermal Conductivity in Alumina-Water Nanofluid

    E-Print Network [OSTI]

    Fortenberry, Stephen

    2009-09-30T23:59:59.000Z

    In this effort, the temporal behavior of a manufactured alumina (Al2O3) – water nanofluid was evaluated. Measurements of nanofluid effective thermal conductivity were acquired over an extended time period. Analysis of acquired measurements...

  18. Thermal desalination : structural optimization and integration in clean power and water

    E-Print Network [OSTI]

    Zak, Gina Marie

    2012-01-01T23:59:59.000Z

    A large number of resources are dedicated to seawater desalination and will only grow as world-wide water scarcity increases. In arid areas with high temperature and salinity seawater, thermal desalination and power plants ...

  19. Water-induced Bulk Ba(NO3)2 Formation From NO2 Exposed Thermally...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bulk Ba(NO3)2 Formation From NO2 Exposed Thermally Aged BaOAl2O3. Water-induced Bulk Ba(NO3)2 Formation From NO2 Exposed Thermally Aged BaOAl2O3. Abstract: Phase changes in high...

  20. Thermal Waters Along The Konocti Bay Fault Zone, Lake County...

    Open Energy Info (EERE)

    in the diluted spring waters suggest that the diluting water is old. Authors J. M. Thompson, R. H. Mariner, L. D. White, T. S. Presser and W. C. Evans Published Journal Journal...

  1. Thermal maturation and petroleum source rocks in Forest City and Salina basins, mid-continent, U. S. A

    SciTech Connect (OSTI)

    Newell, K.D.; Watney, W.L.; Hatch, J.R.; Xiaozhong, G.

    1986-05-01T23:59:59.000Z

    Shales in the Middle Ordovician Simpson Group are probably the source rocks for a geochemically distinct group of lower pristane and low phytane oils produced along the axis of the Forest City basin, a shallow cratonic Paleozoic basin. These oils, termed Ordovician-type oils, occur in some fields in the southern portion of the adjacent Salina basin. Maturation modeling by time-temperature index (TTI) calculations indicate that maturation of both basins was minimal during the early Paleozoic. The rate of maturation significantly increased during the Pennsylvanian because of rapid regional subsidence in response to the downwarping of the nearby Anadarko basin. When estimated thicknesses of eroded Pennsylvanian, Permian, and Cretaceous strata are considered, both basins remain relatively shallow, with maximum basement burial probably not exceeding 2 km. According to maturation modeling and regional structure mapping, the axes of both basins should contain Simpson rocks in the early stages of oil generation. The probability of finding commercial accumulations of Ordovician-type oil along the northwest-southeast trending axis of the Salina basin will decrease in a northwestward direction because of (1) westward thinning of the Simpson Group, and (2) lesser maturation due to lower geothermal gradients and shallower paleoburial depths. The optimum localities for finding fields of Ordovician-type oil in the southern Salina basin will be in down-plunge closures on anticlines that have drainage areas near the basin axis.

  2. Thermal conductivity studies of metal dispersed multiwalled carbon nanotubes in water and ethylene glycol based nanofluids

    SciTech Connect (OSTI)

    Jha, Neetu; Ramaprabhu, S. [Department of Physics, Alternative Energy and Nanotechnology Laboratory (AENL), Nano Functional Materials Technology Centre (NFMTC), Indian Institute of Technology Madras, Chennai 600036 (India)

    2009-10-15T23:59:59.000Z

    High thermal conducting metal nanoparticles have been dispersed on the multiwalled carbon nanotubes (MWNTs) outer surface. Structural and morphological characterizations of metal dispersed MWNTs have been carried out using x-ray diffraction analysis, high resolution transmission electron microscopy, energy dispersive x-ray analysis, and Fourier transform infrared spectroscopy. Nanofluids have been synthesized using metal-MWNTs in de-ionized water (DI water) and ethylene glycol (EG) base fluids. It has been observed that nanofluids maintain the same sequence of thermal conductivity as that of metal nanoparticles Ag-MWNTs>Au-MWNTs>Pd-MWNTs. A maximum enhancement of 37.3% and 11.3% in thermal conductivity has been obtained in Ag-MWNTs nanofluid with DI water and EG as base fluids, respectively, at a volume fraction of 0.03%. Temperature dependence study also shows enhancement of thermal conductivity with temperature.

  3. Rock Art

    E-Print Network [OSTI]

    Huyge, Dirk

    2009-01-01T23:59:59.000Z

    The archaeology of early Egypt: Social transformations inAlexander 1938 Rock-drawings of southern Upper Egypt. Vol.1. London: The Egypt Exploration Society. 1939 Rock-drawings

  4. Abstract: Air, Thermal and Water Management for PEM Fuel Cell Systems

    SciTech Connect (OSTI)

    Mark K. Gee

    2008-10-01T23:59:59.000Z

    PEM fuel cells are excellent candidates for transportation applications due to their high efficiencies. PEM fuel cell Balance of Plant (BOP) components, such as air, thermal, and water management sub-systems, can have a significant effect on the overall system performance, but have traditionally not been addressed in research and development efforts. Recognizing this, the U.S. Department of Energy and Honeywell International Inc. are funding an effort that emphasizes the integration and optimization of air, thermal and water management sub-systems. This effort is one of the major elements to assist the fuel cell system developers and original equipment manufacturers to achieve the goal of an affordable and efficient power system for transportation applications. Past work consisted of: (1) Analysis, design, and fabrication of a motor driven turbocompressor. (2) A systematic trade study to select the most promising water and thermal management systems from five different concepts (absorbent wheel humidifier, gas to gas membrane humidifier, porous metal foam humidifier, cathode recycle compressor, and water injection pump.) This presentation will discuss progress made in the research and development of air, water and thermal management sub-systems for PEM fuel cell systems in transportation applications. More specifically, the presentation will discuss: (1) Progress of the motor driven turbocompressor design and testing; (2) Progress of the humidification component selection and testing; and (3) Progress of the thermal management component preliminary design. The programs consist of: (1) The analysis, design, fabrication and testing of a compact motor driven turbocompressor operating on foil air bearings to provide contamination free compressed air to the fuel cell stack while recovering energy from the exhaust streams to improve system efficiency. (2) The analysis, design, fabrication and testing of selected water and thermal management systems and components to improve system efficiency and reduce packaging size.

  5. Stable thermal oscillations in columns of partially supercool water

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    theoretical and experimental studies of the phenomenon described by Veronis, heat was supplied from below. Here we cool from below and used either heavy water (D2O) and or sugar as the solute. We show several of cooling or during cooling. However, the effects are quite different. The oscillations often (but

  6. Thermal and Water Pinch Success Stories in Europe

    E-Print Network [OSTI]

    Eastwood, A.

    "Pinch Analysis™ for energy is now becoming commonplace in Europe with many companies (eg, BP Amoco and Shell) incorporating Pinch Analysis as a routine part of their process designs. In recent years, WaterPinchTM has emerged as an equally important...

  7. THERMODYNAMIC CONSIDERATIONS FOR THERMAL WATER SPLITTING PROCESSES AND HIGH TEMPERATURE ELECTROLYSIS

    SciTech Connect (OSTI)

    J. E. O'Brien

    2008-11-01T23:59:59.000Z

    A general thermodynamic analysis of hydrogen production based on thermal water splitting processes is presented. Results of the analysis show that the overall efficiency of any thermal water splitting process operating between two temperature limits is proportional to the Carnot efficiency. Implications of thermodynamic efficiency limits and the impacts of loss mechanisms and operating conditions are discussed as they pertain specifically to hydrogen production based on high-temperature electrolysis. Overall system performance predictions are also presented for high-temperature electrolysis plants powered by three different advanced nuclear reactor types, over their respective operating temperature ranges.

  8. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Attachment 3, Ground water hydrology report: Preliminary final

    SciTech Connect (OSTI)

    Not Available

    1994-03-04T23:59:59.000Z

    The US Environmental Protection Agency (EPA) has established health and environmental protection regulations to correct and prevent ground water contamination resulting from processing activities at inactive uranium milling sites (52 FR 36000 (1987)). According to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, 42 USC {section}7901 et seq., the US Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has determined that for Slick Rock, this assessment shall include hydrogeologic site characterization for two separate uranium processing sites, the Union Carbide (UC) site and the North Continent (NC) site, and for the proposed Burro Canyon disposal site. The water resources protection strategy that describes how the proposed action will comply with the EPA ground water protection standards is presented in Attachment 4. The following site characterization activities are discussed in this attachment: Characterization of the hydrogeologic environment, including hydrostratigraphy, ground water occurrence, aquifer parameters, and areas of recharge and discharge. Characterization of existing ground water quality by comparison with background water quality and the maximum concentration limits (MCL) of the proposed EPA ground water protection standards. Definition of physical and chemical characteristics of the potential contaminant source, including concentration and leachability of the source in relation to migration in ground water and hydraulically connected surface water. Description of local water resources, including current and future use, availability, and alternative supplies.

  9. altered granitic rock: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    22 Everglades National Park Groundwater wells Surface water monitoring locations Rock mining locations 12 Demers, Nora Egan 211 Nova Scotia Rock Garden Club Membership...

  10. Strength and ductility of room-dry and water-saturated igneous rocks at low pressures and temperatures to partial melting. Final report

    SciTech Connect (OSTI)

    Friedman, M.; Handin, J.; Higgs, N.G.; Lantz, J.R.; Bauer, S.J.

    1980-11-01T23:59:59.000Z

    Rock types that are likely candidates for drilling were tested. Reported herein are the short-time ultimate strengths and ductilities determined at temperatures of 25/sup 0/ to 1050/sup 0/C and a strain rate of 10/sup -4/s/sup -1/ of (a) room-dry Mt. Hood Andesite, Cuerbio Basalt, and Charcoal (St. Cloud Gray) Granodiorite at confining pressures of 0, 50, and 100 MPa, (b) water-saturated specimens of the same three rocks at zero effective pressure (both pore and confining pressures of 50 MPa), and (c) room-dry Newberry Rhyolite Obsidian at 0 and 50 MPa. These strengths are then compared with the stresses developed at the wall of a borehole in an elastic medium at the appropriate temperatures and mean pressures to assess the problem of borehole stability. (MHR)

  11. Economical Analysis of a Groundwater Source Heat Pump with Water Thermal Storage System 

    E-Print Network [OSTI]

    Zhou, Z.; Xu, W.; Li, J.; Zhao, J.; Niu, L.

    2006-01-01T23:59:59.000Z

    The paper is based on a chilled and heat source for the building which has a total area of 140000m2 in the suburb of Beijing. By comparing the groundwater source heat pump of water thermal storage (GHPWTS) with a conventional chilled and heat source...

  12. Enhanced Thermal Conductivity of Water with Surfactant Encapsulated and Individualized Single-Walled Carbon Nanotube Dispersions

    E-Print Network [OSTI]

    Maruyama, Shigeo

    experimentally using a transient hot wire technique at room temperature. Single-walled carbon nanotubes (SWNTs] Maruyama.S, Kojima.R, Miyauchi.Y, Chiashi.S, Kohno.M, Low temperature synthesis of high purity singleEnhanced Thermal Conductivity of Water with Surfactant Encapsulated and Individualized Single

  13. Thermal Economic Analysis of an Underground Water Source Heat Pump System

    E-Print Network [OSTI]

    Zhang, W.; Lin, B.

    2006-01-01T23:59:59.000Z

    The paper presents the thermal economic analysis of an underground water source heat pump system in a high school building based on usage per exergy cost as an evaluation standard, in which the black box model has been used and the cost...

  14. Economical Analysis of a Groundwater Source Heat Pump with Water Thermal Storage System

    E-Print Network [OSTI]

    Zhou, Z.; Xu, W.; Li, J.; Zhao, J.; Niu, L.

    2006-01-01T23:59:59.000Z

    The paper is based on a chilled and heat source for the building which has a total area of 140000m2 in the suburb of Beijing. By comparing the groundwater source heat pump of water thermal storage (GHPWTS) with a conventional chilled and heat source...

  15. Hydrothermal interaction of crushed Topopah Spring tuff and J-13 water at 90, 150, and 250{sup 0}C using Dickson-type, gold-bag rocking autoclaves

    SciTech Connect (OSTI)

    Knauss, K.G.; Beiriger, W.J.; Peifer, D.W.

    1985-05-01T23:59:59.000Z

    As part of the Package Environment subtask of the Waste Package task within the Nevada Nuclear Waste Storage Investigations (NNWSI) Project, experiments were conducted to study the hydrothermal interaction of rock and water representative of a potential high-level waste repository in tuff. These experiments used crushed Topopah Spring tuff from both drillcore and outcrop samples. The data, when considered in conjunction with results from analogous experiments using solid wafers of tuff, define near-field repository conditions and can be used to assess the ability to use "accelerated" tests based on the surface area/volume (SA/V) parameter and temperature; allow the measurement of chemical changes due to reaction in phases present in the tuff before reaction; and permit the identification and chemical analysis of secondary phases resulting from hydrothermal reactions. Some of the results presented in this report have been used to demonstrate the usefulness of geochemical modeling in a repository environment using the EQ3/6 thermodynamic/kinetic geochemical modeling code. The tuff was reacted with a natural ground water in Dickson-type gold-bag rocking autoclaves that were periodically sampled under in situ conditions. Five short-term (<90-day) experiments using crushed tuff were run covering the range 90 to 250{sup 0}C and 50 to 100 bars. This report will focus on the results of experiments with crushed tuff, while a companion report will cover results of analogous short-term experiments run with solid waters of tuff.

  16. Hot Dry Rock Geothermal Energy Development Program

    SciTech Connect (OSTI)

    Smith, M.C.; Hendron, R.H.; Murphy, H.D.; Wilson, M.G.

    1989-12-01T23:59:59.000Z

    During Fiscal Year 1987, emphasis in the Hot Dry Rock Geothermal Energy Development Program was on preparations for a Long-Term Flow Test'' of the Phase II'' or Engineering'' hot dry rock energy system at Fenton Hill, New Mexico. A successful 30-day flow test of the system during FY86 indicated that such a system would produce heat at a temperature and rate that could support operation of a commercial electrical power plant. However, it did not answer certain questions basic to the economics of long-term operation, including the rate of depletion of the thermal reservoir, the rate of water loss from the system, and the possibility of operating problems during extended continuous operation. Preparations for a one-year flow test of the system to answer these and more fundamental questions concerning hot dry rock systems were made in FY87: design of the required surface facilities; procurement and installation of some of their components; development and testing of slimline logging tools for use through small-diameter production tubing; research on temperature-sensitive reactive chemical tracers to monitor thermal depletion of the reservoir; and computer simulations of the 30-day test, extended to modeling the planned Long-Term Flow Test. 45 refs., 34 figs., 5 tabs.

  17. A model for the development of a lobate alpine rock glacier in southwest Colorado, USA: implications for water on Mars

    E-Print Network [OSTI]

    Degenhardt, John Jerome

    2004-09-30T23:59:59.000Z

    , 1993). Viking images of the northern plains on Mars reveal lobate flow bodies with wrinkled surfaces associated with rift valleys and the peripheral margins of splash-form craters. Lobate aprons have also been interpreted as possible viscous ice-flow... (i.e., massive ice); the coarse outer layer had to be removed before augering. The tool was useful at this locality because the volcanic source rock breaks down into small clasts, making hand excavation of the debris feasible. During the summer...

  18. Thermal simulation of quenching uranium-0. 75% titanium alloy in water

    SciTech Connect (OSTI)

    Siman-Tov, M.; Llewellyn, G.H.; Childs, K.W.; Ludtka, G.M.; Aramayo, G.A.

    1985-01-01T23:59:59.000Z

    A computer model, The Quench Simulator, has been developed to simulate and predict in detail the behavior of U-0.75 Ti alloy when quenched at high temperature (about 850/sup 0/C) in cold water. The code allows one to determine the time- and space-dependent distributions of temperature, residual stress, distortion, and microstructure that evolve during the quenching process. The nonlinear temperature- and microstructure-dependent properties, as well as the cooling rate-dependent heats of transformation, are incorporated into the model. The complex boiling heat transfer with its various regimes and other thermal boundary conditions are simulated. Experiments have been performed and incorporated into the model. Both sudden submersion and gradual controlled immersion can be applied. A parametric and sensitivity study has been performed demonstrating the importance of the thermal boundary conditions applied for achieving certain product characteristics. The thermal aspects of the model and its applications are discussed and demonstrated.

  19. Experimental Evaluation of the Thermal Performance of a Water Shield for a Surface Power Reactor

    SciTech Connect (OSTI)

    Pearson, J. Boise; Stewart, Eric T. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Reid, Robert S. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States)

    2007-01-30T23:59:59.000Z

    Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 deg. C. The CFD model with 1/6-g predicts a maximum water temperature of 88 deg. C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield.

  20. Comparison of experimental and simulated thermal ratings of drain-back solar water heaters

    SciTech Connect (OSTI)

    Davidson, J.H.; Carlson, W.T.; Duff, W.S. (Colorado State Univ., Fort Collins (United States)); Schaefer, P.J.; Beckman, W.A.; Klein, S.A. (Univ. of Wisconsin, Madison (United States))

    1993-05-01T23:59:59.000Z

    Short-term experimental tests of drain-back solar water heaters are compared to ratings obtained using TRNSYS to determine if computer simulations can effectively replace laboratory thermal ratings of solar domestic hot water heating systems. The effectiveness of TRNSYS in predicting changes in rating due to limited changes in collector area, collector flow rate, recirculation flow rate, storage tank volume, and storage tank design is validated to within [plus minus]10 percent. Storage tank design is varied by using a stratification manifold in place of the standard drop tube. Variations in other component sizes and operating factors are based on current industry standards.

  1. Boiling Water at Hot Creek--The Dangerous and Dynamic Thermal Springs in California's Long Valley Caldera

    E-Print Network [OSTI]

    Torgersen, Christian

    ). Conditions in Hot Creek can change very quickly. These fish--caught in a burst of high-temperature water" or intermittently spurting very hot, sediment-laden water as high as 6 feet (2 m) above the stream surface. At timesBoiling Water at Hot Creek--The Dangerous and Dynamic Thermal Springs in California's Long Valley

  2. A thermal method for measuring the rate of water movement in plants

    E-Print Network [OSTI]

    Bloodworth, Morris Elkins

    1958-01-01T23:59:59.000Z

    L?BP A 8 V a L ?BPA8B8 op A THERMAL METHOD FOR MEASURING THE RATE OF WATER MOVEMENT IN PLANTS A Dissertation By Morris Elkins Bloodworth Vao Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in Partial... and content by: ???? ???? '? ^p?P? ?? ???^??^? ?ip?^?? ?p?? ?? ??^?????^??????????????????????????????????? ? ??? ?????? ?? P ? ^ ? ? p ^ ? ? ???????????????????? ?? ? ? ???? ???????P?? ???? ?i??i ^i? ??^i?? ?? ?p??? ? ? ? p? ?Bo? ?Bo?A??8 ??? ????A...

  3. The detection and modelling of surface thermal structures and ground water discharges

    E-Print Network [OSTI]

    Roberts, Douglas Vincent

    1985-01-01T23:59:59.000Z

    . , Southern Illinois University Chairman of Advisory Committee: Dr. Earl R. Hoskins On March 29, 1973, data were collected by a thermal infrared scanner mounted in a twin-engine aircraft over a 55-mile stretch of the Clark Fork River in northwestern... on a VAX Il/750 interfaced with an I'S Model 70 processing system. Both qualitative and quantitative processing techniques were employed to identify and describe the surface temperature patterns and ground water discharges into the river. Computer...

  4. Light stable isotope study of the Roosevelt Hot Springs thermal area, Southwestern Utah

    SciTech Connect (OSTI)

    Rohrs D.T.; Bowman, J.R.

    1980-05-01T23:59:59.000Z

    The isotopic composition of hydrogen, oxygen, and carbon has been determined for regional cold springs, thermal fluids, and rocks and minerals from the Roosevelt Hot Springs thermal area. The geothermal system has developed within plutonic granitic rocks and amphibolite facies gneiss, relying upon fracture-controlled permeability for the migration of the thermal fluids. Probably originating as meteoric waters in the upper elevations of the Mineral Mountains, the thermal waters sampled in the production wells display an oxygen isotopic shift of at least +1.2. Depletions of delta /sup 18/O in wole rock, K-feldspar, and biotite have a positive correlation with alteration intensity. W/R mass ratios, calculated from the isotopic shifts of rock and water, range up to 3.0 in a producing horizon of one well, although the K-feldspar has experienced only 30% exchange with the thermal waters. While veinlet quartz has equilibrated with the thermal waters, the /sup 18/O values of K-mica clay, an alteration product of plagioclase, mimic the isotopic composition of K-feldspar and whole rock. This suggests that locally small W/R ratios enable plagioclase to influence its alteration products by isotopic exchange.

  5. Quasi-three dimensional ground-water modeling of the hydrologic influence of paleozoic rocks on the ground-water table at Yucca Mountain, Nevada

    E-Print Network [OSTI]

    Lee, Si-Yong

    1994-01-01T23:59:59.000Z

    north of the repository site. This study investigates the cause of the steep gradient, based on the possible influence by Paleozoic rocks under the Yucca Mountain area. A quasi-three dimensional, steady-state, finite-difference model of the groundwater...

  6. Study of Water Speed Sensitivity in a Multifunctional Thick-film Sensor by Analytical Thermal Simulations and Experiments

    E-Print Network [OSTI]

    F. Stefani; P. E. Bagnoli; S. Luschi

    2008-01-07T23:59:59.000Z

    The present paper deals with an application of the analytical thermal simulator DJOSER. It consist of the characterization of a water speed sensor realized in hybrid technology. The capability of the thermal solver to manage the convection heat exchange and the effects of the passivating layers make the simulation work easy and fast.

  7. The integration of water loop heat pump and building structural thermal storage systems

    SciTech Connect (OSTI)

    Marseille, T.J.; Schliesing, J.S.

    1990-09-01T23:59:59.000Z

    Commercial buildings often have extensive periods where one space needs cooling and another heating. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If a building's heating and cooling system could be integrated with the building's structural mass such that the mass can be used to collect, store, and deliver energy, significant energy might be saved. Computer models were developed to simulate this interaction for an existing office building in Seattle, Washington that has a decentralized water-source heat pump system. Metered data available for the building was used to calibrate a base'' building model (i.e., nonintegrated) prior to simulation of the integrated system. In the simulated integration strategy a secondary water loop was manifolded to the main HVAC hydronic loop. tubing in this loop was embedded in the building's concrete floor slabs. Water was routed to this loop by a controller to charge or discharge thermal energy to and from the slabs. The slabs were also in thermal communication with the conditioned spaces. Parametric studies of the building model, using weather data for five other cities in addition to Seattle, predicted that energy can be saved on cooling dominated days. On hot, dry days and during the night the cooling tower can beneficially be used as a free cooling'' source for thermally charging'' the floor slabs using cooled water. Through the development of an adaptive/predictive control strategy, annual HVAC energy savings as large as 30% appear to be possible in certain climates. 8 refs., 13 figs.

  8. Characteristics of sound propagation in shallow water over an elastic seabed with a thin cap-rock layer

    E-Print Network [OSTI]

    Characteristics of sound propagation in shallow water over an elastic seabed with a thin cap over a lay- ered elastic seabed with a shear wave speed comparable to but lower than the water-column sound speed. A theoretical analysis and numerical modeling show that, in such environments, low attenua

  9. Probing the thermal character of analogue Hawking radiation for shallow water waves?

    E-Print Network [OSTI]

    Florent Michel; Renaud Parentani

    2014-09-15T23:59:59.000Z

    We study and numerically compute the scattering coefficients of shallow water waves blocked by a stationary counterflow. When the flow is transcritical, the coefficients closely follow Hawking's prediction according to which black holes should emit a thermal spectrum. We study how the spectrum deviates from thermality when reducing the maximal flow velocity, with a particular attention to subcritical flows since these have been recently used to test Hawking's prediction. For such flows, we show that the emission spectrum is strongly suppressed, and that its Planckian character is completely lost. For low frequencies, we also show that the scattering coefficients are dominated by elastic hydrodynamical channels. Our numerical results reproduce rather well the observations made by S. Weinfurtner {\\it et al.} in the Vancouver experiment. Nevertheless, we propose a new interpretation of what has been observed, as well as new experimental tests.

  10. Adsorption of water on O(2x2)/Ru(0001): thermal stability and inhibition of dissociation by H2O-O bonding

    E-Print Network [OSTI]

    Mugarza, Aitor

    2009-01-01T23:59:59.000Z

    Adsorption of water on O(2x2)/Ru(0001): thermal stabilitySaitama 351-0198, Japan. Adsorption of water on O(2x2)/Ru(oxygen on the subsequent adsorption and reactions of water

  11. Final Report: Development of a Thermal and Water Management System for PEM Fuel Cell

    SciTech Connect (OSTI)

    Zia Mirza, Program Manager

    2011-12-06T23:59:59.000Z

    This final program report is prepared to provide the status of program activities performed over the period of 9 years to develop a thermal and water management (TWM) system for an 80-kW PEM fuel cell power system. The technical information and data collected during this period are presented in chronological order by each calendar year. Balance of plant (BOP) components of a PEM fuel cell automotive system represents a significant portion of total cost based on the 2008 study by TIAX LLC, Cambridge, MA. The objectives of this TWM program were two-fold. The first objective was to develop an advanced cooling system (efficient radiator) to meet the fuel cell cooling requirements. The heat generated by the fuel cell stack is a low-quality heat (small difference between fuel cell stack operating temperature and ambient air temperature) that needs to be dissipated to the ambient air. To minimize size, weight, and cost of the radiator, advanced fin configurations were evaluated. The second objective was to evaluate air humidification systems which can meet the fuel cell stack inlet air humidity requirements. The moisture from the fuel cell outlet air is transferred to inlet air, thus eliminating the need for an outside water source. Two types of humidification devices were down-selected: one based on membrane and the other based on rotating enthalpy wheel. The sub-scale units for both of these devices have been successfully tested by the suppliers. This project addresses System Thermal and Water Management.

  12. A CONSTITUTIVE MODEL TO PREDICT THE HYDROMECHANICAL BEHAVIOUR OF ROCK

    E-Print Network [OSTI]

    Aubertin, Michel

    in the presence of water to better assess the stability of rock structures under many situations. The accurate conditions. A rock mass behaviour can also be influenced by the water flow and ensuing pore pressure. For example, a previously stable rock structure can become unstable with an increase of water pressure inside

  13. Identification of major rock-water interactions on either side of a hydrologic barrier in the Wanapum Formation, Washington

    E-Print Network [OSTI]

    Dean, Warren Theodore

    1993-01-01T23:59:59.000Z

    -level radioactive waste storage facility prompted intensive research into the geology, hydrogeology, and ground-water chemistry of the basalt aquifers. The Basalt Waste Isolation Project (BWIP) was undertaken to investigate the suitability of a deep basalt flow...

  14. Water and Methanol Adsorption on MgO(100)/Mo(100) Studied by Electron Spectroscopies and Thermal Programmed Desorption

    E-Print Network [OSTI]

    Goodman, Wayne

    Water and Methanol Adsorption on MgO(100)/Mo(100) Studied by Electron Spectroscopies and Thermal, 2000 The adsorption of methanol (CH3OH) and water (D2O) on the MgO(100)/Mo(100) surface at 100 K has covered MgO(100)/Mo(100) surface. On the other hand, the formation of a methanol multilayer desorption

  15. Q00906010024 rock check dam

    E-Print Network [OSTI]

    00906010024 rock check dam Q00906010025 rock check dam Q00906010021 rock check dam Q00906010022 rock check dam Q00906010027 rock check dam Q00906010026 rock check dam Q00906010018 rock check dam Q00906010023 rock check dam Q00906010011 rock check dam Q00906010008 rock check dam Q00906010007 rock check dam Q

  16. The US Hot Dry Rock project

    SciTech Connect (OSTI)

    Hendron, R.H.

    1987-01-01T23:59:59.000Z

    The Hot Dry Rock geothermal energy project began in the early 1970's with the objective of developing a technology to make economically available the large ubiquitous thermal energy of the upper earth crust. The program has been funded by the Department of Energy (and its predecessors) and for a few years with participation by West Germany and Japan. An energy reservoir was accessed by drilling and hydraulically fracturing in the precambrian basement rock outside the Valles Caldera of north-central New Mexico. Water was circulated through the reservoir (Phase I, 1978-1980) producing up to 5 MWt at 132/sup 0/C. A second (Phase II) reservoir has been established with a deeper pair of holes and an initial flow test completed producing about 10 MWt at 190/sup 0/C. These accomplishments have been supported and paralleled by developments in drilling, well completion and instrumentation hardware. Acoustic or microseismic fracture mapping and geochemistry studies in addition to hydraulic and thermal data contribute to reservoir analyses. Studies of some of the estimated 430,000 quads of HDR resources in the United States have been made with special attention focused on sites most advantageous for early development.

  17. The integration of water loop heat pump and building structural thermal storage systems

    SciTech Connect (OSTI)

    Marseille, T.J.; Schliesing, J.S.

    1991-10-01T23:59:59.000Z

    Many commercial buildings need heat in one part and, at the same time, cooling in another part. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If that energy could be shifted or stored for later use, significant energy might be saved. If a building's heating and cooling subsystems could be integrated with the building's structural mass and used to collect, store, and deliver energy, the energy might be save cost-effectively. To explore this opportunity, researchers at the Pacific Northwest Laboratory (PNL) examined the thermal interactions between the heating, ventilating, and air-conditioning (HVAC) system and the structure of a commercial building. Computer models were developed to simulate the interactions in an existing building located in Seattle, Washington, to determine how these building subsystems could be integrated to improve energy efficiency. The HVAC subsystems in the existing building were modeled. These subsystems consist of decentralized water-source heat pumps (WSHP) in a closed water loop, connected to cooling towers for heat rejection during cooling mode and boilers to augment heating. An initial base case'' computer model of the Seattle building, as-built, was developed. Metered data available for the building were used to calibrate this model to ensure that the analysis would provide information that closely reflected the operation of a real building. The HVAC system and building structure were integrated in the model using the concrete floor slabs as thermal storage media. The slabs may be actively charged during off-peak periods with the chilled water in the loop and then either actively or passively discharged into the conditioned space during peak periods. 21 refs., 37 figs., 17 tabs.

  18. Chiller Start/Stop Optimization for a Campus-wide Chilled Water System with a Thermal Storage Tank Under a Four-Period Electricity Rate Schedule

    E-Print Network [OSTI]

    Zhou, J.; Wei, G.; Turner, W. D.; Deng, S.; Claridge, D.; Contreras, O.

    2002-01-01T23:59:59.000Z

    The existence of a 1.4-million-gallon chilled water thermal storage tank greatly increases the operational flexibility of a campuswide chilled water system under a four-part electricity rate structure. While significant operational savings can...

  19. Inversion of seismic attributes for petrophysical parameters and rock facies 

    E-Print Network [OSTI]

    Shahraeeni, Mohammad Sadegh

    2011-01-01T23:59:59.000Z

    Prediction of rock and fluid properties such as porosity, clay content, and water saturation is essential for exploration and development of hydrocarbon reservoirs. Rock and fluid property maps obtained from such predictions ...

  20. Structure andhydrogeochemicalfunctioningof a sparkling natural mineral1 water system determined usinga multidisciplinary approach: a case study2

    E-Print Network [OSTI]

    Boyer, Edmond

    rootedhydraulically independent permeable structures that arefed by deep CO2-rich crustal20 fluids.The non sites.27 28 Keywords:thermal conditions, CO2, fractured rock, natural mineral water, France29 30 NOTE(Clemente and Villadolid-Abrigo 1993; Lachassagne et al. 2009).42 Sparklingnaturalmineral water systems comprise water, CO2

  1. Experimental investigation on the photovoltaic-thermal solar heat pump air-conditioning system on water-heating mode

    SciTech Connect (OSTI)

    Fang, Guiyin; Hu, Hainan; Liu, Xu [Department of Physics, Nanjing University, Nanjing 210093 (China)

    2010-09-15T23:59:59.000Z

    An experimental study on operation performance of photovoltaic-thermal solar heat pump air-conditioning system was conducted in this paper. The experimental system of photovoltaic-thermal solar heat pump air-conditioning system was set up. The performance parameters such as the evaporation pressure, the condensation pressure and the coefficient of performance (COP) of heat pump air-conditioning system, the water temperature and receiving heat capacity in water heater, the photovoltaic (PV) module temperature and the photovoltaic efficiency were investigated. The experimental results show that the mean photovoltaic efficiency of photovoltaic-thermal (PV/T) solar heat pump air-conditioning system reaches 10.4%, and can improve 23.8% in comparison with that of the conventional photovoltaic module, the mean COP of heat pump air-conditioning system may attain 2.88 and the water temperature in water heater can increase to 42 C. These results indicate that the photovoltaic-thermal solar heat pump air-conditioning system has better performances and can stably work. (author)

  2. Measurement of temperature-dependent thermal conductivity and viscosity of TiO{sub 2}-water nanofluids

    SciTech Connect (OSTI)

    Duangthongsuk, Weerapun; Wongwises, Somchai [Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, King Mongkut's University of Technology Thonburi, 126 Bangmod, Bangkok 10140 (Thailand)

    2009-04-15T23:59:59.000Z

    Nanofluid is an innovative heat transfer fluid with superior potential for enhancing the heat transfer performance of conventional fluids. Many attempts have been made to investigate its thermal conductivity and viscosity, which are important thermophysical properties. No definitive agreements have emerged, however, about these properties. This article reports the thermal conductivity and dynamic viscosity of nanofluids experimentally. TiO{sub 2} nanoparticles dispersed in water with volume concentration of 0.2-2 vol.% are used in the present study. A transient hot-wire apparatus is used for measuring the thermal conductivity of nanofluids whereas the Bohlin rotational rheometer (Malvern Instrument) is used to measure the viscosity of nanofluids. The data are collected for temperatures ranging from 15 C to 35 C. The results show that the measured viscosity and thermal conductivity of nanofluids increased as the particle concentrations increased and are higher than the values of the base liquids. Furthermore, thermal conductivity of nanofluids increased with increasing nanofluid temperatures and, conversely, the viscosity of nanofluids decreased with increasing temperature of nanofluids. Moreover, the measured thermal conductivity and viscosity of nanofluids are quite different from the predicted values from the existing correlations and the data reported by other researchers. Finally, new thermophysical correlations are proposed for predicting the thermal conductivity and viscosity of nanofluids. (author)

  3. Specific energy for pulsed laser rock drilling.

    SciTech Connect (OSTI)

    Xu, Z.; Reed, C. B.; Kornecki, G.; Gahan, B. C.; Parker, R. A.; Batarseh, S.; Graves, R. M.; Figueroa, H.; Skinner, N.; Technology Development

    2003-02-01T23:59:59.000Z

    Application of advanced high power laser technology to oil and gas well drilling has been attracting significant research interests recently among research institutes, petroleum industries, and universities. Potential laser or laser-aided oil and gas well drilling has many advantages over the conventional rotary drilling, such as high penetration rate, reduction or elimination of tripping, casing, and bit costs, and enhanced well control, perforating and side-tracking capabilities. The energy required to remove a unit volume of rock, namely the specific energy (SE), is a critical rock property data that can be used to determine both the technical and economic feasibility of laser oil and gas well drilling. When a high power laser beam is applied on a rock, it can remove the rock by thermal spallation, melting, or vaporization depending on the applied laser energy and the way the energy is applied. The most efficient rock removal mechanism would be the one that requires the minimum energy to remove a unit volume of rock. Samples of sandstone, shale, and limestone were prepared for laser beam interaction with a 1.6 kW pulsed Nd:yttrium-aluminum-garnet laser beam to determine how the beam size, power, repetition rate, pulse width, exposure time and energy can affect the amount of energy transferred to the rock for the purposes of spallation, melting, and vaporization. The purpose of the laser rock interaction experiment was to determine the optimal parameters required to remove a maximum rock volume from the samples while minimizing energy input. Absorption of radiant energy from the laser beam gives rise to the thermal energy transfer required for the destruction and removal of the rock matrix. Results from the tests indicate that each rock type has a set of optimal laser parameters to minimize specific energy (SE) values as observed in a set of linear track and spot tests. As absorbed energy outpaces heat diffusion by the rock matrix, local temperatures can rise to the melting points of the minerals and quickly increase observed SE values. Tests also clearly identified the spallation and melting zones for shale samples while changing the laser power. The lowest SE values are obtained in the spalling zone just prior to the onset of mineral melt. The laser thermally spalled and saw mechanically cut rocks show similarity of surface microstructure. The study also found that increasing beam repetition rate within the same material removal mechanism would increase the material removal rate, which is believed due to an increase of maximum temperature, thermal cycling frequency, and intensity of laser-driven shock wave within the rock.

  4. USING GEOPHYSICAL METHODS TO IMAGE THE INTERNAL STRUCTURE OF MINE WASTE ROCK PILES

    E-Print Network [OSTI]

    Aubertin, Michel

    USING GEOPHYSICAL METHODS TO IMAGE THE INTERNAL STRUCTURE OF MINE WASTE ROCK PILES Campos, D.1-Noranda, Canada (bruno.bussiere@uqat.uquebec.ca) INTRODUCTION Mine waste rock piles, or rockwaste dumps rock piles. One of the most critical of these is water flow and water distribution in the waste rock

  5. Thermal hydraulic performance analysis of a small integral pressurized water reactor core

    E-Print Network [OSTI]

    Blair, Stuart R. (Stuart Ryan), 1972-

    2003-01-01T23:59:59.000Z

    A thermal hydraulic analysis of the International Reactor Innovative and Secure (IRIS) core has been performed. Thermal margins for steady state and a selection of Loss Of Flow Accidents have been assessed using three ...

  6. A Mechanism of Improved Oil Recovery by Low-Salinity Waterflooding in Sandstone Rock

    E-Print Network [OSTI]

    Nasralla, Ramez

    2013-05-02T23:59:59.000Z

    -salinity water has an impact on the rock wettability; the more reduction in water salinity, the more a water-wet rock surface is produced. In addition, NaCl solutions made the rock more water-wet compared to CaCl2 or MgCl2 at the same concentration. Low...

  7. Detailed modeling of the evaporation and thermal decomposition of urea-water-solution in SCR systems

    E-Print Network [OSTI]

    Boyer, Edmond

    on the UWS evaporation is taken into account using a NRTL activity model. The thermal decomposition model

  8. Impact of component selection and operation on thermal ratings of drain-back solar water heaters

    SciTech Connect (OSTI)

    Davidson, J.H.; Carlson, W.T.; Duff, W.S. (Colorado State Univ., Fort Collins, CO (United States). Solar Energy Applications Lab.)

    1992-11-01T23:59:59.000Z

    In this paper a half-factorial, two-level experimental design is used to determine the effects of changes in collector area, storage tank volume, collector flow rate, recirculation flow rate, and storage tank design on thermal rating of a solar drain-back water heating system. Experimental ratings are determined in accordance with the Solar Rating and Certification Corporation guidelines. Storage tank design is varied by using a stratification manifold in place of the standard drop tube. Variations in other component sizes and operating factors are based on current industry standards. Statistical analyses indicate that a change in collector area accounts for nearly 90 percent of the variation in heat output. Doubling collector area from 2.78 m[sup 2] to 5.56 m[sup 2] increases delivered solar energy by 31 percent. Use of a stratification manifold increases the delivery of solar energy by six percent. Doubling collector flow rate from 0.057 to 0.114 1/s increases solar output by aproximately three percent; however, the increase in pumping energy outweighs the benefits of increasing collector flow rate. The effects of recirculation flow rate and tank volume are obscured by experimental error.

  9. V00306010057 rock check dam

    E-Print Network [OSTI]

    ¬« ¬« ¬« ¬« ¬« XY! 16-020 16-030(c) 16-026(l) 16-028(c) 16-026(l) V00306010057 rock check dam V00306010012 rock check dam V00306010040 rock check dam V00306010039 rock check dam V00306010058 rock check dam V00306010064 rock check dam V00306010061 rock check dam V00306010062 rock check dam V00306010063

  10. Fluid Migration During Ice/Rock Planetesimal Differentiation

    E-Print Network [OSTI]

    Raney, Robert 1987-

    2012-12-12T23:59:59.000Z

    /water reaction, which will depend on the rate at which water can be segregated from a melting ice/rock core. For the liquid water phase to migrate toward the surface, the denser rock phase must compact. The primary question that this thesis will answer is how...

  11. archaean sedimentary rocks: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    situations, much more dependent on the properties of joints Aubertin, Michel 302 Rock Mining Operation Effects on Water Quality in the Everglades Biology and Medicine Websites...

  12. Enhancement of thermal stability and water resistance in yttrium-doped GeO{sub 2}/Ge gate stack

    SciTech Connect (OSTI)

    Lu, Cimang, E-mail: cimang@adam.t.u-tokyo.ac.jp; Hyun Lee, Choong; Zhang, Wenfeng; Nishimura, Tomonori; Nagashio, Kosuke; Toriumi, Akira [Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8656 (Japan); JST, CREST, 7-3-1 Hongo, Tokyo 113-8656 (Japan)

    2014-03-03T23:59:59.000Z

    We have systematically investigated the material and electrical properties of yttrium-doped GeO{sub 2} (Y-GeO{sub 2}) on Germanium (Ge). A significant improvement of both thermal stability and water resistance were demonstrated by Y-GeO{sub 2}/Ge stack, compared to that of pure GeO{sub 2}/Ge stack. The excellent electrical properties of Y-GeO{sub 2}/Ge stacks with low D{sub it} were presented as well as enhancement of dielectric constant in Y-GeO{sub 2} layer, which is beneficial for further equivalent oxide thickness scaling of Ge gate stack. The improvement of thermal stability and water resistance are discussed both in terms of the Gibbs free energy lowering and network modification of Y-GeO{sub 2}.

  13. Performance Evaluation of Hot Water Efficiency Plumbing System Using Thermal Valve

    E-Print Network [OSTI]

    Cha, K. S.; Park, M. S.; Seo, H. Y.

    hot water piping system, Thermo controlled valve, Circulation, Mixing water pipe, Recirculation water pipe INTRODUCTION Finding ways to conserve energy while heating a building?s water supply can be approached from a number of angles. Still...?s disadvantage is that so much water is wasted until the optimal tap temperature is reached.(6) We tried to solve this problem by developing a water-saving hot water plumbing system that utilizes a thermo-controlled valve. The goal was to not allow...

  14. Rock magnetism of remagnetized carbonate rocks: another look

    E-Print Network [OSTI]

    Jackson, M.; Swanson-Hysell, N. L

    2012-01-01T23:59:59.000Z

    and significance of magnetism in sedimentary rocks. Journal1997. Rock Magnetism. ¨ zdemir, O Dunlop, D. J. & Oon July 30, 2013 ROCK MAGNETISM: REMAGNETIZED CARBONATES

  15. V01406010015 rock check dam

    E-Print Network [OSTI]

    XY! ¬« ¬« V01406010015 rock check dam V01406010014 rock check dam V01406010013 rock check dam 1501403010012 earthen berm V01403010008 earthen berm V01406010003 rock check dam V01406010004 rock check dam V01406010010 rock check dam V01406010011 rock check dam 15-0651 15-0307 15-0588 15-0532 15-0575 stormdrain 7160

  16. An Itegrated Approach to Water Treatment in Oil and Gas Industry via Thermal Membrane Distillation

    E-Print Network [OSTI]

    Elsayed, Nesreen Ahmed Abdelmoez Mohamed

    2014-10-14T23:59:59.000Z

    and discharge to conserve water resources and reduce the negative environmental impact associated with discharging wastewater into the environment. Wastewater treatment enables providing water with specifications suitable for either recycle in the same... process or reuse in other ways within the process or outside the process. Therefore, water treatment and recycle/reuse contribute to addressing both of the aforementioned water problems: fresh water sacristy and environmental impact of wastewater...

  17. POLICY ANALYSIS OF PRODUCED WATER ISSUES ASSOCIATED WITH IN-SITU THERMAL TECHNOLOGIES

    SciTech Connect (OSTI)

    Robert Keiter; John Ruple; Heather Tanana

    2011-02-01T23:59:59.000Z

    Commercial scale oil shale and oil sands development will require water, the amount of which will depend on the technologies adopted and the scale of development that occurs. Water in oil shale and oil sands country is already in scarce supply, and because of the arid nature of the region and limitations on water consumption imposed by interstate compacts and the Endangered Species Act, the State of Utah normally does not issue new water rights in oil shale or oil sands rich areas. Prospective oil shale and oil sands developers that do not already hold adequate water rights can acquire water rights from willing sellers, but large and secure water supplies may be difficult and expensive to acquire, driving oil shale and oil sands developers to seek alternative sources of supply. Produced water is one such potential source of supply. When oil and gas are developed, operators often encounter ground water that must be removed and disposed of to facilitate hydrocarbon extraction. Water produced through mineral extraction was traditionally poor in quality and treated as a waste product rather than a valuable resource. However, the increase in produced water volume and the often-higher quality water associated with coalbed methane development have drawn attention to potential uses of produced water and its treatment under appropriations law. This growing interest in produced water has led to litigation and statutory changes that must be understood and evaluated if produced water is to be harnessed in the oil shale and oil sands development process. Conversely, if water is generated as a byproduct of oil shale and oil sands production, consideration must be given to how this water will be disposed of or utilized in the shale oil production process. This report explores the role produced water could play in commercial oil shale and oil sands production, explaining the evolving regulatory framework associated with produced water, Utah water law and produced water regulation, and the obstacles that must be overcome in order for produced water to support the nascent oil shale and oil sands industries.

  18. Integrated geochemical and paleoecological approach to petroleum source rock evaluation, Lower Niobrara Formation (Cretaceous), Lyons, Colorado

    SciTech Connect (OSTI)

    Barlow, L.K.

    1986-10-01T23:59:59.000Z

    A detailed study of paleoecological, geochemical, and stable isotopic properties of the lower Niobrara Formation (upper Turonian to lower Coniacian) was undertaken in order to evaluate petroleum source rock potential and to gain an understanding of the processes affecting variation in organic carbon content. The highest organic carbon contents in the lower Niobrara Formation occur in the lower shale unit of the Smoky Hill Shale Member. Trends in extent of bioturbation, organic carbon contents, and oxygen isotopic ratios of carbonates suggest that paleoclimatic factors influenced bottom water environments during deposition of this unit. A shift toward a more negative oxygen isotopic ratio in the lower shale unit is interpreted to be a result of decreased surface water salinity due to increased fresh water input and possibly to climatic warming. Resultant stratification of the water column limited benthic oxygenation thereby limiting benthic activity, enhancing the preservation of marine organic matter, and increasing source rock potential for petroleum. Data from underlying and overlying units in the lower Niobrara Formation suggest more normal marine conditions with well-oxygenated bottom waters, normal levels of bioturbation, and relatively low organic carbon contents. Pyrolysis data are interpreted to reflect a principally marine source of organic matter with substantial alteration due to bioturbation and thermal evolution. Elevated thermal maturity of the sections at Lyons is inferred to be a local feature caused by local heating associated with fluid movement along fault zones or with emplacement of tertiary sills.

  19. Relative Permeability of Fractured Rock

    SciTech Connect (OSTI)

    Mark D. Habana

    2002-06-30T23:59:59.000Z

    Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

  20. Metamorphic Rocks, Processes, and Resources Metamorphic rocks are rocks changed from one form to another by intense heat, intense pressure,

    E-Print Network [OSTI]

    Li, X. Rong

    important ­ Rising temperature causes water to be released from unstable minerals ­ Hot water very reactive refers to the temperature and pressure under which a rock was metamorphosed, considered low grade or high ­ If range exceeded, new mineral structures result ­ If temperature gets high enough, melting will occur

  1. Evaluation of Five Sedimentary Rocks Other Than Salt for Geologic Repository Siting Purposes

    SciTech Connect (OSTI)

    Croff, A.G.; Lomenick, T.F.; Lowrie, R.S.; Stow, S.H.

    2003-11-15T23:59:59.000Z

    The US Department of Energy (DOE), in order to increase the diversity of rock types under consideration by the geologic disposal program, initiated the Sedimary ROck Program (SERP), whose immediate objectiv eis to evaluate five types of secimdnary rock - sandstone, chalk, carbonate rocks (limestone and dolostone), anhydrock, and shale - to determine the potential for siting a geologic repository. The evaluation of these five rock types, together with the ongoing salt studies, effectively results in the consideration of all types of relatively impermeable sedimentary rock for repository purposes. The results of this evaluation are expressed in terms of a ranking of the five rock types with respect to their potential to serve as a geologic repository host rock. This comparative evaluation was conducted on a non-site-specific basis, by use of generic information together with rock evaluation criteria (RECs) derived from the DOE siting guidelines for geologic repositories (CFR 1984). An information base relevant to rock evaluation using these RECs was developed in hydrology, geochemistry, rock characteristics (rock occurrences, thermal response, rock mechanics), natural resources, and rock dissolution. Evaluation against postclosure and preclosure RECs yielded a ranking of the five subject rocks with respect to their potential as repository host rocks. Shale was determined to be the most preferred of the five rock types, with sandstone a distant second, the carbonate rocks and anhydrock a more distant third, and chalk a relatively close fourth.

  2. T00406010008 rock check dam

    E-Print Network [OSTI]

    XY! ¬« T00406010008 rock check dam T00406010009 rock check dam T00406010010 rock check dam T00406010011 rock check dam T-SMA-2.85 0.344 Acres 35-014(g) 35-016(n) T00406010005 rock check dam T00406010006 rock check dam T00403090004 curb T00402040007 established vegetation, green hatch area 7200 7200 7180

  3. An Itegrated Approach to Water Treatment in Oil and Gas Industry via Thermal Membrane Distillation 

    E-Print Network [OSTI]

    Elsayed, Nesreen Ahmed Abdelmoez Mohamed

    2014-10-14T23:59:59.000Z

    an increasing level of interest in the area of high-purity separation especially in water treatment. It is driven primarily by heat which creates a vapor-pressure difference across a porous hydrophobic membrane. Hot produced water and excess low-level heat from...

  4. Water skin anomalies: density, elasticity, hydrophobicity, thermal stability, interface repulsivity, etc

    E-Print Network [OSTI]

    Chang Q. Sun

    2015-02-26T23:59:59.000Z

    Molecular undercoordination induced O:H-O bond relaxation and dual polarization dictates the supersolid behavior of water skins interacting with other substances such as flowing in nanochannels, dancing of water droplets, floating of insects. The BOLS-NEP notion unifies the Wenzel-Cassie-Baxter models and explains controllable transition between hydrophobicity and hydrophilicity.

  5. Low-temperature geothermal water in Utah: A compilation of data for thermal wells and springs through 1993

    SciTech Connect (OSTI)

    Blackett, R.E.

    1994-07-01T23:59:59.000Z

    The Geothermal Division of DOE initiated the Low-Temperature Geothermal Resources and Technology Transfer Program, following a special appropriation by Congress in 1991, to encourage wider use of lower-temperature geothermal resources through direct-use, geothermal heat-pump, and binary-cycle power conversion technologies. The Oregon Institute of Technology (OIT), the University of Utah Research Institute (UURI), and the Idaho Water Resources Research Institute organized the federally-funded program and enlisted the help of ten western states to carry out phase one. This first phase involves updating the inventory of thermal wells and springs with the help of the participating state agencies. The state resource teams inventory thermal wells and springs, and compile relevant information on each sources. OIT and UURI cooperatively administer the program. OIT provides overall contract management while UURI provides technical direction to the state teams. Phase one of the program focuses on replacing part of GEOTHERM by building a new database of low- and moderate-temperature geothermal systems for use on personal computers. For Utah, this involved (1) identifying sources of geothermal date, (2) designing a database structure, (3) entering the new date; (4) checking for errors, inconsistencies, and duplicate records; (5) organizing the data into reporting formats; and (6) generating a map (1:750,000 scale) of Utah showing the locations and record identification numbers of thermal wells and springs.

  6. Chemical weathering of granitic rock: experiments and Pb-Li isotopes tracing Romain Millot

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    is to better constrain the processes of water/rock interactions both in terms of source (dissolutionChemical weathering of granitic rock: experiments and Pb-Li isotopes tracing Romain Millot Philippe of weathering. In order to go further and to better characterize water/rock interactions, we performed

  7. Measurements of the spatial and energy distribution of thermal neutrons in uranium, heavy water lattices

    E-Print Network [OSTI]

    Brown, Paul S. (Paul Sherman)

    1962-01-01T23:59:59.000Z

    Intracell activity distributions were measured in three natural uranium, heavy water lattices of 1. 010 inch diameter, aluminum clad rods on triangular spacings of 4. 5 inches, 5. 0 inches, and 5. 75 inches, respectively, ...

  8. Deep drilling technology for hot crystalline rock

    SciTech Connect (OSTI)

    Rowley, J.C.

    1984-01-01T23:59:59.000Z

    The development of Hot Dry Rock (HDR) geothermal systems at the Fenton Hill, New Mexico site has required the drilling of four deep boreholes into hot, Precambrian granitic and metamorphic rocks. Thermal gradient holes, four observation wells 200 m (600 ft) deep, and an exploration core hole 800 m (2400 ft) deep guided the siting of the four deep boreholes. Results derived from the exploration core hole, GT-1 (Granite Test No. 1), were especially important in providing core from the granitic rock, and establishing the conductive thermal gradient and heat flow for the granitic basement rocks. Essential stratigraphic data and lost drilling-fluid zones were identified for the volcanic and sedimentary rocks above the contact with the crystalline basement. Using this information drilling strategies and well designs were then devised for the planning of the deeper wells. The four deep wells were drilled in pairs, the shallowest were planned and drilled to depths of 3 km in 1975 at a bottom-hole temperature of nearly 200/sup 0/C. These boreholes were followed by a pair of wells, completed in 1981, the deepest of which penetrated the Precambrian basement to a vertical depth of 4.39 km at a temperature of 320/sup 0/C.

  9. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    aquifers for thermal energy storage. Problems outlined abovean Aquifer Used for Hot Water Storage: Digital Simulation ofof Aquifer Systems for Cyclic Storage of Water," of the Fall

  10. Results of scoping tests in corium-water thermal interactions in ex-vessel geometry

    SciTech Connect (OSTI)

    Spencer, B.W.; McUmber, L.; Sehgal, B.R.; Sienicki, J.J.; Squarer, D.

    1983-01-01T23:59:59.000Z

    Results of scoping tests are reported which were performed in the ANL/EPRI Corium Ex-vessel interactions (COREXIT) Facility located at ANL. These tests are examining issues related to containment loading (i.e., steam generation, H/sub 2/ production, and debris dispersal) for hypothetical LWR accidents that are postulated to progress to the point of molten corium breaching the vessel bottom head and entering the reactor cavity. The geometry selected for these tests is a 1 : 30 linear scale of the Zion PWR containment design in which the cavity is connected to the containment volume by an open tunnel through which pass the in-core detector guide tubes. The effects of the corium-water mixing modes were investigated in the first two tests in the series. In test CWTI-1 the molten corium was ejected into water which filled the cavity mockup volume to one-half the passageway height. In CWTI-2, the molten corium was dropped atop the refractory base in the cavity mockup without the presence of water, and water was injected atop the corium melt immediately afterward as per accumulator discharge. These tests have shown significant differences in fuel fragmentation, steam generation rate, hydrogen production, and fuel dispersal. Particularly noteworthy was the significant amount of dispersal of both water and corium debris from the cavity mockup due to the initially rapid steam generation rate in CWTI-1.

  11. Fluid origins, paths, and fluid-rock reactions at convergent margins, using halogens, Cl stable isotopes, and alkali metals as geochemical tracers

    E-Print Network [OSTI]

    Wei, Wei

    2007-01-01T23:59:59.000Z

    range kg/yr Cl sources and sinks Water or rock mass mol/kgtemperature at the source of fluid-rock reactions, asto identify the fluid-rock reactions at source. In addition,

  12. Rock melting tool with annealer section

    DOE Patents [OSTI]

    Bussod, Gilles Y. (Santa Fe, NM); Dick, Aaron J. (Oakland, CA); Cort, George E. (Montrose, CO)

    1998-01-01T23:59:59.000Z

    A rock melting penetrator is provided with an afterbody that rapidly cools a molten geological structure formed around the melting tip of the penetrator to the glass transition temperature for the surrounding molten glass-like material. An annealing afterbody then cools the glass slowly from the glass transition temperature through the annealing temperature range to form a solid self-supporting glass casing. This allows thermally induced strains to relax by viscous deformations as the molten glass cools and prevents fracturing of the resulting glass liner. The quality of the glass lining is improved, along with its ability to provide a rigid impermeable casing in unstable rock formations.

  13. J00206010020 rock check dam

    E-Print Network [OSTI]

    XY! J00206010020 rock check dam J00206010023 rock check dam 09-009 09-009 09-009 PJ-SMA-2 0.901 Acres J00206010021 rock check dam J00206010019 rock check dam J00206010014 rock check dam J00203010007 Smith DATE: 14-November-2014 REVISION NUMBER: 8 XY! IP sampler location Berm Channel/swale Check dam

  14. W02106010008 rock check dam

    E-Print Network [OSTI]

    W-SMA-14.1 5.169 Acres W02106010008 rock check dam W02106010009 rock check dam W02106010010 rock check dam W02106010011 rock check dam W02106010012 rock check dam W02103010018 earthen berm W02103010016 dam Established vegetation Seed and mulch Sediment trap/basin Gabion Cap SWMU boundary SMA drainage

  15. Chapter Eight Rock Varnish

    E-Print Network [OSTI]

    Dorn, Ron

    ) Coating Description Carbonate skin Coating composed primarily of carbonate, usually calcium carbonate; the agent may be manganese, sulphate, carbonate, silica, iron, oxalate, organisms, or anthropogenic Dust, cyanobacteria, algae Nitrate crust Potassium and calcium nitrate coatings on rocks, often in caves and rock

  16. Incident at the Rock Pile

    E-Print Network [OSTI]

    Birgfeld, Doug

    2015-01-01T23:59:59.000Z

    At the off limit rock pile At a Portland school Where theDoug. “Incident at the Rock Pile” http://escholarship.org/Doug. “Incident at the Rock Pile” http://escholarship.org/

  17. Solar-thermal Water Splitting Using the Sodium Manganese Oxide Process & Preliminary H2A Analysis

    SciTech Connect (OSTI)

    Todd M. Francis, Paul R. Lichty, Christopher Perkins, Melinda Tucker, Peter B. Kreider, Hans H. Funke, Allan Lewandowski, and Alan W. Weimer

    2012-10-24T23:59:59.000Z

    There are three primary reactions in the sodium manganese oxide high temperature water splitting cycle. In the first reaction, Mn2O3 is decomposed to MnO at 1,500°C and 50 psig. This reaction occurs in a high temperature solar reactor and has a heat of reaction of 173,212 J/mol. Hydrogen is produced in the next step of this cycle. This step occurs at 700°C and 1 atm in the presence of sodium hydroxide. Finally, water is added in the hydrolysis step, which removes NaOH and regenerates the original reactant, Mn2O3. The high temperature solar�driven step for decomposing Mn2O3 to MnO can be carried out to high conversion without major complication in an inert environment. The second step to produce H2 in the presence of sodium hydroxide is also straightforward and can be completed. The third step, the low temperature step to recover the sodium hydroxide is the most difficult. The amount of energy required to essentially distill water to recover sodium hydroxide is prohibitive and too costly. Methods must be found for lower cost recovery. This report provides information on the use of ZnO as an additive to improve the recovery of sodium hydroxide.

  18. MODELING COUPLED PROCESSES OF MULTIPHASE FLOW AND HEAT TRANSFER IN UNSATURATED FRACTURED ROCK

    SciTech Connect (OSTI)

    Y. Wu; S. Mukhopadhyay; K. Zhang; G.S. Bodvarsson

    2006-02-28T23:59:59.000Z

    A mountain-scale, thermal-hydrologic (TH) numerical model is developed for investigating unsaturated flow behavior in response to decay heat from the radioactive waste repository at Yucca Mountain, Nevada, USA. The TH model, consisting of three-dimensional (3-D) representations of the unsaturated zone, is based on the current repository design, drift layout, and thermal loading scenario under estimated current and future climate conditions. More specifically, the TH model implements the current geological framework and hydrogeological conceptual models, and incorporates the most updated, best-estimated input parameters. This mountain-scale TH model simulates the coupled TH processes related to mountain-scale multiphase fluid flow, and evaluates the impact of radioactive waste heat on the hydrogeological system, including thermally perturbed liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature elevations, as well as the changes in water flux driven by evaporation/condensation processes and drainage between drifts. For a better description of the ambient geothermal condition of the unsaturated zone system, the TH model is first calibrated against measured borehole temperature data. The ambient temperature calibration provides the necessary surface and water table boundary as well as initial conditions. Then, the TH model is used to obtain scientific understanding of TH processes in the Yucca Mountain unsaturated zone under the designed schedule of repository thermal load.

  19. Remedial Action Plan and Site Design for stabilization of the inactive Uranium Mill Tailings sites at Slick Rock, Colorado: Appendix C to Attachment 3, Calculations. Final

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    This volume contains calculations for: Slick Rock processing sites background ground water quality; Slick Rock processing sites lysimeter water quality; Slick Rock processing sites on-site and downgradient ground water quality; Slick Rock disposal site background water quality; Burro Canyon disposal site, Slick Rock, Colorado, average hydraulic gradients and average liner ground water velocities in the upper, middle, and lower sandstone units of the Burro Canyon formation; Slick Rock--Burro Canyon disposal site, Burro Canyon pumping and slug tests--analyses; water balance and surface contours--Burro Canyon disposal cell; and analytical calculation of drawdown in a hypothetical well completed in the upper sandstone unit of the Burro Canyon formation.

  20. Rock to Regolith Earth's Critical Zone on Volcanic Ocean Islands

    E-Print Network [OSTI]

    Geist, Dennis

    increases monotonically towards surface #12;Frost creep transport Frequency and depth of freezing event (f in a landscape? (the w question) What governs the efficiency of regolith transport? (the Q question) What lens growth #12;Ice lenses in soils Ice lenses in rock Water freezing in soil and rocks Murton et al

  1. Results from an International Simulation Study on Coupled Thermal, Hydrological, and Mechanical (THM) Processes near Geological Nuclear Waste Repositories

    E-Print Network [OSTI]

    Rutqvist, J.

    2008-01-01T23:59:59.000Z

    in hydrological rock properties caused by the thermallyEuropean countries. The initial rock properties for the twoTABLE II. Some basic rock properties defined for Phase 1 (

  2. CALCULATED THERMALLY INDUCED DISPLACEMENTS AND STRESSES FOR HEATER EXPERIMENTS AT STRIPA, SWEDEN. LINEAR THEFMOELASTIC MODELS USING CONSTANT MATERIAL PROPERTIES

    E-Print Network [OSTI]

    Chan, T.

    2010-01-01T23:59:59.000Z

    Modeling for variable rock properties and discontinuities5.2.1. Laboratory rock properties 5.2.2. Discontinuities andand Board, M. 1980. "Rock Properties and Their on Thermally

  3. Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors

    SciTech Connect (OSTI)

    D.M. McEligot; K. G. Condie; G. E. McCreery; H. M. McIlroy; R. J. Pink; L.E. Hochreiter; J.D. Jackson; R.H. Pletcher; B.L. Smith; P. Vukoslavcevic; J.M. Wallace; J.Y. Yoo; J.S. Lee; S.T. Ro; S.O. Park

    2005-10-01T23:59:59.000Z

    Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generation IV program.

  4. Investigation of the thermal conductivity of unconsolidated sand packs containing oil, water, and gas

    E-Print Network [OSTI]

    Gore, David Eugene

    1958-01-01T23:59:59.000Z

    of the requirements for the degree of EASTER OF SCIENCE August, lBSS Najor Subject: Petroleum Engineering INVESTIGATION OF THE THERNAI CONDUCTIVITY OF UNCONSOI IDATED SAND PACKS CONTAINING OII, WATER, AND GAS A Thesis By David E, Gore APProved as to style... expressed in degrees Fahrenheit, and, at 0 oF, , the abscissa would become ini'inite. This restriction does not limit the application of the data to petroleum reservoirs as the tem- perature normally encountered is in excess of 100 oF. The reservoir...

  5. Thermal-Hydrological Sensitivity Analysis of Underground Coal Gasification

    SciTech Connect (OSTI)

    Buscheck, T A; Hao, Y; Morris, J P; Burton, E A

    2009-10-05T23:59:59.000Z

    This paper presents recent work from an ongoing project at Lawrence Livermore National Laboratory (LLNL) to develop a set of predictive tools for cavity/combustion-zone growth and to gain quantitative understanding of the processes and conditions (natural and engineered) affecting underground coal gasification (UCG). We discuss the application of coupled thermal-hydrologic simulation capabilities required for predicting UCG cavity growth, as well as for predicting potential environmental consequences of UCG operations. Simulation of UCG cavity evolution involves coupled thermal-hydrological-chemical-mechanical (THCM) processes in the host coal and adjoining rockmass (cap and bedrock). To represent these processes, the NUFT (Nonisothermal Unsaturated-saturated Flow and Transport) code is being customized to address the influence of coal combustion on the heating of the host coal and adjoining rock mass, and the resulting thermal-hydrological response in the host coal/rock. As described in a companion paper (Morris et al. 2009), the ability to model the influence of mechanical processes (spallation and cavity collapse) on UCG cavity evolution is being developed at LLNL with the use of the LDEC (Livermore Distinct Element Code) code. A methodology is also being developed (Morris et al. 2009) to interface the results of the NUFT and LDEC codes to simulate the interaction of mechanical and thermal-hydrological behavior in the host coal/rock, which influences UCG cavity growth. Conditions in the UCG cavity and combustion zone are strongly influenced by water influx, which is controlled by permeability of the host coal/rock and the difference between hydrostatic and cavity pressure. In this paper, we focus on thermal-hydrological processes, examining the relationship between combustion-driven heat generation, convective and conductive heat flow, and water influx, and examine how the thermal and hydrologic properties of the host coal/rock influence those relationships. Specifically, we conducted a parameter sensitivity analysis of the influence of thermal and hydrological properties of the host coal, caprock, and bedrock on cavity temperature and steam production.

  6. Thermal-hydraulic instabilities in pressure tube graphite-moderated boiling water reactors

    SciTech Connect (OSTI)

    Tsiklauri, G.; Schmitt, B.

    1995-09-01T23:59:59.000Z

    Thermally induced two-phase instabilities in non-uniformly heated boiling charmers in RBMK-1000 reactor have been analyzed using RELAP5/MOD3 code. The RELAP5 model of a RBMK-1000 reactor was developed to investigate low flow in a distribution group header (DGH) supplying 44 fuel pressure tubes. The model was evaluated against experimental data. The results of the calculations indicate that the period of oscillation for the high power tube varied from 3.1s to 2.6s, over the power range of 2.0 MW to 3.0 MW, respectively. The amplitude of the flow oscillation for the high powered tube varied from +100% to {minus}150% of the tube average flow. Reverse flow did not occur in the lower power tubes. The amplitude of oscillation in the subcooled region at the inlet to the fuel region is higher than in the saturated region at the outlet. In the upper fuel region and outlet connectors the flow oscillations are dissipated. The threshold of flow instability for the high powered tubes of a RBMK reactor is compared to Japanese data and appears to be in good agreement.

  7. Thermal unfolding of barstar and the properties of interfacial water around the unfolded forms

    SciTech Connect (OSTI)

    Pal, Somedatta; Bandyopadhyay, Sanjoy, E-mail: sanjoy@chem.iitkgp.ernet.in [Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur - 721302 (India)] [Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur - 721302 (India)

    2013-12-21T23:59:59.000Z

    Identification of the intermediates along the folding-unfolding pathways and probing their interactions with surrounding solvent are two important but relatively unexplored issues in protein folding. In this work, we have carried out atomistic molecular dynamics simulations to study the thermal unfolding of barstar in aqueous solution from its folded native form at two different temperatures (400 K and 450 K). The calculations at 400 K reveal partial unfolding of two ?-helices (helix-1 and helix-2) and their interconnecting loop. At 450 K, on the other hand, the entire protein attains an expanded flexible conformation due to disruption of a large fraction of tertiary contacts and breaking of almost all the secondary structures. These two disordered structures obtained at such high temperatures are then studied around room temperature to probe their influence on the properties of surrounding solvent. It is found that though the unfolding of the protein in general leads to increasingly hydrated interface, but new structural motifs with locally dehydrated interface may also form during the structural transition. Additionally, independent of the conformational state of the protein, its influence on surrounding solvent has been found to be restricted to the first hydration layer.

  8. Please cite this article in press as: Shuffler, C., et al., Thermal hydraulic analysis for grid supported pressurized water reactor cores. Nucl. Eng. Des. (2009), doi:10.1016/j.nucengdes.2008.12.028

    E-Print Network [OSTI]

    Malen, Jonathan A.

    2009-01-01T23:59:59.000Z

    Please cite this article in press as: Shuffler, C., et al., Thermal hydraulic analysis for grid.elsevier.com/locate/nucengdes Thermal hydraulic analysis for grid supported pressurized water reactor cores C. Shuffler , J. Trant, J online xxx a b s t r a c t This paper presents the methodology and results for thermal hydraulic analysis

  9. CO2 leakage up from a geological storage site to shallow fresh groundwater: CO2-water-rock interaction assessment and

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    CO2 leakage up from a geological storage site to shallow fresh groundwater: CO2-water repository requires the investigation of the potential CO2 leakage back into fresh groundwater, particularly sensitive monitoring techniques in order to detect potential CO2 leaks and their magnitude as well

  10. Hot Dry Rock; Geothermal Energy

    SciTech Connect (OSTI)

    None

    1990-01-01T23:59:59.000Z

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic engineering procedures at depth may still be attained if high temperature sites with extensive fracturing are developed or exploited. [DJE -2005

  11. ROCK MASS CHARACTERIZATION FOR STORAGE OF NUCLEAR WASTE IN GRANITE

    E-Print Network [OSTI]

    Witherspoon, P.A.

    2010-01-01T23:59:59.000Z

    of an in-situ jointed granite. Intl. J. Rock Mech. and Min.of Groundwaters in the Stripa Granite: Results and Pre­of water through Westerly Granite at temperatures of 100 -

  12. Geophys. J. Int. (1999) 139, 248260 The thermal evolution of sedimentary basins and its effect on the

    E-Print Network [OSTI]

    1999-01-01T23:59:59.000Z

    and the resulting maturation index of particular source rocks, given the combined effects of the thermal and burial of the evolution of the Earth's thermal maturation of hydrocarbons in potential oil source rocks, can profile of hydrocarbon source rocks depends on a range of factors, including the primary rock type and its original

  13. Estimation of hydrologic properties of an unsaturated, fractured rock mass

    SciTech Connect (OSTI)

    Klavetter, E.A.; Peters, R.R.

    1986-07-01T23:59:59.000Z

    In this document, two distinctly different approaches are used to develop continuum models to evaluate water movement in a fractured rock mass. Both models provide methods for estimating rock-mass hydrologic properties. Comparisons made over a range of different tuff properties show good qualitative and quantitative agreement between estimates of rock-mass hydrologic properties made by the two models. This document presents a general discussion of: (1) the hydrology of Yucca Mountain, and the conceptual hydrological model currently being used for the Yucca Mountain site, (2) the development of two models that may be used to estimate the hydrologic properties of a fractured, porous rock mass, and (3) a comparison of the hydrologic properties estimated by these two models. Although the models were developed in response to hydrologic characterization requirements at Yucca Mountain, they can be applied to water movement in any fractured rock mass that satisfies the given assumptions.

  14. Chilled Water Thermal Storage System and Demand Response at the University of California at Merced

    SciTech Connect (OSTI)

    Granderson, Jessica; Dudley, Junqiao Han; Kiliccote, Sila; Piette, Mary Ann

    2009-10-08T23:59:59.000Z

    The University of California at Merced is a unique campus that has benefited from intensive efforts to maximize energy efficiency, and has participated in a demand response program for the past two years. Campus demand response evaluations are often difficult because of the complexities introduced by central heating and cooling, non-coincident and diverse building loads, and existence of a single electrical meter for the entire campus. At the University of California at Merced, a two million gallon chilled water storage system is charged daily during off-peak price periods and used to flatten the load profile during peak demand periods. This makes demand response more subtle and challenges typical evaluation protocols. The goal of this research is to study demand response savings in the presence of storage systems in a campus setting. First, University of California at Merced summer electric loads are characterized; second, its participation in two demand response events is detailed. In each event a set of strategies were pre-programmed into the campus control system to enable semi-automated response. Finally, demand savings results are applied to the utility's DR incentives structure to calculate the financial savings under various DR programs and tariffs. A key conclusion to this research is that there is significant demand reduction using a zone temperature set point change event with the full off peak storage cooling in use.

  15. Initial findings: The integration of water loop heat pump and building structural thermal storage systems

    SciTech Connect (OSTI)

    Marseille, T.J.; Johnson, B.K.; Wallin, R.P.; Chiu, S.A.; Crawley, D.B.

    1989-01-01T23:59:59.000Z

    This report is one in a series of reports describing research activities in support of the US Department of Energy (DOE) Commercial Building System Integration Research Program. The goal of the program is to develop the scientific and technical basis for improving integrated decision-making during design and construction. Improved decision-making could significantly reduce buildings' energy use by the year 2010. The objectives of the Commercial Building System Integration Research Program are: to identify and quantify the most significant energy-related interactions among building subsystems; to develop the scientific and technical basis for improving energy related interactions in building subsystems; and to provide guidance to designers, owners, and builders for improving the integration of building subsystems for energy efficiency. The lead laboratory for this program is the Pacific Northwest Laboratory. A wide variety of expertise and resources from industry, academia, other government entities, and other DOE laboratories are used in planning, reviewing and conducting research activities. Cooperative and complementary research, development, and technology transfer activities with other interested organizations are actively pursued. In this report, the interactions of a water loop heat pump system and building structural mass and their effect on whole-building energy performance is analyzed. 10 refs., 54 figs., 1 tab.

  16. In situ changes in the moisture content of heated, welded tuff based on thermal neutron measurements

    SciTech Connect (OSTI)

    Ramirez, A.L.; Carlson, R.C.; Buscheck, T.A.

    1991-07-01T23:59:59.000Z

    Thermal neutron logs were collected to monitor changes in moisture content within a welded tuff rock mass heated from a borehole containing an electrical heater which remained energized for 195 days. Thermal neutron measurements were made in sampling boreholes before, during and after heating. The results generally corroborated our conceptual understanding of hydrothermal flow as well as most of the numerical modeling conducting for this study. Conceptual models have been developed in conjunction with the numerical model calculations to explain differences in the drying and re-wetting behavior above and below the heater. Numerical modeling indicated that the re-wetting of the dried-out zone was dominated by the binary diffusion of water vapor through fractures. Saturation gradients in the rock matrix resulted in relative humidity gradients which drove water vapor (primarily along fractures) back to the dried-out zone where it condensed along the fracture walls and was imbibed by the matrix. 4 refs., 28 figs.

  17. Stochastic numerical simulations of long term unsaturated flow in waste rock piles

    E-Print Network [OSTI]

    Aubertin, Michel

    Stochastic numerical simulations of long term unsaturated flow in waste rock piles O. Fala Genivar water flow in waste rock piles using selected realizations of stochastically distributed hydraulic term hydrogeological behaviour of waste rock piles, to help select the construction sequence

  18. SOURCE AND EFFECT OF ACID ROCK DRAINAGE IN THE SNAKE RIVER WATERSHED, SUMMIT COUNTY, COLORADO

    E-Print Network [OSTI]

    SOURCE AND EFFECT OF ACID ROCK DRAINAGE IN THE SNAKE RIVER WATERSHED, SUMMIT COUNTY, COLORADO Belanger, Laura (M.S., Civil, Environmental and Architectural Engineering) Source and Effect of Acid Rock (the weathering of disseminated pyrite) sources of acid rock drainage (ARD). Stream waters

  19. Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al{sub 2}O{sub 3}/water nanofluid

    SciTech Connect (OSTI)

    Chandrasekar, M.; Suresh, S. [Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli 620 015 (India); Chandra Bose, A. [Nanomaterials Laboratory, National Institute of Technology, Tiruchirappalli 620 015 (India)

    2010-02-15T23:59:59.000Z

    Experimental investigations and theoretical determination of effective thermal conductivity and viscosity of Al{sub 2}O{sub 3}/H{sub 2}O nanofluid are reported in this paper. The nanofluid was prepared by synthesizing Al{sub 2}O{sub 3} nanoparticles using microwave assisted chemical precipitation method, and then dispersing them in distilled water using a sonicator. Al{sub 2}O{sub 3}/water nanofluid with a nominal diameter of 43 nm at different volume concentrations (0.33-5%) at room temperature were used for the investigation. The thermal conductivity and viscosity of nanofluids are measured and it is found that the viscosity increase is substantially higher than the increase in thermal conductivity. Both the thermal conductivity and viscosity of nanofluids increase with the nanoparticle volume concentration. Theoretical models are developed to predict thermal conductivity and viscosity of nanofluids without resorting to the well established Maxwell and Einstein models, respectively. The proposed models show reasonably good agreement with our experimental results. (author)

  20. Remedial action and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Attachment 4, Water resources protection strategy

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    To achieve compliance with the proposed US Environmental Protection Agency (EPA) groundwater protection standards (Subpart A of 40 CFR 192), the US Department of Energy (DOE) proposes to apply supplemental standards for Class III (limited use) groundwater because of low yield [less than 150 gallons per day (gpd) (7 {times} 10{sup {minus}3} liters per second (L/s))] in the uppermost aquifer (upper sandstone unit of the Burro Canyon Formation). Groundwater in the uppermost aquifer is not a current or potential source of drinking water because of the aquifer`s low yield. As a result, the proposed remedial action will ensure protection of human health and the environment.

  1. Source rock maturation, San Juan sag

    SciTech Connect (OSTI)

    Gries, R.R.; Clayton, J.L.

    1989-09-01T23:59:59.000Z

    Kinetic modeling for thermal histories was simulated for seven wells in the San Juan sag honoring measured geochemical data. Wells in the area of Del Norte field (Sec. 9, T40N, R5E), where minor production has been established from an igneous sill reservoir, show that the Mancos Shale source rocks are in the mature oil generation window as a combined result of high regional heat flow and burial by approximately 2,700 m of Oligocene volcanic rocks. Maturation was relatively recent for this area and insignificant during Laramide subsidence. In the vicinity of Gramps field (Sec. 24, T33N, R2E) on the southwest flank of the San Juan sag, these same source rocks are exposed due to erosion of the volcanic cover but appear to have undergone a similar maturation history. At the north and south margins of the sag, two wells (Champlin 34A-13, Sec. 13, T35N, R4.5E; and Champlin 24A-1, Sec. 1, T44N, R5E) were analyzed and revealed that although the regional heat flow was probably similar to other wells, the depth of burial was insufficient to cause maturation (except where intruded by thick igneous sills that caused localized maturation). The Meridian Oil 23-17 South Fork well (Sec. 17, T39N, R4E) was drilled in a deeper part of the San Juan sag, and source rocks were intruded by numerous igneous sills creating a complex maturation history that includes overmature rocks in the lowermost Mancos Shale, possible CO{sub 2} generation from the calcareous Niobrara Member of the Mancos Shale, and mature source rocks in the upper Mancos Shale.

  2. Aerial Thermal Infrared Mapping Of The Waimangu-Waiotapu Geothermal...

    Open Energy Info (EERE)

    Published Journal International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1995 DOI 10.10160148-9062(95)99556-D Citation . 1995. Aerial Thermal...

  3. Effectiveness of rock wall terraces on soil conservation and crop performance in a southern Honduras steepland farming system

    E-Print Network [OSTI]

    Sierra, Hector Enrique

    1996-01-01T23:59:59.000Z

    The effect that rock wall terraces have on soil and water conservation and crop production was studied on a steepland farm in southern Honduras during the 1995 growing season. The research compared a site with 10 year old rock terraces...

  4. Source rock evaluation, oil-source rock correlation, and kinetic modeling - San Juan Sag, CO

    SciTech Connect (OSTI)

    Clayton, J.L. (Geological survey, Denver, CO (USA)); Gries, R.R.

    1990-05-01T23:59:59.000Z

    Recently, oil and gas shows have been reported in Cretaceous and Tertiary rocks of the San Juan sag, and minor oil production was established from volcanic rocks (Kirby Petroleum 1 Jynnifer well, Sec. 9, T40N, R5E.). Potential source rocks present in the San Juan sag are the upper and lower (including the Niobrara Member) Mancos Shale (Upper Cretaceous). The combined upper and lower Mancos Shale is about 666 m thick and contains between about 0.5 and 5.5% organic carbon, although most values are between about 1.5 and 2.0%. The Niobrara Member of the lower Mancos Shale has the highest overall organic matter content in the section (organic carbon averages <2.0%). Pyrolysis and solvent extraction data (typically 2,000-6,000 and 1,000-4,000 ppm, respectively) indicate that the upper and lower Mancos Shale and the Niobrara Member are all good potential source rocks for oil and gas. Oil-source rock correlations using gas chromatography, mass spectrometry, and stable carbon isotope ratios indicate that the upper Mancos Shale is the most likely source for the oil produced from the 1 Jynnifer discovery well. The source of the oil produced from the nearby Gramps field is less certain, but may be the lower Mancos Shale or Niobrara Member. The hydrocarbon generation history of the San Juan sag is complex because of highly variable heat flow in the area caused by Oligocene volcanism. Sills have caused thermal alteration of organic matter in shales on a local scale, and larger volcanic bodies may have produced proportionality larger thermal effects. More regional heating by larger volcanic bodies is an important factor in the oil generation history of the area. The authors have constructed kinetic models at several locations in the area to estimate the timing and amount of hydrocarbon products generated from the source rocks. The main phase of oil and gas generation and expulsion occurred during the Oligocene.

  5. The Landscape of Klamath Basin Rock Art

    E-Print Network [OSTI]

    David, Robert James

    2012-01-01T23:59:59.000Z

    the Lines: Ethnographic Sources and Rock Art Interpretationwhen applying these sources toward rock art interpretation.information source for developing rock art interpretations.

  6. Remedial Action Plan and Site design for stabilization of the inactive Uranium Mill Tailings sites at Slick Rock, Colorado: Revision 1. Remedial action selection report, Attachment 2, geology report, Attachment 3, ground water hydrology report, Attachment 4, water resources protection strategy. Final

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The Slick Rock uranium mill tailings sites are located near the small community of Slick Rock, in San Miguel County, Colorado. There are two designated Uranium Mill Tailings Remedial Action (UMTRA) Project sites at Slick Rock: the Union Carbide site and the North Continent site. Both sites are adjacent to the Dolores River. The sites contain former mill building concrete foundations, tailings piles, demolition debris, and areas contaminated by windblown and waterborne radioactive materials. The total estimated volume of contaminated materials is approximately 621,000 cubic yards (475,000 cubic meters). In addition to the contamination at the two processing site areas, 13 vicinity properties were contaminated. Contamination associated with the UC and NC sites has leached into ground water. Pursuant to the requirements of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC {section}7901 et seq.), the proposed remedial action plan (RAP) will satisfy the final US Environmental Protection Agency (EPA) standards in 40 CFR Part 192 (60 FR 2854) for cleanup, stabilization, and control of the residual radioactive material (RRM) (tailings and other contaminated materials) at the disposal site at Burro Canyon. The requirements for control of the RRM (Subpart A) will be satisfied by the construction of an engineered disposal cell. The proposed remedial action will consist of relocating the uranium mill tailings, contaminated vicinity property materials, demolition debris, and windblown/weaterborne materials to a permanent repository at the Burro Canyon disposal site. The site is approximately 5 road mi (8 km) northeast of the mill sites on land recently transferred to the DOE by the Bureau of Land Management.

  7. Advancing reactive tracer methods for measuring thermal evolution in CO2-and water-based geothermal reservoirs

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. This project aims to develop reactive tracer method for monitoring thermal drawdown in enhanced geothermal systems.

  8. Software Engineer RockAuto www.RockAuto.com

    E-Print Network [OSTI]

    Liblit, Ben

    Software Engineer ­ RockAuto www.RockAuto.com Position Description Software is the foundation · Familiarity with open-source development technologies like PHP, Perl, JavaScript and C (Linux system Lane, Madison, WI 53719) Why RockAuto? Strategic and tactical impact. We're an e-commerce company

  9. Microwave assisted hard rock cutting

    DOE Patents [OSTI]

    Lindroth, David P. (Apple Valley, MN); Morrell, Roger J. (Bloomington, MN); Blair, James R. (Inver Grove Heights, MN)

    1991-01-01T23:59:59.000Z

    An apparatus for the sequential fracturing and cutting of subsurface volume of hard rock (102) in the strata (101) of a mining environment (100) by subjecting the volume of rock to a beam (25) of microwave energy to fracture the subsurface volume of rock by differential expansion; and , then bringing the cutting edge (52) of a piece of conventional mining machinery (50) into contact with the fractured rock (102).

  10. Thermal Conductivity of the Potential Repository Horizon Model Report

    SciTech Connect (OSTI)

    J. Ramsey

    2002-08-29T23:59:59.000Z

    The purpose of this report is to assess the spatial variability and uncertainty of thermal conductivity in the host horizon for the proposed repository at Yucca Mountain. More specifically, the lithostratigraphic units studied are located within the Topopah Spring Tuff (Tpt) and consist of the upper lithophysal zone (Tptpul), the middle nonlithophysal zone (Tptpmn), the lower lithophysal zone (Tptpll), and the lower nonlithophysal zone (Tptpln). The Tptpul is the layer directly above the repository host layers, which consist of the Tptpmn, Tptpll, and the Tptpln. Current design plans indicate that the largest portion of the repository will be excavated in the Tptpll (Board et al. 2002 [157756]). The main distinguishing characteristic among the lithophysal and nonlithophysal units is the percentage of large scale (cm-m) voids within the rock. The Tptpul and Tptpll, as their names suggest, have a higher percentage of lithophysae than the Tptpmn and the Tptpln. Understanding the influence of the lithophysae is of great importance to understanding bulk thermal conductivity and perhaps repository system performance as well. To assess the spatial variability and uncertainty of thermal conductivity, a model is proposed that is functionally dependent on the volume fraction of lithophysae and the thermal conductivity of the matrix portion of the rock. In this model, void space characterized as lithophysae is assumed to be air-saturated under all conditions, while void space characterized as matrix may be either water- or air-saturated. Lithophysae are assumed to be air-saturated under all conditions since the units being studied are all located above the water table in the region of interest, and the relatively strong capillary forces of the matrix will, under most conditions, preferentially retain any moisture present in the rock.

  11. Geothermal resources of the western arm of the Black Rock Desert, northwestern Nevada. Part I. Geology and geophysics

    SciTech Connect (OSTI)

    Schaefer, D.H.; Welch, A.H.; Maurer, D.K.

    1983-01-01T23:59:59.000Z

    Studies of the geothermal potential of the western arm of the Black Rock Desert in northwestern Nevada included a compilation of existing geologic data on a detailed map, a temperature survey at 1-meter depth, a thermal-scanner survey, and gravity and seismic surveys to determine basin geometry. The temperature survey showed the effects of heating at shallow depths due to rising geothermal fluids near the known hot spring areas. Lower temperatures were noted in areas of probable near-surface ground-water movement. The thermal-scanner survey verified the known geothermal areas and showed relatively high-temperature areas of standing water and ground-water discharge. The upland areas of the desert were found to be distinctly warmer than the playa area, probably due to the low thermal diffusivity of upland areas caused by low moisture content. Surface geophysical surveys indicated that the maximum thickness of valley-fill deposits in the desert is about 3200 meters. Gravity data further showed that changes in the trend of the desert axis occurred near thermal areas. 53 refs., 8 figs., 3 tabs.

  12. Drift emplaced waste package thermal response

    SciTech Connect (OSTI)

    Ruffner, D.J.; Johnson, G.L.; Platt, E.A.; Blink, J.A. [Lawrence Livermore National Lab., CA (United States); Doering, T.W. [B and W Fuel Co., Lynchburg, VA (United States)

    1993-01-01T23:59:59.000Z

    Thermal calculations of the effects of radioactive waste decay heat on the I repository at Yucca Mountain, Nevada have been conducted by the Yucca Mountain Site Characterization Project (YMP) at Lawrence Livermore National Laboratory (LLNL) in conjunction with the B&W Fuel Company. For a number of waste package spacings, these 3D transient calculations use the TOPAZ3D code to predict drift wall temperatures to 10,000 years following emplacement. Systematic tcniperature variation occurs as a function of fuel age at emplacement and Areal Mass Loading (AML) during the first few centuries after emplacement. After about 1000 years, emplacement age is not a strong driver on rock temperature; AML has a larger impact. High AMLs occur when large waste packages are emplaced end-tocnd in drifts. Drift emplacement of equivalent packages results in lower rock teniperatures than borehole emplacement. For an emplacement scheme with 50% of the drift length occupied by packages, an AML of 138 MTU/acre is about three times higher than the Site Characterization Plan-Conceptual Design (SCP-CD) value. With this higher AML (requiring only 1/3 of the SCP-CD repository footprint), peak drift wall temperatures do not exceed 160*C, but rock temperatures excetd the boiling point of water for about 3000 years. These TOPAZ3D results Iiive been compared with reasonable agreement with two other computer codes.

  13. Laboratory characterization of the spalling properties of the rock cores from the UCG (Underground Coal Gasification) test site near Porto Alegre in Brazil

    SciTech Connect (OSTI)

    Tantekin, S.B.; Sperry, D.P.; Krantz, W.B.; Britten, J.A.

    1988-02-22T23:59:59.000Z

    One of the principal problems encountered in most of the Underground Coal Gasification (UCG) field tests conducted thus far has been excessive water influx. Spalling-enhanced-drying of coal and overburdens rock has been identified as the principal mechanism of water influx observed in the Hanna UCG field tests in Wyoming Spalling is defined as the chipping, fracturing and breaking off of small rock fragments from the cavity roof due to the combined action of mechanical loading and thermally induced stresses. Spalling is also responsibble for vertical cavity growth and a portion of the heat losses during UCG. A laboratory core characterization method has been developed to determine the spalling properties of overburden rock which are essential to make influx and cavity geometry predictions for a prospective field test. In this study, the spalling properties of the representative rock cores from the UCG test site near Porto Alegre in Brazil have been determined using the laboratory core characterization test which utilizes the temperature-gradient-induced spalling hypothesis.

  14. The nature of fire-cracked rock: new insights from ethnoarchaeological and laboratory experiments

    E-Print Network [OSTI]

    Jackson, Michael A

    1998-01-01T23:59:59.000Z

    thermal weathering better than metamorphic or sedimentary rock types. Ethnoarchaeological results are applied to six archaeological FCR features, and provide new insights on the use-history of five of the features. Microscopic observations...

  15. Rock Physics Characterization of Organic-Rich Shale Formations to Predict Organic Properties

    E-Print Network [OSTI]

    Bush, Brandon

    2013-07-29T23:59:59.000Z

    rely on to assess the economic potential of these formations are: total organic carbon (TOC), thermal maturity, hydrocarbon saturation, porosity, mineralogy and brittleness. In this thesis, I investigate rock physics models and methods for the possible...

  16. The effect of thermal aging and boiling water reactor environment on Type 316L stainless steel welds

    E-Print Network [OSTI]

    Lucas, Timothy R

    2011-01-01T23:59:59.000Z

    The thermal aging and consequent embrittlement of materials are ongoing issues in cast stainless steels and duplex stainless steels. Spinodal decomposition is largely responsible for the well known "475°C" embrittlement ...

  17. Water and Energy Interactions

    E-Print Network [OSTI]

    McMahon, James E.

    2013-01-01T23:59:59.000Z

    generation of 17,445 TWh (69). 4.2 Thermal Electric Powergeneration in 2009 (33). Water used in thermal electric

  18. Study on Performance Verification and Evaluation of District Heating and Cooling System Using Thermal Energy of River Water

    E-Print Network [OSTI]

    Takahashi,N.; Niwa, H.; Kawano,M.; Koike,K.; Koga,O.; Ichitani, K.; Mishima,N.

    2014-01-01T23:59:59.000Z

    source and cooling water overall (in comparison with normal system 15% of energy saving) -Adopt large-scale ice heat storage system and realize equalization of electricity load -Adopt turbo chiller and heat recovery facilities as high efficiency heat... screw heat pump - 838MJ/? 1 IHP/Water source screw heat pump (Ice storage and heat recovery) Cool water? 3,080MJ/h Ice Storage? 1,936MJ/h Cool water heat recovery? 3,606MJ/h Ice storage heat recovery? 2,448MJ/h 8Unit ?16? TR1 Water cooling turbo...

  19. An energy equivalency analysis of trade-offs between thermal efficiency and standby loss requirements for commercial gas service water heaters

    SciTech Connect (OSTI)

    Somasundaram, S.; Jarnagin, R.E.; Keller, J.M.; Schliesing, J.S.

    1992-06-01T23:59:59.000Z

    The American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE) Standing Standard Project Committee 90.1 has approved an addendum (90.lb) to ASHRAE/IES Standard 90.1-1989. The addendum specifies an increase in the minimum thermal efficiency requirement (from 77% to 78%), accompanied by an easing of the standby loss requirements, for commercial gas-fired service water heaters. The Pacific Northwest Laboratory performed an energy equivalency analysis to assess the impact of trade-offs between the improved thermal efficiency and the less stringent standby loss requirements. The analysis objective was to estimate whether the energy savings during firing would offset the increased energy losses during standby periods. The primary focus of this report is to summarize the major results of the analysis and provide a recommendation for minimum energy-efficiency commercial gas-fired service water heaters. Limitations to the availability of detailed performance and energy-use data for these commercial water heaters are also pointed out.

  20. Article for thermal energy storage

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    2000-06-27T23:59:59.000Z

    A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

  1. OECD MMCI Small-Scale Water Ingression and Crust Strength Tests (SSWICS) SSWICS-2 test data report : thermal hydraulic results, Rev. 0 September 20, 2002.

    SciTech Connect (OSTI)

    Lomperski, S.; Farmer, M. T.; Kilsdonk, D. J.; Aeschlimann, R. W.; Basu, S. (Nuclear Engineering Division); (NRC)

    2011-05-23T23:59:59.000Z

    The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core/concrete interaction (MCCI) when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. However, due to the integral nature of these tests, several questions regarding the crust freezing behavior could not be adequately resolved. These questions include: (1) To what extent does water ingression into the crust increase the melt quench rate above the conduction-limited rate and how is this affected by melt composition and system pressure and (2) What is the fracture strength of the corium crust when subjected to a thermal-mechanical load and how does it depend upon the melt composition? A series of separate-effects experiments are being conducted to address these issues. The first employs an apparatus designed to measure the quench rate of a pool of corium ({approx}{phi}30 cm; up to 20 cm deep). The main parameter to be varied in these quench tests is the melt composition since it is thought to have a critical influence on the crust cracking behavior which, in turn, alters quench rate. The issue of crust strength will be addressed with a second apparatus designed to mechanically load the crust produced by the quench tests. This apparatus will measure the fracture strength of the crust while under a thermal load created by a heating element beneath the crust. The two apparatuses used to measure the melt quench rate and crust strength are jointly referred to as SSWICS (Small-Scale Water Ingression and Crust Strength). This report describes results of the second water ingression test, designated SSWICS-2. The report includes a description of the test apparatus, the instrumentation used, plots of the recorded data, and some rudimentary data reduction to obtain an estimate of the heat flux from the corium to the overlying water pool.

  2. OECD MCCI project Small-Scale Water Ingression and Crust Strength Tests (SSWICS) SSWICS-1 test data report : thermal hydraulic results. Rev. 0 September 20, 2002.

    SciTech Connect (OSTI)

    Lomperski, S.; Farmer, M. T.; Kilsdonk, D. J.; Aeschlimann, R. W.; Basu, S. (Nuclear Engineering Division); (NRC)

    2011-05-23T23:59:59.000Z

    The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core/concrete interaction (MCCI) when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. However, due to the integral nature of these tests, several questions regarding the crust freezing behavior could not be adequately resolved. These questions include: (1) To what extent does water ingression into the crust increase the melt quench rate above the conduction-limited rate and how is this affected by melt composition and system pressure and (2) What is the fracture strength of the corium crust when subjected to a thermal-mechanical load and how does it depend upon the melt composition? A series of separate-effects experiments are being conducted to address these issues. The first employs an apparatus designed to measure the quench rate of a pool of corium ({approx}{phi}30 cm; up to 20 cm deep). The main parameter to be varied in these quench tests is the melt composition since it is thought to have a critical influence on the crust cracking behavior which, in turn, alters quench rate. The issue of crust strength will be addressed with a second apparatus designed to mechanically load the crust produced by the quench tests. This apparatus will measure the fracture strength of the crust while under a thermal load created by a heating element beneath the crust. The two apparatuses used to measure the melt quench rate and crust strength are jointly referred to as SSWICS (Small-Scale Water Ingression and Crust Strength). This report describes results of the first water ingression test, designated SSWICS-1. The report includes a description of the test apparatus, the instrumentation used, plots of the recorded data, and some rudimentary data reduction to obtain an estimate of the heat flux from the corium to the overlying water pool.

  3. Mesozoic and Cenozoic rocks from Malta Escarpment (central Mediterranean)

    SciTech Connect (OSTI)

    Scandone, P. (Istituto di Geologia e Paleontologia, Pisa, Italy); Patacca, E.; Radoicic, R.; Ryan, W.B.F.; Cita, M.B.; Rawson, M.; Chezar, H.; Miller, E.; McKenzie, J.; Rossi, S.

    1981-07-01T23:59:59.000Z

    Sedimentary rocks of Triassic-Neogene age are present on the Malta Escarpment of the eastern Mediterranean. Upper Triassic dolomitic limestones of shallow-water origin, at depths between 2.5 and 3.5 km, are similar in lithofacies to coeval platform carbonates of the Siracusa (Syracuse) belt of southern Sicily. Jurassic rocks include lower-middle Liassic shallow-water limestones followed by condensed hemipelagic lime deposits indicative of sinking and starving of the former platform. Cretaceous materials are represented by both red marls rich in planktonic faunas and reworkd volcaniclastic breccias including shallow-water skeletal material. Paleogene rocks are both shallow-water limestones with corals, algae, and bivalves, and redeposited calcarenites of lithofacies similar to those from surface and subsurface of the Ragusa zone. Oligocene-lower Miocene rocks from the escarpment are also similar in lithology to the coeval Ragusa deposits. Tortonian is represented by hemipelagic marls indicating open-marine environment. Pervasive dolomitization on lime crusts and on initial-stage fissure fillings with strongly positive isotopic oxygen ratio is thought to be a product of Messinian evaporitic drawdown. Pliocene sediments belong to the Trubi facies and consist of pelagic foraminiferal chalk. An impressive vertical relief existed by Miocene times, as attested by Messinian crusts and veins on or in rocks as old as Late Triassic. Our data do not provide evidence that this morphologic feature necessarily coincides with a continent-ocean transition. The present escarpment was produced by faulting, erosion, and defacement. 14 figures, 1 table.

  4. Rock Bands/Rock Brands: Mediation and Musical Performance in Post-liberalization Bangalore

    E-Print Network [OSTI]

    Coventry, Chloe Louise

    2013-01-01T23:59:59.000Z

    these recorded sources important rock pedagogical tools inwere a primary source of western rock music for young fans,Nevertheless, a source of funding for rock music performance

  5. Surprise Valley water geochmical data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicolas Spycher

    Chemical analyses of thermal and cold ground waters from Surprise Valley, compiled from publicly available sources.

  6. Thermal recovery from a fractured medium in local thermal non-equilibrium Rachel Geleta,b,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , Australia Abstract Thermal recovery from a hot dry rock reservoir viewed as a deformable fractured mediumThermal recovery from a fractured medium in local thermal non-equilibrium Rachel Geleta phase being made by impermeable solid blocks separated by saturated fractures. The finite element

  7. Rock Properties Model

    SciTech Connect (OSTI)

    C. Lum

    2004-09-16T23:59:59.000Z

    The purpose of this model report is to document the Rock Properties Model version 3.1 with regard to input data, model methods, assumptions, uncertainties and limitations of model results, and qualification status of the model. The report also documents the differences between the current and previous versions and validation of the model. The rock properties model provides mean matrix and lithophysae porosity, and the cross-correlated mean bulk density as direct input to the ''Saturated Zone Flow and Transport Model Abstraction'', MDL-NBS-HS-000021, REV 02 (BSC 2004 [DIRS 170042]). The constraints, caveats, and limitations associated with this model are discussed in Section 6.6 and 8.2. Model validation accomplished by corroboration with data not cited as direct input is discussed in Section 7. The revision of this model report was performed as part of activities being conducted under the ''Technical Work Plan for: The Integrated Site Model, Revision 05'' (BSC 2004 [DIRS 169635]). The purpose of this revision is to bring the report up to current procedural requirements and address the Regulatory Integration Team evaluation comments. The work plan describes the scope, objectives, tasks, methodology, and procedures for this process.

  8. Iron and Steel Phosphate Rock

    E-Print Network [OSTI]

    Torgersen, Christian

    Lime Lithium Magnesium Manganese Mercury Mica Molybdenum Nickel Nitrogen Peat Perlite Phosphate Rock . . . . . . . . . . . . . . . . . . . . . . . . 194 Appendix C--Resource/Reserve Definitions . . . . . . 195 Commodities: Abrasives (Manufactured

  9. Iron and Steel Phosphate Rock

    E-Print Network [OSTI]

    Torgersen, Christian

    Mica Molybdenum Nickel Nitrogen Peat Perlite Phosphate Rock Platinum Potash Pumice Quartz Crystal Rare . . . . . . . . . . . . . . . . . . . . . . . . 190 Appendix C--A Resource/Reserve Classification for Minerals

  10. Study on Performance Verification and Evaluation of District Heating and Cooling System Using Thermal Energy of River Water 

    E-Print Network [OSTI]

    Takahashi,N.; Niwa, H.; Kawano,M.; Koike,K.; Koga,O.; Ichitani, K.; Mishima,N.

    2014-01-01T23:59:59.000Z

    Conference for Enhanced Building Operations, Beijing, China, September 14-17, 2014 1The heating and cooling system used in Osaka’s Nakanoshima district uses heat pumps and river water to achieve the efficient use of the heat source and mitigate the heat... source -Utilize waste heat discharged from substation, and supply in large difference of temperature Water intake Heat exchangers Water discharge Turbo chiller Screw heat pump pumps ESL-IC-14-09-19 Proceedings of the 14th International Conference...

  11. Petrography and prediction of reservoir rock properties in the Sussex Sandstone, Powder River Basin, Wyoming

    E-Print Network [OSTI]

    Shirley, Richard Hoyt

    1977-01-01T23:59:59.000Z

    to determine rock composition and texture. Composition was established by point count of 100 grains. Framework grains were identified and counted as monocrystalline quartz, polycrystalline quartz, volcanic rock fragments, potassium feldspar, plagioclase... and quiet water deposition of shale was resumed. The sandstone is classified as a volcanic aronite based on a det: ital composition averaging 59 percent quartz, including both monccrystalline and polycrystalline varieties, 18 percent rock frag- ments...

  12. Iron and Steel Phosphate Rock

    E-Print Network [OSTI]

    Torgersen, Christian

    Phosphate Rock Platinum Potash Pumice Quartz Crystal Rare Earths Rhenium Rubidium Salt Sand and Gravel Graphite Peat Sulfur Beryllium Gypsum Perlite Talc Bismuth Hafnium Phosphate Rock Tantalum Boron Helium on the USGS--the Federal source for science about the Earth, its natural and living resources, natural hazards

  13. Post-Synthesis Crystallinity Tailoring of Water-Soluble Polymer Encapsulated CdTe Nanoparticles using Rapid Thermal Annealing

    E-Print Network [OSTI]

    Post-Synthesis Crystallinity Tailoring of Water-Soluble Polymer Encapsulated CdTe Nanoparticles CdTe NPs have been demonstrated suitable for use in applications involving efficient solar cells

  14. Oldest rocks, earliest life, heaviest impacts, and the HadeanArchaean transition

    E-Print Network [OSTI]

    Reiners, Peter W.

    , of these rocks were deposited in water. There was clearly no shortage of water on the EarthÕs surface at around 3, the sta- bilisation of liquid water, and the decreasing impact rate, made for an increasingly predictable.8 Ga. Maybe planet Mars was still flowing with surface water then, or it might already have par- tially

  15. Strontium-85 and plutonium-239 sorption in rock samples from the Semipalatinsk Test Site, Kazakhstan

    SciTech Connect (OSTI)

    Mason, C.F.V.; Lu, N.; Marusak, N.L.; Scheber, B.; Chipera, S. [Los Alamos National Lab., NM (United States); Daukeyev, D.; Khromushin, I. [National Nuclear Center of the Republic of Kazakhstan, Almaty (Kazakhstan)

    1999-03-01T23:59:59.000Z

    The adsorption and desorption of strontium and plutonium were studied as a function of rock type and simulated ground waters from the Semipalatinsk Test Site (STS). Seven different rock types were obtained from the Balapan Region of the STS and were subjected to x-ray diffraction analyses. Two different ground waters were simulated using data supplied by the National Nuclear Center. The results indicate the sorption of strontium is strongly dependent on the minerals present in the rock species and on the total ionic strength of the ground water whereas, in all cases, plutonium was strongly irreversibly sorbed.

  16. Oil and Gas CDT Bots in Rocks: Intelligent Rock Deformation for Fault Rock

    E-Print Network [OSTI]

    Henderson, Gideon

    Heriot-Watt University, Institute of Petroleum Engineering Supervisory Team · Dr Helen Lewis, Heriot://www.pet.hw.ac.uk/staff-directory/jimsomerville.htm Key Words Nano/Micro sensors; faults; fault zones; geomechanics; rock mechanics; rock deformation-deformed equivalent, a different lab-deformed example and a geomechanical simulation of a fault zone showing permanent

  17. Superhard nanophase cutter materials for rock drilling applications

    SciTech Connect (OSTI)

    Voronov, O.; Tompa, G.; Sadangi, R.; Kear, B.; Wilson, C.; Yan, P.

    2000-06-23T23:59:59.000Z

    The Low Pressure-High Temperature (LPHT) System has been developed for sintering of nanophase cutter and anvil materials. Microstructured and nanostructured cutters were sintered and studied for rock drilling applications. The WC/Co anvils were sintered and used for development of High Pressure-High Temperature (HPHT) Systems. Binderless diamond and superhard nanophase cutter materials were manufactured with help of HPHT Systems. The diamond materials were studied for rock machining and drilling applications. Binderless Polycrystalline Diamonds (BPCD) have high thermal stability and can be used in geothermal drilling of hard rock formations. Nanophase Polycrystalline Diamonds (NPCD) are under study in precision machining of optical lenses. Triphasic Diamond/Carbide/Metal Composites (TDCC) will be commercialized in drilling and machining applications.

  18. Low Pore Connectivity in Natural Rock

    SciTech Connect (OSTI)

    Hu, Qinhong; Ewing, Robert P.; Dultz, Stefan

    2012-05-15T23:59:59.000Z

    As repositories for CO? and radioactive waste, as oil and gas reservoirs, and as contaminated sites needing remediation, rock formations play a central role in energy and environmental management. The connectivity of the rock's porespace strongly affects fluid flow and solute transport. This work examines pore connectivity and its implications for fluid flow and chemical transport. Three experimental approaches (imbibition, tracer concentration profiles, and imaging) were used in combination with network modeling. In the imbibition results, three types of imbibition slope [log (cumulative imbibition) vs. log (imbibition time)] were found: the classical 0.5, plus 0.26, and 0.26 transitioning to 0.5. The imbibition slope of 0.26 seen in Indiana sandstone, metagraywacke, and Barnett shale indicates low pore connectivity, in contrast to the slope of 0.5 seen in the well-connected Berea sandstone. In the tracer profile work, rocks exhibited different distances to the plateau porosity, consistent with the pore connectivity from the imbibition tests. Injection of a molten metal into connected pore spaces, followed by 2-D imaging of the solidified alloy in polished thin sections, allowed direct assessment of pore structure and lateral connection in the rock samples. Pore-scale network modeling gave results consistent with measurements, confirming pore connectivity as the underlying cause of both anomalous behaviors: imbibition slope not having the classical value of 0.5, and accessible porosity being a function of distance from the edge. A poorly connected porespace will exhibit anomalous behavior in fluid flow and chemical transport, such as a lower imbibition slope (in air–water system) and diffusion rate than expected from classical behavior.

  19. Micromodel Investigations of CO2 Exsolution from Carbonated Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of CO2 Exsolution from Carbonated Water in Sedimentary Rocks. Abstract: In this study, carbon dioxide exsolution from carbonated water is directly observed under reservoir...

  20. NUMERICAL SIMULATIONS OF LONG TERM UNSATURATED FLOW AND ACID MINE DRAINAGE AT WASTE ROCK PILES

    E-Print Network [OSTI]

    Aubertin, Michel

    NUMERICAL SIMULATIONS OF LONG TERM UNSATURATED FLOW AND ACID MINE DRAINAGE AT WASTE ROCK PILES Omar representative) waste rock piles and using observed climatic recharge data. The simulations were used to help are applied each year at the top of the piles, the water content profiles become periodic after a few years

  1. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    and J. Schwarz, Survey of Thermal Energy Storage in AquifersB. Quale. Seasonal storage of thermal energy in water in theSecond Annual Thermal Energy Storage Contractors'

  2. CALCULATED THERMALLY INDUCED DISPLACEMENTS AND STRESSES FOR HEATER EXPERIMENTS AT STRIPA, SWEDEN. LINEAR THEFMOELASTIC MODELS USING CONSTANT MATERIAL PROPERTIES

    E-Print Network [OSTI]

    Chan, T.

    2010-01-01T23:59:59.000Z

    is that nuclear wastes generate heat by radioactive decay.of damaged rock may cause the waste to heat to unacceptableheat are: (1) thermally induced stress in the An rock, the wastes, and

  3. Investigation of a hydraulic impact a technology in rock breaking

    E-Print Network [OSTI]

    in mining industry. The impact process of a high speed piston on liquid water, previously introduced on the environment such as fly rocks, air blast, noise pollution and toxic fumes. When blasting occurs close to residential areas, or during tunnel construction, environmental protection regulation could seriously affect

  4. Analytical and experimental investigations of the behavior of thermal neutrons in lattices of uranium metal rods in heavy water

    E-Print Network [OSTI]

    Simms, Richard

    1963-01-01T23:59:59.000Z

    Measurements of the intracellular distribution of the activation of foils by neutrons were made in lattices of 1/4-inch diameter, 1.03% U-235, uranium rods moderated by heavy water, with bare and cadmium-covered foils of ...

  5. Physics of the Earth and Planetary Interiors 126 (2001) 93108 Rock-magnetic properties of TRM carrying baked and

    E-Print Network [OSTI]

    Utrecht, Universiteit

    2001-01-01T23:59:59.000Z

    Physics of the Earth and Planetary Interiors 126 (2001) 93­108 Rock-magnetic properties of TRM produced large areas of thermally altered sedimentary rocks with large magnetic moments. The natural remanent magnetization (NRM) and thermoremanent magnetization (TRM) intensities and low

  6. Shotgun cartridge rock breaker

    DOE Patents [OSTI]

    Ruzzi, Peter L. (Eagan, NM); Morrell, Roger J. (Bloomington, MN)

    1995-01-01T23:59:59.000Z

    A rock breaker uses shotgun cartridges or other firearm ammunition as the explosive charge at the bottom of a drilled borehole. The breaker includes a heavy steel rod or bar, a gun with a firing chamber for the ammunition which screws onto the rod, a long firing pin running through a central passage in the rod, and a firing trigger mechanism at the external end of the bar which strikes the firing pin to fire the cartridge within the borehole. A tubular sleeve surround the main body of the rod and includes slits the end to allow it to expand. The rod has a conical taper at the internal end against which the end of the sleeve expands when the sleeve is forced along the rod toward the taper by a nut threaded onto the external end of the rod. As the sleeve end expands, it pushes against the borehole and holds the explosive gasses within, and also prevents the breaker from flying out of the borehole. The trigger mechanism includes a hammer with a slot and a hole for accepting a drawbar or drawpin which, when pulled by a long cord, allows the cartridge to be fired from a remote location.

  7. Sources of Water Surface water and groundwater are present throughout

    E-Print Network [OSTI]

    MacAdam, Keith

    Sources of Water Surface water and groundwater are present throughout Kentucky's 39,486 square miles. Surface water occurs as rivers, streams, ponds, lakes, and wetlands. Ground- water occurs underlain by soluble carbonate rocks (for example, limestone). Water Supply · Approximately 49 inches

  8. Brackish water pond polyculture of estuarine fishes in power plant thermal effluent and their use as biological monitors of water quality

    E-Print Network [OSTI]

    Branch, Mark Roy

    1977-01-01T23:59:59.000Z

    -Old Striped Mullet, 2-Year-Old Atlantic Croaker, 1-Year-Old Southern Flounder Miscellaneous Organisms Unstocked-Unfiltered Ponds. . . . . . . . . . . . Stocked Ponds. Selected Metals and Pesticides Analyses. . . . 21 21 22 23 26 33 40 43 43 46... Station consists of three 750 megawatt units. Name-plate ratings specify maximum cooling water requirements of 76, 840 m /hr. However, ac- 3 tual pumping rates exceed the name-plate ratings by 2% for unit 1, 6% for unit 2, and less than 1% for unit 3...

  9. Fluid-Rock Characterization and Interactions in NMR Well Logging

    SciTech Connect (OSTI)

    Hirasaki, George J.; Mohanty, Kishore K.

    2003-02-10T23:59:59.000Z

    The objective of this project was to characterize the fluid properties and fluid-rock interactions which are needed for formation evaluation by NMR well logging. NMR well logging is finding wide use in formation evaluation. The formation parameters commonly estimated were porosity, permeability, and capillary bound water. Special cases include estimation of oil viscosity, residual oil saturation, location of oil/water contact, and interpretation on whether the hydrocarbon is oil or gas.

  10. Strength of transversely isotropic rocks

    E-Print Network [OSTI]

    Pei, Jianyong, 1975-

    2008-01-01T23:59:59.000Z

    This thesis proposes a new Anisotropic Matsuoka-Nakai (AMN) criterion to characterize the failure of transversely isotropic rocks under true triaxial stress states. One major obstacle in formulating an anisotropic criterion ...

  11. Design and installation manual for thermal energy storage

    SciTech Connect (OSTI)

    Cole, R L; Nield, K J; Rohde, R R; Wolosewicz, R M

    1980-01-01T23:59:59.000Z

    The purpose of this manual is to provide information on the design and installation of thermal energy storage in active solar systems. It is intended for contractors, installers, solar system designers, engineers, architects, and manufacturers who intend to enter the solar energy business. The reader should have general knowledge of how solar heating and cooling systems operate and knowledge of construction methods and building codes. Knowledge of solar analysis methods such as f-Chart, SOLCOST, DOE-1, or TRNSYS would be helpful. The information contained in the manual includes sizing storage, choosing a location for the storage device, and insulation requirements. Both air-based and liquid-based systems are covered with topics on designing rock beds, tank types, pump and fan selection, installation, costs, and operation and maintenance. Topics relevant to latent heat storage include properties of phase-change materials, sizing the storage unit, insulating the storage unit, available systems, and cost. Topics relevant to heating domestic water include safety, single- and dual-tank systems, domestic water heating with air- and liquid-based space heating systems, and stand alone domestics hot water systems. Several appendices present common problems with storage systems and their solutions, heat transfer fluid properties, economic insulation thickness, heat exchanger sizing, and sample specifications for heat exchangers, wooden rock bins, steel tanks, concrete tanks, and fiberglass-reinforced plastic tanks.

  12. Rock physics at Los Alamos Scientific Laboratory

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    Rock physics refers to the study of static and dynamic chemical and physical properties of rocks and to phenomenological investigations of rocks reacting to man-made forces such as stress waves and fluid injection. A bibliography of rock physics references written by LASL staff members is given. Listing is by surname of first author. (RWR)

  13. TRAC-PF1/MOD1: an advanced best-estimate computer program for pressurized water reactor thermal-hydraulic analysis

    SciTech Connect (OSTI)

    Liles, D.R.; Mahaffy, J.H.

    1986-07-01T23:59:59.000Z

    The Los Alamos National Laboratory is developing the Transient Reactor Analysis Code (TRAC) to provide advanced best-estimate predictions of postulated accidents in light-water reactors. The TRAC-PF1/MOD1 program provides this capability for pressurized water reactors and for many thermal-hydraulic test facilities. The code features either a one- or a three-dimensional treatment of the pressure vessel and its associated internals, a two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field and solute tracking, flow-regime-dependent constitutive equation treatment, optional reflood tracking capability for bottom-flood and falling-film quench fronts, and consistent treatment of entire accident sequences including the generation of consistent initial conditions. The stability-enhancing two-step (SETS) numerical algorithm is used in the one-dimensional hydrodynamics and permits this portion of the fluid dynamics to violate the material Courant condition. This technique permits large time steps and, hence, reduced running time for slow transients.

  14. Proceedings of the US Nuclear Regulatory Commission twentieth water reactor safety information meeting; Volume 2, Severe accident research, Thermal hydraulics

    SciTech Connect (OSTI)

    Weiss, A.J. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1993-03-01T23:59:59.000Z

    This three-volume report contains papers presented at the Twentieth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 21--23, 1992. The papers describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included 10 different papers presented by researchersfrom CEC, China, Finland, France, Germany, Japan, Spain and Taiwan. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  15. MECHANICAL DEGRADATION OF EMPLACEMENT DRIFTS AT YUCCA MOUNTAIN - A CASE STUDY IN ROCK MECHANICS, PART 1: NONLITHOPHYSAL ROCK, PART 2: LITHOPHYSAL ROCK

    SciTech Connect (OSTI)

    M. Lin, D. Kicker, B. Damjanac, M. Board, and M. Karakouzian

    2006-02-27T23:59:59.000Z

    This paper outlines rock mechanics investigations associated with mechanical degradation of planned emplacement drifts at Yucca Mountain, which is the designated site for a US high-level nuclear waste repository. The factors leading to drift degradation include stresses from the overburden, stresses induced by the heat released from the emplaced waste, stresses due to seismically related ground motions, and time-dependent strength degradation. The welded tuff emplacement horizon consists of two groups of rock with distinct engineering properties: nonlithophysal units and lithophysal units, based on the relative proportion of lithophysal cavities. Part I of the paper concentrates on the generally hard, strong, and fractured nonlithophysal rock. The degradation behavior of the tunnels in the nonlithophysal rock is controlled by the occurrence of keyblocks. A statistically equivalent fracture model was generated based on extensive underground fracture mapping data from the Exploratory Studies Facility at Yucca Mountain. Three-dimensional distinct block analyses, generated with the fracture patterns randomly selected from the fracture model, were developed with the consideration of in situ, thermal, seismic loads. In this study, field data, laboratory data, and numerical analyses are well integrated to provide a solution for the unique problem of modeling drift degradation throughout the regulatory period for repository performance.

  16. Debris dispersal in reactor material experiments on corium-water thermal interactions in ex-vessel geometry

    SciTech Connect (OSTI)

    Sienicki, J.J.; Spencer, B.W.; Squarer, D.

    1984-01-01T23:59:59.000Z

    An analysis has been performed of corium sweepout behavior in the ANL/EPRI CWTI-series reactor material experiments involving the gas pressure-driven injection of molten corium into the reactor cavity region of a 1:30 scale mockup of a PWR containment. A computer model was developed to calculate the sweepout versus retention of corium and water from the cavity. The model consists of hydrodynamics and freezing calculations describing the pressure-driven two-phase flow of corium, water, steam and gas out of the cavity, freezing of corium upon structural surfaces, and levitation of corium within the cavity by the vessel blowdown gas jet. The model has had good success predicting the disposition of corium for the available CWTI tests, indicating retention in the cavity of between 40 and 70% of the injected corium masses. For conditions representative of the TMLB' sequence in the reactor system, the model predicts essentially complete sweepout of corium from the full-scale cavity region before the dispersive forces arising from the blowdown of the primary system have decayed. However, this large sweepout does not imply that the swept out material would deliver its energy directly to the containment atmosphere.

  17. Chemistry of spring and well waters on Kilauea Volcano, Hawaii...

    Open Energy Info (EERE)

    the chemistry of dilute meteoric water, mixtures with sea water,and thermal water. Data for well and spring samples of non-thermal water indicate that mixing with sea water...

  18. Water and Energy Interactions

    E-Print Network [OSTI]

    McMahon, James E.

    2013-01-01T23:59:59.000Z

    power plants, water withdrawals for electricity generationelectricity generation in 2009 (33). Water used in thermal electric power plantsplant with CCS technologies requires roughly 1,000 gallons of water for every megawatt-hour of electricity generation (

  19. Source rock study of Smackover Formation from east Texas to Florida

    SciTech Connect (OSTI)

    Sassen, R.; Moore, C.H.

    1987-05-01T23:59:59.000Z

    Analyses of core and crude oil samples indicate that the laminated lime mudstone facies of the lower Smackover Formation is a significant source rock across the trend. The source facies was deposited in an anoxic and hypersaline environment that permitted preservation of algal kerogen. Moreover, source potential also occurs in undifferentiated Gilmer-Smackover rocks of east Texas deposited in a carbonate slope environment. Thermal maturity is the key factor that controls the generation of crude oil by the carbonate source facies and the eventual destruction of hydrocarbons in upper Smackover and Norphlet reservoirs. Once the regional thermal maturity framework is understood, it is possible to construct a source rock model that explains the distribution of crude oil, gas condensate, and methane across the trend. Calculated thermal maturity histories provide insight to the timing of hydrocarbon generation and migration and to the timing of hydrocarbon destruction and sulfate reduction in deep reservoirs. Basic geochemical strategies for exploration are suggested. One strategy is to focus exploration effort on traps formed prior to the time of crude oil migration that were nearest to effective source rocks. Another strategy is to avoid drilling reservoir rocks that are thermally overmature for preservation of hydrocarbons.

  20. Thermal and Kinematic Evolution of the Eastern Cordillera Fold and

    E-Print Network [OSTI]

    Toro, Jaime

    that determine the timing of hydrocarbon source rock maturation and the quality of sandstone reservoirs.0. The models were constrained by well, seismic, apatite fission-track, and thermal-maturity data. The main Tertiary, the bulk of the deformation occurred during the Miocene to Holocene Andean orogeny. Rocks

  1. Water, Vapor, and Salt Dynamics in a Hot Repository

    SciTech Connect (OSTI)

    Bahrami, Davood; Danko, George [Department of Mining Engineering, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV, 89557 (United States); Walton, John [Department of Civil Engineering, University of Texas at El Paso, 500 W. University, El Paso, TX, 79968 (United States)

    2007-07-01T23:59:59.000Z

    The purpose of this paper is to report the results of a new model study examining the high temperature nuclear waste disposal concept at Yucca Mountain using MULTIFLUX, an integrated in-drift- and mountain-scale thermal-hydrologic model. The results show that a large amount of vapor flow into the drift is expected during the period of above-boiling temperatures. This phenomenon makes the emplacement drift a water/moisture attractor during the above-boiling temperature operation. The evaporation of the percolation water into the drift gives rise to salt accumulation in the rock wall, especially in the crown of the drift for about 1500 years in the example. The deposited salts over the drift footprint, almost entirely present in the fractures, may enter the drift either by rock fall or by water drippage. During the high temperature operation mode, the barometric pressure variation creates fluctuating relative humidity in the emplacement drift with a time period of approximately 10 days. Potentially wet and dry conditions and condensation on salt-laden drift wall sections may adversely affect the storage environment. Salt accumulations during the above-boiling temperature operation must be sufficiently addressed to fully understand the waste package environment during the thermal period. Until the questions are resolved, a below-boiling repository design is favored where the Alloy-22 will be less susceptible to localized corrosion. (authors)

  2. Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

    SciTech Connect (OSTI)

    PAT GRANDELLI, P.E.; GREG ROCHELEAU; JOHN HAMRICK, Ph.D.; MATT CHURCH, Ph.D.; BRIAN POWELL, Ph.D.

    2012-09-29T23:59:59.000Z

    This paper describes the modeling work by Makai Ocean Engineering, Inc. to simulate the biochemical effects of of the nutrient-enhanced seawater plumes that are discharged by one or several 100 megawatt OTEC plants. The modeling is needed to properly design OTEC plants that can operate sustainably with acceptably low biological impact. In order to quantify the effect of discharge configuration and phytoplankton response, Makai Ocean Engineering implemented a biological and physical model for the waters surrounding O`ahu, Hawai`i, using the EPA-approved Environmental Fluid Dynamics Code (EFDC). Each EFDC grid cell was approximately 1 square kilometer by 20 meters deep, and used a time step of three hours. The biological model was set up to simulate the biochemical response for three classes of organisms: Picoplankton (< 2 um) such as prochlorococccus, nanoplankton (2-20 um), and microplankton (> 20 um) e.g., diatoms. The dynamic biological phytoplankton model was calibrated using chemical and biological data collected for the Hawaii Ocean Time Series (HOTS) project. Peer review of the biological modeling was performed. The physical oceanography model uses boundary conditions from a surrounding Hawai'i Regional Ocean Model, (ROM) operated by the University of Hawai`i and the National Atmospheric and Oceanic Administration. The ROM provided tides, basin scale circulation, mesoscale variability, and atmospheric forcing into the edges of the EFDC computational domain. This model is the most accurate and sophisticated Hawai'ian Regional Ocean Model presently available, assimilating real-time oceanographic observations, as well as model calibration based upon temperature, current and salinity data collected during 2010 near the simulated OTEC site. The ROM program manager peer-reviewed Makai's implementation of the ROM output into our EFDC model. The supporting oceanographic data was collected for a Naval Facilities Engineering Command / Makai project. Results: The model was run for a 100 MW OTEC Plant consisting of four separate ducts, discharging a total combined flow rate of 420 m3/s of warm water and 320 m3/s of cold water in a mixed discharge at 70 meters deep. Each duct was assumed to have a discharge port diameter of 10.5m producing a downward discharge velocity of about 2.18 m/s. The natural system, as measured in the HOTS program, has an average concentration of 10-15 mgC/m3. To calibrate the biological model, we first ran the model with no OTEC plant and varied biological parameters until the simulated data was a good match to the HOTS observations. This modeling showed that phytoplankton concentration were patchy and highly dynamic. The patchiness was a good match with the data variability observed within the HOTS data sets. We then ran the model with simulated OTEC intake and discharge flows and associated nutrients. Directly under the OTEC plant, the near-field plume has an average terminal depth of 172 meters, with a volumetric dilution of 13:1. The average terminal plume temperature was 19.8oC. Nitrate concentrations are 1 to 2 umol/kg above ambient. The advecting plume then further dilutes to less than 1 umol/kg above ambient within a few kilometers downstream, while remaining at depth. Because this terminal near-field plume is well below the 1% light limited depths (~120m), no immediate biological utilization of the nutrients occurs. As the nitrate is advected and dispersed downstream, a fraction of the deep ocean nutrients (< 0.5 umol/kg perturbation) mix upward where they are utilized by the ambient phytoplankton population. This occurs approximately twenty-five kilometers downstream from the plant at 110 - 70 meters depth. For pico-phytoplankton, modeling results indicate that this nutrient perturbation causes a phytoplankton perturbation of approximately 1 mgC/m3 (~10% of average ambient concentrations) that covers an area 10x5 km in size at the 70 to 90m depth. Thus, the perturbations are well within the natural variability of the system, generally corresponding to a 10 to 15% increase above the a

  3. Bentonite alteration due to thermal-hydro-chemical processes during the early thermal period in a nuclear waste repository

    SciTech Connect (OSTI)

    Xu, T.; Senger, R.; Finsterle, S.

    2011-02-01T23:59:59.000Z

    After closure of an underground nuclear waste repository, the decay of radionuclides will raise temperature in the repository, and the bentonite buffer will resaturate by water inflow from the surrounding host rock. The perturbations from these thermal and hydrological processes are expected to dissipate within hundreds to a few thousand years. Here, we investigate coupled thermal-hydro-chemical processes and their effects on the short-term performance of a potential nuclear waste repository located in a clay formation. Using a simplified geometric configuration and abstracted hydraulic parameters of the clayey formation, we examine geochemical processes, coupled with thermo-hydrologic phenomena, and potential changes in porosity near the waste container during the early thermal period. The developed models were used for evaluating the mineral alterations and potential changes in porosity of the buffer, which can affect the repository performance. The results indicate that mineral alteration and associated changes in porosity induced by early thermal and hydrological processes are relatively small and are expected to not significantly affect flow and transport properties. Chlorite precipitation was obtained in all simulation cases. A maximum of one percent volume fraction of chlorite could be formed, whose process may reduce swelling and sorption capacity of bentonite clay, affecting the performance of the repository. llitisation process was not obtained from the present simulations.

  4. Reconstruction of Sedimentary Rock Based on Mechanical Properties

    E-Print Network [OSTI]

    Jin, Guodong; Patzek, Tad W.; Silin, Dmitry B.

    2008-01-01T23:59:59.000Z

    the veri?cation of rock mechanical properties. The dynamicis white. IV. ROCK MECHANICAL PROPERTIES FIG. 9: Cementationextracting meaningful rock transport properties from these

  5. Iron and Steel Phosphate Rock

    E-Print Network [OSTI]

    Torgersen, Christian

    Kyanite Lead Lime Lithium Magnesium Manganese Mercury Mica Molybdenum Nickel Nitrogen Peat Perlite Graphite Peat Sulfur Beryllium Gypsum Perlite Talc Bismuth Hafnium Phosphate Rock Tantalum Boron Helium information on the USGS--the Federal source for science about the Earth, its natural and living resources

  6. Natural thermal strains close to surface of rock slopes

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    'Environnement Industriel et des Risques (INERIS), Ecole des Mines de Nancy, Nancy, France. Present address: ANTEA, 1 rue du, Nancy-Université, Parc de Saurupt, CS 14234, F-54042 Nancy, France ** Institut National de l parc de Brabois, F-54500 Vandoeuvre, France Corresponding author: V. Merrien-Soukatchoff - Phone: (+33

  7. The Thermal Conductivity of Rocks and Its Dependence Upon Temperature...

    Open Energy Info (EERE)

    unavailable. Authors F. Birch and H. Clark Published Journal American Journal of Science, 1940 DOI Not Provided Check for DOI availability: http:crossref.org Online...

  8. Lichen: the challenge for rock art conservation

    E-Print Network [OSTI]

    Dandridge, Debra Elaine

    2007-04-25T23:59:59.000Z

    This study investigates the effects that lichens have on rock surfaces in which ancient rock art (petroglyphs and pictographs) may be found. The study area includes four sites in the United States: one quartzite site in southwest Minnesota, two...

  9. ANNUAL FISH PASSAGE REPORT ROCK ISLAND DAM

    E-Print Network [OSTI]

    ANNUAL FISH PASSAGE REPORT ROCK ISLAND DAM COLUMBIA RIVER, WASHINGTON, 1959 :y .iiJA/i-3ri ^' WUUUi. ANNUAL FISH PASSAGE REPORT - ROCK ISLAND DAM COLUMBIA RIVER, WASHINGTON, 1959 by Paul D. Zimmer, Clifton and observations 10 Summary 13 #12;#12;ANNUAL FISH PASSAGE REPORT - ROCK ISLAND DAM COLUMBIA RIVER, WASHINGTON

  10. ANNUAL FISH PASSAGE REPORT ROCK ISLAND DAM

    E-Print Network [OSTI]

    42) ANNUAL FISH PASSAGE REPORT ROCK ISLAND DAM COLUMBIA RIVER, WASHINGTON 1961 Marine Biological. McKeman, Director ANNUAL FISH PASSAGE REPORT - ROCK ISLAND DAM COLUMBIA RIVER, WASHINGTON, 1961--Fisheries No. 421 Washington, D. C. April 1962 #12;Rock Island Dam, Columbia River, Washington ii #12;CONTENTS

  11. Annual Fish Passage Report -Rock Island Dam

    E-Print Network [OSTI]

    Annual Fish Passage Report - Rock Island Dam Columbia River, Washington, 1965 By Paul D. Zimmer L. McKeman, Director Annual Fish Passage Report - Rock Island Dam Columbia River, Washington, 1965;#12;Annual Fish Passage Report - Rock Island Dam Columbia River, Washington, 1965 By PAUL D. ZIMMER, Fishery

  12. Introduction 1.1 Why study rocks?

    E-Print Network [OSTI]

    Lee, Cin-Ty Aeolus

    2 Chapter 1 Introduction 1.1 Why study rocks? I am a petrologist and I study rocks. Petrology and modification of certain types of rocks. On one level, petrology involves the art of identifying and classifying. This is of course the reverse of the historical development of petrology. I have chosen this approach because all

  13. Rock magnetism of remagnetized carbonate rocks: another look MIKE JACKSON* & NICHOLAS L. SWANSON-HYSELL

    E-Print Network [OSTI]

    Swanson-Hysell, Nicholas

    Rock magnetism of remagnetized carbonate rocks: another look MIKE JACKSON* & NICHOLAS L. SWANSON-HYSELL Institute for Rock Magnetism, Winchell School of Earth Sciences, University of Minnesota, Minnesota, US, dominantly in the super- paramagnetic and stable single-domain size range, also give rise to distinctive rock-magnetic

  14. Analysis of rock-fall and rock-fall avalanche seismograms in the French Alps

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    the source rock slope (Figure 1), the falling mass strikes the talus slope and breaks up and/or bounces1 Analysis of rock-fall and rock-fall avalanche seismograms in the French Alps J. Deparis, D reviews seismograms from 10 rock-fall events recorded between 1992 and 2001 by the permanent seismological

  15. 2.20 Properties of Rocks and Minerals -Magnetic Properties of Rocks and Minerals

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    2.20 Properties of Rocks and Minerals - Magnetic Properties of Rocks and Minerals R. J. Harrison, R 621 622 623 623 579 #12;580 Magnetic Properties of Rocks and Minerals 2.20.5.3 2.20.5.4 2, and are present in all types of rocks, sediments, and soils. These minerals retain a memory of the geomagnetic

  16. 37The Oldest Lunar Rocks Apollo astronauts recovered over 840 pounds of lunar rocks, and during

    E-Print Network [OSTI]

    37The Oldest Lunar Rocks Apollo astronauts recovered over 840 pounds of lunar rocks, and during applied to the different rock samples. Location Mission Rock Type Age (Myr) Mare Tranquillitatis Apollo-11 Basalt 3,500 Oceanus Procellarum Apollo-12 Basalt 3,200 Fra Mauro Formation Apollo-14 Basalt 4,150 Apollo

  17. Systems analysis of thermal storage

    SciTech Connect (OSTI)

    Copeland, R.J.

    1981-08-01T23:59:59.000Z

    During FY 1981, analyses were conducted on thermal storage concepts for solar thermal applications. These studies include estimates of both the obtainable costs of thermal storage concepts and their worth to a user (i.e., value). Based on obtainable costs and performance, an in-depth study evaluated thermal storage concepts for water/steam, organic fluid, and gas/Brayton solar thermal receivers. Promising and nonpromising concepts were identified. A study to evaluate thermal storage concepts for a liquid metal receiver was initiated. The value of thermal storage in a solar thermal industrial process heat application was analyzed. Several advanced concepts are being studied, including ground-mounted thermal storage for parabolic dishes with Stirling engines.

  18. A laboratory investigation of thermally induced pore pressures in the Callovo-Oxfordian Claystone

    E-Print Network [OSTI]

    Mohajerani, Mehrdokht; Sulem, Jean; Monfared, Mohammad; Tang, Anh-Minh; Gatmiri, Behrouz

    2013-01-01T23:59:59.000Z

    In the framework of research into radioactive waste disposal, it was decided to investigate the thermally induce pore pressure occurring in the Callovo-Oxfordian claystone, a possible host rock in which the ANDRA underground laboratory of Bure (East of France) has been excavated. Thermal pore pressures appear in low permeability soils and rocks because the thermal expansion coefficient of water is significantly higher than that of the solid grains (Campanella and Mitchell; 1968 [1], Ghabezloo and Sulem; 2009 [2]). This phenomenon has clearly been observed in various in-situ heating tests conducted in Opalinus claystone in the Mont-Terri Underground Research Laboratory (URL) in Switzerland (HE-D test) and in Callovo-Oxfordian (COx) claystone in the Bure URL in France (TER test, Wileveau and Su; 2007 [3]) The processes of coring, transportation, storage and specimen trimming induce some desaturation in the sample. Due to the very low permeability (10-20 m2) of the COx claystone, a long period of time is necessa...

  19. Experimental Control of Transport and Current Reversals in a Deterministic Optical Rocking Ratchet

    E-Print Network [OSTI]

    Alejandro V. Arzola; Karen Volke-Sepúlveda; José L. Mateos

    2011-04-27T23:59:59.000Z

    We present an experimental demonstration of a deterministic optical rocking ratchet. A periodic and asymmetric light pattern is created to interact with dielectric microparticles in water, giving rise to a ratchet potential. The sample is moved with respect to the pattern with an unbiased time-periodic rocking function, which tilts the potential in alternating opposite directions. We obtain a current of particles whose direction can be controlled in real time and show that particles of different sizes may experience opposite currents. Moreover, we observed current reversals as a function of the magnitude and period of the rocking force.

  20. Development of hot dry rock geothermal resources; technical and economic issues

    SciTech Connect (OSTI)

    Tester, J.W.

    1980-01-01T23:59:59.000Z

    Technical and economic issues related to the commercial feasibility of hot dry rock geothermal energy for producing electricity and heat are discussed. Topics covered include resource characteristics, reservoir thermal capacity and lifetime, drilling and surface plant costs, financial risk and anticipated rate of return. The current status of research and deveopment efforts in the US are also summarized.

  1. SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES

    SciTech Connect (OSTI)

    Gary Mavko

    2004-08-01T23:59:59.000Z

    As part of our study on ''Relationships between seismic properties and rock microstructure'', we have continued our work on analyzing well logs and microstructural constraints on seismic signatures. We report results of three studies in this report. The first one deals with fractures and faults that provide the primary control on the underground fluid flow through low permeability massive carbonate rocks. Fault cores often represent lower transmissibility whereas the surrounding damaged rocks and main slip surfaces are high transmissibility elements. We determined the physical properties of fault rocks collected in and around the fault cores of large normal faults in central Italy. After studying the P- and S-wave velocity variation during cycles of confining pressure, we conclude that a rigid pore frame characterizes the fault gouge whereas the fractured limestone comprises pores with a larger aspect ratio. The second study was to characterize the seismic properties of brine as its temperature decreases from 25 C to -21 C. The purpose was to understand how the transmitted wave changes with the onset of freezing. The main practical reason for this experiment was to use partially frozen brine as an analogue for a mixture of methane hydrate and water present in the pore space of a gas hydrate reservoir. In the third study we analyzed variations in dynamic moduli in various carbonate reservoirs. The investigations include log and laboratory data from velocity, porosity, permeability, and attenuation measurements.

  2. A Modeling Study Evaluating the Thermal-Hydrological Conditions In and Near Waste Emplacement Tunnels At Yucca Mountain

    SciTech Connect (OSTI)

    J.T. Birkholzer; N. Halecky; S.W> Webb; P.F. Peterson; G.S. Bodvarsson

    2006-10-11T23:59:59.000Z

    In heated tunnels such as those designated for emplacement of radioactive waste at the proposed geologic repository at Yucca Mountain, temperature gradients cause natural convection processes that may significantly influence the moisture conditions in the tunnels and in the surrounding fractured rock. Large-scale convection cells in the heated tunnels would provide an effective mechanism for turbulent mixing and axial transport of vapor generated from evaporation of pore water in the nearby formation. As a result, vapor would be transported from the elevated-temperature sections of the tunnels into cool end sections (where no waste is emplaced), would condense there, and subsequently drain into underlying rock units. To study these processes, we have developed a new simulation method that couples existing tools for simulating thermal-hydrological (TH) conditions in the fractured formation with a module that approximates turbulent natural convection in heated emplacement drifts. The new method simultaneously handles (1) the flow and energy transport processes in the fractured rock, (2) the flow and energy transport processes in the cavity, and (3) the heat and mass exchange at the rock-cavity interface. An application is presented studying the future TH conditions within and near a representative waste emplacement tunnel at Yucca Mountain. Particular focus is on the potential for condensation along the emplacement section, a possible result of heat output differences between individual waste packages.

  3. Solar Thermal Conversion

    SciTech Connect (OSTI)

    Kreith, F.; Meyer, R. T.

    1982-11-01T23:59:59.000Z

    The thermal conversion process of solar energy is based on well-known phenomena of heat transfer (Kreith 1976). In all thermal conversion processes, solar radiation is absorbed at the surface of a receiver, which contains or is in contact with flow passages through which a working fluid passes. As the receiver heats up, heat is transferred to the working fluid which may be air, water, oil, or a molten salt. The upper temperature that can be achieved in solar thermal conversion depends on the insolation, the degree to which the sunlight is concentrated, and the measures taken to reduce heat losses from the working fluid.

  4. Experimental evidence for interaction of water vapor and platinum crucibles at high temperatures : Implications for volatiles

    E-Print Network [OSTI]

    Cartigny, Pierre

    The extraction of water from igneous rocks and minerals is classically achieved by induction heating or foils, to extract water from rocks or minerals should be avoided. The interaction high- lighted : Implications for volatiles from igneous rocks and minerals Matthieu Clog , Pierre Cartigny, Cyril Aubaud

  5. Thermal Stabilization Blend Plan

    SciTech Connect (OSTI)

    RISENMAY, H.R.

    2000-05-02T23:59:59.000Z

    This Blend Plan documents the feed material items that are stored in 2736-2 vaults, the 2736-ZB 638 cage, the 192C vault, and the 225 vault that will be processed through the thermal stabilization furnaces. The purpose of thermal stabilization is to heat the material to 1000 degrees Celsius to drive off all water and leave the plutonium and/or uranium as oxides. The stabilized material will be sampled to determine the Loss On Ignition (LOI) or percent water. The stabilized material must meet water content or LOI of less than 0.5% to be acceptable for storage under DOE-STD-3013-99 specifications. Out of specification material will be recycled through the furnaces until the water or LOI limits are met.

  6. Studies of the frictional heating of polycrystalline diamond compact drag tools during rock cutting

    SciTech Connect (OSTI)

    Ortega, A.; Glowka, D.A.

    1982-06-01T23:59:59.000Z

    A numerical-analytical model is developed to analyze temperatures in polycrystalline diamond compact (PDC) drag tools subject to localized frictional heating at a worn flat area and convective cooling at exposed lateral surfaces. Experimental measurements of convective heat transfer coefficients of PDC cutters in a uniform crossflow are presented and used in the model to predict temperatures under typical drilling conditions with fluid flow. The analysis compares favorably with measurements of frictional temperatures in controlled cutting tests on Tennessee marble. It is found that average temperatures at the wearflat contact zone vary directly with frictional force per unit area and are proportional to the one-half power of the cutting speed at the velocities investigated. Temperatures are found to be much more sensitive to decreases in the dynamic friction by lubrication than to increases in convective cooling rates beyond currently achievable levels with water or drilling fluids. It is shown that use of weighted drilling fluids may actually decrease cooling rates compared to those achieved with pure water. It is doubtful that tool temperatures can be kept below critical levels (750/sup 0/C) if air is employed as the drilling fluid. The degree of tool wear is found to have a major influence on the thermal response of the friction contact zone, so that for equal heating per contact area, a worn tool will run much hotter than a sharp tool. It is concluded that tool temperatures may be kept below critical levels with conventional water or mud cooling as long as the fluid provides good cutter-rock lubrication.

  7. Optimized Structures for Low-Profile Phase Change Thermal Spreaders

    E-Print Network [OSTI]

    Sharratt, Stephen A.

    2012-01-01T23:59:59.000Z

    reservoir Heater chip h water Figure 5.5: Numerical model to account for thermal spreading for accurate characterization

  8. Big Bang Day : Physics Rocks

    ScienceCinema (OSTI)

    None

    2011-04-25T23:59:59.000Z

    Is particle physics the new rock 'n' roll? The fundamental questions about the nature of the universe that particle physics hopes to answer have attracted the attention of some very high profile and unusual fans. Alan Alda, Ben Miller, Eddie Izzard, Dara O'Briain and John Barrowman all have interests in this branch of physics. Brian Cox - CERN physicist, and former member of 90's band D:Ream, tracks down some very well known celebrity enthusiasts and takes a light-hearted look at why this subject can appeal to all of us.

  9. Measuring Thermal Transport in Extreme Environments: Thermal Conductivity

    E-Print Network [OSTI]

    Braun, Paul

    Chen California Institute of Technology Jackie Li University of Michigan supported by CarnegieMeasuring Thermal Transport in Extreme Environments: Thermal Conductivity of Water Ice VII to 20 GPa David G. Cahill, Wen-Pin Hsieh, Dallas Trinkle, University of Illinois at Urbana-Champaign Bin

  10. Environmental assessment of remedial action at the slick rock Uranium Mill Tailings sites Slick Rock, Colorado

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The Uranium Mill Tailings Radiation Control Act of 1978 (42 USC {section} 7901 et seq.), hereafter referred to as the UMTRCA, authorized the U.S. Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the sites and on vicinity properties (VPs) associated with the sites. Contaminated materials cover an estimated 55 acres of the Union Carbide (UC) processing site and 12 ac of the North Continent (NC) processing site. The total estimated volume of contaminated materials is approximately 61 8,300 cubic yards. In addition to the contamination in the two processing site areas, four VPs were found to contain contamination. As a result of the tailings being exposed to the environment, contamination associated with the UC and NC sites has leached into shallow ground water. Surface water has not been affected. The closest residence is approximately 0.3 air mi from either site. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the sites on land administered by the Bureau of Land Management (BLM). Remediation would be performed by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. All solid contaminated materials would be buried under 5 feet (ft) of rock and soil materials. The proposed disposal site area is currently used by ranchers for cattle grazing over a 7-month period. The closest residence to the proposed disposal site is 2 air mi. An estimated 44 ac of land would be permanently transferred from the BLM to the DOE and restricted from future use.

  11. Chemical, multi-isotopic (Li-B-Sr-U-H-O) and thermal characterization of Triassic formation waters from the Paris Basin

    E-Print Network [OSTI]

    Boyer, Edmond

    of around 45 to 50°C. The study of uranium activity ratios for these Triassic formation waters allows us with water essentially resulting from a seawater-derived brine endmember diluted by meteoric waters. The data, uranium isotopes, oxygen isotopes, hydrogen isotopes, geothermometry, Trias, Paris Basin 1 hal-00563924

  12. Laboratory characterization of rock joints

    SciTech Connect (OSTI)

    Hsiung, S.M.; Kana, D.D.; Ahola, M.P.; Chowdhury, A.H.; Ghosh, A. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses

    1994-05-01T23:59:59.000Z

    A laboratory characterization of the Apache Leap tuff joints under cyclic pseudostatic and dynamic loads has been undertaken to obtain a better understanding of dynamic joint shear behavior and to generate a complete data set that can be used for validation of existing rock-joint models. Study has indicated that available methods for determining joint roughness coefficient (JRC) significantly underestimate the roughness coefficient of the Apache Leap tuff joints, that will lead to an underestimation of the joint shear strength. The results of the direct shear tests have indicated that both under cyclic pseudostatic and dynamic loadings the joint resistance upon reverse shearing is smaller than that of forward shearing and the joint dilation resulting from forward shearing recovers during reverse shearing. Within the range of variation of shearing velocity used in these tests, the shearing velocity effect on rock-joint behavior seems to be minor, and no noticeable effect on the peak joint shear strength and the joint shear strength for the reverse shearing is observed.

  13. The Landscape of Klamath Basin Rock Art

    E-Print Network [OSTI]

    David, Robert James

    2012-01-01T23:59:59.000Z

    I incorporate results from the XRF and projectile pointRay Fluorescence (hereafter, XRF) to help affiliate rock artstudies or reports in which XRF analysis have been done.

  14. Geothermal potential of West-Central New Mexico from geochemical and thermal gradient data

    SciTech Connect (OSTI)

    Levitte, D.; Gambill, D.T.

    1980-11-01T23:59:59.000Z

    To study the low temperature and Hot Dry Rock (HDR) geothermal potential of west-central New Mexico, 46 water samples were collected and geothermal gradient measurements were made in 29 wells. Water chemistry data indicate that all the samples collected are meteoric waters. High temperatures of samples taken from wells between Gallup and Tohatchi indicate these wells may derive water from a warm aquifer below the depth of the wells. The chemistries of the samples farther south on the Zuni Indian reservation suggest these waters are not circulating below 600 m of the surface. Geothermometry calculations support the conclusion that the waters sampled are meteoric. The geothermometry also indicates that the deep reservoir between Gallup and Tohatchi may be greater than 60/sup 0/C. Thermal gradient data indicate an area of high gradient on the Zuni Indian Reservation with a measured maximum of 67/sup 0/C/km between 181 m and 284 m. This high probably is not hydrologically controlled. The maximum gradients in the study area are 76/sup 0/C/km and 138/sup 0/C/km, measured just east of Springerville, Arizona. These gradients are undoubtedly controlled by circulating water, possibly heated by a magmatic source at depth and circulating back to the surface.

  15. Rock Bands/Rock Brands: Mediation and Musical Performance in Post-liberalization Bangalore

    E-Print Network [OSTI]

    Coventry, Chloe Louise

    2013-01-01T23:59:59.000Z

    as in its modes of fandom, production and dissemination. Inaspects of rock music fandom: America had everything a youngthe beginnings of rock music fandom in India, even while, as

  16. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01T23:59:59.000Z

    batteries. Solar Water Heater Solar water heater is becomingSolar Water Heater heaters, thermal protection for electronics, spacecrafts, and solar

  17. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01T23:59:59.000Z

    solid-fluid heat storage systems in the ground; extractions0 Thermal storage of cold water in ground water aquifers forA. 8 1971, Storage of solar energy in a sandy-gravel ground:

  18. Combining Multicomponent Seismic Attributes, New Rock Physics Models, and In Situ Data to Estimate Gas-Hydrate Concentrations in Deep-Water, Near-Seafloor Strata of the Gulf of Mexico

    SciTech Connect (OSTI)

    Bureau of Economic Geology

    2009-04-30T23:59:59.000Z

    The Bureau of Economic Geology was contracted to develop technologies that demonstrate the value of multicomponent seismic technology for evaluating deep-water hydrates across the Green Canyon area of the Gulf of Mexico. This report describes the methodologies that were developed to create compressional (P-P) and converted-shear (P-SV) images of near-seafloor geology from four-component ocean-bottom-cable (4C OBC) seismic data and the procedures used to integrate P-P and P-SV seismic attributes with borehole calibration data to estimate hydrate concentration across two study areas spanning 16 and 25 lease blocks (or 144 and 225 square miles), respectively. Approximately 200 km of two-dimensional 4C OBC profiles were processed and analyzed over the course of the 3-year project. The strategies we developed to image near-seafloor geology with 4C OBC data are unique, and the paper describing our methodology was peer-recognized with a Best Paper Award by the Society of Exploration Geophysicists in the first year of the project (2006). Among the valuable research findings demonstrated in this report, the demonstrated ability to image deep-water near-seafloor geology with sub-meter resolution using a standard-frequency (10-200 Hz) air gun array on the sea surface and 4C sensors on the seafloor has been the accomplishment that has received the most accolades from professional peers. Our study found that hydrate is pervasive across the two study areas that were analyzed but exists at low concentrations. Although our joint inversion technique showed that in some limited areas, and in some geologic units across those small areas, hydrates occupied up to 40-percent of the sediment pore space, we found that when hydrate was present, hydrate concentration tended to occupy only 10-percent to 20-percent of the pore volume. We also found that hydrate concentration tended to be greater near the base of the hydrate stability zone than it was within the central part of the stability zone.

  19. Manufactured caverns in carbonate rock

    DOE Patents [OSTI]

    Bruce, David A.; Falta, Ronald W.; Castle, James W.; Murdoch, Lawrence C.

    2007-01-02T23:59:59.000Z

    Disclosed is a process for manufacturing underground caverns suitable in one embodiment for storage of large volumes of gaseous or liquid materials. The method is an acid dissolution process that can be utilized to form caverns in carbonate rock formations. The caverns can be used to store large quantities of materials near transportation facilities or destination markets. The caverns can be used for storage of materials including fossil fuels, such as natural gas, refined products formed from fossil fuels, or waste materials, such as hazardous waste materials. The caverns can also be utilized for applications involving human access such as recreation or research. The method can also be utilized to form calcium chloride as a by-product of the cavern formation process.

  20. WAVE GENERATIONS FROM CONFINED EXPLOSIONS IN ROCKS

    E-Print Network [OSTI]

    Stewart, Sarah T.

    WAVE GENERATIONS FROM CONFINED EXPLOSIONS IN ROCKS C. L. Liu and Thomas J. Ahrens Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125 In order to record P- and S-waves on the interactions between incident P- and SV-waves and free-surfaces of rocks. The relations between particle

  1. Rheology of rock glaciers: a preliminary assessment

    SciTech Connect (OSTI)

    Giardino, J.R.; Vitek, J.D.; Hoskins, E.R.

    1985-01-01T23:59:59.000Z

    Movement of rock debris under the influence of gravity, i.e., mass movement, generates a range of phenomena from soil creep, through solifluction,debris flows and rock glaciers to rock falls. Whereas the resultant forms of these phenomena are different, common elements in the mechanics of movement are utilized in the basic interpretation of the processes of formation. Measurements of morphologic variables provide data for deductive analyses of processes that operate too slowly to observe or for processes that generated relict phenomena. External and internal characteristics or rock glacier morphometry and measured rates of motion serve as the basis for the development of a rheological model to explain phenomena classified as rock glaciers. A rock glacier in the Sangre de Cristo Mountains of Southern Colorado, which exhibits a large number of ridges and furrows and lichen bare fronts of lobes, suggests present day movement. A strain-net established on the surface provides evidence of movement characteristics. These data plus morphologic and fabric data suggest two rheological models to explain the flow of this rock glacier. Model one is based upon perfect plastic flow and model two is based upon stratified fluid movement with viscosity changing with depth. These models permit a better understanding of the movement mechanics and demonstrate that catastrophic events and slow creep contribute to the morphologic characteristics of this rock glacier.

  2. Damage and plastic deformation of reservoir rocks

    E-Print Network [OSTI]

    Ze'ev, Reches

    Damage and plastic deformation of reservoir rocks: Part 1. Damage fracturing Seth Busetti, Kyran mechanics, fluid flow in fractured reservoirs, and geomechanics in nonconventional reservoirs. Kyran Mish finite deformation of reservoir rocks. We present an at- tempt to eliminate the main limitations

  3. ANNUAL FISH PASSAGE REPORT ROCK ISLAND DAM

    E-Print Network [OSTI]

    ANNUAL FISH PASSAGE REPORT ROCK ISLAND DAM COLUMBIA RIVER, WASHINGTON 1960 . SPECIAL SCIENTIFIC ISLAND DAM COLUMBIA RIVER, WASHINGTON, 1960 by Paul D. Zimmer and Clifton C. Davidson United States Fish This annual report of fishway operations at Rock Island Dam in 1960 is dedicated to the memory of co

  4. ROCK ELASTIC PROPERTIES: DEPENDENCE ON MICROSTRUCTURE

    E-Print Network [OSTI]

    ROCK ELASTIC PROPERTIES: DEPENDENCE ON MICROSTRUCTURE James G. Berryman and Patricia A. Berge Lawrence Livermore National Laboratory P. O. Box 808 L­202 Livermore, CA 94551­9900 #12; ROCK ELASTIC PROPERTIES: DEPENDENCE ON MICROSTRUCTURE James G. Berryman and Patricia A. Berge Lawrence Livermore National

  5. Solar thermal power system

    DOE Patents [OSTI]

    Bennett, Charles L.

    2010-06-15T23:59:59.000Z

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  6. Sorptivity of rocks and soils of the van Genuchten-Mualem type

    SciTech Connect (OSTI)

    Zimmerman, R.W.; Bodvarsson, G.S. [Lawrence Berkeley Lab., CA (United States)

    1991-06-01T23:59:59.000Z

    One hydrological process that will have great relevance to the performance of the proposed underground radioactive waste repository at Yucca Mountain, Nevada, is that of the absorption of water from a water-filled fracture into the adjacent unsaturated rock formation. The rate at which water is imbibed by a rock depends on the hydrological properties of the rock and on the initial saturation (or initial capillary suction) of the formation. The hydrological properties that affect imbibition are the relative permeability function and the capillary pressure function. These functions are often collectively referred to as the `characteristic functions` of the porous medium. For one-dimensional absorption, it can be shown that, regardless of the details of the characteristic functions, the total amount of water imbibed by the formation, per unit surface area, will be proportional to the square root of the elapsed time. Hence the ability of a rock or soil to imbibe water can be quantified by a parameter known as the sorptivity S, which is defined such that the cumulative volumetric liquid influx per unit area is given by Q = S{radical}t. The paper discusses the simplification of these characteristic functions of porous medium.

  7. Conceptual design and engineering studies of adiabatic compressed air energy storage (CAES) with thermal energy storage

    SciTech Connect (OSTI)

    Hobson, M. J.

    1981-11-01T23:59:59.000Z

    The objective of this study was to perform a conceptual engineering design and evaluation study and to develop a design for an adiabatic CAES system using water-compensated hard rock caverns for compressed air storage. The conceptual plant design was to feature underground containment for thermal energy storage and water-compensated hard rock caverns for high pressure air storage. Other design constraints included the selection of turbomachinery designs that would require little development and would therefore be available for near-term plant construction and demonstration. The design was to be based upon the DOE/EPRI/PEPCO-funded 231 MW/unit conventional CAES plant design prepared for a site in Maryland. This report summarizes the project, its findings, and the recommendations of the study team; presents the development and optimization of the plant heat cycle and the selection and thermal design of the thermal energy storage system; discusses the selection of turbomachinery and estimated plant performance and operational capability; describes the control system concept; and presents the conceptual design of the adiabatic CAES plant, the cost estimates and economic evaluation, and an assessment of technical and economic feasibility. Particular areas in the plant design requiring further development or investigation are discussed. It is concluded that the adiabatic concept appears to be the most attractive candidate for utility application in the near future. It is operationally viable, economically attractive compared with competing concerns, and will require relatively little development before the construction of a plant can be undertaken. It is estimated that a utility could start the design of a demonstration plant in 2 to 3 years if research regarding TES system design is undertaken in a timely manner. (LCL)

  8. Protected Polycrystalline Diamond Compact Bits For Hard Rock Drilling

    SciTech Connect (OSTI)

    Robert Lee Cardenas

    2000-10-31T23:59:59.000Z

    Two bits were designed. One bit was fabricated and tested at Terra-Tek's Drilling Research Laboratory. Fabrication of the second bit was not completed due to complications in fabrication and meeting scheduled test dates at the test facility. A conical bit was tested in a Carthage Marble (compressive strength 14,500 psi) and Sierra White Granite (compressive strength 28,200 psi). During the testing, Hydraulic Horsepower, Bit Weight, Rotation Rate, were varied for the Conical Bit, a Varel Tricone Bit and Varel PDC bit. The Conical Bi did cut rock at a reasonable rate in both rocks. Beneficial effects from the near and through cutter water nozzles were not evident in the marble due to test conditions and were not conclusive in the granite due to test conditions. At atmospheric drilling, the Conical Bit's penetration rate was as good as the standard PDC bit and better than the Tricone Bit. Torque requirements for the Conical Bit were higher than that required for the Standard Bits. Spudding the conical bit into the rock required some care to avoid overloading the nose cutters. The nose design should be evaluated to improve the bit's spudding characteristics.

  9. FRACTURE DETECTION IN CRYSTALLINE ROCK USING ULTRASONIC SHEAR WAVES

    E-Print Network [OSTI]

    Waters, K.H.

    2011-01-01T23:59:59.000Z

    the piezoelectric source plate and the rock surface. With aThe S^j sources were bonded to the rock surface with a fast-^ source plate was epoxied in position on the rock specimen.

  10. Thermal maturity of the Upper Triassic-Middle Jurassic Shemshak Group (Alborz Range, Northern Iran)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Iran) based on organic petrography, geochemistry and basin modelling: implications for source rock1 Thermal maturity of the Upper Triassic-Middle Jurassic Shemshak Group (Alborz Range, Northern Iran. Organic matter (OM) has been investigated using Rock-Eval pyrolysis, elemental analysis

  11. Geochemical relationships of petroleum in Mesozoic reservoirs to carbonate source rocks of Jurassic Smackover Formation, southwestern Alabama

    SciTech Connect (OSTI)

    Claypool, G.E.; Mancini, E.A.

    1989-07-01T23:59:59.000Z

    Algal carbonate mudstones of the Jurassic Smackover Formation are the main source rocks for oil and condensate in Mesozoic reservoir rocks in southwestern Alabama. This interpretation is based on geochemical analyses of oils, condensates, and organic matter in selected samples of shale (Norphlet Formation, Haynesville Formation, Trinity Group, Tuscaloosa Group) and carbonate (Smackover Formation) rocks. Potential and probable oil source rocks are present in the Tuscaloosa Group and Smackover Formation, respectively. Extractable organic matter from Smackover carbonates has molecular and isotopic similarities to Jurassic oil. Although the Jurassic oils and condensates in southwestern Alabama have genetic similarities, they show significant compositional variations due to differences in thermal maturity and organic facies/lithofacies. Organic facies reflect different depositional conditions for source rocks in the various basins. The Mississippi Interior Salt basin was characterized by more continuous marine to hypersaline conditions, whereas the Manila and Conecuh embayments periodically had lower salnity and greater input of clastic debris and terrestrial organic matter. Petroleum and organic matter in Jurassic rocks of southwestern Alabama show a range of thermal transformations. The gas content of hydrocarbons in reservoirs increases with increasing depth and temperature. In some reservoirs where the temperature is above 266/degrees/F(130/degrees/C), gas-condensate is enriched in isotopically heavy sulfur, apparently derived from thermochemical reduction of Jurassic evaporite sulfate. This process also resulted in increase H/sub 2/S and CO in the gas, and depletion of saturated hydrocarbons in the condensate liquids.

  12. Ghabezloo: Micromechanics analysis of thermal expansion and thermal pressurization of a hardened cement paste Micromechanics analysis of thermal expansion and thermal

    E-Print Network [OSTI]

    Boyer, Edmond

    pore fluid is anomalously higher than the one of pure bulk water. The micromechanics model water-to-cement ratios. It permits also to calculate the pore volume thermal expansion coefficient expansion and thermal pressurization of a hardened cement paste, Cement and Concrete Research, DOI 10.1016/j

  13. Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy Jump to: navigation,

  14. Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry Rock

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy Jump to: navigation,Geothermal

  15. Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry Rock

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy Jump to:

  16. Regional Geology: GIS Database for Alternative Host Rocks and...

    Energy Savers [EERE]

    Regional Geology: GIS Database for Alternative Host Rocks and Potential Siting Guidelines Regional Geology: GIS Database for Alternative Host Rocks and Potential Siting Guidelines...

  17. aspo hard rock: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bayesian estimation of rock mass boundary conditions with applications to the AECL underground research laboratory F. Tonon*,1 conditions for rock mass models is...

  18. antarctic rocks colonized: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bayesian estimation of rock mass boundary conditions with applications to the AECL underground research laboratory F. Tonon*,1 conditions for rock mass models is...

  19. algonquin class rocks: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bayesian estimation of rock mass boundary conditions with applications to the AECL underground research laboratory F. Tonon*,1 conditions for rock mass models is...

  20. acidic crystalline rock: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bayesian estimation of rock mass boundary conditions with applications to the AECL underground research laboratory F. Tonon*,1 conditions for rock mass models is...

  1. aphanitic melt rocks: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bayesian estimation of rock mass boundary conditions with applications to the AECL underground research laboratory F. Tonon*,1 conditions for rock mass models is...

  2. aespoe hard rock: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bayesian estimation of rock mass boundary conditions with applications to the AECL underground research laboratory F. Tonon*,1 conditions for rock mass models is...

  3. Stress and fault rock controls on fault zone hydrology, Coso...

    Open Energy Info (EERE)

    rock controls on fault zone hydrology, Coso geothermal field, CA Abstract In crystalline rock of the Coso Geothermal Field, CA, fractures are the primary source of permeability....

  4. EIS-0471: Areva Eagle Rock Enrichment Facility in Bonneville...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Areva Eagle Rock Enrichment Facility in Bonneville County, ID EIS-0471: Areva Eagle Rock Enrichment Facility in Bonneville County, ID May 20, 2011 EIS-0471: Final Environmental...

  5. Hot Dry Rock energy annual report fiscal year 1992

    SciTech Connect (OSTI)

    Winchester, W.W. [ed.; Duchane, D.V.

    1993-04-01T23:59:59.000Z

    Hot Dry Rock technology took a giant leap forward this year as the long-awaited long-term flow test (LTFT) of the Phase 2 HDR reservoir at Fenton Hill got underway. Energy was produced on a twenty-four hour a day basis for a continuous period of nearly four months of steady-state testing. Hot water was brought to the surface at 90--100 gallons per minute (gpm) with temperatures of 180{degrees}C (356{degrees}F) and higher. During that time, the HDR plant achieved an on-line record of 98.8%. Surface temperature measurements and temperature logging deep within the wellbore confirmed that no decline in the average temperature of fluid produced from the reservoir occurred. Tracer experiments indicated that flow paths within the reservoir were undergoing continuous change during the test. Remarkably, it appeared that longer flow paths carried a larger proportion of the flow as the test proceeded, while more direct fluid pathways disappeared or carried a significantly reduced flow. In sum, access to hot rock appeared to improve over the span of the test. Water losses during the test averaged 10--12% and showed a slow long-term decline. These results confirmed what had been previously discovered in static pressurization testing: Water consumption declines significantly during extended operation of an HDR reservoir. In combination with a recent demonstration by the Japanese that water losses can be greatly reduced by the proper placement of multiple production wells, the recent results at Fenton Hill have effectively demonstrated that excessive water consumption should not be an issue for a properly engineered HDR facility at a well chosen site.

  6. Hot Dry Rock energy annual report fiscal year 1992

    SciTech Connect (OSTI)

    Duchane, D.V.; Winchester, W.W.

    1993-04-01T23:59:59.000Z

    Hot Dry Rock technology took a giant leap forward this year as the long-awaited long-term flow test (LTFT) of the Phase II HDR reservoir at Fenton Hill got underway. Energy was produced on a twenty-four hour a day basis for a continuous period of nearly four months of steady-state testing. Hot water was brought to the surface at 90-100 gallons per minute (gpm) with temperatures of 180[degrees]C (356[degrees]F) and higher. During that time, the HDR plant achieved an on-line record of 98.8%. Surface temperature measurements and temperature logging deep within the wellbore confirmed that no decline in the average temperature of fluid produced from the reservoir occurred. Tracer experiments indicated that flow paths within the reservoir were undergoing continuous change during the test. Remarkably, it appeared that longer flow paths carried a larger proportion of the flow as the test proceeded, while more direct fluid pathways disappeared or carried a significantly reduced flow. In sum, access to hot rock appeared to improve over the span of the test. Water losses during the test averaged 10-12% and showed a slow long-term decline. These results confirmed what had been previously discovered in static pressurization testing: Water consumption declines significantly during extended operation of an HDR reservoir. In combination with a recent demonstration by the Japanese that water losses can be greatly reduced by the proper placement of multiple production wells, the recent results at Fenton Hill have effectively demonstrated that excessive water consumption should not be an issue for a properly engineered HDR facility at a well chosen site.

  7. Effects of Phosphate Rock on Sequential Chemical Extraction of Lead in Contaminated Soils

    E-Print Network [OSTI]

    Ma, Lena

    the organic or the residual fraction and water-solubleand the exchangeable-Mn oxide, and organic fractions (collectively the non- residual fraction) to the residual fraction, thus fractions to the residual fraction suggests that phos- phate rock has potential for in-situ immobilization

  8. Rock bed behavior and reverse thermosiphon effects

    SciTech Connect (OSTI)

    Perry, J.E.

    1980-01-01T23:59:59.000Z

    Two rock beds, in the Mark Jones and Doug Balcomb houses, have been instrumented, monitored, and analyzed. Observed experimental operation has been compared with, or explained by, theoretical predictions. The latter are based on one-dimensional finite-difference computer calculation of rock bed charging and discharging, with fixed or variable inputs of air flow rate and temperature. Both rock beds exhibit appreciable loss of stored heat caused by lack of backdraft dampers or incomplete closure of such dampers. These topics are discussed, and some improvements that might be made in future installations are noted.

  9. Mechanical defradation of Emplacement Drifts at Yucca Mountain- A Modeling Case Study. Part I: Nonlithophysal Rock

    SciTech Connect (OSTI)

    M. Lin; D. Kicker; B. Damjanac; M. Board; M. Karakouzian

    2006-07-05T23:59:59.000Z

    This paper outlines rock mechanics investigations associated with mechanical degradation of planned emplacement drifts at Yucca Mountain, which is the designated site for the proposed U.S. high-level nuclear waste repository. The factors leading to drift degradation include stresses from the overburden, stresses induced by the heat released from the emplaced waste, stresses due to seismically related ground motions, and time-dependent strength degradation. The welded tuff emplacement horizon consists of two groups of rock with distinct engineering properties: nonlithophysal units and lithophysal units, based on the relative proportion of lithophysal cavities. The term 'lithophysal' refers to hollow, bubble like cavities in volcanic rock that are surrounded by a porous rim formed by fine-grained alkali feldspar, quartz, and other minerals. Lithophysae are typically a few centimeters to a few decimeters in diameter. Part I of the paper concentrates on the generally hard, strong, and fractured nonlithophysal rock. The degradation behavior of the tunnels in the nonlithophysal rock is controlled by the occurrence of keyblocks. A statistically equivalent fracture model was generated based on extensive underground fracture mapping data from the Exploratory Studies Facility at Yucca Mountain. Three-dimensional distinct block analyses, generated with the fracture patterns randomly selected from the fracture model, were developed with the consideration of in situ, thermal, and seismic loads. In this study, field data, laboratory data, and numerical analyses are well integrated to provide a solution for the unique problem of modeling drift degradation.

  10. Displacement of oil from reservoir rock using high molecular weight polymer solutions

    E-Print Network [OSTI]

    Barzi, Houshang

    1972-01-01T23:59:59.000Z

    underground reservoirs by the injection of water containing chemicals to increase its viscosity. Some laboratory research and field trials have been conducted to evaluate the effectiveness of viscous water in dis- placing oil from reservoir rock.... ia. Twenty-eight experiments were conducted. In twenty-two experiments oil was displaced from un- consolidated sand packs using polymers with viscosity that ranged from 160 cp to 3 cp. In five experiments crude oil was displaced. from...

  11. Proceedings of the Twenty-First Water Reactor Safety Information Meeting: Volume 1, Plenary session; Advanced reactor research; advanced control system technology; advanced instrumentation and control hardware; human factors research; probabilistic risk assessment topics; thermal hydraulics; thermal hydraulic research for advanced passive LWRs

    SciTech Connect (OSTI)

    Monteleone, S. [Brookhaven National Lab., Upton, NY (United States)] [comp.

    1994-04-01T23:59:59.000Z

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors.

  12. Review of the thermal stability and cation exchange properties of the zeolite minerals clinoptilolite, mordenite, and analcime; applications to radioactive waste isolation in silicic tuff

    SciTech Connect (OSTI)

    Smyth, J.R.; Caporuscio, F.A.

    1981-06-01T23:59:59.000Z

    Silicic tuffs of the southern Great Basin and basalts of the Columbia River Plateau are under investigation as potential host rocks for high- and intermediate-level radioactive wastes. Nonwelded and partially welded tuffs may contain major amounts (> 50%) of the zeolite minerals clinoptilolite, mordenite, and analcime. Densely welded tuffs and some basalt flows may contain clinoptilolite as fracture filling that limits the permeability of these rocks. The cation exchange properties of these zeolite minerals allow them to pose a formidable natural barrier to the migration of cationic species of various radionuclides in aqueous solutions. However, these minerals are unstable at elevated temperatures and at low water-vapor pressures and may break down either by reversible dehydration or by irreversible mineralogical reactions. All the breakdown reactions occurring at increased temperature involve a net volume reduction and evolution of fluids. Thus, they may provide a pathway (shrinkage fractures) and a driving force (fluid pressure) for release of radionuclides to the biosphere. These reactions may be avoided by keeping zeolite-bearing horizons saturated with water and below about 85{sup 0}C. This may restrict allowable gross thermal loadings in waste repositories in volcanic rocks.

  13. Rock Slopes from Mechanics to Decision Making

    E-Print Network [OSTI]

    Einstein, Herbert H.

    Rock slope instabilities are discussed in the context of decision making for risk assessment and management. Hence, the state of the slope and possible failure mechanism need to be defined first. This is done with geometrical ...

  14. First Rocks from Outside the Solar System

    SciTech Connect (OSTI)

    Westphal, Andrew

    2014-10-17T23:59:59.000Z

    Andrew Westphal presents his findings in examining the first rocks from outside the solar system at our '8 Big Ideas' Science at the Theater event on October 8th, 2014, in Oakland, California.

  15. Determination of mechanical properties of reservoir rock

    E-Print Network [OSTI]

    Barnett, Ashley

    1993-01-01T23:59:59.000Z

    Apparatus, experimental procedure, and methodology have been developed to determine the mechanical response of reservoir rock. The apparatus is capable of subjecting cylindrical core specimens to triaxial stress states and temperatures...

  16. CO/sub 2/ foam flooding performance vs. rock wettability

    SciTech Connect (OSTI)

    Lescure, B.M.; Claridge, E.L.

    1986-01-01T23:59:59.000Z

    CO/sub 2/ flooding projects have shown large potential for oil recovery, but in many cases the volumetric sweep efficiency is greatly limited by gravity tonguing and/or viscous fingering. To reduce these effects foam could be used as an alternative to WAG CO/sub 2/ injection. Experiments on the CO/sub 2/ foam process were conducted in a 1/4 5-spot reservoir model in order to investigate the effect of rock wetting state and total CO/sub 2/ slug size on secondary and tertiary extra-oil recovery. Laboratory model results show that the process is more successful in an oil-wet medium than in a water-wet medium due to larger surfactant adsorption in the water-wet medium. Also, requirements for optimal CO/sub 2/ slug size are smaller than in the WAG process, with larger extra oil recovery for both secondary and tertiary floods.

  17. Rock Island Dam Smolt Monitoring; 1996 Annual Report.

    SciTech Connect (OSTI)

    McDonald, Robert (Chelan County Public Utility District No. 1, Power Operations Department, Wenatchee, WA)

    1996-10-01T23:59:59.000Z

    Downstream migrating salmon and steelhead (Oncoryhnchus spp.) smolts were monitored at the Rock Island Dam bypass trap from April 1--August 31, 1996. This was the twelfth consecutive year that the bypass trap was monitored. Data collected included: (1) number of fish collected by species, (2) number of fin clipped and/or Passive Integrated Transponder (PIT) tagged fish caught by species, (3) total number of fish showing signs of gas bubble trauma (GBT), (4) percent of descaled fish, and (5) daily average river flow, powerhouse {number_sign}1 flow, powerhouse {number_sign}2 flow and daily average spill. These data were transmitted to the Fish Passage Center (FPC), which manages the Smolt Monitoring Program throughout the Columbia River Basin. The Smolt Monitoring Program is used to manage the water budget, releasing upstream reservoir water storage allocated to supplement river flows during the downstream migration of juvenile salmonids.

  18. Stress-induced transverse isotropy in rocks

    SciTech Connect (OSTI)

    Schwartz, L.M.; Murphy, W.F. III [Schlumberger-Doll Research Center, Ridgefield, CT (United States); Berryman, J.G. [Lawrence Livermore National Lab., CA (United States)

    1994-03-28T23:59:59.000Z

    The application of uniaxial pressure can induce elastic anisotropy in otherwise isotropic rock. We consider models based on two very different rock classes, granites and weakly consolidated granular systems. We show that these models share common underlying assumptions, that they lead to similar qualitative behavior, and that both provide a microscopic basis for elliptical anisotropy. In the granular case, we make experimentally verifiable predictions regarding the horizontally propagating modes based on the measured behavior of the vertical modes.

  19. Characterization of rock for constraining reservoir scale tomography at the Geysers geothermal field

    SciTech Connect (OSTI)

    Boitnott, G.N.; Bonner, B.P.

    1994-01-20T23:59:59.000Z

    A suite of laboratory measurements are being conducted on Geysers graywacke recovered from a drilled depth of 2599 meters in NEGU-17. The tests are being conducted to characterize the effect of pressure and fluid saturation on the seismic properties of the graywacke matrix. The measurements indicate that the graywacke is an unusual rock in many respects. Both compressional and shear velocities exhibit relatively little change with pressure. Water saturation causes a slight increase in the compressional velocity, quantitatively consistent with predictions from the Biot-Gassmann equations. Shear velocity decreases with water saturation by an amount greater than that predicted by the Biot-Gassmann equations. This decrease is attributed to chemomechanical weakening caused by the presence of water. Measurements of Q, from torsion experiments on room dry samples at seismic frequencies indicate unusually high Q, (~500). Water saturation decreases the shear modulus by 12 percent, again indicative of chemomechanical weakening. Q, is lower for the water saturated condition, but still relatively high for rock at low stress. Results of ultrasonic pulse propagation experiments on partially saturated samples are typical of low porosity rocks, being characterized by a monotonic decrease in compressional and shear velocity with decrease in saturation. An increase in shear velocity and low frequency shear modulus after vacuum drying indicates the presence of chemo-mechanical weakening resulting from the presence of small amounts of water.

  20. THERMAL CONDUCTIVITY OF HEMP CONCRETES: VARIATION WITH FORMULATION, DENSITY AND

    E-Print Network [OSTI]

    envelope and on the performance of systems. This behaviour is related to hygric and thermal propertiesTHERMAL CONDUCTIVITY OF HEMP CONCRETES: VARIATION WITH FORMULATION, DENSITY AND WATER CONTENT of formulation, density and water content on the thermal conductivity of hemp concretes. The investigations

  1. Rock Mining Operation Effects on Water Quality in the Everglades

    E-Print Network [OSTI]

    Demers, Nora Egan

    Foundation ­ Science Department January 8, 2010 1/22 G. Melodie Naja #12;1/22 Stewart Mining Industries Lake., under construction) 2- Less then 7 miles from STA3/4 and STA2 3- Less then 11 - 14 miles away from al. (1985) Soil and groundwater pollution Virginia Tech - Intensive agricultural land use

  2. Design of tabular excavations in foliated rock: an integrated numerical

    E-Print Network [OSTI]

    to the mineralized zone (development openings), extracting the ore from the surrounding host rock (stopes. The first stage in the design process is the characterization of the rock mass using both in situ of the mining process, requiring that the rock mass stability, both within the orebody and in the rock adjacent

  3. Mixture Theories for Rock Properties James G. Berryman

    E-Print Network [OSTI]

    Mixture Theories for Rock Properties James G. Berryman Lawrence Livermore National Laboratory by Batchelor [3], Hale [41], Hashin [42], Torquato [95], and Willis [110] are also recommended. 1.1. Rocks Are Inhomogeneous Materials A rock is a naturally occurring mixture of minerals. Rocks are normally inhomogeneous

  4. Water and Climate 1. Peter Rhines

    E-Print Network [OSTI]

    , water absorbs great thermal energy when it changes phase: melt, evaporate,, and liberates than energy when it condenses, freezes #12;Water and Climate 1. As a gas, water absorbs great thermal energy when (Fresh Water) Syllabus · 1 The global hydrologic cycle · 2 Energy transport: radiation, circulation ocean

  5. EXERGETIC ANALYSIS OF A STEAM-FLASHING THERMAL STORAGE SYSTEM

    E-Print Network [OSTI]

    Abstract Thermal energy storage is attractive in the design of concentrator solar thermal systems because-scale thermal energy storage via hot compressed liquid water. Such a cycle is potentially interesting becauseEXERGETIC ANALYSIS OF A STEAM-FLASHING THERMAL STORAGE SYSTEM Paul T. O'Brien 1 , and John Pye 2 1

  6. Microscopic mechanism of low thermal conductivity in lead telluride

    SciTech Connect (OSTI)

    Delaire, Olivier A [ORNL; Ma, Jie [ORNL

    2012-01-01T23:59:59.000Z

    Themicroscopic physics behind low-lattice thermal conductivity of single-crystal rock salt lead telluride (PbTe) is investigated. Mode-dependent phonon (normal and umklapp) scattering rates and their impact on thermal conductivity were quantified by first-principles-based anharmonic lattice dynamics calculations that accurately reproduce thermal conductivity in a wide temperature range. The low thermal conductivity of PbTe is attributed to the scattering of longitudinal acoustic phonons by transverse optical phonons with large anharmonicity and small group velocity of the soft transverse acoustic phonons. This results in enhancing the relative contribution of optical phonons, which are usually minor heat carriers in bulk materials.

  7. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites, Slick Rock, Colorado

    SciTech Connect (OSTI)

    NONE

    1995-01-01T23:59:59.000Z

    The Uranium Mill Tailings Radiation Control Act of 1978, hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the processing sites and on vicinity properties (VPs) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the ground water from further degradation. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown and waterborne radioactive tailings materials. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the processing sites on land administered by the US Bureau of Land Management (BLM). Remediation would be performed by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project.

  8. Thermal Processes

    Broader source: Energy.gov [DOE]

    Some thermal processes use the energy in various resources, such as natural gas, coal, or biomass, to release hydrogen, which is part of their molecular structure. In other processes, heat, in...

  9. Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration

    E-Print Network [OSTI]

    Jackson, Philip Robert

    2012-01-01T23:59:59.000Z

    watts of thermal energy from the sun via the water coolingkilowatt-hours of energy from the sun per square mile perthe heat. The thermal energy from the sun is typically used

  10. Plugging Abandoned Water Wells 

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2002-02-28T23:59:59.000Z

    is one of our state?s most precious resources. Groundwater from aquifers (underground layers of porous rock or sand containing water, into which wells can be drilled) supplies over half of the water used in the state. Protecting the quality of this vital... of Licensing and Regulation (TDLR). Abandoned wells are a threat to our water supply An abandoned well is a direct channel from the surface to the aquifer below. Contaminants that enter a well are introduced directly into the aquifer with no opportunity...

  11. Potential petroleum source rock deposition in the middle Cretaceous Wasia Formation, Rub'Al Khali, Saudi Arabia

    SciTech Connect (OSTI)

    Newell, K.D.; Hennington, R.D.

    1983-03-01T23:59:59.000Z

    Stratigraphic correlation and regional geochemical sampling in the Rub'Al Khali (The Empty Quarter) of Saudi Arabia indicate at least two potential petroleum source rock units occur in the middle Cretaceous Wasia Formation. These two sequences, informally named the Safaniya ''source rock'' and the lower Mishrif, are dominated by oil-prone amorphous (Type II) organic matter, in places in excess of 10 weight percent organic carbon. Both units are fine-grained pelagic lime mudstones which were probably deposited in relatively quiet anoxic waters of large intraplatform embayments or basins. The Safaniya ''source rock'' and the lower Mishrif reflect strong marine transgressions on the Arabian craton in Albian to Cenomanian and Cenomanian to Turonian time, respectively. Regressive-phase sedimentary rocks overlying these two transgressive organic-rock phases are generally poor in organic carbon despite being deposited, in part, in similar forereef open-marine depositional settings. The sealevel high-stands associated with the Safaniya ''source rock'' and the lower Mishrif are partly synchronous with two recently described ''oceanic anoxic events'' respectively occurring in late Barremian to late Albian time and late Cenomanian to early Turonian time. Although there is a credible time correlation of these organic-rock units with oceanic anoxic events, their connection to oceanic anoxic events could be strengthened if they could be traced out to the vicinity of the middle Cretaceous continental margin.

  12. Thermal wake/vessel detection technique

    DOE Patents [OSTI]

    Roskovensky, John K. (Albuquerque, NM); Nandy, Prabal (Albuquerque, NM); Post, Brian N (Albuquerque, NM)

    2012-01-10T23:59:59.000Z

    A computer-automated method for detecting a vessel in water based on an image of a portion of Earth includes generating a thermal anomaly mask. The thermal anomaly mask flags each pixel of the image initially deemed to be a wake pixel based on a comparison of a thermal value of each pixel against other thermal values of other pixels localized about each pixel. Contiguous pixels flagged by the thermal anomaly mask are grouped into pixel clusters. A shape of each of the pixel clusters is analyzed to determine whether each of the pixel clusters represents a possible vessel detection event. The possible vessel detection events are represented visually within the image.

  13. Numerical Simulation of Thermal Performance of Floor Radiant Heating System with Enclosed Phase Change Material

    E-Print Network [OSTI]

    Qiu, L.; Wu, X.

    2006-01-01T23:59:59.000Z

    water temperatures. With the method of enthalpy , the PCM thermal storage time is studied under different supply water temperatures, supply water flows, distances between water wipe in the floor construction, floor covers and insulation conditions....

  14. Green Systems Solar Hot Water

    E-Print Network [OSTI]

    Schladow, S. Geoffrey

    Green Systems Solar Hot Water Heating the Building Co-generation: Heat Recovery System: Solar panels not enough Generates heat energy Captures heat from generator and transfers it to water Stores Thermal Panels (Trex enclosure) Hot Water Storage Tank (TS-5; basement) Hot Water Heaters (HW-1

  15. Actualistic and Geochemical Modeling of Reservoir Rock, CO2 and Formation Fluid Interaction, Citronelle Oil Field, Alabama

    SciTech Connect (OSTI)

    Weislogel, Amy

    2014-01-31T23:59:59.000Z

    This report includes description of the Citronelle field study area and the work carried out in the project to characterize the geology and composition of reservoir rock material and to collect an analyze the geochemical composition of produced fluid waters from the Citronelle field. Reservoir rock samples collected from well bore core were made into thin-sections and assessed for textural properties, including pore types and porosity distribution. Compositional framework grain modal data were collected via point-counting, and grain and cement mineralogy was assessed using SEM-EDS. Geochemistry of fluid samples is described and modeled using PHREEQC. Composition of rock and produced fluids were used as inputs for TOUGHREACT reactive transport modeling, which determined the rock-fluid system was in disequilibrium.

  16. Twenty-second water reactor safety information meeting. Volume 2: Severe accident research, thermal hydraulic research for advanced passive LWRs, high-burnup fuel behavior

    SciTech Connect (OSTI)

    Monteleone, S. [comp.

    1995-04-01T23:59:59.000Z

    This three-volume report contains papers presented at the Twenty-Second Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 24-26, 1994. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from Finland, France, Italy, Japan, Russia, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting.

  17. Norm removal from frac water

    SciTech Connect (OSTI)

    Silva, James Manio; Matis, Hope; Kostedt, IV, William Leonard

    2014-11-18T23:59:59.000Z

    A method for treating low barium frac water includes contacting a frac water stream with a radium selective complexing resin to produce a low radium stream, passing the low radium stream through a thermal brine concentrator to produce a concentrated brine; and passing the concentrated brine through a thermal crystallizer to yield road salt.

  18. Oilfield rock bits: Are they a commodity

    SciTech Connect (OSTI)

    Caldwell, R.

    1994-05-01T23:59:59.000Z

    This paper discusses the quality of various types of rock drill bits and evaluates cost of these bits against service and performance to determine if bits should be viewed as a commodity when drilling a production or exploration well. Continuing advancements in materials technology, machining capabilities, hydraulics arrangements, bearing configuration, seal technology and cutter design continue to push the performance curve for oilfield rock bits. However, some very important advancements are patented, proprietary features of individual manufacturers. This paper reviews some of these design and performance features to help determine if they are worth the extra investment based on actual field drilling experience.

  19. Specific energy for laser removal of rocks.

    SciTech Connect (OSTI)

    Xu, Z.; Kornecki, G.; Reed, C. B.; Gahan, B. C.; Parker, R. A.; Batarseh, S.; Graves, R. M.

    2001-08-16T23:59:59.000Z

    Application of advanced high power laser technology into oil and gas well drilling has been attracting significant research interests recently among research institutes, petroleum industries, and universities. Potential laser or laser-aided oil and gas well drilling has many advantages over the conventional rotary drilling, such as high penetration rate, reduction or elimination of tripping, casing, and bit costs, and enhanced well control, perforating and side-tracking capabilities. The energy required to remove a unit volume of rock, namely the specific energy (SE), is a critical rock property data that can be used to determine both the technical and economic feasibility of laser oil and gas well drilling.

  20. In-Situ Test Thermal Response Tests Interpretations

    E-Print Network [OSTI]

    In-Situ Test Thermal Response Tests Interpretations OG&E Ground Source Heat Exchange Study Richard are connected to ground source heat pumps to cool and heat homes. The TRT study is the first part of a larger exchanges heat with the surrounding soil or rock. The double U-tube layout (Figure 2) is connected so

  1. Parameter estimation from flowing fluid temperature logging data in unsaturated fractured rock using multiphase inverse modeling

    SciTech Connect (OSTI)

    Mukhopadhyay, S.; Tsang, Y.; Finsterle, S.

    2009-01-15T23:59:59.000Z

    A simple conceptual model has been recently developed for analyzing pressure and temperature data from flowing fluid temperature logging (FFTL) in unsaturated fractured rock. Using this conceptual model, we developed an analytical solution for FFTL pressure response, and a semianalytical solution for FFTL temperature response. We also proposed a method for estimating fracture permeability from FFTL temperature data. The conceptual model was based on some simplifying assumptions, particularly that a single-phase airflow model was used. In this paper, we develop a more comprehensive numerical model of multiphase flow and heat transfer associated with FFTL. Using this numerical model, we perform a number of forward simulations to determine the parameters that have the strongest influence on the pressure and temperature response from FFTL. We then use the iTOUGH2 optimization code to estimate these most sensitive parameters through inverse modeling and to quantify the uncertainties associated with these estimated parameters. We conclude that FFTL can be utilized to determine permeability, porosity, and thermal conductivity of the fracture rock. Two other parameters, which are not properties of the fractured rock, have strong influence on FFTL response. These are pressure and temperature in the borehole that were at equilibrium with the fractured rock formation at the beginning of FFTL. We illustrate how these parameters can also be estimated from FFTL data.

  2. Thermal well-test method

    DOE Patents [OSTI]

    Tsang, Chin-Fu (Albany, CA); Doughty, Christine A. (Berkeley, CA)

    1985-01-01T23:59:59.000Z

    A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

  3. Development of Advanced Thermal-Hydrological-Mechanical-Chemical (THMC) Modeling Capabilities for Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Project objectives: Develop a general framework for effective flow of water, steam and heat in in porous and fractured geothermal formations. Develop a computational module for handling coupled effects of pressure, temperature, and induced rock deformations. Develop a reliable model of heat transfer and fluid flow in fractured rocks.

  4. Rye Patch geothermal development, hydro-chemistry of thermal...

    Open Energy Info (EERE)

    development, hydro-chemistry of thermal water applied to resource definition Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Rye Patch geothermal...

  5. Advancing Reactive Tracer Methods for Measuring Thermal Evolution...

    Open Energy Info (EERE)

    Advancing Reactive Tracer Methods for Measuring Thermal Evolution in CO2- and Water-Based Geothermal Reservoirs Geothermal Lab Call Project Jump to: navigation, search Last...

  6. Seismic and Acoustic Investigations of Rock Fall Initiation, Processes, and Mechanics

    E-Print Network [OSTI]

    Zimmer, Valerie Louise

    2011-01-01T23:59:59.000Z

    systems  and  rock  fall  source  and  impact  areas,  it  meters  from  a  rock  fall  source  area.   The   success  possible  to  the  rock  fall  source  areas,   spacing  

  7. GEOTECHNICAL ASSESSMENT AND INSTRUMENTATION NEEDS FOR NUCLEAR WASTE ISOLATION IN CRYSTALLINE AND ARGILLACEOUS ROCKS SYMPOSIUM

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    INSTRUMENTATION NEEDS FOR DETERMINING ROCK PROPERTIES..Acknowledgements • ROCK PROPERTIES Participant Listing.OF MODELING IN ROCK PROPERTIES EVALUATION AND APPLICATION. •

  8. Parameter estimation from flowing fluid temperature logging data in unsaturated fractured rock using multiphase inverse modeling

    E-Print Network [OSTI]

    Mukhopadhyay, S.

    2009-01-01T23:59:59.000Z

    have assumed the same rock properties for the entire packed-earlier, among the rock properties (permeability, porosity,However, these are not rock properties and are constrained

  9. Coupled thermohydromechanical analysis of a heater test in unsaturated clay and fractured rock at Kamaishi Mine

    E-Print Network [OSTI]

    Rutqvist, J.

    2011-01-01T23:59:59.000Z

    Kamaishi mine. Laboratory rock property tests. Power reactor5.2 Near field rock properties and fiactire geometand hydraulic rock properties, and hydraulic conditions

  10. An Integrated Modeling Analysis of Unsaturated Flow Patterns in Fractured Rock

    E-Print Network [OSTI]

    Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson, Gudmundur S.

    2008-01-01T23:59:59.000Z

    because large contrasts in rock properties exist across thetransitional changes in rock properties argues that lateralthe distribution of rock properties within different units.

  11. On the relationship between stress and elastic strain for porous and fractured rock

    E-Print Network [OSTI]

    Liu, Hui-Hai

    2009-01-01T23:59:59.000Z

    the other associated rock properties. Important examples ofand/or hydraulic rock properties. We show that theand other rock mechanical/hydraulic properties, and these

  12. SEARCH FOR UNDERGROUND OPENINGS FOR IN SITU TEST FACILITIES IN CRYSTALLINE ROCK

    E-Print Network [OSTI]

    Wallenberg, H.A.

    2010-01-01T23:59:59.000Z

    to complie and correlate rock properties and preliminaryProject Table 1. Rock properties and project characteristicsof Information Rock properties - Bad Creek area Exhibit 1.

  13. Dolomitization by ground-water flow systems in carbonate platforms

    SciTech Connect (OSTI)

    Simms, M.

    1984-09-01T23:59:59.000Z

    Dolomite occurs throughout the subsurface of modern carbonate platforms such as the Bahamas. Groundwater flow systems must be responsible for delivery of reactants needed for dolomitization. Reflux, freshwater lens flows, and thermal convection are large-scale flow systems that may be widespread in active platforms. The author has evaluated some aspects of the dynamics and characteristics of these processes with ground-water flow theory and by scaled sandbox experiments. Reflux is not restricted to hypersaline brines, but can occur with bankwaters of only slightly elevated salinity such as those found on the Bahama Banks today (42%). The lack of evaporites in a stratigraphic section, therefore, does not rule out the possibility that reflux may have operated. Flows associated with freshwater lenses include flow in the lens, in the mixing zone, and in the seawater beneath and offshore of the lens. Upward transfer of seawater through the platform margins occurs when surrounding cold ocean water migrates into the platform and is heated. This type of thermal convection (Kohout convection) has been studied by Francis Kohout in south Florida. The ranges of mass flux of magnesium in these processes are all comparable and are all sufficient to account for young dolomites beneath modern platforms. Each process yields dolomitized zones of characteristic shape and location and perhaps may be distinguishable in ancient rocks. The concepts presented here may have application to exploration for dolomite reservoirs in the Gulf Coast and elsewhere.

  14. GROUND WATER CONTAMINATION

    SciTech Connect (OSTI)

    Unknown

    1999-09-01T23:59:59.000Z

    As required by the terms of the above referenced grant, the following summary serves as the Final Report for that grant. The grant relates to work performed at two separate sites, the Hoe Creek Underground Coal Gasification Site south of Gillette, Wyoming, and the Rock Springs In-Situ Oil Shale Retort Site near Rock Springs, Wyoming. The primary concern to the State of Wyoming at each site is ground water contamination (the primary contaminants of concern are benzene and related compounds), and the purpose of the grant has been to provide tiding for a Geohydrologist at the appropriate State agency, specifically the Land Quality Division (LQD) of the Wyoming Department of Environmental Quality. The LQD Geohydrologist has been responsible for providing technical and regulatory support to DOE for ground water remediation and subsequent surface reclamation. Substantial progress has been made toward remediation of the sites, and continuation of LQD involvement in the remediation and reclamation efforts is addressed.

  15. Hot-dry-rock geothermal resource 1980

    SciTech Connect (OSTI)

    Heiken, G.; Goff, F.; Cremer, G. (ed.)

    1982-04-01T23:59:59.000Z

    The work performed on hot dry rock (HDR) geothermal resource evaluation, site characterization, and geophysical exploration techniques is summarized. The work was done by region (Far West, Pacific Northwest, Southwest, Rocky Mountain States, Midcontinent, and Eastern) and limited to the conterminous US.

  16. Damage and plastic deformation of reservoir rocks

    E-Print Network [OSTI]

    Ze'ev, Reches

    Damage and plastic deformation of reservoir rocks: Part 2. Propagation of a hydraulic fracture Seth fracture and fault mechanics, fluid flow in fractured reservoirs, and geome- chanics in nonconventional the development of complex hydraulic fractures (HFs) that are commonly ob- served in the field and in experiments

  17. Transfer of hot dry rock technology

    SciTech Connect (OSTI)

    Smith, M.C.

    1985-11-01T23:59:59.000Z

    The Hot Dry Rock Geothermal Energy Development Program has focused worldwide attention on the facts that natural heat in the upper part of the earth's crust is an essentially inexhaustible energy resource which is accessible almost everywhere, and that practical means now exist to extract useful heat from the hot rock and bring it to the earth's surface for beneficial use. The Hot Dry Rock Program has successfully constructed and operated a prototype hot, dry rock energy system that produced heat at the temperatures and rates required for large-scale space heating and many other direct uses of heat. The Program is now in the final stages of constructing a larger, hotter system potentially capable of satisfying the energy requirements of a small, commercial, electrical-generating power plant. To create and understand the behavior of such system, it has been necessary to develop or support the development of a wide variety of equipment, instruments, techniques, and analyses. Much of this innovative technology has already been transferred to the private sector and to other research and development programs, and more is continuously being made available as its usefulness is demonstrated. This report describes some of these developments and indicates where this new technology is being used or can be useful to industry, engineering, and science.

  18. Radiocarbon dating of ancient rock paintings

    SciTech Connect (OSTI)

    Ilger, W.A.; Hyman, M.; Rowe, M.W. [Texas A and M Univ., College Station, TX (United States). Dept. of Chemistry; Southon, J. [Lawrence Livermore National Lab., CA (United States)

    1995-06-20T23:59:59.000Z

    This report presents progress made on a technique for {sup 14}C dating pictographs. A low-temperature oxygen plasma is used coupled with high-vacuum technologies to selectively remove C-containing material in the paints without contamination from inorganic carbon from rock substrates or accretions.

  19. Life cycle assessment of a rock crusher

    SciTech Connect (OSTI)

    Landfield, A.H.; Karra, V.

    1999-07-01T23:59:59.000Z

    Nordberg, Inc., a capital equipment manufacturer, performed a Life Cycle Assessment study on its rock crusher to aid in making decisions on product design and energy improvements. Life Cycle Assessment (LCA) is a relatively new cutting edge environmental tool recently standardized by ISO that provides quantitative environmental and energy data on products or processes. This paper commences with a brief introduction to LCA and presents the system boundaries, modeling and assumptions for the rock crusher study. System boundaries include all life major cycle stages except manufacturing and assembly of the crusher. Results of the LCA show that over 99% of most of the flows into and out of the system may be attributed to the use phase of the rock crusher. Within the use phase itself, over 95% of each environmental inflow and outflow (with some exceptions) are attributed to electricity consumption, and not the replacement of spares/wears or lubricating oil over the lifetime of the crusher. Results tables and charts present selected environmental flows, including CO{sub 2} NOx, SOx, particulate matter, and energy consumption, for each of the rock crusher life cycle stages and the use phase. This paper aims to demonstrate the benefits of adopting a rigorous scientific approach to assess energy and environmental impacts over the life cycle of capital equipment. Nordberg has used these results to enhance its engineering efforts toward developing an even more energy efficient machine to further progress its vision of providing economic solutions to its customers by reducing the crusher operating (mainly electricity) costs.

  20. A MOUNTAIN-SCALE 3-D NUMERICAL MODEL FOR CHARACTERIZING UNSATURATED FLOW AND TRANSPORT IN FRACTURED VOLCANIC ROCK AT YUCCA MOUNTAIN

    SciTech Connect (OSTI)

    Yu-Shu Wu

    2006-02-28T23:59:59.000Z

    A three-dimensional site-scale numerical model has been developed to simulate water and gas flow, heat transfer, and radionuclide transport in the unsaturated zone of Yucca Mountain, Nevada, the American underground repository site for high level radioactive waste. The modeling approach is based on a mathematical formulation of coupled multiphase fluid and heat flow and tracer transport through porous and fractured rock. This model is intended for use in predicting current and future conditions in the unsaturated zone, so as to aid in assessing the system performance of the repository. In particular, an integrated modeling methodology is discussed for integrating a wide variety of moisture, pneumatic, thermal, and isotopic geochemical data into comprehensive modeling analyses. The reliability and accuracy of the model predictions were the subject of a comprehensive model calibration study, in which the model was calibrated against measured data, including liquid saturation, water potential, and temperature. This study indicates that the model is able to reproduce the overall system behavior at Yucca Mountain with respect to moisture profiles, pneumatic pressure and chloride concentration variations in different geological units, and ambient geothermal conditions.

  1. California Solar Initiative- Solar Thermal Program

    Broader source: Energy.gov [DOE]

    Originally restricted to just solar water heaters, the prorgam was expanded by CPUC Decision 13-02-018 in February 2013 to include other solar thermal technologies, including solar process heatin...

  2. Variable emissivity laser thermal control system

    DOE Patents [OSTI]

    Milner, Joseph R. (Livermore, CA)

    1994-01-01T23:59:59.000Z

    A laser thermal control system for a metal vapor laser maintains the wall mperature of the laser at a desired level by changing the effective emissivity of the water cooling jacket. This capability increases the overall efficiency of the laser.

  3. Degradation of Structural Alloys Under Thermal Insulation

    E-Print Network [OSTI]

    McIntyre, D. R.

    1984-01-01T23:59:59.000Z

    Wet thermal insulation may actively degrade steel and stainless steel structures by general corrosion or stress-corrosion cracking. Two different mechanisms of water ingress into insulation are discussed; flooding from external sources...

  4. Superstructure optimization of hybrid thermal desalination configurations

    E-Print Network [OSTI]

    Dahdah, Tawfiq

    2013-01-01T23:59:59.000Z

    As the global demand for freshwater continues to increase, a larger number of resources are dedicated to seawater desalination technologies. In areas with high temperature and salinity water, thermal desalination technologies ...

  5. Thermal Monitoring Approaches for Energy Savings Verification

    E-Print Network [OSTI]

    McBride, J. R.; Bohmer, C. J.; Lippman, R. H.; Zern, M. J.

    This paper reviews and summarizes techniques for monitoring thermal energy flows for the purpose of verifying energy savings in industrial and large institutional energy conservation projects. Approaches for monitoring hot and chilled water, steam...

  6. Degradation of Structural Alloys Under Thermal Insulation 

    E-Print Network [OSTI]

    McIntyre, D. R.

    1984-01-01T23:59:59.000Z

    Wet thermal insulation may actively degrade steel and stainless steel structures by general corrosion or stress-corrosion cracking. Two different mechanisms of water ingress into insulation are discussed; flooding from external sources...

  7. Rock Classification in Organic Shale Based on Petrophysical and Elastic Rock Properties Calculated from Well Logs

    E-Print Network [OSTI]

    Aranibar Fernandez, Alvaro A

    2015-01-05T23:59:59.000Z

    classification method was then applied to the field examples from the Haynesville shale and Woodford shales for rock classification. The estimates of porosity, TOC, bulk modulus, shear modulus, and volumetric concentrations of minerals were obtained...

  8. Rock Bands/Rock Brands: Mediation and Musical Performance in Post-liberalization Bangalore

    E-Print Network [OSTI]

    Coventry, Chloe Louise

    2013-01-01T23:59:59.000Z

    2009 PolyGram advertisement Coca-cola and MTV contest PepsiNokia, Pepsi, Seagrams, and Coca Cola sponsored rock showsGroup and Brigade Group, Coca-Cola, and the biotechnology

  9. FACTORS IN THE DESIGN OF A ROCK MECHANICS CENTRIFUGE FOR STRONG ROCK

    E-Print Network [OSTI]

    Clark, George B

    1984-01-01T23:59:59.000Z

    1 . Capacit i es of known centrifuges and v proposed SoftSolla I rock mechanics centrifuge r, ---------1~ --- dxB. , (1980), Geotechnical centrifuges for model studies and

  10. Overview of conservation treatments applied to rock glyph archaeological sites

    E-Print Network [OSTI]

    Dandridge, Debra E

    2000-01-01T23:59:59.000Z

    Rock glyphs, ubiquitously referred to as rock art, are often the most highly visible components of archaeological sites. Such artifacts, therefore, are most prone to deterioration and degradation from human caused and natural elements...

  11. Study of Acid Response of Qatar Carbonate Rocks

    E-Print Network [OSTI]

    Wang, Zhaohong

    2012-02-14T23:59:59.000Z

    of understanding of Qatar carbonate especially Middle East carbonates and the abundance of Middle East carbonate reservoirs is the main motivation behind this study. This work is an experimental study to understand the acid response to Qatar rocks in rocks...

  12. Modeling of crack initiation, propagation and coalescence in rocks

    E-Print Network [OSTI]

    Gonçalves da Silva, Bruno Miguel

    2009-01-01T23:59:59.000Z

    Natural or artificial fracturing of rock plays a very important role in geologic processes and for engineered structures in and on rock. Fracturing is associated with crack initiation, propagation and coalescence, which ...

  13. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

  14. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

  15. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"Proceed- ings of Aquifer Thermal Energy Storage Workshop,

  16. Evaluation of Used Fuel Disposition in Clay-Bearing Rock

    SciTech Connect (OSTI)

    Jové Colón, Carlos F.; Weck, Philippe F.; Sassani, David H.; Zheng, Liange; Rutqvist, Jonny; Steefel, Carl I.; Kim, Kunhwi; Nakagawa, Seiji; Houseworth, James; Birkholzer, Jens; Caporuscio, Florie A.; Cheshire, Michael; Rearick, Michael S.; McCarney, Mary K.; Zavarin, Mavrik; Benedicto, Ana; Kersting, Annie B.; Sutton, Mark; Jerden, James; Frey, Kurt E.; Copple, Jacqueline M.; Ebert, William

    2014-08-29T23:59:59.000Z

    Radioactive waste disposal in shale/argillite rock formations has been widely considered given its desirable isolation properties (low permeability), geochemically reduced conditions, anomalous groundwater pressures, and widespread geologic occurrence. Clay/shale rock formations are characterized by their high content of clay minerals such as smectites and illites where diffusive transport and chemisorption phenomena predominate. These, in addition to low permeability, are key attributes of shale to impede radionuclide mobility. Shale host-media has been comprehensively studied in international nuclear waste repository programs as part of underground research laboratories (URLs) programs in Switzerland, France, Belgium, and Japan. These investigations, in some cases a decade or more long, have produced a large but fundamental body of information spanning from site characterization data (geological, hydrogeological, geochemical, geomechanical) to controlled experiments on the engineered barrier system (EBS) (barrier clay and seals materials). Evaluation of nuclear waste disposal in shale formations in the USA was conducted in the late 70’s and mid 80’s. Most of these studies evaluated the potential for shale to host a nuclear waste repository but not at the programmatic level of URLs in international repository programs. This report covers various R&D work and capabilities relevant to disposal of heat-generating nuclear waste in shale/argillite media. Integration and cross-fertilization of these capabilities will be utilized in the development and implementation of the shale/argillite reference case planned for FY15. Disposal R&D activities under the UFDC in the past few years have produced state-of-the-art modeling capabilities for coupled Thermal-Hydrological-Mechanical-Chemical (THMC), used fuel degradation (source term), and thermodynamic modeling and database development to evaluate generic disposal concepts. The THMC models have been developed for shale repository leveraging in large part on the information garnered in URLs and laboratory data to test and demonstrate model prediction capability and to accurately represent behavior of the EBS and the natural (barrier) system (NS). In addition, experimental work to improve our understanding of clay barrier interactions and TM couplings at high temperatures are key to evaluate thermal effects as a result of relatively high heat loads from waste and the extent of sacrificial zones in the EBS. To assess the latter, experiments and modeling approaches have provided important information on the stability and fate of barrier materials under high heat loads. This information is central to the assessment of thermal limits and the implementation of the reference case when constraining EBS properties and the repository layout (e.g., waste package and drift spacing). This report is comprised of various parts, each one describing various R&D activities applicable to shale/argillite media. For example, progress made on modeling and experimental approaches to analyze physical and chemical interactions affecting clay in the EBS, NS, and used nuclear fuel (source term) in support of R&D objectives. It also describes the development of a reference case for shale/argillite media. The accomplishments of these activities are summarized as follows: ? Development of a reference case for shale/argillite; ? Investigation of Reactive Transport and Coupled THM Processes in EBS: FY14; ? Update on Experimental Activities on Buffer/Backfill Interactions at elevated Pressure and Temperature; ? Thermodynamic Database Development: Evaluation Strategy, Modeling Tools, First-Principles Modeling of Clay, and Sorption Database Assessment; ? ANL Mixed Potential Model For Used Fuel Degradation: Application to Argillite and Crystalline Rock Environments.

  17. Production casing for hot-dry-rock wells EE-2 and EE-3

    SciTech Connect (OSTI)

    Nicholson, R.W.; Pettitt, R.; Sims, J.

    1982-01-01T23:59:59.000Z

    The production casing for a pair of hot dry rock (HDR) energy extraction wells had to be designed for unique conditions. Two hot dry rock wells (EE-2 and EE-3) were drilled and production casing installed at Fenton Hill, NM for the Los Alamos National Laboratory HDR program. The design of the production casing and subsequent completion operations in these wells revealed that thermal cycling, anticipated operating pressures, and wear during downhole operations are major considerations for both casing specifications and installation procedures. The first well (Energy Extraction No. 2; EE-2) is intended to be the injection well and EE-3 the production well. The top joint strain in EE-3 was monitored during installation, cementing and tensioning.

  18. Laboratory measurements of frictional slip on interfaces in a polycarbonate rock mass model

    SciTech Connect (OSTI)

    Brown, S.R. [Sandia National Labs., Albuquerque, NM (United States). Geomechanics Dept.

    1994-08-01T23:59:59.000Z

    The evaluation of the stability of the openings for the Exploratory Studies Facility and a potential repository for high-level nuclear waste at Yucca Mountain, Nevada will require computer codes capable of predicting slip on rock joints resulting from changes in thermal stresses. The geometrical method of analysis of moire fringe analysis was used to evaluate the magnitude and extent of frictional sliding in a layered polycarbonate rock mass model containing a circular hole. Slips were observed in confined zones around the hole and micron resolutions were obtained. Unpredicted and uncontrolled uniform slip of several interfaces in the model were observed giving considerable uncertainty in the boundary conditions of the model, perhaps making detailed comparison with numerical models impossible.

  19. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal Area (Phillips, 2004)...

  20. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal Area (Ito & Tanaka, 1995)...

  1. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area (Ito & Tanaka, 1995) Exploration...

  2. Thermally cleavable surfactants

    DOE Patents [OSTI]

    McElhanon, James R. (Manteca, CA); Simmons, Blake A. (San Francisco, CA); Zifer, Thomas (Manteca, CA); Jamison, Gregory M. (Albuquerque, NM); Loy, Douglas A. (Albuquerque, NM); Rahimian, Kamyar (Albuquerque, NM); Long, Timothy M. (Urbana, IL); Wheeler, David R. (Albuquerque, NM); Staiger, Chad L. (Albuquerque, NM)

    2009-11-24T23:59:59.000Z

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  3. Thermally cleavable surfactants

    DOE Patents [OSTI]

    McElhanon, James R. (Manteca, CA); Simmons, Blake A. (San Francisco, CA); Zifer, Thomas (Manteca, CA); Jamison, Gregory M. (Albuquerque, NM); Loy, Douglas A. (Albuquerque, NM); Rahimian, Kamyar (Albuquerque, NM); Long, Timothy M. (Urbana, IL); Wheeler, David R. (Albuquerque, NM); Staiger, Chad L. (Albuquerque, NM)

    2009-09-29T23:59:59.000Z

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  4. Thermally cleavable surfactants

    DOE Patents [OSTI]

    McElhanon, James R. (Manteca, CA); Simmons, Blake A. (San Francisco, CA); Zifer, Thomas (Manteca, CA); Jamison, Gregory M. (Albuquerque, NM); Loy, Douglas A. (Albuquerque, NM); Rahimian, Kamyar (Albuquerque, NM); Long, Timothy M. (Urbana, IL); Wheeler, David R. (Albuquerque, NM); Staiger, Chad L. (Albuquerque, NM)

    2006-04-04T23:59:59.000Z

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments and the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  5. THERMAL HYDRAULICS KEYWORDS: thermal hydraulics,

    E-Print Network [OSTI]

    Smith, Barton L.

    -fluid modeling of nuclear reactor systems. Thermal-hydraulic analysis codes such as RELAP5-3D ~Ref. 1! and FLICA regions of the system. In fact, the CFD code FLUENT has previously been coupled to RELAP5-3D ~Refs. 3

  6. NEBRASKA WATER RESOURCES RESEARCH INSTITUTE 212 AGRICULTURAL ENGINEERING BUILDING

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    is Deputy Director for Water Resources Research. WASTE GUIDE ON THERMAL POLLUTION Copies of an "Industrial, urban water use and needs, water system construction, and flood plain management. The focal point VIaste Guide on Thermal Pollution" may be obtained by writing to: National Thermal Pollution Research

  7. Sigma Xi, The Scientific Research Society Rock Varnish

    E-Print Network [OSTI]

    Dorn, Ron

    Sigma Xi, The Scientific Research Society Rock Varnish Author(s): Ronald I. Dorn Source: American;Rock Varnish Over thousandsofyears,a thincoatingofclay,cementedtorocksbymanganese and iron that appeared "smooth, black, and as ifcoated with plumbago." Indian legends explained that these rocks had been

  8. Technical Note Evaluation of mechanical rock properties using a Schmidt

    E-Print Network [OSTI]

    Ze'ev, Reches

    Technical Note Evaluation of mechanical rock properties using a Schmidt Hammer O. Katza, b, c, *, Z, 91904, Israel b Geological Survey of Israel, 30 Malkhe Yisrael St., Jerusalem, 95501, Israel c Rock of concrete hardness [1], and was later used to estimate rock strength [2,3]. It con- sists of a spring

  9. A NEW MODEL FOR PERFORMANCE PREDICTION OF HARD ROCK TBMS.

    E-Print Network [OSTI]

    TBMs. The model uses information on the rock properties and cutting geometry to calculate TBM rate on data collected in the field and is merely a regression between machine parameters, rock properties is introduced to provide an estimate of disc cutting forces as a function of rock properties and the cutting

  10. Apollo Rock Reveals Moon Had Molten Core | Universe Additional Resources

    E-Print Network [OSTI]

    Weiss, Benjamin P.

    Apollo Rock Reveals Moon Had Molten Core | Universe Today Subscribe Podcast Home Additional Apollo Rock Reveals Moon Had Molten Core Written by Nancy Atkinson If you're new here, you may want to subscribe to my RSS feed. Thanks for visiting! Apollo Rock Reveals Moon Had Molten Core | Universe Today

  11. Oil recovery improvement through profile modification by thermal precipitation. Final report, October 1, 1991--August 27, 1993

    SciTech Connect (OSTI)

    Reis, J.C.

    1994-04-01T23:59:59.000Z

    The objective of this research project has been to investigate the potential for using temperature-dependent (thermal) precipitation of chemicals to reduce the porosity and permeability of porous rocks. The method consists of injecting hot water that is saturated in a chemical that will precipitate upon cooling. Through this process, the permeability of thief zones in oil reservoirs could be reduced, allowing improved recovery by secondary and tertiary recovery processes. The chemical literature was reviewed for environmentally safe chemicals that have a suitable temperature-dependent solubility for the thermal precipitation process. Four suitable chemicals were identified: boron oxide, potassium carbonate, sodium borate, and potassium chloride. An experimental apparatus was constructed to test the thermal precipitation process at high temperatures and pressures. Data was collected with clastic Berea sandstone cores using two chemicals: potassium carbonate and sodium borate. Data was also collected with limestone cores using potassium carbonate. The porosities and permeabilities were measured before and after being treated by the thermal precipitation process. A theoretical study of the process was also conducted. A model for predicting the fractional reduction in porosity was developed that is based on the temperature-dependent solubility of the chemical used. An empirical model that predicts the fractional reduction in permeability in terms of the fractional reduction in porosity was then developed for Berea sandstone. Existing theoretical models for estimating the permeability of porous media were tested against the measured data. The existing models, including the widely-used Carman-Kozeny equation, underpredicted the reduction in permeability for the thermal precipitation process. This study has shown that the thermal precipitation process has considerable potential for the controlled reduction in porosity and permeability in geologic formations.

  12. Filtering Water Concept: Students will be acquainted with filter processes and the importance of certain

    E-Print Network [OSTI]

    Benitez-Nelson, Claudia

    -alone. Students then pour fixed volume over substrate and wait for water to trickle through filter. Fixed volumes fixed substrate to filter varied amounts of "dirty water" to test efficiency or capacity of substrate in gravel (big rocks vs. small rocks vs. sand in a creek bed/sediment profile). #12;

  13. Identification of organic-rich lower tertiary shakles as petroleum source rock, southern Louisiana

    SciTech Connect (OSTI)

    McDade, E.C. (Texaco Inc., New orleans, LA (United States)); Sassen, R. (Texas A M Univ., College Station, TX (United States)); Wenger, L. (Exxon Production Research, Houston, TX (United States)); Cole, G.A. (Saudi Aramco Laboratories Department, Dhahran (Saudi Arabia))

    1993-09-01T23:59:59.000Z

    Comprehensive organic geochemical evidence of organic-rich, marine shales in the lower part of the middle eocene Claiborne Group and the lower Eocene-Paleocene Wilcox Group of southern Louisiana is now available. The evidence influences models for Gulf Coast petroleum origin. The shales are the only post-Cretaceous sediments in the northern Gulf of Mexico that meet recognized criteria for oil source rocks. Many of organic-rich Paleogene shales contain terrestrially derived, amorphous kerogen altered by microbial activity, and display pyrolysis results consistent with type II/III kerogen. Shelf-edge depositional environments favored preservation of hydrogen-rich kerogen. Seismic and sedimentologic interpretations suggest that marine character and thickness increase on the Paleogene continental slope to the south. The shales at burial depths in the 3050-4600 m depth range, at present, are thermally immature to late mature with respect to oil generation. Detailed geochemical analyses of extractable organic matter and kerogen isolates suggest an oil-source correlation with Tertiary-reservoired oils in southern Louisiana and offshore in the adjacent Gulf of Mexico. Biomarkers of selected samples display high concentrations of C[sub 28]-bisnorhopane and 18[alpha]-oleanane biomarker is absent or not reported in Gulf crude oils from Cretaceous and Jurassic source rocks. Burial and thermal history models suggest the timing of oil migration from Paleogene source rocks is consistent with emplacement of oils in Tertiary reservoirs. The lower Tertiary source rocks described here could offer new insight to understanding the origin of oil in other Tertiary deltas.

  14. Exploration for Hot Dry Rock geothermal resources in the Midcontinent USA. Volume 1. Introduction, geologic overview, and data acquisition and evaluation

    SciTech Connect (OSTI)

    Hinze, W.J.; Braile, L.W.; von Frese, R.R.B.; Lidiak, E.G.; Denison, R.E.; Keller, G.R.; Roy, R.F.; Swanberg, C.A.; Aiken, C.L.V.; Morgan, P.

    1986-02-01T23:59:59.000Z

    The Midcontinent of North America is commonly characterized as a stable cratonic area which has undergone only slow, broad vertical movements over the past several hundreds of millions of years. This tectonically stable crust is an unfertile area for hot dry rock (HDR) exploration. However, recent geophysical and geological studies provide evidence for modest contemporary tectonic activity in limited areas within the continent and, therefore, the possibility of localized thermal anomalies which may serve as sites for HDR exploration. HDR, as an energy resource in the Midcontinent, is particularly appealing because of the high population density and the demand upon conventional energy sources. Five generalized models of exploration targets for possible Midcontinent HDR sites are identified: (1) radiogenic heat sources, (2) conductivity-enhanced normal geothermal gradients, (3) residual magnetic heat, (4) sub-upper crustal sources, and (5) hydrothermal generated thermal gradients. Three potential sources of HDR, each covering approximately a 2/sup 0/ x 2/sup 0/ area, were identified and subjected to preliminary evaluation. In the Mississippi Embayment test site, lateral thermal conductivity variations and subcrustal heat sources may be involved in producing abnormally high subsurface temperatures. Studies indicate that enhanced temperatures are associated primarily with basement rift features where vertical displacement of aquifers and faults cause the upward migration of hot waters leading to anomalously high local upper crustal temperatures. The Western Nebraska test site is a potential low temperature HDR source also related, at least in part, to groundwater movement. The Southeast Michigan test site was selected for study because of the possible presence of radiogenic plutons overlain by a thickened sedimentary blanket.

  15. Modeling of thermal processes in very high pressure liquid chromatography for column immersed in a water bath: Application of the selected models

    SciTech Connect (OSTI)

    Gritti, Fabrice [University of Tennessee, Knoxville (UTK); Guiochon, Georges A [ORNL; Kaczmarski, Krzysztof [University of Tennessee and Rzeszow University of Technology, Poland

    2010-01-01T23:59:59.000Z

    Currently, chromatographic analyses are carried out by operating columns packed with sub-2 {micro}m particles under very high pressure gradients, up to 1200 bar for 5 cm long columns. This provides the high flow rates that are necessary for the achievement of high column efficiencies and short analysis times. However, operating columns at high flow rates under such high pressure gradients generate a large amount of heat due to the viscous friction of the mobile phase stream that percolates through a low permeability bed. The evacuation of this heat causes the formation of significant or even large axial and radial gradients of all the physico-chemical parameters characterizing the packing material and the mobile phase, eventually resulting in a loss of column efficiency. We previously developed and successfully applied a model combining the heat and the mass balances of a chromatographic column operated under very high pressure gradients (VHPLC). The use of this model requires accurate estimates of the dispersion coefficients at each applied mobile phase velocity. This work reports on a modification of the mass balance model such that only one measurement is now necessary to accurately predict elution peak profiles in a wide range of mobile phase velocities. The conditions under which the simple equilibrium-dispersive (ED) and transport-dispersive (TD) models are applicable in VHPLC are also discussed. This work proves that the new combination of the heat transfer and the ED model discussed in this work enables the calculation of accurate profiles for peaks eluted under extreme conditions, like when the column is thermostated in a water bath.

  16. GRAIN-SCALE FAILURE IN THERMAL SPALLATION DRILLING

    SciTech Connect (OSTI)

    Walsh, S C; Lomov, I; Roberts, J J

    2012-01-19T23:59:59.000Z

    Geothermal power promises clean, renewable, reliable and potentially widely-available energy, but is limited by high initial capital costs. New drilling technologies are required to make geothermal power financially competitive with other energy sources. One potential solution is offered by Thermal Spallation Drilling (TSD) - a novel drilling technique in which small particles (spalls) are released from the rock surface by rapid heating. While TSD has the potential to improve drilling rates of brittle granitic rocks, the coupled thermomechanical processes involved in TSD are poorly described, making system control and optimization difficult for this drilling technology. In this paper, we discuss results from a new modeling effort investigating thermal spallation drilling. In particular, we describe an explicit model that simulates the grain-scale mechanics of thermal spallation and use this model to examine existing theories concerning spalling mechanisms. We will report how borehole conditions influence spall production, and discuss implications for macro-scale models of drilling systems.

  17. Waterflood and Enhanced Oil Recovery Studies using Saline Water and Dilute Surfactants in Carbonate Reservoirs

    E-Print Network [OSTI]

    Alotaibi, Mohammed

    2012-02-14T23:59:59.000Z

    to decrease the residual oil saturation. In calcareous rocks, water from various resources (deep formation, seawater, shallow beds, lakes and rivers) is generally injected in different oil fields. The ions interactions between water molecules, salts ions, oil...

  18. Waterflood and Enhanced Oil Recovery Studies using Saline Water and Dilute Surfactants in Carbonate Reservoirs 

    E-Print Network [OSTI]

    Alotaibi, Mohammed

    2012-02-14T23:59:59.000Z

    to decrease the residual oil saturation. In calcareous rocks, water from various resources (deep formation, seawater, shallow beds, lakes and rivers) is generally injected in different oil fields. The ions interactions between water molecules, salts ions, oil...

  19. Final Report - Advanced Conceptual Models for Unsaturated and Two-Phase Flow in Fractured Rock

    SciTech Connect (OSTI)

    Nicholl, Michael J.

    2006-07-10T23:59:59.000Z

    The Department of Energy Environmental Management Program is faced with two major issues involving two-phase flow in fractured rock; specifically, transport of dissolved contaminants in the Vadose Zone, and the fate of Dense Nonaqueous Phase Liquids (DNAPLs) below the water table. Conceptual models currently used to address these problems do not correctly include the influence of the fractures, thus leading to erroneous predictions. Recent work has shown that it is crucial to understand the topology, or ''structure'' of the fluid phases (air/water or water/DNAPL) within the subsurface. It has also been shown that even under steady boundary conditions, the influence of fractures can lead to complex and dynamic phase structure that controls system behavior, with or without the presence of a porous rock matrix. Complicated phase structures within the fracture network can facilitate rapid transport, and lead to a sparsely populated and widespread distribution of concentrated contaminants; these qualities are highly difficult to describe with current conceptual models. The focus of our work is to improve predictive modeling through the development of advanced conceptual models for two-phase flow in fractured rock.

  20. Petroleum source rock potential of Mesozoic condensed section deposits in southwestern Alabama

    SciTech Connect (OSTI)

    Mancini, E.A; Tew, B.H.; Mink, R.M. (Univ. of Alabama, Tuscaloosa (United States))

    1991-03-01T23:59:59.000Z

    Because condensed section deposits in carbonates and siliclastics are generally fine-grained lithologies often containing relatively high concentrations of organic matter, these sediments have the potential to be petroleum source rocks if buried under conditions favorable for hydrocarbon generation. In the Mesozoic deposits of southwestern Alabama, only the Upper Jurassic Smackover carbonate mudstones of the condensed section of the LZAGC-4.1 cycle have realized their potential as hydrocarbon source rocks. These carbonate mudstones contain organic carbon concentrations of algal and amorphous kerogen of up to 1.7% and have thermal alteration indices of 2- to 3+. The Upper Cretaceous Tuscaloosa marine claystones of the condensed section of the UZAGC-2.5 cycle are rich (up to 2.9%) in herbaceous and amorphous organic matter but have not been subjected to burial conditions favorable for hydrocarbon generation. The Jurassic Pine Hill/Norphlet black shales of the condensed section of the LZAGC-3.1 cycle and the Upper Jurassic Haynesville carbonate mudstones of the condensed section of the LZAGC-4.2 cycle are low (0.1%) in organic carbon. Although condensed sections within depositional sequences should have the highest source rock potential, specific environmental, preservational, and/or burial history conditions within a particular basin will dictate whether or not the potential is realized as evidenced by the condensed sections of the Mesozoic depositional sequences in southwestern Alabama. Therefore, petroleum geologists can use sequence stratigraphy to identify potential source rocks; however, only through geochemical analyses can the quality of these potential source rocks be determined.

  1. GEOL 103 Writing Assignment 2. Rock Cycle 1. How do each of the three major rock types form? Include the source of the material and the rock-forming

    E-Print Network [OSTI]

    Kirby, Carl S.

    ? Include the source of the material and the rock-forming process. · Igneous rocks form from the hiGEOL 103 Writing Assignment 2. Rock Cycle 1. How do each of the three major rock types form-temperature (650-1200 °C) melting of other rocks (ign. mmorphic, or sed), following by cooling, possibly

  2. Mechanical Engineering & Thermal Group

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Mechanical Engineering & Thermal Group The Mechanical Engineering (ME) & Thermal Group at LASP has · STOP (Structural, Thermal, and Optical Performance) analyses of optical systems Thermal engineers lead evolved with the complexity of instrument design demands, LASP mechanical engineers develop advanced

  3. A simplified model for thermal-wave cavity self-consistent measurement of thermal diffusivity

    SciTech Connect (OSTI)

    Shen, Jun, E-mail: jun.shen@nrc-cnrc.gc.ca; Zhou, Jianqin; Gu, Caikang [Energy, Mining and Environment Portfolio, National Research Council Canada, 4250 East Mall, Vancouver, British Columbia V6T 1W5 (Canada)] [Energy, Mining and Environment Portfolio, National Research Council Canada, 4250 East Mall, Vancouver, British Columbia V6T 1W5 (Canada); Neill, Stuart [Energy, Mining and Environment Portfolio, National Research Council Canada, 1200 Montreal Road, Building M-9, Ottawa, Ontario K1A 0R6 (Canada)] [Energy, Mining and Environment Portfolio, National Research Council Canada, 1200 Montreal Road, Building M-9, Ottawa, Ontario K1A 0R6 (Canada); Michaelian, Kirk H.; Fairbridge, Craig [CanmetENERGY, Natural Resources Canada, One Oil Drive Patch, Devon, Alberta T9G 1A8 (Canada)] [CanmetENERGY, Natural Resources Canada, One Oil Drive Patch, Devon, Alberta T9G 1A8 (Canada); Astrath, Nelson G. C.; Baesso, Mauro L. [Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, Paraná 87020-900 (Brazil)] [Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, Paraná 87020-900 (Brazil)

    2013-12-15T23:59:59.000Z

    A simplified theoretical model was developed for the thermal-wave cavity (TWC) technique in this study. This model takes thermal radiation into account and can be employed for absolute measurements of the thermal diffusivity of gas and liquid samples without any knowledge of geometrical and thermal parameters of the components of the TWC. Using this model and cavity-length scans, thermal diffusivities of air and distilled water were accurately and precisely measured as (2.191 ± 0.004) × 10{sup ?5} and (1.427 ± 0.009) × 10{sup ?7} m{sup 2}?s{sup ?1}, respectively, in very good agreement with accepted literature values.

  4. Waste/Rock Interactions Technology Program: the status of radionuclide sorption-desorption studies performed by the WRIT program

    SciTech Connect (OSTI)

    Serne, R.J.; Relyea, J.F.

    1982-04-01T23:59:59.000Z

    The most credible means for radionuclides disposed as solid wastes in deep-geologic repositories to reach the biosphere is through dissolution of the solid waste and subsequent radionuclide transport by circulating ground water. Thus safety assessment activities must consider the physicochemical interactions between radionculides present in ground water with package components, rocks and sediments since these processes can significantly delay or constrain the mass transport of radionuclides in comparison to ground-water movement. This paper focuses on interactions between dissolved radiouclides in ground water and rocks and sediments away from the near-field repository. The primary mechanism discussed is adsorption-desorption, which has been studied using two approaches. Empirical studies of adsorption-desorption rely on distribution coefficient measurements while mechanism studies strive to identify, differentiate and quantify the processes that control nuclide retardation.

  5. GEOTECHNICAL ASSESSMENT AND INSTRUMENTATION NEEDS FOR NUCLEAR WASTE ISOLATION IN CRYSTALLINE AND ARGILLACEOUS ROCKS SYMPOSIUM

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    Characterization of Rock Masses Structural GeologicalCharacterization of Rock Masses . • • • • • • • • 5.2.1 Structural Geological

  6. Seismic and Acoustic Investigations of Rock Fall Initiation, Processes, and Mechanics

    E-Print Network [OSTI]

    Zimmer, Valerie Louise

    2011-01-01T23:59:59.000Z

    Happy  Isles  and  the  1999  Glacier  Point  rock  falls,  there   was   an   attempt   to   monitor   rock   fall   in   Yosemite   Valley  

  7. A Phased Array Approach to Rock Blasting

    SciTech Connect (OSTI)

    Leslie Gertsch; Jason Baird

    2006-07-01T23:59:59.000Z

    A series of laboratory-scale simultaneous two-hole shots was performed in a rock simulant (mortar) to record the shock wave interference patterns produced in the material. The purpose of the project as a whole was to evaluate the usefulness of phased array techniques of blast design, using new high-precision delay technology. Despite high-speed photography, however, we were unable to detect the passage of the shock waves through the samples to determine how well they matched the expected interaction geometry. The follow-up mine-scale tests were therefore not conducted. Nevertheless, pattern analysis of the vectors that would be formed by positive interference of the shockwaves from multiple charges in an ideal continuous, homogeneous, isotropic medium indicate the potential for powerful control of blast design, given precise characterization of the target rock mass.

  8. Rock Chalk Report, May 7, 2014

    E-Print Network [OSTI]

    2014-05-07T23:59:59.000Z

    Trouble seeing something? view it online or To unsubscribe, click here or send an email to: unsubscribe- 87@pacmail.em.marketinghq.net. May 7, 2014 Rock Chalk Report The Official Newsletter of Kansas Athletics... an email to: unsubscribe-87@pacmail.em.marketinghq.net. © 2014, University of Kansas. The team names, logos and uniform designs are registered trademarks of the teams indicated. No logos, photographs or graphics in this email may be reproduced without...

  9. Gage for measuring displacements in rock samples

    DOE Patents [OSTI]

    Holcomb, D.J.; McNamee, M.J.

    1985-07-18T23:59:59.000Z

    A gage for measuring diametral displacement within a rock sample for use in a rock mechanics laboratory and in the field, comprises a support ring housing a linear variable differential transformer (LVDT), a mounting screw, and a leaf spring. The mounting screw is adjustable and defines a first point of contact with the rock sample. The leaf spring has opposite ends fixed to the inner periphery of the mounting ring. An intermediate portion of the leaf spring projecting radially inward from the ring is formed with a dimple defining a second point of contact with the sample. The first and second points of contact are diametrically opposed to each other. The LVDT is mounted in the ring with its axis parallel to the line of measurement and its core rod received in the dimple of the leaf spring. Any change in the length of the line between the first and second support points is directly communicated to the LVDT. The leaf spring is rigid to completely support lateral forces so that the LVDT is free of all load for improved precision.

  10. Squirt flow in fully saturated rocks

    SciTech Connect (OSTI)

    Dvorkin, J.; Mavko, G.; Nur, A. [Stanford Univ., CA (United States). Dept. of Geophysics] [Stanford Univ., CA (United States). Dept. of Geophysics

    1995-01-01T23:59:59.000Z

    The authors estimate velocity/frequency dispersion and attenuation in fully saturated rocks by employing the squirt-flow mechanism of solid-fluid interaction. In this model, pore fluid is squeezed from thin soft cracks into the surrounding large pores. Information about the compliance of these soft cracks at low confining pressures is extracted from high-pressure velocity data. The frequency dependence of squirt-induced pressure in the soft cracks is linked with the porosity and permeability of the soft pore space, and the characteristic squirt-flow length. These unknown parameters are combined into one expression that is assumed to be a fundamental rock property that does not depend on frequency. The appropriate value of this expression for a given rock can be found by matching the authors theoretical predictions with the experimental measurements of attenuation or velocity. The low-frequency velocity limits, as given by their model, are identical to those predicted by Gassmann`s formula. The high-frequency limits may significant exceed those given by the Biot theory: the high-frequency frame bulk modulus is close to that measured at high confining pressure. They have applied their model to D`Euville Limestone, Navajo Sandstone, and Westerly Granite. The model realistically predicts the observed velocity/frequency dispersion, and attenuation.

  11. Blade Energy Partners STW Water Process & Technologies SMU Cox...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blade Energy Partners STW Water Process & Technologies SMU Cox Executive Education AltaRock Energy, Inc. SedHeat Tranter, Inc. Registration and event details: http:smu.edu...

  12. The ideal site for a home vegetable garden is one that receives full sun all day long, is blessed with deep, well-drained topsoil, protected from strong winds, free of rocks and perennial weeds and located close to

    E-Print Network [OSTI]

    New Hampshire, University of

    the area for an entire growing season with construction grade black plastic mulch. ...and rocks The soils to tend to the important chores of watering, weeding, mulching and monitor- ing for pests or diseases when

  13. Thermal Storage Systems at IBM Facilities

    E-Print Network [OSTI]

    Koch, G.

    1981-01-01T23:59:59.000Z

    In 1979, IBM commissioned its first large scale thermal storage system with a capacity of 2.7 million gallons of chilled water and 1.2 million gallons of reclaimed, low temperature hot water. The stored cooling energy represents approximately 27...

  14. Role of Water in Methanol Photochemistry on Rutile TiO2(110)...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methanol photochemistry or thermal decomposition of methanol to methoxy. However, terminal OH groups (OHt), prepared by coadsorption of water and oxygen atoms, thermally...

  15. Thermal Batteries for Electric Vehicles

    SciTech Connect (OSTI)

    None

    2011-11-21T23:59:59.000Z

    HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

  16. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites, Slick Rock, Colorado. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The Uranium Mill Tailings Radiation Control Act of 1978 (42 USC {section}7901 et seq.), hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miquel County. Contaminated materials cover an estimated 63 acres of the Union Carbide (UC) processing site and 15 ac of the North Continent (NC) processing site. The sites are within 1 mile of each other and are adjacent to the Dolores River. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown and waterborne radioactive tailings materials. The total estimated volume of contaminated materials is approximately 621,300 cubic yards (yd{sup 3}). In addition to the contamination in the two processing site areas, four VPs were found to contain contamination. As a result of the tailings being exposed to the environment, contamination associated with the UC and NC sites has leached into shallow ground water. Surface water has not been affected. The closest residence is approximately 0.3 air mi from either site. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designing site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi northeast of the sites on land administered by the Bureau of Land Management (BLM).

  17. Rock mechanics models evaluation report. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1987-08-01T23:59:59.000Z

    This report documents the evaluation of the thermal and thermomechanical models and codes for repository subsurface design and for design constraint analysis. The evaluation was based on a survey of the thermal and thermomechanical codes and models that are applicable to subsurface design, followed by a Kepner-Tregoe (KT) structured decision analysis of the codes and models. The primary recommendations of the analysis are that the DOT code be used for two-dimensional thermal analysis and that the STEALTH and HEATING 5/6 codes be used for three-dimensional and complicated two-dimensional thermal analysis. STEALTH and SPECTROM 32 are recommended for thermomechanical analyses. The other evaluated codes should be considered for use in certain applications. A separate review of salt creep models indicate that the commonly used exponential time law model is appropriate for use in repository design studies. 38 refs., 1 fig., 7 tabs.

  18. Mining earth's heat: development of hot-dry-rock geothermal reservoirs

    SciTech Connect (OSTI)

    Pettitt, R.A.; Becker, N.M.

    1983-01-01T23:59:59.000Z

    The energy-extraction concept of the Hot Dry Rock (HDR) Geothermal Program, as initially developed by the Los Alamos National Laboratory, is to mine this heat by creating a man-made reservoir in low-permeability, hot basement rock. This concept has been successfully proven at Fenton Hill in northern New Mexico by drilling two holes to a depth of approximately 3 km (10,000 ft) and a bottom temperature of 200/sup 0/C (392/sup 0/F), then connecting the boreholes with a large-diametervertical hydraulic fracture. Water is circulated down one borehole, heated by the hot rock, and rises up the second borehole to the surface where the heat is extracted and the cooled water is reinjected into the underground circulation loop. This system has operated for a cumulative 416 days during engineering and reservoir testing. An energy equivalent of 3 to 5 MW(t) was produced without adverse environmental problems. During one test, a generator was installed in the circulation loop and produced 60 kW of electricity. A second-generation system, recently drilled to 4.5 km (15,000 ft) and temperatures of 320/sup 0/C (608/sup 0/F), entails creating multiple, parallel fractures between a pair of inclined boreholes. This system should produce 5 to 10 MW(e) for 20 years. Significant contributions to underground technology have been made through the development of the program.

  19. Root Water Uptake and Soil Water Dynamics in a Karst Savanna on the Edwards Plateau, TX

    E-Print Network [OSTI]

    Tokumoto, Ieyasu

    2013-05-09T23:59:59.000Z

    made to a depth of 1.6 m in a 25 m ? 25 m grid (5 m node spacing). The results showed that rock created high spatial variability in water storage. Water storage capacity in the measurement grid ranged from 185 to 401 mm, and coupled with heterogeneous...

  20. Thermal conductivity of thermal-battery insulations

    SciTech Connect (OSTI)

    Guidotti, R.A.; Moss, M.

    1995-08-01T23:59:59.000Z

    The thermal conductivities of a variety of insulating materials used in thermal batteries were measured in atmospheres of argon and helium using several techniques. (Helium was used to simulate the hydrogen atmosphere that results when a Li(Si)/FeS{sub 2} thermal battery ages.) The guarded-hot-plate method was used with the Min-K insulation because of its extremely low thermal conductivity. For comparison purposes, the thermal conductivity of the Min-K insulating board was also measured using the hot-probe method. The thermal-comparator method was used for the rigid Fiberfrax board and Fiberfrax paper. The thermal conductivity of the paper was measured under several levels of compression to simulate the conditions of the insulating wrap used on the stack in a thermal battery. The results of preliminary thermal-characterization tests with several silica aerogel materials are also presented.

  1. Stimulation Techniques Used In Enhanced Geothermal Systems: Perspectives From Geomechanics and Rock Physics

    SciTech Connect (OSTI)

    Stephen L. Karner; Joel Renner

    2005-01-01T23:59:59.000Z

    Understanding the processes that enhance fluid flow in crustal rocks is a key step towards extracting sustainable thermal energy from the Earth. To achieve this, geoscientists need to identify the fundamental parameters that govern how rocks respond to stimulation techniques, as well as the factors that control the evolution of permeability networks. These parameters must be assessed over variety of spatial scales: from microscopic rock properties (such as petrologic, mechanical, and diagenetic characteristics) to macroscopic crustal behavior (such as tectonic and hydro-dynamic properties). Furthermore, these factors must be suitably monitored and/or characterized over a range of temporal scales before the evolutionary behavior of geothermal fields can be properly assessed. I am reviewing the procedures currently employed for reservoir stimulation of geothermal fields. The techniques are analyzed in the context of the petrophysical characteristics of reservoir lithologies, studies of wellbore data, and research on regional crustal properties. I determine common features of geothermal fields that can be correlated to spatiotemporal evolution of reservoirs, with particular attention to geomechanics and petrophysical properties. The study of these correlations can then help guide procedures employed when targeting new prospective geothermal resources.

  2. Geochemical evaluation of oils and source rocks from the Western Siberian basin, U. S. S. R

    SciTech Connect (OSTI)

    Peters, K.E.; Huizinga, B.J. (Chevron Overseas Petroleum, Inc., San Ramon, CA (United States)); Moldowan, J.M. (Chevron Oil Field Research Co., Richmond, CA (United States)); Kontorovich, A.E.; Stasova, O. (Siberian Scientific Research Institute for Geology, Geophysics and Mineral Resources, Novobsibirsk (Russian Federation)); Demaison, G.J.

    1991-03-01T23:59:59.000Z

    Although the Western Siberian basin is among the most prolific in the world, there has been disagreement among Soviet geoscientists on the origin of the petroleum within this basin. Screening geochemical analyses were used to select several oils and potential source rocks for a preliminary study using detailed biomarker and supporting geochemistry. Possible sources for this petroleum include rocks of Middle Jurassic, Upper Jurassic, and Lower Cretaceous age. Results indicate that most of the analyzed Western Siberian oils, occurring in reservoirs from Middle Jurassic to Late Cretaceous in age, are derived from the Upper Jurassic Bazhenov Formation. The locations of the samples in the study generally correspond to the distribution of the most effective oil-generative parts of the Bazhenov Formation. Analyses show that the Bazhenov rock samples contain abundant marine algal and bacterial organic matter, preserved under anoxic depositional conditions. Biomarkers show that thermal maturities of the samples range from the early to late oil-generative window and that some are biodegraded. For example, the Salym No. 114 oil, which flowed directly from the Bazhenov Formation, shows a maturity equivalent to the late oil window. The Van-Egan no. 110 oil shows maturity equivalent to the early oil window and is biodegraded. This oil shows preferential microbial conversion of lower homologs of the 17{alpha}, 21{beta}(H)-hopanes to 25-nor-17{alpha}(H)-hopanes.

  3. Pressurizer with a mechanically attached surge nozzle thermal sleeve

    DOE Patents [OSTI]

    Wepfer, Robert M

    2014-03-25T23:59:59.000Z

    A thermal sleeve is mechanically attached to the bore of a surge nozzle of a pressurizer for the primary circuit of a pressurized water reactor steam generating system. The thermal sleeve is attached with a series of keys and slots which maintain the thermal sleeve centered in the nozzle while permitting thermal growth and restricting flow between the sleeve and the interior wall of the nozzle.

  4. Hot-dry-rock geothermal-energy development program. Annual report, fiscal year 1981

    SciTech Connect (OSTI)

    Smith, M.C.; Ponder, G.M. (comps.)

    1981-01-01T23:59:59.000Z

    During fiscal year 1981, activities of the Hot Dry Rock Geothermal Energy Development Program were concentrated in four principal areas: (1) data collection to permit improved estimates of the hot dry rock geothermal energy resource base of various regions of the United States and of the United States as a whole, combined with detailed investigations of several areas that appear particularly promising either for further energy extraction experiments or for future commercial development; (2) successful completion of a 9-month, continuous, closed-loop, recirculating flow test in the enlarged Phase I System at Fenton Hill, New Mexico - a pressurized-water heat-extraction loop developed in low-permeability granitic rock by hydraulic fracturing; (3) successful completion at a depth of 4084 m (13,933 ft) of well EE-3, the production well of a larger, deeper, and hotter, Phase II System at Fenton Hill. Well EE-3 was directionally drilled with control of both azimuth and inclination. Its inclined section is about 380 m (1250 ft) vertically above the injection well, EE-2, which was completed in FY80; and (4) supporting activities included new developments in downhole instrumentation and equipment, geochemical and geophysical studies, rock-mechanics and fluid-mechanics investigations, computer analyses and modeling, and overall system design. Under an International Energy Agency agreement, the New Energy Development Organization, representing the Government of Japan has joined Kernforschungsanlage-Juelich GmbH, representing the Federal Republic of Germany, and the US Department of Energy as an active participant in the Fenton Hill Hot Dry Rock Project.

  5. Laboratory measurements on reservoir rocks from The Geysers geothermal field

    SciTech Connect (OSTI)

    Boitnott, G.N.

    1995-01-26T23:59:59.000Z

    A suite of laboratory measurements have been conducted on Geysers metagraywacke and metashale recovered from a drilled depth of 2599 to 2602 meters in NEGU-17. The tests have been designed to constrain the mechanical and water-storage properties of the matrix material. Various measurements have been made at a variety of pressures and at varying degrees of saturation. Both compressional and shear velocities exhibit relatively little change with effective confining pressure. In all of the samples, water saturation causes an increase in the compressional velocity. In some samples, saturation results in a moderate decrease in shear velocity greater in magnitude than would be expected based on the slight increase in bulk density. It is found that the effect of saturation on the velocities can be quantitatively modeled through a modification of Biot-Gassmann theory to include weakening of the shear modulus with saturation. The decrease is attributed to chemo-mechanical weakening caused by the presence of water. The degree of frame weakening of the shear modulus is variable between samples, and appears correlated with petrographic features of the cores. Two related models are presented through which we can study the importance of saturation effects on field-scale velocity variations. The model results indicate that the saturation effects within the matrix are significant and may contribute to previously observed field anomalies. The results help to define ways in which we may be able to separate the effects of variations in rock properties, caused by phenomena such as degree of fracturing, from similar effects caused by variations in matrix saturation. The need for both compressional and shear velocity data in order to interpret field anomalies is illustrated through comparisons of model results with the field observations.

  6. Underground Coal Thermal Treatment

    SciTech Connect (OSTI)

    P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

    2011-10-30T23:59:59.000Z

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coalâ??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: â?¢ Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). â?¢ Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). â?¢ Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). â?¢ Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

  7. Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"

    SciTech Connect (OSTI)

    Scott Hara

    2007-03-31T23:59:59.000Z

    The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibility problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the geomechanical characteristics of the producing formations. The objectives were to further improve reservoir characterization of the heterogeneous turbidite sands, test the proficiency of the three-dimensional geologic and thermal reservoir simulation models, identify the high permeability thief zones to reduce water breakthrough and cycling, and analyze the nonuniform distribution of the remaining oil in place. This work resulted in the redevelopment of the Tar II-A and Tar V post-steamflood projects by drilling several new wells and converting idle wells to improve injection sweep efficiency and more effectively drain the remaining oil reserves. Reservoir management work included reducing water cuts, maintaining or increasing oil production, and evaluating and minimizing further thermal-related formation compaction. The BP2 project utilized all the tools and knowledge gained throughout the DOE project to maximize recovery of the oil in place.

  8. Hot dry rock venture risks investigation:

    SciTech Connect (OSTI)

    Not Available

    1988-01-01T23:59:59.000Z

    This study assesses a promising resource in central Utah as the potential site of a future commerical hot dry rock (HDR) facility for generating electricity. The results indicate that, if the HDR reservoir productivity equals expectations based on preliminary results from research projects to date, a 50 MWe HDR power facility at Roosevelt Hot Springs could generate power at cost competitive with coal-fired plants. However, it is imperative that the assumed productivity be demonstrated before funds are committed for a commercial facility. 72 refs., 39 figs., 38 tabs.

  9. Rock Energy Cooperative | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump to: navigation, searchRochester Gas &JumpRock

  10. Rim Rock Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | RoadmapRenewableGeothermalsourceOhio:RigbyRim Rock Wind

  11. ArchRock Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrim County,Delhi (NCT),Arborview CapitalArchRock Corporation

  12. DOE - Office of Legacy Management -- Slick Rock

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -K Le BlondSantaWyomingSlick Rock Slick

  13. Rock Lab Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab Analysis Jump

  14. Rock, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy Jump to: navigation, searchRock,

  15. Eagle Rock Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open Jump to:(RES-AEI) |Rock Geothermal Facility

  16. Water Resources Water Quality and Water Treatment

    E-Print Network [OSTI]

    Sohoni, Milind

    Water Resources TD 603 Lecture 1: Water Quality and Water Treatment CTARA Indian Institute of Technology, Bombay 2nd November, 2011 #12;OVERVIEW Water Quality WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TRE OVERVIEW OF THE LECTURE 1. Water Distribution Schemes Hand Pump

  17. High Temperature Thermal Array for Next Generation Solar Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This...

  18. Revegetation and rock cover for stabilization of inactive uranium mill tailings disposal sites. Final report

    SciTech Connect (OSTI)

    Beedlow, P.A.

    1984-05-01T23:59:59.000Z

    Guidelines for using vegetation and rock to protect inactive uranium mill tailings from erosion were developed by Pacific Northwest Laboratory as part of the Department of Energy's Uranium Mill Tailings Remedial Action Project (UMTRAP) Technology Development program. Information on soils, climate, and vegetation were collected for 20 inactive tailings sites in the western United States. Sites were grouped according to similarities in climate and vegetation. Soil loss for those sites was characterized using the Universal Soil Loss Equation. Test plots were used to evaluate (1) the interaction between vegetation and sealant barrier systems and (2) the effects of surface rock on soil water and vegetation. Lysimeter and simulation studies were used to direct and support field experiments. 49 references, 17 figures, 16 tables.

  19. Sensitivity analysis of GSI based mechanical characterization of rock mass

    E-Print Network [OSTI]

    Ván, P

    2012-01-01T23:59:59.000Z

    Recently, the rock mechanical and rock engineering designs and calculations are frequently based on Geological Strength Index (GSI) method, because it is the only system that provides a complete set of mechanical properties for design purpose. Both the failure criteria and the deformation moduli of the rock mass can be calculated with GSI based equations, which consists of the disturbance factor, as well. The aim of this paper is the sensitivity analysis of GSI and disturbance factor dependent equations that characterize the mechanical properties of rock masses. The survey of the GSI system is not our purpose. The results show that the rock mass strength calculated by the Hoek-Brown failure criteria and both the Hoek-Diederichs and modified Hoek-Diederichs deformation moduli are highly sensitive to changes of both the GSI and the D factor, hence their exact determination is important for the rock engineering design.

  20. Gulf Power- Solar Thermal Water Heating Program

    Broader source: Energy.gov [DOE]

    A limited amount of funding is still available for 2015. The program website will be updated if more fund become available. 

  1. ARM - Lesson Plans: Thermal Expansion of Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDC documentationBarrow, Alaska OutreachMakingPastSurfaceThe

  2. Thermal Waters of Nevada | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThe year openEnergy2003)Energy|2008)

  3. Thermodynamic and transport property modeling in super critical water

    E-Print Network [OSTI]

    Kutney, Michael C. (Michael Charles)

    2005-01-01T23:59:59.000Z

    Supercritical water oxidation (SCWO) is a thermally-based, remediation and waste-treatment process that relies on unique property changes of water when water is heated and pressurized above its critical point. Above its ...

  4. FEMP Designated Product Assessment for Commercial Gas Water Heaters

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    price for a condensing commercial water heater is $1,579.For condensing commercial water heaters with a thermalFound products for water heater in any product field and gas

  5. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect (OSTI)

    Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.

    2001-07-01T23:59:59.000Z

    Mechanically weak formations, such as chalks, high porosity sandstones, and marine sediments, pose significant problems for oil and gas operators. Problems such as compaction, subsidence, and loss of permeability can affect reservoir production operations. For example, the unexpected subsidence of the Ekofisk chalk in the North Sea required over one billion dollars to re-engineer production facilities to account for losses created during that compaction (Sulak 1991). Another problem in weak formations is that of shallow water flows (SWF). Deep water drilling operations sometimes encounter cases where the marine sediments, at shallow depths just below the seafloor, begin to uncontrollably flow up and around the drill pipe. SWF problems created a loss of $150 million for the Ursa development project in the U.S. Gulf Coast SWF (Furlow 1998a,b; 1999a,b). The goal of this project is to provide a database on both the rock mechanical properties and the geophysical properties of weak rocks and sediments. These could be used by oil and gas companies to detect, evaluate, and alleviate potential production and drilling problems. The results will be useful in, for example, pre-drill detection of events such as SWF's by allowing a correlation of seismic data (such as hazard surveys) to rock mechanical properties. The data sets could also be useful for 4-D monitoring of the compaction and subsidence of an existing reservoir and imaging the zones of damage. During the second quarter of the project the research team has: (1) completed acoustic sensor construction, (2) conducted reconnaissance tests to map the deformational behaviors of the various rocks, (3) developed a sample assembly for the measurement of dynamic elastic and poroelastic parameters during triaxial testing, and (4) conducted a detailed review of the scientific literature and compiled a bibliography of that review. During the first quarter of the project the research team acquired several rock types for testing including: (a) Danian chalk, (b) Cordoba Cream limestone, (c) Indiana limestone, (d) Ekofisk chalk, (e) Oil Creek sandstone, (f) unconsolidated Oil Creek sand, and (g) unconsolidated Brazos river sand. During the second quarter experiments were begun on these rock types. A series of reconnaissance experiments have been carried out on all but the Ekofisk (for which there is a preliminary data set already inhouse). A series of triaxial tests have been conducted on the Danian chalk, the Cordoba Cream limestone, the Indiana limestone, and sand samples to make a preliminary determination of the deformational mechanisms present in these samples.

  6. United States National Waste Terminal Storage argillaceous rock studies

    SciTech Connect (OSTI)

    Brunton, G.D.

    1981-01-01T23:59:59.000Z

    The past and present argillaceous rock studies for the US National Waste Terminal Storage Program consist of: (1) evaluation of the geological characteristics of several widespread argillaceous formations in the United States; (2) laboratory studies of the physical and chemical properties of selected argillaceous rock samples; and (3) two full-scale in situ surface heater experiments that simulate the emplacement of heat-generating radioactive waste in argillaceous rock.

  7. Evaluation of the hot-dry-rock geothermal potential of an area near Mountain Home, Idaho

    SciTech Connect (OSTI)

    Arney, B.H.; Goff, F.

    1982-05-01T23:59:59.000Z

    Evaluation of an area near Mountain Home, Idaho, was performed to assess the hot dry rock (HDR) potential of the prospect. The techniques reported include telluric and gravity profiling, passive seismic, hydrology and water chemistry surveys, and lineament analysis. Gravity and telluric surveys were unsuccessful in locating fractures buried beneath recent volcanics and sediments of the plain because density and conductivity contrasts were insufficient. Gravity modeling indicated areas where granite was not likely to be within drilling depth, and telluric profiling revealed an area in the northwest part of the prospect where higher conductivity suggested the presence of fractures or water or both, thereby making it unsuitable for HDR. Water geochemistry indicated that (hot water) reservoir temperatures do not exceed 100/sup 0/C. An area in the east central part of the prospect was delineated as most favorable for HDR development. Temperature is expected to be 200/sup 0/C at 3-km depth, and granitic rock of the Idaho Batholith should be intersected at 2- to 3-km depth.

  8. Thermal well-test method

    DOE Patents [OSTI]

    Tsang, C.F.; Doughty, C.A.

    1984-02-24T23:59:59.000Z

    A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir is disclosed. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

  9. Organic facies and systems tracts: Implications for source rock preservation and prediction

    SciTech Connect (OSTI)

    Kosters, E.C.; Vanderzwaan, F.J.; Gijsbert, J. (Univ. of Utrecht (Netherlands))

    1993-09-01T23:59:59.000Z

    Sequence stratigraphy is concerned with making predictions about reservoirs ahead of the drill, however, little attention has been paid to the configuration of organic-rich facies of source rock quality. We suggest that preservation of source rock type facies in clastic systems is mutually exclusive and time successive. The main database is a collection of cores and other samples through the Holocene Rhone delta. The early Holocene Transgressive Systems Tract (TST) contains five levels of channelization. The most significant peat bed is located immediately landward of the shoreline of maximum transgression (SMT). The Highstand Systems Tract (HST) consists of two parasequences, containing mostly laterally continuous strandplain complexes without peat. In addition to sufficient accommodation space, an important control on formation of fresh-water peats and organic-rich shelf muds is availability of river-induced nutrients. Peat quality, however, is best without riverine clastics. In a delta plain, a balance between these two controls may be reached when river-fed nutrients are trapped there indirectly. The potential for such a condition arises in a TST setting. On the shelf, eutrophication of marine habitats is also controlled by river-fed nutrients, but excess river clastics are detrimental to marine source rock quality. A balance between these two controls may be reached in HST settings where fine-grained riverine clastics are forced onto the shelf rather than in the delta plain. In this case, nutrient supply to the shelf results in large quantities of marine biomass. This biomass becomes sufficiently concentrated due to moderate fine-grained riverine sedimentation which guarantees burial and preservation. Thus, varying river-water and nutrient supply in TST and HST settings seems to control large-scale preservation patterns of both continental and marine organics. This hypothesis suggests further potential for using sequence stratigraphy for source rock occurrence.

  10. Advanced Thermal Simulator Testing: Thermal Analysis and Test Results

    SciTech Connect (OSTI)

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Reid, Robert; Adams, Mike; Davis, Joe [NASA Marshall Space Flight Center, Nuclear Systems Branch/ER24, MSFC, AL 35812 (United States)

    2008-01-21T23:59:59.000Z

    Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the potential development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a liquid metal cooled reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.

  11. PROCESS DESIGN AND CONTROL Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two Methods

    E-Print Network [OSTI]

    Kjelstrup, Signe

    PROCESS DESIGN AND CONTROL Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two for the production of hydrogen from water and high temperature thermal energy are presented and compared. Increasing for the production of hydrogen from water has received considerable attention.1 High temperature thermal energy

  12. REDUCING RISK IN LOW-PERMEABILITY GAS FORMATIONS: UNDERSTANDING THE ROCK/FLUID CHARACTERISTICS OF ROCKY MOUNTAIN LARAMIDE BASINS

    SciTech Connect (OSTI)

    Ronald C. Surdam

    2003-12-29T23:59:59.000Z

    An anomalous velocity model was constructed for the Wind River Basin (WRB) based on {approx}2000 mi of 2-D seismic data and 175 sonic logs, for a total of 132,000 velocity/depth profiles. Ten cross sections were constructed through the model coincident with known gas fields. In each cross section, an intense, anomalously slow velocity domain coincided with the gas-productive rock/fluid interval. The anomalous velocity model: (1) Easily isolates gas-charged rock/fluid systems characterized by anomalously slow velocities and water-rich rock/fluid systems characterized by normal velocities; and (2) Delineates the regional velocity inversion surface, which is characterized by steepening of the Ro/depth gradient, a significant increase in capillary displacement pressure, a significant change in formation water composition, and acceleration of the reaction rate of smectite-to-illite diagenesis in mixed-layer clays. Gas chimneys are observed as topographic highs on the regional velocity inversion surface. Beneath the surface are significant fluid-flow compartments, which have a gas-charge in the fluid phase and are isolated from meteoric water recharge. Water-rich domains may occur within regional gas-charged compartments, but are not being recharged from the meteoric water system (i.e., trapped water). The WRB is divided into at least two regionally prominent fluid-flow compartments separated by the velocity inversion surface: a water-dominated upper compartment likely under strong meteoric water drive and a gas-charged, anomalously pressured lower compartment. Judging from cross sections, numerous gas-charged subcompartments occur within the regional compartment. Their geometries and boundaries are controlled by faults and low-permeability rocks. Commercial gas production results when a reservoir interval characterized by enhanced porosity/permeability intersects one of these gas-charged subcompartments. The rock/fluid characteristics of the Rocky Mountain Laramide Basins (RMLB) described in this work determine the potential for significant, relatively unconventional, so-called ''basin-center'' hydrocarbon accumulations. If such accumulations occur, they will be characterized by the following critical attributes: (1) Location beneath a regional velocity inversion surface that typically is associated with low-permeability lithologies; (2) Anomalous pressure, both over- and underpressure, and when, less commonly, they appear to be normally pressured, they are not in contact with the meteoric water system; (3) A significant gas component in the regional multiphase fluid-flow system (water-gas-oil) that occurs beneath the regional velocity inversion surface; (4) Domains of intense gas charge (i.e., high gas saturation) within the regional multiphase fluid-flow system; (5) Compartmentalization of the rock/fluid system to a far greater extent beneath the regional velocity inversion surface than above it (i.e., convection of fluids across the regional velocity inversion surface is reduced or eliminated depending on the nature of the capillary properties of the low-permeability rocks associated with the inversion surface); (6) Commercial gas accumulations occurring at the intersection of reservoir intervals characterized by enhanced porosity and permeability and gas-charged domains; (7) Productive intersections of reservoir intervals and gas-charged domains, which are controlled by the structural, stratigraphic, and diagenetic elements affecting the rock/fluid system; and (8) No apparent meteoric water connection with the gas accumulations and gas columns up to several thousand feet in height. Because some of these critical attributes are not associated with conventional hydrocarbon accumulations, a new set of diagnostic tools are required in order to explore for and exploit these types of gas prospects efficiently and effectively. Some of these new diagnostic tools have been discussed in this report; other have been described elsewhere. In order to maximize risk reduction, it is recommended when exploring for these types of gas accu

  13. Velocity and attenuation in partially molten rocks

    SciTech Connect (OSTI)

    Mavko, G.M.

    1980-10-10T23:59:59.000Z

    Interpretation of seismic velocity and attenuation in partially molten rocks has been limited, with few exceptions, to models that assume the melt to be distributed either as spheres or as thin films. However, other melt phase geometries, such as interconnected tubes along grain edges, might equally well account for seismic observations if there is a much larger fraction of melt. Seismic velocity and attenuation are estimated in rocks in which the melt phase has the tube geometry, and the results are compared with results expected for the more familiar film model under similar conditions. For a given melt fraction, tubes are found to give moduli intermediate between moduli for rigid spherical inclusions and compliant films. For example, in polycrystalline olivine at 20 kbar the model predicts a decrease in V/sub s/ of 10% and a decrease in V/sub p/ of 5% at 0.05 melt fraction, without considering inelastic relaxation. Shear attenuation appears to be dominated by viscous flow of melt between the tubes and/or films. For olivine the tube model predicts the increment of relaxation due to melt, ..delta mu../..mu.., to be 0.01 at 0.05 melt fraction. Relaxation of the bulk modulus is dominated by flow between melt pockets of different shape, heat flow, and solid-melt phase change. If melt is present, considerable bulk attenuation is expected, although the relaxation may be observable only at long periods, outside the seismic body wave band.

  14. artificial rock fractures: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    drainage. ISRM 2003Technology roadmap for rock mechanics, South African Institute of Mining and Metallurgy, 2 Environmental Sciences and Ecology Websites Summary: subsidence...

  15. archean supracrustal rocks: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interesting than whales's research interests include sustainable transportation, life-cycle assessment, and the national security Zhang, Junshan 164 ELASTIC ROCK PROPERTIES OF...

  16. archean metavolcanic rocks: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interesting than whales's research interests include sustainable transportation, life-cycle assessment, and the national security Zhang, Junshan 156 ELASTIC ROCK PROPERTIES OF...

  17. acid rock discharges: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interesting than whales's research interests include sustainable transportation, life-cycle assessment, and the national security Zhang, Junshan 226 ELASTIC ROCK PROPERTIES OF...

  18. alkalic rock: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interesting than whales's research interests include sustainable transportation, life-cycle assessment, and the national security Zhang, Junshan 120 ELASTIC ROCK PROPERTIES OF...

  19. Elastic properties of saturated porous rocks with aligned fractures

    E-Print Network [OSTI]

    2003-12-02T23:59:59.000Z

    This unexpected result is caused by the wave-induced flow of fluids between pores and fractures. ..... For non-fractured rock setting fracture weaknesses. DN and ...

  20. average sedimentary rock: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    challenge of interpreting environmental tracer concentrations in fractured rock and carbonate aquifers Multidisciplinary Databases and Resources Websites Summary: are reported to...

  1. alum rock sulfur: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -resolution carbon and sulfur isotope profiles from Early to Middle Ordovician carbonate rocks from the Argentine Investigation of isotopic compositions recorded in...

  2. altered sedimentary rocks: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    challenge of interpreting environmental tracer concentrations in fractured rock and carbonate aquifers Multidisciplinary Databases and Resources Websites Summary: are reported to...

  3. Poroelastic damage rheology: Dilation, compaction, and failure of rocks

    E-Print Network [OSTI]

    Lyakhovsky, Vladimir

    Poroelastic damage rheology: Dilation, compaction, and failure of rocks Yariv Hamiel Institute December 2004; Published 26 January 2005. Hamiel, Y., V. Lyakhovsky, and A. Agnon (2005), Poroelastic

  4. Reservoir Investigations on the Hot Dry Rock Geothermal System...

    Open Energy Info (EERE)

    Mexico- Tracer Test Results Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Reservoir Investigations on the Hot Dry Rock Geothermal System,...

  5. Rock Sampling At San Francisco Volcanic Field Area (Warpinski...

    Open Energy Info (EERE)

    Field Area Exploration Technique Rock Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Northern Arizona University has re-assessed the existing exploration...

  6. AltaRock Energy Announces Successful Multiple-Zone Stimulation...

    Office of Environmental Management (EM)

    Announces Successful Multiple-Zone Stimulation of Well at the Newberry Enhanced Geothermal Systems Demonstration AltaRock Energy Announces Successful Multiple-Zone Stimulation...

  7. Lithology and Alteration Mineralogy of Reservoir Rocks at Coso...

    Open Energy Info (EERE)

    of the upwelling plume were investigated using petrographic and analytical analyses of reservoir rock and vein material. The nature of the low-angle outflow zone and the...

  8. Lithology and alteration mineralogy of reservoir rocks at Coso...

    Open Energy Info (EERE)

    of the upwelling plume were investigated using petrographic and analytical analyses of reservoir rock and vein material. The nature of the low-angle outflow zone and the...

  9. Carbonation Mechanism of Reservoir Rock by Supercritical Carbon...

    Open Energy Info (EERE)

    Task 3: Mechanical behaviors of carbonated minerals. - Task 4: Modeling of CO2- reservoir rock interactions. - Task 5: Preparation of report covering the four tasks previous task,...

  10. Determination of Transport Properties From Flowing Fluid Temperature LoggingIn Unsaturated Fractured Rocks: Theory And Semi-Analytical Solution

    SciTech Connect (OSTI)

    Mukhopadhyay, Sumit; Tsang, Yvonne W.

    2008-08-01T23:59:59.000Z

    Flowing fluid temperature logging (FFTL) has been recently proposed as a method to locate flowing fractures. We argue that FFTL, backed up by data from high-precision distributed temperature sensors, can be a useful tool in locating flowing fractures and in estimating the transport properties of unsaturated fractured rocks. We have developed the theoretical background needed to analyze data from FFTL. In this paper, we present a simplified conceptualization of FFTL in unsaturated fractured rock, and develop a semianalytical solution for spatial and temporal variations of pressure and temperature inside a borehole in response to an applied perturbation (pumping of air from the borehole). We compare the semi-analytical solution with predictions from the TOUGH2 numerical simulator. Based on the semi-analytical solution, we propose a method to estimate the permeability of the fracture continuum surrounding the borehole. Using this proposed method, we estimated the effective fracture continuum permeability of the unsaturated rock hosting the Drift Scale Test (DST) at Yucca Mountain, Nevada. Our estimate compares well with previous independent estimates for fracture permeability of the DST host rock. The conceptual model of FFTL presented in this paper is based on the assumptions of single-phase flow, convection-only heat transfer, and negligible change in system state of the rock formation. In a sequel paper [Mukhopadhyay et al., 2008], we extend the conceptual model to evaluate some of these assumptions. We also perform inverse modeling of FFTL data to estimate, in addition to permeability, other transport parameters (such as porosity and thermal conductivity) of unsaturated fractured rocks.

  11. Simulation of CO2 Sequestration at Rock Spring Uplift, Wyoming: Heterogeneity and Uncertainties in Storage Capacity, Injectivity and Leakage

    SciTech Connect (OSTI)

    Deng, Hailin [Los Alamos National Laboratory; Dai, Zhenxue [Los Alamos National Laboratory; Jiao, Zunsheng [Wyoming State Geological Survey; Stauffer, Philip H. [Los Alamos National Laboratory; Surdam, Ronald C. [Wyoming State Geological Survey

    2011-01-01T23:59:59.000Z

    Many geological, geochemical, geomechanical and hydrogeological factors control CO{sub 2} storage in subsurface. Among them heterogeneity in saline aquifer can seriously influence design of injection wells, CO{sub 2} injection rate, CO{sub 2} plume migration, storage capacity, and potential leakage and risk assessment. This study applies indicator geostatistics, transition probability and Markov chain model at the Rock Springs Uplift, Wyoming generating facies-based heterogeneous fields for porosity and permeability in target saline aquifer (Pennsylvanian Weber sandstone) and surrounding rocks (Phosphoria, Madison and cap-rock Chugwater). A multiphase flow simulator FEHM is then used to model injection of CO{sub 2} into the target saline aquifer involving field-scale heterogeneity. The results reveal that (1) CO{sub 2} injection rates in different injection wells significantly change with local permeability distributions; (2) brine production rates in different pumping wells are also significantly impacted by the spatial heterogeneity in permeability; (3) liquid pressure evolution during and after CO{sub 2} injection in saline aquifer varies greatly for different realizations of random permeability fields, and this has potential important effects on hydraulic fracturing of the reservoir rock, reactivation of pre-existing faults and the integrity of the cap-rock; (4) CO{sub 2} storage capacity estimate for Rock Springs Uplift is 6614 {+-} 256 Mt at 95% confidence interval, which is about 36% of previous estimate based on homogeneous and isotropic storage formation; (5) density profiles show that the density of injected CO{sub 2} below 3 km is close to that of the ambient brine with given geothermal gradient and brine concentration, which indicates CO{sub 2} plume can sink to the deep before reaching thermal equilibrium with brine. Finally, we present uncertainty analysis of CO{sub 2} leakage into overlying formations due to heterogeneity in both the target saline aquifer and surrounding formations. This uncertainty in leakage will be used to feed into risk assessment modeling.

  12. Seasonal thermal energy storage

    SciTech Connect (OSTI)

    Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

    1984-05-01T23:59:59.000Z

    This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

  13. Molecular fossil constraints on the water column structure of the CenomanianTuronian Western Interior Seaway, USA

    E-Print Network [OSTI]

    Kenig, Fabien

    . Rock±Eval and biomarker analyses indicate an east±west thermal maturity trend due to progressive deeper site the source of extractable organic matter is dominantly marine with minor terrestrial contribution

  14. An experimental and theoretical study to relate uncommon rock/fluid properties to oil recovery. Final report

    SciTech Connect (OSTI)

    Watson, R.

    1995-07-01T23:59:59.000Z

    Waterflooding is the most commonly used secondary oil recovery technique. One of the requirements for understanding waterflood performance is a good knowledge of the basic properties of the reservoir rocks. This study is aimed at correlating rock-pore characteristics to oil recovery from various reservoir rock types and incorporating these properties into empirical models for Predicting oil recovery. For that reason, this report deals with the analyses and interpretation of experimental data collected from core floods and correlated against measurements of absolute permeability, porosity. wettability index, mercury porosimetry properties and irreducible water saturation. The results of the radial-core the radial-core and linear-core flow investigations and the other associated experimental analyses are presented and incorporated into empirical models to improve the predictions of oil recovery resulting from waterflooding, for sandstone and limestone reservoirs. For the radial-core case, the standardized regression model selected, based on a subset of the variables, predicted oil recovery by waterflooding with a standard deviation of 7%. For the linear-core case, separate models are developed using common, uncommon and combination of both types of rock properties. It was observed that residual oil saturation and oil recovery are better predicted with the inclusion of both common and uncommon rock/fluid properties into the predictive models.

  15. Thermally stabilized heliostat

    DOE Patents [OSTI]

    Anderson, Alfred J. (Littleton, CO)

    1983-01-01T23:59:59.000Z

    An improvement in a heliostat having a main support structure and pivoting and tilting motors and gears and a mirror module for reflecting solar energy onto a collector, the improvement being characterized by an internal support structure within each mirror module and front and back sheets attached to the internal support structure, the front and back sheets having the same coefficient of thermal expansion such that no curvature is induced by temperature change, and a layer of adhesive adhering the mirror to the front sheet. The adhesive is water repellent and has adequate set strength to support the mirror but has sufficient shear tolerance to permit the differential expansion of the mirror and the front sheet without inducing stresses or currature effect. The adhesive also serves to dampen fluttering of the mirror and to protect the mirror backside against the adverse effects of weather. Also disclosed are specific details of the preferred embodiment.

  16. Water quality for secondary and tertiary oil recovery

    SciTech Connect (OSTI)

    Michnick, M.J.

    1983-01-01T23:59:59.000Z

    A key element in many secondary and tertiary oil recovery processes is the injection of water into an oil-bearing formation. Water is the fluid which displaces the oil in the pore space of the rock. A successful waterflood requires more than the availability of water and the pumps and piping to inject the water into the formation. It requires an understanding of how water enters the oil bearing formation and what happens once the injected water comes into contact with the rock or sand, the oil, and the water already in the reservoir. Problems in injectivity will arise unless care and constant monitoring are exercised in the water system for a flood operation. This study examines water availability and quality in relation to waterflooding.

  17. Hot dry rock geothermal energy. Draft final report

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This second EPRI workshop on hot dry rock (HDR) geothermal energy, held in May 1994, focused on the status of worldwide HDR research and development and used that status review as the starting point for discussions of what could and should be done next: by U.S. federal government, by U.S. industry, by U.S. state governments, and by international organizations or through international agreements. The papers presented and the discussion that took place indicate that there is a community of researchers and industrial partners that could join forces, with government support, to begin a new effort on hot dry rock geothermal development. This new heat mining effort would start with site selection and confirmatory studies, done concurrently. The confirmatory studies would test past evaluations against the most current results (from the U.S. site at Fenton Hill, New Mexico, and from the two sites in Japan, the one in Russia, and the two in western Europe) and the best models of relevant physical and economic aspects. Site selection would be done in the light of the confirmatory studies and would be influenced by the need to find a site where success is probable and which is representative enough of other sites so that its success would imply good prospects for success at numerous other sites. The test of success would be circulation between a pair of wells, or more wells, in a way that confirmed, with the help of flow modeling, that a multi-well system would yield temperatures, flows and lifetimes that support economically feasible power generation. The flow modeling would have to have previously achieved its own confirmation from relevant data taken from both heat mining and conventional hydrothermal geothermal experience. There may be very relevant experience from the enhancement of ''hot wet rock'' sites, i.e., sites where hydrothermal reservoirs lack, or have come to lack, enough natural water or steam and are helped by water injected cold and produced hot. The new site would have to be selected in parallel with the confirmatory studies because it would have to be modeled as part of the studies and because its similarity to other candidate sites must be known well enough to assure that results at the selected site are relevant to many others. Also, the industry partners in the joint effort at the new site must be part of the confirmatory studies, because they must be convinced of the economic feasibility. This meeting may have brought together the core of people who can make such a joint effort take place. EPRI sponsored the organization of this meeting in order to provide utilities with an update on the prospects for power generation via heat mining. Although the emerging rules for electric utilities competing in power generation make it very unlikely that the rate-payers of any one utility (or small group of utilities) can pay the differential to support this new heat mining research and development effort, the community represented at this meeting may be able to make the case for national or international support of a new heat mining effort, based on the potential size and economics of this resource as a benefit for the nation as a whole and as a contribution to reduced emissions of fossil CO{sub 2} worldwide.

  18. Micromechanics analysis of thermal expansion and thermal pressurization of a hardened cement paste

    E-Print Network [OSTI]

    Ghabezloo, Siavash

    2011-01-01T23:59:59.000Z

    The results of a macro-scale experimental study of the effect of heating on a fluid-saturated hardened cement paste are analysed using a multi-scale homogenization model. The analysis of the experimental results revealed that the thermal expansion coefficient of the cement paste pore fluid is anomalously higher than the one of pure bulk water. The micromechanics model is calibrated using the results of drained and undrained heating tests and permits the extrapolation of the experimentally evaluated thermal expansion and thermal pressurization parameters to cement pastes with different water-to-cement ratios. It permits also to calculate the pore volume thermal expansion coefficient f a which is difficult to evaluate experimentally. The anomalous pore fluid thermal expansion is also analysed using the micromechanics model.

  19. Thermal Control & System Integration

    Broader source: Energy.gov [DOE]

    The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

  20. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01T23:59:59.000Z

    and C. Y. Zhao, "A review of solar collectors and thermalenergy storage in solar thermal applications," Appliedon photovoltaic/thermal hybrid solar technology," Applied

  1. PTYS 109 LAB EXPLORATION AND DISCOVERY IN PLANETARY SCIENCE ROCKS AND MINERALS 133

    E-Print Network [OSTI]

    Cohen, Barbara Anne

    PTYS 109 LAB EXPLORATION AND DISCOVERY IN PLANETARY SCIENCE ROCKS AND MINERALS 133 Rocks and Minerals I. OBJECTIVES One of the many ways to study Earth is by examining the rocks that make up its types of rocks and minerals; · determine the formation and the history of each rock and mineral; · infer

  2. Predicting flow through low-permeability, partially saturated, fractured rock: A review of modeling and experimental efforts at Yucca Mountain

    SciTech Connect (OSTI)

    Eaton, R.R.; Bixler, N.E.; Glass, R.J.

    1989-11-01T23:59:59.000Z

    Current interest in storing high-level nuclear waste in underground repositories has resulted in an increased effort to understand the physics of water flow through low-permeability rock. The US Department of Energy is investigating a prospective repository site located in volcanic ash (tuff) hundreds of meters above the water table at Yucca Mountain, Nevada. Consequently, mathematical models and experimental procedures are being developed to provide a better understanding of the hydrology of this low-permeability, partially saturated, fractured rock. Modeling water flow in the vadose zone in soils and in relatively permeable rocks such as sandstone has received considerable attention for many years. The treatment of flow (including nonisothermal conditions) through materials such as the Yucca Mountain tuffs, however, has not received the same level of attention, primarily because it is outside the domain of agricultural and petroleum technology. This paper reviews the status of modeling and experimentation currently being used to understand and predict water flow at the proposed repository site. Several areas of research needs emphasized by the review are outlined. The extremely nonlinear hydraulic properties of these tuffs in combination with their heterogeneous nature makes it a challenging and unique problem from a computational and experimental view point. 101 refs., 14 figs., 1 tab.

  3. SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES

    SciTech Connect (OSTI)

    Gary Mavko

    2003-06-30T23:59:59.000Z

    As part of our study on ''Relationships between seismic properties and rock microstructure'', we have studied (1) Effects of pore texture on porosity, permeability, and sonic velocity. We show how a relation can be found between porosity, permeability, and velocity by separating the formations of rocks with similar pore textures.

  4. Geophysical detection and structural characterization of discontinuities in rock

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Geophysical detection and structural characterization of discontinuities in rock slopes (J. Deparis geophysical methods (seismic, electric and electromagnetic) are available to address this problem, differing and geophysical methods for characterizing the rock mass. Section 2 is dedicated to a review of the main

  5. RUPTURE BY DAMAGE ACCUMULATION IN ROCKS David Amitrano

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    RUPTURE BY DAMAGE ACCUMULATION IN ROCKS David Amitrano LIRIGM, Université J. Fourier, Grenoble of rocks is associated with microcracks nucleation and propagation, i.e. damage. The accumulation of damage as strength and modulus. The damage process can be studied both statically by direct observation of thin

  6. ROCK: A Robust Clustering Algorithm for Categorical Attributes

    E-Print Network [OSTI]

    Pennsylvania, University of

    ROCK: A Robust Clustering Algorithm for Categorical Attributes Sudipto Guha Stanford University/proximity between a pair of data points. We develop a robust hierarchical clustering algorithm ROCK that employs measures that are relevant in situations where a domain expert/similarity table is the only source

  7. Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide

    Broader source: Energy.gov [DOE]

    Project Objectives: Elucidate comprehensively the carbonation reaction mechanisms between supercritical carbon dioxide (scCO2) and reservoir rocks consisting of different mineralogical compositions in aqueous and non-aqueous environments at temperatures of up to 250ºC, and to develop chemical modeling of CO2-reservior rock interactions.

  8. ELASTIC ROCK PROPERTIES OF TIGHT GAS SANDSTONES FOR RESERVOIR CHARACTERIZATION

    E-Print Network [OSTI]

    to successfully produce low permeability gas reservoirs. My study links rock physics to well log and seismic data shales to reservoir sandstones. Typically, the presence of gas-saturated sandstones lowers the Vp/Vs evenELASTIC ROCK PROPERTIES OF TIGHT GAS SANDSTONES FOR RESERVOIR CHARACTERIZATION AT RULISON FIELD

  9. On The Thermal Consolidation Of Boom Clay

    E-Print Network [OSTI]

    Delage, Pierre; Cui, Yu-Jun

    2012-01-01T23:59:59.000Z

    When a mass of saturated clay is heated, as in the case of host soils surrounding nuclear waste disposals at great depth, the thermal expansion of the constituents generates excess pore pressures. The mass of clay is submitted to gradients of pore pressure and temperature, to hydraulic and thermal flows, and to changes in its mechanical properties. In this work, some of these aspects were experimentally studied in the case of Boom clay, so as to help predicting the response of the soil, in relation with investigations made in the Belgian underground laboratory at Mol. Results of slow heating tests with careful volume change measurements showed that a reasonable prediction of the thermal expansion of the clay-water system was obtained by using the thermal properties of free water. In spite of the density of Boom clay, no significant effect of water adsorption was observed. The thermal consolidation of Boom clay was studied through fast heating tests. A simple analysis shows that the hydraulic and thermal trans...

  10. A comparative simulation study of coupled THM processes and their effect on fractured rock permeability around nuclear waste repositories

    E-Print Network [OSTI]

    Rutqvist, Jonny

    2008-01-01T23:59:59.000Z

    European countries. The initial rock properties for the twoinduced changes in rock properties. The purpose of the model3. Some basic THM rock properties Parameter Bulk Density, [

  11. RADIOACTIVE WASTE STORAGE IN MINED CAVERNS IN CRYSTALLINE ROCK-RESULTS OF FIELD INVESTIGATIONS AT STRIPA, SWEDEN

    E-Print Network [OSTI]

    Witherspoon, P.A.

    2010-01-01T23:59:59.000Z

    and M. Board. 1980. "Rock Properties and Their Effect onerature dependence of rock properties has been taken intomeasurements of the rock properties we need to understand

  12. Characterization of Spatial Variability of Hydrogeologic Properties for Unsaturated Flow in the Fractured Rocks at Yucca Mountain, Nevada

    E-Print Network [OSTI]

    Zhou, Quanlin; Bodvarsson, Gudmundur S.; Liu, Hui-Hai; Oldenburg, Curtis M.

    2002-01-01T23:59:59.000Z

    variables and prior rock properties are obtained from theircalibration of rock properties. Zhou et al, CharacterizationLateral variability of rock properties can be seen from the

  13. Increased thermal conductivity monolithic zeolite structures

    DOE Patents [OSTI]

    Klett, James (Knoxville, TN); Klett, Lynn (Knoxville, TN); Kaufman, Jonathan (Leonardtown, MD)

    2008-11-25T23:59:59.000Z

    A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

  14. Optimization of multi-pressure himidification-dehumidification desalination using thermal vapor compression and hybridization

    E-Print Network [OSTI]

    Mistry, Karan Hemant

    Humidification-dehumidification (HD or HDH) desalination, and specifically HD driven by a thermal vapor compressor (TVC), is a thermal desalination method that has the potential to produce potable water efficiently in order ...

  15. 1.4 PETROPHYSICS: Combined Rock and Fluid Character Integration of geological and petrophysical data allows development of a rock-fluid model for

    E-Print Network [OSTI]

    Schechter, David S.

    data allows development of a rock-fluid model for upper Spraberry rocks. This study identifies the different rock types that comprise the subject reservoirs, marginal reservoirs and non-reservoir rocks shales, clay rich siltstones and very fine sandstones units uses gamma-ray logs (Fig.1.2-1) and is widely

  16. The effect of rock fragments on the hydraulic properties of soils

    SciTech Connect (OSTI)

    Zimmerman, R.W.; Bodvarsson, G.S.

    1995-04-01T23:59:59.000Z

    Many soils contain rock fragments the sizes of which are much larger than the average pore size of the sieved soil. Due to the fact that these fragments are often fairly large in relation to the soil testing apparatus, it is common to remove them before performing hydrologic tests on the soil. The question then arises as to whether or not there is a simple way to correct the laboratory-measured values to account for the fragments, so as to arrive at property values that can apply to the soil in situ. This question has arisen in the surface infiltration studies that are part of the site characterization program at Yucca Mountain, where accurate values of the hydraulic conductivities of near-surface soils are needed in order to accurately estimate infiltration rates. Although this problem has been recognized for some time, and numerous review articles have been written there are as yet no proven models to account for the effect of rock fragments on hydraulic conductivity and water retention. In this report we will develop some simple physically-based models to account for the effects of rock fragments on gross hydrological properties, and apply the resulting equations to experimental data taken from the literature. These models are intended for application to data that is currently being collected by scientists from the USGS on near-surface soils from Yucca Mountain.

  17. 7-88 A geothermal power plant uses geothermal liquid water at 160C at a specified rate as the heat source. The actual and maximum possible thermal efficiencies and the rate of heat rejected from this power plant

    E-Print Network [OSTI]

    Bahrami, Majid

    7-31 7-88 A geothermal power plant uses geothermal liquid water at 160ºC at a specified rate and potential energy changes are zero. 3 Steam properties are used for geothermal water. Properties Using saturated liquid properties, the source and the sink state enthalpies of geothermal water are (Table A-4) k

  18. Photovoltaic-Thermal New Technology Demonstration

    SciTech Connect (OSTI)

    Dean, Jesse [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McNutt, Peter [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lisell, Lars [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burch, Jay [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jones, Dennis [Group14 Engineering, Inc., Denver, CO (United States); Heinicke, David [Group14 Engineering, Inc., Denver, CO (United States)

    2015-01-01T23:59:59.000Z

    Photovoltaic-thermal (PV-T) hybrid solar systems offer increased electricity production by cooling the PV panel, and using the removed thermal energy to heat water - all in the same footprint as a standard PV system. GPG's assessment of the nation's first large-scale PV-T system installed at the Thomas P. O'Neill, Jr. Federal Building in Boston, MA, provided numerous lessons learned in system design, and identified a target market of locations with high utility costs and electric hot water backup.

  19. Simulation of Thermal Plant Optimization and Hydraulic Aspects of Thermal Distribution Loops for Large Campuses

    E-Print Network [OSTI]

    Chen, Q.

    simulation models for chilled water and heating hot water distribution systems. The simulation model was used in a $2.3 million Ross Street chilled water pipe replacement project at Texas A&M University. A second project conducted at the University... of Texas at San Antonio was used as an example to demonstrate how to identify and design an optimal distribution system by using a simulation model. The author found that the minor losses of these closed loop thermal distribution systems...

  20. Evidence for the incorporation of lead into barite from waste rock pile materials

    E-Print Network [OSTI]

    COURTIN-NOMADE, ALEXANDRA

    2009-01-01T23:59:59.000Z

    into Barite from Waste Rock Pile Materials A L E X A N D R Awithin the waste rock pile resulting from the excavationdeveloped within waste rock pile originated from a former