National Library of Energy BETA

Sample records for thermal unit conversion

  1. Unit 9: Spatial Data Conversion

    E-Print Network [OSTI]

    9, CCTP; Dodson, Rustin

    1998-01-01

    UNIT 9: SPATIAL DATA CONVERSION Written by Rustin Dodson,Programs Page 1 Unit 9: Spatial Data Conversion freezingPrograms Page 2 Unit 9: Spatial Data Conversion Export USGS

  2. Ocean Thermal Energy Conversion Basics

    Broader source: Energy.gov [DOE]

    A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity.

  3. Unit Conversions and Formulas to Know

    E-Print Network [OSTI]

    rroames

    2007-12-06

    Math 139. Unit Conversions and Formulas to Memorize. Fall 2007. Unit Conversions to know: 1 foot = 12 inches. 1 centimeter = 10 millimeters. 1 yard = 3 feet.

  4. OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT

    E-Print Network [OSTI]

    Sands, M.Dale

    2013-01-01

    M.D. (editor). 1980. Ocean Thermal Energy Conversion Draft1980 :. i l OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTALDevelopment Plan. Ocean Thermal Energy Conversion. U.S. DOE

  5. DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01

    1979. Commercial ocean thermal energy conversion ( OTEC)field of ocean thermal energy conversion discharges. I~. L.II of the Sixth Ocean Thermal Energy conversion Conference.

  6. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01

    1979. Commercial ocean thermal energy conversion (OTEC)of the Fifth Ocean Thermal Energy Conversion Conference,Sands. 1980. Ocean thermal energy conversion (OTEC) pilot

  7. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01

    310, the Ocean the Ocean Energy Thermal Energy Conversionfor the commercialization of ocean thermal energy conversionOpen cycle ocean thermal energy conversion. A preliminary

  8. Ocean Thermal Energy Conversion Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat...

  9. Evaluation of Thermal to Electrical Energy Conversion of High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules Evaluation of Thermal to Electrical Energy Conversion of High Temperature...

  10. Thermal insulated glazing unit

    DOE Patents [OSTI]

    Selkowitz, S.E.; Arasteh, D.K.; Hartmann, J.L.

    1988-04-05

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas. 2 figs.

  11. Thermal insulated glazing unit

    DOE Patents [OSTI]

    Selkowitz, Stephen E. (Piedmont, CA); Arasteh, Dariush K. (Oakland, CA); Hartmann, John L. (Seattle, WA)

    1991-01-01

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas.

  12. Assessment of ocean thermal energy conversion

    E-Print Network [OSTI]

    Muralidharan, Shylesh

    2012-01-01

    Ocean thermal energy conversion (OTEC) is a promising renewable energy technology to generate electricity and has other applications such as production of freshwater, seawater air-conditioning, marine culture and chilled-soil ...

  13. Biomass thermal conversion research at SERI

    SciTech Connect (OSTI)

    Milne, T. A.; Desrosiers, R. E.; Reed, T. B.

    1980-09-01

    SERI's involvement in the thermochemical conversion of biomass to fuels and chemicals is reviewed. The scope and activities of the Biomass Thermal Conversion and Exploratory Branch are reviewed. The current status and future plans for three tasks are presented: (1) Pyrolysis Mechanisms; (2) High Pressure O/sub 2/ Gasifier; and (3) Gasification Test Facility.

  14. Unit Conversion Factors Quantity Equivalent Values

    E-Print Network [OSTI]

    Ashurst, W. Robert

    Unit Conversion Factors Quantity Equivalent Values Mass 1 kg = 1000 g = 0.001 metric ton = 2·R 10.73 psia·ft3 lbmol·R 62.36 liter·torr mol·K 0.7302 ft3·atm lbmol·R Temperature Conversions: T

  15. Conversion of Units of Measurement Gordon S. Novak Jr. \\Lambda

    E-Print Network [OSTI]

    Novak Jr., Gordon S.

    Conversion of Units of Measurement Gordon S. Novak Jr. \\Lambda Department of Computer Sciences conversion and unit checking in a programming language is described. Index Terms -- unit conversion, unit if the type system does not include units of measurement. Conversion of units must be done explicitly

  16. Ocean Thermal Energy Conversion: Potential Environmental Impacts and Fisheries

    E-Print Network [OSTI]

    Hawai'i at Manoa, University of

    Ocean Thermal Energy Conversion: Potential Environmental Impacts and Fisheries Christina M Comfort Institute #12;Ocean Thermal Energy Conversion (OTEC) · Renewable energy ­ ocean thermal gradient · Large will unavoidably affect pelagic fish... ­ Noise and water pollution ­ FAD effects ­ Entrainment and Impingement

  17. Ocean Thermal Energy Conversion LUIS A. VEGA

    E-Print Network [OSTI]

    demand due to emerging economies like China, India, and Brazil. Coal and natural gas resources 7296 OOcean Thermal Energy Conversion LUIS A. VEGA Hawaii Natural Energy Institute, School of Ocean the OTEC plant. The difference between gross power and in-plant power consumption needed to run all sweater

  18. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    making direct thermal energy storage methods, e.g. thosethermal shorting, that limits the energy conversion efficiency of direct thermoelectric energy conversion methods.

  19. Novel Transparent Phosphor Conversion Matrix with High Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transparent Phosphor Conversion Matrix with High Thermal Conductivity for Next-Generation Phosphor-Converted LED-based Solid State Lighting Novel Transparent Phosphor Conversion...

  20. Address conversion unit for multiprocessor system

    SciTech Connect (OSTI)

    Fava, T.F.; Lary, R.F.; Blackledge, R.

    1987-03-03

    An address conversion unit is described for use in one processor in a multi-processor data processing system including a common memory, the processors and common memory being interconnected by a common bus including means for transferring address signals defining a common address space. The processor includes private bus means including means for transferring signals including address signals defining a private address space. A processor unit means is connected to the private bus means and includes means for transmitting and receiving signals including address signals over the private bus means for engaging in data transfers thereover. The address conversion unit is connected to the private bus means and common bus means for receiving address signals over the private bus means from the processor unit means in the private address space. The unit comprises: A. pointer storage means for storing a pointer identifying a portion of the common bus memory space; B. pointer generation means connected to receive a common bus address and for generating a pointer in response thereto for storage in the pointer storage means; and C. common bus address generation means connected to the private bus and the pointer storage means for receiving an address from the processor unit means and for generating a common bus address in response thereto. The common bus address is used to initiate transfers between the processor unit means and the common memory over the common bus.

  1. Quantum-coupled single-electron thermal to electric conversion scheme

    E-Print Network [OSTI]

    Wu, D. M.

    Thermal to electric energy conversion with thermophotovoltaics relies on radiation emitted by a hot body, which limits the power per unit area to that of a blackbody. Microgap thermophotovoltaics take advantage of evanescent ...

  2. Units and unit conversions important for ENES 100 Handout prepared by Prof. Sheryl Ehrman, Fall 2008

    E-Print Network [OSTI]

    Jacob, Bruce

    Units and unit conversions important for ENES 100 Handout prepared by Prof. Sheryl Ehrman, Fall 2008 The objective of this handout is to review the topic of units and unit conversions. Measured combine units. 100 kilometers = 200 km 0.5 h h Unit Conversions: The equivalence between two expressions

  3. OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT

    SciTech Connect (OSTI)

    Sands, M.Dale

    1980-08-01

    Significant achievements in Ocean Thermal Energy Conversion (OTEC) technology have increased the probability of producing OTEC-derived power in this decade with subsequent large-scale commercialization to follow by the turn of the century. Under U.S. Department of Energy funding, Interstate Electronics has prepared an OTEC Programmatic Environmental Assessment (EA) that considers tne development, demonstration, and commercialization of OTEC power systems. The EA considers several tecnnological designs (open cycle and closed cycle), plant configurations (land-based, moored, and plantship), and power usages (baseload electricity and production of ammonia and aluminum). Potencial environmental impacts, health and safety issues, and a status update of international, federal, and state plans and policies, as they may influence OTEC deployments, are included.

  4. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    the consumed thermal energy, and this process can be greatlythermal energy to electric energy must be based on processesprocess of an indirect energy conversion system consists of multiple steps to convert thermal

  5. A PRELIMINARY EVALUATION OF IMPINGEMENT AND ENTRAINMENT BY OCEAN THERMAL ENERGY CONVERSION (OTEC) PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2013-01-01

    nental Assessment, Ocean Thermal Energy Conversion (OTEC)Impact Assessment Ocean Thermal Energy Conversion (OTEC),Intake Screens for Ocean Thermal Energy M.S. Thesis. Oregon

  6. Open cycle ocean thermal energy conversion system

    DOE Patents [OSTI]

    Wittig, J. Michael (West Goshen, PA)

    1980-01-01

    An improved open cycle ocean thermal energy conversion system including a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirt-conduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flowpath of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a transversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure. The turbine blades are substantially radially coextensive with the steam flowpath and receive steam from the evaporator through an annular array of prestressed concrete stationary vanes which extend between the inner and outer casings to provide structural support therefor and impart a desired flow direction to the steam.

  7. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01

    storage and direct solar energy conversion to work. FocusManagement and Solar Energy Conversion Applications By DusanThermal Management and Solar Energy Conversion Applications

  8. Conversion of formulae and quantities between unit systems

    E-Print Network [OSTI]

    Lehtinen, Nikolai G.

    Conversion of formulae and quantities between unit systems Nikolai G. Lehtinen March 1, 2002 1 cgs that to convert values, one should divide by the value in the third column, using c in SI system of units. E quantities don't change We use the fact that 0 contains the unit of charge (Coulomb) in 2 power and µ0

  9. Conversion of formulae and quantities between unit systems

    E-Print Network [OSTI]

    Lehtinen, Nikolai G.

    Conversion of formulae and quantities between unit systems Nikolai G. Lehtinen November 4, 2010 1 units, we define magnetic charge and related quantities according to the Ampere-meter convention (i. The completely electric-magnetic symmetrical convention is the Weber convention (i.e., magnetic charge unit

  10. Prediction and Realisation of Conversational Characteristics by Utilising Spontaneous Speech for Unit Selection

    E-Print Network [OSTI]

    Edinburgh, University of

    lacks all the attitude, intention and spontaneity associated with everyday conversations. Unit selection sound more conversational without degrading naturalness. Index Terms: speech synthesis, unit selection, conversation, spontaneous speech, lexical fillers, filled pauses 1. Introduction Unit selection speech

  11. Is G a conversion factor or a fundamental unit?

    E-Print Network [OSTI]

    Fiorentini, G; Vysotsky, M I

    2001-01-01

    By using fundamental units c, h, G as conversion factors one can easily transform the dimensions of all observables. In particular one can make them all ``geometrical'', or dimensionless. However this has no impact on the fact that there are three fundamental units, G being one of them. Only experiment can tell us whether G is basically fundamental.

  12. Is G a conversion factor or a fundamental unit?

    E-Print Network [OSTI]

    G. Fiorentini; L. Okun; M. Vysotsky

    2001-12-04

    By using fundamental units c, h, G as conversion factors one can easily transform the dimensions of all observables. In particular one can make them all ``geometrical'', or dimensionless. However this has no impact on the fact that there are three fundamental units, G being one of them. Only experiment can tell us whether G is basically fundamental.

  13. Ocean Thermal Energy Conversion Mostly about USA

    E-Print Network [OSTI]

    to all US Island Territories. #12;OTEC 11 Other Applications: AC Cold deep water as the chiller fluid ? #12;Thermal Resource Temperature Difference between Surface Water and 1,000 m Water (want > 20 °C: Truisms · OTEC plants could supply all the electricity and potable water consumed in the State, {but

  14. Thermal to electricity conversion using thermal magnetic properties

    DOE Patents [OSTI]

    West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID

    2010-04-27

    A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.

  15. Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC ) Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC ) Introduction to the...

  16. Kinematic Stirling engine as an energy conversion subsystem for paraboloidal dish solar thermal power plants

    SciTech Connect (OSTI)

    Bowyer, J.M.

    1984-04-15

    The potential of a suitably designed and economically manufactured Stirling engine as the energy conversion subsystem of a paraboloidal dish-Stirling solar thermal power module has been estimated. Results obtained by elementary cycle analyses have been shown to match quite well the performance characteristics of an advanced kinematic Stirling engine, the United Stirling P-40, as established by current prototypes of the engine and by a more sophisticated analytic model of its advanced derivative. In addition to performance, brief consideration has been given to other Stirling engine criteria such as durability, reliability, and serviceability. Production costs have not been considered here.

  17. EXEMPLAR-BASED UNIT SELECTION FOR VOICE CONVERSION UTILIZING TEMPORAL INFORMATION

    E-Print Network [OSTI]

    Virtanen, Tuomas

    EXEMPLAR-BASED UNIT SELECTION FOR VOICE CONVERSION UTILIZING TEMPORAL INFORMATION Zhizheng Wu1 methods. Index Terms-- Voice conversion, unit selection, multi-frame exemplar, temporal information 1 shown to play an important role in perception, most of the voice conversion ap- proaches assume

  18. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    ocean thermal energy, distributed solar thermal energy,heat source can be solar thermal energy, biological thermaland concentrated solar thermal energy farms. They demand

  19. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    heat source can be solar thermal energy, biological thermaland concentrated solar thermal energy farms. They demandsources include solar thermal energy, geo-thermal energy,

  20. OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT

    SciTech Connect (OSTI)

    Sands, M.Dale

    1980-08-01

    Significant acccrmplishments in Ocean Thermal Energy Conversion (OTEC) technology have increased the probability of producing OTEC-derived power within this decade with subsequent large scale commercialization following by the turn of the century. Under U.S. Department of Energy funding, the Oceanic Engineering Operations of Interstate Electronics Corporation has prepared several OTEC Environmental Assessments over the past years, in particular, the OTEC Programmatic Environmental Assessment. The Programmatic EA considers several technological designs (open- and closed-cycle), plant configuratlons (land-based, moored, and plant-ship), and power usages (baseload electricity, ammonia and aluminum production). Potential environmental impacts, health and safetv issues and a status update of the institutional issues as they influence OTEC deployments, are included.

  1. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    Recycling of Wasted Energy : Thermal to Electrical EnergyRecycling of Wasted Energy : Thermal to Electrical Energyelectric energy generation and thermal energy conduction

  2. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    and nuclear power plants, solar thermal energy, geothermalpower plants, distributed solar thermal energy, geo/ocean-power plants and concentrated solar thermal energy farms.

  3. Draft environmental assessment: Ocean Thermal Energy Conversion (OTEC) Pilot Plants

    SciTech Connect (OSTI)

    Sullivan, S.M.; Sands, M.D.; Donat, J.R.; Jepsen, P.; Smookler, M.; Villa, J.F.

    1981-02-01

    This Environmental Assessment (EA) has been prepared, in accordance with the National Environmental Policy Act of 1969, for the deployment and operation of a commercial 40-Megawatt (MW) Ocean Thermal Energy Conversion (OTEC) Pilot Plant (hereafter called the Pilot Plant). A description of the proposed action is presented, and a generic environment typical of the candidate Pilot Plant siting regions is described. An assessment of the potential environmental impacts associated with the proposed action is given, and the risk of credible accidents and mitigating measures to reduce these risks are considered. The Federal and State plans and policies the proposed action will encompass are described. Alternatives to the proposed action are presented. Appendix A presents the navigation and environmental information contained in the US Coast Pilot for each of the candidate sites; Appendix B provides a brief description of the methods and calculations used in the EA. It is concluded that environmental disturbances associated with Pilot Plant activities could potentially cause significant environmental impacts; however, the magnitude of these potential impacts cannot presently be assessed, due to insufficient engineering and environmental information. A site- and design-specific OTEC Pilot Plant Environmental Impact Statement (EIS) is required to resolve the potentially significant environmental effects associated with Pilot Plant deployment and operation. (WHK)

  4. Ocean Thermal Energy Conversion (OTEC) Programmatic Environmental Analysis--Appendices

    SciTech Connect (OSTI)

    Authors, Various

    1980-01-01

    The programmatic environmental analysis is an initial assessment of Ocean Thermal Energy Conversion (OTEC) technology considering development, demonstration and commercialization. It is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties. This volume contains these appendices: Appendix A -- Deployment Scenario; Appendix B -- OTEC Regional Characterization; and Appendix C -- Impact and Related Calculations.

  5. Characterization of an FFDM unit based on a-Se direct conversion detector

    E-Print Network [OSTI]

    Lanconelli, Nico

    Characterization of an FFDM unit based on a-Se direct conversion detector Achille Albanese1 of this paper is to investigate the properties of a clinical FFDM unit (Giotto - Image MD, IMS Italy µm. The direct conversion of X-rays into charge provides excellent imaging performance. In this work

  6. Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

    Broader source: Energy.gov [DOE]

    Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

  7. PROCESS DESIGN AND CONTROL Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two Methods

    E-Print Network [OSTI]

    Kjelstrup, Signe

    PROCESS DESIGN AND CONTROL Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two for the production of hydrogen from water and high temperature thermal energy are presented and compared. Increasing for the production of hydrogen from water has received considerable attention.1 High temperature thermal energy

  8. PSERC 97-12 "Thermal Unit Commitment Including

    E-Print Network [OSTI]

    PSERC 97-12 "Thermal Unit Commitment Including Optimal AC Power Flow Constraints" Carlos Murillo-562-3966. #12;Thermal Unit Commitment Including Optimal AC Power Flow Constraints Carlos Murillo S anchez Robert a new algorithm for unit commitment that employs a Lagrange relaxation technique with a new augmentation

  9. Comparison of Biological and Thermal (Pyrolysis) Pathways for Conversion of Lignocellulose to Biofuels 

    E-Print Network [OSTI]

    Imam, Tahmina 1983-

    2012-11-30

    Because of the limited supply of imported crude oil and environmental degradation, renewable energy is becoming commercially feasible and environmentally desirable. In this research, biological and thermal (pyrolysis) conversion pathways for biofuel...

  10. Ocean thermal energy conversion plants : experimental and analytical study of mixing and recirculation

    E-Print Network [OSTI]

    Jirka, Gerhard H.

    Ocean thermal energy conversion (OTEC) is a method of generating power using the vertical temperature gradient of the tropical ocean as an energy source. Experimental and analytical studies have been carried out to determine ...

  11. Quantum-coupled single-electron thermal to electric conversion scheme

    E-Print Network [OSTI]

    Wu, Dennis M. (Dennis Meng-Jiao)

    2008-01-01

    A new thermal to electric conversion scheme based on an excitation transfer and tunneling mechanism is studied theoretically. Coulomb coupling dominates when the hot side and the cold side are very close. Two important ...

  12. FRONTIERS ARTICLE Fundamentals of energy transport, energy conversion, and thermal properties

    E-Print Network [OSTI]

    Malen, Jonathan A.

    FRONTIERS ARTICLE Fundamentals of energy transport, energy conversion, and thermal properties, thermoelectrics, and photovoltaics. However, energy transport and conversion, at the organic­inorganic interface on fundamental transport properties of metal­ molecule­metal junctions that are related to thermoelectric energy

  13. Energy conversion using thermal transpiration : optimization of a Knudsen compressor

    E-Print Network [OSTI]

    Klein, Toby A. (Toby Anna)

    2012-01-01

    Knudsen compressors are devices without any moving parts that use the nanoscale phenomenon of thermal transpiration to pump or compress a gas. Thermal transpiration takes place when a gas is in contact with a solid boundary ...

  14. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    electrode surfaces, and electric energy is stored as surfacetemperature end and electric energy is generated, thermalbeing the generated electric energy and the consumed thermal

  15. Graphene-based photovoltaic cells for near-field thermal energy conversion

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Graphene-based photovoltaic cells for near-field thermal energy conversion Riccardo Messina to a photovoltaic cell can be largely enhanced because of the contribution of evanescent photons, in particular important source of energy. By approaching a photovoltaic (PV) cell3 in proximity of a thermal emitter

  16. TEXT-INDEPENDENT VOICE CONVERSION BASED ON UNIT SELECTION David Sundermann1,2,3

    E-Print Network [OSTI]

    Suendermann, David

    TEXT-INDEPENDENT VOICE CONVERSION BASED ON UNIT SELECTION David S¨undermann1,2,3 ,Harald H¨oge1@cs.rwth-aachen.de awb@cs.cmu.edu shri@sipi.usc.edu ABSTRACT So far, most of the voice conversion training procedures. In this pa- per, we present a new approach that applies unit selection to find corresponding time frames

  17. DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01

    fauna associated with offshore platforms in Mexico. Fish.aspects of siting OTEC plants offshore the United States onthe high seas, and offshore other countries. In G. L.

  18. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01

    fauna associated with offshore platforms in the northeasternaspects of siting OTEC plants offshore the United States onthe high seas, and offshore other countries. In G. L.

  19. Thermal Unit Commitment Including Optimal AC Power Flow Constraints

    E-Print Network [OSTI]

    Thermal Unit Commitment Including Optimal AC Power Flow Constraints Carlos Murillo{Sanchez Robert J algorithm for unit commitment that employs a Lagrange relaxation technique with a new augmentation. This framework allows the possibility of committing units that are required for the VArs that they can produce

  20. Appendix A-2 Appendix A: Units and Conversions TABLE A.2 International Definitions of the SI Base Unitsa

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    Appendix A-2 Appendix A: Units and Conversions TABLE A.2 International Definitions of the SI Base Candela cd #12;Appendix A-3Appendix A: Units and Conversions TABLE A.3 SI-Derived Units with Special Unitsa Unit of length (m) Meter is the length of the path traveled by light in vacuum during a time

  1. Potential for Coal-to-Liquids Conversion in the United States--FischerTropsch Synthesis

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    Potential for Coal-to-Liquids Conversion in the United States--Fischer­Tropsch Synthesis Tad W The United States has the worldÕs largest coal reserves and Montana the highest potential for mega-mine development. Consequently, a large-scale effort to convert coal to liquids (CTL) has been proposed to create

  2. On the transition from photoluminescence to thermal emission and its implication on solar energy conversion

    E-Print Network [OSTI]

    Manor, Assaf; Rotschild, Carmel

    2014-01-01

    Photoluminescence (PL) is a fundamental light-matter interaction, which conventionally involves the absorption of energetic photon, thermalization and the emission of a red-shifted photon. Conversely, in optical-refrigeration the absorption of low energy photon is followed by endothermic-PL of energetic photon. Both aspects were mainly studied where thermal population is far weaker than photonic excitation, obscuring the generalization of PL and thermal emissions. Here we experimentally study endothermic-PL at high temperatures. In accordance with theory, we show how PL photon rate is conserved with temperature increase, while each photon is blue shifted. Further rise in temperature leads to an abrupt transition to thermal emission where the photon rate increases sharply. We also show how endothermic-PL generates orders of magnitude more energetic photons than thermal emission at similar temperatures. Relying on these observations, we propose and theoretically study thermally enhanced PL (TEPL) for highly eff...

  3. Ocean Thermal Energy Conversion (OTEC) A New Secure Renewable Energy Source

    E-Print Network [OSTI]

    Ocean Thermal Energy Conversion (OTEC) A New Secure Renewable Energy Source For Defense load renewable energy system to achieve energy security for DoD facilities and bases Schofield Barracks and Commercial Applications 1 Dr. Ted Johnson Director of Alternative Energy Programs Development Lockheed Martin

  4. Review of pyroelectric thermal energy harvesting and new MEMs based resonant energy conversion techniques

    SciTech Connect (OSTI)

    Hunter, Scott Robert [ORNL; Lavrik, Nickolay V [ORNL; Mostafa, Salwa [ORNL; Rajic, Slobodan [ORNL; Datskos, Panos G [ORNL

    2012-01-01

    Harvesting electrical energy from thermal energy sources using pyroelectric conversion techniques has been under investigation for over 50 years, but it has not received the attention that thermoelectric energy harvesting techniques have during this time period. This lack of interest stems from early studies which found that the energy conversion efficiencies achievable using pyroelectric materials were several times less than those potentially achievable with thermoelectrics. More recent modeling and experimental studies have shown that pyroelectric techniques can be cost competitive with thermoelectrics and, using new temperature cycling techniques, has the potential to be several times as efficient as thermoelectrics under comparable operating conditions. This paper will review the recent history in this field and describe the techniques that are being developed to increase the opportunities for pyroelectric energy harvesting. The development of a new thermal energy harvester concept, based on temperature cycled pyroelectric thermal-to-electrical energy conversion, are also outlined. The approach uses a resonantly driven, pyroelectric capacitive bimorph cantilever structure that can be used to rapidly cycle the temperature in the energy harvester. The device has been modeled using a finite element multi-physics based method, where the effect of the structure material properties and system parameters on the frequency and magnitude of temperature cycling, and the efficiency of energy recycling using the proposed structure, have been modeled. Results show that thermal contact conductance and heat source temperature differences play key roles in dominating the cantilever resonant frequency and efficiency of the energy conversion technique. This paper outlines the modeling, fabrication and testing of cantilever and pyroelectric structures and single element devices that demonstrate the potential of this technology for the development of high efficiency thermal-to-electrical energy conversion devices.

  5. The Third Way of Thermal-Electric Conversion beyond Seebeck and Pyroelectric Effects

    SciTech Connect (OSTI)

    Ren, Jie

    2014-02-14

    Thermal-electric conversion is crucial for smart energy control and harvesting, such as thermal sensing and waste heat recovering. So far, people are aware of only two ways of direct thermal-electric conversion, Seebeck and pyroelectric effects, each with distinct working conditions and limitations. Here, we report the third way of thermal-electric conversion beyond Seebeck and pyroelectric effects. In contrast to Seebeck effect that requires spatial temperature difference, the-third-way converts the time-dependent ambient temperature fluctuation into electricity, similar to the behavior of pyroelectricity. However, the-third-way is also distinct from pyroelectric effect in the sense that it does not require polar materials but applies to general conducting systems. We demonstrate that the-third-way results from the temperature-fluctuation-induced dynamical charge redistribution. It is a consequence of the fundamental nonequilibrium thermodynamics and has a deep connection to the topological phase in quantum mechanics. Our findings expand our knowledge and provide new means of thermal-electric energy harvesting.

  6. Binary-to-RNS conversion units for moduli {2n Pedro Miguens Matutino

    E-Print Network [OSTI]

    Sousa, Leonel

    Binary-to-RNS conversion units for moduli {2n ± 3} Pedro Miguens Matutino Department of Electronics@inesc-id.pt Abstract--In this paper Residue Number Systems (RNS) con- version structures from Binary to RNS modulo {2n Residue Number Systems (RNS) are a good alternative to the conventional arithmetic, based on a weighted

  7. Hydro unit commitment in hydro-thermal optimization

    SciTech Connect (OSTI)

    Li, C.; Hsu, E.; Svoboda, A.J.; Tseng, C.; Johnson, R.B. [Pacific Gas and Electric Co., San Francisco, CA (United States)

    1997-05-01

    In this paper the authors develop a model and technique for solving the combined hydro and thermal unit commitment problem, taking into full account the hydro unit dynamic constraints in achieving overall economy of power system operation. The combined hydrothermal unit commitment problem is solved by a decomposition and coordination approach. Thermal unit commitment is solved using a conventional Lagrangian relaxation technique. The hydro system is divided into watersheds, which are further broken down into reservoirs. The watersheds are optimized by Network Flow Programming (NFP). Priority-list-based Dynamic Programming is used to solve the Hydro Unit Commitment (HUC) problem at the reservoir level. A successive approximation method is used for updating the marginal water values (Lagrange multipliers) to improve the hydro unit commitment convergence, due to the large size and multiple couplings of water conservation constraints. The integration of the hydro unit commitment into the existing Hydro-Thermal Optimization (HTO) package greatly improves the quality of its solution in the PG and E power system.

  8. System for thermal energy storage, space heating and cooling and power conversion

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL); Fields, Paul R. (Chicago, IL)

    1981-04-21

    An integrated system for storing thermal energy, for space heating and cong and for power conversion is described which utilizes the reversible thermal decomposition characteristics of two hydrides having different decomposition pressures at the same temperature for energy storage and space conditioning and the expansion of high-pressure hydrogen for power conversion. The system consists of a plurality of reaction vessels, at least one containing each of the different hydrides, three loops of circulating heat transfer fluid which can be selectively coupled to the vessels for supplying the heat of decomposition from any appropriate source of thermal energy from the outside ambient environment or from the spaces to be cooled and for removing the heat of reaction to the outside ambient environment or to the spaces to be heated, and a hydrogen loop for directing the flow of hydrogen gas between the vessels. When used for power conversion, at least two vessels contain the same hydride and the hydrogen loop contains an expansion engine. The system is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators, but may be used with any source of heat, including a source of low-grade heat.

  9. IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 20, NO. 1, MARCH 2005 25 Thermal Modeling of Lundell Alternators

    E-Print Network [OSTI]

    Perreault, Dave

    IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 20, NO. 1, MARCH 2005 25 Thermal Modeling of Lundell Alternators Sai Chun Tang, Member, IEEE, Thomas A. Keim, and David J. Perreault, Member, IEEE Abstract--Thermal analysis of Lundell alternators used in automobiles is presented. An analytical thermal model for Lun- dell

  10. PRIMAL AND DUAL METHODS FOR UNIT COMMITMENT IN A HYDRO-THERMAL POWER SYSTEM

    E-Print Network [OSTI]

    Römisch, Werner

    PRIMAL AND DUAL METHODS FOR UNIT COMMITMENT IN A HYDRO-THERMAL POWER SYSTEM R. Gollmer1 , A. Moller comprising thermal and pumped-storage hydro units a large-scale mixed-integer optimization model is developed hydro units. The variable ut i 2 f0;1g; i = 1;:::;I;t = 1;:::;T indicates whether the thermal unit i

  11. Research on the external fluid mechanics of ocean thermal energy conversion plants : report covering experiments in a current

    E-Print Network [OSTI]

    Fry, David J. (David James)

    1981-01-01

    This report describes a set of experiments in a physical model study to explore plume transport and recirculation potential for a range of generic Ocean Thermal Energy Conversion (OTEC) plant designs and ambient conditions. ...

  12. Near and far field models of external fluid mechanics of Ocean Thermal Energy Conversion (OTEC) power plants

    E-Print Network [OSTI]

    Rodríguez Buño, Mariana

    2013-01-01

    The world is facing the challenge of finding new renewable sources of energy - first, in response to fossil fuel reserve depletion, and second, to reduce greenhouse gas emissions. Ocean Thermal Energy Conversion (OTEC) can ...

  13. The United States pit disassembly and conversion project -- Meeting the MOX fuel specification

    SciTech Connect (OSTI)

    Nelson, T.O.; James, C.A.; Kolman, D.G.

    1998-12-31

    The US is actively involved in demonstrating the disassembly of nuclear weapons pits to an unclassified form readied for disposition. The MOX option is the most likely path forward for plutonium that originated from nuclear weapon pits. The US demonstration line for pit disassembly and conversion is known as ARIES, the advanced recovery and integrated extraction system. The ARIES demonstration line is being used to gather data in an integrated fashion of the technologies needed for pit disassembly and conversion. These activities include the following modules: pit bisection, hydride-dehydride, oxide conversion, canning, electrolytic decontamination, and nondestructive assay (NDA). Pit bisection swages in a pit in half. Hydride-dehydride converts the pit plutonium metal to an unclassified metal button. To convert the plutonium metal to an oxide the US is investigating a number of options. The primary oxide conversion approach involves variations of combining plutonium hydriding and subsequent oxidation. Another approach is to simply oxidize the metal under controlled conditions-direct metal oxidation (DMO). To remove the gallium from the plutonium oxide, a thermal distillation approach is being used. These pyrochemical approaches will substantially reduce the wastes produced for oxide conversion of weapon plutonium, compared to traditional aqueous processing. The packaging of either the plutonium metal or oxide to long term storage criteria involves the canning and electrolytic decontamination modules. The NDA suite of instruments is then used to assay the material in the containers, which enables international verification without the need to open the containers and repackage them. All of these processes are described.

  14. Exceeding the solar cell Shockley-Queisser limit via thermal up-conversion of low-energy photons

    E-Print Network [OSTI]

    Boriskina, Svetlana V

    2013-01-01

    Maximum efficiency of ideal single-junction photovoltaic (PV) cells is limited to 33% (for one sun illumination) by intrinsic losses such as band edge thermalization, radiative recombination, and inability to absorb below-bandgap photons. This intrinsic thermodynamic limit, named after Shockley and Queisser (S-Q), can be exceeded by utilizing low-energy photons either via their electronic up-conversion or via thermophotovoltaic (TPV) conversion process. However, electronic up-conversion systems have extremely low efficiencies, and practical temperature considerations limit the operation of TPV converters to the narrow-gap PV cells. Here we develop a conceptual design of a hybrid TPV platform, which exploits thermal up-conversion of low-energy photons and is compatible with conventional silicon PV cells by using spectral and directional selectivity of the up-converter. The hybrid platform offers sunlight-to-electricity conversion efficiency exceeding that imposed by the S-Q limit on the corresponding PV cells ...

  15. Definitional mission report: NAPCOR thermal-power-conversion project, Philippines. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1991-11-01

    The National Power Corporation (NAPCOR) of Philippines has requested the Trade and Development Program (TDP) to fund a study to evaluate the technical and economic feasibility of converting its existing oil and coal fired power plants to natural gas. The decision to undertake the study resulted from preliminary information on a large gas find off the coast of Palawan island. However, a second exploration well has come up dry. Now, the conversion of the existing power plants to natural gas seems very questionable. Even if the proven gas reserves prove to be commercially viable, the gas will not be available until 1998 or later for utilization. At that time several of NAPCOR's plants would have aged further, the political and economic situation in Philippines could have altered significantly, possibly improved, private power companies might be able to use the gas more efficiently by building state-of-the-art combined cycle power plants which will make more economic sense than converting existing old boilers to natural gas. In addition, most of the existing power equipment was manufactured by Japanese and/or European firms. It makes sense for NAPCOR to solicit services from these firms if it decides to go ahead with the implementation of the power plant conversion project. The potential for any follow on work for U.S. businesses is minimal to zero in the thermal conversion project. Therefore, at this time, TDP funding for the feasibility would be premature and not recommended.

  16. Graphene-based photovoltaic cells for near-field thermal energy conversion

    E-Print Network [OSTI]

    Riccardo Messina; Philippe Ben-Abdallah

    2012-07-05

    Thermophotovoltaic devices are energy-conversion systems generating an electric current from the thermal photons radiated by a hot body. In far field, the efficiency of these systems is limited by the thermodynamic Schockley-Queisser limit corresponding to the case where the source is a black body. On the other hand, in near field, the heat flux which can be transferred to a photovoltaic cell can be several orders of magnitude larger because of the contribution of evanescent photons. This is particularly true when the source supports surface polaritons. Unfortunately, in the infrared where these systems operate, the mismatch between the surface-mode frequency and the semiconductor gap reduces drastically the potential of this technology. Here we show that graphene-based hybrid photovoltaic cells can significantly enhance the generated power paving the way to a promising technology for an intensive production of electricity from waste heat.

  17. Method for determining thermal conductivity and thermal capacity per unit volume of earth in situ

    DOE Patents [OSTI]

    Poppendiek, Heinz F. (LaJolla, CA)

    1982-01-01

    A method for determining the thermal conductivity of the earth in situ is based upon a cylindrical probe (10) having a thermopile (16) for measuring the temperature gradient between sets of thermocouple junctions (18 and 20) of the probe after it has been positioned in a borehole and has reached thermal equilibrium with its surroundings, and having means (14) for heating one set of thermocouple junctions (20) of the probe at a constant rate while the temperature gradient of the probe is recorded as a rise in temperature over several hours (more than about 3 hours). A fluid annulus thermally couples the probe to the surrounding earth. The recorded temperature curves are related to the earth's thermal conductivity, k.sub..infin., and to the thermal capacity per unit volume, (.gamma.c.sub.p).sub..infin., by comparison with calculated curves using estimates of k.sub..infin. and (.gamma.c.sub.p).sub..infin. in an equation which relates these parameters to a rise in the earth's temperature for a known and constant heating rate.

  18. Overview of Fluence to Dose Conversion Coefficients for High Energy Radiations - Calculational Methods and Results of Two Kinds of Effective Dose per Unit Particle Fluence

    E-Print Network [OSTI]

    Iwai, S; Sato, O; Yoshizawa, N; Furihata, S; Takagi, S; Tanaka, S; Sakamoto, Y

    2000-01-01

    Overview of Fluence to Dose Conversion Coefficients for High Energy Radiations - Calculational Methods and Results of Two Kinds of Effective Dose per Unit Particle Fluence

  19. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01

    reclamation and solar thermal energy," Energy [accepted]. [as geothermal energy [55], solar thermal energy [41], wastetemperature geothermal and solar thermal energy. His results

  20. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01

    Nanotubes as High-Energy Density Solar Thermal Fuels,” Nanolatent heat energy storage and solar thermal applications,[for Storage of Solar Thermal Energy,” Solar Energy, 18 (3),

  1. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01

    concentrated solar thermal energy and low grade waste heatreclamation and solar thermal energy," Energy [accepted]. [and M Dennis, "Solar thermal energy systems in Australia,"

  2. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01

    2002, “Survey of Thermal Energy Storage for Parabolic TroughChange Materials for Thermal Energy Storage,” Renewable andTemperature Thermal Energy Storage for Power Generation.

  3. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01

    S. a. , 2004, “Solar Thermal Collectors and Applications,”86] Schnatbaum L. , 2009, “Solar Thermal Power Plants,” Thefor Storage of Solar Thermal Energy,” Solar Energy, 18 (3),

  4. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01

    for Storage of Solar Thermal Energy,” Solar Energy, 18 (3),Toward Molecular Solar-Thermal Energy Storage,” Angewandtescale molecular solar thermal energy storage system, in

  5. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01

    reclamation and solar thermal energy," Energy [accepted]. [and M Dennis, "Solar thermal energy systems in Australia,"and M Dennis, "Solar thermal energy systems in Australia,"

  6. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01

    SA Kalogirou, "Solar thermal collectors and applications,"axis concentrating solar thermal (collectors such as linearof non- concentrated solar thermal collectors also operate

  7. Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012

    SciTech Connect (OSTI)

    Martel, Laura; Smith, Paul; Rizea, Steven; Van Ryzin, Joe; Morgan, Charles; Noland, Gary; Pavlosky, Rick; Thomas, Michael

    2012-06-30

    The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawai�¢����i and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the predicted economies of scale as technology and efficiency improvements are realized and larger more economical plants deployed. Utilizing global high resolution OTEC resource assessment from the Ocean Thermal Extractable Energy Visualization (OTEEV) project (an independent DOE project), Global Energy Supply Curves were generated for Grid Connected and Energy Carrier OTEC plants deployed in 2045 when the predicted technology and efficiencies improvements are fully realized. The Global Energy Supply Curves present the LCOE versus capacity in ascending order with the richest, lowest cost resource locations being harvested first. These curves demonstrate the vast ocean thermal resource and potential OTEC capacity that can be harvested with little change in LCOE.

  8. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01

    doing so would reduce thermal pollution and overall planthave been wasted. Thermal pollution and the production of

  9. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01

    industrial waste heat; (b) Distribution of rejected utility waste heat. Reprinted with permission from Elsevier: Energy Conversion and Management,industrial waste heat; (b) Distribution of rejected utility waste heat. Reprinted with permission from Elsevier: Energy Conversion and Management,

  10. Thermal desorption treatability test conducted with VAC*TRAX Unit

    SciTech Connect (OSTI)

    1996-01-01

    In 1992, Congress passed the Federal Facilities Compliance Act, requiring the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with Resource Conservation and Recovery Act (RCRA) treatment standards. In response to the need for mixed-waste treatment capacity, where off-site commercial treatment facilities do not exist or cannot be used, the DOE Albuquerque Operations Office (DOE-AL) organized a Treatment Selection Team to match mixed waste with treatment options and develop a strategy for treatment of mixed waste. DOE-AL manages nine sites with mixed-waste inventories. The Treatment Selection Team determined a need to develop mobile treatment units (MTUs) to treat waste at the sites where the wastes are generated. Treatment processes used for mixed wastes must remove the hazardous component (i.e., meet RCRA treatment standards) and contain the radioactive component in a form that will protect the worker, public, and environment. On the basis of the recommendations of the Treatment Selection Team, DOE-AL assigned projects to the sites to bring mixed-waste treatment capacity on-line. The three technologies assigned to the DOE Grand Junction Projects Office (DOE-GJPO) include thermal desorption (TD), evaporative oxidation, and waste water evaporation.

  11. Assessment of optical performance of three non-tracking, non-imaging, external compound parabolic concentrators designed for high temperature solar thermal collector units

    E-Print Network [OSTI]

    Cisneros, Jesus

    2010-01-01

    S. A. (2004). "Solar thermal collectors and applications".for High Temperature Solar Thermal Collector Units A thesisfor Solar Thermal Collectors……………………………..7 Solar Thermal

  12. Advanced Recovery and Integrated Extraction System (ARIES): The United State's demonstration line for pit disassembly and conversion

    SciTech Connect (OSTI)

    Nelson, Timothy O.

    1998-03-01

    The Advanced Recovery and Integrated Extraction System (ARIES) is a pit disassembly and conversion demonstration line at Los Alamos National Laboratory's plutonium facility. Pits are the core of a nuclear weapon that contains fissile material. With the end of the cold war, the United States began a program to dispose of the fissile material contained in surplus nuclear weapons. In January of 1997, the Department of Energy's Office of Fissile Material Disposition issued a Record of Decision (ROD) on the disposition of surplus plutonium. This decision contained a hybrid option for disposition of the plutonium, immobilization and mixed oxide fuel. ARIES is the cornerstone of the United States plutonium disposition program that supplies the pit demonstration plutonium feed material for either of these disposition pathways. Additionally, information from this demonstration is being used to design the United States Pit Disassembly and Conversion Facility. AH of the ARIES technologies were recently developed and incorporate waste minimization. The technologies include pit bisection, hydride/dehydride, metal to oxide conversion process, packaging, and nondestructive assay (NDA). The current schedule for the ARIES integrated Demonstration will begin in the Spring of 1998. The ARIES project involves a number of DOE sites including Los Alamos National Laboratory as the lead laboratory, Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories. Moreover, the ARIES team is heavily involved in working with Russia in their pit disassembly and conversion activities.

  13. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01

    waste heat reclamation and solar thermal energy," Energy [K Lovegrove and M Dennis, "Solar thermal energy systems inK Lovegrove and M Dennis, "Solar thermal energy systems in

  14. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01

    Solar Thermal Energy Research," in Sandia National Laboratory Science and Engineering Exposition 2011, Albuquerque, New Mexico,

  15. Modeling and analysis of hybrid geothermal-solar thermal energy conversion systems

    E-Print Network [OSTI]

    Greenhut, Andrew David

    2010-01-01

    Innovative solar-geothermal hybrid energy conversion systems were developed for low enthalpy geothermal resources augmented with solar energy. The goal is to find cost-effective hybrid power cycles that take advantage of ...

  16. Thermal hydraulic design and analysis of a large lead-cooled reactor with flexible conversion ratio

    E-Print Network [OSTI]

    Nikiforova, Anna S., S.M. Massachusetts Institute of Technology

    2008-01-01

    This thesis contributes to the Flexible Conversion Ratio Fast Reactor Systems Evaluation Project, a part of the Nuclear Cycle Technology and Policy Program funded by the Department of Energy through the Nuclear Energy ...

  17. Development of a simplified thermal analysis procedure for insulating glass units 

    E-Print Network [OSTI]

    Klam, Jeremy Wayne

    2009-06-02

    A percentage of insulating glass (IG) units break each year due to thermally induced perimeter stresses. The glass industry has known about this problem for many years and an ASTM standard has recently been developed for ...

  18. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01

    128] V Minea, "Using Geothermal Energy and Industrial Wastesuch as solar thermal and geothermal energy will become ansolar field, and geothermal energy, where energy is obtained

  19. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01

    energy source stream transfers energy to the ORC workingmatching to the energy reservoir stream during heat additionenergy in the thermal energy source stream is discarded or

  20. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01

    lowers cycle efficiency based on Carnot considerations.of the cycle and poor efficiency results based on Carnotand lowers cycle thermal efficiencies based on Carnot

  1. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01

    focus only on the solar collector and catalytic converterfluid, a microfluidic solar collector, and a catalytic heatS. a. , 2004, “Solar Thermal Collectors and Applications,”

  2. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01

    low and mid temperature solar collectors," Journal of SolarSA Kalogirou, "Solar thermal collectors and applications,"analysis of the solar collector system is presented. Results

  3. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01

    such as nuclear, Concentrated Solar Power (CSP), and coal,energies, such as concentrated solar power (CSP) [165]. CSPand non- concentrated solar thermal, vapor power cycles

  4. Where solar thermal meets photovoltaic for high-efficiency power conversion

    E-Print Network [OSTI]

    Bierman, David M. (David Matthew)

    2014-01-01

    To develop disruptive techniques which generate power from the Sun, one must understand the aspects of existing technologies that limit performance. Solar thermal and solar photovoltaic schemes dominate today's solar market ...

  5. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01

    Storage of Solar Thermal Energy,” Solar Energy, 18 (3), pp.Nocera D. G. , 2010, “Solar Energy Supply and Storage forof Abiotic Photo-chemical Solar Energy Storage Systems,”

  6. Prediction and Realisation of Conversational Characteristics by Utilising Spontaneous Speech for Unit Selection 

    E-Print Network [OSTI]

    Andersson, Sebastian; Georgila, Kallirroi; Traum, David; Aylett, Matthew; Clark, Robert A J

    2010-01-01

    Unit selection speech synthesis has reached high levels of naturalness and intelligibility for neutral read aloud speech. However, synthetic speech generated using neutral read aloud data lacks all the attitude, intention ...

  7. Catalytic conversion of solar thermal produced pyrolysis gases to liquid fuels

    SciTech Connect (OSTI)

    Hanley, T.R.; Benham, C.B.

    1981-01-01

    The conversion of a simulated pyrolysis gas and synthesis gas using a Fischer-Tropsch catalyst system in a fluidized-bed reactor is investigated. Liquid fuels were produced between 550 and 660/sup 0/F (288 and 349/sup 0/C) for the simulated pyrolysis gas feed. An analysis of both liquid and gaseous product streams is performed. This investigation indicates a need for more extensive research with respect to hydrogen-to-carbon-monoxide usage ratios and with respect to the role of alkenes in fuel production.

  8. Thermal conversion of biomass to valuable fuels, chemical feedstocks and chemicals

    DOE Patents [OSTI]

    Peters, William A. (Lexington, MA); Howard, Jack B. (Winchester, MA); Modestino, Anthony J. (Hanson, MA); Vogel, Fredreric (Villigen PSI, CH); Steffin, Carsten R. (Herne, DE)

    2009-02-24

    A continuous process for the conversion of biomass to form a chemical feedstock is described. The biomass and an exogenous metal oxide, preferably calcium oxide, or metal oxide precursor are continuously fed into a reaction chamber that is operated at a temperature of at least 1400.degree. C. to form reaction products including metal carbide. The metal oxide or metal oxide precursor is capable of forming a hydrolizable metal carbide. The reaction products are quenched to a temperature of 800.degree. C. or less. The resulting metal carbide is separated from the reaction products or, alternatively, when quenched with water, hydolyzed to provide a recoverable hydrocarbon gas feedstock.

  9. Development of a concentrating solar power system using fluidized-bed technology for thermal energy conversion and solid particles for thermal energy storage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ma, Z.; Mehos, M.; Glatzmaier, G.; Sakadjian, B. B.

    2015-05-01

    Concentrating solar power (CSP) is an effective way to convert solar energy into electricity with an economic energy-storage capability for grid-scale, dispatchable renewable power generation. However, CSP plants need to reduce costs to be competitive with other power generation methods. Two ways to reduce CSP cost are to increase solar-to-electric efficiency by supporting a high-efficiency power conversion system, and to use low-cost materials in the system. The current nitrate-based molten-salt systems have limited potential for cost reduction and improved power-conversion efficiency with high operating temperatures. Even with significant improvements in operating performance, these systems face challenges in satisfying the costmore »and performance targets. This paper introduces a novel CSP system with high-temperature capability that can be integrated into a high-efficiency CSP plant and that meets the low-cost, high-performance CSP targets. Unlike a conventional salt-based CSP plant, this design uses gas/solid, two-phase flow as the heat-transfer fluid (HTF); separated solid particles as storage media; and stable, inexpensive materials for the high-temperature receiver and energy storage containment. We highlight the economic and performance benefits of this innovative CSP system design, which has thermal energy storage capability for base-load power generation.« less

  10. Evaluation of cooling performance of thermally activated building system with evaporative cooling source for typical United States climates

    E-Print Network [OSTI]

    Feng, Jingjuan; Bauman, Fred

    2013-01-01

    and high temperature cooling_REHVA Guidebook, Federation ofEvaluation of cooling performance of thermally activatedsystem with evaporative cooling source for typical United

  11. 50Are U Still Nuts? That's right... It's time for more unit conversion exercises!

    E-Print Network [OSTI]

    Problem 1: The solar constant is an important number if you are trying to build a solar, hot water heater: The Solar Constant is the amount of energy that the sun delivers to the surface of Earth each second or generate electricity using solar panels. Although astronomers use ergs and centimeter units, solar energy

  12. A genetic algorithm for solving the unit commitment problem of a hydro-thermal power system

    SciTech Connect (OSTI)

    Rudolf, A.; Bayrleithner, R.

    1999-11-01

    The paper presents a two layer approach to solve the unit commitment problem of a hydro-thermal power system. The first layer uses a genetic algorithm (GA) to decide the on/off status of the units. The second layer uses a non-linear programming formulation solved by a Lagrangian relaxation to perform the economic dispatch while meeting all plant and system constraints. In order to deal effectively with the constraints of the problem and prune the search space of the GA in advance, the difficult minimum up/down-time constraints of thermal generation units and the turbine/pump operating constraint of storage power stations are embedded in the binary strings that are coded to represent the on/off-states of the generating units. The other constraints are handled by integrating penalty costs into the fitness function. In order to save execution time, the economic dispatch is only performed if the given unit commitment schedule is able to meet the load balance, energy, and begin/end level constraints. The proposed solution approach was tested on a real scaled hydro-thermal power system over a period of a day in half-hour time-steps for different GA-parameters. The simulation results reveal that the features of easy implementation, convergence within an acceptable execution time, and highly optimal solution in solving the unit commitment problem can be achieved.

  13. Soil thermal dynamics of terrestrial ecosystems of the conterminous United States from 1948 to 2008

    E-Print Network [OSTI]

    Zhuang, Qianlai

    ). Thus, the heat stored in soil and temperature variations cannot be ignored when studying airSoil thermal dynamics of terrestrial ecosystems of the conterminous United States from 1948 to 2008 to changes in vegetation, snow, soil moisture, and other climate variables (i.e., precipitation, solar

  14. Thermal characteristics and durability of sealed insulated glass units incorporating muntin bars under ultraviolet exposure

    SciTech Connect (OSTI)

    Elmahdy, A.H. [National Research Council of Canada, Ottawa, Ontario (Canada). Inst. for Research in Construction

    1998-10-01

    Recent developments in glazing manufacturing have resulted in the introduction of a variety of glazing systems to meet the consumers demand and, in many cases, with better thermal performance than conventional glazing. Insulating glass (IG) units are now available where air is replaced with argon and other heavy gases (or mixtures of gases), low emissivity coatings on glass or plastic films, and muntin bars in the cavity between the sheets of glass. Muntin bars are made of various materials such as aluminum (anodized or painted), vinyl, or silicone foam. Although muntin bars are used for aesthetic reasons, they may cause adverse effects on the IG units performance, which may be attributed to the improper preparation of the muntin bars or the use of interior paints. Ultraviolet (fogging) tests were performed on a number of argon-filled IG units with and without muntin bars. The test results indicate that most of the IG units with muntin bars fail the UV test when viewed at off-angle. Meanwhile, when viewed at right angle, most of the IG units with muntin bars passed the UV test. Test results also showed that the R-value and condensation resistance of IG units with muntin bars are 4% to 7% lower than those units without muntin bars. The thermal bridging effect of the muntin bars contribute to the lower glass surface temperature in the area adjacent to the muntin bars.

  15. Economics of Ocean Thermal Energy Conversion (OTEC): Luis A. Vega Ph.D., National Marine Renewable Energy Center at the University of Hawai'i

    E-Print Network [OSTI]

    .D., National Marine Renewable Energy Center at the University of Hawai'i Copyright 2010, Offshore TechnologyOTC 21016 Economics of Ocean Thermal Energy Conversion (OTEC): An Update Luis A. Vega Ph for the production of electricity, desalinated water and energy intensive products. It is postulated that the US

  16. Thermal to Electrical Energy Conversion of Skutterudite-Based Thermoelectric Modules

    SciTech Connect (OSTI)

    Salvador, James R.; Cho, Jung Y; Ye, Zuxin; Moczygemba, Joshua E.; Thompson, Alan; Sharp, Jeff W.; Konig, Jan; Maloney, Ryan; Thompson, Travis; Sakamoto, Jeff; Wang, Hsin; Wereszczak, Andrew A; Meisner, G P

    2013-01-01

    The performance of thermoelectric (TE) materials has improved tremendously over the past decade. The intrinsic thermal and electrical properties of state-of-the-art TE materials demonstrate that the potential for widespread practical TE applications is very large and includes TE generators (TEGs) for automotive waste heat recovery. TE materials for automotive TEG applications must have good intrinsic performance, be thermomechanically compatible, and be chemically stable in the 400 K to 850 K temperature range. Both n-type and p-type varieties must be available at low cost, easily fabricated, and durable. They must also form robust junctions and develop good interfaces with other materials to permit efficient flows of electrical and thermal energy. Among the TE materials of interest for automotive waste heat recovery systems are the skutterudite compounds, which are the antimony-based transition-metal compounds RTE4Sb12, where R can be an alkali metal (e.g., Na, K), alkaline earth (e.g., Ba), or rare earth (e.g., La, Ce, Yb), and TE can be a transition metal (e.g., Co, Fe). We synthesized a considerable quantity of n-type and p-type skutterudites, fabricated TE modules, incorporated these modules into a prototype TEG, and tested the TEG on a production General Motors (GM) vehicle. We discuss our progress on skutterudite TE module fabrication and present module performance data for electrical power output under simulated operating conditions for automotive waste heat recovery systems. We also present preliminary durability results on our skutterudite modules.

  17. Neighboring Interactions in a Periodic Plasmonic Material for Solar-Thermal Energy Conversion

    E-Print Network [OSTI]

    Musho, Terence D; Coppens, Zackary J

    2015-01-01

    A periodic plasmonic meta-material was studied using finite-difference time domain (FDTD) method to investigate the influence of neighboring particles on the near unity optical absorptivity. The meta-material was constructed as a silver nanoparticle (20-90nm) situated above an alumina (Al$_2$O$_3$) dielectric environment. A full parametric sweep of the particle width and the dielectric thickness was conducted. Computational results identified several resonances between the metal-dielectric and metal-air that have potential to broadening the response through stacked geometry. A significant coupled resonance between the metal-dielectric resonance and a cavity resonance between particles was capture as a function of dielectric thickness. This coupled resonance was not evident below dielectric thicknesses of 40nm and above cavity widths of 20nm. Additionally, a noticeable propagating surface plasmon polariton resonance was predicted when the particle width was half the unit cell length.

  18. Use of GTE-65 gas turbine power units in the thermal configuration of steam-gas systems for the refitting of operating thermal electric power plants

    SciTech Connect (OSTI)

    Lebedev, A. S.; Kovalevskii, V. P.; Getmanov, E. A.; Ermaikina, N. A.

    2008-07-15

    Thermal configurations for condensation, district heating, and discharge steam-gas systems (PGU) based on the GTE-65 gas turbine power unit are described. A comparative multivariant analysis of their thermodynamic efficiency is made. Based on some representative examples, it is shown that steam-gas systems with the GTE-65 and boiler-utilizer units can be effectively used and installed in existing main buildings during technical refitting of operating thermal electric power plants.

  19. Experiments on oxygen desorption from surface warm seawater under open-cycle ocean thermal energy conversion (OC-OTEC) conditions

    SciTech Connect (OSTI)

    Pesaran, A.A.

    1989-12-01

    This paper reports the results of scoping deaeration experiments conducted with warm surface seawater under open-cycle ocean thermal energy conversion (OC-OTEC). Concentrations of dissolved oxygen in seawater at three locations (in the supply water, water leaving a predeaerator, and discharge water from an evaporator) were measured and used to estimate oxygen desorption levels. The results suggest that 7% to 60% of dissolved oxygen in the supply water was desorbed from seawater in the predeaerator for pressures ranging from 9 to 35 kPa. Bubble injection in the upcomer increased the oxygen desorption rate by 20% to 60%. The dependence of oxygen desorption with flow rate could not be determined. The data also indicated that at typical OC-OTEC evaporator pressures when flashing occurred, 75% to 95% of dissolved oxygen was desorbed overall from the warm seawater. The uncertainty in results is larger than one would desire. These uncertainties are attributed to the uncertainties and difficulties in the dissolved oxygen measurements. Methods to improve the measurements for future gas desorption studies for warm surface and cold deep seawater under OC-OTEC conditions are recommended. 14 refs., 5 figs., 2 tabs.

  20. Results of scoping tests for open-cycle OTEC (ocean thermal energy conversion) components operating with seawater

    SciTech Connect (OSTI)

    Zangrando, F; Bharathan, D; Green, H J; Link, H F; Parsons, B K; Parsons, J M; Pesaran, A A [Solar Energy Research Inst., Golden, CO (USA); Panchal, C B [Argonne National Lab., IL (USA)

    1990-09-01

    This report presents comprehensive documentation of the experimental research conducted on open-cycle ocean thermal energy conversion (OC-OTEC) components operating with seawater as a working fluid. The results of this research are presented in the context of previous analysis and fresh-water testing; they provide a basis for understanding and predicting with confidence the performance of all components of an OC-OTEC system except the turbine. Seawater tests have confirmed the results that were obtained in fresh-water tests and predicted by the analytical models of the components. A sound technical basis has been established for the design of larger systems in which net power will be produced for the first time from OC-OTEC technology. Design and operation of a complete OC-OTEC system that produces power will provide sufficient confidence to warrant complete transfer of OC-OTEC technology to the private sector. Each components performance is described in a separate chapter written by the principal investigator responsible for technical aspects of the specific tests. Chapters have been indexed separately for inclusion on the data base.

  1. Conceptual design of an open-cycle ocean thermal energy conversion net power-producing experiment (OC-OTEC NPPE)

    SciTech Connect (OSTI)

    Bharathan, D.; Green, H.J.; Link, H.F.; Parsons, B.K.; Parsons, J.M.; Zangrando, F.

    1990-07-01

    This report describes the conceptual design of an experiment to investigate heat and mass transfer and to assess the viability of open-cycle ocean thermal energy conversion (OC-OTEC). The experiment will be developed in two stages, the Heat- and Mass-Transfer Experimental Apparatus (HMTEA) and the Net Power-Producing Experiment (NPPE). The goal for the HMTEA is to test heat exchangers. The goal for the NPPE is to experimentally verify OC-OTEC's feasibility by installing a turbine and testing the power-generating system. The design effort met the goals of both the HMTEA and the NPPE, and duplication of hardware was minimal. The choices made for the design resource water flow rates are consistent with the availability of cold and warm seawater as a result of the seawater systems upgrade carried out by the US Department of Energy (DOE), the state of Hawaii, and the Pacific International Center for High Technology Research. The choices regarding configuration of the system were made based on projected performance, degree of technical risk, schedule, and cost. The cost for the future phase of the design and the development of the HMTEA/NPPE is consistent with the projected future program funding levels. The HMTEA and NPPE were designed cooperatively by PICHTR, Argonne National Laboratory, and Solar Energy Research Institute under the guidance of DOE. The experiment will be located at the DOE's Seacoast Test Facility at the Natural Energy Laboratory of Hawaii, Kailua-Kona, Hawaii. 71 refs., 41 figs., 34 tabs.

  2. Presentation 2.8: Program for the conversion of Russian municipal boilers with 20MW maximum capacity to biofuel due to funds from the emissions reduction units sell, under the Kyoto Protocol

    E-Print Network [OSTI]

    conversion to wood chips Due to funds from the emissions reduction units sell, under the Kyoto ProtocolPresentation 2.8: Program for the conversion of Russian municipal boilers with 20MW maximum capacity to biofuel due to funds from the emissions reduction units sell, under the Kyoto Protocol Andrey

  3. Experimental demonstration of bandwidth enhancement based on two-pump wavelength conversion in a silicon waveguide

    E-Print Network [OSTI]

    Gao, Shiming; Tien, En-Kuang; Huang, Yuewang; He, Sailing

    2010-01-01

    27887 Fig. 3. Measured unit conversion efficiencies and theFor comparison, unit conversion efficiency is introduced byc) the corresponding unit conversion efficiency for the two-

  4. Steam Generator Component Model in a Combined Cycle of Power Conversion Unit for Very High Temperature Gas-Cooled Reactor

    SciTech Connect (OSTI)

    Oh, Chang H; Han, James; Barner, Robert; Sherman, Steven R

    2007-06-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP), Very High Temperature Gas-Cooled Reactor (VHTR) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. A combined cycle is considered as one of the power conversion units to be coupled to the very high-temperature gas-cooled reactor (VHTR). The combined cycle configuration consists of a Brayton top cycle coupled to a Rankine bottoming cycle by means of a steam generator. A detailed sizing and pressure drop model of a steam generator is not available in the HYSYS processes code. Therefore a four region model was developed for implementation into HYSYS. The focus of this study was the validation of a HYSYS steam generator model of two phase flow correlations. The correlations calculated the size and heat exchange of the steam generator. To assess the model, those calculations were input into a RELAP5 model and its results were compared with HYSYS results. The comparison showed many differences in parameters such as the heat transfer coefficients and revealed the different methods used by the codes. Despite differences in approach, the overall results of heat transfer were in good agreement.

  5. Thermal hydraulic limits analysis for the MIT Research Reactor low enrichment uranium core conversion using statistical propagation of parametric uncertainties

    E-Print Network [OSTI]

    Chiang, Keng-Yen

    2012-01-01

    The MIT Research Reactor (MITR) is evaluating the conversion from highly enriched uranium (HEU) to low enrichment uranium (LEU) fuel. In addition to the fuel element re-design from 15 to 18 plates per element, a reactor ...

  6. Quantum conversion

    E-Print Network [OSTI]

    Michael Mazilu

    2015-08-06

    The electromagnetic momentum transferred transfered to scattering particles is proportional to the intensity of the incident fields, however, the momentum of single photons ($\\hbar k$) does not naturally appear in these classical expressions. Here, we discuss an alternative to Maxwell's stress tensor that renders the classical electromagnetic field momentum compatible to the quantum mechanical one. This is achieved through the introduction of the quantum conversion which allows the transformation, including units, of the classical fields to wave-function equivalent fields.

  7. Assessment of optical performance of three non-tracking, non-imaging, external compound parabolic concentrators designed for high temperature solar thermal collector units

    E-Print Network [OSTI]

    Cisneros, Jesus

    2010-01-01

    et al. (2003). Low-Cost Distributed Solar- Thermal-Electriccooling with solar energy, leading to a more cost effectiveSolar Thermal Collector Units Introduction Increased production costs

  8. A History of Geothermal Energy Research and Development in the United States. Energy Conversion 1976-2006

    SciTech Connect (OSTI)

    Mines, Gregory L.

    2010-09-01

    This report, the last in a four-part series, summarizes significant research projects performed by the U.S. Department of Energy (DOE) over 30 years to overcome challenges in energy conversion and to make generation of electricity from geothermal resources more cost-competitive.

  9. EIS-0092: Conversion to Coal, Holyoke Water Power Company, Mt. Tom Generating Station Unit 1 Holyoke, Hampden County, Massachusetts

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration prepared this statement to assess the environmental impacts of prohibiting Unit 1 of the Mt. Tom Generation Station Unit 1 from using either natural gas or petroleum products as a primary energy source, which would result in the utility burning low-sulfur coal.

  10. An Economic Analysis of the Self Commitment of Thermal Units Simon Ede, Ray Zimmerman, Timothy Mount, Robert Thomas, William Schulze

    E-Print Network [OSTI]

    An Economic Analysis of the Self Commitment of Thermal Units Simon Ede, Ray Zimmerman, Timothy a series of economic experiments conducted at Cornell University's Laboratory for Experimental Economics Commitment In the most conventional form of economic dispatch, the problem facing the system operator

  11. A History or Geothermal Energy Research and Development in the United States: Energy Conversion 1976-2006

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReportOffice | DepartmentVery1, in: Statement ofAEnergy Conversion 1976

  12. Fabrication and testing of an infrared spectral control component for thermophotovoltaic power conversion applications

    E-Print Network [OSTI]

    O'Sullivan, Francis M. (Francis Martin), 1980-

    2004-01-01

    Thermophotovoltaic (TPV) power conversion is the direct conversion of thermal radiation to electricity. Conceptually, TPV power conversion is a very elegant means of energy conversion. A thermal source emits a radiative ...

  13. Ocean thermal energy conversion preliminary data report for the November 1977 GOTEC-02 cruise to the Gulf of Mexico Mobile Site

    SciTech Connect (OSTI)

    Commins, M. L; Duncan, C. P.; Estrella, D. J.; Frisch, J. D.; Horne, A. J.; Jones, K.; Johnson, P. W.; Oldson, J. C.; Quinby-Hunt, M. S.; Ryan, C. J.; Sandusky, J. C.; Tatro, M.; Wilde, P.

    1980-03-01

    This is the second in a series of preliminary data reports from cruises to potential Ocean Thermal Energy Conversion (OTEC) sites in the Gulf of Mexico. The data are from the GOTEC-02 cruise to a site at approximately 29/sup 0/N, 88/sup 0/W, the Mobile Site. Twelve oceanographic stations were visited. Due to bad weather, the results are scanty. The reader will note that much of the data is questionable. Current meter results are presented elsewhere (Molinari, Hazelworth and Ortman, 1979). Determinations of the biomass indicators - chlorophyll a, phaeophytins and adenosine triphosphate - and zooplankton, are presented. Results were generally those that might have been predicted from previous studies in the area.

  14. Ultra-broadband one-to-two wavelength conversion using low-phase-mismatching four-wave mixing in silicon waveguides

    E-Print Network [OSTI]

    Gao, Shiming; Tien, En-Kuang; Song, Qi; Huang, Yuewang; Boyraz, Ozdal

    2010-01-01

    we introduce a unit conversion efficiency to eliminate theFig. 6 shows the unit conversion efficiency calculated fromindicated in Fig. 6, the unit conversion efficiency for each

  15. Solar Thermal Conversion of Biomass to Synthesis Gas: Cooperative Research and Development Final Report, CRADA Number CRD-09-00335

    SciTech Connect (OSTI)

    Netter, J.

    2013-08-01

    The CRADA is established to facilitate the development of solar thermal technology to efficiently and economically convert biomass into useful products (synthesis gas and derivatives) that can replace fossil fuels. NREL's High Flux Solar Furnace will be utilized to validate system modeling, evaluate candidate reactor materials, conduct on-sun testing of the process, and assist in the development of solar process control system. This work is part of a DOE-USDA 3-year, $1M grant.

  16. 1.Physics Department, Colorado School of Mines, Golden, CO 2. National Renewable Energy Laboratory, Golden, CO 3. United Solar Ovonic, LLC Troy, MI, United States THERMAL ACTIVATION OF DEEP OXYGEN DEFECT FORMATION AND HYDROGEN EFFUSION

    E-Print Network [OSTI]

    1.Physics Department, Colorado School of Mines, Golden, CO 2. National Renewable Energy Laboratory, Golden, CO 3. United Solar Ovonic, LLC Troy, MI, United States BACKGROUND THERMAL ACTIVATION OF DEEP was partially supported by a DOE grant through United Solar Ovonics, Inc., under the Solar America Initiative

  17. Study of domestic social and economic impacts of ocean thermal energy conversion (OTEC) commercial development. Volume I. Economic impacts

    SciTech Connect (OSTI)

    1981-12-22

    This analysis identifies the economic impacts associated with OTEC development and quantifies them at the national, regional, and industry levels. It focuses on the effects on the United States' economy of the domestic development and utilization of twenty-five and fifty 400 MWe OTEC power plants by the year 2000. The methodology employed was characteristic of economic impact analysis. After conducting a literature review, a likely future OTEC scenario was developed on the basis of technological, siting, and materials requirements parameters. These parameters were used to identify the industries affected by OTEC development; an economic profile was constructed for each of these industries. These profiles established an industrial baseline from which the direct, indirect, and induced economic impacts of OTEC implementation could be estimated. Each stage of this analysis is summarized; and the economic impacts are addressed. The methodology employed in estimating the impacts is described.

  18. EA-0821: Operation of the Glass Melter Thermal Treatment Unit at the U.S. Department of Energy's Mound Plant, Miamisburg, Ohio

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to use an existing glass melter thermal treatment unit (also known as a Penberthy Pyro-Converter joule-heated glass furnace) for the...

  19. Harvesting nanoscale thermal radiation using pyroelectric materials

    E-Print Network [OSTI]

    Fang, Jin; Frederich, Hugo; Pilon, Laurent

    2010-01-01

    the other hand, energy transfer by thermal radiation betweenit was shown that energy transfer by thermal radi- ationpyroelectric energy conversion and nanoscale thermal

  20. Damodar Valley Corporation, Chandrapura Unit 2 Thermal Power Station Residual Life Assessment Summary report

    SciTech Connect (OSTI)

    NONE

    1995-02-01

    The BHEL/NTPC/PFC/TVA teams assembled at the DVC`s Chadrapura station on July 19, 1994, to assess the remaining life of Unit 2. The workscope was expanded to include major plant systems that impact the unit`s ability to sustain generation at 140 MW (Units 1-3 have operated at average rating of about 90 MW). Assessment was completed Aug. 19, 1994. Boiler pressure parts are in excellent condition except for damage to primary superheater header/stub tubes and economizer inlet header stub tubes. The turbine steam path is in good condition except for damage to LP blading; the spar rotor steam path is in better condition and is recommended for Unit 2. Nozzle box struts are severely cracked from the flame outs; the cracks should not be repaired. HP/IP rotor has surface cracks at several places along the steam seal areas; these cracks are shallow and should be machined out. Detailed component damage assessments for above damaged components have been done. The turbine auxiliary systems have been evaluated; cooling tower fouling/blockage is the root cause for the high turbine back pressure. The fuel processing system is one of the primary root causes for limiting unit capacity. The main steam and hot reheat piping systems were conservatively designed and have at least 30 years left;deficiencies needing resolution include restoration of insulation, replacement of 6 deformed hanger clamp/bolts, and adjustment of a few hanger settings. The cold reheat piping system is generally in good condition; some areas should be re-insulated and the rigid support clamps/bolts should be examined. The turbine extraction piping system supports all appeared to be functioning normally.

  1. Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom

    SciTech Connect (OSTI)

    Burnley, Stephen; Phillips, Rhiannon; Coleman, Terry; Rampling, Terence

    2011-09-15

    Highlights: > Energy balances were calculated for the thermal treatment of biodegradable wastes. > For wood and RDF, combustion in dedicated facilities was the best option. > For paper, garden and food wastes and mixed waste incineration was the best option. > For low moisture paper, gasification provided the optimum solution. - Abstract: Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energy balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste.

  2. Operable Unit 7-13/14 in situ thermal desorption treatability study work plan

    SciTech Connect (OSTI)

    Shaw, P.; Nickelson, D.; Hyde, R.

    1999-05-01

    This Work Plan provides technical details for conducting a treatability study that will evaluate the application of in situ thermal desorption (ISTD) to landfill waste at the Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL). ISTD is a form of thermally enhanced vapor vacuum extraction that heats contaminated soil and waste underground to raise its temperature and thereby vaporize and destroy most organics. An aboveground vapor vacuum collection and treatment system then destroys or absorbs the remaining organics and vents carbon dioxide and water to the atmosphere. The technology is a byproduct of an advanced oil-well thermal extraction program. The purpose of the ISTD treatability study is to fill performance-based data gaps relative to off-gas system performance, administrative feasibility, effects of the treatment on radioactive contaminants, worker safety during mobilization and demobilization, and effects of landfill type waste on the process (time to remediate, subsidence potential, underground fires, etc.). By performing this treatability study, uncertainties associated with ISTD as a selected remedy will be reduced, providing a better foundation of remedial recommendations and ultimate selection of remedial actions for the SDA.

  3. Thermal Use of Biomass in The United States | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008)|Al.,ProductThermal

  4. Thermal-Hydraulic Analysis of Seed-Blanket Unit Duplex Fuel Assemblies with VIPRE-01 

    E-Print Network [OSTI]

    McDermott, Patrick 1987-

    2012-11-15

    analysis report HM heavy metal HS Hashin-Shtrikman HEM homogeneous equilibrium model IMF inert matrix fuel INL Idaho National Laboratory LHGR linear heat generation rate LOFA loss-of-flow accident LWR light water reactor MA minor actinides ME... component of the fluid/wall interface ? gravity vector l distance between centroids of adjacent cells ? unit outward normal vector hydrostatic pressure component of the stress tensor ? heat flux vector ? rate of internal heat generation...

  5. Quantity, quality, and availability of waste heat from United States thermal power generation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gingerich, Daniel B [Carnegie Mellon Univ., Pittsburgh, PA (United States); Mauter, Meagan S [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2015-06-10

    Secondary application of unconverted heat produced during electric power generation has the potential to improve the life-cycle fuel efficiency of the electric power industry and the sectors it serves. This work quantifies the residual heat (also known as waste heat) generated by U.S. thermal power plants and assesses the intermittency and transport issues that must be considered when planning to utilize this heat. Combining Energy Information Administration plant-level data with literature-reported process efficiency data, we develop estimates of the unconverted heat flux from individual U.S. thermal power plants in 2012. Together these power plants discharged an estimated 18.9 billion GJth of residual heat in 2012, 4% of which was discharged at temperatures greater than 90 °C. We also characterize the temperature, spatial distribution, and temporal availability of this residual heat at the plant level and model the implications for the technical and economic feasibility of its end use. Increased implementation of flue gas desulfurization technologies at coal-fired facilities and the higher quality heat generated in the exhaust of natural gas fuel cycles are expected to increase the availability of residual heat generated by 10.6% in 2040.

  6. Quantity, quality, and availability of waste heat from United States thermal power generation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gingerich, Daniel B; Mauter, Meagan S

    2015-06-10

    Secondary application of unconverted heat produced during electric power generation has the potential to improve the life-cycle fuel efficiency of the electric power industry and the sectors it serves. This work quantifies the residual heat (also known as waste heat) generated by U.S. thermal power plants and assesses the intermittency and transport issues that must be considered when planning to utilize this heat. Combining Energy Information Administration plant-level data with literature-reported process efficiency data, we develop estimates of the unconverted heat flux from individual U.S. thermal power plants in 2012. Together these power plants discharged an estimated 18.9 billion GJthmore »of residual heat in 2012, 4% of which was discharged at temperatures greater than 90 °C. We also characterize the temperature, spatial distribution, and temporal availability of this residual heat at the plant level and model the implications for the technical and economic feasibility of its end use. Increased implementation of flue gas desulfurization technologies at coal-fired facilities and the higher quality heat generated in the exhaust of natural gas fuel cycles are expected to increase the availability of residual heat generated by 10.6% in 2040.« less

  7. Direct Conversion Technology

    SciTech Connect (OSTI)

    Back, L.H.; Fabris, G.; Ryan, M.A.

    1992-07-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)

  8. Geothermal Resource/Reservoir Investigations Based on Heat Flow and Thermal Gradient Data for the United States

    SciTech Connect (OSTI)

    D. D. Blackwell; K. W. Wisian; M. C. Richards; J. L. Steele

    2000-04-01

    Several activities related to geothermal resources in the western United States are described in this report. A database of geothermal site-specific thermal gradient and heat flow results from individual exploration wells in the western US has been assembled. Extensive temperature gradient and heat flow exploration data from the active exploration of the 1970's and 1980's were collected, compiled, and synthesized, emphasizing previously unavailable company data. Examples of the use and applications of the database are described. The database and results are available on the world wide web. In this report numerical models are used to establish basic qualitative relationships between structure, heat input, and permeability distribution, and the resulting geothermal system. A series of steady state, two-dimensional numerical models evaluate the effect of permeability and structural variations on an idealized, generic Basin and Range geothermal system and the results are described.

  9. Fouling and thermal-performance characteristics of the Humboldt Bay Unit 2 power-plant condenser

    SciTech Connect (OSTI)

    Rabas, T.J. [Argonne National Lab., IL (United States); Elliott, E.S. [Pacific Gas and Electric Co., San Ramon, CA (US)

    1993-07-01

    An experimental program was conducted at the Humboldt Bay condenser using eight clusters of four neighboring tubes with different conditions. In each cluster, there were (1) a new tube, the tubeside fluid being distilled water; (2) a new tube, the tubeside fluid being plant circulating water (seawater) and no cleaning; (3) an old tube, plant circulating water with no cleaning; and (4) an old tube, plant circulating water with normal periodic manual cleaning (blowing plugs or sponge balls). These tube clusters were located at four different locations within both the first and second passes of this two-pass condenser. Because of the different conditions, the fouling and cleaning characteristics can be obtained with measurements of the flow rate and inlet, outlet, and saturation temperatures. In addition to the fouling data, the thermal performance can be compared to that obtained with the standard rating method. There was a reduction in the thermal performance of the new, distilled-water tubes for about the first 80 days, and then the performance remained essentially constant. This performance change was most likely the result of the change from dropwise to filmwise condensation on the 7/8-in OD, 18 BWG Admiralty tubes. There was a continued increase of the tubeside fouling resistance with time (no asymptotic behavior) for the tubes that were not cleaned in each cluster using the plant circulating water. The fouling rates were somewhat larger for the first or lower temperature pass initially for the new tubes and after about 100 days for the old tubes. However, the fouling resistance values were substantially larger for the old tubes.

  10. Direct conversion technology

    SciTech Connect (OSTI)

    Massier, P.F.; Back, L.H.; Ryan, M.A.; Fabris, G.

    1992-01-07

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.

  11. Zinc phosphate conversion coatings

    DOE Patents [OSTI]

    Sugama, Toshifumi (Wading River, NY)

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  12. Zinc phosphate conversion coatings

    DOE Patents [OSTI]

    Sugama, T.

    1997-02-18

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  13. Aquifer thermal energy (heat and chill) storage

    SciTech Connect (OSTI)

    Jenne, E.A.

    1992-11-01

    As part of the 1992 Intersociety Conversion Engineering Conference, held in San Diego, California, August 3--7, 1992, the Seasonal Thermal Energy Storage Program coordinated five sessions dealing specifically with aquifer thermal energy storage technologies (ATES). Researchers from Sweden, The Netherlands, Germany, Switzerland, Denmark, Canada, and the United States presented papers on a variety of ATES related topics. With special permission from the Society of Automotive Engineers, host society for the 1992 IECEC, these papers are being republished here as a standalone summary of ATES technology status. Individual papers are indexed separately.

  14. Negative Thermal Expansion in ZrW{sub 2}O{sub 8}: Mechanisms, Rigid Unit Modes, and Neutron Total Scattering

    SciTech Connect (OSTI)

    Tucker, Matthew G. [Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ (United Kingdom); ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Goodwin, Andrew L.; Dove, Martin T. [Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ (United Kingdom); Keen, David A. [Physics Department, Oxford University, Clarendon Laboratory, Parks Road, Oxford OX1 3PU (United Kingdom); ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Wells, Stephen A. [Biological Physics, Bateman Physical Sciences Building, Arizona State University, Tempe, Arizona 85287-1504 (United States); Evans, John S.O. [Department of Chemistry, University Science Laboratories, South Road, Durham DH1 3LE (United Kingdom)

    2005-12-16

    The local structure of the low-temperature ordered phase of the negative thermal expansion (NTE) material ZrW{sub 2}O{sub 8} has been investigated by reverse Monte Carlo (RMC) modeling of neutron total scattering data. We obtain, for the first time, quantitative measurements of the extent to which the WO{sub 4} and ZrO{sub 6} polyhedra move as rigid units, and we show that these values are consistent with the predictions of rigid unit mode theory. We suggest that rigid unit modes are associated with the NTE. Our results do not support a recent interpretation of x-ray-absorption fine structure spectroscopy data in terms of a larger rigid structural component involving the Zr-O-W linkage.

  15. EIS-0105: Conversion to Coal, Baltimore Gas & Electric Company, Brandon Shores Generating Station Units 1 and 2, Anne Arundel County, Maryland

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Economic Regulatory Administration Office of Fuels Program, Coal and Electricity Division prepared this statement to assess the potential environmental and socioeconomic impacts associated with prohibiting the use of petroleum products as a primary energy source for Units 1 and 2 of the Brandon Shores Generating Station, located in Anne Arundel County, Maryland.

  16. EIS-0086: Conversion to Coal, New England Power Company, Salem Harbor Generating Station Units 1, 2, and 3, Salem, Essex County, Massachusetts

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration prepared this statement to assess the environmental impacts of prohibiting Units I, 2, and 3 of the Salem Harbor Generating Station from using either natural gas or petroleum products as a primary energy source, which would result in the utility burning low-sulfur coal.

  17. THERMAL AND THERMOMECHANICAL DATA FROM IN SITU HEATER EXPERIMENTS AT STRIPA, SWEDEN

    E-Print Network [OSTI]

    Chan, T.

    2010-01-01

    t i o n and engineering unit conversion algorithms. Decodingengineering units and time-averaging them, using conversionUSBM gauges 6.2 Conversion to Engineering Units 6.2.1 Heater

  18. Thermal Management of Solar Cells

    E-Print Network [OSTI]

    Saadah, Mohammed Ahmed

    2013-01-01

    cell. The solar cell’s power conversion efficiency, ? is theEfficiency ..5 Thermal Managements of SolarTemperature on Efficiency Photons incident on a solar cell

  19. Determination of Thermal-Degradation Rates of Some Candidate Rankine-Cycle Organic Working Fluids for Conversion of Industrial Waste Heat Into Power 

    E-Print Network [OSTI]

    Jain, M. L.; Demirgian, J.; Krazinski, J. L.; Bushby, H.; Mattes, H.; Purcell, J.

    1984-01-01

    -FlUid Loop I The fluid loop consists oE an evap,rator/ superheater section, set of pressure-re~uctlon valves, an economizer unit, a conden er, a metering pump, and a pulsation damper. , Evaporator/Superheater Section This-I section is constructed of 9... the height of the baae Peak is proportional to the pressure of th gas ~n the spectrometer, the spectrum 1.s made at known pressure to determine the s n8iti"ity coeff~cient (i.e., peak height/pressure). The accuracy of analysis depends on var ous factors...

  20. Thermally activated delayed fluorescence from {sup 3}n?* to {sup 1}n?* up-conversion and its application to organic light-emitting diodes

    SciTech Connect (OSTI)

    Li, Jie; Zhang, Qisheng; Nomura, Hiroko [Department of Chemistry and Biochemistry, and Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Miyazaki, Hiroshi [Department of Chemistry and Biochemistry, and Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Functional Materials Laboratory, Nippon Steel and Sumikin Chemical Co., Ltd, 46–80 Nakabaru, Sakinohama, Tobata, Kitakyushu, Fukuoka 804–8503 (Japan); Adachi, Chihaya, E-mail: adachi@cstf.kyushu-u.ac.jp [Department of Chemistry and Biochemistry, and Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan)

    2014-07-07

    Intense n?* fluorescence from a nitrogen-rich heterocyclic compound, 2,5,8-tris(4-fluoro-3-methylphenyl)-1,3,4,6,7,9,9b-heptaazaphenalene (HAP-3MF), is demonstrated. The overlap-forbidden nature of the n?* transition and the higher energy of the {sup 3}??* state than the {sup 3}n?* one lead to a small energy difference between the lowest singlet (S{sub 1}) and triplet (T{sub 1}) excited states of HAP-3MF. Green-emitting HAP-3MF has a moderate photoluminescence quantum yield of 0.26 in both toluene and doped film. However, an organic light-emitting diode containing HAP-3MF achieved a high external quantum efficiency of 6.0%, indicating that HAP-3MF harvests singlet excitons through a thermally activated T{sub 1} ? S{sub 1} pathway in the electroluminescent process.

  1. Advanced nanofabrication of thermal emission devices

    E-Print Network [OSTI]

    Hurley, Fergus (Fergus Gerard)

    2008-01-01

    Nanofabricated thermal emission devices can be used to modify and modulate blackbody thermal radiation. There are many areas in which altering thermal radiation is extremely useful, especially in static power conversion, ...

  2. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    unit in an over-the-road truck system. schock.pdf More Documents & Publications Thermoelectric Conversion of Wate Heat to Electricity in an IC Engine Powered Vehicle...

  3. Assessment of optical performance of three non-tracking, non-imaging, external compound parabolic concentrators designed for high temperature solar thermal collector units

    E-Print Network [OSTI]

    Cisneros, Jesus

    2010-01-01

    and future of solar thermal energy as a primary source ofon harnessing solar thermal energy for water desalinationas an alternative. Solar thermal energy has the potential to

  4. A comparison of dose and dose-rate conversion factors from the Soviet Union, United Kingdom, US Department of Energy, and the Idaho National Engineering Laboratory Fusion Safety Program

    SciTech Connect (OSTI)

    Rood, A.S.; Abbott, M.L.

    1991-12-01

    Several independent data sets of radiological dose and dose-rate conversion factors (DCF/DRCF) have been tabulated or developed by the international community both for fission and fusion safety purposes. This report compares sets from the US Department of Energy, the Soviet Union, and the United Kingdom with those calculated by the Idaho National Engineering Laboratory Fusion Safety Program. The objectives were to identify trends and potential outlying values for specific radionuclides and contribute to a future benchmark evaluation of the CARR computer code. Fifty-year committed effective dose equivalent factors were compared for the inhalation and ingestion pathways. External effective dose equivalent rates were compared for the air immersion and ground surface exposure pathways. Comparisons were made by dividing dose factors in the different data bases by the values in the FSP data base. Differences in DCF/DRCF values less than a factor of 2 were considered to be in good agreement and are likely due to the use of slightly different decay data, variations in the number of organs considered for calculating CEDE, and rounding errors. DCF/DRCF values that differed by greater than a factor of 10 were considered to be significant. These differences are attributed primarily to the use of different radionuclide decay data, selection and nomenclature for different isomeric states, treatment of progeny radionuclides, differences in calculational methodology, and assumptions on a radionuclide's chemical form.

  5. A comparison of dose and dose-rate conversion factors from the Soviet Union, United Kingdom, US Department of Energy, and the Idaho National Engineering Laboratory Fusion Safety Program

    SciTech Connect (OSTI)

    Rood, A.S.; Abbott, M.L.

    1991-12-01

    Several independent data sets of radiological dose and dose-rate conversion factors (DCF/DRCF) have been tabulated or developed by the international community both for fission and fusion safety purposes. This report compares sets from the US Department of Energy, the Soviet Union, and the United Kingdom with those calculated by the Idaho National Engineering Laboratory Fusion Safety Program. The objectives were to identify trends and potential outlying values for specific radionuclides and contribute to a future benchmark evaluation of the CARR computer code. Fifty-year committed effective dose equivalent factors were compared for the inhalation and ingestion pathways. External effective dose equivalent rates were compared for the air immersion and ground surface exposure pathways. Comparisons were made by dividing dose factors in the different data bases by the values in the FSP data base. Differences in DCF/DRCF values less than a factor of 2 were considered to be in good agreement and are likely due to the use of slightly different decay data, variations in the number of organs considered for calculating CEDE, and rounding errors. DCF/DRCF values that differed by greater than a factor of 10 were considered to be significant. These differences are attributed primarily to the use of different radionuclide decay data, selection and nomenclature for different isomeric states, treatment of progeny radionuclides, differences in calculational methodology, and assumptions on a radionuclide`s chemical form.

  6. Thermochemical Conversion Pilot Plant (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01

    The state-of-the-art thermochemical conversion pilot plant includes several configurable, complementary unit operations for testing and developing various reactors, filters, catalysts, and other unit operations. NREL engineers and scientists as well as clients can test new processes and feedstocks in a timely, cost-effective, and safe manner to obtain extensive performance data on processes or equipment.

  7. A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2012-01-01

    Appendix A: Thermal Unit Conversion Factors. Washington, DC:Appendix A: Thermal Unit Conversion Factors. Washington, DC:Appendix Table 43: Unit conversion factors From this unit

  8. The high conversion LC-Fining process

    SciTech Connect (OSTI)

    VanDriesen, R.P.; Strangio, V.A.; Rhoe, A.; Kolstad, J.J.

    1986-01-01

    Residual oil hydrocracking has been practiced at moderate conversions for many years on a wide range of feedstocks. Processes utilizing expanded bed reactors have been proven to be effective in the hydrocracking of these heavy residual feedstocks. Conversions up to 60% vacuum bottoms to distillates were routinely obtained in several commercial units. More recently Amoco has been operating an LC-Fining unit in their Texas City refinery at conversions as high as 80%. Normal conversion in this plant however is 60-65%. LC-Fining is an expanded bed resid hydrocracking and hydrodesulfurization process developed by Cities Service and Lummus Crest. There are a number of factors which may limit the conversion in any given plant site. These include compatibility problems with the liquid product, settling out of heavy hydrocarbons in downstream equipment or fouling of the catalyst in the reactor which in the extreme results in coking of the catalyst bed. The operator of a residual hydrocracker maintains conversion at a sufficiently low level to avoid these problems. Recent advances in the LC-Fining technology have led to the development of the High Conversion LC-Fining Process which is capable of operation at conversions of 95% and higher without any of these problems.

  9. OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT

    E-Print Network [OSTI]

    Sands, M.Dale

    2013-01-01

    boch open- and closed-power cycles in land-based, moored andopen- and closed-power cycle), plant configurations (land-demonstration. The closed-power cycle may be used for land-

  10. Thermal springs list for the United States; National Oceanic and Atmospheric Administration Key to Geophysical Records Documentation No. 12

    SciTech Connect (OSTI)

    Berry, G.W.; Grim, P.J.; Ikelman, J.A.

    1980-06-01

    The compilation has 1702 thermal spring locations in 23 of the 50 States, arranged alphabetically by State (Postal Service abbreviation) and degrees of latitude and longitude within the State. It shows spring name, surface temperature in degrees Fahrenheit and degrees Celsius; USGS Professional Paper 492 number, USGS Circular 790 number, NOAA number, north to south on each degree of latitude and longitude of the listed. USGS 1:250,000-scale (AMS) map; and the USGS topographic map coverage, 1:63360- or 1:62500-scale (15-minute) or 1:24000-scale (7.5-minute) quadrangle also included is an alphabetized list showing only the spring name and the State in which it is located. Unnamed springs are omitted. The list includes natural surface hydrothermal features: springs, pools, mud pots, mud volcanoes, geysers, fumaroles, and steam vents at temperature of 20{sup 0}C (68[sup 0}F) or greater. It does not include wells or mines, except at sites where they supplement or replace natural vents presently or recently active, or, in some places, where orifices are not distinguishable as natural or artificial. The listed springs are located on the USGS 1:250,000 (AMS) topographic maps. (MHR)

  11. Assessment of optical performance of three non-tracking, non-imaging, external compound parabolic concentrators designed for high temperature solar thermal collector units

    E-Print Network [OSTI]

    Cisneros, Jesus

    2010-01-01

    Cost Distributed Solar- Thermal-Electric Power Generation.S. A. (2004). "Solar thermal collectors and applications".The present and future of solar thermal energy as a primary

  12. Thermal tolerant cellulase from Acidothermus cellulolyticus ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enzymes for the Conversion of Biomass to Biofuels and Chemicals Abstract: The invention provides a thermal tolerant cellulase that is a member of the glycoside hydrolase...

  13. Thermal tolerant avicelase from Acidothermus cellulolyticus ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enzymes for the Conversion of Biomass to Biofuels and Chemicals Abstract: The invention provides a thermal tolerant (thermostable) cellulase, AviIII, that is a member of...

  14. Thermal tolerant exoglucanase from Acidothermus cellulolyticus...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enzymes for the Conversion of Biomass to Biofuels and Chemicals Abstract: The invention provides a thermal tolerant cellulase that is a member of the glycoside hydrolase...

  15. Thermal tolerant mannanase from acidothermus cellulolyticus ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enzymes for the Conversion of Biomass to Biofuels and Chemicals Abstract: The invention provides a thermal tolerant mannanase that is a member of the glycoside hydrolase...

  16. Task 3.3: Warm Syngas Cleanup and Catalytic Processes for Syngas Conversion to Fuels Subtask 3: Advanced Syngas Conversion to Fuels

    SciTech Connect (OSTI)

    Lebarbier Dagel, Vanessa M.; Li, J.; Taylor, Charles E.; Wang, Yong; Dagle, Robert A.; Deshmane, Chinmay A.; Bao, Xinhe

    2014-03-31

    This collaborative joint research project is in the area of advanced gasification and conversion, within the Chinese Academy of Sciences (CAS)-National Energy Technology Laboratory (NETL)-Pacific Northwest National Laboratory (PNNL) Memorandum of Understanding. The goal for this subtask is the development of advanced syngas conversion technologies. Two areas of investigation were evaluated: Sorption-Enhanced Synthetic Natural Gas Production from Syngas The conversion of synthetic gas (syngas) to synthetic natural gas (SNG) is typically catalyzed by nickel catalysts performed at moderate temperatures (275 to 325°C). The reaction is highly exothermic and substantial heat is liberated, which can lead to process thermal imbalance and destruction of the catalyst. As a result, conversion per pass is typically limited, and substantial syngas recycle is employed. Commercial methanation catalysts and processes have been developed by Haldor Topsoe, and in some reports, they have indicated that there is a need and opportunity for thermally more robust methanation catalysts to allow for higher per-pass conversion in methanation units. SNG process requires the syngas feed with a higher H2/CO ratio than typically produced from gasification processes. Therefore, the water-gas shift reaction (WGS) will be required to tailor the H2/CO ratio. Integration with CO2 separation could potentially eliminate the need for a separate WGS unit, thereby integrating WGS, methanation, and CO2 capture into one single unit operation and, consequently, leading to improved process efficiency. The SNG process also has the benefit of producing a product stream with high CO2 concentrations, which makes CO2 separation more readily achievable. The use of either adsorbents or membranes that selectively separate the CO2 from the H2 and CO would shift the methanation reaction (by driving WGS for hydrogen production) and greatly improve the overall efficiency and economics of the process. The scope of this activity was to develop methods and enabling materials for syngas conversion to SNG with readily CO2 separation. Suitable methanation catalyst and CO2 sorbent materials were developed. Successful proof-of-concept for the combined reaction-sorption process was demonstrated, which culminated in a research publication. With successful demonstration, a decision was made to switch focus to an area of fuels research of more interest to all three research institutions (CAS-NETL-PNNL). Syngas-to-Hydrocarbon Fuels through Higher Alcohol Intermediates There are two types of processes in syngas conversion to fuels that are attracting R&D interest: 1) syngas conversion to mixed alcohols; and 2) syngas conversion to gasoline via the methanol-to-gasoline process developed by Exxon-Mobil in the 1970s. The focus of this task was to develop a one-step conversion technology by effectively incorporating both processes, which is expected to reduce the capital and operational cost associated with the conversion of coal-derived syngas to liquid fuels. It should be noted that this work did not further study the classic Fischer-Tropsch reaction pathway. Rather, we focused on the studies for unique catalyst pathways that involve the direct liquid fuel synthesis enabled by oxygenated intermediates. Recent advances made in the area of higher alcohol synthesis including the novel catalytic composite materials recently developed by CAS using base metal catalysts were used.

  17. Plasmonic conversion of solar energy

    E-Print Network [OSTI]

    Clavero, Cesar

    2014-01-01

    solar energy conversion .This new paradigm of solar energy conversion, based on theon this field, solar energy conversion aimed at photovoltaic

  18. Sandia Energy - Wavelength Conversion Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wavelength Conversion Materials Home Energy Research EFRCs Solid-State Lighting Science EFRC Overview Wavelength Conversion Materials Wavelength Conversion MaterialsAlyssa...

  19. Experimental Implementation of 1310-nm Differential Phase Shift QKD System with Up-conversion Detectors

    E-Print Network [OSTI]

    ), the 1-bit Michelson Interferometer (b), and the up-conversion unit (c). LD VOAPM TRCV WDM WDM TCSPCTRCV- conversion Unit. LD: CW laser Diode; EOM: Electric-optic Modulator; PM: Phase Modulator; VOA: VariableExperimental Implementation of 1310-nm Differential Phase Shift QKD System with Up-conversion

  20. 3. Energy conversion, balances, efficiency, equilibrium

    E-Print Network [OSTI]

    Zevenhoven, Ron

    1/124 3. Energy conversion, balances, efficiency, equilibrium (Introduction to Thermodynamics) Ron and Flow Engineering | 20500 Turku | Finland 2/124 3.1: Energy Åbo Akademi University | Thermal and Flow Engineering | 20500 Turku | Finland #12;3/124 What is energy? /1 "Energy is any quantity that changes

  1. Nanoscale thermal transport. II. 2003–2012

    E-Print Network [OSTI]

    Cahill, David G.

    A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale ...

  2. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    environmentally sound method of using thermal energy storageconcept of thermal energy of energy conversion methods tothermal energy, particularly cavern storage, appears to offer a promising near-term method

  3. Thermoelectrics and aerogels for solar energy conversion systems

    E-Print Network [OSTI]

    McEnaney, Kenneth

    2015-01-01

    Concerns about climate change, the world's growing energy needs, and energy independence are driving demand for solar energy conversion technologies. Solar thermal electricity generation has the potential to ll this demand. ...

  4. Supporting Information Tandem Catalytic Conversion of Glucose to 5-Hydroxymethylfurfural with

    E-Print Network [OSTI]

    Zhao, Huimin

    conducted in Kinesis microwave vials (Malta, NY). One unit (U) represents the conversion of 1.0 µmole1 Supporting Information Tandem Catalytic Conversion of Glucose to 5-Hydroxymethylfurfural

  5. Conversion of raw carbonaceous fuels

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA)

    2007-08-07

    Three configurations for an electrochemical cell are utilized to generate electric power from the reaction of oxygen or air with porous plates or particulates of carbon, arranged such that waste heat from the electrochemical cells is allowed to flow upwards through a storage chamber or port containing raw carbonaceous fuel. These configurations allow combining the separate processes of devolatilization, pyrolysis and electrochemical conversion of carbon to electric power into a single unit process, fed with raw fuel and exhausting high BTU gases, electric power, and substantially pure CO.sub.2 during operation.

  6. Angora Goats for Conversion of Arizona Chaparral: Early Results1

    E-Print Network [OSTI]

    Angora Goats for Conversion of Arizona Chaparral: Early Results1 O. D. Knipe2 1 Presented located at the Station's Research Work Unit at Tempe, in cooperation with Arizona State Univer- sity quarter century has shown that conversion of Arizona chaparral to grass significantly increases water

  7. Assessment of optical performance of three non-tracking, non-imaging, external compound parabolic concentrators designed for high temperature solar thermal collector units

    E-Print Network [OSTI]

    Cisneros, Jesus

    2010-01-01

    a motorized sun-tracker to the collectors, designing a non-the sun onto each of the three solar thermal collectors. ix

  8. Next-Generation Thermionic Solar Energy Conversion

    Broader source: Energy.gov [DOE]

    This fact sheet describes a next-generation thermionic solar energy conversion project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by Stanford University, seeks to demonstrate the feasibility of photon-enhanced, microfabricated thermionic energy converters as a high-efficiency topping cycle for CSP electricity generation. With the potential to double the electricity output efficiency of solar-thermal power stations, this topping cycle application can significantly reduce the cost of solar-thermal electricity below that of the lowest-cost, fossil-fuel generated electricity.

  9. Solid-state power conversion handbook

    SciTech Connect (OSTI)

    Tarter, R.E.

    1993-01-01

    This new handbook is the first to be devoted to the field of solid-state power conversion. The material in this book is to be used in engineering practice and is oriented toward application rather than theory. The purpose of the book is to assemble in a single volume all the pertinent and comprehensive information necessary to meet the growing demands placed upon solid-state power conversion equipment. These demands include increased efficiency, improved reliability, higher packaging density, improved performance, and meeting safety and electromagnetic compatibility (EMC) requirements. The material presented includes a thorough analysis of fundamental electrical and magnetic aspects of power conversion plus thermal, protection, and reliability considerations. Attention is focused on semi-conductor and magnetic components and on analysis of various topologies. The handbook is organized into four sections. (1) Chapters 1-3 present the relations of various waveforms, transient components with emphasis on power semiconductors and magnetic components. (2) Chapters 4-12 deal with single-level conversion of rectifier circuits, filters, inverters and converters, feedback and stability analysis, and modulators and pulse-forming networks. (3) Chapters 13-16 discuss ancillary topics related to safety, EMC, thermal management, and reliability. (4) Chapters 17-19 cover design and operation of power supplies and systems from a detailed building block standpoint.

  10. Biomass Thermochemical Conversion Program. 1984 annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1985-01-01

    The objective of the program is to generate scientific data and conversion process information that will lead to establishment of cost-effective process for converting biomass resources into clean fuels. The goal of the program is to develop the data base for biomass thermal conversion by investigating the fundamental aspects of conversion technologies and by exploring those parameters that are critical to the conversion processes. The research activities can be divided into: (1) gasification technology; (2) liquid fuels technology; (3) direct combustion technology; and (4) program support activities. These activities are described in detail in this report. Outstanding accomplishments during fiscal year 1984 include: (1) successful operation of 3-MW combustor/gas turbine system; (2) successful extended term operation of an indirectly heated, dual bed gasifier for producing medium-Btu gas; (3) determination that oxygen requirements for medium-Btu gasification of biomass in a pressurized, fluidized bed gasifier are low; (4) established interdependence of temperature and residence times on biomass pyrolysis oil yields; and (5) determination of preliminary technical feasibility of thermally gasifying high moisture biomass feedstocks. A bibliography of 1984 publications is included. 26 figs., 1 tab.

  11. DANISHBIOETHANOLCONCEPT Biomass conversion for

    E-Print Network [OSTI]

    DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RISØ and DTU Anne Belinda Thomsen (RISØ) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

  12. A Floating Point Divider Performing IEEE Rounding and Quotient Conversion in Parallel

    E-Print Network [OSTI]

    Yang, Sung-Bong

    cycle. To support design effi- ciency, the quotient conversion/rounding unit of the proposed divider canA Floating Point Divider Performing IEEE Rounding and Quotient Conversion in Parallel Woo-Chan Park generally consists of SRT recurrence, quotient conversion, rounding, and normalization steps

  13. Color Space Conversion for MPEG decoding on FPGA-augmented TriMedia Processor

    E-Print Network [OSTI]

    Cotofana, Sorin

    the CSC unit on FPGA at application load-time, ¼ Ö- to-Ê ¼ ¼ ¼ color space conversion can be computedColor Space Conversion for MPEG decoding on FPGA-augmented TriMedia Processor Mihai SimaÝÞ Stamatis://ce.et.tudelft.nl/~mihai Abstract A case study on Color Space Conversion (CSC) for MPEG decoding, carried out on FPGA- augmented Tri

  14. Scaling the energy conversion rate from magnetic field reconnection to different bodies

    E-Print Network [OSTI]

    California at Berkeley, University of

    and associated parameters. In Sec. II, it is conjectured that the energy conversion rate per unit areaScaling the energy conversion rate from magnetic field reconnection to different bodies F. S. Mozer reconnection is often invoked to explain electromagnetic energy conversion in planetary magnetospheres, stellar

  15. Rapid Conversion of Hindered Arylsulfonates to Alkyl Chlorides with Retention of Configuration

    E-Print Network [OSTI]

    Lepore, Salvatore D.

    Rapid Conversion of Hindered Arylsulfonates to Alkyl Chlorides with Retention of Configuration of highly efficient leaving groups containing chelating units capable of attracting incoming nucleophiles assisting leaving groups (NALGs) that contain a polyether unit (including macrocyclic) attached to the aryl

  16. Proceedings of the 25th intersociety energy conversion engineering conference

    SciTech Connect (OSTI)

    Nelson, P.A.; Schertz, W.W.; Till, R.H.

    1990-01-01

    This book contains the proceedings of the 25th Intersociety Energy Conversion Engineering Conference. Volume 5 is organized under the following headings: Photovoltaics I, Photovoltaics II, Geothermal power, Thermochemical conversion of biomass, Energy from waste and biomass, Solar thermal systems for environmental applications, Solar thermal low temperature systems and components, Solar thermal high temperature systems and components, Wind systems, Space power sterling technology Stirling cooler developments, Stirling solar terrestrial I, Stirling solar terrestrial II, Stirling engine generator sets, Stirling models and simulations, Stirling engine analysis, Stirling models and simulations, Stirling engine analysis, Stirling engine loss understanding, Novel engine concepts, Coal conversion and utilization, Power cycles, MHD water propulsion I, Underwater vehicle powerplants - performance, MHD underwater propulsion II, Nuclear power, Update of advanced nuclear power reactor concepts.

  17. Energy conversion system

    SciTech Connect (OSTI)

    Wang, F.E.

    1981-06-30

    A thermal-mechanical energy converting device is disclosed that has at least two rotatably supported wheels and with one or more endless transmission elements of a material having a memory effect capable in the bending mode of converting thermal energy into mechanical energy when heated from a temperature below its transition temperature to a temperature above its transition temperature; the transmission elements serve to drive one wheel from the other wheel upon application of thermal energy to the transmission elements, whereby the thermal energy is transferred from the other wheel to the transmission elements over at least a major portion of the circumferential contact of the transmission elements with the other wheel.

  18. Tuning energy transport in solar thermal systems using nanostructured materials

    E-Print Network [OSTI]

    Lenert, Andrej

    2014-01-01

    Solar thermal energy conversion can harness the entire solar spectrum and theoretically achieve very high efficiencies while interfacing with thermal storage or back-up systems for dispatchable power generation. Nanostructured ...

  19. Digital optical conversion module

    DOE Patents [OSTI]

    Kotter, D.K.; Rankin, R.A.

    1988-07-19

    A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer. 2 figs.

  20. Thermal stability of nano-structured selective emitters for thermophotovoltaic systems

    E-Print Network [OSTI]

    Lee, Heon Ju, 1977-

    2012-01-01

    A fundamental challenge in solar-thermal-electrical energy conversion is the thermal stability of materials and devices at high operational temperatures. This study focuses on the thermal stability of tungsten selective ...

  1. Derivation of dose conversion factors for tritium

    SciTech Connect (OSTI)

    Killough, G. G.

    1982-03-01

    For a given intake mode (ingestion, inhalation, absorption through the skin), a dose conversion factor (DCF) is the committed dose equivalent to a specified organ of an individual per unit intake of a radionuclide. One also may consider the effective dose commitment per unit intake, which is a weighted average of organ-specific DCFs, with weights proportional to risks associated with stochastic radiation-induced fatal health effects, as defined by Publication 26 of the International Commission on Radiological Protection (ICRP). This report derives and tabulates organ-specific dose conversion factors and the effective dose commitment per unit intake of tritium. These factors are based on a steady-state model of hydrogen in the tissues of ICRP's Reference Man (ICRP Publication 23) and equilibrium of specific activities between body water and other tissues. The results differ by 27 to 33% from the estimate on which ICRP Publication 30 recommendations are based. The report also examines a dynamic model of tritium retention in body water, mineral bone, and two compartments representing organically-bound hydrogen. This model is compared with data from human subjects who were observed for extended periods. The manner of combining the dose conversion factors with measured or model-predicted levels of contamination in man's exposure media (air, drinking water, soil moisture) to estimate dose rate to an individual is briefly discussed.

  2. Studentnumber:Name:Degree: Unit:Unit:Unit:Unit

    E-Print Network [OSTI]

    Tobar, Michael

    Studentnumber:Name:Degree: Semester: Semester: Unit:Unit:Unit:Unit: Unit:Unit:Unit:Unit: Year the Undergraduate Degree Course Rules. Have you included units that will lead to at least one degree-specific major that the units you choose in first year will lead to at least one degree-specific major. It is a requirement

  3. Photovoltaic Energy Conversion

    E-Print Network [OSTI]

    Glashausser, Charles

    Photovoltaic Energy Conversion Frank Zimmermann #12;Solar Electricity Generation Consumes no fuel Electrode Valence Band Conduction Band Fermi Level I- /I3 - Redox Potential Dye 1D 3D* 1D* Energy Levels Counter Electrode Valence Band Conduction Band Fermi Level I- /I3 - Redox Potential Dye 1D 3D* 1D* Energy

  4. ENERGY CONVERSION Spring 2011

    E-Print Network [OSTI]

    Bahrami, Majid

    , 5th Edition Michael J. Moran and Howard N. Shapiro, John Wiley and Sons Inc., New York, NY, 2004, John Willey 2010. 3) Alternative Energy Systems and Applications, by B.K. Hodge, John Willey 2010. 41 ENSC 461 ENERGY CONVERSION Spring 2011 Instructor: Dr. Majid Bahrami 4372 Email

  5. Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower

    SciTech Connect (OSTI)

    2012-01-11

    HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoa’s conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

  6. Ocean energy conversion systems annual research report

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    Alternative power cycle concepts to the closed-cycle Rankine are evaluated and those that show potential for delivering power in a cost-effective and environmentally acceptable fashion are explored. Concepts are classified according to the ocean energy resource: thermal, waves, currents, and salinity gradient. Research projects have been funded and reported in each of these areas. The lift of seawater entrained in a vertical steam flow can provide potential energy for a conventional hydraulic turbine conversion system. Quantification of the process and assessment of potential costs must be completed to support concept evaluation. Exploratory development is being completed in thermoelectricity and 2-phase nozzles for other thermal concepts. Wave energy concepts are being evaluated by analysis and model testing with present emphasis on pneumatic turbines and wave focussing. Likewise, several conversion approaches to ocean current energy are being evaluated. The use of salinity resources requires further research in membranes or the development of membraneless processes. Using the thermal resource in a Claude cycle process as a power converter is promising, and a program of R and D and subsystem development has been initiated to provide confirmation of the preliminary conclusion.

  7. Thermal synthesis apparatus

    DOE Patents [OSTI]

    Fincke, James R. (Idaho Falls, ID) [Idaho Falls, ID; Detering, Brent A. (Idaho Falls, ID) [Idaho Falls, ID

    2009-08-18

    An apparatus for thermal conversion of one or more reactants to desired end products includes an insulated reactor chamber having a high temperature heater such as a plasma torch at its inlet end and, optionally, a restrictive convergent-divergent nozzle at its outlet end. In a thermal conversion method, reactants are injected upstream from the reactor chamber and thoroughly mixed with the plasma stream before entering the reactor chamber. The reactor chamber has a reaction zone that is maintained at a substantially uniform temperature. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle, which "freezes" the desired end product(s) in the heated equilibrium reaction stage, or is discharged through an outlet pipe without the convergent-divergent nozzle. The desired end products are then separated from the gaseous stream.

  8. Advanced Biofuels (and Bio-products) Process Demonstration Unit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels (and Bio-products) Process Demonstration Unit Todd Pray, PhD, MBA March 25, 2015 Biochemical Conversion Area DOE Bioenergy Technologies Office (BETO) Project Peer Review...

  9. Wind energy conversion system

    DOE Patents [OSTI]

    Longrigg, Paul (Golden, CO)

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  10. Biological Conversion of Sugars To Hydrocarbons | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biological Conversion of Sugars To Hydrocarbons Biological Conversion of Sugars To Hydrocarbons PDF explaining the biological process of bioenergy Biological Conversion of Sugars...

  11. Conversion of Questionnaire Data

    SciTech Connect (OSTI)

    Powell, Danny H; Elwood Jr, Robert H

    2011-01-01

    During the survey, respondents are asked to provide qualitative answers (well, adequate, needs improvement) on how well material control and accountability (MC&A) functions are being performed. These responses can be used to develop failure probabilities for basic events performed during routine operation of the MC&A systems. The failure frequencies for individual events may be used to estimate total system effectiveness using a fault tree in a probabilistic risk analysis (PRA). Numeric risk values are required for the PRA fault tree calculations that are performed to evaluate system effectiveness. So, the performance ratings in the questionnaire must be converted to relative risk values for all of the basic MC&A tasks performed in the facility. If a specific material protection, control, and accountability (MPC&A) task is being performed at the 'perfect' level, the task is considered to have a near zero risk of failure. If the task is performed at a less than perfect level, the deficiency in performance represents some risk of failure for the event. As the degree of deficiency in performance increases, the risk of failure increases. If a task that should be performed is not being performed, that task is in a state of failure. The failure probabilities of all basic events contribute to the total system risk. Conversion of questionnaire MPC&A system performance data to numeric values is a separate function from the process of completing the questionnaire. When specific questions in the questionnaire are answered, the focus is on correctly assessing and reporting, in an adjectival manner, the actual performance of the related MC&A function. Prior to conversion, consideration should not be given to the numeric value that will be assigned during the conversion process. In the conversion process, adjectival responses to questions on system performance are quantified based on a log normal scale typically used in human error analysis (see A.D. Swain and H.E. Guttmann, 'Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications,' NUREG/CR-1278). This conversion produces the basic event risk of failure values required for the fault tree calculations. The fault tree is a deductive logic structure that corresponds to the operational nuclear MC&A system at a nuclear facility. The conventional Delphi process is a time-honored approach commonly used in the risk assessment field to extract numerical values for the failure rates of actions or activities when statistically significant data is absent.

  12. Mathematical structure of unit systems

    E-Print Network [OSTI]

    Masao Kitano

    2013-05-04

    We investigate the mathematical structure of unit systems and the relations between them. Looking over the entire set of unit systems, we can find a mathematical structure that is called preorder (or quasi-order). For some pair of unit systems, there exists a relation of preorder such that one unit system is transferable to the other unit system. The transfer (or conversion) is possible only when all of the quantities distinguishable in the latter system are always distinguishable in the former system. By utilizing this structure, we can systematically compare the representations in different unit systems. Especially, the equivalence class of unit systems (EUS) plays an important role because the representations of physical quantities and equations are of the same form in unit systems belonging to an EUS. The dimension of quantities is uniquely defined in each EUS. The EUS's form a partially ordered set. Using these mathematical structures, unit systems and EUS's are systematically classified and organized as a hierarchical tree.

  13. Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion

    SciTech Connect (OSTI)

    Per F. Peterson

    2010-03-01

    This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

  14. Evaluation of ethane as a power conversion system working fluid for fast reactors

    E-Print Network [OSTI]

    Perez, Jeffrey A

    2008-01-01

    A supercritical ethane working fluid Brayton power conversion system is evaluated as an alternative to carbon dioxide. The HSC® chemical kinetics code was used to study thermal dissociation and chemical interactions for ...

  15. World crude capacity, conversion capability inch upward

    SciTech Connect (OSTI)

    Rhodes, A.K.

    1994-12-19

    Reported world crude capacity increased almost 1 million b/d, while conversion processes--fluid catalytic cracking (FCC), hydrocracking, coking--increased more than 1.7 million b/d or 8.3%, according to the Journal's most recent survey of world refining capacity. As a measure of capacity growth in the past year, changes in distillation capacities (atmospheric plus vacuum) were calculated for three major refining regions. The year-to-year comparison indicates: for the US, an increase of 293,000 b/d, or 1.3%; for the European Economic Community (E.E.C.), an increase of 431,000 b/d, or 2.6%; and for Asia/Pacific, excluding China, an increase of 122,000 b/d, or 1.1%. In addition to the compiled data the paper describes the survey layout, regional changes, conversion units, hydroprocessing, company size, oxygenates, and construction.

  16. Teaching Direct Marketing and Small Farm Viability: Resources for Instructors, 2nd Edition. Unit 1- Small Farm Economic Viability.

    E-Print Network [OSTI]

    2015-01-01

    conversion and demographic trends (for a history of agriculture in the US, and how it impacts small farms, please Unit

  17. IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 48, NO. 11, NOVEMBER 2012 1389 All-Optical Modulation Format Conversion Using

    E-Print Network [OSTI]

    Chan, Sze-Chun

    for a given laser and therefore only a typical semiconductor laser is necessary as the key conversion unit Format Conversion Using Nonlinear Dynamics of Semiconductor Lasers Cheng-Hao Chu, Shiuan-Li Lin, Sze conversion between amplitude- shift keying (ASK) and frequency-shift keying (FSK) can thus be achieved

  18. Energy conversion Subject Information

    E-Print Network [OSTI]

    Greff, Isabelle

    The purpose of this course is to study the different ways of converting energy resources into useful energy thermal energy system. Wave energy: available resource, Wave energy converters (Oscillating water column from geothermal resources. Efficiency of power production from geothermal resources, economic aspects

  19. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Broader source: Energy.gov (indexed) [DOE]

    webinarcarbohydratesproduction.pdf More Documents & Publications Advanced Conversion Roadmap Workshop Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates...

  20. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Energy Savers [EERE]

    More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Advanced Conversion Roadmap Workshop Innovative Topics for Advanced Biofuels...

  1. Challenges and Opportunities in Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Conversion Challenges and Opportunities in Thermoelectric Energy Conversion 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Lawrence Berkeley...

  2. Termination unit

    DOE Patents [OSTI]

    Traeholt, Chresten [Frederiksberg, DK; Willen, Dag [Klagshamn, SE; Roden, Mark [Newnan, GA; Tolbert, Jerry C [Carrollton, GA; Lindsay, David [Carrollton, GA; Fisher, Paul W [Heiskell, TN; Nielsen, Carsten Thidemann [Jaegerspris, DK

    2014-01-07

    This invention relates to a termination unit comprising an end-section of a cable. The end section of the cable defines a central longitudinal axis and comprising end-parts of N electrical phases, an end-part of a neutral conductor and a surrounding thermally insulation envelope adapted to comprising a cooling fluid. The end-parts of the N electrical phases and the end-part of the neutral conductor each comprising at least one electrical conductor and being arranged in the cable concentrically around a core former with a phase 1 located relatively innermost, and phase N relatively outermost in the cable, phase N being surrounded by the neutral conductor, electrical insulation being arrange between neighboring electrical phases and between phase N and the neutral conductor, and wherein the end-parts of the neutral conductor and the electrical phases each comprise a contacting surface electrically connected to at least one branch current lead to provide an electrical connection: The contacting surfaces each having a longitudinal extension, and being located sequentially along the longitudinal extension of the end-section of the cable. The branch current leads being individually insulated from said thermally insulation envelope by individual electrical insulators.

  3. Energy conversion system

    DOE Patents [OSTI]

    Murphy, L.M.

    1985-09-16

    The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weathproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction and operational with a minimal power draw.

  4. Energy conversion system

    DOE Patents [OSTI]

    Murphy, Lawrence M. (Lakewood, CO)

    1987-01-01

    The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weatherproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction, and operational with a minimal power draw.

  5. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    SciTech Connect (OSTI)

    Neil Todreas; Pavel Hejzlar

    2008-06-30

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

  6. Cermet fuel thermal conductivity 

    E-Print Network [OSTI]

    Alvis, John Mark

    1988-01-01

    VITA 36 37 40 40 40 40 44 45 47 48 LIST OF FIGURES Figure Unit cell for derivation of model Page Heat Conduction Solution 22 3 Fission Gas Release Model 26 4A Metal Matrix Thermal Conductivity 4B Ceramic Fuel Thermal Conductivity 5... is based on the simple heat conduction equation. It is assumed that there is a uniform distribution of fuel particles in a regular array. A unit cell consists of a cube of matrix material of side length L, containing a spherical fuel particle of radius, r...

  7. Collaborative Unit Construction in Korean: Pivot Turns

    E-Print Network [OSTI]

    Ju, Hee

    2011-01-01

    A. (1996). Practices in the construction of turns: the ‘TCU’Scheutz, H. (2005). Pivot constructions in spoken German. InM. (2000). The construction of units in conversational talk.

  8. Preliminary development of an integrated approach to the evaluation of pressurized thermal shock as applied to the Oconee Unit 1 Nuclear Power Plant

    SciTech Connect (OSTI)

    Burns, T J; Cheverton, R D; Flanagan, G F; White, J D; Ball, D G; Lamonica, L B; Olson, R

    1986-05-01

    An evaluation of the risk to the Oconee-1 nuclear plant due to pressurized thermal shock (PTS) has been Completed by Oak Ridge National Laboratory (ORNL). This evaluaion was part of a Nuclear Regulatory Commission (NRC) program designed to study the PTS risk to three nuclear plants: Oconee-1, a Babcock and Wilco reactor plant owned and operated by Duke Power Company; Calvert Cliffs-1, a Combustion Engineering reactor plant owned and operated by Baltimore Gas and Electric company; and H.B. Robinson-2, a Westinghouse reactor plant owned and operated by Carolina Power and Light Company. Studies of Calvert Cliffs-1 and H.B. Robinson-2 are still underway. The specific objectives of the Oconee-1 study were to: (1) provide a best estimate of the probability of a through-the-wall crack (TWC) occurring in the reactor pressure vessel as a result of PTS; (2) determine dominant accident sequences, plant features, operator and control actions and uncertainty in the PTS risk; and (3) evaluate effectiveness of potential corrective measures.

  9. Supplementary table Name Ref. Proxy Conversion Duration t lon lat

    E-Print Network [OSTI]

    Huybers, Peter

    Supplementary table Name Ref. Proxy Conversion Duration t lon lat 1. Clim. Anl. Cent. [1] instrum. N/A 33 1/12 global -- 2. Clim. Res. Unit [2] instrum. N/A 135 1/12 global -- 3. Rarotonga Coral [3. [9] Mg/Ca -- 46600 2440 159 2 14. NCEP [13] instrum. N/A 55 1/12 -- -- 15. Clim. Res. Unit [14

  10. Gyroharmonic conversion experiments

    SciTech Connect (OSTI)

    Hirshfield, J.L.; LaPointe, M.A.; Ganguly, A.K. [Omega-P, Inc., New Haven, Connecticut 06520 (United States); LaPointe, M.A. [Yale University, New Haven, Connecticut 06511 (United States)

    1999-05-01

    Generation of high power microwaves has been observed in experiments where a 250{endash}350 kV, 20{endash}30 A electron beam accelerated in a cyclotron autoresonance accelerator (CARA) passes through a cavity tuned gyroharmonic) and at 8.6 GHz (3rd harmonic) will be described. Theory indicates that high conversion efficiency can be obtained for a high quality beam injected into CARA, and when mode competition can be controlled. Comparisons will be made between the experiments and theory. Planned 7th harmonic experiments will also be described, in which phase matching between the TE-72 mode at 20 GHz, and the TE-11 mode at 2.86 GHz, allows efficient 20 GHz co-generation within the CARA waveguide itself. {copyright} {ital 1999 American Institute of Physics.}

  11. Gyroharmonic conversion experiments

    SciTech Connect (OSTI)

    Hirshfield, J. L.; LaPointe, M. A. [Omega-P, Inc., New Haven, Connecticut 06520 (United States); Yale University, New Haven, Connecticut 06511 (United States); Ganguly, A. K. [Omega-P, Inc., New Haven, Connecticut 06520 (United States)

    1999-05-07

    Generation of high power microwaves has been observed in experiments where a 250-350 kV, 20-30 A electron beam accelerated in a cyclotron autoresonance accelerator (CARA) passes through a cavity tuned gyroharmonic) and at 8.6 GHz (3rd harmonic) will be described. Theory indicates that high conversion efficiency can be obtained for a high quality beam injected into CARA, and when mode competition can be controlled. Comparisons will be made between the experiments and theory. Planned 7th harmonic experiments will also be described, in which phase matching between the TE-72 mode at 20 GHz, and the TE-11 mode at 2.86 GHz, allows efficient 20 GHz co-generation within the CARA waveguide itself.

  12. BIOMASS ENERGY CONVERSION IN HAWAII

    E-Print Network [OSTI]

    Ritschard, Ronald L.

    2013-01-01

    Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _LBL-11902 UC-61a BIOMASS ENERGY CONVERSION IN HAWAII

  13. M. Bahrami ENSC388 Tutorial #1 1 ENSC 388 Week #2, Tutorial #1 Dimensions and Units

    E-Print Network [OSTI]

    Bahrami, Majid

    )2( 3 )1.62( 4 (Eq1) Part b) SI Unit Using conversion factors the mass flow rate can be written in SI b) SI Unit Using conversion factors the kinetic energy can be written in SI units. J Btu J Btu conversion factors the power can be written in SI units. kW hp kW hpW 407.0 1 746.0 545.0 (Eq4

  14. Thermal and non-thermal energies in solar flares

    E-Print Network [OSTI]

    Pascal Saint-Hilaire; Arnold O. Benz

    2005-03-03

    The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same magnitude. This surprising result may be interpreted by an efficient conversion of non-thermal energy to hot flare plasma.

  15. RESEARCH Open Access Evidence for GC-biased gene conversion as a

    E-Print Network [OSTI]

    Jarvis, Erich D.

    RESEARCH Open Access Evidence for GC-biased gene conversion as a driver of between, consistent with recombination-associated GC biased gene conversion (gBGC) more strongly impacting populations and a greater number of meioses per unit time; that is, a shorter generation time. Thus, in accord

  16. Friction pressure drop measurements and flow distribution analysis for LEU conversion study of MIT Research Reactor

    E-Print Network [OSTI]

    Wong, Susanna Yuen-Ting

    2008-01-01

    The MIT Nuclear Research Reactor (MITR) is the only research reactor in the United States that utilizes plate-type fuel elements with longitudinal fins to augment heat transfer. Recent studies on the conversion to low-enriched ...

  17. HELIOPHYSICS II. ENERGY CONVERSION PROCESSES

    E-Print Network [OSTI]

    Hudson, Hugh

    with the term "solar flare" dominate our thinking about energy conversion from magnetic storage to other formsHELIOPHYSICS II. ENERGY CONVERSION PROCESSES edited by CAROLUS J. SCHRIJVER Lockheed Martin of a solar flare 11 2.3.1 Flare luminosity and mechanical energy 11 2.3.2 The impulsive phase (hard X

  18. Moderate pressure hydrocracking: A profitable conversion alternative

    SciTech Connect (OSTI)

    Hunter, M.G. (M.W. Kellogg Co., Houston, TX (United States)); Pappal, D.A. (Mobil Research and Development Corp., Dallas, TX (United States)); Pesek, C.L. (Akzo Chemicals, Inc., Houston, TX (United States))

    1994-01-01

    Moderate Pressure Hydrocracking (MPHC) is a once-through hydrocracking process for the conversion of heavy gas oils to low-sulfur distillates and unconverted oil which is highly upgraded relative to the raw feed. Operating at lower pressure significantly reduces capital investment and results in substantially less hydrogen consumption. Furthermore, the process requirements for MPHC are within the range of many existing vacuum gas oil desulfurization units. Mobil Research and Development Corporation and Akzo Chemicals have been actively engaged in Moderate Pressure Hydrocracking research for more than ten years. Mobil's first commercial MPHC installation was successfully started up in 1983. Mobil operates five hydrocrackers, two of which are partial conversion MPHC designs that process heavy vacuum gas oils into middle distillate products. This research and operating experience has led to an advanced capability to apply hydrocracking conversion technology to heavy feedstocks under moderate pressure conditions. Akzo has commercialized a family of hydrotreating and hydrocracking catalysts which are combined to achieve the optimal balance between activity and selectivity for each specific refining application. The M.W. Kellogg Co. is a leading technology based international Engineering Construction company and has experience in the design, engineering and construction of 22 hydrocrackers. Mobil, Akzo and Kellogg have formed a partnership to offer MAK-MPHC and other full conversion hydrocracking technologies for license to the refining industry. This paper will present pilot plant and commercial results for Akzo catalysts in Moderate Pressure Hydrocracking applications. Specific process design features, typical refinery applications and the economic incentives for selecting MAK-MPHC will also be discussed.

  19. High conversion hydrocracking process

    SciTech Connect (OSTI)

    Stine, L.O.; Reno, M.E.; Munro, W.H.; Hamper, S.J.

    1990-10-09

    This patent describes a process for hydrocracking a heavy hydrocarbon feed stream having a 10 percent boiling point above about 316{degrees} C. It comprises: passing the feedstream into a catalytic hydrocracking reaction zone in contact with hydrocracking catalyst comprising at least one metal selected from the group consisting of chromium, nickel, cobalt, platinum, palladium, tungsten and molybdenum, at a temperature above about 316{degrees} C. and a total pressure above 1480 kPa, the catalytic hydrocracking reaction zone operating at a feed stream conversion rate above 70 wt. percent with a hydrogen circulation rate in excess at 1777 m{sup 3}/m{sup 3}, to produce a reaction zone effluent stream, subjecting the reaction zone effluent stream to cooling and a vapor-liquid separation to yield a recycle hydrogen stream and a liquid phase stream, heating the liquid phase stream recovered from the vapor-liquid separation to vaporize at least 90 volume percent of the liquid phase stream, passing the heated and at least partially vaporized liquid phase stream to a fractionation zone wherein the stream is separated into at least a net bottoms stream, a heavy distillate stream, and at least one light distillate stream which is removed as the distillate product stream, removing all of the net bottoms stream from the process, and recycling substantially all of the heavy distillate stream to the catalytic hydrocracking zone.

  20. Optical characterization of thermal transport from the nanoscale to the macroscale

    E-Print Network [OSTI]

    Schmidt, Aaron Jerome, 1979-

    2008-01-01

    The thermal properties of thin films and material interfaces play an important role in many technologies such as microelectronics and solid-state energy conversion. This thesis examines the characterization of thermal ...

  1. Novel, Integrated Reactor / Power Conversion System (LMR-AMTEC)

    SciTech Connect (OSTI)

    Pablo Rubiolo, Principal Investigator

    2003-03-21

    The main features of this project were the development of a long life (up to 10 years) Liquid Metal Reactor (LMR) and a static conversion subsystem comprising an Alkali Metal Thermal-to-Electric (AMTEC) topping cycle and a ThermoElectric (TE) Bottom cycle. Various coupling options of the LMR with the energy conversion subsystem were explored and, base in the performances found in this analysis, an Indirect Coupling (IC) between the LMR and the AMTEC/TE converters with Alkali Metal Boilers (AMB) was chosen as the reference design. The performance model of the fully integrated sodium-and potassium-AMTEC/TE converters shows that a combined conversion efficiency in excess of 30% could be achieved by the plant. (B204)

  2. Conversation View Outlook Web App User Guide

    E-Print Network [OSTI]

    Calgary, University of

    Conversation View Outlook Web App User Guide Email conversations that include multiple replies and sent messages can be viewed simultaneously using Conversation View. In Exchange 2010 Outlook Web App

  3. OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT

    E-Print Network [OSTI]

    Sands, M.Dale

    2013-01-01

    include the choice of power cycle (open or closed), plat-both closed- and open-power cycles and 1~volve. land-based,

  4. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01

    of open and hybrid OTEC power cycles. Pages VII 45 - VII 67.6 ALTERNATIVES 6 • 1 POWER CYCLE 6.2 PLATFORM CONFIGURATION.features of a closed power cycle include: Release of trace

  5. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    Microgrid: A Conceptual Solution”, 35th Annul IEEE Power Elecrronics Specialisrs Conference (2004) [60] R.J. Krane, Energy Storage

  6. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    p 540 [99] D. Tanner, Renewable Energy, Vol. 6 (3), pp. 367-K. Mahkamov, Renewable and Sustainable Energy Reviews, Vol.S. Wongwises, Renewable and Sustainable Energy Reviews, Vol.

  7. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01

    3). The counties of Hawaii, Maui and Kauai, comprise 9%, 7%,POPULATION = 33,800) KAUAI HAWAII COUNTY -------. ; (Hawaii and Maui will increase to 10% to 12%, and 8% to 9%, respectively, and Kauai

  8. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    LIST OF FIGURES Fig.1.1. Schematic of the Organic Rankineis achieved by using Organic Rankine Cycle or Sterlingtechnologies such as Organic Rankine Cycle (ORC) mahines,

  9. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01

    possible Plate-Type Heat Exchanger Estimated Relationshipseawater plate-type heat exchanger design is illustrated in6. One possible Plate Type Heat Exchanger Source: Berndt and

  10. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    U. M. Khan, Surface Electrochemistry, Springer, New York [Journal of Applied Electrochemistry, Vol. 21, pp.1103- [15]M. Gamboa-Aldeco, Modern Electrochemistry 2A, 2 nd edition,

  11. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    SciTech Connect (OSTI)

    Sands, M. D.

    1980-01-01

    This programmatic environmental analysis is an initial assessment of OTEC technology considering development, demonstration and commercialization; it is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties.

  12. Open cycle ocean thermal energy conversion system structure

    DOE Patents [OSTI]

    Wittig, J. Michael (West Goshen, PA)

    1980-01-01

    A generally mushroom-shaped, open cycle OTEC system and distilled water producer which has a skirt-conduit structure extending from the enlarged portion of the mushroom to the ocean. The enlarged part of the mushroom houses a toroidal casing flash evaporator which produces steam which expands through a vertical rotor turbine, partially situated in the center of the blossom portion and partially situated in the mushroom's stem portion. Upon expansion through the turbine, the motive steam enters a shell and tube condenser annularly disposed about the rotor axis and axially situated beneath the turbine in the stem portion. Relatively warm ocean water is circulated up through the radially outer skirt-conduit structure entering the evaporator through a radially outer portion thereof, flashing a portion thereof into motive steam, and draining the unflashed portion from the evaporator through a radially inner skirt-conduit structure. Relatively cold cooling water enters the annular condenser through the radially inner edge and travels radially outwardly into a channel situated along the radially outer edge of the condenser. The channel is also included in the radially inner skirt-conduit structure. The cooling water is segregated from the potable, motive steam condensate which can be used for human consumption or other processes requiring high purity water. The expansion energy of the motive steam is partially converted into rotational mechanical energy of the turbine rotor when the steam is expanded through the shaft attached blades. Such mechanical energy drives a generator also included in the enlarged mushroom portion for producing electrical energy. Such power generation equipment arrangement provides a compact power system from which additional benefits may be obtained by fabricating the enclosing equipment, housings and component casings from low density materials, such as prestressed concrete, to permit those casings and housings to also function as a floating support vessel.

  13. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01

    KILOMETERS () = FOSSIL GENERATING PLANT NUMBER WITHIN PLANTKaupo o () = FOSSIL GENERATING PLANT NUMBER WITHIN PLANTSea o = o FOSSIL GENERATING PLANT HYDROELECTRIC GENERATING

  14. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01

    Working Fluid Process Product Process Requirement FuelNo fuel in a conventional sense 1S used. working fluid is

  15. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01

    Mexico. Energy Research and Development Administration, Division of SolarMexico. Energy Research and Development Administration, Division of Solar

  16. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    a) Schematic of Sterling engine (b) P-V plot of the SterlingSterling engines. Organic Rankine Cycle or Sterling Engines. On the one hand,

  17. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01

    Sperm whale E Dugong E Caribbean manatee Hawaiian monk sealCaribbean monk seal E E Northwest Hawaiian Islands (NWHI) E

  18. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01

    Caribbean Monachus schauinslandi Hawaiian monk seal EHawaiian Islands Monachus troeicalis Caribbean monk seal E

  19. DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01

    manatee E Off Florida, Caribbean Hawaiian monk seal ENorthwest Hawaiian Islands (NWHI) Caribbean monk seal E

  20. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    respectively; ? c is the Carnot cycle efficiency; and ? Z iswhere ? c = ?T/T h is the Carnot cycle limit and ? s is theT of LGH is small, the Carnot cycle limit becomes low and,

  1. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    pumps. The numerous moving parts also increase the installation, operational, and maintenance costs.maintenance, and operational costs associated with the expensive supporting components and moving parts, such as pumps,

  2. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    as Organic Rankine Cycle (ORC) mahines, Sterling engines,Organic Rankine Cycle (ORC) system or Sterling Engine (SE)an organic Rankine cycle (ORC) system generates electricity

  3. Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling - Depth...

    Open Energy Info (EERE)

    Author National Renewable Energy Laboratory Maintainer Nicholas Langle bureaucode 019:20 Catalog DOE harvestobjectid 3ba3acfd-d54a-4a3d-a971-1cf4ac97fcb0 harvestsourceid...

  4. Thermal-to-electric energy conversion using ferroelectric film capacitors

    SciTech Connect (OSTI)

    Kozyrev, A. B.; Platonov, R. A.; Soldatenkov, O. I. [Saint-Petersburg State Electrotechnical University, 5 Professor Popov Street, St-Petersburg 197376 (Russian Federation)

    2014-10-28

    The capacitive ferroelectric thermoelectric converter harvesting electrical energy through non-linear capacitance variation caused by changes in temperature is analyzed. The ferroelectric material used was the thin (0.5??m) Ba{sub 0.3}Sr{sub 0.7}TiO{sub 3} film. On the basis of experimental dependencies of the ferroelectric film permittivity on temperature ranging from 100?K to 350?K under different electric fields up to 80?V/?m, the optimum values of operating temperatures and electric field for the energy harvesting optimization were determined. For the temperature oscillations of ±15?K around room temperature and electric field about 40?V/?m, the harvested energy was estimated as 30 mJ/cm{sup 3}. It is shown that the use of thin ferroelectric films for rapid capacitance variation versus temperature and microelectromechanical systems for fast temperature modulations may be a relevant solution for creation of small power scale generators for portable electronics.

  5. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01

    skipjack tuna, Katsuwonnus pelamis, in an offshore area oflittle tuna), Katsuwonus pelamis (skipj ack), spp. ,

  6. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    various types of Stirling engine have been developed, whichThermogalvanic cell Stirling Engine ORC Internal Combustionof Sterling engine [17] year inventor Robert Stirling John

  7. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    to electrical energy by turbine engines. Organic Rankineheat and rotating turbine engines. Figure 1.1 is a schematicthe gas stream rotates the turbine engine. The gas stream is

  8. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01

    treatment As above eFederal Aviation Administration Heliport licensing Point source discharge See Safety/Health Section 5 Federal Water Pollution

  9. NREL-Ocean Energy Thermal Conversion | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation, search Name:NREL's RenewableOpenOcean

  10. News - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxide captureTransportationCSTEC Newsletters Fall 2013

  11. News - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxide captureTransportationCSTEC Newsletters Fall

  12. Papers Published - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxideUser Careers/Research TeamArchival, Peer-Reviewed

  13. Research Program - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen Generation |Publications TheGashomeResearchResearch

  14. Research Program - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen Generation |Publications TheGashomeResearchResearchIn the

  15. Research Program - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen Generation |Publications TheGashomeResearchResearchIn theWe

  16. Research Program - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen Generation |Publications TheGashomeResearchResearchIn theWeThe

  17. Science Highlights- Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment Top LDRDUniversitySchedulesScience Highlights

  18. Novel Transparent Phosphor Conversion Matrix with High Thermal Conductivity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and Reduce CarbonEnergyDepartment13Department of EnergyMEAs

  19. Advisory Board - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecovery Act RecoveryTechnologies |AppliancesWater

  20. Contact - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecoveryplanningCoalSocial mediahome / Contact To contact

  1. Directors - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find what you were lookingAboutDirectorAssociate Directors Prof.

  2. Directors - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find what you were lookingAboutDirectorAssociate Directors

  3. Facilities - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find whatGasEnergy Technologies | Blandinenewsand Privacy

  4. Investigators - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeat Pumps Heat PumpsfacilityviaGasfor Gasdiffusivities

  5. Management Council - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeat PumpsTechnologiesTechnologies

  6. Welcome - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaonforsupernovae modelsearch this siteSearch Go! US ITER ABOUT

  7. Energy Conversion and Thermal Efficiency Sales Tax Exemption | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 Infographic courtesy of the White House. PushingLoanRulemakingof

  8. Science Highlights- Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque| Stanford SynchrotronVideo-ContestHighlights High Energy0 Click

  9. Science Highlights- Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque| Stanford SynchrotronVideo-ContestHighlights High Energy0 Click1

  10. Science Highlights- Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque| Stanford SynchrotronVideo-ContestHighlights High Energy0 Click12

  11. Science Highlights- Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque| Stanford SynchrotronVideo-ContestHighlights High Energy0

  12. Comparison of different commercial FFDM units by means of physical characterization and contrast-detail analysis

    E-Print Network [OSTI]

    Lanconelli, Nico

    -panel units, the indirect conversion a-Si based GE "Senographe 2000D" and the direct conversion a-Se based IMSComparison of different commercial FFDM units by means of physical characterization and contrast considered three different FFDM systems: a computed radiogra- phy unit Fuji "FCR 5000 MA" and two flat

  13. Advanced coal conversion process demonstration. Progress report, January 1, 1992--March 31, 1992

    SciTech Connect (OSTI)

    NONE

    1992-05-01

    This report contains a description of technical progress made on the Advanced Coal Conversion Process Demonstration Project (ACCP). This project will demonstrate an advanced thermal coal drying process coupled with physical cleaning techniques to upgrade high-moisture, low-rank coals to produce a high-quality, low-sulfur fuel. The coal will be processed through two vibrating fluidized bed reactors that will remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After drying, the coal will be put through a deep-bed stratifier cleaning process effect separation of the pyrite rich ash. The process will enhance low-rank western coals, usually with a moisture content of 25--55%, sulfur content of 0.5--1.5%, and heating value of 5500--9000 Btu/lb by producing a stable, upgraded coal product with a moisture content as low as 1%, sulfur content as low as 0.3%, and heating value up to 12,0 00 Btu/lb. The 45 ton/hr unit will be located adjacent to a unit train loadout facility at Western Energy Company`s Rosebud coal mine near the town of Colstrip in southeastern Montana. The demonstration plant is sized at about one-tenth the projected throughput of a multiple processing train commercia; facility. The demonstration drying and cooling equipment is currently commercial size.

  14. Thermal Conductivity of Graphene Laminate H. Malekpour,

    E-Print Network [OSTI]

    Thermal Conductivity of Graphene Laminate H. Malekpour, K.-H. Chang, J.-C. Chen, C.-Y. Lu, D. L, Manchester, United Kingdom *S Supporting Information ABSTRACT: We have investigated thermal conductivity and a set of suspended samples with the graphene laminate thickness from 9 to 44 m. The thermal conductivity

  15. Tidal Conversion by Supercritical Topography

    E-Print Network [OSTI]

    Balmforth, Neil J.

    Calculations are presented of the rate of energy conversion of the barotropic tide into internal gravity waves above topography on the ocean floor. The ocean is treated as infinitely deep, and the topography consists of ...

  16. Plasmonic conversion of solar energy

    E-Print Network [OSTI]

    Clavero, Cesar

    2014-01-01

    Basic Research Needs for Solar Energy Utilization, BasicS. Pillai and M. A. Green, Solar Energy Materials and SolarPlasmonic conversion of solar energy César Clavero Plasma

  17. Technical Market Analysis for Biochemical Conversion Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Market Analysis for Biochemical Conversion March 23, 2015 Biochemical Conversion Jim Collett and Mark Butcher PNNL This presentation does not contain any proprietary,...

  18. Investigation of nanoscale thermal radiation : theory and experiments

    E-Print Network [OSTI]

    Narayanaswamy, Arvind

    2007-01-01

    The ability to control the radiative properties of objects is of prime importance in diverse areas like solar and thermophotovoltaic energy conversion, narrowband thermal emitters, and camouflage in military applications. ...

  19. Thermal Transport Measurement of Silicon-Germanium Nanowires 

    E-Print Network [OSTI]

    Gwak, Yunki

    2010-10-12

    Thermal properties of one dimensional nanostructures are of interest for thermoelectric energy conversion. Thermoelectric efficiency is related to non dimensional thermoelectric figure of merit, ZT=S^2 o T/k, where S ,o , k and T are Seebeck...

  20. Parametric Thermal Models of the Transient Reactor Test Facility (TREAT)

    SciTech Connect (OSTI)

    Bradley K. Heath

    2014-03-01

    This work supports the restart of transient testing in the United States using the Department of Energy’s Transient Reactor Test Facility at the Idaho National Laboratory. It also supports the Global Threat Reduction Initiative by reducing proliferation risk of high enriched uranium fuel. The work involves the creation of a nuclear fuel assembly model using the fuel performance code known as BISON. The model simulates the thermal behavior of a nuclear fuel assembly during steady state and transient operational modes. Additional models of the same geometry but differing material properties are created to perform parametric studies. The results show that fuel and cladding thermal conductivity have the greatest effect on fuel temperature under the steady state operational mode. Fuel density and fuel specific heat have the greatest effect for transient operational model. When considering a new fuel type it is recommended to use materials that decrease the specific heat of the fuel and the thermal conductivity of the fuel’s cladding in order to deal with higher density fuels that accompany the LEU conversion process. Data on the latest operating conditions of TREAT need to be attained in order to validate BISON’s results. BISON’s models for TREAT (material models, boundary convection models) are modest and need additional work to ensure accuracy and confidence in results.

  1. Thermal engine

    SciTech Connect (OSTI)

    Karnes, T.E.; Trupin, R.J.

    1984-01-03

    A thermal engine utilizing a strip of nitinol material or other thermally responsive shape memory effect material to drive a reciprocating output shaft, said strip of material forming a common wall between two different alternating temperature sources which thermally cycle the material.

  2. Lattice-structures and constructs with designed thermal expansion coefficients

    DOE Patents [OSTI]

    Spadaccini, Christopher; Hopkins, Jonathan

    2014-10-28

    A thermal expansion-managed lattice structure having a plurality of unit cells each having flexure bearing-mounted tabs supported on a base and actuated by thermal expansion of an actuator having a thermal expansion coefficient greater than the base and arranged so that the tab is inwardly displaced into a base cavity. The flexure bearing-mounted tabs are connected to other flexure-bearing-mounted tabs of adjacent unit cells so that the adjacent unit cells are spaced from each other to accommodate thermal expansion of individual unit cells while maintaining a desired bulk thermal expansion coefficient of the lattice structure as a whole.

  3. Renewable Energies III Photovoltaics, Solar & Geo-Thermal

    E-Print Network [OSTI]

    Renewable Energies III Photovoltaics, Solar & Geo-Thermal 21st August - 2nd September 2011 on the principles of solar energy conversion. Theoretical knowledge will be complemented with practical workshops of solar energy conversion. Theoretical knowledge will be comple- mented with practical workshops

  4. Advanced Stirling conversion systems for terrestrial applications

    SciTech Connect (OSTI)

    Shaltens, R.K.

    1987-01-01

    Sandia National Laboratories (SNLA) is developing heat engines for terrestrial Solar distributed Heat Receivers. SNLA has identified the Stirling to be one of the most promising candidates for the terrestrial applications. The free-piston Stirling engine (FPSE) has the potential to meet the DOE goals for both performance and cost. Free-piston Stirling activities which are directed toward a dynamic power source for the space application are being conducted. Space power system requirements include high efficiency, very long life, high reliability and low vibration. The FPSE has the potential for future high power space conversion systems, either solar or nuclear powered. Generic free-piston technology is currently being developed for use with a residential heat pump under an Interagency Agreement. Also, an overview is presented of proposed conceptual designs for the Advanced Stirling Conversion System (ASCS) using a free-piston Stirling engine and a liquid metal heat pipe receiver. Power extraction includes both a linear alternator and hydraulic output capable of delivering approximately 25 kW of electrical power to the electric utility grid. Target cost of the engine/alternator is 300 dollars per kilowatt at a manufacturing rate of 10,000 units per year. The design life of the ASCS is 60,000 h (30 y) with an engine overhaul at 40,000 h (20 y). Also discussed are the key features and characteristics of the ASCS conceptual designs.

  5. Photonic Crystals for Enhancing Thermophotovoltaic Energy Conversion

    SciTech Connect (OSTI)

    LIN, SHAWN-YU; FLEMING, JAMES G.; MORENO, JOSEPH A.

    2003-03-01

    Thermophotovoltaics (TPV) converts the radiant energy of a thermal source into electrical energy using photovoltaic cells. TPV has a number of attractive features, including: fuel versatility (nuclear, fossil, solar, etc.), quiet operation, low maintenance, low emissions, light weight, high power density, modularity, and possibility for cogeneration of heat and electricity. Some of these features are highly attractive for military applications (Navy and Army). TPV could also be used for distributed power and automotive applications wherever fuel cells, microturbines, or cogeneration are presently being considered if the efficiencies could be raised to around 30%. This proposal primarily examine approaches to improving the radiative efficiency. The ideal irradiance for the PV cell is monochromatic illumination at the bandgap. The photonic crystal approach allows for the tailoring of thermal emission spectral bandwidth at specific wavelengths of interest. The experimental realization of metallic photonic crystal structures, the optical transmission, reflection and absorption characterization of it have all been carried out in detail and will be presented next. Additionally, comprehensive models of TPV conversion has been developed and applied to the metallic photonic crystal system.

  6. Biomass Program 2007 Accomplishments - Thermochemical Conversion Platform

    SciTech Connect (OSTI)

    none,

    2009-10-27

    This document details the accomplishments of the Biomass Program Thermochemical Conversion Platform in 2007.

  7. Biomass Program 2007 Accomplishments - Biochemical Conversion Platform

    SciTech Connect (OSTI)

    none,

    2009-10-27

    This document details accomplishments of the Biomass Program Biochemical Conversion Platform accomplishments in 2007.

  8. Biochemical Conversion Pilot Plant (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01

    This fact sheet provides information about Biochemical Conversion Pilot Plant capabilities and resources at NREL.

  9. Thermophotovoltaic conversion using selective infrared line emitters and large band gap photovoltaic devices

    DOE Patents [OSTI]

    Brandhorst, Jr., Henry W. (Auburn, AL); Chen, Zheng (Auburn, AL)

    2000-01-01

    Efficient thermophotovoltaic conversion can be performed using photovoltaic devices with a band gap in the 0.75-1.4 electron volt range, and selective infrared emitters chosen from among the rare earth oxides which are thermally stimulated to emit infrared radiation whose energy very largely corresponds to the aforementioned band gap. It is possible to use thermovoltaic devices operating at relatively high temperatures, up to about 300.degree. C., without seriously impairing the efficiency of energy conversion.

  10. Recirculation in multiple wave conversions

    SciTech Connect (OSTI)

    Brizard, A. J. [Department of Chemistry and Physics, Saint Michael's College, Colchester, Vermont 05439 (United States); Kaufman, A. N. [Department of Physics and Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States); Tracy, E. R. [Department of Physics, College of William and Mary, Williamsburg, Virginia 23187-8795 (United States)

    2008-08-15

    A one-dimensional multiple wave-conversion model is constructed that allows energy recirculation in ray phase space. Using a modular eikonal approach, the connection coefficients for this model are calculated by ray phase-space methods. Analytical results (confirmed numerically) show that all connection coefficients exhibit interference effects that depend on an interference phase, calculated from the coupling constants and the area enclosed by the intersecting rays. This conceptual model, which focuses on the topology of intersecting rays in phase space, is used to investigate how mode conversion between primary and secondary waves is modified by the presence of a tertiary wave.

  11. Direct conversion technology: Annual summary report CY 1988

    SciTech Connect (OSTI)

    Massier, P.F.; Bankston, C.P.; Fabris, G.; Kirol, L.D.

    1988-12-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct thermal-to-electric energy conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1988 through December 1988. Research on these concepts was initiated during October 1987. In addition, status reviews and assessments are presented for thermomagnetic converter concepts and for thermoelastic converters (Nitinol heat engines). Reports prepared on previous occasions contain discussions on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic thermophotovoltaic and thermoacoustic; and also, more complete discussions of AMTEC and LMMHD systems. A tabulated summary of the various systems which have been reviewed thus far has been prepared. Some of the important technical research needs are listed and a schematic of each system is shown. These tabulations are included herein as figures. 43 refs., 26 figs., 1 tab.

  12. Energy Conversion and Storage Program

    SciTech Connect (OSTI)

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  13. MUTUAL CONVERSION SOLAR AND SIDEREAL

    E-Print Network [OSTI]

    Roegel, Denis

    TABLES FOR THE MUTUAL CONVERSION OF SOLAR AND SIDEREAL TIME BY EDWARD SANG, F.R.S.E. EDINBURGH in the third example. Sang converts 3.27 seconds of solar time into 3.26 seconds of sidereal time. But sidereal time elapses faster than solar time, and the correct value is 3.28 sec- onds. In the fourth example

  14. 100 GS/s / 100 GS/s All-Optical Analog-to-Digital Conversion utilizing Slow Light Structure

    E-Print Network [OSTI]

    Park, Namkyoo

    100 GS/s / 100 GS/s All-Optical Analog-to-Digital Conversion utilizing Slow Light Structure-to-digital conversion based on photonic crystal slow light structure. To achieve high speed modulation and compensate inducing dual channels are suggested, which have the unit cells composed of coupled resonators. (Slow

  15. Rationality and Conversation: A Thesis on Grice’s Theory of Conversation 

    E-Print Network [OSTI]

    Schoolfield, Matthew D

    2007-11-27

    H. P. Grice first presented his theory of conversational implicature in “Logic and Conversation.” This theory is comprised of conversational maxims that are based on the Cooperative Principle. Since then, it has become ...

  16. Thermal cycler

    SciTech Connect (OSTI)

    Benett, William J.; Andreski, John T.; Dzenitis, John M.; Makarewicz, Anthony J.; Hadley, Dean R.; Pannu, Satinderpall S.

    2014-07-15

    A thermalcycler includes a first thermalcycler body section having a first face and a second thermalcycler body section having a second face. A cavity is formed by the first face and the second face. A thermalcycling unit is positioned in the cavity. A heater trace unit is connected to a support section, to the first thermalcycler body section, to the second thermalcycler body section, and to the thermalcycling unit. The first thermalcycler body section and the second thermalcycler body section are positioned together against the support section to enclose the thermalcycling unit and the heater trace unit.

  17. SPS energy conversion and power management workshop. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    In 1977 a four year study, the concept Development and Evaluation Program, was initiated by the US Department of Energy and the National Aeronautics and Space Administration. As part of this program, a series of peer reviews were carried out within the technical community to allow available information on SPS to be sifted, examined and, if need be, challenged. The SPS Energy Conversion and Power Management Workshop, held in Huntsville, Alabama, February 5 to 7, 1980, was one of these reviews. The results of studies in this particular field were presented to an audience of carefully selected scientists and engineers. This first report summarizes the results of that peer review. It is not intended to be an exhaustive treatment of the subject. Rather, it is designed to look at the SPS energy conversion and power management options in breadth, not depth, to try to foresee any troublesome and/or potentially unresolvable problems and to identify the most promising areas for future research and development. Topics include photovoltaic conversion, solar thermal conversion, and electric power distribution processing and power management. (WHK)

  18. Thermal tolerant avicelase from Acidothermus cellulolyticus

    DOE Patents [OSTI]

    Ding, Shi-You (Golden, CO); Adney, William S. (Golden, CO); Vinzant, Todd B. (Golden, CO); Himmel, Michael E. (Littleton, CO)

    2009-05-26

    The invention provides a thermal tolerant (thermostable) cellulase, AviIII, that is a member of the glycoside hydrolase (GH) family. AviIII was isolated and characterized from Acidothermus cellulolyticus and, like many cellulases, the disclosed polypeptide and/or its derivatives may be useful for the conversion of biomass into biofuels and chemicals.

  19. Thermal tolerant avicelase from Acidothermus cellulolyticus

    DOE Patents [OSTI]

    Ding, Shi-You (Golden, CO); Adney, William S. (Golden, CO); Vinzant, Todd B. (Golden, CO); Himmel, Michael E. (Littleton, CO)

    2008-04-29

    The invention provides a thermal tolerant (thermostable) cellulase, AviIII, that is a member of the glycoside hydrolase (GH) family. AviIII was isolated and characterized from Acidothermus cellulolyticus and, like many cellulases, the disclosed polypeptide and/or its derivatives may be useful for the conversion of biomass into biofuels and chemicals.

  20. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    Solar Thermal Collectors .is solar energy. Solar thermal collector arrays can be usedon integrating solar thermal collectors with desalination

  1. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    and thermal energy storage in solar thermal applications,"aided or powered by solar thermal energy. A section is alsoexhaustive review of solar thermal energy systems has been

  2. Advanced Thermal Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    thermal models power density cost lifetime Advanced Thermal Interface Materials Advanced Heat Transfer Technologies Air Cooling Thermal System Performance and Integration Thermal...

  3. Weather Ready Nation: A Vital Conversation on

    E-Print Network [OSTI]

    Weather Ready Nation: A Vital Conversation on Tornadoes and Severe Weather A Community Report March;WeatherReady Nation: A Vital Conversation on Tornadoes and Severe Weather Report from the December 2011

  4. New proposal for photovoltaic-thermal solar energy utilization method

    SciTech Connect (OSTI)

    Takashima, Takumi; Tanaka, Tadayoshi; Doi, Takuya ); Kamoshida, Junji ); Tani, Tatsuo ); Horigome, Takashi )

    1994-03-01

    One of the most effective methods of utilizing solar energy is to use the sunlight and solar thermal energy such as a photovoltaic-thermal panel (PV/T panel) simultaneously. From such a viewpoint, systems using various kinds of PV panels were constructed in the world. In these panels, solar cells are set up at an absorber collecting solar thermal energy. Therefore, temperature of solar cell increases up to the prescribed temperature of thermal energy use, although it is lower than the cell temperature when using only solar cell panel. For maintaining cell conversion efficiency at the standard conditions, it is necessary to keep the cell at lower temperature. In this paper, electric and thermal energy obtained form a PV/T panel is evaluated in terms of energy. BAsed on this evaluation, the method of not to decrease cell conversion efficiency with collecting solar thermal energy was proposed.

  5. Transparency in nonlinear frequency conversion

    E-Print Network [OSTI]

    Longhi, Stefano

    2015-01-01

    Suppression of wave scattering and the realization of transparency effects in engineered optical media and surfaces have attracted great attention in the past recent years. In this work the problem of transparency is considered for optical wave propagation in a nonlinear dielectric medium with second-order $\\chi^{(2)}$ susceptibility. Because of nonlinear interaction, a reference signal wave at carrier frequency $\\omega_1$ can exchange power, thus being amplified or attenuated,when phase matching conditions are satisfied and frequency conversion takes place. Therefore, rather generally the medium is not transparent to the signal wave because of 'scattering' in the frequency domain. Here we show that broadband transparency, corresponding to the full absence of frequency conversion in spite of phase matching, can be observed for the signal wave in the process of sum frequency generation whenever the effective susceptibility $\\chi^{(2)}$ along the nonlinear medium is tailored following a suitable spatial apodiza...

  6. Optomechanical conversion by mechanical turbines

    E-Print Network [OSTI]

    Kneževi?, Miloš; Warner, Mark

    2014-10-30

    has mov- ing parts gives it a disadvantage over conventional photo- voltaics, though rubber is highly durable and tough — for instance car tyres survive long use in harsh, abra- sive conditions. Another difficulty, that could perhaps be solved... ’effect du frottement dans l’equilibre,” Mem. Acad. Sci. , pp. 265 (1762). 7[14] L. R. G. Treloar, The Physics of Rubber Elasticity (Ox- ford University Press, Oxford, 2005). [15] M. Knez?evic´ and M. Warner, “Photoferroelectric solar to electrical conversion...

  7. The National Conversion Pilot Project

    SciTech Connect (OSTI)

    Roberts, A.V.

    1995-12-31

    The National Conversion Pilot Project (NCPP) is a recycling project under way at the U.S. Department of Energy (DOE) Rocky Flats Environmental Technology Site (RFETS) in Colorado. The recycling aim of the project is threefold: to reuse existing nuclear weapon component production facilities for the production of commercially marketable products, to reuse existing material (uranium, beryllium, and radioactively contaminated scrap metals) for the production of these products, and to reemploy former Rocky Flats workers in this process.

  8. Thermochemical Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report15 MeetingDevelopmentDepartmentof EnergyTheConversion

  9. Research Reactor Conversion | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Reactor Conversion | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the...

  10. Automated rapid thermal imaging systems technology

    E-Print Network [OSTI]

    Phan, Long N., 1976-

    2012-01-01

    A major source of energy savings occurs on the thermal envelop of buildings, which amounts to approximately 10% of annual energy usage in the United States. To pursue these savings, energy auditors use closed loop energy ...

  11. High resolution A/D conversion based on piecewise conversion at lower resolution

    DOE Patents [OSTI]

    Terwilliger, Steve (Albuquerque, NM)

    2012-06-05

    Piecewise conversion of an analog input signal is performed utilizing a plurality of relatively lower bit resolution A/D conversions. The results of this piecewise conversion are interpreted to achieve a relatively higher bit resolution A/D conversion without sampling frequency penalty.

  12. Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters

    E-Print Network [OSTI]

    Soljaèiæ, Marin

    Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal) systems convert solar energy into electricity via thermally radiated photons at tailored wavelengths highly scalable for a wide range of power capacities, have no moving parts, and allow solar energy

  13. A novel thermomechanical energy conversion cycle Ian M. McKinley, Felix Y. Lee, Laurent Pilon

    E-Print Network [OSTI]

    Pilon, Laurent

    of waste mechanical energy include fluid flow, household appliances, industrial equipment, motor vehiclesA novel thermomechanical energy conversion cycle Ian M. McKinley, Felix Y. Lee, Laurent Pilon of a novel cycle converting thermal and mechanical energy directly into electrical energy. The new cycle

  14. Using silver nanowire antennas to enhance the conversion efficiency of photoresponsive

    E-Print Network [OSTI]

    Tan, Weihong

    and solar energy harvesting. energy conversion localized surface plasmon photo-driven nanomotor Plants harvest solar energy by photosynthesis, in which photo- sensitive biomolecules absorb energy from sunlight and con- vert it into chemical energy. Human beings utilize solar energy by fossil fuels, solar thermal

  15. Method for regeneration and activity improvement of syngas conversion catalyst

    DOE Patents [OSTI]

    Lucki, Stanley J. (Runnemede, NJ); Brennan, James A. (Cherry Hill, NJ)

    1980-01-01

    A method is disclosed for the treatment of single particle iron-containing syngas (synthes.s gas) conversion catalysts comprising iron, a crystalline acidic aluminosilicate zeolite having a silica to alumina ratio of at least 12, a pore size greater than about 5 Angstrom units and a constraint index of about 1-12 and a matrix. The catalyst does not contain promoters and the treatment is applicable to either the regeneration of said spent single particle iron-containing catalyst or for the initial activation of fresh catalyst. The treatment involves air oxidation, hydrogen reduction, followed by a second air oxidation and contact of the iron-containing single particle catalyst with syngas prior to its use for the catalytic conversion of said syngas. The single particle iron-containing catalysts are prepared from a water insoluble organic iron compound.

  16. Biomass Thermochemical Conversion Program: 1986 annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1987-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. Thermochemical conversion processes can generate a variety of products such as gasoline hydrocarbon fuels, natural gas substitutes, or heat energy for electric power generation. The US Department of Energy is sponsoring research on biomass conversion technologies through its Biomass Thermochemical Conversion Program. Pacific Northwest Laboratory has been designated the Technical Field Management Office for the Biomass Thermochemical Conversion Program with overall responsibility for the Program. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1986. 88 refs., 31 figs., 5 tabs.

  17. Developing a Cost Model and Methodology to Estimate Capital Costs for Thermal Energy Storage

    SciTech Connect (OSTI)

    Glatzmaier, G.

    2011-12-01

    This report provides an update on the previous cost model for thermal energy storage (TES) systems. The update allows NREL to estimate the costs of such systems that are compatible with the higher operating temperatures associated with advanced power cycles. The goal of the Department of Energy (DOE) Solar Energy Technology Program is to develop solar technologies that can make a significant contribution to the United States domestic energy supply. The recent DOE SunShot Initiative sets a very aggressive cost goal to reach a Levelized Cost of Energy (LCOE) of 6 cents/kWh by 2020 with no incentives or credits for all solar-to-electricity technologies.1 As this goal is reached, the share of utility power generation that is provided by renewable energy sources is expected to increase dramatically. Because Concentrating Solar Power (CSP) is currently the only renewable technology that is capable of integrating cost-effective energy storage, it is positioned to play a key role in providing renewable, dispatchable power to utilities as the share of power generation from renewable sources increases. Because of this role, future CSP plants will likely have as much as 15 hours of Thermal Energy Storage (TES) included in their design and operation. As such, the cost and performance of the TES system is critical to meeting the SunShot goal for solar technologies. The cost of electricity from a CSP plant depends strongly on its overall efficiency, which is a product of two components - the collection and conversion efficiencies. The collection efficiency determines the portion of incident solar energy that is captured as high-temperature thermal energy. The conversion efficiency determines the portion of thermal energy that is converted to electricity. The operating temperature at which the overall efficiency reaches its maximum depends on many factors, including material properties of the CSP plant components. Increasing the operating temperature of the power generation system leads to higher thermal-to-electric conversion efficiency. However, in a CSP system, higher operating temperature also leads to greater thermal losses. These two effects combine to give an optimal system-level operating temperature that may be less than the upper operating temperature limit of system components. The overall efficiency may be improved by developing materials, power cycles, and system-integration strategies that enable operation at elevated temperature while limiting thermal losses. This is particularly true for the TES system and its components. Meeting the SunShot cost target will require cost and performance improvements in all systems and components within a CSP plant. Solar collector field hardware will need to decrease significantly in cost with no loss in performance and possibly with performance improvements. As higher temperatures are considered for the power block, new working fluids, heat-transfer fluids (HTFs), and storage fluids will all need to be identified to meet these new operating conditions. Figure 1 shows thermodynamic conversion efficiency as a function of temperature for the ideal Carnot cycle and 75% Carnot, which is considered to be the practical efficiency attainable by current power cycles. Current conversion efficiencies for the parabolic trough steam cycle, power tower steam cycle, parabolic dish/Stirling, Ericsson, and air-Brayton/steam Rankine combined cycles are shown at their corresponding operating temperatures. Efficiencies for supercritical steam and carbon dioxide (CO{sub 2}) are also shown for their operating temperature ranges.

  18. Sandia Energy - Energy Conversion Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen GenerationTechnologiesEnergy Conversion Efficiency Home

  19. Biochemical Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETO Quiz -Technologies forBig SavingsConversion

  20. Integrated Biomass Gasification with Catalytic Partial Oxidation for Selective Tar Conversion

    SciTech Connect (OSTI)

    Zhang, Lingzhi; Wei, Wei; Manke, Jeff; Vazquez, Arturo; Thompson, Jeff; Thompson, Mark

    2011-05-28

    Biomass gasification is a flexible and efficient way of utilizing widely available domestic renewable resources. Syngas from biomass has the potential for biofuels production, which will enhance energy security and environmental benefits. Additionally, with the successful development of low Btu fuel engines (e.g. GE Jenbacher engines), syngas from biomass can be efficiently used for power/heat co-generation. However, biomass gasification has not been widely commercialized because of a number of technical/economic issues related to gasifier design and syngas cleanup. Biomass gasification, due to its scale limitation, cannot afford to use pure oxygen as the gasification agent that used in coal gasification. Because, it uses air instead of oxygen, the biomass gasification temperature is much lower than well-understood coal gasification. The low temperature leads to a lot of tar formation and the tar can gum up the downstream equipment. Thus, the biomass gasification tar removal is a critical technology challenge for all types of biomass gasifiers. This USDA/DOE funded program (award number: DE-FG36-O8GO18085) aims to develop an advanced catalytic tar conversion system that can economically and efficiently convert tar into useful light gases (such as syngas) for downstream fuel synthesis or power generation. This program has been executed by GE Global Research in Irvine, CA, in collaboration with Professor Lanny Schmidt's group at the University of Minnesota (UoMn). Biomass gasification produces a raw syngas stream containing H2, CO, CO2, H2O, CH4 and other hydrocarbons, tars, char, and ash. Tars are defined as organic compounds that are condensable at room temperature and are assumed to be largely aromatic. Downstream units in biomass gasification such as gas engine, turbine or fuel synthesis reactors require stringent control in syngas quality, especially tar content to avoid plugging (gum) of downstream equipment. Tar- and ash-free syngas streams are a critical requirement for commercial deployment of biomass-based power/heat co-generation and biofuels production. There are several commonly used syngas clean-up technologies: (1) Syngas cooling and water scrubbing has been commercially proven but efficiency is low and it is only effective at small scales. This route is accompanied with troublesome wastewater treatment. (2) The tar filtration method requires frequent filter replacement and solid residue treatment, leading to high operation and capital costs. (3) Thermal destruction typically operates at temperatures higher than 1000oC. It has slow kinetics and potential soot formation issues. The system is expensive and materials are not reliable at high temperatures. (4) In-bed cracking catalysts show rapid deactivation, with durability to be demonstrated. (5) External catalytic cracking or steam reforming has low thermal efficiency and is faced with problematic catalyst coking. Under this program, catalytic partial oxidation (CPO) is being evaluated for syngas tar clean-up in biomass gasification. The CPO reaction is exothermic, implying that no external heat is needed and the system is of high thermal efficiency. CPO is capable of processing large gas volume, indicating a very compact catalyst bed and a low reactor cost. Instead of traditional physical removal of tar, the CPO concept converts tar into useful light gases (eg. CO, H2, CH4). This eliminates waste treatment and disposal requirements. All those advantages make the CPO catalytic tar conversion system a viable solution for biomass gasification downstream gas clean-up. This program was conducted from October 1 2008 to February 28 2011 and divided into five major tasks. - Task A: Perform conceptual design and conduct preliminary system and economic analysis (Q1 2009 ~ Q2 2009) - Task B: Biomass gasification tests, product characterization, and CPO tar conversion catalyst preparation. This task will be conducted after completing process design and system economics analysis. Major milestones include identification of syngas cleaning requirements for proposed system

  1. Thermal indicator for wells

    DOE Patents [OSTI]

    Gaven, Jr., Joseph V. (Oakton, VA); Bak, Chan S. (Newbury Park, CA)

    1983-01-01

    Minute durable plate-like thermal indicators are employed for precision measuring static and dynamic temperatures of well drilling fluids. The indicators are small enough and sufficiently durable to be circulated in the well with drilling fluids during the drilling operation. The indicators include a heat resistant indicating layer, a coacting meltable solid component and a retainer body which serves to unitize each indicator and which may carry permanent indicator identifying indicia. The indicators are recovered from the drilling fluid at ground level by known techniques.

  2. Explorations of Novel Energy Conversion and Storage Systems

    E-Print Network [OSTI]

    Duffin, Andrew Mark

    2010-01-01

    Energy Conversion and Storage Systems By Andrew Mark DuffinEnergy Conversion and Storage Systems by Andrew Mark Duffin

  3. 2011 Biomass Program Platform Peer Review: Thermochemical Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermochemical Conversion 2011 Biomass Program Platform Peer Review: Thermochemical Conversion "This document summarizes the recommendations and evaluations provided by an...

  4. POWER SCHEDULING IN A HYDRO-THERMAL SYSTEM UNDER UNCERTAINTY

    E-Print Network [OSTI]

    Römisch, Werner

    POWER SCHEDULING IN A HYDRO-THERMAL SYSTEM UNDER UNCERTAINTY C.C. Car e1, M.P. Nowak2, W. Romisch2 and pumped-storage hydro units is developed. For its compu- tational solution two di erent decompo- sition-burning) thermal units, pumped-storage hydro plants and delivery con- tracts and describe an optimization model

  5. High conversion residuum hydrocracking with the Canmet process

    SciTech Connect (OSTI)

    Menzies, M.A.; Hepton, J.; Silva, A.; Logie, R.B.

    1981-01-01

    CANMET is a new residuum hydrocracking process, capable of achieving high conversion on difficult feedstocks. A description is given of the process and detailed performance data are presented for the upgrading of Laguna vacuum bottoms. The economic performance of the technology is evaluated in a case study where CANMET unit for upgrading vacuum bottoms is incorporated into a conventional refinery. CANMET is shown to offer an excellent route for upgrading heavy vacuum residues, yielding a 25.5% DCF return with a payout time of 4.2 years. 5 refs.

  6. Natural gas/diesel conversions - the outlook

    SciTech Connect (OSTI)

    Fiore, V.B.; Joyce, T.J.

    1986-01-01

    High conversion costs and technical inadequacies of available equipment have limited diesel to compressed natural gas (CNG) conversions, a process which can use either fumigation, pilot oil injection, or spark-ignition for vehicle ignition. An overview of Gas Research Institute conversion research projects includes a summary of major problems associated with performance, cost, and reliability of the systems. A summary table identifies projects by organization and location, then provides project objectives, funding, future plans, and comments where the information is available.

  7. Power conversion apparatus and method

    DOE Patents [OSTI]

    Su, Gui-Jia (Knoxville, TN)

    2012-02-07

    A power conversion apparatus includes an interfacing circuit that enables a current source inverter to operate from a voltage energy storage device (voltage source), such as a battery, ultracapacitor or fuel cell. The interfacing circuit, also referred to as a voltage-to-current converter, transforms the voltage source into a current source that feeds a DC current to a current source inverter. The voltage-to-current converter also provides means for controlling and maintaining a constant DC bus current that supplies the current source inverter. The voltage-to-current converter also enables the current source inverter to charge the voltage energy storage device, such as during dynamic braking of a hybrid electric vehicle, without the need of reversing the direction of the DC bus current.

  8. LED Street Lighting Conversion Workshop Presentations

    Broader source: Energy.gov [DOE]

    This page provides links to the presentations given at the National League of Cities Mobile Workshop, LED Street Lighting Conversion: Saving Your Community Money, While Improving Public Safety,...

  9. Biochemical Conversion: Using Hydrolysis, Fermentation, and Catalysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    hydrolyze the cellulose and hemicellulose in biomass to free the sugars for conversion. The program is working to identify the most productive, naturally occurring...

  10. "Fundamental Challenges in Solar Energy Conversion" workshop...

    Office of Science (SC) Website

    "Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News &...

  11. "Approaches to Ultrahigh Efficiency Solar Energy Conversion"...

    Office of Science (SC) Website

    "Approaches to Ultrahigh Efficiency Solar Energy Conversion" Webinar Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News...

  12. Limits in high efficiency quantum frequency conversion

    E-Print Network [OSTI]

    Nicolás Quesada; J. E. Sipe

    2015-08-13

    Frequency conversion is an enabling process in many quantum information protocols. In this letter we study fundamental limits to high efficiency frequency conversion imposed by time ordering corrections. Using the Magnus expansion, we argue that these corrections, which are usually considered detrimental, can be used to increase the efficiency of conversion under certain circumstances. The corrections induce a nonlinear behaviour in the probability of upconversion as a function of the pump intensity, significantly modifying the sinusoidal Rabi oscillations that are otherwise expected. Finally, by using a simple scaling argument, we explain why cascaded frequency conversion devices attenuate time ordering corrections, allowing the construction of near ideal quantum pulse gates.

  13. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report You are accessing a document from the Department of Energy's (DOE)...

  14. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report In this Quarter, the research was focused continually on the...

  15. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    July--September 1995 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report, July--September 1995 The research was...

  16. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    October--December 1994 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report, October--December 1994 You are accessing a...

  17. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    July--September 1995 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report, July--September 1995 You are accessing...

  18. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    October--December 1994 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report, October--December 1994 In this Quarter, the...

  19. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report In this Quarter, the research was focused continually on the two...

  20. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report You are accessing a document from the Department of...

  1. Conversion Technologies for Advanced Biofuels ? Carbohydrates...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for host organism in the presentence of limited six carbon sugars Identify cellular transporters and regulators required for maximum sugar to hydrocarbon conversion ...

  2. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    varying solar energy inputs and thermal or power demands. Itusing aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"

  3. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    of solar collectors and thermal energy storage in solaraided or powered by solar thermal energy. A section is alsobesides MVC require thermal energy as their primary energy

  4. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    15] O. A. Hamed, "THERMAL PERFORMANCE OF MULTISTAGE FLASHdesa4.aspx. [18] Encon, "Thermal Evaporators," June 2013. [http://www.evaporator.com/thermal-evaporator. [19] Y. Tian

  5. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    of such an aquifer thermal storage system were studied andusing aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"

  6. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    This requires no thermal storage tanks, but can have athe need for large thermal storage equipment, the evaporatorinclude analysis of thermal storage. A way of keeping the

  7. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

  8. Potential for Coal-to-Liquids Conversion in the U.S.-Resource Base

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    Potential for Coal-to-Liquids Conversion in the U.S.-Resource Base Gregory D. Croft1 and Tad W the multi-Hubbert curve analysis to coal production in the United States, we demonstrate that anthracite production of this highest-rank coal. The pro- duction of bituminous coal from existing mines is about 80

  9. Experimental study of thermal conductivity reduction of silicon-germanium nanocomposite for thermoelastic application

    E-Print Network [OSTI]

    Lee, Hohyun, 1978-

    2005-01-01

    To improve the thermoelectric energy conversion efficiency of silicon germanium (SiGe), two methods were used to decrease the thermal conductivity by increasing phonon boundary scattering at interfaces. In the first method, ...

  10. Direct Conversion Technology. Progress report, January 1, 1992--June 30, 1992

    SciTech Connect (OSTI)

    Back, L.H.; Fabris, G.; Ryan, M.A.

    1992-07-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)

  11. Thermally crosslinked polymeric compositions and methods of making the same

    DOE Patents [OSTI]

    Koros, William John; Kratochvil, Adam Michal

    2014-03-04

    The various embodiments of the present disclosure relate generally to thermally crosslinked polymeric compositions and methods of making thermally crosslinked polymeric compositions. An embodiment of the present invention comprises a composition comprising: a first polymer comprising a first repeat unit, the first repeat unit comprising a carboxyl group, wherein the first polymer crosslinks to a second polymer formed from a second repeat unit, and wherein the first polymer crosslinks to the second polymer without formation of an ester group.

  12. Framing the Conversation: The Role of Facebook Conversations in Shopping for Eyeglasses

    E-Print Network [OSTI]

    Kane, Shaun K.

    Framing the Conversation: The Role of Facebook Conversations in Shopping for Eyeglasses Karim Said Warby Parker's Facebook page and explore the ways customers formulate questions and conversations,000 Facebook posts, consisting of photos, comments, and "likes". Using statistical analyses and qualitative

  13. Biomass Thermochemical Conversion Program. 1983 Annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1984-08-01

    Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

  14. Heat to electricity thermoacoustic-magnetohydrodynamic conversion

    E-Print Network [OSTI]

    Castrejon-Pita, A A

    2006-01-01

    In this work, a new concept for the conversion of heat into electricity is presented. The conversion is based on the combined effects of a thermoacoustic prime mover coupled with a magnetohydrodynamic generator, using different working fluids in each process. The results of preliminary experiments are also presented.

  15. Heat to electricity thermoacoustic-magnetohydrodynamic conversion

    E-Print Network [OSTI]

    A. A. Castrejon-Pita; G. Huelsz

    2006-10-12

    In this work, a new concept for the conversion of heat into electricity is presented. The conversion is based on the combined effects of a thermoacoustic prime mover coupled with a magnetohydrodynamic generator, using different working fluids in each process. The results of preliminary experiments are also presented.

  16. Data Conversion in Residue Number System

    E-Print Network [OSTI]

    Zilic, Zeljko

    ;2 Abstract This thesis tackles the problem of data conversion in the Residue Number System (RNS). The RNS has the use of RNS at the applications. In this thesis, we aim at developing efficient schemes for the conversion from the conventional representation to the RNS representation and vice versa. The conventional

  17. 1982 annual report: Biomass Thermochemical Conversion Program

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1983-01-01

    This report provides a brief overview of the Thermochemical Conversion Program's activities and major accomplishments during fiscal year 1982. The objective of the Biomass Thermochemical Conversion Program is to generate scientific data and fundamental biomass converison process information that, in the long term, could lead to establishment of cost effective processes for conversion of biomass resources into clean fuels and petrochemical substitutes. The goal of the program is to improve the data base for biomass conversion by investigating the fundamental aspects of conversion technologies and exploring those parameters which are critical to these conversion processes. To achieve this objective and goal, the Thermochemical Conversion Program is sponsoring high-risk, long-term research with high payoff potential which industry is not currently sponsoring, nor is likely to support. Thermochemical conversion processes employ elevated temperatures to convert biomass materials into energy. Process examples include: combustion to produce heat, steam, electricity, direct mechanical power; gasification to produce fuel gas or synthesis gases for the production of methanol and hydrocarbon fuels; direct liquefaction to produce heavy oils or distillates; and pyrolysis to produce a mixture of oils, fuel gases, and char. A bibliography of publications for 1982 is included.

  18. Thermal Transport in Nanoporous Materials for Energy Applications

    E-Print Network [OSTI]

    Fang, Jin

    2012-01-01

    Thermal Conductivity Measurement . . . . . . . . . . . . .Thermal ConductivityThermal Conductivity . . . . . . . . . . . . . . . .Thermal

  19. Unit and student details Unit code Unit title

    E-Print Network [OSTI]

    Sekercioglu, Y. Ahmet

    Unit and student details Unit code Unit title If this is a group assignment, each student must submitted Has any part of this assessment been previously submitted as part of another unit/course? Yes not be copied. No part of this assignment has been previously submitted as part of another unit/course. I

  20. Biomass Feedstock and Conversion Supply System Design and Analysis

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Mohammad S. Roni; Patrick Lamers; Kara G. Cafferty

    2014-09-01

    Idaho National Laboratory (INL) supports the U.S. Department of Energy’s bioenergy research program. As part of the research program INL investigates the feedstock logistics economics and sustainability of these fuels. A series of reports were published between 2000 and 2013 to demonstrate the feedstock logistics cost. Those reports were tailored to specific feedstock and conversion process. Although those reports are different in terms of conversion, some of the process in the feedstock logistic are same for each conversion process. As a result, each report has similar information. A single report can be designed that could bring all commonality occurred in the feedstock logistics process while discussing the feedstock logistics cost for different conversion process. Therefore, this report is designed in such a way that it can capture different feedstock logistics cost while eliminating the need of writing a conversion specific design report. Previous work established the current costs based on conventional equipment and processes. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $55/dry ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, low-cost feedstock. The 2017 programmatic target is to supply feedstock to the conversion facility that meets the in-feed conversion process quality specifications at a total logistics cost of $80/dry T. The $80/dry T. target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality targets. The 2012 $55/dry T. programmatic target included only logistics costs with a limited focus on biomass quantity, quality and did not include a grower payment. The 2017 Design Case explores two approaches to addressing the logistics challenge: one is an agronomic solution based on blending and integrated landscape management and the second is a logistics solution based on distributed biomass preprocessing depots. The concept behind blended feedstocks and integrated landscape management is to gain access to more regional feedstock at lower access fees (i.e., grower payment) and to reduce preprocessing costs by blending high quality feedstocks with marginal quality feedstocks. Blending has been used in the grain industry for a long time; however, the concept of blended feedstocks in the biofuel industry is a relatively new concept. The blended feedstock strategy relies on the availability of multiple feedstock sources that are blended using a least-cost formulation within an economical supply radius, which, in turn, decreases the grower payment by reducing the amount of any single biomass. This report will introduce the concepts of blending and integrated landscape management and justify their importance in meeting the 2017 programmatic goals.

  1. Interdigitated photovoltaic power conversion device

    DOE Patents [OSTI]

    Ward, James Scott (Englewood, CO); Wanlass, Mark Woodbury (Golden, CO); Gessert, Timothy Arthur (Conifer, CO)

    1999-01-01

    A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device.

  2. Interdigitated photovoltaic power conversion device

    DOE Patents [OSTI]

    Ward, J.S.; Wanlass, M.W.; Gessert, T.A.

    1999-04-27

    A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device. 15 figs.

  3. Unit Unit Desc Unit Unit Desc Program Program Desc OLD ACCOUNT FORMAT NEW ACCOUNT FORMAT

    E-Print Network [OSTI]

    Unit Unit Desc Unit Unit Desc Program Program Desc OLD ACCOUNT FORMAT NEW ACCOUNT FORMAT 001113 AP Old O/S A/P NonResCk 0000 General 000000 General #12;Unit Unit Desc Unit Unit Desc Program Program

  4. Direct conversion technology. Annual summary report CY 1991, January 1, 1991--December 31, 1991

    SciTech Connect (OSTI)

    Massier, P.F.; Back, L.H.; Ryan, M.A.; Fabris, G.

    1992-01-07

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.

  5. Oil Shale Mining Claims Conversion Act. Hearing before the Subcommittee on Mineral Resources Development and Production of the Committee on Energy and Natural Resources, United States Senate, One Hundredth Congress, Second Session on S. 2089, H. R. 1039, April 22, 1988

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    The hearing was called to examine two bills which address the processing of oil shale mining claims and patents by the Department of the Interior under the General Mining Law of 1872. S.2089 would provide for certain requirements relating to the conversion of oil shale mining claims located under the Mining Law of 1872 to leases and H.R.1039 would amend section 37 of the Mineral Lands Leasing Act of 1920 relating to oil shale claims. Under the new bills the owners of oil shale mining claims must make an election within 180 days after enactment as to whether to convert their claims to leases or to maintain their claims by performing 1000 dollars of annual assessment work on the claim, filing annually an affidavit of assessment work performed, and producing oil shale in significant marketable amounts within 10 years from the date of enactment of the legislation.

  6. Active People Recognition using Thermal and Grey Images on a Mobile Security Robot

    E-Print Network [OSTI]

    Duckett, Tom

    Active People Recognition using Thermal and Grey Images on a Mobile Security Robot Andr´e Treptow is an ActivMedia PeopleBot mobile robot that is equipped with several sensors including a thermal camera and a pan-tilt camera unit (see figure 1). Fig. 1. ActivMedia Peoplebot, thermal camera (NEC Thermal Tracer

  7. Energy conversion & storage program. 1994 annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1995-04-01

    The Energy Conversion and Storage Program investigates state-of-the-art electrochemistry, chemistry, and materials science technologies for: (1) development of high-performance rechargeable batteries and fuel cells; (2) development of high-efficiency thermochemical processes for energy conversion; (3) characterization of complex chemical processes and chemical species; (4) study and application of novel materials for energy conversion and transmission. Research projects focus on transport process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  8. Energy Conversion & Storage Program, 1993 annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1994-06-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: production of new synthetic fuels; development of high-performance rechargeable batteries and fuel cells; development of high-efficiency thermochemical processes for energy conversion; characterization of complex chemical processes and chemical species; and the study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  9. UNITED STEELWORKERS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With WIPP UPDATE:Administrationfollowing tableUNITED FERC

  10. United States

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowing YouNeedof EnergyMeeting - MarchUSPS:1 United States

  11. United States

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowing YouNeedof EnergyMeeting - MarchUSPS:1 United States7

  12. United States

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowing YouNeedof EnergyMeeting - MarchUSPS:1 United States78

  13. United States

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowing YouNeedof EnergyMeeting - MarchUSPS:1 United

  14. United States

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowing YouNeedof EnergyMeeting - MarchUSPS:1 UnitedDuke-4-E

  15. Advanced thermally stable jet fuels

    SciTech Connect (OSTI)

    Schobert, H.H.

    1999-01-31

    The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume (Sections 1 through 5).

  16. Solid State Energy Conversion Alliance 2nd Annual Workshop Proceedings

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2001-03-30

    The National Energy Technology Laboratory (NETL) and the Pacific Northwest National Laboratory (PNNL) are pleased to provide the proceedings of the second annual Solid State Energy Conversion Alliance (SECA) Workshop held on March 29-30, 2001 in Arlington. The package includes the presentations made during the workshop, a list of participants, and the results of the breakout sessions. Those sessions covered stack materials and processes, power electronics, balance of plant and thermal integration, fuel processing technologies, and stack and system performance modeling. The breakout sessions have been reported as accurately as possible; however, due to the recording and transcription process errors may have occurred. If you note any significant omissions or wish to provide additional information, we welcome your comments and hope that all stakeholder groups will use the enclosed information in their planning endeavors.

  17. Ultralow Thermal Conductivity in Organoclay Nanolaminates Synthesized via Simple Self-Assembly

    E-Print Network [OSTI]

    Braun, Paul

    Information ABSTRACT: Because interfaces impede phonon transport of thermal energy, nanostructuring canUltralow Thermal Conductivity in Organoclay Nanolaminates Synthesized via Simple Self-Assembly Mark of Chemistry, University of Illinois, Urbana Illinois 61801, United States § Materials and Manufacturing

  18. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Conversion Pathway: Biological Conversion of Sugars to Hydrocarbons The 2017 Design Case

    SciTech Connect (OSTI)

    Kevin Kenney; Kara G. Cafferty; Jacob J. Jacobson; Ian J Bonner; Garold L. Gresham; William A. Smith; David N. Thompson; Vicki S. Thompson; Jaya Shankar Tumuluru; Neal Yancey

    2013-09-01

    The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blendstocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL conducted a campaign to quantify the economics and sustainability of moving biomass from standing in the field or stand to the throat of the biomass conversion process. The goal of this program was to establish the current costs based on conventional equipment and processes, design improvements to the current system, and to mark annual improvements based on higher efficiencies or better designs. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $35/dry ton. This goal was successfully achieved in 2012 by implementing field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. Looking forward to 2017, the programmatic target is to supply biomass to the conversion facilities at a total cost of $80/dry ton and on specification with in-feed requirements. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, abundant, low-cost feedstock. If this goal is not achieved, biofuel plants are destined to be small and/or clustered in select regions of the country that have a lock on low-cost feedstock. To put the 2017 cost target into perspective of past accomplishments of the cellulosic ethanol pathway, the $80 target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality targets. The 2012 $35 programmatic target included only logistics costs with a limited focus on biomass quality

  19. Approved Module Information for EE1F03, 2014/5 Module Title/Name: Energy Conversion and Energy

    E-Print Network [OSTI]

    Rebollo-Neira, Laura

    in rotating systems using energy & co-energy. Thermal systems ? Heat energy, gas equations, compressionApproved Module Information for EE1F03, 2014/5 Module Title/Name: Energy Conversion and Energy circuits * Identify the energy changes in magnetic systems. * Apply transformer principles to simple

  20. Research and development of rapid hydrogenation for coal conversion to synthetic motor fuels (riser cracking of coal). Final report, April 1, 1976-September 30, 1980

    SciTech Connect (OSTI)

    Duncan, D. A.; Beeson, J. L.; Oberle, R. D.

    1981-02-01

    The objective of the program described was to develop a noncatalytic process for the hydropyrolysis of lignite and coal to produce high-octane blending gasoline constituents, methane, ethane, and carbon oxides. The process would operate in a balanced plant mode, using spent char to generate process hydrogen by steam-oxygen gasification. The technical program included the construction and operating of a bench-scale unit (5-10 lb/hr), the design, construction, and operation of a process development unit (PDU) (100 lb/hr), and a final technical and economic assessment of the process, called Riser Cracking of Coal. In the bench-scale unit program, 143 runs were made investigating the effects of pressure, temperature, heating rate, residence time, and particle size, processing North Dakota lignite in hydrogen. Some runs were made in which the hydrogen was preheated to pyrolysis temperatures prior to contact with the coal, and, also, in which steam was substituted for half of the hydrogen. Attempts to operate the bench-scale unit at 1200 psig and 1475/sup 0/F were not successful. Depth of carbon conversion was found to be influenced by hydrogen pressure, hydrogen-to-coal ratio, and the severity of the thermal treatment. The composition of hydrocarbon liquids produced was found to change with severity. At low severity, the liquids contained sizable fractions of phenols and cresols. At high severity, the fraction of phenols and cresols was much reduced, with an attendant increase in BTX. In operating the PDU, it was necessary to use more oxygen than was planned to achieve pyrolysis temperatures because of heat losses, and portions of hydrocarbon products were lost through combustion with a large increase in carbon oxide yields. Economic studies, however, showed that selling prices for gasoline blending stock, fuel oil, and fuel gas are competitive in current markets, so that the process is held to warrant further development.

  1. Laboratory for Alternative Energy Conversion (LAEC),

    E-Print Network [OSTI]

    Bahrami, Majid

    generation rates [1­3], and presents a great chal- lenge to thermal engineers. A number of failure mechanisms to thermal effects. Accord- ing to Arrhenius law, the rate of these failures is approximately doubled failures have thermal roots [4]. In addition, the fluctuations in the system loads can adversely impact

  2. Summer Series 2012 - Conversation with Omar Yaghi

    ScienceCinema (OSTI)

    Omar Yaghi

    2013-06-24

    Jeff Miller, head of Public Affairs, sat down in conversation with Omar Yaghi, director of the Molecular Foundry, in the first of a series of "powerpoint-free" talks on July 11th 2012, at Berkeley Lab.

  3. Summer Series 2012 - Conversation with Kathy Yelick

    SciTech Connect (OSTI)

    Kathy Yelick

    2012-07-23

    Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of "powerpoint-free" talks on July 18th 2012, at Berkeley Lab.

  4. The Conversion of Waste to Energy 

    E-Print Network [OSTI]

    John, T.; Cheek, L.

    1980-01-01

    Almost every industrial operation produces some combustible waste, but conversion of this to useful energy is often more difficult than with other energy recovery projects and requires careful attention to design, operating and maintaining...

  5. ME 533: Energy Conversion Emily M Ryan

    E-Print Network [OSTI]

    aspects of modern energy conversion systems, including traditional systems such as steam power plants, gas turbines and internal combustion engines and refrigeration systems, and renewable systems such as solar

  6. Summer Series 2012 - Conversation with Kathy Yelick

    ScienceCinema (OSTI)

    Yelick, Kathy

    2013-06-24

    Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of "powerpoint-free" talks on July 18th 2012, at Berkeley Lab.

  7. Radio frequency dc-dc power conversion

    E-Print Network [OSTI]

    Rivas, Juan, 1976-

    2007-01-01

    THIS THESIS addresses the development of system architectures and circuit topologies for dc-dc power conversion at very high frequencies. The systems architectures that are developed are structured to overcome limitations ...

  8. Collaboration on Topic Change in Conversation

    E-Print Network [OSTI]

    Howe, Mary

    1991-01-01

    Conversations are cooperatively achieved speech events. Analysis of topic changes shows that topic endings are negotiated by participants over a series of turns, using the following specific types of indicators: summary assessments, acknowledgment...

  9. Electrical power conversion is essential for improving

    E-Print Network [OSTI]

    Langendoen, Koen

    Electrical power conversion is essential for improving energy efficiency and harvesting renewable energy. Diploma Master of Science Embedded Systems Credits 120 ECTS, 24 months Starts in September universities of technology in the Netherlands - Delft University of Technology, Eindhoven University

  10. Algae-to-Fuel: Integrating Thermochemical Conversion, Nutrient...

    Office of Environmental Management (EM)

    Algae-to-Fuel: Integrating Thermochemical Conversion, Nutrient Recycling, and Wastewater Algae-to-Fuel: Integrating Thermochemical Conversion, Nutrient Recycling, and Wastewater...

  11. Conversion Technologies for Advanced Biofuels - Bio-Oil Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Production RTI International report-out at the CTAB webinar on Conversion Technologies for Advanced Biofuels...

  12. Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ebinarbiooilsupgrading.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Production Thermochemical Conversion Proceeses to Aviation Fuels...

  13. First-of-its-Kind Carbon Capture and Conversion Demonstration...

    Office of Environmental Management (EM)

    First-of-its-Kind Carbon Capture and Conversion Demonstration Technology Opening in Texas First-of-its-Kind Carbon Capture and Conversion Demonstration Technology Opening in Texas...

  14. Project Profile: Brayton Solar Power Conversion System | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Power Conversion System Project Profile: Brayton Solar Power Conversion System Brayton Energy logo Brayton Energy, under the CSP R&D FOA, is looking to demonstrate the...

  15. 2015 Peer Review Presentations-Thermochemical Conversion | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermochemical Conversion 2015 Peer Review Presentations-Thermochemical Conversion The Bioenergy Technologies Office hosted its 2015 Project Peer Review on March 23-27, 2015, at...

  16. 2015 Peer Review Presentations-Biochemical Conversion | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biochemical Conversion 2015 Peer Review Presentations-Biochemical Conversion The Bioenergy Technologies Office hosted its 2015 Project Peer Review on March 23-27, 2015, at the...

  17. Molecular catalytic coal liquid conversion (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Conference: Molecular catalytic coal liquid conversion Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion This research, which is relevant to the...

  18. Molecular catalytic coal liquid conversion (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Conference: Molecular catalytic coal liquid conversion Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion You are accessing a document from...

  19. Electron Transfer Dynamics in Photocatalytic CO2 Conversion ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Transfer Dynamics in Photocatalytic CO2 Conversion Electron Transfer Dynamics in Photocatalytic CO2 Conversion Coal is the workhorse of our power industry, responsible for...

  20. Composites for Multi-energy conversion & waste heat recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Composites for Multi-energy conversion & waste heat recovery Composites for Multi-energy conversion & waste heat recovery Discusses development of a composite that transfers energy...

  1. Process Design and Economics for the Conversion of Lignocellulosic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Biomass to Sugars and Biological Conversion of Sugars to Hydrocarbons Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons:...

  2. Novel Vertimass Catalyst for Conversion of Ethanol and Other...

    Office of Environmental Management (EM)

    Novel Vertimass Catalyst for Conversion of Ethanol and Other Alcohols into Fungible Gasoline, Jet, and Diesel Fuel Blend Stocks Novel Vertimass Catalyst for Conversion of Ethanol...

  3. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for...

  4. New process speeds conversion of biomass to fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion of Biomass to Fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

  5. 2011 Biomass Program Platform Peer Review: Biochemical Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biochemical Conversion 2011 Biomass Program Platform Peer Review: Biochemical Conversion This document summarizes the recommendations and evaluations provided by an independent...

  6. Potential Impacts of Hydrokinetic and Wave Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on...

  7. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion of Waste Heat to Electricity in an IC Engine-Powered Vehicle Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle...

  8. RESIDUAL PREDICTION BASED ON UNIT SELECTION David Sundermann1,2,3

    E-Print Network [OSTI]

    Black, Alan W

    RESIDUAL PREDICTION BASED ON UNIT SELECTION David S¨undermann1,2,3 , Harald H¨oge1 , Antonio Recently, we presented a study on residual prediction tech- niques that can be applied to voice conversion based on lin- ear transformation or hidden Markov model-based speech synthesis. Our voice conversion

  9. RESIDUAL PREDICTION BASED ON UNIT SELECTION David Sundermann1,2

    E-Print Network [OSTI]

    Suendermann, David

    RESIDUAL PREDICTION BASED ON UNIT SELECTION David S¨undermann1,2 , Harald H¨oge1 , Antonio tech- niques that can be applied to voice conversion based on lin- ear transformation or hidden Markov model-based speech synthesis. Our voice conversion experiments showed that none of the six compared

  10. August 2011 Environmental Assessment of Ocean Thermal Energy

    E-Print Network [OSTI]

    August 2011 1 Environmental Assessment of Ocean Thermal Energy Conversion in Hawaii Available data and a protocol for baseline monitoring Christina M. Comfort and Luis Vega, Ph.D. Hawaii National Marine Renewable Energy Center Hawaii Natural Energy Institute University of Hawaii at Manoa Honolulu, HI ccomfort

  11. Methods of using thermal tolerant avicelase from Acidothermus cellulolyticus

    DOE Patents [OSTI]

    Adney, William S. (Golden, CO); Vinzant, Todd B. (Golden, CO); Ding, Shih-You (Golden, CO); Himmel, Michael E. (Golden, CO)

    2011-04-26

    The invention provides a thermal tolerant (thermostable) cellulase, AviIII, that is a member of the glycoside hydrolase (GH) family. AviIII was isolated and characterized from Acidothermus cellulolyticus, and, like many cellulases, the disclosed polypeptide and/or its derivatives may be useful for the conversion of biomass into biofuels and chemicals.

  12. Biomass Gasification using Solar Thermal Energy M. Munzinger and K. Lovegrove

    E-Print Network [OSTI]

    Biomass Gasification using Solar Thermal Energy M. Munzinger and K. Lovegrove Solar Thermal Group technical pathways for biomass gasification and shows their advantages and disadvantages especially in connection with the use of solar heat as energy source for the conversion reaction. Biomass gasification

  13. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    " 1Total U.S. includes all primary occupied housing units in the 50 States and the District of Columbia. Vacant housing units, seasonal units, second homes, military...

  14. United States Environmental

    E-Print Network [OSTI]

    Al Faruque, Mohammad Abdullah

    Protect Your Family From Lead in Your Home United States Environmental Protection Agency United States Consumer Product Safety Commission United States Department of Housing and Urban Development

  15. CONVERSION EXTRACTION DESULFURIZATION (CED) PHASE III

    SciTech Connect (OSTI)

    James Boltz

    2005-03-01

    This project was undertaken to refine the Conversion Extraction Desulfurization (CED) technology to efficiently and economically remove sulfur from diesel fuel to levels below 15-ppm. CED is considered a generic term covering all desulfurization processes that involve oxidation and extraction. The CED process first extracts a fraction of the sulfur from the diesel, then selectively oxidizes the remaining sulfur compounds, and finally extracts these oxidized materials. The Department of Energy (DOE) awarded Petro Star Inc. a contract to fund Phase III of the CED process development. Phase III consisted of testing a continuous-flow process, optimization of the process steps, design of a pilot plant, and completion of a market study for licensing the process. Petro Star and the Degussa Corporation in coordination with Koch Modular Process Systems (KMPS) tested six key process steps in a 7.6-centimeter (cm) (3.0-inch) inside diameter (ID) column at gas oil feed rates of 7.8 to 93.3 liters per hour (l/h) (2.1 to 24.6 gallons per hour). The team verified the technical feasibility with respect to hydraulics for each unit operation tested and successfully demonstrated pre-extraction and solvent recovery distillation. Test operations conducted at KMPS demonstrated that the oxidation reaction converted a maximum of 97% of the thiophenes. The CED Process Development Team demonstrated that CED technology is capable of reducing the sulfur content of light atmospheric gas oil from 5,000-ppm to less than 15-ppm within the laboratory scale. In continuous flow trials, the CED process consistently produced fuel with approximately 20-ppm of sulfur. The process economics study calculated an estimated process cost of $5.70 per product barrel. The Kline Company performed a marketing study to evaluate the possibility of licensing the CED technology. Kline concluded that only 13 refineries harbored opportunity for the CED process. The Kline study and the research team's discussions with prospective refineries led to the conclusion that there were not likely prospects for the licensing of the CED process.

  16. Singapore's Water Trade with Malaysia and Alternatives By Diane Segal

    E-Print Network [OSTI]

    Wolf, Aaron

    .......................................................................................... 4 Unit Conversion

  17. High Temperature Thermal Array for Next Generation Solar Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This...

  18. Scaling the energy conversion rate from magnetic field reconnection to different bodies

    SciTech Connect (OSTI)

    Mozer, F. S.; Hull, A.

    2010-10-15

    Magnetic field reconnection is often invoked to explain electromagnetic energy conversion in planetary magnetospheres, stellar coronae, and other astrophysical objects. Because of the huge dynamic range of magnetic fields in these bodies, it is important to understand energy conversion as a function of magnetic field strength and related parameters. It is conjectured theoretically and shown experimentally that the energy conversion rate per unit area in reconnection scales as the cube of an appropriately weighted magnetic field strength divided by the square root of an appropriately weighted density. With this functional dependence, the energy release in flares on the Sun, the large and rapid variation of the magnetic flux in the tail of Mercury, and the apparent absence of reconnection on Jupiter and Saturn, may be understood. Electric fields at the perihelion of the Solar Probe Plus mission may be tens of V/m.

  19. Effects of thermal fluctuations on thermal inflation

    E-Print Network [OSTI]

    Takashi Hiramatsu; Yuhei Miyamoto; Jun'ichi Yokoyama

    2014-12-25

    The mechanism of thermal inflation, a relatively short period of accelerated expansion after primordial inflation, is a desirable ingredient for a certain class of particle physics models if they are not to be in contention with the cosmology of the early Universe. Though thermal inflation is most simply described in terms of a thermal effective potential, a thermal environment also gives rise to thermal fluctuations that must be taken into account. We numerically study the effects of these thermal fluctuations using lattice simulations. We conclude that though they do not ruin the thermal inflation scenario, the phase transition at the end of thermal inflation proceeds through phase mixing and is therefore not accompanied by the formations of bubbles nor appreciable amplitude of gravitational waves.

  20. Soild State Energy Conversion Energy Alliance (SECA)

    SciTech Connect (OSTI)

    2011-12-31

    The overall objective is to develop a Solid Oxide Fuel Cell (SOFC) stack that can be economically produced in high volumes and mass customized for different applications in transportation, stationary power generation, and military market sectors. In Phase I, work will be conducted on system design and integration, stack development, and development of reformers for natural gas and gasoline. Specifically, Delphi-Battelle will fabricate and test a 5 kW stationary power generation system consisting of a SOFC stack, a steam reformer for natural gas, and balance-of-plant (BOP) components, having an expected efficiency of {>=}35 percent (AC/LHV). In Phase II and Phase III, the emphasis will be to improve the SOFC stack, reduce start-up time, improve thermal cyclability, demonstrate operation on diesel fuel, and substantially reduce materials and manufacturing cost by integrating several functions into one component and thus reducing the number of components in the system. In Phase II, Delphi-Battelle will fabricate and demonstrate two SOFC systems: an improved stationary power generation system consisting of an improved SOFC stack with integrated reformation of natural gas, and the BOP components, with an expected efficiency of {>=}40 percent (AC/LHV), and a mobile 5 kW system for heavy-duty trucks and military power applications consisting of an SOFC stack, reformer utilizing anode tailgate recycle for diesel fuel, and BOP components, with an expected efficiency of {>=}30 percent (DC/LHV). Finally, in Phase III, Delphi-Battelle will fabricate and test a 5 kW Auxiliary Power Unit (APU) for mass-market automotive application consisting of an optimized SOFC stack, an optimized catalytic partial oxidation (CPO) reformer for gasoline, and BOP components, having an expected efficiency of {>=}30 percent (DC/LHV) and a factory cost of {<=}$400/kW.

  1. Soild State Energy Conversion Energy Alliance (SECA)

    SciTech Connect (OSTI)

    2011-12-31

    The overall objective is to develop a solid oxide fuel cell (SOFC) stack that can be economically produced in high volumes and mass customized for different applications in transportation, stationary power generation, and military market sectors. In Phase I, work will be conducted on system design and integration, stack development, and development of reformers for natural gas and gasoline. Specifically, Delphi-Battelle will fabricate and test a 5 kW stationary power generation system consisting of a SOFC stack, a steam reformer for natural gas, and balance-of-plant (BOP) components, having an expected efficiency of 35 percent (AC/LHV). In Phase II and Phase III, the emphasis will be to improve the SOFC stack, reduce start-up time, improve thermal cyclability, demonstrate operation on diesel fuel, and substantially reduce materials and manufacturing cost by integrating several functions into one component and thus reducing the number of components in the system. In Phase II, Delphi-Battelle will fabricate and demonstrate two SOFC systems: an improved stationary power generation system consisting of an improved SOFC stack with integrated reformation of natural gas, and the BOP components, with an expected efficiency of {>=}40 percent (AC/LHV), and a mobile 5 kW system for heavy-duty trucks and military power applications consisting of an SOFC stack, reformer utilizing anode tailgate recycle for diesel fuel, and BOP components, with an expected efficiency of {>=}30 percent (DC/LHV). Finally, in Phase III, Delphi-Battelle will fabricate and test a 5 kW Auxiliary Power Unit (APU) for mass-market automotive application consisting of an optimized SOFC stack, an optimized catalytic partial oxidation (CPO) reformer for gasoline, and BOP components, having an expected efficiency of 30 percent (DC/LHV) and a factory cost of {<=}$400/kW.

  2. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    storage in solar thermal applications," Applied Energy, pp.of Non-Tracking Solar Thermal Technology," 2011. [26] R.C. Y. Zhao, "A review of solar collectors and thermal energy

  3. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    Evaporator Powered By Solar Thermal Energy 10:00 AM 10:00 AMaided or powered by solar thermal energy. A section is alsoexhaustive review of solar thermal energy systems has been

  4. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    and thermal energy storage in solar thermal applications,"Solar infrastructure should include analysis of thermal storage.storage equipment, the evaporator can be integrated into the current solar

  5. Alternative fuel information: Facts about CNG and LPG conversion

    SciTech Connect (OSTI)

    O`Connor, K.

    1994-06-01

    As new environmental and energy related laws begin to take effect, increasing numbers of alternative fuel vehicles (AFVs) will be required in federal, state, municipal, and private fleets across the country. The National Energy Policy Act of 1992 and the Clean Air Act Amendments of 1990, along with several new state and local laws, will require fleet managers to either purchase original equipment manufacturer (OEM) vehicles, which are produced by automakers, or convert existing vehicles to run on alternative fuels. Because there is a limited availability and selection of OEM vehicles, conversions are seen as a transition to the time when automakers will produce more AFVs for public sale. A converted vehicle is any vehicle that originally was designed to operate on gasoline, and has been altered to run on an alternative fuel such as compressed natural gas (CNG) or propane (liquefied petroleum gas -- LPG), the two most common types of fuel conversions. In the United States, more than 25,000 vehicles already have been converted to COG, and 300,000 have been converted to LPG.

  6. Proceedings of the Chornobyl phytoremediation and biomass energy conversion workshop

    SciTech Connect (OSTI)

    Hartley, J.; Tokarevsky, V.

    1998-06-01

    Many concepts, systems, technical approaches, technologies, ideas, agreements, and disagreements were vigorously discussed during the course of the 2-day workshop. The workshop was successful in generating intensive discussions on the merits of the proposed concept that includes removal of radionuclides by plants and trees (phytoremediation) to clean up soil in the Chornobyl Exclusion Zone (CEZ), use of the resultant biomass (plants and trees) to generate electrical power, and incorporation of ash in concrete casks to be used as storage containers in a licensed repository for low-level waste. Twelve years after the Chornobyl Nuclear Power Plant (ChNPP) Unit 4 accident, which occurred on April 26, 1986, the primary 4radioactive contamination of concern is from radioactive cesium ({sup 137}Cs) and strontium ({sup 90}Sr). The {sup 137}Cs and {sup 90}Sr were widely distributed throughout the CEZ. The attendees from Ukraine, Russia, Belarus, Denmark and the US provided information, discussed and debated the following issues considerably: distribution and characteristics of radionuclides in CEZ; efficacy of using trees and plants to extract radioactive cesium (Cs) and strontium (Sr) from contaminated soil; selection of energy conversion systems and technologies; necessary infrastructure for biomass harvesting, handling, transportation, and energy conversion; radioactive ash and emission management; occupational health and safety concerns for the personnel involved in this work; and economics. The attendees concluded that the overall concept has technical and possibly economic merits. However, many issues (technical, economic, risk) remain to be resolved before a viable commercial-scale implementation could take place.

  7. Hybrid photovoltaic/thermal (PV/T) solar systems simulation with Simulink/Matlab

    SciTech Connect (OSTI)

    da Silva, R.M.; Fernandes, J.L.M.

    2010-12-15

    The purpose of this work consists in thermodynamic modeling of hybrid photovoltaic-thermal (PV/T) solar systems, pursuing a modular strategy approach provided by Simulink/Matlab. PV/T solar systems are a recently emerging solar technology that allows for the simultaneous conversion of solar energy into both electricity and heat. This type of technology present some interesting advantages over the conventional ''side-by-side'' thermal and PV solar systems, such as higher combined electrical/thermal energy outputs per unit area, and a more uniform and aesthetical pleasant roof area. Despite the fact that early research on PV/T systems can be traced back to the seventies, only recently it has gained a renewed impetus. In this work, parametric studies and annual transient simulations of PV/T systems are undertaken in Simulink/Matlab. The obtained results show an average annual solar fraction of 67%, and a global overall efficiency of 24% (i.e. 15% thermal and 9% electrical), for a typical four-person single-family residence in Lisbon, with p-Si cells, and a collector area of 6 m{sup 2}. A sensitivity analysis performed on the PV/T collector suggests that the most important variable that should be addressed to improve thermal performance is the photovoltaic (PV) module emittance. Based on those results, some additional improvements are proposed, such as the use of vacuum, or a noble gas at low-pressure, to allow for the removal of PV cells encapsulation without air oxidation and degradation, and thus reducing the PV module emittance. Preliminary results show that this option allows for an 8% increase on optical thermal efficiency, and a substantial reduction of thermal losses, suggesting the possibility of working at higher fluid temperatures. The higher working temperatures negative effect in electrical efficiency was negligible, due to compensation by improved optical properties. The simulation results are compared with experimental data obtained from other authors and perform reasonably well. The Simulink modeling platform has been mainly used worldwide on simulation of control systems, digital signal processing and electric circuits, but there are very few examples of application to solar energy systems modeling. This work uses the modular environment of Simulink/Matlab to model individual PV/T system components, and to assemble the entire installation layout. The results show that the modular approach strategy provided by Matlab/Simulink environment is applicable to solar systems modeling, providing good code scalability, faster developing time, and simpler integration with external computational tools, when compared with traditional imperative-oriented programming languages. (author)

  8. Thermal Control & System Integration

    Broader source: Energy.gov [DOE]

    The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

  9. DNA Engine Thermal Cycler

    E-Print Network [OSTI]

    Raizada, Manish N.

    ® Peltier Thermal Cycler PTC-0200 DNA Engine Cycler Operations Manual Version 4.0 #12;ii Tech Support: 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .vi The DNA Engine® Peltier Thermal Cycler Introduction

  10. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    and C. Y. Zhao, "A review of solar collectors and thermalenergy storage in solar thermal applications," Appliedon photovoltaic/thermal hybrid solar technology," Applied

  11. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    thermal energy becomes apparent with the development of solarsolar energy systems, aquifer energy storage provides a buffer between time-varying solar energy inputs and thermal

  12. Minnesota Power- Solar-Thermal Water Heating Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Minnesota Power offers a 25% rebate for qualifying solar thermal water heating systems. The maximum award for single-family customers is $2,000 per customer; $4,000 for 2-3 family unit buildings;...

  13. Summary - Building C-400 Thermal Treatment Remedial Design Report...

    Office of Environmental Management (EM)

    Paducah, KY EM Project: Building C400 Thermal Treatment ETR Report Date: August 2007 ETR-8 United States Department of Energy Office of Environmental Management (DOE-EM) External...

  14. Small Units inside Large Units 8.1 Experimental units bigger than observational units

    E-Print Network [OSTI]

    Bailey, R. A.

    Chapter 8 Small Units inside Large Units 8.1 Experimental units bigger than observational units 8, but it is individual people that are measured. In general, suppose that there are m experimental units, each of which consists of k observational units, and that there are t treatments, each of which is applied

  15. ORIGINAL PAPER Tunability of Propane Conversion over Alumina Supported

    E-Print Network [OSTI]

    ORIGINAL PAPER Tunability of Propane Conversion over Alumina Supported Pt and Rh Catalysts William Propane conversion over alumina supported Pt and Rh (1 wt% metals loading) was examined under fuel rich conversion and almost complete propane conversion) so long as the metal particle size was sufficiently low

  16. Evaluation of aftermarket CNG conversion kits in light-duty vehicle applications. Final report

    SciTech Connect (OSTI)

    Blazek, C.F.; Rowley, P.F.; Grimes, J.W.

    1995-07-01

    The Institute of Gas Technology (IGT) was contracted by the National Renewable Energy Laboratory (NREL) to evaluate three compressed natural gas (CNG) conversion systems using a 1993 Chevrolet Lumina baseline vehicle. A fourth conversion system was added to the test matrix through funding support from Brooklyn Union. The objective of this project was to measure the Federal Test Procedure (FTP) emissions and fuel economy of the different conversion systems, and to compare the performance to gasoline-fueled operation and each other. Different natural gas compositions were selected to represent the 10th percentile, mean, and 90th percentile compositions distributed in the Continental United States. Testing with these different compositions demonstrated the systems` ability to accommodate the spectrum of gas found in the United States. Each compressed natural gas conversion system was installed and adjusted according to the manufacturer`s instructions. In addition to the FTP testing, an evaluation of the comparative installation times and derivability tests (based on AGA and CRC guidelines) were conducted on each system.

  17. Strong converse theorems using Rényi entropies

    E-Print Network [OSTI]

    Felix Leditzky; Nilanjana Datta

    2015-06-08

    We use a R\\'enyi entropy approach to prove strong converse theorems for certain information-theoretic tasks which involve local operations and quantum (or classical) communication between two parties. These include state redistribution, coherent state merging, quantum state splitting, randomness extraction against quantum side information, and data compression with quantum side information. The method we employ in proving these results extends ideas developed by Sharma [arXiv:1404.5940] to prove the strong converse theorem for state merging. For state redistribution, we prove the strong converse property for the boundary of the entire achievable rate region in the $(e,q)$-plane, where $e$ and $q$ denote the entanglement cost and quantum communication cost, respectively. This extends a recent strong converse theorem for the quantum communication cost of state redistribution, proved by Berta et al. [arXiv:1409.4338]. For the other tasks as well, we provide new proofs for strong converse theorems which were previously established using smooth entropies.

  18. Dual-fuel engine conversions evaluated by U.S. Navy

    SciTech Connect (OSTI)

    NONE

    1996-10-01

    In seeking ways to reduce emissions from two-stroke locomotive type engines, the Navy has evaluated dual-fuel conversions operating on a compression ignition cycle, using up to 94% natural gas and 6% diesel pilot fuel. The Navy has conducted an evaluation and test program under the direction of Dr. Normnn L. Helgeson, at the Naval Facilities Engineering Service Center in Port Hueneme, California. Of the Navy`s many diesel engines, those installed in its MUSE (mobile utility support equipment) units for temporary electrical power were the first Navy off-road engines to be affected by emissions regulations. Most of the units are powered by the EMD 645 engine, and when burning diesel fuel do not meet the emission requirements in many areas of the country. This paper discusses the changes and results of the conversion and shakedown tests.

  19. In-beam conversion-electron spectroscopy of {sup 180}Hg

    SciTech Connect (OSTI)

    Page, R. D.; Wiseman, D. R.; Butler, P. A.; Herzberg, R.-D.; Jones, G. D.; Joss, D. T.; Keenan, A.; Rainovski, G. I.; Andreyev, A. N.; Grahn, T.; Greenlees, P. T.; Jones, P. M.; Julin, R.; Juutinen, S.; Kankaanpaeae, H.; Kettunen, H.; Kuusiniemi, P.; Leino, M.; Muikku, M.; Nieminen, P.

    2011-09-15

    Excited states in {sup 180}Hg were populated using the {sup 147}Sm({sup 36}Ar,3n){sup 180}Hg reaction and studied by in-beam conversion-electron spectroscopy. Conversion electrons emitted at the target position were measured using the Silicon Array for Conversion Electron Detection (SACRED) spectrometer and tagged through the characteristic {alpha} decays of {sup 180}Hg detected in a position-sensitive silicon strip detector located at the focal plane of the gas-filled recoil separator Recoil Ion Transport Unit (RITU). Electron conversion of transitions previously assigned to {sup 180}Hg through in-beam {gamma}-ray spectroscopy studies was identified up to the 10{sup +}{yields}8{sup +} transition and the intensities of the conversion-electron transitions were found to be consistent with the previous multipolarity assignments. Evidence was also found for two highly converted transitions in {sup 180}Hg: a 167 keV transition is interpreted as the transition from the newly identified 2{sub 2}{sup +} state at 601 keV to the 2{sub 1}{sup +} state at 434 keV, while a 420 keV transition is assigned as the E0 decay from the 0{sup +} bandhead of the prolate-deformed configuration to the weakly deformed ground state.

  20. Integration of Feedstock Assembly System and Cellulosic Ethanol Conversion Models to Analyze Bioenergy System Performance

    SciTech Connect (OSTI)

    Jared M. Abodeely; Douglas S. McCorkle; Kenneth M. Bryden; David J. Muth; Daniel Wendt; Kevin Kenney

    2010-09-01

    Research barriers continue to exist in all phases of the emerging cellulosic ethanol biorefining industry. These barriers include the identification and development of a sustainable and abundant biomass feedstock, the assembly of viable assembly systems formatting the feedstock and moving it from the field (e.g., the forest) to the biorefinery, and improving conversion technologies. Each of these phases of cellulosic ethanol production are fundamentally connected, but computational tools used to support and inform analysis within each phase remain largely disparate. This paper discusses the integration of a feedstock assembly system modeling toolkit and an Aspen Plus® conversion process model. Many important biomass feedstock characteristics, such as composition, moisture, particle size and distribution, ash content, etc. are impacted and most effectively managed within the assembly system, but generally come at an economic cost. This integration of the assembly system and the conversion process modeling tools will facilitate a seamless investigation of the assembly system conversion process interface. Through the integrated framework, the user can design the assembly system for a particular biorefinery by specifying location, feedstock, equipment, and unit operation specifications. The assembly system modeling toolkit then provides economic valuation, and detailed biomass feedstock composition and formatting information. This data is seamlessly and dynamically used to run the Aspen Plus® conversion process model. The model can then be used to investigate the design of systems for cellulosic ethanol production from field to final product.

  1. Estimated United States Transportation Energy Use 2005

    SciTech Connect (OSTI)

    Smith, C A; Simon, A J; Belles, R D

    2011-11-09

    A flow chart depicting energy flow in the transportation sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 31,000 trillion British Thermal Units (trBTUs) of energy were used throughout the United States in transportation activities. Vehicles used in these activities include automobiles, motorcycles, trucks, buses, airplanes, rail, and ships. The transportation sector is powered primarily by petroleum-derived fuels (gasoline, diesel and jet fuel). Biomass-derived fuels, electricity and natural gas-derived fuels are also used. The flow patterns represent a comprehensive systems view of energy used within the transportation sector.

  2. Energy conversion & storage program. 1995 annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1996-06-01

    The 1995 annual report discusses laboratory activities in the Energy Conversion and Storage (EC&S) Program. The report is divided into three categories: electrochemistry, chemical applications, and material applications. Research performed in each category during 1995 is described. Specific research topics relate to the development of high-performance rechargeable batteries and fuel cells, the development of high-efficiency thermochemical processes for energy conversion, the characterization of new chemical processes and complex chemical species, and the study and application of novel materials related to energy conversion and transmission. Research projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials and deposition technologies, and advanced methods of analysis.

  3. A Personalized System for Conversational Recommendations

    E-Print Network [OSTI]

    Goker, M H; Thompson, C A; 10.1613/jair.1318

    2011-01-01

    Searching for and making decisions about information is becoming increasingly difficult as the amount of information and number of choices increases. Recommendation systems help users find items of interest of a particular type, such as movies or restaurants, but are still somewhat awkward to use. Our solution is to take advantage of the complementary strengths of personalized recommendation systems and dialogue systems, creating personalized aides. We present a system -- the Adaptive Place Advisor -- that treats item selection as an interactive, conversational process, with the program inquiring about item attributes and the user responding. Individual, long-term user preferences are unobtrusively obtained in the course of normal recommendation dialogues and used to direct future conversations with the same user. We present a novel user model that influences both item search and the questions asked during a conversation. We demonstrate the effectiveness of our system in significantly reducing the time and nu...

  4. Unit Commitment 1.0 Introduction

    E-Print Network [OSTI]

    McCalley, James D.

    , since high wind penetration increases demand forecast uncertainty (the demand that the thermal units of the solution method, however, the solutions may not save much money if the forecast of the demand that needs to be met contains significant error. Having a "perfect" solution for a particular demand forecast

  5. ORIGINAL PAPER Modeling of Thermal-Assisted Dislocation Friction

    E-Print Network [OSTI]

    Marks, Laurence D.

    ORIGINAL PAPER Modeling of Thermal-Assisted Dislocation Friction Y. Liao · L. D. Marks Received: 25 decades of research has shown that for bulk crys- talline materials the fundamental unit of plasticity of misfit dislocations to include the effect of thermally activated transitions across barriers. We obtain

  6. Thermal initiation caused by fragment impact on cased explosives

    SciTech Connect (OSTI)

    Schnurr, N.M. )

    1989-01-01

    Numerical calculations have been used to predict the velocity threshold for thermal initiation of a cased explosive caused by fragment impact. A structural analysis code was used to determine temperature profiles and a thermal analysis code was used to calculate reaction rates. Results generated for the United States Air Force MK 82 bomb indicate that the velocity threshold for thermal initiation is slightly higher than that for the shock-to-detonation process. 8 refs., 5 figs., 2 tabs.

  7. Thermal Regimes of Northeast Streams

    E-Print Network [OSTI]

    Thermal Loading (USGS) Stormwater and Streams ­ Optimizing Stormwater Management to Protect the Thermal

  8. 2009 Biochemical Conversion Platform Review Report

    SciTech Connect (OSTI)

    Ferrell, John

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program’s Biochemical Conversion platform review meeting, held on April 14-16, 2009, at the Sheraton Denver Downtown, Denver, Colorado.

  9. Polarization conversion loss in birefringent crystalline resonators

    E-Print Network [OSTI]

    Polarization conversion loss in birefringent crystalline resonators Ivan S. Grudinin,* Guoping Lin gallery modes in birefringent crystalline resonators are investigated. We experimentally investigate://dx.doi.org/10.1364/OL.38.002410 Crystalline whispering gallery mode (WGM) resonators are known for compact size

  10. Power Conversion APEX Interim Report November, 1999

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Efficiency for different steam cycles. 17.2 Close cycle gas turbine: The closed cycle gas turbine has. POWER CONVERSION 17.1 Steam Cycle Different steam cycles have been well developed. A study by EPRI summarized the various advanced steam cycles which maybe available for an advanced coal power plant

  11. ENERGY SERIES "Emerging High Power Conversion Technologies"

    E-Print Network [OSTI]

    Bergman, Keren

    SEMINAR: ENERGY SERIES "Emerging High Power Conversion Technologies" Dujic Drazen Professor, Power of embedded renewable energy sources. Whatever the renewable source of the prime energy is (wind, solar, hydro, storage or use. This is where power electronics come into a play, as key enabling technology for flexible

  12. Conversational Programming in Action Alexander Repenning

    E-Print Network [OSTI]

    Repenning, Alexander

    Conversational Programming in Action Alexander Repenning AgentSheets Inc. Boulder 80301, Colorado.0 culture, end-user programming, which is programming by end users with limited, if any, formal programming programming languages such as Logo have made programming substantially more accessible to end users. More

  13. Making Programming more Conversational Alexander Repenning

    E-Print Network [OSTI]

    Repenning, Alexander

    Making Programming more Conversational Alexander Repenning AgentSheets Inc. Boulder 80301, Colorado.0 culture, end-user programming--programming by end users with limited or even no formal programming programming languages such as Logo have made programming substantially more accessible to end-users. More

  14. Resonant conversion of massless neutrinos in supernovae

    E-Print Network [OSTI]

    Nunokawa, H; Rossi, A; Valle, José W F

    1996-01-01

    It has been noted for a long time that, in some circumstances, {\\sl massless} neutrinos may be {\\sl mixed} in the leptonic charged current. Conventional neutrino oscillation searches in vacuum are insensitive to this mixing. We discuss the effects of resonant massless-neutrino conversions in the dense medium of a supernova. In particular, we show how the detected \\bar\

  15. Soft materials for linear electromechanical energy conversion

    E-Print Network [OSTI]

    Antal Jakli; Nandor Eber

    2014-07-29

    We briefly review the literature of linear electromechanical effects of soft materials, especially in synthetic and biological polymers and liquid crystals (LCs). First we describe results on direct and converse piezoelectricity, and then we discuss a linear coupling between bending and electric polarization, which maybe called bending piezoelectricity, or flexoelectricity.

  16. Steam Plant Conversion Eliminating Campus Coal Use

    E-Print Network [OSTI]

    Dai, Pengcheng

    Steam Plant Conversion Eliminating Campus Coal Use at the Steam Plant #12;· Flagship campus region produce 14% of US coal (TN only 0.2%) Knoxville and the TN Valley #12;· UT is one of about 70 U.S. colleges and universities w/ steam plant that burns coal · Constructed in 1964, provides steam for

  17. 2009 Thermochemical Conversion Platform Review Report

    SciTech Connect (OSTI)

    Ferrell, John

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program’s Thermochemical Conversion platform review meeting, held on April 14-16, 2009, at the Sheraton Denver Downtown, Denver, Colorado.

  18. United Nations Programme on

    E-Print Network [OSTI]

    Schrijver, Karel

    United Nations Programme on Space Applications UNITED NATIONS UNITED NATIONS OFFICE FOR OUTER SPACE, Sputnik 1. Soon after that event, the Member States of the United Nations declared that space should and natural resources management. At the first United Nations Conference on the Exploration and Peaceful Uses

  19. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Water Heating in U.S. Homes, by OwnerRenter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With"...

  20. United States Department of

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Service Pacific Southwest Forest and Range symposium dealing with this subject in the western United States, the papers presented address current ........................................................................................................................................ 1 Annosus Root Disease in Europe and the Southeastern United States: Occurrence, Research

  1. United States Department of

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Service Northeastern Forest Experiment Station research unit in New Hampshirein 1957, where he studied problemsof regenerationandthinning research unit at Warren, Pennsylvania, where he headed a program of research on problems related

  2. Unit 35 - Raster Storage

    E-Print Network [OSTI]

    Unit 35, CC in GIS; Peuquet, Donna

    1990-01-01

    in GIS - 1990 Page 8 Unit 35 - Raster Storage GIS to whichNCGIA Core Curriculum in GIS - 1990 Page 9 Unit 35 - RasterStorage UNIT 35 IMAGES NCGIA Core Curriculum in GIS - 1990

  3. Thermal energy storage apparatus

    SciTech Connect (OSTI)

    Thoma, P.E.

    1980-04-22

    A thermal energy storage apparatus and method employs a container formed of soda lime glass and having a smooth, defectfree inner wall. The container is filled substantially with a material that can be supercooled to a temperature greater than 5* F., such as ethylene carbonate, benzophenone, phenyl sulfoxide, di-2-pyridyl ketone, phenyl ether, diphenylmethane, ethylene trithiocarbonate, diphenyl carbonate, diphenylamine, 2benzoylpyridine, 3-benzoylpyridine, 4-benzoylpyridine, 4methylbenzophenone, 4-bromobenzophenone, phenyl salicylate, diphenylcyclopropenone, benzyl sulfoxide, 4-methoxy-4prmethylbenzophenone, n-benzoylpiperidine, 3,3pr,4,4pr,5 pentamethoxybenzophenone, 4,4'-bis-(Dimethylamino)-benzophenone, diphenylboron bromide, benzalphthalide, benzophenone oxime, azobenzene. A nucleating means such as a seed crystal, a cold finger or pointed member is movable into the supercoolable material. A heating element heats the supercoolable material above the melting temperature to store heat. The material is then allowed to cool to a supercooled temperature below the melting temperature, but above the natural, spontaneous nucleating temperature. The liquid in each container is selectively initiated into nucleation to release the heat of fusion. The heat may be transferred directly or through a heat exchange unit within the material.

  4. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    2012-01-01

    HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  5. Preconceptual design studies and cost data of depleted uranium hexafluoride conversion plants

    SciTech Connect (OSTI)

    Jones, E

    1999-07-26

    One of the more important legacies left with the Department of Energy (DOE) after the privatization of the United States Enrichment Corporation is the large inventory of depleted uranium hexafluoride (DUF6). The DOE Office of Nuclear Energy, Science and Technology (NE) is responsible for the long-term management of some 700,000 metric tons of DUF6 stored at the sites of the two gaseous diffusion plants located at Paducah, Kentucky and Portsmouth, Ohio, and at the East Tennessee Technology Park in Oak Ridge, Tennessee. The DUF6 management program resides in NE's Office of Depleted Uranium Hexafluoride Management. The current DUF6 program has largely focused on the ongoing maintenance of the cylinders containing DUF6. However, the long-term management and eventual disposition of DUF6 is the subject of a Programmatic Environmental Impact Statement (PEIS) and Public Law 105-204. The first step for future use or disposition is to convert the material, which requires construction and long-term operation of one or more conversion plants. To help inform the DUF6 program's planning activities, it was necessary to perform design and cost studies of likely DUF6 conversion plants at the preconceptual level, beyond the PEIS considerations but not as detailed as required for conceptual designs of actual plants. This report contains the final results from such a preconceptual design study project. In this fast track, three month effort, Lawrence Livermore National Laboratory and Bechtel National Incorporated developed and evaluated seven different preconceptual design cases for a single plant. The preconceptual design, schedules, costs, and issues associated with specific DUF6 conversion approaches, operating periods, and ownership options were evaluated based on criteria established by DOE. The single-plant conversion options studied were similar to the dry-conversion process alternatives from the PEIS. For each of the seven cases considered, this report contains information on the conversion process, preconceptual plant description, rough capital and operating costs, and preliminary project schedule.

  6. United States Department of

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Service Pacific Southwest Research Station General assigned to the Station's research unit studying the regeneration of California forests

  7. United States Department of

    E-Print Network [OSTI]

    United States Department of Agriculture MIX: A Computer Program to Evaluate Forest Service, a research entomologist, is in charge of the unit developing improved technology for integrated management

  8. United States Department of

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Service Pacific Southwest Research Station General Programs: A Review of Cognitive and Behavioral Studies Introduction Recent wildfires in the Western United

  9. United States Department of

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Service Pacific Southwest Forest and Range to the Chaparral Prescribed Fire Research Unit, headquartered at Riverside, California. Publisher: Pacific

  10. United States Department of

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Service Pacific Southwest Research Station General is a Research Ecologist at the Station's Timber Management/Wildlife Habitat Interactions Unit, Redwood Sciences

  11. United States of Agriculture

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Service Pacific Southwest Research Station General scientist with the Station's Wildland Recreation and Urban Cultures Research Unit, 4955 Canyon Crest Drive

  12. United States Department of

    E-Print Network [OSTI]

    Kurapov, Alexander

    A United States Department of Agriculture Forest Service Pacific Northwest Research Station General, land management, carbon sequestration, carbon markets, United States. #12;ii Executive Summary

  13. United States Department of

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Service Intermountain Research Station General acrossthe United States provide estimates of the amount of erosion reductionon forest roadsfrom

  14. United States Department of

    E-Print Network [OSTI]

    94701 United States Department of Agriculture Forest Service Pacific Southwest Forest and Range of California, Berkeley, and a cooperator with the Research Unit. #12;Acknowledgments We especially acknowledge

  15. United States Department of

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Service Pacific Southwest Forest and Range to the Station's chaparral and related ecosystems research unit, with headquarters at Riverside, California. He

  16. United States Department of

    E-Print Network [OSTI]

    United States Department of California Oaks: A Bibliography Agriculture Forest Service Pacific forester in the Station's Forest Regeneration Research Unit, at Redding, California. He holds bachelor

  17. United States Department of

    E-Print Network [OSTI]

    Wang, Changlu

    United States Department of Agriculture Rural Business- Cooperative Service Research Report 157, concentration, globalization, agency theory Cooperatives in a Changing Global Food System United States

  18. United States Department of

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Service Pacific Southwest Research Station General is a supervisory research entomologist in the Station's Regeneration Insect Research Unit in Berkeley. W. WAYNE

  19. Low-temperature conversion of high-moisture biomass: Topical report, January 1984--January 1988

    SciTech Connect (OSTI)

    Sealock, L.J. Jr.; Elliott, D.C.; Butner, R.S.; Neuenschwander, G.G.

    1988-10-01

    Pacific Northwest Laboratory (PNL) is developing a low-temperature, catalytic process that converts high-moisture biomass feedstocks and other wet organic substances to useful gaseous and liquid fuels. The advantage of this process is that it works without the need for drying or dewatering the feedstock. Conventional thermal gasification processes, which require temperatures above 750/degree/C and air or oxygen for combustion to supply reaction heat, generally cannot utilize feedstocks with moisture contents above 50 wt %, as the conversion efficiency is greatly reduced as a result of the drying step. For this reason, anaerobic digestion or other bioconversion processes traditionally have been used for gasification of high-moisture feedstocks. However, these processes suffer from slow reaction rates and incomplete carbon conversion. 50 refs., 21 figs., 22 tabs.

  20. POWER MANAGEMENT IN A HYDRO-THERMAL SYSTEM UNDER UNCERTAINTY BY LAGRANGIAN

    E-Print Network [OSTI]

    Römisch, Werner

    POWER MANAGEMENT IN A HYDRO-THERMAL SYSTEM UNDER UNCERTAINTY BY LAGRANGIAN RELAXATION NICOLE GR power in a hydro-thermal system under uncertainty in load, inflow to reservoirs and prices for fuel to successive decom- position into single thermal and hydro unit subproblems that are solved by dynamic