Powered by Deep Web Technologies
Note: This page contains sample records for the topic "thermal treatment unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EA-0821: Operation of the Glass Melter Thermal Treatment Unit...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Operation of the Glass Melter Thermal Treatment Unit at the U.S. Department of Energy's Mound Plant, Miamisburg, Ohio EA-0821: Operation of the Glass Melter Thermal Treatment...

2

EA-0821: Operation of the Glass Melter Thermal Treatment Unit at the U.S.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Operation of the Glass Melter Thermal Treatment Unit at 1: Operation of the Glass Melter Thermal Treatment Unit at the U.S. Department of Energy's Mound Plant, Miamisburg, Ohio EA-0821: Operation of the Glass Melter Thermal Treatment Unit at the U.S. Department of Energy's Mound Plant, Miamisburg, Ohio SUMMARY This EA evaluates the environmental impacts of a proposal to use an existing glass melter thermal treatment unit (also known as a Penberthy Pyro-Converter joule-heated glass furnace) for the treatment of hazardous and mixed wastes (waste containing both hazardous and radioactive material at the U.S. Department of Energy's Mound Plant in Miamisburg, Ohio. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 26, 1995 EA-0821: Finding of No Significant Impact Operation of the Glass Melter Thermal Treatment Unit at the U.S. Department

3

Thermal insulated glazing unit  

SciTech Connect

An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas.

Selkowitz, Stephen E. (Piedmont, CA); Arasteh, Dariush K. (Oakland, CA); Hartmann, John L. (Seattle, WA)

1991-01-01T23:59:59.000Z

4

Thermal insulated glazing unit  

DOE Patents (OSTI)

An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas. 2 figs.

Selkowitz, S.E.; Arasteh, D.K.; Hartmann, J.L.

1988-04-05T23:59:59.000Z

5

Thermal treatment wall  

DOE Patents (OSTI)

A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.

Aines, Roger D. (Livermore, CA); Newmark, Robin L. (Livermore, CA); Knauss, Kevin G. (Livermore, CA)

2000-01-01T23:59:59.000Z

6

Onsite Wastewater Treatment Systems: Aerobic Treatment Unit  

E-Print Network (OSTI)

Aerobic units treat wastewater using the same process, only scaled down, as municipal wastewater treatment systems. This publication explains how aerobic units work, what their design requirements are, and how to maintain them.

Lesikar, Bruce J.

2008-10-31T23:59:59.000Z

7

Definition: British thermal unit | Open Energy Information  

Open Energy Info (EERE)

thermal unit thermal unit Jump to: navigation, search Dictionary.png British thermal unit The amount of heat required to raise the temperature of one pound of water one degree Fahrenheit; often used as a unit of measure for the energy content of fuels.[1][2] View on Wikipedia Wikipedia Definition The British thermal unit (BTU or Btu) is a traditional unit of energy equal to about 1055 joules. It is the amount of energy needed to cool or heat one pound of water by one degree Fahrenheit. In scientific contexts the BTU has largely been replaced by the SI unit of energy, the joule. The unit is most often used as a measure of power (as BTU/h) in the power, steam generation, heating, and air conditioning industries, and also as a measure of agricultural energy production (BTU/kg). It is still used

8

Underground Coal Thermal Treatment  

Science Conference Proceedings (OSTI)

The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: ? Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). ? Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). ? Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). ? Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

2011-10-30T23:59:59.000Z

9

INEL Operable Unit 7-13 Retrieval/Ex Situ Thermal Treatment configuration options: INEL Buried Waste Integrated Demonstration Systems Analysis project  

SciTech Connect

The mission of the Buried Waste Integrated Demonstration (BWID) Systems Analysis project is to identify and evaluate cradle-to-grave systems for the remediation of Transuranic (TRU)Contaminated Waste Pits and Trenches within the Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). The BWID program will use the results of the BWID Systems Analysis in conjunction with identified Department of Energy (DOE) Complex buried waste needs to develop a long-term strategy for improving buried waste remediation capabilities throughout the DOE system. This report presents Buried Waste Retrieval/Ex Situ Thermal Treatment configuration option concepts in the form of block diagrams. These configuration options are: Retrieval/Melter Treatment; Retrieval/Metal Sort/Thermal Treatment; Retrieval/No Sort/Incineration/Melter Treatment; Retrieval/Interim Storage/Melter Treatment; Retrieval/Interim Storage/Metal Sort/Thermal Treatment; and Retrieval/Interim Storage/No Sort/Incineration/Melter Treatment. Each option is presented as a complete end-to-end system.

Richardson, J.G.; Rudin, M.J.; O' Brien, M.C.; Morrison, J.L.; Raivo, B.

1992-07-01T23:59:59.000Z

10

Summary - Building C-400 Thermal Treatment Remedial Design Report...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Paducah, KY EM Project: Building C400 Thermal Treatment ETR Report Date: August 2007 ETR-8 United States Department of Energy Office of Environmental Management (DOE-EM) External...

11

Thermal desorption treatability test conducted with VAC*TRAX Unit  

SciTech Connect

In 1992, Congress passed the Federal Facilities Compliance Act, requiring the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with Resource Conservation and Recovery Act (RCRA) treatment standards. In response to the need for mixed-waste treatment capacity, where off-site commercial treatment facilities do not exist or cannot be used, the DOE Albuquerque Operations Office (DOE-AL) organized a Treatment Selection Team to match mixed waste with treatment options and develop a strategy for treatment of mixed waste. DOE-AL manages nine sites with mixed-waste inventories. The Treatment Selection Team determined a need to develop mobile treatment units (MTUs) to treat waste at the sites where the wastes are generated. Treatment processes used for mixed wastes must remove the hazardous component (i.e., meet RCRA treatment standards) and contain the radioactive component in a form that will protect the worker, public, and environment. On the basis of the recommendations of the Treatment Selection Team, DOE-AL assigned projects to the sites to bring mixed-waste treatment capacity on-line. The three technologies assigned to the DOE Grand Junction Projects Office (DOE-GJPO) include thermal desorption (TD), evaporative oxidation, and waste water evaporation.

1996-01-01T23:59:59.000Z

12

Overview of Integrated Waste Treatment Unit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Waste Treatment Unit Overview Integrated Waste Treatment Unit Overview Overview for the DOE High Level Waste Corporate Board March 5, 2009 safety  performance  cleanup  closure M E Environmental Management Environmental Management 2 2 Integrated Waste Treatment Unit Mission * Mission - Project mission is to provide treatment of approximately 900,000 gallons of tank farm waste - referred to as sodium bearing waste (SBW) - stored at the Idaho Tank Farm Facility to a stable waste form suitable for disposition at the Waste Isolation Pilot Plant (WIPP). - Per the Idaho Cleanup Project contract, the resident Integrated Waste Treatment Unit (IWTU) facility, shall have the capability for future packaging and shipping of the existing high level waste (HLW) calcine to the geologic

13

Materials Week '97: United Thermal Spray Conference - TMS  

Science Conference Proceedings (OSTI)

TMS Logo. Materials Week '97: United Thermal Spray Conference. September 14 -18, 1997 MATERIALS WEEK '97 Indianapolis, Indiana. MW97 Logo...

14

Economical operation of thermal generating units integrated with smart houses  

Science Conference Proceedings (OSTI)

This paper presents an economic optimal operation strategy for thermal power generation units integrated with smart houses. With the increased competition in retail and power sector reasoned by the deregulation and liberalization of power market make ... Keywords: particle swarm optimization, renewable energy sources, smart grid, smart house, thermal unit commitment

Shantanu Chakraborty; Takayuki Ito; Tomonobu Senjyu

2012-09-01T23:59:59.000Z

15

Environmental Assessment for the Operation of the Glass Melter Thermal Treatment Unit at the US Department of Energy`s Mound Plant, Miamisburg, Ohio  

SciTech Connect

The glass melter would thermally treat mixed waste (hazardous waste contaminated with radioactive constituents largely tritium, Pu-238, and/or Th-230) that was generated at the Mound Plant and is now in storage, by stabilizing the waste in glass blocks. Depending on the radiation level of the waste, the glass melter may operate for 1 to 6 years. Two onsite alternatives and seven offsite alternatives were considered. This environmental assessment indicates that the proposed action does not constitute a major Federal action significantly affecting the human environment according to NEPA, and therefore the finding of no significant impact is made, obviating the need for an environmental impact statement.

NONE

1995-06-01T23:59:59.000Z

16

Thermal Unit Commitment Including Optimal AC Power Flow Constraints  

E-Print Network (OSTI)

Thermal Unit Commitment Including Optimal AC Power Flow Constraints Carlos Murillo{Sanchez Robert J algorithm for unit commitment that employs a Lagrange relaxation technique with a new augmentation. This framework allows the possibility of committing units that are required for the VArs that they can produce

17

Integrated thermal treatment system sudy: Phase 2, Results  

Science Conference Proceedings (OSTI)

This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study, the results of which have been published as an interim report, examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 2 systems. The assumptions and methods were the same as for the Phase 1 study. The quantities, and physical and chemical compositions, of the input waste used in he Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr).

Feizollahi, F.; Quapp, W.J.

1995-08-01T23:59:59.000Z

18

The behavior of a thermal unit  

Science Conference Proceedings (OSTI)

We examine in this work, the behavior of an isolated area with a group of thermal generation and a load. Here we consider the simplified model of the steam turbine, the system of elementary excitation and the current model of the alternator load and ... Keywords: thermal parameters, wear of transformer

Marius-Constantin O. S. Popescu; Nikos E. Mastorakis

2009-12-01T23:59:59.000Z

19

Integrated thermal treatment system study -- Phase 2 results. Revision 1  

SciTech Connect

This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 1 systems. The alternatives evaluated were: rotary kiln, slagging kiln, plasma furnace, plasma gasification, molten salt oxidation, molten metal waste destruction, steam gasification, Joule-heated vitrification, thermal desorption and mediated electrochemical oxidation, and thermal desorption and supercritical water oxidation. The quantities, and physical and chemical compositions, of the input waste used in the Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr). 28 refs., 88 figs., 41 tabs.

Feizollahi, F.; Quapp, W.J.

1996-02-01T23:59:59.000Z

20

Building C-400 Thermal Treatment 90% Remedial Design Report and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building C-400 Thermal Treatment 90% Remedial Design Report and Site Investigation Building C-400 Thermal Treatment 90% Remedial Design Report and Site Investigation Full Document...

Note: This page contains sample records for the topic "thermal treatment unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Unvented thermal process for treatment of hazardous and mixed wastes  

Science Conference Proceedings (OSTI)

An Unvented Thermal Process is being developed that does not release gases during the thermal treatment operation. The main unit in the process is a fluidized-bed processor containing a bed of calcined limestone (CaO), which reacts with gases given off during oxidation of organic materials. Gases that will react with CaO include CO{sub 2}, SO{sub 2}, HCI, HBr, and other acid gases. Water vapor formed during the oxidation process is carried off with the fluidizing gas and is removed in a condenser. Oxygen is added to the remaining gas (mainly nitrogen), which is recirculated to the oxidizer. The most flexible arrangement of equipment involves separating the processor into two units: An oxidizer, which may be any of a variety of types including standard incinerators, and a carbon dioxide sorber.

Nelson, P.A.; Swift, W.M.

1993-09-01T23:59:59.000Z

22

Thermal Spraying Coatings Assisted by Laser Treatment  

Science Conference Proceedings (OSTI)

Coatings produced by air plasma spraying (APS) are widely used to protect components against abrasive wear and corrosion. However, APS coatings contain porosities and the properties of these coatings may thereby be reduced. To improve these properties, various methods could be proposed, including post-laser irradiation [1-4]. Firstly, PROTAL process (thermal spraying assisted by laser) has been developed as a palliative technique to degreasing and grit-blasting prior to thermal spraying. Secondly, thermal spray coatings are densified and remelted using Laser treatment. In this study, a review of microstructure coatings prepared by laser-assisted air plasma spraying will be presented. Mechanical and magnetic properties will be evaluated in relation to changes in the coating microstructure and the properties of such coatings will be compared with those of as-sprayed APS coatings.

Fenineche, N. E.; Cherigui, M. [LERMPS-UTBM (Site de Sevenans), 90010 Belfort Cedex (France)

2008-09-23T23:59:59.000Z

23

Summary of comparative results integrated nonthermal treatment and integrated thermal treatment systems studies  

SciTech Connect

In July 1994, the Idaho National Engineering Laboratory (INEL), under a contract from U.S. Department of Energy`s (DOE) Environment Management Office of Science and Technology (OST, EM-50) published a report entitled {open_quotes}Integrated Thermal Treatment System Study - Phase 1 Results{close_quotes} (EGG-MS-11211). This report was the culmination of over a year of analysis involving scientists and engineers within the DOE complex and from private industry. The purpose of that study was {open_quotes}to conduct a systematic engineering evaluation of a variety of mixed low level waste (MLLW) treatment system alternatives.{close_quotes} The study also {open_quotes}identified the research and development, demonstrations, and testing and evaluation needed to assure unit operability in the most promising alternative system.{close_quotes} This study evaluated ten primary thermal treatment technologies, organized into complete {open_quotes}cradle-to-grave{close_quotes} systems (including complete engineering flow sheets), to treat DOE MLLW and calculated mass balances and 20-year total life cycle costs (TLCC) for all systems. The waste input used was a representative heterogenous mixture of typical DOE MLLW. An additional study was conducted, and then, based on response to these studies, additional work was started to investigate and evaluate non-thermal treatment options on a footing comparable to the effort devoted to thermal options. This report attempts to present a summary overview of the thermal and non-thermal treatment technologies which were examined in detail in the process of the above mentioned reviews.

1996-12-01T23:59:59.000Z

24

Effect of heat treatment temperature on binder thermal conductivities  

SciTech Connect

The effect of heat treatment on the thermal conductivities of a pitch and a polyfurfuryl alcohol binder residue was investigated. Graphites specially prepared with these two binders were used for the experiments. Measured thermal conductivities were treated in terms of a two-component system, and the binder thermal conductivities were calculated. Both binder residues showed increased thermal conductivity with increased heat treatment temperature. (auth)

Wagner, P.

1975-12-01T23:59:59.000Z

25

Building C-400 Thermal Treatment 90% Remedial Design Report and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management Paducah Gaseous Diffusion Plant (PGDP) Review Report: Building C-400 Thermal Treatment 90% Remedial Design Report and Site Investigation, PGDP, Paducah Kentucky...

26

The Effect of Graphitization Heat Treatment Temperature on Thermal ...  

Science Conference Proceedings (OSTI)

Presentation Title, The Effect of Graphitization Heat Treatment Temperature on Thermal Properties of PAN-Based Carbon Fiber Carbon-Carbon Composites in...

27

Interim Status Closure Plan Open Burning Treatment Unit Technical Area 16-399 Burn Tray  

SciTech Connect

This closure plan describes the activities necessary to close one of the interim status hazardous waste open burning treatment units at Technical Area (TA) 16 at the Los Alamos National Laboratory (LANL or the Facility), hereinafter referred to as the 'TA-16-399 Burn Tray' or 'the unit'. The information provided in this closure plan addresses the closure requirements specified in the Code of Federal Regulations (CFR), Title 40, Part 265, Subparts G and P for the thermal treatment units operated at the Facility under the Resource Conservation and Recovery Act (RCRA) and the New Mexico Hazardous Waste Act. Closure of the open burning treatment unit will be completed in accordance with Section 4.1 of this closure plan.

Vigil-Holterman, Luciana R. [Los Alamos National Laboratory

2012-05-07T23:59:59.000Z

28

Method for determining thermal conductivity and thermal capacity per unit volume of earth in situ  

DOE Patents (OSTI)

A method for determining the thermal conductivity of the earth in situ is based upon a cylindrical probe (10) having a thermopile (16) for measuring the temperature gradient between sets of thermocouple junctions (18 and 20) of the probe after it has been positioned in a borehole and has reached thermal equilibrium with its surroundings, and having means (14) for heating one set of thermocouple junctions (20) of the probe at a constant rate while the temperature gradient of the probe is recorded as a rise in temperature over several hours (more than about 3 hours). A fluid annulus thermally couples the probe to the surrounding earth. The recorded temperature curves are related to the earth's thermal conductivity, k.sub..infin., and to the thermal capacity per unit volume, (.gamma.c.sub.p).sub..infin., by comparison with calculated curves using estimates of k.sub..infin. and (.gamma.c.sub.p).sub..infin. in an equation which relates these parameters to a rise in the earth's temperature for a known and constant heating rate.

Poppendiek, Heinz F. (LaJolla, CA)

1982-01-01T23:59:59.000Z

29

Potential for supplying solar thermal energy to industrial unit operations  

DOE Green Energy (OSTI)

Previous studies have identified major industries deemed most appropriate for the near-term adoption of solar thermal technology to provide process heat; these studies have been based on surveys that followed standard industrial classifications. This paper presents an alternate, perhaps simpler analysis of this potential, considered in terms of the end-use of energy delivered to industrial unit operations. For example, materials, such as animal feed, can be air dried at much lower temperatures than are currently used. This situation is likely to continue while economic supplies of natural gas are readily available. However, restriction of these supplies could lead to the use of low-temperature processes, which are more easily integrated with solar thermal technology. The adoption of solar technology is also favored by other changes, such as the relative rates of increase of the costs of electricity and natural gas, and by energy conservation measures. Thus, the use of low-pressure steam to provide process heat could be replaced economically with high-temperature hot water systems, which are more compatible with solar technology. On the other hand, for certain operations such as high-temperature catalytic and distillation processes employed in petroleum refining, there is no ready alternative to presently employed fluid fuels.

May, E.K.

1980-04-01T23:59:59.000Z

30

Retrieval/ex situ thermal treatment scoring interaction report  

SciTech Connect

A retrieval/ex situ thermal treatment technology process for the Idaho National Engineering Laboratory transuranic waste pits and trenches is present. A system performance score is calculated, and assumptions, requirements, and reference baseline technologies for all subelements are included.

Raivo, B.D.; Richardson, J.G.

1993-11-01T23:59:59.000Z

31

Thermal performance of concrete masonry unit wall systems  

Science Conference Proceedings (OSTI)

New materials, modern building wall technologies now available in the building marketplace, and unique, more accurate, methods of thermal analysis of wall systems create an opportunity to design and erect buildings where thermal envelopes that use masonry wall systems can be more efficient. Thermal performance of the six masonry wall systems is analyzed. Most existing masonry systems are modifications of technologies presented in this paper. Finite difference two-dimensional and three-dimensional computer modeling and unique methods of the clear wall and overall thermal analysis were used. In the design of thermally efficient masonry wall systems is t to know how effectively the insulation material is used and how the insulation shape and its location affect the wall thermal performance. Due to the incorrect shape of the insulation or structural components, hidden thermal shorts cause additional heat losses. In this study, the thermal analysis of the clear wall was enriched with the examination of the thermal properties of the wall details and the study of a quantity defined herein the Thermal Efficiency of the insulation material.

Kosny, J.

1995-12-31T23:59:59.000Z

32

Drilling Waste Management Fact Sheet: Thermal Treatment  

NLE Websites -- All DOE Office Websites (Extended Search)

range from 75 to 150ton (Bansal and Sugiarto 1999). Many factors can impact treatment costs, including oil and moisture content of the waste, particle size distribution of the...

33

Integrated thermal treatment systems study. Internal review panel report  

SciTech Connect

The U.S. Department of Energy (DOE) Office of Technology Development (OTD) commissioned two studies to evaluate nineteen thermal treatment technologies for treatment of DOE mixed low-level waste. These studies were called the Integrated Thermal Treatment System (ITTS) Phase I and Phase II. With the help of the DOE Office of Environmental Management (EM) Mixed Waste Focus Group, OTD formed an ITTS Internal Review Panel to review and comment on the ITTS studies. This Panel was composed of scientists and engineers from throughout the DOE complex, the U.S. Environmental Protection Agency, the California EPA, and private experts. The Panel met from November 15-18, 1994 to review the ITTS studies and to make recommendations on the most promising thermal treatment systems for DOE mixed low-level wastes and on research and development necessary to prove the performance of the technologies. This report describes the findings and presents the recommendations of the Panel.

Cudahy, J.; Escarda, T.; Gimpel, R. [and others

1995-04-01T23:59:59.000Z

34

B Plant treatment, storage, and disposal (TSD) units inspection plan  

Science Conference Proceedings (OSTI)

This inspection plan is written to meet the requirements of WAC 173-303 for operations of a TSD facility. Owners/operators of TSD facilities are required to inspection their facility and active waste management units to prevent and/or detect malfunctions, discharges and other conditions potentially hazardous to human health and the environment. A written plan detailing these inspection efforts must be maintained at the facility in accordance with Washington Administrative Code (WAC), Chapter 173-303, ``Dangerous Waste Regulations`` (WAC 173-303), a written inspection plan is required for the operation of a treatment, storage and disposal (TSD) facility and individual TSD units. B Plant is a permitted TSD facility currently operating under interim status with an approved Part A Permit. Various operational systems and locations within or under the control of B Plant have been permitted for waste management activities. Included are the following TSD units: Cell 4 Container Storage Area; B Plant Containment Building; Low Level Waste Tank System; Organic Waste Tank System; Neutralized Current Acid Waste (NCAW) Tank System; Low Level Waste Concentrator Tank System. This inspection plan complies with the requirements of WAC 173-303. It addresses both general TSD facility and TSD unit-specific inspection requirements. Sections on each of the TSD units provide a brief description of the system configuration and the permitted waste management activity, a summary of the inspection requirements, and details on the activities B Plant uses to maintain compliance with those requirements.

Beam, T.G.

1996-04-26T23:59:59.000Z

35

PMB-Waste: An analysis of fluidized bed thermal treatment  

SciTech Connect

A fluidized bed treatment process was evaluated for solid waste from plastic media blasting of aircraft protective coating. The treatment objective is to decompose and oxidize all organic components, and concentrate all the hazardous metals in the ash. The reduced volume and mass are expected to reduce disposal cost. A pilot test treatment was done in an existing fluidized bed equipped with emissions monitors, and emissions within regulatory requirements were demonstrated. A economic analysis of the process is inconclusive due to lack of reliable cost data of disposal without thermal treatment.

Gat, U.; Kass, M.D.; Lloyd, D.B.

1995-07-01T23:59:59.000Z

36

Thermal Use of Biomass in The United States | Open Energy Information  

Open Energy Info (EERE)

of Biomass in The United States of Biomass in The United States Jump to: navigation, search The biomass heat exchanger furnace can burn husklage, wood residue, or other biomass fuels to produce warm air for space heating or for process use such as grain drying. Courtesy of DOE/NREL. Credit - Energetics The United States much less biomass to produce thermal energy even when compared with developed countries. In 2003, the United States only consumed 727 kilotons of oil equivalent (ktoe) of biomass to produce thermal energy while consuming 6,078 ktoe of biomass to produce electricity. On the other hand, Europe consumed 6,978 ktoe of biomass to produce useful thermal energy while consuming 5,663 ktoe of biomass as electricity. In Europe (especially Sweden and other Nordic Countries) the use of biomass for heat

37

Development of a simplified thermal analysis procedure for insulating glass units  

E-Print Network (OSTI)

A percentage of insulating glass (IG) units break each year due to thermally induced perimeter stresses. The glass industry has known about this problem for many years and an ASTM standard has recently been developed for the design of monolithic glass plates for thermal stresses induced by solar irradiance. It is believed that a similar standard can be developed for IG units if a proper understanding of IG thermal stresses can be developed. The objective of this research is to improve understandings of IG thermal stresses and compare the IG thermal stresses with those that develop in monolithic glass plates given similar environmental conditions. The major difference between the analysis of a monolithic glass plate and an IG unit is energy exchange due to conduction, natural convection, and long wave radiation through the gas space cavity. In IG units, conduction, natural convection, and long wave radiation combine in a nonlinear fashion that frequently requires iterative numerical analyses for determining thermal stresses in certain situations. To simplify the gas space energy exchange, a numerical propagation procedure was developed. The numerical propagation procedure combines the nonlinear effects of conduction, natural convection, and long wave radiation into a single value. Use of this single value closely approximates the nonlinear nature of the gas space energy exchange and simplifies the numerical analysis. The numerical propagation procedure was then coupled with finite element analysis to estimate thermal stresses for both monolithic glass plates and IG units. It is shown that the maximum thermal stresses that develop in IG units increase linearly with input solar irradiance during the transient phase. It is shown that an initial preload stress develops under equilibrium conditions due to the thermal bridge effects of the spacer. It is shown that IG units develop larger thermal stresses than monolithic glass plates under similar environmental conditions. Finally, it is shown that the use of low-e coatings increase IG thermal stresses and that the location of low-e coating as well as environmental conditions affect which glass plate develops larger thermal stresses.

Klam, Jeremy Wayne

2007-08-01T23:59:59.000Z

38

United States Department of Energy Thermally Activated Heat Pump Program  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) is working with partners from the gas heating and cooling industry to improve energy efficiency using advance absorption technologies, to eliminate chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), to reduce global warming through more efficient combustion of natural gas, and to impact electric peak demand of air conditioning. To assist industry in developing these gas heating and cooling absorption technologies, the US DOE sponsors the Thermally Activated Heat Pump Program. It is divided into five key activities, addressing residential gas absorption heat pumps, large commercial chillers, advanced absorption fluids, computer-aided design, and advanced ``Hi-Cool`` heat pumps.

Fiskum, R.J. [USDOE, Washington, DC (United States); Adcock, P.W.; DeVault, R.C. [Oak Ridge National Lab., TN (United States)

1996-06-01T23:59:59.000Z

39

Effluent treatment options for nuclear thermal propulsion system ground tests  

DOE Green Energy (OSTI)

A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests.

Shipers, L.R.; Brockmann, J.E.

1992-10-16T23:59:59.000Z

40

Summary - Building C-400 Thermal Treatment Remedial Design Report and Investigation, Paducah, Kentucky  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Paducah, KY Paducah, KY EM Project: Building C400 Thermal Treatment ETR Report Date: August 2007 ETR-8 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Building C-400 Thermal Treatment 90% Remedial Design Report and Site Investigation, Paducah Kentucky Why DOE-EM Did This Review The groundwater underlying the Paducah Gaseous Diffusion Plant (PGDP) is contaminated by chlorinated solvents, principally trichloroethylene (TCE), as well as other contaminants. TCE was released as a dense nonaqueous phase liquid (DNAPL) to the subsurface soils and groundwater as a result of operations that began in 1952. The Building C-400 area is coincident with the highest TCE concentrations in the groundwater plumes at PGDP. Based on all characterization data

Note: This page contains sample records for the topic "thermal treatment unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

PO*WW*ER mobile treatment unit process hazards analysis  

SciTech Connect

The objective of this report is to demonstrate that a thorough assessment of the risks associated with the operation of the Rust Geotech patented PO*WW*ER mobile treatment unit (MTU) has been performed and documented. The MTU was developed to treat aqueous mixed wastes at the US Department of Energy (DOE) Albuquerque Operations Office sites. The MTU uses evaporation to separate organics and water from radionuclides and solids, and catalytic oxidation to convert the hazardous into byproducts. This process hazards analysis evaluated a number of accident scenarios not directly related to the operation of the MTU, such as natural phenomena damage and mishandling of chemical containers. Worst case accident scenarios were further evaluated to determine the risk potential to the MTU and to workers, the public, and the environment. The overall risk to any group from operation of the MTU was determined to be very low; the MTU is classified as a Radiological Facility with low hazards.

Richardson, R.B.

1996-06-01T23:59:59.000Z

42

EA-1189: Non-thermal Treatment of Hanford Site Low-level Mixed...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Non-thermal Treatment of Hanford Site Low-level Mixed Waste, Richland, Washington EA-1189: Non-thermal Treatment of Hanford Site Low-level Mixed Waste, Richland, Washington...

43

Integrated thermal treatment system study: Phase 1 results. Volume 1  

Science Conference Proceedings (OSTI)

An integrated systems engineering approach is used for uniform comparison of widely varying thermal treatment technologies proposed for management of contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. Ten different systems encompassing several incineration design options are studied. All subsystems, including facilities, equipment, and methods needed for integration of each of the ten systems are identified. Typical subsystems needed for complete treatment of MLLW are incoming waste receiving and preparation (characterization, sorting, sizing, and separation), thermal treatment, air pollution control, primary and secondary stabilization, metal decontamination, metal melting, mercury recovery, lead recovery, and special waste and aqueous waste treatment. The evaluation is performed by developing a preconceptual design package and planning life-cycle cost (PLCC) estimates for each system. As part of the preconceptual design process, functional and operational requirements, flow sheets and mass balances, and conceptual equipment layouts are developed for each system. The PLCC components estimated are technology development, production facility construction, pre-operation, operation and maintenance, and decontamination and decommissioning. Preconceptual design data and other technology information gathered during the study are examined and areas requiring further development, testing, and evaluation are identified and recommended. Using a qualitative method, each of the ten systems are ranked.

Feizollahi, F.; Quapp, W.J.; Hempill, H.G.; Groffie, F.J.

1994-07-01T23:59:59.000Z

44

Integrated Waste Treatment Unit GFSI Risk Management Plan  

SciTech Connect

This GFSI Risk Management Plan (RMP) describes the strategy for assessing and managing project risks for the Integrated Waste Treatment Unit (IWTU) that are specifically within the control and purview of the U.S. Department of Energy (DOE), and identifies the risks that formed the basis for the DOE contingency included in the performance baseline. DOE-held contingency is required to cover cost and schedule impacts of DOE activities. Prior to approval of the performance baseline (Critical Decision-2) project cost contingency was evaluated during a joint meeting of the Contractor Management Team and the Integrated Project Team for both contractor and DOE risks to schedule and cost. At that time, the contractor cost and schedule risk value was $41.3M and the DOE cost and schedule risk contingency value is $39.0M. The contractor cost and schedule risk value of $41.3M was retained in the performance baseline as the contractor's management reserve for risk contingency. The DOE cost and schedule risk value of $39.0M has been retained in the performance baseline as the DOE Contingency. The performance baseline for the project was approved in December 2006 (Garman 2006). The project will continue to manage to the performance baseline and change control thresholds identified in PLN-1963, ''Idaho Cleanup Project Sodium-Bearing Waste Treatment Project Execution Plan'' (PEP).

W. A. Owca

2007-06-21T23:59:59.000Z

45

Integrated Waste Treatment Unit GFSI Risk Management Plan  

SciTech Connect

This GFSI Risk Management Plan (RMP) describes the strategy for assessing and managing project risks for the Integrated Waste Treatment Unit (IWTU) that are specifically within the control and purview of the U.S. Department of Energy (DOE), and identifies the risks that formed the basis for the DOE contingency included in the performance baseline. DOE-held contingency is required to cover cost and schedule impacts of DOE activities. Prior to approval of the performance baseline (Critical Decision-2) project cost contingency was evaluated during a joint meeting of the Contractor Management Team and the Integrated Project Team for both contractor and DOE risks to schedule and cost. At that time, the contractor cost and schedule risk value was $41.3M and the DOE cost and schedule risk contingency value is $39.0M. The contractor cost and schedule risk value of $41.3M was retained in the performance baseline as the contractor's management reserve for risk contingency. The DOE cost and schedule risk value of $39.0M has been retained in the performance baseline as the DOE Contingency. The performance baseline for the project was approved in December 2006 (Garman 2006). The project will continue to manage to the performance baseline and change control thresholds identified in PLN-1963, ''Idaho Cleanup Project Sodium-Bearing Waste Treatment Project Execution Plan'' (PEP).

W. A. Owca

2007-06-21T23:59:59.000Z

46

Thermal Treatment of Solid Wastes Using the Electric Arc Furnace  

Science Conference Proceedings (OSTI)

A thermal waste treatment facility has been developed at the Albany Research Center (ARC) over the past seven years to process a wide range of heterogeneous mixed wastes, on a scale of 227 to 907 kg/h (500 to 2,000 lb/h). The current system includes a continuous feed system, a 3-phase AC, 0.8 MW graphite electrode arc furnace, and a dedicated air pollution control system (APCS) which includes a close-coupled thermal oxidizer, spray cooler, baghouse, and wet scrubber. The versatility of the complete system has been demonstrated during 5 continuous melting campaigns, ranging from 11 to 25 mt (12 to 28 st) of treated wastes per campaign, which were conducted on waste materials such as (a) municipal incinerator ash, (b) simulated low-level radioactive, high combustible-bearing mixed wastes, (c) simulated low-level radioactive liquid tank wastes, (d) heavy metal contaminated soils, and (e) organic-contaminated dredging spoils. In all cases, the glass or slag products readily passed the U.S. Environmental Protection Agency (EPA) Toxicity Characteristic Leachability Program (TCLP) test. Additional studies are currently under way on electric utility wastes, steel and aluminum industry wastes, as well as zinc smelter residues. Thermal treatment of these solid waste streams is intended to produce a metallic product along with nonhazardous glass or slag products.

O'Connor, W.K.; Turner, P.C.

1999-09-01T23:59:59.000Z

47

Thermal sludge dryer demonstration: Bird Island Wastewater Treatment Plant, Buffalo, NY. Final report  

DOE Green Energy (OSTI)

The Buffalo Sewer Authority (BSA), in cooperation with the New York State Energy Research and Development Authority (Energy Authority), commissioned a demonstration of a full scale indirect disk-type sludge dryer at the Bird Island Wastewater Treatment Plant (BIWWTP). The purpose of the project was to determine the effects of the sludge dryer on the sludge incineration process at the facility. Sludge incineration is traditionally the most expensive, energy-intensive unit process involving solids handling at wastewater treatment plants; costs for incineration at the BIWWTP have averaged $2.4 million per year. In the conventional method of processing solids, a series of volume reduction measures, which usually includes thickening, digestion, and mechanical dewatering, is employed prior to incineration. Usually, a high level of moisture is still present within sewage sludge following mechanical dewatering. The sludge dryer system thermally dewaters wastewater sludge to approximately 26%, (and as high as 38%) dry solids content prior to incineration. The thermal dewatering system at the BIWWTP has demonstrated that it meets its design requirements. It has the potential to provide significant energy and other cost savings by allowing the BSA to change from an operation employing two incinerators to a single incinerator mode. While the long-term reliability of the thermal dewatering system has yet to be established, this project has demonstrated that installation of such a system in an existing treatment plant can provide the owner with significant operating cost savings.

NONE

1995-01-01T23:59:59.000Z

48

Summary of seasonal thermal energy storage field test projects in the United States  

DOE Green Energy (OSTI)

Seasonal thermal energy storage (STES) involves storage of available heat or chill for distribution at a later time to meet thermal loads. STES can reduce energy consumption, peak energy demand, and emissions of carbon dioxide to the atmosphere over conventional systems. It is estimated that full-scale application of STES would provide 2% to 4% of total energy needs in the United States. One STES technology, aquifer thermal energy storage (ATES), has been determined to be the most cost-effective option in the United States when site conditions enable its use. ATES has been analyzed in the laboratory and investigated in the field in the United States since the program was established at Pacific Northwest Laboratory (PNL) in 1979. Two field test facilities (FTFs), one for heating ATES at the University of Minnesota and the other for cooling ATES at the University of Alabama, have been primary testing grounds for US ATES research. Computer models have been developed to analyze the complex thermal and fluid dynamics. Extensive monitoring of FTFs has provided verification of and refinements to the computer models. The areas of geochemistry and microbiology have been explored as they apply to the aquifer environment. In general, the two FTFs have been successful in demonstrating the steps needed to make an ATES system operational.

Johnson, B.K.

1989-07-01T23:59:59.000Z

49

Thermal Imaging of Canals for Remote Detection of Leaks: Evaluation in the United Irrigation District  

E-Print Network (OSTI)

This report summarizes our initial analysis of the potential of thermal imaging for detecting leaking canals and pipelines. Thermal imagery (video format) was obtained during a fly over of a portion of the main canal of United Irrigation District. The video was processed to produce individual images, and 45 potential sites were identified as having possible canal leakage problems (see Appendix I for all 45 thermal images). District Management System Team personnel traveled to 11 of the 45 sites to determine if canal leakage was actually occurring. Of the 11 sites, 10 had leakage problems. Thus, thermal image analysis had a success rate of 91% for leak detection. Two sites had leaks classified as severe by the DMS Team. This report also provides a detailed analysis of 4 sites, 3 with leaks and 1 without. For each site, photographs are included showing the source of the leak and/or condition of the canal segment. A literature review of thermal imagery for leak detection is included in Appendix II. Our findings and recommendations are as following: 1. thermal imaging is a promising technique for evaluation of canal conditions and leak detection; 2. the district provide should provide personnel to help the DMS Team verify the remaining 34 sites; and 3. the district should consider correcting the problems identified at sites 7 and 8.

Huang, Yanbo; Fipps, Guy

2008-11-01T23:59:59.000Z

50

Tests with a microcomputer based adaptive synchronous machine stabilizer on a 400MW thermal unit  

Science Conference Proceedings (OSTI)

Field tests have been conducted on a microcomputer-based adaptive synchronous machine stabilizer. The adaptive control algorithm tracks the system operating conditions using a least squares identification technique with variable forgetting factor and the control is calculated by a self-searching pole-shift method. An outline of the control algorithm and the results of field tests on a 400MW thermal generating unit are described in this paper.

Malik, O.P.; Hope, G.S.; Hancock, G.C. (Univ. of Calgary, Alberta (Canada)); Mao, C.X. (Huazhong Univ. of Science and Technology, Wuhan (China)); Prakash, K.S. (Bharat Heavy Electricals, Banglore (India))

1993-03-01T23:59:59.000Z

51

Use of GTE-65 gas turbine power units in the thermal configuration of steam-gas systems for the refitting of operating thermal electric power plants  

SciTech Connect

Thermal configurations for condensation, district heating, and discharge steam-gas systems (PGU) based on the GTE-65 gas turbine power unit are described. A comparative multivariant analysis of their thermodynamic efficiency is made. Based on some representative examples, it is shown that steam-gas systems with the GTE-65 and boiler-utilizer units can be effectively used and installed in existing main buildings during technical refitting of operating thermal electric power plants.

Lebedev, A. S.; Kovalevskii, V. P. ['Leningradskii Metallicheskii Zavod', branch of JSC 'Silovye mashiny' (Russian Federation); Getmanov, E. A.; Ermaikina, N. A. ['Institut Teploenergoproekt', branch of JSC 'Inzhenernyi tsentr EES' (Russian Federation)

2008-07-15T23:59:59.000Z

52

Thermal-Hydraulic Analysis of Seed-Blanket Unit Duplex Fuel Assemblies with VIPRE-01  

E-Print Network (OSTI)

One of the greatest challenges facing the nuclear power industry is the final disposition of nuclear waste. To meet the needs of the nuclear power industry, a new fuel assembly design, called DUPLEX, has been developed which provides higher fuel burnups, burns transuranic waste while reducing minor actinides, reduces the long term radiotoxicity of spent nuclear fuel, and was developed for use in current light water reactors. The DUPLEX design considered in this thesis is based on a seed and blanket unit (SBU) configuration, where the seed region contains standard UO2 fuel, and the blanket region contains an inert matrix (Pu,Np,Am)O2-MgO-ZrO2 fuel. The research efforts of this thesis are first to consider the higher burnup effects on DUPLEX assembly thermal-hydraulic performance and thermal safety margin over the assemblys expected operational lifetime. In order to accomplish this, an existing burnup-dependent thermal-hydraulic methodology for conventional homogeneous fuel assemblies has been updated to meet the modeling needs specific to SBU-type assemblies. The developed framework dramatically expands the capabilities of the latest thermal-hydraulic evaluation framework such that the most promising and unique DUPLEX fuel design can be evaluated. As part of this updated methodology, the posed DUPLEX design is evaluated with respect to the minimum departure from nucleate boiling ratio, peak fuel temperatures for both regions, and the peak cladding temperatures, under ANS Condition I, II, and III transient events with the thermal-hydraulic code VIPRE-01. Due to difficulty in the fabrication and handling of minor actinide dioxides, documented thermal conductivity values for the considered IMF design are unavailable. In order to develop a representative thermal conductivity model for use in VIPRE-01, an extensive literature survey on the thermal conductivity of (Pu,Np,Am)O2-MgO-ZrO2 component materials and a comprehensive review of combinatory models was performed. Using the updated methodology, VIPRE-01 is used to perform steady-state and transient thermal hydraulic analyses for the DUPLEX fuel assembly. During loss-of-flow accident scenarios, the DUPLEX design is shown to meet imposed safety criteria. However, using the most conservative thermal conductivity modeling approach for (Pu,Np,Am)O2-MgO-ZrO2, the blanket region fuel temperatures remain only slightly below the design limit.

McDermott, Patrick 1987-

2012-12-01T23:59:59.000Z

53

Grand Junction projects office mixed-waste treatment program, VAC*TRAX mobile treatment unit process hazards analysis  

SciTech Connect

The objective of this report is to demonstrate that a thorough assessment of the risks associated with the operation of the Rust Geotech patented VAC*TRAX mobile treatment unit (MTU) has been performed and documented. The MTU was developed to treat mixed wastes at the US Department of Energy (DOE) Albuquerque Operations Office sites. The MTU uses an indirectly heated, batch vacuum dryer to thermally desorb organic compounds from mixed wastes. This process hazards analysis evaluated 102 potential hazards. The three significant hazards identified involved the inclusion of oxygen in a process that also included an ignition source and fuel. Changes to the design of the MTU were made concurrent with the hazard identification and analysis; all hazards with initial risk rankings of 1 or 2 were reduced to acceptable risk rankings of 3 or 4. The overall risk to any population group from operation of the MTU was determined to be very low; the MTU is classified as a Radiological Facility with low hazards.

Bloom, R.R.

1996-04-01T23:59:59.000Z

54

EA-1189: Non-thermal Treatment of Hanford Site Low-level Mixed Waste,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Non-thermal Treatment of Hanford Site Low-level Mixed 9: Non-thermal Treatment of Hanford Site Low-level Mixed Waste, Richland, Washington EA-1189: Non-thermal Treatment of Hanford Site Low-level Mixed Waste, Richland, Washington SUMMARY This EA evaluates the environmental impacts for the proposal to demonstrate the feasibility of commercial treatment of contact-handled low-level mixed waste to meet existing Federal and State regulatory standards for eventual land disposal at the U.S. Department of Energy Richland Operations Office. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD September 29, 1998 EA-1189: Finding of No Significant Impact Non-thermal Treatment of Hanford Site Low-level Mixed Waste September 29, 1998 EA-1189: Final Environmental Assessment Non-thermal Treatment of Hanford Site Low-level Mixed Waste

55

Comprehensive tables giving physical data and thermal energy estimates for young igneous systems of the United States  

DOE Green Energy (OSTI)

Two tables are presented. The first is a comprehensive table of 157 young igneous systems in the western United States, giving locations, physical data, and thermal energy estimates, where appropriate for each system. The second table is a list of basaltic fields probably less than 10,000 years old in the western United States.

Smith, R.L.; Shaw, H.R.; Leudke, R.G.; Russell, S.L.

1978-01-01T23:59:59.000Z

56

Thermal Flue Gas Desulfurization Wastewater Treatment Processes for Zero Liquid Discharge Operations  

Science Conference Proceedings (OSTI)

This report presents a worldwide inventory of power plant flue gas desulfurization (FGD) blowdown treatment systems using thermal technologies to achieve zero liquid discharge (ZLD) water management. The number of thermal treatment systems presently operating is very few, with the majority using chemical pretreatment followed by evaporation in a brine concentrator and crystallizer and finally dewatering of the residual salts. Of the operating thermal ZLD systems identified, six are located in Italy and o...

2010-12-31T23:59:59.000Z

57

Operable Unit 7-13/14 in situ thermal desorption treatability study work plan  

SciTech Connect

This Work Plan provides technical details for conducting a treatability study that will evaluate the application of in situ thermal desorption (ISTD) to landfill waste at the Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL). ISTD is a form of thermally enhanced vapor vacuum extraction that heats contaminated soil and waste underground to raise its temperature and thereby vaporize and destroy most organics. An aboveground vapor vacuum collection and treatment system then destroys or absorbs the remaining organics and vents carbon dioxide and water to the atmosphere. The technology is a byproduct of an advanced oil-well thermal extraction program. The purpose of the ISTD treatability study is to fill performance-based data gaps relative to off-gas system performance, administrative feasibility, effects of the treatment on radioactive contaminants, worker safety during mobilization and demobilization, and effects of landfill type waste on the process (time to remediate, subsidence potential, underground fires, etc.). By performing this treatability study, uncertainties associated with ISTD as a selected remedy will be reduced, providing a better foundation of remedial recommendations and ultimate selection of remedial actions for the SDA.

Shaw, P.; Nickelson, D.; Hyde, R.

1999-05-01T23:59:59.000Z

58

Plutonium Finishing Plan (PFP) Treatment and Storage Unit Waste Analysis Plan  

Science Conference Proceedings (OSTI)

The purpose of this waste analysis plan (WAP) is to document waste analysis activities associated with the Plutonium Finishing Plant Treatment and Storage Unit (PFP Treatment and Storage Unit) to comply with Washington Administrative Code (WAC) 173-303-300(1), (2), (4)(a) and (5). The PFP Treatment and Storage Unit is an interim status container management unit for plutonium bearing mixed waste radiologically managed as transuranic (TRU) waste. TRU mixed (TRUM) waste managed at the PFP Treatment and Storage Unit is destined for the Waste Isolation Pilot Plant (WIPP) and therefore is not subject to land disposal restrictions [WAC 173-303-140 and 40 CFR 268]. The PFP Treatment and Storage Unit is located in the 200 West Area of the Hanford Facility, Richland Washington (Figure 1). Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

PRIGNANO, A.L.

2000-07-01T23:59:59.000Z

59

Simulation System on the Thermal Stress and Fatigue Life Loss of Startup and Shutdown for a Domestic 600MW Steam Turbo Generator Unit  

Science Conference Proceedings (OSTI)

The Simulation System on the thermal stresses and fatigue life loss of the rotator during startup and shutdown for a domestic 600MW steam turbo generator unit, By means of the analysis of Simulation System on the thermal stress and life loss of the rotor, ... Keywords: steam turbine unit, thermal stress, Fatigue Life Loss, rotator, startup, shutdown

Yunchun Xia

2009-10-01T23:59:59.000Z

60

Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom  

SciTech Connect

Highlights: > Energy balances were calculated for the thermal treatment of biodegradable wastes. > For wood and RDF, combustion in dedicated facilities was the best option. > For paper, garden and food wastes and mixed waste incineration was the best option. > For low moisture paper, gasification provided the optimum solution. - Abstract: Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energy balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste.

Burnley, Stephen, E-mail: s.j.burnley@open.ac.uk [Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Phillips, Rhiannon, E-mail: rhiannon.jones@environment-agency.gov.uk [Strategy Unit, Welsh Assembly Government, Ty Cambria, 29 Newport Road, Cardiff CF24 0TP (United Kingdom); Coleman, Terry, E-mail: terry.coleman@erm.com [Environmental Resources Management Ltd, Eaton House, Wallbrook Court, North Hinksey Lane, Oxford OX2 0QS (United Kingdom); Rampling, Terence, E-mail: twa.rampling@hotmail.com [7 Thurlow Close, Old Town Stevenage, Herts SG1 4SD (United Kingdom)

2011-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "thermal treatment unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Overview of non-thermal mixed waste treatment technologies: Treatment of mixed waste (ex situ); Technologies and short descriptions  

SciTech Connect

This compendium contains brief summaries of new and developing non- thermal treatment technologies that are candidates for treating hazardous or mixed (hazardous plus low-level radioactive) wastes. It is written to be all-encompassing, sometimes including concepts that presently constitute little more than informed ``ideas``. It bounds the universe of existing technologies being thought about or considered for application on the treatment of such wastes. This compendium is intended to be the very first step in a winnowing process to identify non-thermal treatment systems that can be fashioned into complete ``cradle-to-grave`` systems for study. The purpose of the subsequent systems paper studies is to investigate the cost and likely performance of such systems treating a representative sample of U.S. Department of Energy (DOE) mixed low level wastes (MLLW). The studies are called Integrated Non-thermal Treatment Systems (INTS) Studies and are being conducted by the Office of Science and Technology (OST) of the Environmental Management (EM) of the US Department of Energy. Similar studies on Integrated Thermal Treatment Systems have recently been published. These are not designed nor intended to be a ``downselection`` of such technologies; rather, they are simply a systems evaluation of the likely costs and performance of various non- thermal technologies that have been arranged into systems to treat sludges, organics, metals, soils, and debris prevalent in MLLW.

NONE

1995-07-01T23:59:59.000Z

62

An Economic Analysis of the Self Commitment of Thermal Units Simon Ede, Ray Zimmerman, Timothy Mount, Robert Thomas, William Schulze  

E-Print Network (OSTI)

constraints. Liberalization of energy markets worldwide has led not only to the privatization of generation dispatch in the presence of asymmetric information in deregulated markets. The second sectionAn Economic Analysis of the Self Commitment of Thermal Units Simon Ede, Ray Zimmerman, Timothy

63

Plutonium Finishing Plan (PFP) Treatment and Storage Unit Interim Status Closure Plan  

Science Conference Proceedings (OSTI)

This document describes the planned activities and performance standards for closing the Plutonium Finishing Plant (PFP) Treatment and Storage Unit. The PFP Treatment and Storage Unit is located within the 234-52 Building in the 200 West Area of the Hanford Facility. Although this document is prepared based upon Title 40 Code of Federal Regulations (CFR), Part 265, Subpart G requirements, closure of the unit will comply with Washington Administrative Code (WAC) 173-303-610 regulations pursuant to Section 5.3 of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Action Plan (Ecology et al. 1996). Because the PFP Treatment and Storage Unit manages transuranic mixed (TRUM) waste, there are many controls placed on management of the waste. Based on the many controls placed on management of TRUM waste, releases of TRUM waste are not anticipated to occur in the PFP Treatment and Storage Unit. Because the intention is to clean close the PFP Treatment and Storage Unit, postclosure activities are not applicable to this closure plan. To clean close the unit, it will be demonstrated that dangerous waste has not been left onsite at levels above the closure performance standard for removal and decontamination. If it is determined that clean closure is not possible or is environmentally impractical, the closure plan will be modified to address required postclosure activities. The PFP Treatment and Storage Unit will be operated to immobilize and/or repackage plutonium-bearing waste in a glovebox process. The waste to be processed is in a solid physical state (chunks and coarse powder) and will be sealed into and out of the glovebox in closed containers. The containers of immobilized waste will be stored in the glovebox and in additional permitted storage locations at PFP. The waste will be managed to minimize the potential for spills outside the glovebox, and to preclude spills from reaching soil. Containment surfaces will be maintained to ensure integrity. In the unlikely event that a waste spill does occur outside the glovebox, operating methods and administrative controls will require that waste spills be cleaned up promptly and completely, and a notation will be made in the operating record. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

PRIGNANO, A.L.

2000-07-01T23:59:59.000Z

64

Integrated Thermal Treatment Systems study: US Department of Energy Internal Review Panel report  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy`s (DOE) Office of Technology Development (OTD) commissioned two studies to uniformly evaluate nineteen thermal treatment technologies. These studies were called the Integrated Thermal Treatment System (ITTS) Phase I and Phase II. With the advice and guidance of the DOE Office of Environmental Management`s (EM`s) Mixed Waste Focus Group, OTD formed an ITTS Internal Review Panel, composed of scientists and engineers from throughout the DOE complex, the U.S. Environmental Protection Agency (EPA), the California EPA, and private experts. The Panel met from November 15-18, 1994, to review and comment on the ITTS studies, to make recommendations on the most promising thermal treatment systems for DOE mixed low level wastes (MLLW), and to make recommendations on research and development necessary to prove the performance of the technologies on MLLW.

Cudahy, J.; Escarda, T.; Gimpel, R. [and others

1995-04-01T23:59:59.000Z

65

Building C-400 Thermal Treatment 90% Remedial Design Report and Site Investigation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

427 427 Rev. 1 U.S. Department of Energy Office of Environmental Management Paducah Gaseous Diffusion Plant (PGDP) Review Report: Building C-400 Thermal Treatment 90% Remedial Design Report and Site Investigation, PGDP, Paducah Kentucky 15 August 2007 Paducah Gaseous Diffusion Plant (PGDP) Paducah KY Paducah Gaseous Diffusion Plant (PGDP) Paducah KY Prepared for: Office of Groundwater and Soil Remediation Office of Engineering and Technology Review Report - C-400 Thermal Remediation PGDP WSRC-STI-2007-00427 rev. 1 Cover Photo: Oblique view overhead photograph of the Department of Energy Paducah Gaseous Diffusion Plant near Paducah KY. The TCE source area targeted for thermal treatment is located near the center of the photograph. .

66

Pressurized heat treatment of glass-ceramic to control thermal expansion  

DOE Patents (OSTI)

A method of producing a glass-ceramic having a specified thermal expansion value is disclosed. The method includes the step of pressurizing the parent glass material to a predetermined pressure during heat treatment so that the glass-ceramic produced has a specified thermal expansion value. Preferably, the glass-ceramic material is isostatically pressed. A method for forming a strong glass-ceramic to metal seal is also disclosed in which the glass-ceramic is fabricated to have a thermal expansion value equal to that of the metal. The determination of the thermal expansion value of a parent glass material placed in a high-temperature environment is also used to determine the pressure in the environment.

Kramer, Daniel P. (Dayton, OH)

1985-01-01T23:59:59.000Z

67

Reduction of carbon content in waste-tire combustion ashes by bio-thermal treatment  

Science Conference Proceedings (OSTI)

Application of bio-catalyst (NOE-7F) in thermal treatment can adequately dispose dark-black fly ashes from co-combustion of both waste tires and coal. After thermal treatment of fly ashes by adding 10% NOE-7F, the carbon contents reduced by 37.6% and the weight losses increased by 405%, compared with the fly ashes without mixing with NOE-7F. The combustion behaviors of wasted tires combustion fly ashes with NOE-7F were also investigated by both thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The results verify that NOE-7F has positive effects on the combustion of residual carbon and toxic polycyclic aromatic hydrocarbons (PAHs) enhance the energy release and reduce the toxicity during the process of thermal treatment. Furthermore, using NOE-7F to dispose high-carbon content fly ashes did improve the compressive strength of fly ashes and concrete mixtures. Therefore, NOE-7F is a promising additive which could decrease treatment cost of high-carbon content fly ashes and reduce the amount of survival toxic PAHs.

Chen, C.C.; Lee, W.J.; Shih, S.I.; Mou, J.L. [National Cheng Kung University, Tainan (Taiwan). Dept. of Environmental Engineering

2009-07-01T23:59:59.000Z

68

Thermal History of the Felsite Unit, Geysers Geothermal Field, From Thermal Modeling of 40Ar/39Ar Incremental Heating Data  

DOE Green Energy (OSTI)

An Ar-40/Ar-39 and U-Pb study was performed of the Geysers plutonic complex of the Geysers Geothermal Field in California. Sixty-nine ion microprobe spot analyses of zircons from four granite samples from the plutonic complex that underlies the Geysers geothermal field yielded Pb-207/Pb-206 vs. U-238/Pb-206 concordia ages ranging from 1.13 {+-} 0.04 Ma to 1.25 {+-} 0.04 Ma. The U-Pb ages coincide closely with Ar-40/Ar-39 age spectrum plateau and ''terminal'' ages from coexisting K-feldspars and with the eruption ages of overlying volcanic rocks. The data indicate that the granite crystallized at 1.18 Ma and had cooled below 350 C by {approximately}0.9-1.0 Ma. Interpretation of the feldspar Ar-40/Ar-39 age data using multi-diffusion domain theory indicates that post-emplacement rapid cooling was succeeded either by slower cooling from 350-300 C between 1.0 and 0.4 Ma or transitory reheating to 300-350 C at about 0.4-0.6 Ma. Heat flow calculations constrained with K-feldspar thermal histories and the pre sent elevated regional heal flow anomaly demonstrate that appreciable heat input from sources external to the known Geysers plutonic complex is required to maintain the geothermal system. This requirement is satisfied by either a large, underlying, convecting magma chamber (now solidified) emplaced at 1.2 Ma or episodic intrusion of smaller bodies from 1.2-0.6 Ma.

T. M. Harrison (U of California); G. B. Dalrymple (Oregon State U); J. B. Hulen (U of Utah); M. A. Lanphere; M. Grove; O. M. Lovera

1999-08-19T23:59:59.000Z

69

Surrogate formulations for thermal treatment of low-level mixed waste. Part 1: Radiological surrogates  

SciTech Connect

The evaluation and comparison of proposed thermal treatment systems for mixed wastes can be expedited by tests in which the radioactive components of the wastes are replaced by surrogate materials chosen to mimic, as far as is possible, the chemical and physical properties of the radioactive materials of concern. In this work, sponsored by the Mixed Waste Integrated Project of the US Department of Energy, the authors have examined reported experience with such surrogates and suggest a simplified standard list of materials for use in tests of thermal treatment systems. The chief radioactive nuclides of concern in the treatment of mixed wastes are {sup 239}Pu, {sup 238}U, {sup 235}U, {sup 137}Cs, {sup 103}Ru, {sup 99}Tc, and {sup 90}Sr. These nuclides are largely by-products of uranium enrichment, reactor fuel reprocessing, and weapons program activities. Cs, Ru, and Sr all have stable isotopes that can be used as perfect surrogates for the radioactive forms. Technetium exists only in radioactive form, as do plutonium and uranium. If one wishes to preclude radioactive contamination of the thermal treatment system under trial burn, surrogate elements must be chosen for these three. For technetium, the authors suggest the use of natural ruthenium, and for both plutonium and uranium, they recommend cerium. The seven radionuclides listed can therefore be simulated by a surrogate package containing stable isotopes of ruthenium, strontium, cesium, and cerium.

Stockdale, J.A.D.; Bostick, W.D.; Hoffmann, D.P. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Lee, H.T. [Oak Ridge Associated Universities, TN (United States)

1994-01-01T23:59:59.000Z

70

Treatment of Y-12 storm sewer sediments and DARA soils by thermal desorption  

SciTech Connect

The 1992 Oak Ridge Reservation Federal Facilities Compliance Agreement (FFCA) listed a number of mixed wastes, subject to land disposal restrictions (LDR), for which no treatment method had been identified, and required DOE to develop strategies for treatment and ultimate disposal of those wastes. This paper presents the results of a program to demonstrate that thermal desorption can remove both organics and mercury from two mixed wastes from the DOE Y-12 facility in Oak Ridge, Tennessee. The first waste, the Y-12 Storm Sewer Sediments (SSSs) was a sediment generated from upgrades to the plant storm sewer system. This material contained over 4 percent mercury, 2 percent uranium and 350 mg/kg polychlorinated biphenyls (PCBs). Leachable mercury exceeded toxicity characteristic leaching procedure (TCLP) and LDR criteria. The second waste, the Disposal Area Remedial Action (DARA) Soils, are contaminated with uranium, mercury and PCBs. This treatability study included bench-scale testing of a thermal desorption process. Results of the testing showed that, for the SSSs, total mercury could be reduced to 120 mg/kg by treatment at 600{degrees}C, which is at the high end of the temperature range for typical thermal desorption systems. Leachable TCLP mercury was less than 50 {mu}g/L and PCBs were below 2 mg/kg. Treatment of the DARA Soils at 450{degrees}C for 10 minutes resulted in residual PCBs of 0.6 to 3.0 mg/kg. This is too high (goal < 2mg/kg) and higher treatment temperatures are needed. The testing also provided information on the characteristics and quantities of residuals from the thermal desorption process.

Morris, M.I. [Oak Ridge National Lab., TN (United States); Shealy, S.E. [IT Corporation, Knoxville, TN (United States)

1995-12-31T23:59:59.000Z

71

Thermal Properties of Uranium-Molybdenum Alloys: Phase Decomposition Effects of Heat Treatments  

E-Print Network (OSTI)

Uranium-Molybdenum (U-Mo) alloys are of interest to the nuclear engineering community for their potential use as reactor fuel. The addition of molybdenum serves to stabilize the gamma phase of uranium, as well as increasing the melting point of the fuel. Thermal properties of U-Mo alloys have not been fully characterized, especially within the area of partial phase decomposition of the gamma phase of the alloy. Additional data was acquired through this research to expand the characterization data set for U-Mo alloys. The U-Mo alloys used for this research were acquired from the Idaho National Laboratory and consisted of three alloys of nominal 7, 10, and 13 percent molybdenum by weight. The sample pins were formed by vacuum induction melt casting. Once the three sample pins were fabricated and sent to the Fuel Cycle and Materials Laboratory at Texas A&M University, the pins were homogenized and sectioned for heat treatment. Several heat treatments were performed on the samples to induce varying degrees of phase decomposition, and the samples were subsequently sectioned for phase verification and thermal analysis. An Electron Probe Microanalyzer with wavelength dispersive spectroscopy was used to observe the phases in the samples as well as to characterize each phase. The density of each sample was determined using Archimedes method. Finally, a light flash analyzer was used to determine thermal diffusivity of the samples up to 300 degrees C as well as to estimate the thermal conductivity. For U-10Mo, thermal diffusivity increased with increasing phase decomposition from gamma to alpha +U2Mo while U-7Mo saw a flattening of the thermal diffusivity curve with increased phase decomposition.

Creasy, John Thomas

2011-12-01T23:59:59.000Z

72

Thermal Energy Storage for the Small Packaged Terminal Air Conditioning Unit. Quarterly progress report, February 2000  

DOE Green Energy (OSTI)

To finalize the IceBear design for full-scale production, build two preproduction prototypes, and confirm cost projections for production and market analysis. The 5 tasks being carried out are: Task 1--Finalize thermal energy storage tank design; Task 2--Finalize internal heat exchanger; Task 3--Finalize refrigerant management and control components; Task 4--Preproduction prototype laboratory testing; and Task 5--Reporting.

NONE

2000-02-01T23:59:59.000Z

73

Damodar Valley Corporation, Chandrapura Unit 2 Thermal Power Station Residual Life Assessment Summary report  

Science Conference Proceedings (OSTI)

The BHEL/NTPC/PFC/TVA teams assembled at the DVC`s Chadrapura station on July 19, 1994, to assess the remaining life of Unit 2. The workscope was expanded to include major plant systems that impact the unit`s ability to sustain generation at 140 MW (Units 1-3 have operated at average rating of about 90 MW). Assessment was completed Aug. 19, 1994. Boiler pressure parts are in excellent condition except for damage to primary superheater header/stub tubes and economizer inlet header stub tubes. The turbine steam path is in good condition except for damage to LP blading; the spar rotor steam path is in better condition and is recommended for Unit 2. Nozzle box struts are severely cracked from the flame outs; the cracks should not be repaired. HP/IP rotor has surface cracks at several places along the steam seal areas; these cracks are shallow and should be machined out. Detailed component damage assessments for above damaged components have been done. The turbine auxiliary systems have been evaluated; cooling tower fouling/blockage is the root cause for the high turbine back pressure. The fuel processing system is one of the primary root causes for limiting unit capacity. The main steam and hot reheat piping systems were conservatively designed and have at least 30 years left;deficiencies needing resolution include restoration of insulation, replacement of 6 deformed hanger clamp/bolts, and adjustment of a few hanger settings. The cold reheat piping system is generally in good condition; some areas should be re-insulated and the rigid support clamps/bolts should be examined. The turbine extraction piping system supports all appeared to be functioning normally.

NONE

1995-02-01T23:59:59.000Z

74

An investigation of gas separation membranes for reduction of thermal treatment emissions  

Science Conference Proceedings (OSTI)

Gas permeable membranes were evaluated for possible use as air pollution control devices on a fluidized bed catalytic incineration unit. The unit is a candidate technology for treatment of certain mixed hazardous and radioactive wastes at the Rocky Flats Plant. Cellulose acetate and polyimide membranes were tested to determine the permeance of typical off-gas components such as carbon dioxide, nitrogen, and oxygen. Multi-component permeation studies included gas mixtures containing light hydrocarbons. Experiments were also conducted to discover information about potential membrane degradation in the presence of organic compounds.

Stull, D.M.; Logsdon, B.W. [EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant; Pellegrino, J.J. [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

1994-05-16T23:59:59.000Z

75

Hanford Facility Dangerous Waste Closure Plan - Plutonium Finishing Plant Treatment Unit Glovebox HA-20MB  

Science Conference Proceedings (OSTI)

This closure plan describes the planned activities and performance standards for closing the Plutonium Finishing Plant (PFP) glovebox HA-20MB that housed an interim status ''Resource Conservation and Recovery Act'' (RCRA) of 1976 treatment unit. This closure plan is certified and submitted to Ecology for incorporation into the Hanford Facility RCRA Permit (HF RCRA Permit) in accordance with Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement; TPA) Milestone M-83-30 requiring submittal of a certified closure plan for ''glovebox HA-20MB'' by July 31, 2003. Glovebox HA-20MB is located within the 231-5Z Building in the 200 West Area of the Hanford Facility. Currently glovebox HA-20MB is being used for non-RCRA analytical purposes. The schedule of closure activities under this plan supports completion of TPA Milestone M-83-44 to deactivate and prepare for dismantlement the above grade portions of the 234-5Z and ZA, 243-Z, and 291-Z and 291-Z-1 stack buildings by September 30, 2015. Under this closure plan, glovebox HA-20MB will undergo clean closure to the performance standards of Washington Administrative Code (WAC) 173-303-610 with respect to all dangerous waste contamination from glovebox HA-20MB RCRA operations. Because the intention is to clean close the PFP treatment unit, postclosure activities are not applicable to this closure plan. To clean close the unit, it will be demonstrated that dangerous waste has not been left at levels above the closure performance standard for removal and decontamination. If it is determined that clean closure is not possible or is environmentally impractical, the closure plan will be modified to address required postclosure activities. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. Any information on radionuclides is provided only for general knowledge. Clearance form only sent to RHA.

PRIGNANO, A.L.

2003-06-25T23:59:59.000Z

76

Central and eastern United States: basic data for thermal springs and wells as recorded in GEOTHERM  

SciTech Connect

The GEOTHERM sample file contains 119 records for the central and eastern United States. The records contain data on location, sample description, analysis type, collection condition, flow rates, and the chemical and physical properties of the fluid. Stable and radioisotopic data are occasionally available. 7 refs. (ACR)

Bliss, J.D.

1983-06-01T23:59:59.000Z

77

Assessment of extent and degree of thermal damage to polymeric materials in the Three Mile Island Unit 2 Reactor building  

DOE Green Energy (OSTI)

This paper describes assumptions and procedures used to perform thermal damage analysis caused by post loss-of-coolant-accident (LOCA) hydrogen deflagration at Three Mile Island Unit 2 Reactor. Examination of available photographic evidence yields data on the extent and range of thermal and burn damage. Thermal damage to susceptible material in accessible regions of the reactor building was distributed in non-uniform patterns. No clear explanation for non-uniformity was found in examined evidence, e.g., burned materials were adjacent to materials that appear similar but were not burned. Because these items were in proximity to vertical openings that extend the height of the reactor building, we assume the unburned materials preferentially absorbed water vapor during periods of high, local steam concentration. A control pendant from the polar crane located in the top of the reactor building sustained asymmetric burn damage of decreasing degree from top to bottom. Evidence suggests the polar-crane pendant side that experienced heaviest damage was exposed to intense radiant energy from a transient fire plume in the reactor containment volume. Simple hydrogen-fire-exposure tests and heat transfer calculations approximate the degree of damage found on inspected materials from the containment building and support for an estimated 8% pre-fire hydrogen.

Alvares, N.J.

1985-06-01T23:59:59.000Z

78

Evaluation of cooling performance of thermally activated building system with evaporative cooling source for typical United States climates  

E-Print Network (OSTI)

have higher cooling capacity because the thermal resistancethe thermal comfort requirement unless the cooling capacitysurface cooling system and TABS systems THERMAL COMFORT

Feng, Jingjuan; Bauman, Fred

2013-01-01T23:59:59.000Z

79

METHOD FOR REMOVAL OF LIGHT ISOTOPE PRODUCT FROM LIQUID THERMAL DIFFUSION UNITS  

DOE Patents (OSTI)

A method and apparatus are described for removing the lighter isotope of a gaseous-liquid product from a number of diffusion columns of a liquid thermal diffusion system in two stages by the use of freeze valves. The subject liquid flows from the diffusion columns into a heated sloping capsule where the liquid is vaporized by the action of steam in a heated jacket surrounding the capsule. When the capsule is filled the gas flows into a collector. Flow between the various stages is controlled by freeze valves which are opened and closed by the passage of gas and cool water respectively through coils surrounding portions of the pipes through which the process liquid is passed. The use of the dual stage remover-collector and the freeze valves is an improvement on the thermal diffusion separation process whereby the fraction containing the lighter isotope many be removed from the tops of the diffusion columns without intercolumn flow, or prior stage flow while the contents of the capsule is removed to the final receiver.

Hoffman, J.D.; Ballou, J.K.

1957-11-19T23:59:59.000Z

80

Thermal treatment effects on charge storage performance of graphene-based materials for supercapacitors  

SciTech Connect

Graphene materials were synthesized by reduction of exfoliated graphene oxide sheets by hydrazine hydrate and then thermally treated in nitrogen to improve the surface area and their electrochemical performance as electrical double-layer capacitor electrodes. The structural and surface properties of the prepared reduced graphite oxide (RGO) were investigated using atomic force microscopy, scanning electron microscopy, Raman spectra, X-ray diffraction, and nitrogen adsorption / desorption. RGO forms a continuous network of crumpled sheets, which consist of numerous few-layer and single-layer graphenes. Electrochemical studies were conducted by cyclic voltammetry, impedance spectroscopy, and galvanostatic charge-discharge measurements. The modified RGO materials showed enhanced electrochemical performance, with maximum specific capacitance of 96 F/g, energy density of 12.8 Wh/kg, and power density of 160 kW/kg. The results demonstrate that thermal treatment of RGO at selected conditions is a convenient and efficient method for improving specific capacitance, energy, and power density.

Zhang, Hongxin [ORNL; Bhat, Vinay V [ORNL; Gallego, Nidia C [ORNL; Contescu, Cristian I [ORNL

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal treatment unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Geothermal Resource/Reservoir Investigations Based on Heat Flow and Thermal Gradient Data for the United States  

Science Conference Proceedings (OSTI)

Several activities related to geothermal resources in the western United States are described in this report. A database of geothermal site-specific thermal gradient and heat flow results from individual exploration wells in the western US has been assembled. Extensive temperature gradient and heat flow exploration data from the active exploration of the 1970's and 1980's were collected, compiled, and synthesized, emphasizing previously unavailable company data. Examples of the use and applications of the database are described. The database and results are available on the world wide web. In this report numerical models are used to establish basic qualitative relationships between structure, heat input, and permeability distribution, and the resulting geothermal system. A series of steady state, two-dimensional numerical models evaluate the effect of permeability and structural variations on an idealized, generic Basin and Range geothermal system and the results are described.

D. D. Blackwell; K. W. Wisian; M. C. Richards; J. L. Steele

2000-04-01T23:59:59.000Z

82

Analysis of the Production Cost for Various Grades of Biomass Thermal Treatment  

SciTech Connect

Process flow sheets were developed for the thermal treatment of southern pine wood chips at four temperatures (150, 180, 230, and 270 degrees C) and two different scales (20 and 100 ton/hour). The larger capacity processes had as their primary heat source hot gas assumed to be available in quantity from an adjacent biorefinery. Mass and energy balances for these flow sheets were developed using Aspen Plus process simulation software. The hot gas demands in the larger processes, up to 1.9 million lb/hour, were of questionable feasibility because of the volume to be moved. This heat was of low utility because the torrefaction process, especially at higher temperatures, is a net heat producer if the organic byproduct gases are burned. A thermal treatment flow sheet using wood chips dried in the biorefinery to 10% moisture content (rather than 30% for green chips) with transfer of high temperature steam from the thermal treatment depot to the biorefinery was also examined. The equipment size information from all of these cases was used in several different equipment cost estimating methods to estimate the major equipment costs for each process. From these, factored estimates of other plant costs were determined, leading to estimates (+ / - 30% accuracy) of total plant capital cost. The 20 ton/hour processes were close to 25 million dollars except for the 230 degrees C case using dried wood chips which was only 15 million dollars because of its small furnace. The larger processes ranged from 64-120 million dollars. From these capital costs and projections of several categories of operating costs, the processing cost of thermally treated pine chips was found to be $28-33 per ton depending on the degree of treatment and without any credits for steam generation. If the excess energy output of the two 20 ton/hr depot cases at 270 degrees C can be sold for $10 per million BTU, the net processing cost dropped to $13/ton product starting with green wood chips or only $3 per ton if using dried chips from the biorefinery. Including a 12% return on invested capital raised all of the operating cost results by about $20/ton.

Robert S Cherry; Rick A. Wood; Tyler L Westover

2013-12-01T23:59:59.000Z

83

Ion beam surface treatment: A new technique for thermally modifying surfaces using intense, pulsed ion beams  

Science Conference Proceedings (OSTI)

The emerging capability to produce high average power (10--300 kW) pulsed ion beams at 0.2{minus}2 MeV energies is enabling us to develop a new, commercial-scale thermal surface treatment technology called Ion Beam Surface Treatment (IBEST). This new technique uses high energy, pulsed ({le}500 ns) ion beams to directly deposit energy in the top 1--20 micrometers of the surface of any material. The depth of treatment is controllable by varying the ion energy and species. Deposition of the energy in a thin surface layer allows melft of the layer with relatively small energies (1--10J/cm2) and allows rapid cooling of the melted layer by thermal conduction into the underlying substrate. Typical cooling rates of this process (109 K/sec) are sufficient to cause amorphous layer formation and the production of non-equilibrium microstructures (nanocrystalline and metastable phases). Results from initial experiments confirm surface hardening, amorphous layer and nanocrystalline grain size formation, corrosion resistance in stainless steel and aluminum, metal surface polishing, controlled melt of ceramic surfaces, and surface cleaning and oxide layer removal as well as surface ablation and redeposition. These results follow other encouraging results obtained previously in Russia using single pulse ion beam systems. Potential commercialization of this surface treatment capability is made possible by the combination of two new technologies, a new repetitive high energy pulsed power capability (0.2{minus}2MV, 25--50 kA, 60 ns, 120 Hz) developed at SNL, and a new repetitive ion beam system developed at Cornell University.

Stinnett, R.W.; Buchheit, R.G.; Neau, E.L. [and others

1995-08-01T23:59:59.000Z

84

Integrated thermal and nonthermal treatment technology and subsystem cost sensitivity analysis  

SciTech Connect

The U.S. Department of Energy`s (DOE) Environmental Management Office of Science and Technology (EM-50) authorized studies on alternative systems for treating contact-handled DOE mixed low-level radioactive waste (MLLW). The on-going Integrated Thermal Treatment Systems` (ITTS) and the Integrated Nonthermal Treatment Systems` (INTS) studies satisfy this request. EM-50 further authorized supporting studies including this technology and subsystem cost sensitivity analysis. This analysis identifies areas where technology development could have the greatest impact on total life cycle system costs. These areas are determined by evaluating the sensitivity of system life cycle costs relative to changes in life cycle component or phase costs, subsystem costs, contingency allowance, facility capacity, operating life, and disposal costs. For all treatment systems, the most cost sensitive life cycle phase is the operations and maintenance phase and the most cost sensitive subsystem is the receiving and inspection/preparation subsystem. These conclusions were unchanged when the sensitivity analysis was repeated on a present value basis. Opportunity exists for technology development to reduce waste receiving and inspection/preparation costs by effectively minimizing labor costs, the major cost driver, within the maintenance and operations phase of the life cycle.

Harvego, L.A.; Schafer, J.J.

1997-02-01T23:59:59.000Z

85

Operational characteristics of anaerobic digesters at selected municipal wastewater treatment facilities in the United States  

DOE Green Energy (OSTI)

Bench-scale and pilot plant studies at PNL have shown that powdered activated carbon is effective in improving volatile solids destruction and gas production in anaerobic digesters that are operating at less than normally expected levels of efficiency. To evaluate the applicability of this technology to digesters in the United States, digester operating characteristics at 60 facilities were surveyed and the number of stressed digesters estimated. The results show that although median values of the operating parameters conformed with those of a well-operated digester, 30% of the digesters surveyed were stressed with regard to at least one important parameter. Of the 30 largest treatment plants in the U.S., 7 fell into this category. Digester gas production and usage were then examined to determine the importance of methane off-gas as an energy source. A conservative estimate is that the gas produced nationally represents a heating value of about 2.36 x 10/sup 13/ Btu/year with a present value of $40 million. Of this amount, an estimated 75% is used either onsite or sold. Onsite uses include heating digesters and buildings, incinerating sludge, operating equipment, and generating electricity. The other 25% is flared and the energy value lost. The present value of the flared gas is about $10 million/year. Natural gas prices are projected to increase 150% over the next 7 years. If the present utilization ratio continues, the flared gas will be worth approximately $27 million in 1985. Presently, digester gas is mainly used for process heating and operating equipment. The technical and economic feasibility of recovering digester gas for electrical power generation, onsite equipment operation, and sales to other consumers (utilities, private companies) should be thoroughly investigated. If fuel gas recovery and utilization are found to be desirable, consideration should be given to expanding and upgrading anaerobic digester facilities in the U.S.

Spencer, R.R.; Wong, A.L.; Coates, J.A.; Ahlstrom, S.B.

1978-12-01T23:59:59.000Z

86

Partitioning planning studies: Preliminary evaluation of metal and radionuclide partitioning the high-temperature thermal treatment systems  

SciTech Connect

A preliminary study of toxic metals and radionuclide partitioning during high-temperature processing of mixed waste has been conducted during Fiscal Year 1996 within the Environmental Management Technology Evaluation Project. The study included: (a) identification of relevant partitioning mechanisms that cause feed material to be distributed between the solid, molten, and gas phases within a thermal treatment system; (b) evaluations of existing test data from applicable demonstration test programs as a means to identify and understand elemental and species partitioning; and, (c) evaluation of theoretical or empirical partitioning models for use in predicting elemental or species partitioning in a thermal treatment system. This preliminary study was conducted to identify the need for and the viability of developing the tools capable of describing and predicting toxic metals and radionuclide partitioning in the most applicable mixed waste thermal treatment processes. This document presents the results and recommendations resulting from this study that may serve as an impetus for developing and implementing these predictive tools.

Liekhus, K.; Grandy, J.; Chambers, A. [and others] [and others

1997-03-01T23:59:59.000Z

87

EFFECT OF HEAT TREATMENT ON THERMAL PROPERTIES OF PITCH-BASED AND PAN-BASED CARBON-CARBON COMPOSITES  

Science Conference Proceedings (OSTI)

Thermal properties of two directional (2D) pitch-based carbon fiber with charred resin and three directional (3D) PAN-based carbon fiber with CVI carbon matrix C/C composite were investigated for non-heat treated (NHT) and heat treated (HT) materials through the thickness (z-direction). Heat treatment was performed at 1800, 2100 and 2400 oC for 1-hr in inert argon atmosphere. Thermal diffusivity, heat capacity and bulk density were measured to calculate thermal conductivity. Thermal diffusivity and conductivity was the highest for 3D C/C heat treated at maximum temperature with non-heat treated one exhibiting the lowest one. Similarly, 2D C/C heat treated at maximum temperature exhibited the highest thermal diffusivity and thermal conductivity. Polarized light microscopy (PLM) images of HTT C/C show a progressive improvement in microstructure when compared to NHT C/C. However, HTT 2D and 3D C/C composites exhibited extensive shrinkage of charred resin and CVI carbon matrix, respectively, from fibers resulting in intra and inter-bundles cracking when compared to NHT one. Raman spectroscopy and XRD results of NHT and HTT C/C indicated increased ordering of structure. A progressive improvement in thermal properties was observed with increased heat treatment temperatures.

Iqbal, Sardar S. [Southern Illinois University; Dinwiddie, Ralph Barton [ORNL; Porter, Wallace D [ORNL; Lance, Michael J [ORNL; Fillip, Peter [Southern Illinois University

2011-01-01T23:59:59.000Z

88

Heavy Metal Immobilization Through Phosphate and Thermal Treatment of Dredged Sediments  

Science Conference Proceedings (OSTI)

Disposal of dredged sediments is expensive and poses a major challenge for harbor dredging projects. Therefore beneficial reuse of these sediments as construction material is highly desirable assuming contaminants such as heavy metals are immobilized and organics are mineralized. In this research, the effect of the addition of 2.5% phosphate, followed by thermal treatment at 700 C, was investigated for metal contaminants in dredged sediments. Specifically, Zn speciation was evaluated, using X-ray absorption spectroscopy (XAS), by applying principal component analysis (PCA), target transformation (TT), and linear combination fit (LCF) to identify the main phases and their combination from an array of reference compounds. In dredged sediments, Zn was present as smithsonite (67%) and adsorbed to hydrous manganese oxides (18%) and hydrous iron oxides (15%). Phosphate addition resulted in precipitation of hopeite (22%), while calcination induced formation of spinels, gahnite (44%), and franklinite (34%). Although calcination was previously used to agglomerate phosphate phases by sintering, we found that it formed sparingly soluble Zn phases. Results from the U.S. EPA toxicity characteristic leaching procedure (TCLP) confirmed both phosphate addition and calcination reduced leachability of heavy metals with the combined treatment achieving up to an 89% reduction.

Ndiba,P.; Axe, L.; Boonfueng, T.

2008-01-01T23:59:59.000Z

89

Effect of thermal treatments on the properties of nickel and cobalt activated-charcoal-supported catalysts  

SciTech Connect

The effect of thermal pretreatment in N[sub 2] up to 723 K and the activation treatments in H[sub 2] and an inert atmosphere on the properties of Ni and Co activated-charcoal-supported catalysts were studied. Catalysts were characterized by means of N[sub 2] adsorption at 77 K, H[sub 2] chemisorption at room temperature, thermogravimetric analysis (TGA), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The catalysts' activity and selectivity for acetone hydrogenation to 2-propanol under unusual and severe conditions (473 K and high overall acetone conversion) were also measured. TGA and XRD evidence was found for the charcoal-support-promoted NiO and CoO reduction to the metallic states when the catalysts were subjected to an inert atmosphere above 723 K caused a loss of acetone hydrogenation activity (calculated on a metal load basis) for both the Ni and Co activated-charcoal-supported catalysts, with respect to that of the low-temperature (573 K) activation treatments. In a series of activated-charcoal-supported Ni catalysts, a large decrease in the H[sub 2] chemisorption uptake was also found for a sample pretreated in N[sub 2] at 723 K prior to H[sub 2] reduction. These results were not due to nickel or cobalt sintering, as shown by XRD line broadening measurements. The catalytic activity loss was accompanied by a decrease (in the case of Ni) and an increase (in the case of Co) in the 2-propanol selectivity. 44 refs., 13 figs., 3 tabs.

Gandia, L.M.; Montes, M. (Universidad del Pais Vasco, San Sebastian (Spain))

1994-02-01T23:59:59.000Z

90

Independent peer review panel report on the integrated nonthermal treatment systems study and the comparison of integrated thermal and integrated nonthermal treatment systems for mixed low level waste  

SciTech Connect

The US Department of Energy`s (DOE) Office of Environmental Management (EM) Office of Science and Technology (OST) has conducted studies of integrated thermal treatment systems and integrated nonthermal treatment systems (INTS) for treating contact handled, alpha and non-alpha mixed low level radioactive waste (MLLW). The MLLW in the DOE complex consists of a wide variety of organic and inorganic solids and liquids contaminated with radioactive substances. Treatment systems are needed to destroy organic material and stabilize residues prior to land disposal. In May 1996 the Deputy Assistant Secretary for OST appointed an Independent Peer Review Panel to: (1) review and comment on the INTS Study; (2) make recommendations on the most promising thermal and nonthermal treatment systems; (3) make recommendations on research and development necessary to prove the performance of nonthermal and thermal technologies; and (4) review and comment on the preliminary draft of the ITTS/INTS Comparison Report. This report presents the primary conclusions and recommendations based on the review of the INTS study and the comparison report. System selection, overviews, comparisons, cost estimations and sensitivity analyses, and recommended R and D engineering needs are then described and discussed.

1996-08-01T23:59:59.000Z

91

Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments  

Science Conference Proceedings (OSTI)

Purpose: A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comision Nacional de Energia Atomica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. Methods: The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Results: Local mixed-field thermal neutron sensitivities and global thermal and mixed-field thermal neutron sensitivities derived from measurements performed at the RA-6 were compared and no significant differences were found. Global RA-6-based thermal neutron sensitivity showed agreement with pure thermal neutron sensitivity measurements performed in the RA-3 spectrum. Additionally, the detector response proved nearly unchanged by differences in neutron spectra from real (RA-6 BNCT beam) and ideal (considered for calibration calculations at RA-3) neutron source descriptions. The results confirm that the special design of the Rh SPND can be considered as having a pure thermal response for neutron spectra with epithermal-to-thermal flux ratios up to 12%. In addition, the linear response of the detector to thermal flux allows the use of a mixed-field thermal neutron sensitivity of 1.95 {+-} 0.05 x 10{sup -21} A n{sup -1}{center_dot}cm{sup 2}{center_dot}s. This sensitivity can be used in spectra with up to 21% epithermal-to-thermal flux ratio without significant error due to epithermal neutron and gamma induced effects. The values of the measured fluxes in clinical applications had discrepancies with calculated results that were in the range of -25% to +30%, which shows the importance of a local on-line independent measurement as part of a treatment planning quality control system. Conclusions: The usefulness of the CNEA Rh SPND for the on-line local measurement of thermal neutron flux on BNCT patients has been demonstrated based on an appropriate neutron spectra calibration and clinical applications.

Miller, Marcelo E.; Sztejnberg, Manuel L.; Gonzalez, Sara J.; Thorp, Silvia I.; Longhino, Juan M.; Estryk, Guillermo [Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429 (Argentina); Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429, Argentina and CONICET, Av. Rivadavia 1917, Ciudad de Buenos Aires 1033 (Argentina); Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429 (Argentina)

2011-12-15T23:59:59.000Z

92

Molten Salt Oxidation: A Thermal Technology for Waste Treatment and Demilitarization  

SciTech Connect

MSO is a good alternative to incineration for the treatment of a variety of organic wastes including obsolete explosives, low-level mixed waste streams, PCB contaminated oils, spent resins and carbon. The Lawrence Livermore National Laboratory (LLNL) has demonstrated the MSO process for the effective destruction of explosives, explosives-contaminated materials, and other wastes on a 1.5 kg/hr bench-scale unit and in an integrated MSO facility capable of treating 8 kg/hr of low-level radioactive mixed wastes. LLNL, under the direction and support of the Joint Demilitarization Technology (JDT) program, is currently building an integrated MSO plant for destroying explosives, explosives-contaminated sludge and explosives-contaminated activated charcoal. In a parallel effort, LLNL also provides technical support to DOE for the implementation of the MSO technology at industrial scale at Richland, Washington. Over 30 waste streams have been demonstrated with LLNL-built MSO systems. In this paper we will present our latest experimental data, our operational experience with MSO and also discuss its process capabilities.

Hsu, P C; Watkins, B; Pruneda, C; Kwak, S

2001-08-23T23:59:59.000Z

93

Active cooling-based surface confinement system for thermal soil treatment  

DOE Patents (OSTI)

A thermal barrier is disclosed for surface confinement with active cooling to control subsurface pressures during thermal remediation of shallow (5-20 feet) underground contaminants. If steam injection is used for underground heating, the actively cooled thermal barrier allows the steam to be injected into soil at pressures much higher (20-60 psi) than the confining strength of the soil, while preventing steam breakthrough. The rising steam is condensed to liquid water at the thermal barrier-ground surface interface. The rapid temperature drop forced by the thermal barrier drops the subsurface pressure to below atmospheric pressure. The steam and contaminant vapors are contained by the thermal blanket, which can be made of a variety of materials such as steel plates, concrete slabs, membranes, fabric bags, or rubber bladders. 1 fig.

Aines, R.D.; Newmark, R.L.

1997-10-28T23:59:59.000Z

94

Active cooling-based surface confinement system for thermal soil treatment  

DOE Patents (OSTI)

A thermal barrier is disclosed for surface confinement with active cooling to control subsurface pressures during thermal remediation of shallow (5-20 feet) underground contaminants. If steam injection is used for underground heating, the actively cooled thermal barrier allows the steam to be injected into soil at pressures much higher (20-60 psi) than the confining strength of the soil, while preventing steam breakthrough. The rising steam is condensed to liquid water at the thermal barrier-ground surface interface. The rapid temperature drop forced by the thermal barrier drops the subsurface pressure to below atmospheric pressure. The steam and contaminant vapors are contained by the thermal blanket, which can be made of a variety of materials such as steel plates, concrete slabs, membranes, fabric bags, or rubber bladders.

Aines, Roger D. (Livermore, CA); Newmark, Robin L. (Pleasanton, CA)

1997-01-01T23:59:59.000Z

95

Survival Differences by Race/Ethnicity and Treatment for Localized Hepatocellular Carcinoma Within the United States  

E-Print Network (OSTI)

Atlanta, Connecticut, Detroit, Hawaii, Iowa, New Mexico,CI Francisco-Oakland, Detroit, Los Angeles, Greater Califor-any treatment. For example, in Detroit only 5.2% of blacks

Wong, Robert J.; Corley, Douglas A.

2009-01-01T23:59:59.000Z

96

LITERATURE SURVEY FOR GROUNDWATER TREATMENT OPTIONS FOR NITRATE IODINE-129 AND URANIUM 200-ZP-1 OPERABLE UNIT HANFORD SITE  

SciTech Connect

This literature review presents treatment options for nitrate, iodine-129, and uranium, which are present in groundwater at the 200-ZP-I Groundwater Operable Unit (OU) within the 200 West Area of the Hanford Site. The objective of this review is to determine available methods to treat or sequester these contaminants in place (i.e., in situ) or to pump-and-treat the groundwater aboveground (i.e., ex situ). This review has been conducted with emphasis on commercially available or field-tested technologies, but theoretical studies have, in some cases, been considered when no published field data exist. The initial scope of this literature review included only nitrate and iodine-I 29, but it was later expanded to include uranium. The focus of the literature review was weighted toward researching methods for treatment of nitrate and iodine-129 over uranium because of the relatively greater impact of those compounds identified at the 200-ZP-I OU.

BYRNES ME

2008-06-05T23:59:59.000Z

97

SLUDGE TREATMENT PROJECT KOP DISPOSITION - THERMAL AND GAS ANALYSIS FOR THE COLD VACUUM DRYING FACILITY  

DOE Green Energy (OSTI)

The purpose of this document is to present conceptual design phase thermal process calculations that support the process design and process safety basis for the cold vacuum drying of K Basin KOP material. This document is intended to demonstrate that the conceptual approach: (1) Represents a workable process design that is suitable for development in preliminary design; and (2) Will support formal safety documentation to be prepared during the definitive design phase to establish an acceptable safety basis. The Sludge Treatment Project (STP) is responsible for the disposition of Knock Out Pot (KOP) sludge within the 105-K West (KW) Basin. KOP sludge consists of size segregated material (primarily canister particulate) from the fuel and scrap cleaning process used in the Spent Nuclear Fuel process at K Basin. The KOP sludge will be pre-treated to remove fines and some of the constituents containing chemically bound water, after which it is referred to as KOP material. The KOP material will then be loaded into a Multi-Canister Overpack (MCO), dried at the Cold Vacuum Drying Facility (CVDF) and stored in the Canister Storage Building (CSB). This process is patterned after the successful drying of 2100 metric tons of spent fuel, and uses the same facilities and much of the same equipment that was used for drying fuel and scrap. Table ES-l present similarities and differences between KOP material and fuel and between MCOs loaded with these materials. The potential content of bound water bearing constituents limits the mass ofKOP material in an MCO load to a fraction of that in an MCO containing fuel and scrap; however, the small particle size of the KOP material causes the surface area to be significantly higher. This relatively large reactive surface area represents an input to the KOP thermal calculations that is significantly different from the calculations for fuel MCOs. The conceptual design provides for a copper insert block that limits the volume available to receive KOP material, enhances heat conduction, and functions as a heat source and sink during drying operations. This use of the copper insert represents a significant change to the thermal model compared to that used for the fuel calculations. A number of cases were run representing a spectrum of normal and upset conditions for the drying process. Dozens of cases have been run on cold vacuum drying of fuel MCOs. Analysis of these previous calculations identified four cases that provide a solid basis for judgments on the behavior of MCO in drying operations. These four cases are: (1) Normal Process; (2) Degraded vacuum pumping; (3) Open MCO with loss of annulus water; and (4) Cool down after vacuum drying. The four cases were run for two sets of input parameters for KOP MCOs: (1) a set of parameters drawn from safety basis values from the technical data book and (2) a sensitivity set using parameters selected to evaluate the impact of lower void volume and smaller particle size on MCO behavior. Results of the calculations for the drying phase cases are shown in Table ES-2. Cases using data book safety basis values showed dry out in 9.7 hours and heat rejection sufficient to hold temperature rise to less than 25 C. Sensitivity cases which included unrealistically small particle sizes and corresponding high reactive surface area showed higher temperature increases that were limited by water consumption. In this document and in the attachment (Apthorpe, R. and M.G. Plys, 2010) cases using Technical Databook safety basis values are referred to as nominal cases. In future calculations such cases will be called safety basis cases. Also in these documents cases using parameters that are less favorable to acceptable performance than databook safety values are referred to as safety cases. In future calculations such cases will be called sensitivity cases or sensitivity evaluations Calculations to be performed in support of the detailed design and formal safety basis documentation will expand the calculations presented in this document to include: additional features of th

SWENSON JA; CROWE RD; APTHORPE R; PLYS MG

2010-03-09T23:59:59.000Z

98

Thermal performance measurements of sealed insulating glass units with low-E coatings using the MoWiTT (Mobile Window Thermal Test) field-test facility  

SciTech Connect

Using data obtained in a mobile field-test facility, measured performance of clear and low-emissivity double-glazing units is presented for south-facing and north-facing orientations. The changes in U-value and shading coefficient resulting from addition of the low-E coating are found to agree with theoretical expectations for the cold spring test conditions. Accurate nighttime U-values were derived from the data and found to agree with calculations. Expected correlation between U-value and wind speed was not observed in the data; a plausible experimental reason for this is advanced.

Klems, J.; Keller, H.

1986-12-01T23:59:59.000Z

99

MWIP: Surrogate formulations for thermal treatment of low-level mixed waste. Part 4, Wastewater treatment sludges  

Science Conference Proceedings (OSTI)

The category of sludges, filter cakes, and other waste processing residuals represent the largest volume of low-level mixed (hazardous and radioactive) wastes within the US Department of Energy (DOE) complex. Treatment of these wastes to minimize the mobility of contaminants, and to eliminate the presence of free water, is required under the Federal Facility Compliance Act agreements between DOE and the Environmental Protection Agency. In the text, we summarize the currently available data for several of the high priority mixed-waste sludge inventories within DOE. Los Alamos National Laboratory TA-50 Sludge and Rocky Flats Plant By-Pass Sludge are transuranic (TRU)-contaminated sludges that were isolated with the use of silica-based filter aids. The Oak Ridge Y-12 Plant West End Treatment Facility Sludge is predominantly calcium carbonate and biomass. The Oak Ridge K-25 Site Pond Waste is a large-volume waste stream, containing clay, silt, and other debris in addition to precipitated metal hydroxides. We formulate ``simulants`` for the waste streams described above, using cerium oxide as a surrogate for the uranium or plutonium present in the authentic material. Use of nonradiological surrogates greatly simplifies material handling requirements for initial treatability studies. The use of synthetic mixtures for initial treatability testing will facilitate compositional variation for use in conjunction with statistical design experiments; this approach may help to identify any ``operating window`` limitations. The initial treatability testing demonstrations utilizing these ``simulants`` will be based upon vitrification, although the materials are also amenable to testing grout-based and other stabilization procedures. After the feasibility of treatment and the initial evaluation of treatment performance has been demonstrated, performance must be verified using authentic samples of the candidate waste stream.

Bostick, W.D.; Hoffmann, D.P.; Stevenson, R.J.; Richmond, A.A. [Oak Ridge National Lab., TN (United States); Bickford, D.F. [Westinghouse Savannah River Co., Aiken, SC (United States)

1994-01-01T23:59:59.000Z

100

Final report from VFL Technologies for the pilot-scale thermal treatment of lower East Fork Poplar Creek floodplain soils. LEFPC appendices, Volume 4, Appendix V-C  

Science Conference Proceedings (OSTI)

This is the the final verification run data package for pilot scale thermal treatment of lower East Fork Poplar Creek floodplain soils. Included are data on volatiles, semivolatiles, and TCLP volatiles.

NONE

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal treatment unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Development of Site-Specific Soil Design Basis Earthquake (DBE) Parameters for the Integrated Waste Treatment Unit (IWTU)  

Science Conference Proceedings (OSTI)

Horizontal and vertical PC 3 (2,500 yr) Soil Design Basis Earthquake (DBE) 5% damped spectra, corresponding time histories, and strain-compatible soil properties were developed for the Integrated Waste Treatment Unit (IWTU). The IWTU is located at the Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Laboratory (INL). Mean and 84th percentile horizontal DBE spectra derived from site-specific site response analyses were evaluated for the IWTU. The horizontal and vertical PC 3 (2,500 yr) Soil DBE 5% damped spectra at the 84th percentile were selected for Soil Structure Interaction (SSI) analyses at IWTU. The site response analyses were performed consistent with applicable Department of Energy (DOE) Standards, recommended guidance of the Nuclear Regulatory Commission (NRC), American Society of Civil Engineers (ASCE) Standards, and recommendations of the Blue Ribbon Panel (BRP) and Defense Nuclear Facilities Safety Board (DNFSB).

Payne, Suzette

2008-08-01T23:59:59.000Z

102

Thermal treatment for increasing magnetostrictive response of rare earth-iron alloy rods  

DOE Patents (OSTI)

Magnetostrictive rods formed from rare earth-iron alloys are subjected to a short time heat treatment to increase their Magnetostrictive response under compression. The heat treatment is preferably carried out at a temperature of from 900.degree. to 1000.degree. C. for 20 minutes to six hours.

Verhoeven, John D. (Ames, IA); McMasters, O. D. (Ames, IA)

1989-07-18T23:59:59.000Z

103

Guideline for benchmarking thermal treatment systems for low-level mixed waste  

SciTech Connect

A process for benchmarking low-level mixed waste (LLMW) treatment technologies has been developed. When used in conjunction with the identification and preparation of surrogate waste mixtures, and with defined quality assurance and quality control procedures, the benchmarking process will effectively streamline the selection of treatment technologies being considered by the US Department of Energy (DOE) for LLMW cleanup and management. Following the quantitative template provided in the benchmarking process will greatly increase the technical information available for the decision-making process. The additional technical information will remove a large part of the uncertainty in the selection of treatment technologies. It is anticipated that the use of the benchmarking process will minimize technology development costs and overall treatment costs. In addition, the benchmarking process will enhance development of the most promising LLMW treatment processes and aid in transferring the technology to the private sector. To instill inherent quality, the benchmarking process is based on defined criteria and a structured evaluation format, which are independent of any specific conventional treatment or emerging process technology. Five categories of benchmarking criteria have been developed for the evaluation: operation/design; personnel health and safety; economics; product quality; and environmental quality. This benchmarking document gives specific guidance on what information should be included and how it should be presented. A standard format for reporting is included in Appendix A and B of this document. Special considerations for LLMW are presented and included in each of the benchmarking categories.

Hoffman, D.P.; Gibson, L.V. Jr.; Hermes, W.H. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Bastian, R.E. [Focus Environmental, Inc., Knoxville, TN (United States); Davis, W.T. [Tennessee Univ., Knoxville, TN (United States)

1994-01-01T23:59:59.000Z

104

Final report for the pilot-scale thermal treatment of Lower East Fork Poplar Creek floodplain soils  

SciTech Connect

IT Corporation (IT) was contracted by Martin Marietta Energy Systems, Inc. (Energy Systems) to perform a pilot-scale demonstration of the effectiveness of thermal desorption as a remedial technology for removing mercury from the Lower East Fork Poplar Creek (LEFPC) floodplain soil. Previous laboratory studies by Energy Systems suggested that this technology could reduce mercury to very low levels. This pilot-scale demonstration study was initiated to verify on an engineering scale the performance of thermal desorption. This report includes the details of the demonstration study, including descriptions of experimental equipment and procedures, test conditions, sampling and analysis, quality assurance (QA), detailed test results, and an engineering assessment of a conceptual full-scale treatment facility. The specific project tasks addressed in this report were performed between October 1993 and June 1994. These tasks include soil receipt, preparation, and characterization; prepilot (bench-scale) desorption tests; front-end materials handling tests; pilot tests; back-end materials handling tests; residuals treatment; and engineering scale-up assessment.

1994-09-01T23:59:59.000Z

105

Assessment of thermal damage to polymeric materials by hydrogen deflagration in the Three Mile Island Unit 2 Reactor Building  

DOE Green Energy (OSTI)

Thermal damage to susceptible material in accessible regions of the reactor building was distributed in non-uniform patterns. No clear explanation for non-uniformity was found in examined evidence, e.g., burned materials were adjacent to materials that appear similar but were not burned. Because these items were in proximity to vertical openings that extend the height of the reactor building, we assume the unburned materials preferentially absorbed water vapor during periods of high, local steam concentration. Simple hydrogen-fire-exposure tests and heat transfer calculations duplicate the degree of damage found on inspected materials from the containment building. These data support estimated 8% pre-fire hydrogen concentration predictions based on various hydrogen production mechanisms.

Alvares, N.J.

1985-05-01T23:59:59.000Z

106

H[sub 2]OTREAT: An acid for evaluating water treatment requirements for Aquifer Thermal Energy Storage  

DOE Green Energy (OSTI)

A public-domain software package is available to aid engineers in the design of water treatment systems for Aquifer Thermal Energy Storage (ATES). Geochemical phenomena that cause problems in ATES systems include formation of scale in heat exchangers, clogging of wells, corrosion in piping and heat exchangers, and degradation of aquifer materials. Preventing such problems frequently requires employing water treatment systems. Individual water treatment methods vary in cost. effectiveness, environmental impact, corrosion potential, and acceptability to regulatory bodies. Evaluating these water treatment options is generally required to determine the feasibility of ATFS systems. The H20TREAT software was developed by Pacific Northwest Laboratory for use by engineers with limited or no experience in geochemistry. At the feasibility analysis and design stages, the software utilizes a recently revised geochemical model,MINTEQ, to calculate the saturation indices of selected carbonate, oxide, and hydroxide minerals based on water chemistry and temperature data provided by the user. The saturation indices of key calcium, iron. silica, and manganese carbonates, oxides, and hydroxides (calcite, rhodochrosite, siderite, Fe(OH)[sub 3][a], birnessite, chalcedony, and SiO[sub 2]) are calculated. Currently, H20TREAT does not perform cost calculations; however, treatment capacity requirements are provided. Treatments considered include (1) Na and H ion exchangers and pellet reactors to avoid calcite precipitation, and (2) in situ nitrate addition and cascade precipitation. The H20TREAT software also provides the user with guidance on other geochemical problems that must be considered, such as SiO[sub 2] precipitation, corrosion, and environmental considerations. The sodium adsorption ratio and sodium hazard are calculated to evaluate the likelihood of clay swelling and dispersion caused by high Na concentrations. H20TREAT is available for DOS and UNIX computers.

Vail, L.W.; Jenne, E.A.; Eary, L.E.

1992-08-01T23:59:59.000Z

107

H{sub 2}OTREAT: An acid for evaluating water treatment requirements for Aquifer Thermal Energy Storage  

DOE Green Energy (OSTI)

A public-domain software package is available to aid engineers in the design of water treatment systems for Aquifer Thermal Energy Storage (ATES). Geochemical phenomena that cause problems in ATES systems include formation of scale in heat exchangers, clogging of wells, corrosion in piping and heat exchangers, and degradation of aquifer materials. Preventing such problems frequently requires employing water treatment systems. Individual water treatment methods vary in cost. effectiveness, environmental impact, corrosion potential, and acceptability to regulatory bodies. Evaluating these water treatment options is generally required to determine the feasibility of ATFS systems. The H20TREAT software was developed by Pacific Northwest Laboratory for use by engineers with limited or no experience in geochemistry. At the feasibility analysis and design stages, the software utilizes a recently revised geochemical model,MINTEQ, to calculate the saturation indices of selected carbonate, oxide, and hydroxide minerals based on water chemistry and temperature data provided by the user. The saturation indices of key calcium, iron. silica, and manganese carbonates, oxides, and hydroxides (calcite, rhodochrosite, siderite, Fe(OH){sub 3}[a], birnessite, chalcedony, and SiO{sub 2}) are calculated. Currently, H20TREAT does not perform cost calculations; however, treatment capacity requirements are provided. Treatments considered include (1) Na and H ion exchangers and pellet reactors to avoid calcite precipitation, and (2) in situ nitrate addition and cascade precipitation. The H20TREAT software also provides the user with guidance on other geochemical problems that must be considered, such as SiO{sub 2} precipitation, corrosion, and environmental considerations. The sodium adsorption ratio and sodium hazard are calculated to evaluate the likelihood of clay swelling and dispersion caused by high Na concentrations. H20TREAT is available for DOS and UNIX computers.

Vail, L.W.; Jenne, E.A.; Eary, L.E.

1992-08-01T23:59:59.000Z

108

Simulated biomass and soil carbon of loblolly pine and cottonwood plantations across a thermal gradient in southeastern United States  

Science Conference Proceedings (OSTI)

Changes in biomass and soil carbon with nitrogen fertilization were simulated for a 25-year loblolly pine (Pinus taeda) plantation and for three consecutive 7-year short-rotation cottonwood (Populus deltoides) stands. Simulations were conducted for 17 locations in the southeastern United States with mean annual temperatures ranging from 13.1 to 19.4 C. The LINKAGES stand growth model, modified to include the "RothC" soil C and soil N model, simulated tree growth and soil C status. Nitrogen fertilization significantly increased cumulative cottonwood aboveground biomass in the three rotations from a site average of 106 to 272 Mg/ha in 21 years, whereas the equivalent site averages for loblolly pine were unchanged at 176 and 184 Mg/ha in 25 years. Location results, compared on the annual sum of daily mean air temperatures above 5.5 C (growing-degree-days), showed contrasts. Loblolly pine biomass increased whereas cottonwood decreased with increasing growing-degree-days, particularly in cottonwood stands receiving N fertilization. The increment of biomass due to N addition per unit of control biomass (relative response) declined in both plantations with increase in growing-degree-days. Average soil C in loblolly pine stands increased from 24.3 to 40.4 Mg/ha in 25 years and in cottonwood soil C decreased from 14.7 to 13.7 Mg/ha after three 7-year rotations. Soil C did not decrease with increasing growing-degree-days in either plantation type suggesting that global warming may not initially affect soil C. Nitrogen fertilizer increased soil C slightly in cottonwood plantations and had no significant effect on the soil C of loblolly stands.

Luxmoore, Robert J [ORNL; Tharp, M Lynn [ORNL; Post, Wilfred M [ORNL

2008-01-01T23:59:59.000Z

109

Environmental Assessment Offsite Thermal Treatment of Low-Level Mixed Waste  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE), Richland Operations Office (RL) needs to demonstrate the economics and feasibility of offsite commercial treatment of contact-handled low-level mixed waste (LLMW), containing polychlorinated biphenyls (PCBS) and other organics, to meet existing regulatory standards for eventual disposal.

N /A

1999-05-06T23:59:59.000Z

110

Thermal springs list for the United States; National Oceanic and Atmospheric Administration Key to Geophysical Records Documentation No. 12  

DOE Green Energy (OSTI)

The compilation has 1702 thermal spring locations in 23 of the 50 States, arranged alphabetically by State (Postal Service abbreviation) and degrees of latitude and longitude within the State. It shows spring name, surface temperature in degrees Fahrenheit and degrees Celsius; USGS Professional Paper 492 number, USGS Circular 790 number, NOAA number, north to south on each degree of latitude and longitude of the listed. USGS 1:250,000-scale (AMS) map; and the USGS topographic map coverage, 1:63360- or 1:62500-scale (15-minute) or 1:24000-scale (7.5-minute) quadrangle also included is an alphabetized list showing only the spring name and the State in which it is located. Unnamed springs are omitted. The list includes natural surface hydrothermal features: springs, pools, mud pots, mud volcanoes, geysers, fumaroles, and steam vents at temperature of 20{sup 0}C (68[sup 0}F) or greater. It does not include wells or mines, except at sites where they supplement or replace natural vents presently or recently active, or, in some places, where orifices are not distinguishable as natural or artificial. The listed springs are located on the USGS 1:250,000 (AMS) topographic maps. (MHR)

Berry, G.W.; Grim, P.J.; Ikelman, J.A. (comps.)

1980-06-01T23:59:59.000Z

111

Evaluation of gasification and novel thermal processes for the treatment of municipal solid waste  

DOE Green Energy (OSTI)

This report identifies seven developers whose gasification technologies can be used to treat the organic constituents of municipal solid waste: Energy Products of Idaho; TPS Termiska Processor AB; Proler International Corporation; Thermoselect Inc.; Battelle; Pedco Incorporated; and ThermoChem, Incorporated. Their processes recover heat directly, produce a fuel product, or produce a feedstock for chemical processes. The technologies are on the brink of commercial availability. This report evaluates, for each technology, several kinds of issues. Technical considerations were material balance, energy balance, plant thermal efficiency, and effect of feedstock contaminants. Environmental considerations were the regulatory context, and such things as composition, mass rate, and treatability of pollutants. Business issues were related to likelihood of commercialization. Finally, cost and economic issues such as capital and operating costs, and the refuse-derived fuel preparation and energy conversion costs, were considered. The final section of the report reviews and summarizes the information gathered during the study.

Niessen, W.R.; Marks, C.H.; Sommerlad, R.E. [Camp Dresser and McKee, Inc., Cambridge, MA (United States)] [Camp Dresser and McKee, Inc., Cambridge, MA (United States)

1996-08-01T23:59:59.000Z

112

Effect of thermal treatment on coke reactivity and catalytic iron mineralogy  

SciTech Connect

Iron minerals in coke can catalyze its gasification and may affect coke behavior in the blast furnace. The catalytic behavior of iron depends largely upon the nature of the iron-bearing minerals. To determine the mineralogical changes that iron could undergo in the blast furnace, cokes made from three coals containing iron present in different mineral forms (clays, carbonates, and pyrite) were examined. All coke samples were heat-treated in a horizontal furnace at 1373, 1573, and 1773 K and then gasified with CO{sub 2} at 1173 K in a fixed bed reactor (FBR). Coke mineralogy was characterized using quantitative X-ray diffraction (XRD) analysis of coke mineral matter prepared by low-temperature ashing (LTA) and field emission scanning electron microscopy combined with energy dispersive X-ray analysis (FESEM/EDS). The mineralogy of the three cokes was most notably distinguished by differing proportions of iron-bearing phases. During heat treatment and subsequent gasification, iron-containing minerals transformed to a range of minerals but predominantly iron-silicides and iron oxides, the relative amounts of which varied with heat treatment temperature and gasification conditions. The relationship between initial apparent reaction rate and the amount of catalytic iron minerals - pyrrhotite, metallic iron, and iron oxides - was linear and independent of heat treatment temperature at total catalyst levels below 1 wt %. The study showed that the coke reactivity decreased with increasing temperature of heat treatment due to decreased levels of catalytic iron minerals (largely due to formation of iron silicides) as well as increased ordering of the carbon structure. The study also showed that the importance of catalytic mineral matter in determining reactivity declines as gasification proceeds. 37 refs., 13 figs., 7 tabs.

Byong-chul Kim; Sushil Gupta; David French; Richard Sakurovs; Veena Sahajwalla [University of New South Wales, Sydney, NSW (Australia). Centre for Sustainable Materials Research and Technology

2009-07-15T23:59:59.000Z

113

Feasibility study for thermal treatment of solid tire wastes in Bangladesh by using pyrolysis technology  

Science Conference Proceedings (OSTI)

In this study on the basis of lab data and available resources in Bangladesh, feasibility study has been carried out for pyrolysis process converting solid tire wastes into pyrolysis oils, solid char and gases. The process considered for detailed analysis was fixed-bed fire-tube heating pyrolysis reactor system. The comparative techno-economic assessment was carried out in US$ for three different sizes plants: medium commercial scale (144 tons/day), small commercial scale (36 tons/day), pilot scale (3.6 tons/day). The assessment showed that medium commercial scale plant was economically feasible, with the lowest unit production cost than small commercial and pilot scale plants for the production of crude pyrolysis oil that could be used as boiler fuel oil and for the production of upgraded liquid-products.

Islam, M.R., E-mail: mrislam1985@yahoo.com [Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204 (Bangladesh); Joardder, M.U.H.; Hasan, S.M. [Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204 (Bangladesh); Takai, K.; Haniu, H. [Department of Mechanical Engineering, National University Corporation Kitami Institute of Technology, 165 Koen-cho, Kitami City, Hokkaido 090-8507 (Japan)

2011-09-15T23:59:59.000Z

114

Treatment of electronic waste to recover metal values using thermal plasma coupled with acid leaching - A response surface modeling approach  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Sentences/phrases were modified. Black-Right-Pointing-Pointer Necessary discussions for different figures were included. Black-Right-Pointing-Pointer More discussion have been included on the flue gas analysis. Black-Right-Pointing-Pointer Queries to both the reviewers have been given. - Abstract: The global crisis of the hazardous electronic waste (E-waste) is on the rise due to increasing usage and disposal of electronic devices. A process was developed to treat E-waste in an environmentally benign process. The process consisted of thermal plasma treatment followed by recovery of metal values through mineral acid leaching. In the thermal process, the E-waste was melted to recover the metal values as a metallic mixture. The metallic mixture was subjected to acid leaching in presence of depolarizer. The leached liquor mainly contained copper as the other elements like Al and Fe were mostly in alloy form as per the XRD and phase diagram studies. Response surface model was used to optimize the conditions for leaching. More than 90% leaching efficiency at room temperature was observed for Cu, Ni and Co with HCl as the solvent, whereas Fe and Al showed less than 40% efficiency.

Rath, Swagat S., E-mail: swagat.rath@gmail.com [Institute of Minerals and Materials Technology (CSIR), Bhubaneswar 751 013, Odisha (India); Nayak, Pradeep; Mukherjee, P.S.; Roy Chaudhury, G.; Mishra, B.K. [Institute of Minerals and Materials Technology (CSIR), Bhubaneswar 751 013, Odisha (India)

2012-03-15T23:59:59.000Z

115

Pilot Testing of WRI'S Novel Mercury Control Technology by Pre-Combustion Thermal Treatment of Coal  

Science Conference Proceedings (OSTI)

The challenges to the coal-fired power industry continue to focus on the emission control technologies, such as mercury, and plant efficiency improvements. An alternate approach to post-combustion control of mercury, while improving plant efficiency deals with Western Research Institute's (WRI)'s patented pre-combustion mercury removal and coal upgrading technology. WRI was awarded under the DOE's Phase III Mercury program, to evaluate the effectiveness of WRI's novel thermal pretreatment process to achieve >50% mercury removal, and at costs of Edison (DTE), and SaskPower to undertake this evaluation. The technical objectives of the project were structured in two phases: Phase I--coal selection and characterization, and bench-and PDU-scale WRI process testing and; and Phase II--pilot-scale pc combustion testing, design of an integrated boiler commercial configuration, its impacts on the boiler performance and the economics of the technology related to market applications. This report covers the results of the Phase I testing. The conclusion of the Phase I testing was that the WRI process is a technically viable technology for (1) removing essentially all of the moisture from low rank coals, thereby raising the heating value of the coal by about 30% for subbituminous coals and up to 40% for lignite coals, and (2) for removing volatile trace mercury species (up to 89%) from the coal prior to combustion. The results established that the process meets the goals of DOE of removing <50% of the mercury from the coals by pre-combustion methods. As such, further testing, demonstration and economic analysis as described in the Phase II effort is warranted and should be pursued.

Alan Bland; Jesse Newcomer; Kumar Sellakumar

2008-08-17T23:59:59.000Z

116

The effect of thermal treatment on the organization of copper and nickel nanoclusters synthesized from the gas phase  

SciTech Connect

The condensation of 85000 Cu or Ni atoms from the high-temperature gas phase has been simulated by molecular dynamics with the tight binding potential. The efect of the subsequent thermal treatment on the shape and structure of synthesized particles was studied by simulating their gradual heating in a range of 100-1200 K. Some tendencies are revealed that are characteristic of the influence of heat treatment on the nanoparticles synthesized from the gas phase. It is concluded that short-term heating leads to significant ordering of the internal structure in 70% of agglomerated nanoparticles with the predominant formation of spherical shapes. In order to explain this result, the main mechanisms of cluster formation from the gas phase have been analyzed and it is found that the agglomeration temperature plays the main role in the formation of clusters with unified shape and structure. This opens the fundamental possibility of obtaining Cu and Ni nanoclusters with preset size, shape, and structure and, hence, predictable physical properties.

Gafner, Yu. Ya., E-mail: ygafner@khsu.ru; Gafner, S. L.; Chepkasov, I. V. [Katanov Khakassian State University (Russian Federation)

2010-10-15T23:59:59.000Z

117

Technical progress and community relations activities for the fluidized bed thermal treatment process at the Rocky Flats Plant  

SciTech Connect

A fluidized bed system is being developed at Rocky Flats for the treatment of mixed waste (a mixture of radioactive and chemically hazardous waste). The current program builds on experience gained in the 1970's and 1980's in tests with bench-scale, pilot-scale, and demonstration-scale fluidized bed incinerators. Rocky Flat's fluidized bed system operates at low temperatures ([approximately]525--600[degrees]C) which eliminates many of the disadvantages associated with high temperature thermal treatment processes. The bed makes use of in situ neutralization of acidic off-gases by incorporating either sodium carbonate or a mixture of sodium carbonate and bicarbonate (Trona) in the bed media. This obviates using wet scrubbers to treat the off-gas. It is expected that once in production, the fluidized bed process will yield up to a 40:1 reduction in the volume of the waste feed. The current development program for the full-scale system is a nationwide effort incorporating input from national laboratories, universities, regulatory agencies, and private companies to assure the most current technology is utilized and that regulatory concerns are addressed. In addition to resolving technological issues, the fluidized bed program is addressing public concerns with a proactive community relations program.

Semones, G.B.; Williams, P.M.; Stiefvater, S.P.; Mitchell, D.L.; Roecker, B.D.

1993-01-01T23:59:59.000Z

118

Technical progress and community relations activities for the fluidized bed thermal treatment process at the Rocky Flats Plant  

SciTech Connect

A fluidized bed system is being developed at Rocky Flats for the treatment of mixed waste (a mixture of radioactive and chemically hazardous waste). The current program builds on experience gained in the 1970`s and 1980`s in tests with bench-scale, pilot-scale, and demonstration-scale fluidized bed incinerators. Rocky Flat`s fluidized bed system operates at low temperatures ({approximately}525--600{degrees}C) which eliminates many of the disadvantages associated with high temperature thermal treatment processes. The bed makes use of in situ neutralization of acidic off-gases by incorporating either sodium carbonate or a mixture of sodium carbonate and bicarbonate (Trona) in the bed media. This obviates using wet scrubbers to treat the off-gas. It is expected that once in production, the fluidized bed process will yield up to a 40:1 reduction in the volume of the waste feed. The current development program for the full-scale system is a nationwide effort incorporating input from national laboratories, universities, regulatory agencies, and private companies to assure the most current technology is utilized and that regulatory concerns are addressed. In addition to resolving technological issues, the fluidized bed program is addressing public concerns with a proactive community relations program.

Semones, G.B.; Williams, P.M.; Stiefvater, S.P.; Mitchell, D.L.; Roecker, B.D.

1993-01-01T23:59:59.000Z

119

Pilot Testing of WRI'S Novel Mercury Control Technology by Pre-Combustion Thermal Treatment of Coal  

SciTech Connect

The challenges to the coal-fired power industry continue to focus on the emission control technologies, such as mercury, and plant efficiency improvements. An alternate approach to post-combustion control of mercury, while improving plant efficiency deals with Western Research Institute's (WRI)'s patented pre-combustion mercury removal and coal upgrading technology. WRI was awarded under the DOE's Phase III Mercury program, to evaluate the effectiveness of WRI's novel thermal pretreatment process to achieve >50% mercury removal, and at costs of <$30,000/lb of Hg removed. WRI has teamed with Etaa Energy, Energy and Environmental Research Center (EERC), Foster Wheeler North America Corp. (FWNA), and Washington Division of URS (WD-URS), and with project co-sponsors including Electric Power Research Institute (EPRI), Southern Company, Basin Electric Power Cooperative (BEPC), Montana-Dakota Utilities (MDU), North Dakota Industrial Commission (NDIC), Detroit Edison (DTE), and SaskPower to undertake this evaluation. The technical objectives of the project were structured in two phases: Phase I--coal selection and characterization, and bench-and PDU-scale WRI process testing and; and Phase II--pilot-scale pc combustion testing, design of an integrated boiler commercial configuration, its impacts on the boiler performance and the economics of the technology related to market applications. This report covers the results of the Phase I testing. The conclusion of the Phase I testing was that the WRI process is a technically viable technology for (1) removing essentially all of the moisture from low rank coals, thereby raising the heating value of the coal by about 30% for subbituminous coals and up to 40% for lignite coals, and (2) for removing volatile trace mercury species (up to 89%) from the coal prior to combustion. The results established that the process meets the goals of DOE of removing <50% of the mercury from the coals by pre-combustion methods. As such, further testing, demonstration and economic analysis as described in the Phase II effort is warranted and should be pursued.

Alan Bland; Jesse Newcomer; Kumar Sellakumar

2008-08-17T23:59:59.000Z

120

Market potential for solar thermal energy supply systems in the United States industrial and commercial sectors: 1990--2030. Final report  

DOE Green Energy (OSTI)

This report revises and extends previous work sponsored by the US DOE on the potential industrial market in the United States for solar thermal energy systems and presents a new analysis of the commercial sector market potential. Current and future industrial process heat demand and commercial water heating, space heating and space cooling end-use demands are estimated. The PC Industrial Model (PCIM) and the commercial modules of the Building Energy End-Use Model (BEEM) used by the DOE`s Energy Information Administration (EIA) to support the recent National Energy Strategy (NES) analysis are used to forecast industrial and commercial end-use energy demand respectively. Energy demand is disaggregated by US Census region to account for geographic variation in solar insolation and regional variation in cost of alternative natural gas-fired energy sources. The industrial sector analysis also disaggregates demand by heat medium and temperature range to facilitate process end-use matching with appropriate solar thermal energy supply technologies. The commercial sector analysis disaggregates energy demand by three end uses: water heating, space heating, and space cooling. Generic conceptual designs are created for both industrial and commercial applications. Levelized energy costs (LEC) are calculated for industrial sector applications employing low temperature flat plate collectors for process water preheat; parabolic troughs for intermediate temperature process steam and direct heat industrial application; and parabolic dish technologies for high temperature, direct heat industrial applications. LEC are calculated for commercial sector applications employing parabolic trough technologies for low temperature water and space heating. Cost comparisons are made with natural gas-fired sources for both the industrial market and the commercial market assuming fuel price escalation consistent with NES reference case scenarios for industrial and commercial sector gas markets.

Not Available

1991-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal treatment unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Thermal treatment for recovery of manganese and zinc from zinc-carbon and alkaline spent batteries  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer We separated Zn from Mn in zinc-carbon and alkaline batteries after removal of Hg. Black-Right-Pointing-Pointer Almost total removal of Hg is achieved at low temperature in air. Black-Right-Pointing-Pointer Nitrogen atmosphere is needed to reduce zinc and to permit its volatilization. Black-Right-Pointing-Pointer A high grade Zn concentrate was obtained with a high recovery at 1000-1200 Degree-Sign C. Black-Right-Pointing-Pointer The grade of Mn in the residue was enhanced with complete recovery. - Abstract: The aim of this paper is the recovery of manganese and zinc from a mixture of zinc-carbon and alkaline spent batteries, containing 40.9% of Mn and 30.1% of Zn, after preliminary physical treatment followed by removal of mercury. Separation of the metals has been carried out on the basis of their different boiling points, being 357 Degree-Sign C and 906 Degree-Sign C the boiling point of mercury and zinc and 1564 Degree-Sign C the melting point of Mn{sub 2}O{sub 3}. Characterization by chemical analysis, TGA/DTA and X-ray powder diffraction of the mixture has been carried out after comminution sieving and shaking table treatment to remove the anodic collectors and most of chlorides contained in the mixture. The mixture has been roasted at various temperatures and resident times in a flow of air to set the best conditions to remove mercury that were 400 Degree-Sign C and 10 min. After that, the flow of air has been turned into a nitrogen one (inert atmosphere) and the temperatures raised, thus permitting the zinc oxide to be reduced to metallic zinc by the carbon present in the original mixture and recovered after volatilization as a high grade concentrate, while manganese was left in the residue. The recovery and the grade of the two metals, at 1000 Degree-Sign C and 30 min residence time, were 84% and 100% for zinc and 85% and 63% for manganese, respectively. The recovery of zinc increased to 99% with a grade of 97% at 1200 Degree-Sign C and 30 min residence time, while the recovery and grade of manganese were 86% and 87%, respectively, at that temperature. Moreover, the chlorinated compounds that could form by the combustion of the plastics contained in the spent batteries, are destroyed at the temperature required by the process.

Belardi, G. [Institute for Environmental Engineering and Geosciences (CNR) Area della Ricerca CNR, via Salaria km 29,300, Monterotondo, 00016 Rome (Italy); Lavecchia, R.; Medici, F. [Department of Chemical Engineering, Materials and Environment, Sapienza University of Rome, via Eudossiana 84, 00184 Rome (Italy); Piga, L., E-mail: luigi.piga@uniroma1.it [Department of Chemical Engineering, Materials and Environment, Sapienza University of Rome, via Eudossiana 84, 00184 Rome (Italy)

2012-10-15T23:59:59.000Z

122

Thermal Treatment of PtNiCo Electrocatalysts: Effects of Nanoscale Strain and Structure on the Activity and Stability for the Oxygen Reduction Reaction  

SciTech Connect

The ability to control the nanoscale size, composition, phase, and facet of multimetallic catalysts is important for advancing the design and preparation of advanced catalysts. This report describes the results of an investigation of the thermal treatment temperature on nanoengineered platinum-nickel-cobalt catalysts for oxygen reduction reaction, focusing on understanding the effects of lattice strain and surface properties on activity and stability. The thermal treatment temperatures ranged from 400 to 926 C. The catalysts were characterized by microscopic, spectroscopic, and electrochemical techniques for establishing the correlation between the electrocatalytic properties and the catalyst structures. The composition, size, and phase properties of the trimetallic nanoparticles were controllable by our synthesis and processing approach. The increase in the thermal treatment temperature of the carbon-supported catalysts was shown to lead to a gradual shrinkage of the lattice constants of the alloys and an enhanced population of facets on the nanoparticle catalysts. A combination of the lattice shrinkage and the surface enrichment of nanocrystal facets on the nanoparticle catalysts as a result of the increased temperature was shown to play a major role in enhancing the electrocatalytic activity for catalysts. Detailed analyses of the oxidation states, atomic distributions, and interatomic distances revealed a certain degree of changes in Co enrichment and surface Co oxides as a function of the thermal treatment temperature. These findings provided important insights into the correlation between the electrocatalytic activity/stability and the nanostructural parameters (lattice strain, surface oxidation state, and distribution) of the nanoengineered trimetallic catalysts.

B Wanjala; R Loukrakpam; J Luo; P Njoki; D Mott; C Zhong; M Shao; L Protsailo; T Kawamura

2011-12-31T23:59:59.000Z

123

Final report from VFL technologies for the pilot-scale thermal treatment of Lower East Fork Poplar Creek floodplain soils. LEFPC Appendices, Volume 2, Appendix V-A  

Science Conference Proceedings (OSTI)

This document contains information concerning validation of analytical data for the pilot-scale thermal treatment of Lower East Fork Poplar Creek Floodplain soils located at the Y-12 Plant site. This volume is an appendix of compiled data from this validation process.

NONE

1994-09-01T23:59:59.000Z

124

Thermal Barrier Coatings  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Barrier Coatings Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking licensing partners interested in implementing United States...

125

Experience base for Radioactive Waste Thermal Processing Systems: A preliminary survey  

SciTech Connect

In the process of considering thermal technologies for potential treatment of the Idaho National Engineering Laboratory mixed transuranic contaminated wastes, a preliminary survey of the experience base available from Radioactive Waste Thermal Processing Systems is reported. A list of known commercial radioactive waste facilities in the United States and some international thermal treatment facilities are provided. Survey focus is upon the US Department of Energy thermal treatment facilities. A brief facility description and a preliminary summary of facility status, and problems experienced is provided for a selected subset of the DOE facilities.

Mayberry, J.; Geimer, R.; Gillins, R.; Steverson, E.M.; Dalton, D. (Science Applications International Corp., Idaho Falls, ID (United States)); Anderson, G.L. (EG and G Idaho, Inc., Idaho Falls, ID (United States))

1992-04-01T23:59:59.000Z

126

REVIEW REPORT: BUILDING C-400 THERMAL TREATMENT 90 PERCENT REMEDIAL DESIGN REPORT AND SITE INVESTIGATION, PGDP, PADUCAH, KENTUCKY  

Science Conference Proceedings (OSTI)

On 9 April 2007, the U.S. Department of Energy (DOE) Headquarters, Office of Soil and Groundwater Remediation (EM-22) initiated an Independent Technical Review (ITR) of the 90% Remedial Design Report (RDR) and Site Investigation (RDSI) for thermal treatment of trichloroethylene (TCE) in the soil and groundwater in the vicinity of Building C-400 at the Paducah Gaseous Diffusion Plant (PGDP). The general ITR goals were to assess the technical adequacy of the 90% RDSI and provide recommendations sufficient for DOE to determine if modifications are warranted pertaining to the design, schedule, or cost of implementing the proposed design. The ultimate goal of the effort was to assist the DOE Paducah/Portsmouth Project Office (PPPO) and their contractor team in ''removing'' the TCE source zone located near the C-400 Building. This report provides the ITR findings and recommendations and supporting evaluations as needed to facilitate use of the recommendations. The ITR team supports the remedial action objective (RAO) at C-400 to reduce the TCE source area via subsurface Electrical Resistance Heating (ERH). Further, the ITR team commends PPPO, their contractor team, regulators, and stakeholders for the significant efforts taken in preparing the 90% RDR. To maximize TCE removal at the target source area, several themes emerge from the review which the ITR team believes should be considered and addressed before implementing the thermal treatment. These themes include the need for: (1) Accurate and site-specific models as the basis to verify the ERH design for full-scale implementation for this challenging hydrogeologic setting; (2) Flexible project implementation and operation to allow the project team to respond to observations and data collected during construction and operation; (3) Defensible performance metrics and monitoring, appropriate for ERH, to ensure sufficient and efficient clean-up; and (4) Comprehensive (creative and diverse) contingencies to address the potential for system underperformance, and other unforeseen conditions These themes weave through the ITR report and the various analyses and recommendations. The ITR team recognizes that a number of technologies are available for treatment of TCE sources. Further, the team supports the regulatory process through which the selected remedy is being implemented, and concurs that ERH is a potentially viable remedial technology to meet the RAOs adjacent to C-400. Nonetheless, the ITR team concluded that additional efforts are needed to provide an adequate basis for the planned ERH design, particularly in the highly permeable Regional Gravel Aquifer (RGA), where sustaining target temperatures present a challenge. The ERH design modeling in the 90% RDR does not fully substantiate that heating in the deep RGA, at the interface with the McNairy formation, will meet the design goals; specifically the target temperatures. Full-scale implementation of ERH to meet the RAOs is a challenge in the complex hydrogeologic setting at PGDP. Where possible, risks to the project identified in this ITR report as ''issues'' and ''recommendations'' should be mitigated as part of the final design process to increase the likelihood of remedial success. The ITR efforts were organized into five lines of inquiry (LOIs): (1) Site investigation and target zone delineation; (2) Performance objectives; (3) Project and design topics; (4) Health and safety; and (5) Cross cutting and independent cost evaluation. Within each of these LOIs, the ITR team identified a series of unresolved issues--topics that have remaining uncertainties or potential project risks. These issues were analyzed and one or more recommendations were developed for each. In the end, the ITR team identified 27 issues and provided 50 recommendations. The issues and recommendations are briefly summarized below, developed in Section 5, and consolidated into a single list in Section 6. The ITR team concluded that there are substantive unresolved issues and system design uncertainties, resulting in technical and financial risks to DOE.

Looney, B; Jed Costanza, J; Eva Davis, E; Joe Rossabi, J; Lloyd (Bo) Stewart, L; Hans Stroo, H

2007-08-15T23:59:59.000Z

127

Similar Treatment Outcomes for Radical Cystectomy and Radical Radiotherapy in Invasive Bladder Cancer Treated at a United Kingdom Specialist Treatment Center  

SciTech Connect

Purpose: To conduct a retrospective analysis within a large university teaching hospital, comparing outcomes between patients receiving either radical surgery or radiotherapy as curative treatment for bladder cancer. Patients and Methods: Between March 1996 and December 2000, 169 patients were treated radically for muscle-invasive bladder cancer. Data were collected from patient notes. Statistical analyses were performed using Kaplan-Meier methods and Cox proportional hazards regression analysis to compare radiotherapy and surgical outcome data. Results: There was no difference in overall, cause-specific, and distant recurrence-free survival at 5 years between the two groups, despite the radiotherapy group being older (median age, 75.3 years vs. 68.2 years). There were 31 local bladder recurrences in the radiotherapy group (24 solitary), but there was no significant difference in distant recurrence-free survival. In a more recent (2002-2006) cohort, the median age of radiotherapy patients but not the cystectomy patients was higher than in the 1996-2000 cohort (78.4 years vs. 75.3 years for radiotherapy and 67.9 years vs. 68.2 years for surgery). Conclusions: Although the patients undergoing radical cystectomy were significantly younger than the radiotherapy patients, treatment modality did not influence survival. Bladder cancer patients are an increasingly elderly group. Radical radiotherapy is a viable treatment option for these patients, with the advantage of organ preservation.

Kotwal, Sanjeev [Pyrah Department of Urology, St. James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Choudhury, Ananya [Cancer Research UK Clinical Centre, Section of Oncology, Leeds Institute of Molecular Medicine, Leeds (United Kingdom); Johnston, Colin [Cancer Research UK Clinical Centre, Section of Oncology, St. James's University Hospital, Leeds (United Kingdom); Paul, Alan B.; Whelan, Peter [Pyrah Department of Urology, St. James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Kiltie, Anne E. [Cancer Research UK Clinical Centre, Section of Oncology, Leeds Institute of Molecular Medicine, Leeds (United Kingdom)], E-mail: a.e.kiltie@leeds.ac.uk

2008-02-01T23:59:59.000Z

128

Unit Conversion  

Science Conference Proceedings (OSTI)

Unit Conversion. ... Unit Conversion Example. "If you have an amount of unit of A, how much is that in unit B?"; Dimensional Analysis; ...

2012-12-04T23:59:59.000Z

129

Stewart Thermal Ltd | Open Energy Information  

Open Energy Info (EERE)

Stewart Thermal Ltd Jump to: navigation, search Name Stewart Thermal Ltd Place United Kingdom Sector Biomass Product Provides specialist advice in the field of biomass energy....

130

united stadium. united station.  

E-Print Network (OSTI)

??DC United is one of Major League Soccers most decorated franchises, yet it still plays its home games within the crumbling confines of RFK Stadium. (more)

Groff, David R.

2011-01-01T23:59:59.000Z

131

Non-thermal plasma based technologies for the after-treatment of automotive exhaust particulates and marine diesel exhaust NOx  

DOE Green Energy (OSTI)

The trend in environmental legislation is such that primary engine modifications will not be sufficient to meet all future emissions requirements and exhaust aftertreatment technologies will need to be employed. One potential solution that is well placed to meet those requirements is non-thermal plasma technology. This paper will describe our work with some of our partners in the development of a plasma based diesel particulate filter (DPF) and plasma assisted catalytic reduction (PACR) for NOx removal. This paper describes the development of non-thermal plasma technology for the aftertreatment of particulates from a passenger car engine and NOx from a marine diesel exhaust application.

McAdams, R; Beech, P; Gillespie, R; Guy, C; Jones,S; Liddell, T; Morgan, R; Shawcross, J; Weeks, D; Hughes, D; Oesterle, J; Eberspdcher,

2003-08-24T23:59:59.000Z

132

Highly Reproducible Nanolithography by Dynamic Plough of an Atomic-Force Microscope Tip and Thermal-Annealing Treatment  

Science Conference Proceedings (OSTI)

An approach has been developed to use atomic-force microscope (AFM) to pattern materials at the nanoscale in a controlled manner. By introducing a thermal-annealing process above the glass-transition temperature of poly (methylmethacrylate) (PMMA), the ... Keywords: 2-D electron gas, Atomic-force microscope (AFM), nanolithography, self-switching diodes (SSDs)

Xiaofeng Lu; C. Balocco; Fuhua Yang; A. M. Song

2011-01-01T23:59:59.000Z

133

H2O[underscore]TREAT users' manual: An aid for evaluating water treatment requirements for aquifer thermal energy storage systems  

DOE Green Energy (OSTI)

This manual addresses the use of a public-domain software package developed to aid engineers in the desip of water treatment systems for aquifer thermal energy storage (ATES). The software, H20[underscore]TREAT, which runs in the DOS or UNIX Environment, was developed by the Pacific Northwest Laboratory and targeted to engineers possessing limited or no experience in geochemistry. To do this, the software provides guidance on geochemical phenomena that can cause problems in ATES systems (i.e., the formation of scale in heat exchangers, clogging of wells, corrosion in piping and heat exchangers, and degradation of aquifer materials causing a reduction in permeability). Preventing such problems frequently requires the use of water treatment systems. Because individual water treatment methods vary in cost, effectiveness, environmental impact, corrosion potential, and acceptability to regulators, proper evaluation of treatment options is required to determine the feasibility of ATES systems. The software is available for DOS- and UNIX-based computers. It uses a recently revised geochemical model, MINTEQ, to calculate the saturation indices of selected carbonate, oxide, and hydroxide minerals based on water chemistry and temperature data provided by the user. The saturation index of a specific mineral defines the point at which that mineral is oversaturated and hence may precipitate at the specified temperature. Cost calculations are not performed by the software; however, treatment capacity requirements are provided. Treatments include Na and H ion exchanger, fluidized-bed heat exchanger or pellet reactors, and CO[sub 2] injection. The H2O[underscore]TREAT software also provides the user with warning of geochemical problems that must be addressed, such as Fe and Mn oxide precipitation, SiO[sub 2] precipitation at high temperatures, corrosion, and clay swelling and dispersion.

Vail, L.W.; Jenne, E.A.; Zipperer, J.P.; McKinley, M.I.

1993-02-01T23:59:59.000Z

134

H2O{underscore}TREAT users` manual: An aid for evaluating water treatment requirements for aquifer thermal energy storage systems  

DOE Green Energy (OSTI)

This manual addresses the use of a public-domain software package developed to aid engineers in the desip of water treatment systems for aquifer thermal energy storage (ATES). The software, H20{underscore}TREAT, which runs in the DOS or UNIX Environment, was developed by the Pacific Northwest Laboratory and targeted to engineers possessing limited or no experience in geochemistry. To do this, the software provides guidance on geochemical phenomena that can cause problems in ATES systems (i.e., the formation of scale in heat exchangers, clogging of wells, corrosion in piping and heat exchangers, and degradation of aquifer materials causing a reduction in permeability). Preventing such problems frequently requires the use of water treatment systems. Because individual water treatment methods vary in cost, effectiveness, environmental impact, corrosion potential, and acceptability to regulators, proper evaluation of treatment options is required to determine the feasibility of ATES systems. The software is available for DOS- and UNIX-based computers. It uses a recently revised geochemical model, MINTEQ, to calculate the saturation indices of selected carbonate, oxide, and hydroxide minerals based on water chemistry and temperature data provided by the user. The saturation index of a specific mineral defines the point at which that mineral is oversaturated and hence may precipitate at the specified temperature. Cost calculations are not performed by the software; however, treatment capacity requirements are provided. Treatments include Na and H ion exchanger, fluidized-bed heat exchanger or pellet reactors, and CO{sub 2} injection. The H2O{underscore}TREAT software also provides the user with warning of geochemical problems that must be addressed, such as Fe and Mn oxide precipitation, SiO{sub 2} precipitation at high temperatures, corrosion, and clay swelling and dispersion.

Vail, L.W.; Jenne, E.A.; Zipperer, J.P.; McKinley, M.I.

1993-02-01T23:59:59.000Z

135

On the Use of Thermal NF3 as the Fluorination and Oxidation Agent in Treatment of Used Nuclear Fuels  

SciTech Connect

This paper presents results of our investigation on the use of nitrogen trifluoride as the fluorination or fluorination/oxidation agent for use in a process for separating valuable constituents from used nuclear fuels by employing the volatility of many transition metal and actinide fluorides. Nitrogen trifluoride is less chemically and reactively hazardous than the hazardous and aggressive fluorinating agents used to prepare uranium hexafluoride and considered for fluoride volatility based nuclear fuels reprocessing. In addition, nitrogen trifluorides less aggressive character may be used to separate the volatile fluorides from used fuel and from themselves based on the fluorination reactions temperature sensitivity (thermal tunability) rather than relying on differences in sublimation/boiling temperature and sorbents. Our thermodynamic calculations found that nitrogen trifluoride has the potential to produce volatile fission product and actinide fluorides from candidate oxides and metals. Our simultaneous thermogravimetric and differential thermal analyses found that the oxides of lanthanum, cerium, rhodium, and plutonium fluorinated but did not form volatile fluorides and that depending on temperature volatile fluorides formed from the oxides of niobium, molybdenum, ruthenium, tellurium, uranium, and neptunium. We also demonstrated near-quantitative removal of uranium from plutonium in a mixed oxide.

Scheele, Randall D.; McNamara, Bruce K.; Casella, Andrew M.; Kozelisky, Anne E.

2012-05-01T23:59:59.000Z

136

Significantly improved piezoelectric thermal stability of cellular polypropylene films by high pressure fluorination and post-treatments  

Science Conference Proceedings (OSTI)

Cellular polypropylene (PP) films were fluorinated under a high pressure of 13 bar of the F{sub 2}/N{sub 2} mixture and were post-treated by nitrous oxide and isothermal crystallization. The fluorinated and post-treated PP films after being expanded and corona charged exhibit a significantly improved piezoelectric thermal stability. After annealing at 70 deg. C for 151 h or at 90 deg. C for 224 h, the piezoelectric d{sub 33} value of the fluorinated and post-treated piezoelectric sample still retains 58% or 45% of its initial d{sub 33} value, while the corresponding value of the virgin piezoelectric sample has decreased to 29% or 15% of the initial value. Chemical composition analysis of the cross section of the fluorinated and post-treated film by energy-dispersive x-ray spectroscopy indicates that the internal layers have been fluorinated, in spite of a lower degree of fluorination compared with the fluorinated surface layer. Short-circuit and open-circuit TSD current measurements reveal that the fluorinated internal layers, like the fluorinated surface layer, also have very deep charge traps, although there probably is a difference in density of the deep traps between them. The deeply trapped charge on the internal layers of the fluorinated and post-treated piezoelectric sample is responsible for its significantly improved piezoelectric thermal stability.

An Zhenlian [Ministry of Education Key Laboratory of Advanced Microstructure Materials, Department of Physics, Tongji University, 1239 Siping Road, Shanghai 200092 (China); State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an 710049 (China); Mao Mingjun; Cang Jun; Zhang Yewen; Zheng Feihu [Ministry of Education Key Laboratory of Advanced Microstructure Materials, Department of Physics, Tongji University, 1239 Siping Road, Shanghai 200092 (China)

2012-01-15T23:59:59.000Z

137

C. A. La Electricidad de Caracas: Feasibility-study definitional report. Arreciffs Units 1 through 5 repowering project, electric power generation expansion Venezuela thermal power plant. Export trade information  

SciTech Connect

C.A. La Electricidad de Caracas (E.de C.) is a private company which in 1991 served some 830,000 customers in an area of 4,160 square kilometers surrounding Caracas. A program is underway by E.de C. for upgrading equipment and expanding the capacity of several of its existing generating facilities. The Arrecifes repowering project will involve the addition of about 330 MW of new natural gas fired gas turbine generators and heat recovery steam generators (HRSGs) to five existing thermal power units built 30 to 40 years ago which have steam turbine generator sets of 26 to 41 MW each. The existing steam boilers will be removed. The limited but seemingly sufficient space available is to be a primary focus of the feasibility study.

Not Available

1991-05-01T23:59:59.000Z

138

Legend Units  

Science Conference Proceedings (OSTI)

... Syntax: LEGEND UNIT units> where is an integer number or parameter in the range 1 to 100 that specifies the legend identifier; and ...

2013-11-27T23:59:59.000Z

139

English Units  

Science Conference Proceedings (OSTI)

English Units. A, B, C, D, E, F, G, H, I, J. 1, Steam Point Calculator: English Units, ... 6, Height of steam point apparatus above ground (ft.), 0, ft. ...

2011-12-22T23:59:59.000Z

140

Unit Conversions  

Science Conference Proceedings (OSTI)

... volume flow units, which contain "atm", assume that the gas is: ideal; at a pressure of 101325 Pa; at a temperature of 0 C. Be aware that the unit "atm ...

2012-10-02T23:59:59.000Z

Note: This page contains sample records for the topic "thermal treatment unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

A STUDY OF ATES THERMAL BEHAVIOR USING A STEADY FLOW MODEL  

E-Print Network (OSTI)

thermal conductivity, Aau heat capacity per unit volume, Ca,thermal conductivity Ac and heat capacity per unit volumeCc Cw The heat capacity per unit volume of water is All

Doughty, Christine

2013-01-01T23:59:59.000Z

142

Resource Conservation and Recovery Act (RCRA) General Contingency Plan for Hazardous Waste Treatment, Storage, and Disposal Units at the Oak Ridge Y-12 Plant  

SciTech Connect

This contingency plan provides a description of the Y-12 plant and its waste units and prescribes control procedures and emergency response procedures. It lists emergency and spill response equipment, provides information on coordination agreements with local agencies, and describes the evacuation plan and reporting requirements.

1999-04-01T23:59:59.000Z

143

THERMAL RECOVERY  

NLE Websites -- All DOE Office Websites (Extended Search)

THERMAL RECOVERY Thermal recovery comprises the techniques of steamflooding, cyclic steam stimulation, and in situ combustion. In steamflooding, high-temperature steam is injected...

144

Solar Thermal Electric Technology: 2009  

Science Conference Proceedings (OSTI)

This report summarizes the status and progress of the solar thermal and concentrating solar power (CSP) industry in 2009. It addresses relevant policies in the United States and internationally, technology status, trends, companies and organizations involved in the field, and modeling activities supported by the Electric Power Research Institute (EPRI) and the Solar Thermal Electric Project (STEP).

2010-06-23T23:59:59.000Z

145

Metric Units  

Science Conference Proceedings (OSTI)

... A, B, C, D, E, F, G, H, I, J. 1, Steam Point Calculator: Metric Units, Elevation Converter, ... 6, Height of steam point apparatus above ground (m), 0, m, ...

2011-12-22T23:59:59.000Z

146

United States  

Office of Legacy Management (LM)

- I - I United States Department of Energy D lSCk Al M E R "This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency

147

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BP Energy Company BP Energy Company OE Docket No. EA- 3 14 Order Authorizing Electricity Exports to Mexico Order No. EA-3 14 February 22,2007 BP Energy Company Order No. EA-314 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(Q of the Department of Energy Organization Act (42 U.S.C. 7 15 l(b), 7172(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C.S24a(e)) . On May 22,2006, BP Energy Company (BP Energy) applied to DOE for an authorization to transmit electric energy from the United States to Mexico as a power marketer. BP Energy proposes to purchase surplus electric energy from electric utilities and other suppliers within the United States and to export that energy to ~Mexico. The cnergy

148

United States  

Office of Legacy Management (LM)

Office of Research and EPA 600/R-941209 Environmental Protection Development January 1993 Agency Washington, DC 20460 Offsite Environmental 57,,7 Monitoring Report Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1992 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY OFFICE OF RESEARCH AND DEVELOPMENT ENVIRONMENTAL MONITORING SYSTEMS LABORATORY-LAS VEGAS P.O. BOX 93478 LAS VEGAS. NEVADA 891 93-3478 702/798-2100 Dear Reader: Since 1954, the U.S. Environmental Protection Agency (EPA) and its predecessor the U.S, Public Health Service (PHs) has conducted radiological monitoring in the offsite areas around United States nuclear test areas. The primary objective of this monitoring has been the protection of the health and safety of

149

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

E-T Global Energy, LLC E-T Global Energy, LLC OE Docket No. EA-381 Order Authorizing Electricity Exports to Mexico Order No. EA-381 June 10, 2011 I. BACKGROUND E-T Global Energy, LLC Order No. EA-381 Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(f) of the Department ofEnergy Organization Act (42 U.S.C. 7151(b), 7172(f)) and require authorization under section 202(e) ofthe Federal Power Act (FPA) (16 U.S.C.824a(e)) 1 * On May 10,2011, DOE received an application from E-T Global Energy, LLC (E-T Global) for authority to transmit electric energy from the United States to Mexico for five years as a power marketer using existing international transmission facilities. E-

150

United States  

Office of Legacy Management (LM)

WASHINGTON, TUESDAY, JUNE 28, 1983 @nngmeional Ruord United States of America .__ -- . . ,- PROCEEDINGS AND DEBATES OF THE 9@ CONGRESS, FIRST SESSION United States Government Printing Office SUPERINTENDENT OF DOCUMENTS Washmgton, D C 20402 OFFICIAL BUSINESS Penalty Ior pwate use. $xX Congresstonal Record (USPS 087-390) Postage and Fees Pad U S Government Prlnhng 0ffv.X 375 SECOND CLASS NEWSPAPER H.4578 ' C.QNGRESSIONAL RECORD - HOUSE June 28, 1983 H.J. Res. 273: Mr. BOUND. Mr. W~.XMAN. Mr. OBERSTAR, Mr. BEDELL. Mr. BONER of Tennessee, Mr. OWENS. Mr. DAUB, Mr. CONTE. Mr. RAHALL; Mr. GRAY, Mr. VANDER JACT. Mr. TRAKLER, and Mr. Vxrrro. H. Con. Res. 107: Mr. KASICH. Mr. AUCOIN. Mr. CARPER, and Mr. SIZHFIJER. H. Con. Res. 118: Mr. FISH. Mr. LANTOS.

151

United States  

Office of Legacy Management (LM)

ongrees;ional Record ongrees;ional Record United States of America __._ -.. I. :- PROCEEDINGS AND DEBATES OF THE 9tth CONGRESS, FIRST SESSION United States Government Printing Office SUPERINTENDENT OF DOCUMENTS Washmcqton. Cl C 20402 OFFICIAL BUSINESS Penalty Ior pwate use. $300 Congressmal Record (USPS 087-390) Postage and Fees Pad U S Governme3n:jPnntmg OfIce SECOND CLASS NEWSPAPER H.4578 ' June 28, 1983 -: I H.J. Res. 273: Mr. BOLAND, Mr. WA-. Mr. OBERSTAFC, M' r. BEDELL, Mr. BONER of Tennessee, Mr. OWENS. Mr. DAUB. Mr. CONTE. Mr. RAHALL,. Mr. GRAY, Mr. VANDER JAGT. Mr. TRAKLER. and Mr. VENTO. H. Con. Res. iO7: Mr. KASICH. Mr. ALCOIN. Mr. CARPER. and Mr. SCHEUER. H. Con. Res. 118: Mr. FISH, Mr. LANTOS. Mr. KILDEE. Mr. SOLARZ Mr. Bmrr, Mr. BELWLL, Mr. RANG~L, Mr. DYMALLY. Mr.

152

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule CC-1-I Availability: This rate schedule shall be available to public bodies and cooperatives served through the facilities of Carolina Power & Light Company, Western Division (hereinafter called the Customers). Applicability: This rate schedule shall be applicable to electric capacity and energy available from the Dale Hollow, Center Hill, Wolf Creek, Cheatham, Old Hickory, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereinafter called collectively the "Cumberland Projects") and sold in wholesale quantities. Character of Service: The electric capacity and energy supplied hereunder will be three-phase alternating

153

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31/07 THU 18:20 FAX 865 241 3897 OIG --- HQ 31/07 THU 18:20 FAX 865 241 3897 OIG --- HQ 00 DOE F 1325.8 (08&93) United States Government Department of Energy memorandum DATE: May 31, 2007 Audit Report Number: OAS-L-07-13 REPLY TO ATTN OF: IG-32 (A07RL048) SUBJECT: Audit of Safety Allegations Related to the Waste Treatment Plant at the Hanford Site TO: Manager, Office of River Protection INTRODUCTION AND OBJECTIVE The Department of Energy's (Department) Hanford Site is responsible for treating and preparing 53 million gallons of radioactive and chemically hazardous waste for disposal. Bechtel National, Inc. (Bechtel) is designing, building and commissioning the Waste Treatment Plant (Plant), a category II nuclear facility, which is comprised of a complex of treatment facilities to vitrify and immobilize radioactive waste into a

154

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tenaslta Power Services Co. Tenaslta Power Services Co. OE Docket No. EA-243-A Order Authorizing Electricity Exports to Canada Order No. EA-243-A March 1,2007 Tenaska Power Services Co. Order No. EA-243-A I. BACKGROUND Exports of elcctricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 30 I(b) and 402(f) of the Departrncnt of' Energy Organizatio~l Act (42 U, S.C. 7 15 1 (b), 7 1 72Cf)) and rcquirc authorization under section 202(e) of the Federal Power Act (FPA) ( Z 6 U. s.c.824a(e)j1. On August 16,2001, DOE issued Order No. EA-243 authorizing Tenaska Power Scrvices Co. (Tenaska) to transmit electric cncrgy from the United States to Canada as a power marketer. That authority expired on August 16,2003. On August 14,2006, Teilaska applied to renew the electricity export authority

155

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TexMex Energy, LLC TexMex Energy, LLC OE Docket No. EA-294-A Order Authorizing Electricity Exports to Mexico Order No. EA-294-A February 22, 2007 TexMex Energy, LLC Order No. EA-294-A I. BACKGROUND Exports of electricity from the United States to a foreign count~y are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(f) of the Department of Energy Organization Act (42 U.S.C. 7 15 1 (b), 71 72(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C.824a(e)) . On August 25,2004, DOE issued Order No. EA-294 authorizing TexMex Energy LLC (TexMex) to transmit electric energy fiom the United States to Mexico as a power marketer. That authority expired on August 25, 2006. On September 8, 2006, TexMex applied to renew the electricity export authority

156

United States  

Gasoline and Diesel Fuel Update (EIA)

United States United States Coal ................................................ 4,367 4,077 4,747 4,181 4,473 4,125 4,983 4,330 4,414 4,003 4,796 4,178 4,344 4,479 4,348 Natural Gas .................................... 2,802 2,843 3,694 2,863 2,713 2,880 3,636 2,707 2,792 2,972 3,815 2,849 3,052 2,986 3,109 Petroleum (a) .................................. 74 73 81 67 73 70 75 66 75 70 76 66 74 71 71 Other Gases ................................... 32 33 36 32 32 34 37 33 33 35 39 34 33 34 35 Nuclear ........................................... 2,176 2,044 2,257 2,170 2,106 2,037 2,167 2,010 2,144 2,074 2,206 2,055 2,162 2,080 2,120 Renewable Energy Sources: Conventional Hydropower ........... 736 886 716 633 765 887 708 646 767 919 729 659 742 751 768 Wind ............................................ 491 520 353 449 477 521 379 475

157

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bangor Hydro-Electric Company Bangor Hydro-Electric Company OE Docket No. PP-89-1 Amendment to Presidential Permit Order No. PP-89-1 December 30,2005 PRESIDENTIAL PERMIT AMENDMENT Bangor Hydro-Electric Company Order No. PP-89-1 I. BACKGROUND The Department of Energy (DOE) has responsibility for implementing Executive Order (E.O.) 10485, as amended by E.O. 12038, which requires the issuance of a Presidential permit by DOE before electric trans~nission facilities may be constructed, operated, maintained, or connected at the borders of the United States. DOE may issue such a permit if it determines that the permit is in the public interest and after obtaining favorable recommendations from the U.S. Departments of State and Defense. On December 16, 1988, Bangor Hydro-Electric Company (BHE) applied to DOE

158

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 7 United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule CTV-1-H Availability: This rate schedule shall be available to the Tennessee Valley Authority (hereinafter called TVA). Applicability: This rate schedule shall be applicable to electric capacity and energy generated at the Dale Hollow, Center Hill, Wolf Creek, Old Hickory, Cheatham, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereafter called collectively the "Cumberland Projects") and the Laurel Project sold under agreement between the Department of Energy and TVA. Character of Service: The electric capacity and energy supplied hereunder will be three-phase alternating current at a frequency of approximately 60 hertz at the outgoing terminals of the Cumberland

159

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule CTVI-1-A Availability: This rate schedule shall be available to customers (hereinafter called the Customer) who are or were formerly in the Tennessee Valley Authority (hereinafter called TVA) service area. Applicability: This rate schedule shall be applicable to electric capacity and energy generated at the Dale Hollow, Center Hill, Wolf Creek, Old Hickory, Cheatham, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereafter called collectively the "Cumberland Projects") and the Laurel Project sold under agreement between the Department of Energy and the Customer. Character of Service: The electric capacity and energy supplied hereunder will be three-phase alternating

160

UNITED STATES  

Office of Legacy Management (LM)

f).~<~~ \--\c :y-,ai F p"- KG f).~<~~ \--\c :y-,ai F p"- KG WASHINOTDN 28.0. C. ' -lr ' \ ' ' --- ".I ?--" ' z I. .~;-4.' J frr*o& 2 ii, - - -4 70-147 LRL:JCD JAN !! 8 1958 Oregon Metallurgical Corporation P. 0. Box 484 Albany, Oregon Attention: Mr. Stephen M. Shelton General Manager Gentlemen: Enclosed is Special Nuclear Material License No. SNM-144, as amended. Very 33uly yours, r:; I,;, ll)~gQ""d".- Lyall Johnson Chief, Licensing Branch Division of Licensing & Regulation Enclosure: SNM-144, as amended Distribution: bRO0 Attn: Dr. H.M.Roth DFMusser NMM MMMann INS JCRyan FIN (2) HSteele LRL SRGustavson LRL Document room Formal file Suppl. file Br & Div rf's ' .b liwwArry s/VW- ' q+ ' yj/ 2; 2-' , COP' 1 J JAM01958 -- UNITED STATES ATOMIC ENERGY COMMISSION

Note: This page contains sample records for the topic "thermal treatment unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule JW-2-F Availability: This rate schedule shall be available to the Florida Power Corporation (or Progress Energy Florida, hereinafter called the Company). Applicability: This rate schedule shall be applicable to electric energy generated at the Jim Woodruff Project (hereinafter called the Project) and sold to the Company in wholesale quantities. Points of Delivery: Power sold to the Company by the Government will be delivered at the connection of the Company's transmission system with the Project bus. Character of Service: Electric power delivered to the Company will be three-phase alternating current at a nominal frequency of 60 cycles per second.

162

Thermal Performance Impacts of Center-of-Glass Deflections in...  

NLE Websites -- All DOE Office Websites (Extended Search)

Impacts of Center-of-Glass Deflections in Installed Insulating Glazing Units Title Thermal Performance Impacts of Center-of-Glass Deflections in Installed Insulating Glazing...

163

Automated rapid thermal imaging systems technology  

E-Print Network (OSTI)

A major source of energy savings occurs on the thermal envelop of buildings, which amounts to approximately 10% of annual energy usage in the United States. To pursue these savings, energy auditors use closed loop energy ...

Phan, Long N., 1976-

2012-01-01T23:59:59.000Z

164

Thermodynamic simulation of transfer of lead, cadmium, and zinc to the gas phase during oxidative and reductive thermal treatment of coals from some coal deposits of the Russian federation  

SciTech Connect

The results of thermodynamic study of the distribution of Pb, Cd, and Zn during the thermal processing of coals from the Kuznetsk and Moscow basins and the Berezovskoe coal deposit of the Kansk-Achinsk basin at different excess oxidant (air) factors and in an inert (argon) medium are presented. The equilibrium forms of compounds were revealed, and their concentrations in the gas and condensed phase were calculated. Trace elements get into the gas phase during the heat treatment of coals in both oxidizing and reducing media. Their most intense transfer to the gas phase takes place at a = 0.4. An increase in temperature enhances this process, and an increase in the ash content of coal decreased the extent of transfer. 9 refs., 10 tabs.

L.N. Lebedeva; L.A. Kost; E.G. Gorlov; E.V. Samuilov [FGUP Institute for Fossil Fuels, Moscow (Russian Federation)

2007-02-15T23:59:59.000Z

165

HYDROGEOLOGY OF THE THERMAL LANDSLIDE  

DOE Green Energy (OSTI)

The large Thermal Landslide overlies the initial area of geothermal development at The Geysers. The landslide is waterbearing while the underlying Franciscan formation bedrock units are essentially non-waterbearing except where affected by hydrothermal alteration. Perched ground water moving through the landslide is heated prior to discharge as spring flow.

Vantine, J.

1985-01-22T23:59:59.000Z

166

Solar thermal power  

DOE Green Energy (OSTI)

Solar thermal power is produced by three types of concentrating systems, which utilize parabolic troughs, dishes, and heliostats as the solar concentrators. These systems are at various levels of development and commercialization in the United States and in Europe. The U.S. Industry is currently developing these systems for export at the end of this century and at the beginning of the next one for remote power, village electrification, and grid-connected power. U.S. utilities are not forecasting to need power generation capacity until the middle of the first decade of the 21{sup st} century. At that time, solar thermal electric power systems should be cost competitive with conventional power generation in some unique U.S. markets. In this paper, the authors describe the current status of the development of trough electric, dish/engine, and power tower solar generation systems. 46 refs., 20 figs., 8 tabs.

Mancini, T.R.; Kolb, G.J.; Prairie, M.R. [Sandia National Labs., Albuquerque, NM (United States)

1997-12-31T23:59:59.000Z

167

Thermal indicator for wells  

DOE Patents (OSTI)

Minute durable plate-like thermal indicators are employed for precision measuring static and dynamic temperatures of well drilling fluids. The indicators are small enough and sufficiently durable to be circulated in the well with drilling fluids during the drilling operation. The indicators include a heat resistant indicating layer, a coacting meltable solid component and a retainer body which serves to unitize each indicator and which may carry permanent indicator identifying indicia. The indicators are recovered from the drilling fluid at ground level by known techniques.

Gaven, Jr., Joseph V. (Oakton, VA); Bak, Chan S. (Newbury Park, CA)

1983-01-01T23:59:59.000Z

168

Advanced solar thermal technology  

SciTech Connect

The application of dish solar collectors to industrial process heat (IPH) has been reviewed. IPH represents a market for displacement of fossil fuels (10 quads/y). A 10% market penetration would indicate a substantial market for solar thermal systems. Apparently, parabolic dish systems can produce IPH at a lower cost than that of troughs or compound parabolic concentrators, even though dish fabrication costs per unit area are more expensive. Successful tests of point-focusing collectors indicate that these systems can meet the energy requirements for process heat applications. Continued efforts in concentrator and transport technology development are needed. 7 figures.

Leibowitz, L.P.; Hanseth, E.; Liu, T.M.

1982-06-01T23:59:59.000Z

169

Thermoacoustic refrigerators and engines comprising cascading stirling thermodynamic units  

DOE Patents (OSTI)

The present invention includes a thermoacoustic assembly and method for improved efficiency. The assembly has a first stage Stirling thermal unit comprising a main ambient heat exchanger, a regenerator and at least one additional heat exchanger. The first stage Stirling thermal unit is serially coupled to a first end of a quarter wavelength long coupling tube. A second stage Stirling thermal unit comprising a main ambient heat exchanger, a regenerator, and at least one additional heat exchanger, is serially coupled to a second end of the quarter wavelength long coupling tube.

Backhaus, Scott; Swift, Greg

2013-06-25T23:59:59.000Z

170

Thermal Properties  

Science Conference Proceedings (OSTI)

Table 12   Thermal conductivities of polymers and other materials...40,000 2.8 Aluminum 24,000 1.7 Steel 5000 0.35 Granite 350 0.02 Crown glass (75 wt% silica) 90 0.006 Source: Ref 4...

171

Estimated United States Transportation Energy Use 2005  

DOE Green Energy (OSTI)

A flow chart depicting energy flow in the transportation sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 31,000 trillion British Thermal Units (trBTUs) of energy were used throughout the United States in transportation activities. Vehicles used in these activities include automobiles, motorcycles, trucks, buses, airplanes, rail, and ships. The transportation sector is powered primarily by petroleum-derived fuels (gasoline, diesel and jet fuel). Biomass-derived fuels, electricity and natural gas-derived fuels are also used. The flow patterns represent a comprehensive systems view of energy used within the transportation sector.

Smith, C A; Simon, A J; Belles, R D

2011-11-09T23:59:59.000Z

172

Nomination Form DEPARTMENT / UNIT  

E-Print Network (OSTI)

Nomination Form DEPARTMENT / UNIT: CAMPUS ADDRESS: CLASSIFICATION / TITLE: DEPARTMENT EMAIL ADDRESS: DEPARTMENT TELEPHONE: 2011 FRANKLIN STAFF SERVICE AWARDS START DATE IN DEPARTMENT / UNIT: ACTUAL NUMBER MEMBER DEADLINE: FRIDAY MARCH 4, 2011 ADDITIONAL COMMENTS: Signature of Head / Director of Nominee's Unit

Arnold, Jonathan

173

Unit Outline Training Guide  

E-Print Network (OSTI)

Unit Outline Builder Training Guide Document Status: Final Revision Number: 6.0 Revision Date: 14 Approved #12;Online Unit Outline Builder Training Guide Curtin University of Technology Page 2 TABLE................................................................................................................. 4 4. Log in and Select a Unit Outline

174

Nomination Form DEPARTMENT / UNIT  

E-Print Network (OSTI)

Nomination Form DEPARTMENT / UNIT: CAMPUS ADDRESS: CLASSIFICATION / TITLE: DEPARTMENT EMAIL ADDRESS: DEPARTMENT TELEPHONE: 2013 FRANKLIN STAFF SERVICE AWARDS START DATE IN DEPARTMENT / UNIT: ACTUAL NUMBER MEMBER DEADLINE: MARCH 5, 2013 ADDITIONAL COMMENTS: Signature of Head / Director of Nominee's Unit

Arnold, Jonathan

175

Nomination Form DEPARTMENT / UNIT  

E-Print Network (OSTI)

Nomination Form DEPARTMENT / UNIT: CAMPUS ADDRESS: CLASSIFICATION / TITLE: DEPARTMENT EMAIL ADDRESS: DEPARTMENT TELEPHONE: 2012 FRANKLIN STAFF SERVICE AWARDS START DATE IN DEPARTMENT / UNIT: ACTUAL NUMBER MEMBER DEADLINE: FRIDAY MARCH 2, 2012 ADDITIONAL COMMENTS: Signature of Head / Director of Nominee's Unit

Arnold, Jonathan

176

Nomination Form DEPARTMENT / UNIT  

E-Print Network (OSTI)

Nomination Form DEPARTMENT / UNIT: CAMPUS ADDRESS: CLASSIFICATION / TITLE: DEPARTMENT EMAIL ADDRESS: DEPARTMENT TELEPHONE: 2014 FRANKLIN STAFF SERVICE AWARDS START DATE IN DEPARTMENT / UNIT: ACTUAL NUMBER MEMBER DEADLINE: MARCH 7, 2014 ADDITIONAL COMMENTS: Signature of Head / Director of Nominee's Unit

Arnold, Jonathan

177

Thermal Removal Of Tritium From Concrete And Soil To Reduce Groundwater Impacts  

SciTech Connect

Legacy heavy-water moderator operations at the Savannah River Site (SRS) have resulted in the contamination of equipment pads, building slabs, and surrounding soil with tritium. At the time of discovery the tritium had impacted the shallow (< 3-m) groundwater at the facility. While tritium was present in the groundwater, characterization efforts determined that a significant source remained in a concrete slab at the surface and within the associated vadose zone soils. To prevent continued long-term impacts to the shallow groundwater a CERCLA non-time critical removal action for these source materials was conducted to reduce the leaching of tritium from the vadose zone soils and concrete slabs. In order to minimize transportation and disposal costs, an on-site thermal treatment process was designed, tested, and implemented. The on-site treatment consisted of thermal detritiation of the concrete rubble and soil. During this process concrete rubble was heated to a temperature of 815 deg C (1,500 deg F) resulting in the dehydration and removal of water bound tritium. During heating, tritium contaminated soil was used to provide thermal insulation during which it's temperature exceeded 100 deg C (212 deg F), causing drying and removal of tritium. The thermal treatment process volatiles the water bound tritium and releases it to the atmosphere. The released tritium was considered insignificant based upon Clean Air Act Compliance Package (CAP88) analysis and did not exceed exposure thresholds. A treatability study evaluated the effectiveness of this thermal configuration and viability as a decontamination method for tritium in concrete and soil materials. Post treatment sampling confirmed the effectiveness at reducing tritium to acceptable waste site specific levels. With American Recovery and Reinvestment Act (ARRA) funding three additional treatment cells were assembled utilizing commercial heating equipment and common construction materials. This provided a total of four units to batch treat concrete rubble and soil. Post treatment sampling verified that the activity in the treated soil and concrete met the treatment standards for each medium which allowed the treated concrete rubble and soil to be disposed of on site as backfill. During testing and operations a total of 1,261-m{sup 3} (1,650-yd{sup 3}) of contaminated concrete and soils were treated with an actual incurred cost of $3,980,000. This represents a unit treatment cost of $3,156/m{sup 3} ($2,412/yd{sup 3}). In 2011 the project was recognized with an e-Star Sustainability Award by DOE's Office of Environmental Management.

Jackson, Dennis G.; Blount, Gerald C.; Wells, Leslie H.; Cardoso-Neto, Joao E.; Kmetz, Thomas F.; Reed, Misty L.

2012-12-04T23:59:59.000Z

178

TWO-STAGE ROBUST UNIT COMMITMENT PROBLEM 1 ...  

E-Print Network (OSTI)

demands for a power plant are highly uncertain. ... For a thermal plant to generate power for its customers, there are two phases: 1) Unit commit- ment, i.e. ...

179

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

180

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"Proceed- ings of Aquifer Thermal Energy Storage Workshop,

Tsang, C.-F.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal treatment unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Solar heating unit  

SciTech Connect

A solar heating unit is disclosed for disposition exteriorly of a building window for heating the air within the space interiorly of the window embodying a casing with a transverse divider for creating a rear passage and a front passage which are in communication in their lower portions. The upper end of the rear passage connects with the forward end of a rearwardly extending lower duct having a cool air inlet at the rearward end thereof. The upper end of the front passage connects with the forward end of an upper duct progressing rearwardly above the lower duct and with there being a warm air outlet at the rearward extremity thereof. A heat exchanger is disposed within the front passage for impingement thereon of solar radiation passing through a transparent panel defining the front of said casing. A thermal responsive closure is provided at the upper end of said front passage for closing same when the temperature within the front passage has descended to a predetermined level.

Grisbrook, R.B.

1978-10-24T23:59:59.000Z

182

Monticello Mill Tailings, Operable Unit III Surface and Ground...  

Office of Legacy Management (LM)

Action activities included millsite dewatering and treatment, initiation of a ground water management policy to prevent use Monticello Mill Tailings Site, Operable Unit III...

183

Comparison of costs for alternative mixed low-level waste treatment systems  

SciTech Connect

Total life cycle costs (TLCCs), including disposal costs, of thermal, nonthermal and enhanced nonthermal systems were evaluated to guide future research and development programs for the treatment of mixed low-level waste (MLLW) consisting of RCRA hazardous and low-level radioactive wastes. In these studies, nonthermal systems are defined as those systems that process waste at temperatures less than 350 C. Preconceptual designs and costs were developed for thirty systems with a capacity (2,927 lbs/hr) to treat the DOE MLLW stored inventor y(approximately 236 million pounds) in 20 years in a single, centralized facility. A limited comparison of the studies` results is presented in this paper. Sensitivity of treatment costs with respect to treatment capacity, number of treatment facilities, and system availability were also determined. The major cost element is operations and maintenance (O and M), which is 50 to 60% of the TLCC for both thermal and nonthermal systems. Energy costs constitute a small fraction (< 1%) of the TLCCs. Equipment cost is only 3 to 5% of the treatment cost. Evaluation of subsystem costs demonstrate that receiving and preparation is the highest cost subsystem at about 25 to 30% of the TLCC for both thermal and nonthermal systems. These studies found no cost incentives to use nonthermal or hybrid (combined nonthermal treatment with stabilization by vitrification) systems in place of thermal systems. However, there may be other incentives including fewer air emissions and less local objection to a treatment facility. Building multiple treatment facilities to treat the same total mass of waste as a single facility would increase the total treatment cost significantly, and improved system availability decreases unit treatment costs by 17% to 30%.

Schwinkendorf, W.E.; Harvego, L. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Cooley, C.R. [Dept. of Energy (United States); Biagi, C. [Morrison Knudsen (United States)

1996-12-31T23:59:59.000Z

184

Portable brine evaporator unit, process, and system  

DOE Patents (OSTI)

The present invention discloses a comprehensive, efficient, and cost effective portable evaporator unit, method, and system for the treatment of brine. The evaporator unit, method, and system require a pretreatment process that removes heavy metals, crude oil, and other contaminates in preparation for the evaporator unit. The pretreatment and the evaporator unit, method, and system process metals and brine at the site where they are generated (the well site). Thus, saving significant money to producers who can avoid present and future increases in transportation costs.

Hart, Paul John (Indiana, PA); Miller, Bruce G. (State College, PA); Wincek, Ronald T. (State College, PA); Decker, Glenn E. (Bellefonte, PA); Johnson, David K. (Port Matilda, PA)

2009-04-07T23:59:59.000Z

185

Thermal Monitoring Approaches for Energy Savings Verification  

E-Print Network (OSTI)

This paper reviews and summarizes techniques for monitoring thermal energy flows for the purpose of verifying energy savings in industrial and large institutional energy conservation projects. Approaches for monitoring hot and chilled water, steam, steam condensate and boiler feedwater in large facilities are described. Insights gained and lessons learned through the actual in-field installation of thermal monitoring equipment for energy savings verification purposes at over 100 sites at various locations throughout the United States are presented.

McBride, J. R.; Bohmer, C. J.; Lippman, R. H.; Zern, M. J.

1996-04-01T23:59:59.000Z

186

Thermal conductivity of thermal-battery insulations  

DOE Green Energy (OSTI)

The thermal conductivities of a variety of insulating materials used in thermal batteries were measured in atmospheres of argon and helium using several techniques. (Helium was used to simulate the hydrogen atmosphere that results when a Li(Si)/FeS{sub 2} thermal battery ages.) The guarded-hot-plate method was used with the Min-K insulation because of its extremely low thermal conductivity. For comparison purposes, the thermal conductivity of the Min-K insulating board was also measured using the hot-probe method. The thermal-comparator method was used for the rigid Fiberfrax board and Fiberfrax paper. The thermal conductivity of the paper was measured under several levels of compression to simulate the conditions of the insulating wrap used on the stack in a thermal battery. The results of preliminary thermal-characterization tests with several silica aerogel materials are also presented.

Guidotti, R.A.; Moss, M.

1995-08-01T23:59:59.000Z

187

Thermal decomposition of mercuric sulfide  

Science Conference Proceedings (OSTI)

The rate of thermal decomposition of mercuric sulfide (HgS) has been measured at temperatures from 265 to 345 C. These data have been analyzed using a first-order chemical reaction model for the time dependence of the reaction and the Arrhenius equation for the temperature dependence of the rate constant. Using this information, the activation energy for the reaction was found to be 55 kcal/mol. Significant reaction vessel surface effects obscured the functional form of the time dependence of the initial portion of the reaction. The data and the resulting time-temperature reaction-rate model were used to predict the decomposition rate of HgS as a function of time and temperature in thermal treatment systems. Data from large-scale thermal treatment studies already completed were interpreted in terms of the results of this study. While the data from the large-scale thermal treatment studies were consistent with the data from this report, mass transport effects may have contributed to the residual amount of mercury which remained in the soil after most of the large-scale runs.

Leckey, J.H.; Nulf, L.E.

1994-10-28T23:59:59.000Z

188

UNITED STATES ENVIRONMENTALPROTECTIONAGENCY WASHINGTON, D.C. 20460  

E-Print Network (OSTI)

as a hazardous waste treatment unit under RCRA interim status and is undergoing RCRA closure. The pad was built.................................................................................2-3 2.6 CLOSURE Closure Plan for the Technical Area 16 Open Burning Units G Technical Area (TA) 16 Open Burning Units

189

Japans use of thermal generation is up since March 2011 due ...  

U.S. Energy Information Administration (EIA)

Uranium fuel, nuclear reactors, generation, ... Total post-Fukushima fossil fuel consumption peaked at about 500 trillion British thermal units in January 2012 ...

190

Nomination Form DEPARTMENT / UNIT  

E-Print Network (OSTI)

Nomination Form DEPARTMENT / UNIT: CAMPUS ADDRESS: JOB TITLE: DEPARTMENT EMAIL ADDRESS: DEPARTMENT TELEPHONE: 2014 FRANKLIN STAFF EXCELLENCE AWARDS START DATE IN DEPARTMENT / UNIT: Nominee Information NAME / RESEARCHPROFESSIONAL Signature of Head / Director of Nominee's Unit: NOMINATION PACKET DEADLINE: MARCH 7, 2014 PLEASE

Arnold, Jonathan

191

Nomination Form DEPARTMENT / UNIT  

E-Print Network (OSTI)

Nomination Form DEPARTMENT / UNIT: CAMPUS ADDRESS: JOB TITLE: DEPARTMENT EMAIL ADDRESS: DEPARTMENT TELEPHONE: 2012 FRANKLIN STAFF EXCELLENCE AWARDS START DATE IN DEPARTMENT / UNIT: Nominee Information NAME / RESEARCHPROFESSIONAL Signature of Head / Director of Nominee's Unit: NOMINATION PACKET DEADLINE: FRIDAY MARCH 2, 2012

Arnold, Jonathan

192

Nomination Form DEPARTMENT / UNIT  

E-Print Network (OSTI)

Nomination Form DEPARTMENT / UNIT: CAMPUS ADDRESS: JOB TITLE: DEPARTMENT EMAIL ADDRESS: DEPARTMENT TELEPHONE: 2011 FRANKLIN STAFF EXCELLENCE AWARDS START DATE IN DEPARTMENT / UNIT: Nominee Information NAME / RESEARCHPROFESSIONAL Signature of Head / Director of Nominee's Unit: NOMINATION PACKET DEADLINE: FRIDAY MARCH 4, 2011

Arnold, Jonathan

193

Nomination Form DEPARTMENT / UNIT  

E-Print Network (OSTI)

Nomination Form DEPARTMENT / UNIT: CAMPUS ADDRESS: JOB TITLE: DEPARTMENT EMAIL ADDRESS: DEPARTMENT TELEPHONE: 2013 FRANKLIN STAFF EXCELLENCE AWARDS START DATE IN DEPARTMENT / UNIT: Nominee Information NAME / RESEARCHPROFESSIONAL Signature of Head / Director of Nominee's Unit: NOMINATION PACKET DEADLINE: MARCH 5, 2013 PLEASE

Arnold, Jonathan

194

Hydrogeochemistry of the Jowshan thermal springs, Kerman, Iran  

Science Conference Proceedings (OSTI)

Jowshan geothermal system comprises of 6 thermal springs with outlet temperatures ranging from 39.3 to 46.6 C. The thermal water of these springs is presently used for swimming and as a treatment for rheumatism, sinusitis and skin diseases. The ... Keywords: Iran, geothermometry, hydrogeochemistry, thermal spring

Zargham Mohammadi; Hassan Sahraie Parizi

2010-07-01T23:59:59.000Z

195

Minnesota Power - Solar-Thermal Water Heating Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minnesota Power - Solar-Thermal Water Heating Rebate Program Minnesota Power - Solar-Thermal Water Heating Rebate Program Minnesota Power - Solar-Thermal Water Heating Rebate Program < Back Eligibility Commercial Industrial Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Single-family unit: $2,000 Two- to three-family units: $4,000 Multi-family units (four or more): $10,000 Businesses: $25,000 Program Info Start Date 03/2010 Expiration Date 12/31/2013 State Minnesota Program Type Utility Rebate Program Rebate Amount 25% of costs Provider Minnesota Power Minnesota Power offers a 25% rebate for qualifying solar thermal water heating systems. The maximum award for single-family customers is $2,000 per customer; $4,000 for 2-3 family unit buildings; $10,000 for buildings

196

The West Coast Thermal Trough: Climatology and Synoptic Evolution  

Science Conference Proceedings (OSTI)

Although the West Coast thermal trough (WCTT) is the most important mesoscale feature over the U.S. west coast during the warm season, its initiation, evolution, and structure are not well understood. Originating in the southwest United States, ...

Matthew C. Brewer; Clifford F. Mass; Brian E. Potter

2012-12-01T23:59:59.000Z

197

Seasonal thermal energy storage  

DOE Green Energy (OSTI)

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

198

Heat extraction for the CSPonD thermal storage unit  

E-Print Network (OSTI)

Three coiled tube heat exchanger prototypes were designed to extract heat from containers holding 0.5 kg, 2.3 kg, and 10.5 kg of Sodium Nitrate-Potassium Nitrate salt. All of the prototypes were left with an open surface ...

Rojas, Folkers Eduardo

2011-01-01T23:59:59.000Z

199

British Thermal Units (Btu) - Energy Explained, Your Guide To ...  

U.S. Energy Information Administration (EIA)

Landfill Gas and Biogas; Biomass & the Environment See also: Biofuels. Biofuels: Ethanol & Biodiesel. Ethanol; Use of Ethanol; Ethanol & the Environment; Biodiesel;

200

An Economic Analysis of the Self Commitment of Thermal Units  

Science Conference Proceedings (OSTI)

Given the load profile of an electricity market and the capabilities of the set of generators supplying power to that market, it is likely that at any given point in time, available supply will exceed demand. If only a subset of generators is required, ...

Simon Ede; Ray Zimmerman; Timothy Mount; Robert Thomas; William Schulze

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal treatment unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Gas generator and turbine unit  

SciTech Connect

A gas turbine power unit is disclosed in which the arrangement and configuration of parts is such as to save space and weight in order to provide a compact and self-contained assembly. An air-intake casing supports the upstream end of a gas generator, the down-stream end of which is integral with a power turbine. The stator casing of the turbine is connected to a cone thermally insulated and completely inserted into any exhaust casing having a vertical outlet, wherein the turbine exhaust is conveyed into the exhaust casing by an annular diffusing cone. The turbine casing is supported on four legs. In addition, the turbine rotor and thus the turbine shaft are overhangingly supported by an independent structure, the weight of which bears on the machine base outside the exhaust casing and away of the power turbine space.

Vinciguerra, C.

1984-12-11T23:59:59.000Z

202

CO2 Emissions - United Korea  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Fuel CO2 Emissions Regional Centrally Planned Asia United Korea CO2 Emissions from United Korea Data graphic Data CO2 Emissions from United Korea...

203

BNL United Way Campaign  

NLE Websites -- All DOE Office Websites (Extended Search)

about Long Island issues and challenges. Because we care, we come together to raise money towards The United Way of Long Island, which provides "services to children and...

204

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

'OQOl - United States Government - Department of Energy National Nuclear Security Administration memorandum January 19, 201 1 DATE. REPLY TO ATTN OF: Y12-60:Gorman SUBJECT ANNUAL...

205

UnitOverview  

NLE Websites -- All DOE Office Websites (Extended Search)

UNIT OVERVIEW A general overview of LHC physics, accelerator and detector design, and how data inform claims and reasoning begins with an exploration of the "Big Questions" that...

206

Redefining the SI Units  

Science Conference Proceedings (OSTI)

... and accuracy, simplify and normalize the unit definitions, and liberate the system from dependence on the prototype kilogram, an artifact adopted in ...

2013-06-24T23:59:59.000Z

207

Base unit definitions: Kilogram  

Science Conference Proceedings (OSTI)

... Unit of mass (kilogram), Abbreviations: CGPM, CIPM, BIPM. At the end of the 18th century, a kilogram was the mass of a cubic decimeter of water. ...

208

United States Patent  

NLE Websites -- All DOE Office Websites (Extended Search)

( 1 of 1 ) United States Patent 6,994,831 Gentile , et al. February 7, 2006 Oxidative tritium decontamination system Abstract The Oxidative Tritium Decontamination System, OTDS,...

209

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

0 Appliances in Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East South...

210

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

8 Home Appliances in Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle...

211

Rooftop Unit Campaign  

NLE Websites -- All DOE Office Websites (Extended Search)

919-943-7291 April 4, 2013 BTO Program Review 2 | Building Technologies Office eere.energy.gov Purpose & Objectives - Problem Statement * Packaged rooftop units (RTUs)...

212

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to this report. INTRODUCTION AND OBJECTIVE The European Laboratory for Particle Physics, CERN, in collaboration with the United States (U.S.) and other non-member states,...

213

Peak Load Management of Thermal Loads Using Advanced Thermal Energy Storage Technologies  

Science Conference Proceedings (OSTI)

Almost 50% of electric energy delivered to residences is converted into some sort of thermal energyhot water, air conditioning, and refrigeration. Storing energy in thermal form is cheaper especially when the medium used to store the energy is an end-use medium for example, hot water. This technical update evaluates two different technologies for storing energyin cold water and in hot water.GreenPeak technology, a storage condensing unit (SCU) from IE Technologies, uses an ...

2013-12-20T23:59:59.000Z

214

Practical Solar Thermal Chilled Water  

E-Print Network (OSTI)

With the pressing need for the United States to reduce our dependence upon fossil fuels, it has become a national priority to develop technologies that allow practical use of renewable energy sources. One such energy source is sunlight. It has the potential to impact America's use of non-renewable energy beyond its own design capacity by applying it to the optimization of an existing building's system. Solar-thermal chilling systems are not new. However, few of them can be described as a practical success. The primary reason for these disappointments is a misunderstanding of solar energy dynamics by air conditioning designers; combined with a similar misunderstanding by solar engineers of how thermally driven chillers react to the loads and energy sources applied to them. With this in mind, a modeling tool has been developed which provides the flexibility to apply a strategy which can be termed, Optimization by Design.

Leavell, B.

2010-01-01T23:59:59.000Z

215

MODULAR CORE UNITS FOR A NEUTRONIC REACTOR  

DOE Patents (OSTI)

A modular core unit for use in a nuclear reactor is described. Many identical core modules can be placed next to each other to make up a complete core. Such a module includes a cylinder of moderator material surrounding a fuel- containing re-entrant coolant channel. The re-entrant channel provides for the circulation of coolant such as liquid sodium from one end of the core unit, through the fuel region, and back out through the same end as it entered. Thermal insulation surrounds the moderator exterior wall inducing heat to travel inwardly to the coolant channel. Spaces between units may be used to accommodate control rods and support structure, which may be cooled by a secondary gas coolant, independently of the main coolant. (AEC)

Gage, J.F. Jr.; Sherer, D.B.

1964-04-01T23:59:59.000Z

216

Summary Max Total Units  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Max Total Units Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water Refrig Voltage Cond Unit IF-CU Combos 2 4 5 28 References Refrig Voltage C-U type Compressor HP R-404A 208/1/60 Hermetic SA 2.5 R-507 230/1/60 Hermetic MA 2.5 208/3/60 SemiHerm SA 1.5 230/3/60 SemiHerm MA 1.5 SemiHerm HA 1.5 1000lb, remote rack systems, fresh water Refrig/system Voltage Combos 12 2 24 References Refrig/system Voltage IF only

217

Composite stabilizer unit  

DOE Patents (OSTI)

This invention is comprised of an improved fin stabilized projectile including multiple stabilizer fins upon a stabilizer unit situated at the aft end of the projectile is provided, the improvement wherein the stabilizer fins are joined into the stabilizer unit by an injection molded engineering grade polymer.

Ebaugh, L.R.; Sadler, C.P.; Carter, G.D.

1990-12-31T23:59:59.000Z

218

Composite stabilizer unit  

DOE Patents (OSTI)

This invention is comprised of an improved fin stabilized projectile including multiple stabilizer fins upon a stabilizer unit situated at the aft end of the projectile is provided, the improvement wherein the stabilizer fins are joined into the stabilizer unit by an injection molded engineering grade polymer.

Ebaugh, L.R.; Sadler, C.P.; Carter, G.D.

1990-01-01T23:59:59.000Z

219

Composite stabilizer unit  

SciTech Connect

An improved fin stabilized projectile including multiple stabilizer fins upon a stabilizer unit situated at the aft end of the projectile is provided, the improvement wherein the stabilizer fins are joined into the stabillizer unit by an injection molded engineering grade polymer.

Ebaugh, Larry R. (Los Alamos, NM); Sadler, Collin P. (Los Alamos, NM); Carter, Gary D. (Espanola, NM)

1992-01-01T23:59:59.000Z

220

Associative list processing unit  

SciTech Connect

An associative list processing unit and method comprising employing a plurality of prioritized cell blocks and permitting inserts to occur in a single clock cycle if all of the cell blocks are not full. Also, an associative list processing unit and method comprising employing a plurality of prioritized cell blocks and using a tree of prioritized multiplexers descending from the plurality of cell blocks.

Hemmert, Karl Scott; Underwood, Keith D.

2013-01-29T23:59:59.000Z

Note: This page contains sample records for the topic "thermal treatment unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Window solar heating unit  

SciTech Connect

The unit may be mounted either in a window or between the studs of a building that is to be supplied with solar heat. The bottom of the unit extends farther from the building than the top and is wider than the top of the unit such that the transparent side away from the building has an arcuate form and is gradually flared outwardly in a downward direction to increase the exposure to the sun during the day. A plurality of absorptive tubes within the unit are slanted from the upper portion of the unit downwardly and outwardly to the front arcuate portion of the bottom. Openings between the unit and the building are provided for air flow, and a thermostatically controlled fan is mounted in one of the openings. A baffle is mounted between the absorptive tubes and the mounting side of the solar heating unit, and the surfaces of the baffle and the absorptive tubes are painted a dull black for absorbing heat transmitted from the sun through the transparent, slanting side.

Davis, E.J.

1978-09-12T23:59:59.000Z

222

The CRC handbook of thermal engineering  

Science Conference Proceedings (OSTI)

This book is not a traditional handbook. Engineers in industry need up-to-date, accessible information on the applications of heat and mass transfer. This book is the answer. Contents include: (1) emphasis on applications in thermal design and computer solutions of thermal engineering problems; (2) an introduction to the use of the Second Law of Thermodynamics in analysis, optimization, and economics; (3) information on topics of current interest--in a form convenient and accessible to the average engineer; (4) three chapters of background material--enough to review the basic principles needed to understand specific thermal applications; and (5) extensive treatment of computational tools and numerical analysis.

Kreith, F. [ed.

1999-12-01T23:59:59.000Z

223

Integrated nonthermal treatment system study  

SciTech Connect

This report presents the results of a study of nonthermal treatment technologies. The study consisted of a systematic assessment of five nonthermal treatment alternatives. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The alternatives considered were innovative nonthermal treatments for organic liquids and sludges, process residue, soil and debris. Vacuum desorption or various washing approaches are considered for treatment of soil, residue and debris. Organic destruction methods include mediated electrochemical oxidation, catalytic wet oxidation, and acid digestion. Other methods studied included stabilization technologies and mercury separation of treatment residues. This study is a companion to the integrated thermal treatment study which examined 19 alternatives for thermal treatment of MLLW waste. The quantities and physical and chemical compositions of the input waste are based on the inventory database developed by the US Department of Energy. The Integrated Nonthermal Treatment Systems (INTS) systems were evaluated using the same waste input (2,927 pounds per hour) as the Integrated Thermal Treatment Systems (ITTS). 48 refs., 68 figs., 37 tabs.

Biagi, C.; Bahar, D.; Teheranian, B.; Vetromile, J. [Morrison Knudsen Corp. (United States); Quapp, W.J. [Nuclear Metals (United States); Bechtold, T.; Brown, B.; Schwinkendorf, W. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Swartz, G. [Swartz and Associates (United States)

1997-01-01T23:59:59.000Z

224

List of Ocean Thermal Incentives | Open Energy Information  

Open Energy Info (EERE)

Thermal Incentives Thermal Incentives Jump to: navigation, search The following contains the list of 96 Ocean Thermal Incentives. CSV (rows 1 - 96) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Business Energy Investment Tax Credit (ITC) (Federal) Corporate Tax Credit United States Agricultural Commercial Industrial Utility Anaerobic Digestion Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Direct Use Geothermal Electric Ground Source Heat Pumps Hydroelectric energy Landfill Gas Microturbines Municipal Solid Waste Ocean Thermal Photovoltaics Small Hydroelectric Small Wind Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat Tidal Energy Wave Energy Wind energy Yes CCEF - Project 150 Initiative (Connecticut) State Grant Program Connecticut Commercial Solar Thermal Electric

225

United Power - Energy Efficiency Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Rebate Program Energy Efficiency Rebate Program United Power - Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Manufacturing Water Heating Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Geothermal Heat Pump: $2,500 + $150/ton TSGT rebate* Air-Source Heat Pumps: $400 + $125-150/ton TSGT rebate Terminal Units: $235 Energy Star Heat Pump Bonus: $100 - $150 Electric Water Heater: $70 - $650, depending on conditions and features Electric Resistive Heat Units: $350/unit Electric Thermal Storage Units: $350/unit + $16/kW TSGT rebate Energy Star Appliances Refrigerator/Freezer: $40 Refrigerator/Freezer Recycling: $75

226

Next Generation Rooftop Unit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Next Generation Rooftop Unit - Next Generation Rooftop Unit - CRADA Bo Shen Oak Ridge National Laboratory shenb@ornl.gov; 865-574-5745 April 3, 2013 ET R&D project in support of DOE/BTO Goal of 50% Reduction in Building Energy Use by 2030. CRADA project with Trane TOP US Commercial HVAC Equipment OEM 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: half of all US commercial floor space cooled by packaged AC units, consumes more than 1.0 Quad source energy/year; highly efficient systems needed

227

Next Generation Rooftop Unit  

NLE Websites -- All DOE Office Websites (Extended Search)

Next Generation Rooftop Unit - Next Generation Rooftop Unit - CRADA Bo Shen Oak Ridge National Laboratory shenb@ornl.gov; 865-574-5745 April 3, 2013 ET R&D project in support of DOE/BTO Goal of 50% Reduction in Building Energy Use by 2030. CRADA project with Trane TOP US Commercial HVAC Equipment OEM 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: half of all US commercial floor space cooled by packaged AC units, consumes more than 1.0 Quad source energy/year; highly efficient systems needed

228

HEATS: Thermal Energy Storage  

SciTech Connect

HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

229

Midtemperature solar systems test facility predictions for thermal performance of the Acurex solar collector with FEK 244 reflector surface  

DOE Green Energy (OSTI)

Thermal performance predictions are presented for the Acurex solar collector, with FEK 244 reflector surface, for three output temperatures at five cities in the United States.

Harrison, T.D.

1981-01-01T23:59:59.000Z

230

Thermal Analysis and Stress Analysis of the Heat-Exchange Pipe Based on ANSYS  

Science Conference Proceedings (OSTI)

ANSYS to be as a finite element analysis software has powerful features in thermal analysis and structural analysis. Based on ANSYS thermal analysis function, this paper selects SOLID90 unit, for thermal analysis on the heat-exchange pipe of heat exchanger ... Keywords: ANSYS, temperature distribution, stress distribution

Fenhua Li; Jian Xing; Yuan Liu

2011-04-01T23:59:59.000Z

231

United Cool Air  

Energy.gov (U.S. Department of Energy (DOE))

While our process may start with a "basic model" it is seldom that we fabricate more than a few units that are identical. Therefore, the definition of "basic model" has a large impact on the...

232

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

the 2009 Poverty Guidelines for families published by the U.S. Department of Health and Human Services. 3Use of heating equipment for another housing unit also includes the use...

233

United States Government  

Office of Legacy Management (LM)

"- .-A*" (MQ) EfG (07-W) United States Government rrla.g-a Department of Energy memorandum DATE: tlEC 1 F: l??? REPLYTo EM-421 (W. A. W illiams , 903-8149) AJTN OF: SUBJECT:...

234

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

that do not contain a storage tank. The water is only heated as it passes through the heat exchanger. 3Use of a water heater for another housing unit also includes the use of...

235

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

that do not contain a storage tank. The water is only heated as it passes through the heat exchanger. 4Use of a water heater for another housing unit also includes the use of...

236

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

5 Appliances in U.S. Homes, by Household Income, 2009" " Million Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,"Below Poverty Line2" ,,"Less than...

237

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

3 Appliances in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to 1949","1950...

238

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

6 Appliances in U.S. Homes, by Climate Region, 2009" " Million Housing Units, Final" ,,"Climate Region2" ,"Total U.S.1 (millions)" ,,"Very Cold","Mixed- Humid","Mixed-Dry"...

239

Thermal contact resistance  

E-Print Network (OSTI)

This work deals with phenomena of thermal resistance for metallic surfaces in contact. The main concern of the work is to develop reliable and practical methods for prediction of the thermal contact resistance for various ...

Mikic, B. B.

1966-01-01T23:59:59.000Z

240

Thermal and Electrical Transport in Oxide Heterostructures  

E-Print Network (OSTI)

of thermal conductivity . . . . . . . . . . . . . . . .4.4 Thermal transport in2.3.2 Thermal transport . . . . . . . . . . . . . . . .

Ravichandran, Jayakanth

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal treatment unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Aquifer thermal energy (heat and chill) storage  

DOE Green Energy (OSTI)

As part of the 1992 Intersociety Conversion Engineering Conference, held in San Diego, California, August 3--7, 1992, the Seasonal Thermal Energy Storage Program coordinated five sessions dealing specifically with aquifer thermal energy storage technologies (ATES). Researchers from Sweden, The Netherlands, Germany, Switzerland, Denmark, Canada, and the United States presented papers on a variety of ATES related topics. With special permission from the Society of Automotive Engineers, host society for the 1992 IECEC, these papers are being republished here as a standalone summary of ATES technology status. Individual papers are indexed separately.

Jenne, E.A. (ed.)

1992-11-01T23:59:59.000Z

242

Ocean Thermal Energy Conversion: An overview  

DOE Green Energy (OSTI)

Ocean thermal energy conversion, or OTEC is a technology that extracts power from the ocean's natural thermal gradient. This technology is being pursued by researchers from many nations; in the United States, OTEC research is funded by the US Department of Energy's Ocean Energy Technology program. The program's goal is to develop the technology so that industry can make a competent assessment of its potential -- either as an alternative or as a supplement to conventional energy sources. Federally funded research in components and systems will help OTEC to the threshold of commercialization. This publication provides an overview of the OTEC technology. 47 refs., 25 figs.

Not Available

1989-11-01T23:59:59.000Z

243

Proceedings of the solar thermal technology conference  

SciTech Connect

The Solar Thermal Technology Conference was held on August 26-28, 1987, at the Marriott Hotel, Albuquerque, New Mexico. The meeting was sponsored by the United States Department of Energy and Sandia National Laboratories. Topics covered during the conference included a status summary of the Sandia Solar Thermal Development Project, perspectives on central and distributed receiver technology including energy collection and conversion technologies, systems analyses and applications experiments. The proceedings contain summaries (abstracts and principal visual aids) of the presentations made at the conference.

Tyner, C.E. (ed.)

1987-08-01T23:59:59.000Z

244

Thermal Spray Coatings  

Science Conference Proceedings (OSTI)

Table 35   Thermal spray coatings used for hardfacing applications...piston ring (internal combustion);

245

Plasma-Thermal Synthesis  

INLs Plasma-Thermal Synthesis process improves the conversion process for natural gas into liquid hydrocarbon fuels.

246

Ocean Thermal Energy Conversion  

Energy.gov (U.S. Department of Energy (DOE))

A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity.

247

Nanocomposite Thermal Spray Coatings.  

Science Conference Proceedings (OSTI)

Long-Term Surface Restoration Effect Introduced by Advanced Lubricant Additive Nanocomposite Thermal Spray Coatings. New Hardfacing Overlay Claddings...

248

Thermal Management of Solar Cells  

E-Print Network (OSTI)

phonon transmission and interface thermal conductance acrossF. Miao, et al. , "Superior Thermal Conductivity of Single-Advanced Materials for Thermal Management of Electronic

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

249

Thermal neutron detection system  

DOE Patents (OSTI)

According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

2000-01-01T23:59:59.000Z

250

Idaho Site Launches Corrective Actions Before Restarting Waste Treatment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Corrective Actions Before Restarting Waste Corrective Actions Before Restarting Waste Treatment Facility Idaho Site Launches Corrective Actions Before Restarting Waste Treatment Facility September 13, 2012 - 12:00pm Addthis Pictured here is the Integrated Waste Treatment Unit's off-gas filter following the June incident. Pictured here is the Integrated Waste Treatment Unit's off-gas filter following the June incident. A view of the process piping installations prior to startup of the Integrated Waste Treatment Unit. A view of the process piping installations prior to startup of the Integrated Waste Treatment Unit. Pictured here is the Integrated Waste Treatment Unit's off-gas filter following the June incident. A view of the process piping installations prior to startup of the Integrated Waste Treatment Unit.

251

A new method for stochastic production simulation in generation system with multiple hydro units  

SciTech Connect

This paper describes a new method of calculating loss of load probability, expected energy generation and production cost for units in a generating system with multiple hydro units. The method uses the equivalent load duration curve (ELDC) obtained by convolving the distributions of the original load and the forced outage power loss of all generators. Hydro units are scheduled on the ELDC according to their assigned energy and available capacity. Then the deconvolution procedure is performed to obtain a load duration curve for an equivalent system without hydro units. The expected energy of the thermal units is achieved by convolving the generating units in an economic merit order of loading.

Chen, S.J.

1988-06-01T23:59:59.000Z

252

An Upper-Air Synoptic Climatology of the Western United States  

Science Conference Proceedings (OSTI)

An automated, year-round synoptic climatology is developed for the western United States from rawinsonde observations from 1979 to 1988. The classification uses thermal, moisture, and flow parameters to characterize seasonal and interannual ...

Robert E. Davis; David R. Walker

1992-12-01T23:59:59.000Z

253

Second United Nations  

NLE Websites -- All DOE Office Websites (Extended Search)

Nations Nations . DISCLAIMER This report was prepared a s an account of work sponsored by an agency of the United States Government. Neither t h e United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and

254

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

.2/06 WED 17:02 FAX 423 241 3897 OIG .2/06 WED 17:02 FAX 423 241 3897 OIG -** HQ . 001 United States Government Department of Energy Department of Energy memorandum DATE: February 9, 2006 Audit Report Number: OAS-L-06-07 REPLY TO ATTN OF; IG-32 (A050R014) SUBJECT: Audit of "The Department's Management of United States Enrichment Corporation Site Services" TO: Manager, Portsmouth/Paducah Project Office INTRODUCTTON AND OBJECTIVE The Paducah Gaseous Diffusion Plant (Paducah), located in western Kentucky, was constructed by the Department of Energy (Department) in the early 1950s to enrich uranium for use in various military and commercial applications. The Department operated the plant until the Energy Policy Act of 1992 created the United States Enrichment Corporation (USEC) as a Government-owned

255

Performance Analysis of Dual-Fan, Dual-Duct Constant Volume Air-Handling Units  

E-Print Network (OSTI)

Dual-fan, dual-duct air-handling units introduce outside air directly into the cooling duct and use two variable speed devices to independently maintain the static pressure of the hot and the cold air ducts. Analytical models have been developed to compare fan power and thermal energy consumption of dualfan, dual-duct constant volume air-handling units with single-fan, dual-duct constant volume airhandling units. This study shows that the dual-fan, dual-duct system uses less fan power and less thermal energy during winter, and uses more thermal energy during summer. Thermal energy performance can be significantly improved if the thermal energy penalty can be decreased or eliminated.

Joo, I. S.; Liu, M.

2001-01-01T23:59:59.000Z

256

Severe Storm Observations Using the Microwave Sounding Unit  

Science Conference Proceedings (OSTI)

The microwave sounding unit (MSU) aboard the NOAA polar orbiting satellites contains four channels in the oxygen band, at 50.30, 53.74, 54.96 and 57.95 GHz, which receive thermal radiation originating primarily from four regions ranging from the ...

Norman C. Grody

1983-04-01T23:59:59.000Z

257

C. Uniform Unit Pricing Regulation  

Science Conference Proceedings (OSTI)

... to permit retail stores that voluntarily provide unit pricing to present prices using various ... with requirements that specify that the unit price is to be ...

2013-10-25T23:59:59.000Z

258

United Biofuels | Open Energy Information  

Open Energy Info (EERE)

United Biofuels Jump to: navigation, search Name United Biofuels Place York, Pennsylvania Product Waste and animal fats to biofuel producer, switched to animal fats from soy in...

259

Exemplary Units Markup Language usage  

Science Conference Proceedings (OSTI)

Sample UnitsML tools and usage. ... Its usage is limited to demonstrating capabilities of plain XSLT processing with the data stored in UnitsML. ...

260

Building Energy Software Tools Directory: Thermal Comfort  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Comfort Thermal Comfort logo. Provides a user-friendly interface for calculating thermal comfort parameters and making thermal comfort predictions using several thermal...

Note: This page contains sample records for the topic "thermal treatment unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

United States lubricant demand  

Science Conference Proceedings (OSTI)

This paper examines United States Lubricant Demand for Automotive and Industrial Lubricants by year from 1978 to 1992 and 1997. Projected total United States Lubricant Demand for 1988 is 2,725 million (or MM) gallons. Automotive oils are expected to account for 1,469MM gallons or (53.9%), greases 59MM gallons (or 2.2%), and Industrial oils will account for the remaining 1,197MM gallons (or 43.9%) in 1988. This proportional relationship between Automotive and Industrial is projected to remain relatively constant until 1992 and out to 1997. Projections for individual years between 1978 to 1992 and 1997 are summarized.

Solomon, L.K.; Pruitt, P.R.

1988-01-01T23:59:59.000Z

262

Hydrothermal Heat Discharge In The Cascade Range, Northwestern United  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Hydrothermal Heat Discharge In The Cascade Range, Northwestern United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Hydrothermal Heat Discharge In The Cascade Range, Northwestern United States Details Activities (3) Areas (1) Regions (0) Abstract: Hydrothermal heat discharge in the Cascade Range includes the heat discharged by thermal springs, by "slightly thermal" springs that are only a few degrees warmer than ambient temperature, and by fumaroles. Thermal-spring heat discharge is calculated on the basis of chloride-flux measurements and geothermometer temperatures and totals ~ 240 MW in the U.S. part of the Cascade Range, excluding the transient post-1980 discharge

263

Solving Unit Commitment by a Unit Decommitment Method  

E-Print Network (OSTI)

demand, and operating constraints such as spinning reserve requirements, over a short time horizon of power unit i is generating in time period t pmin i pmax i : minimum maximum rated capacity of unit i rmax i : maximum reserve for unit i ripit : reserve available from unit i in time period t minrmax i

264

Advanced Off-Gas Control System Design For Radioactive And Mixed Waste Treatment  

SciTech Connect

Treatment of radioactive and mixed wastes is often required to destroy or immobilize hazardous constituents, reduce waste volume, and convert the waste to a form suitable for final disposal. These kinds of treatments usually evolve off-gas. Air emission regulations have become increasingly stringent in recent years. Mixed waste thermal treatment in the United States is now generally regulated under the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards. These standards impose unprecedented requirements for operation, monitoring and control, and emissions control. Off-gas control technologies and system designs that were satisfactorily proven in mixed waste operation prior to the implementation of new regulatory standards are in some cases no longer suitable in new mixed waste treatment system designs. Some mixed waste treatment facilities have been shut down rather than have excessively restrictive feed rate limits or facility upgrades to comply with the new standards. New mixed waste treatment facilities in the U. S. are being designed to operate in compliance with the HWC MACT standards. Activities have been underway for the past 10 years at the INL and elsewhere to identify, develop, demonstrate, and design technologies for enabling HWC MACT compliance for mixed waste treatment facilities. Some specific off-gas control technologies and system designs have been identified and tested to show that even the stringent HWC MACT standards can be met, while minimizing treatment facility size and cost.

Nick Soelberg

2005-09-01T23:59:59.000Z

265

COOPERATIVE RESEARCH UNITS2009  

E-Print Network (OSTI)

. The CRU program expects to continue to work with cooperators in identify- ing high priority hiring actions Cooperators' Coalition (NCC) for the CRU program, which targets efforts in CRU to (i) find new ways to workCOOPERATIVE RESEARCH UNITS2009 Year In Review PROGRAM YEAR IN REVIEW In Fiscal Year (FY) 2009

266

Control of waste gas from a thermal EOR operation  

SciTech Connect

This paper summarizes a waste-gas treatment system designed to control emissions from thermal EOR wells. This case study discusses the need, design, installation, and operation of the system.

Peavy, M.A.; Braun, J.E. (Oryx Energy Co. (US))

1991-06-01T23:59:59.000Z

267

Characterization of Thermal Properties of Depleted Uranium Metal Microspheres  

E-Print Network (OSTI)

Nuclear fuel comes in many forms; oxide fuel is the most commonly used in current reactor systems while metal fuel is a promising fuel type for future reactors due to neutronic performance and increased thermal conductivity. As a key heat transfer parameter, thermal conductivity describes the heat transport properties of a material based upon the density, specific heat, and thermal diffusivity. A materials ability to transport thermal energy through its structure is a measurable property known as thermal diffusivity; the units for thermal diffusivity are given in area per unit time (e.g., m2/s). Current measurement methods for thermal diffusivity include LASER (or light) Flash Analysis and the hot-wire method. This study examines an approach that combines these previous two methods to characterize the diffusivity of a packed bed of microspheres of depleted uranium (DU) metal, which have a nominal diameter of 250 micrometers. The new apparatus is designated as the Crucible Heater Test Assembly (CHTA), and it induces a radial transient across a packed sample of microspheres then monitors the temperature profile using an array of thermocouples located at different distances from the source of the thermal transient. From the thermocouple data and an accurate time log, the thermal diffusivity of the sample may be calculated. Results indicate that DU microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer. At 500C, the thermal conductivity of the DU microspheres was 0.431 13% W/m-K compared to approximately 32 W/m-K for solid uranium metal. Characterization of the developed apparatus revealed a method that may be useful for measuring the thermal diffusivity of powders and liquids.

Humrickhouse, Carissa Joy

2012-05-01T23:59:59.000Z

268

Catalytic thermal barrier coatings  

Science Conference Proceedings (OSTI)

A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

Kulkarni, Anand A. (Orlando, FL); Campbell, Christian X. (Orlando, FL); Subramanian, Ramesh (Oviedo, FL)

2009-06-02T23:59:59.000Z

269

Thermally Conductive Graphite Foam  

oriented graphite planes, similar to high performance carbon fibers, which have been estimated to exhibit a thermal conductivity greater than 1700 ...

270

Essentials of the SI: Base & derived units  

Science Conference Proceedings (OSTI)

... Table 1. SI base units. SI base unit. Base quantity, Name, Symbol. length, meter, m. ... Table 2. Examples of SI derived units. SI derived unit. ...

271

Idaho Site Launches Startup of Waste Treatment Facility Following Federal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Launches Startup of Waste Treatment Facility Following Launches Startup of Waste Treatment Facility Following Federal Inspection, DOE Milestone Idaho Site Launches Startup of Waste Treatment Facility Following Federal Inspection, DOE Milestone April 23, 2012 - 12:00pm Addthis A controlled, phased startup of the Integrated Waste Treatment Unit began today after the facility passed a federal inspection. A controlled, phased startup of the Integrated Waste Treatment Unit began today after the facility passed a federal inspection. A view of the interior of the Integrated Waste Treatment Unit. A view of the interior of the Integrated Waste Treatment Unit. A controlled, phased startup of the Integrated Waste Treatment Unit began today after the facility passed a federal inspection. A view of the interior of the Integrated Waste

272

Idaho Site Launches Startup of Waste Treatment Facility Following Federal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Site Launches Startup of Waste Treatment Facility Following Idaho Site Launches Startup of Waste Treatment Facility Following Federal Inspection, DOE Milestone Idaho Site Launches Startup of Waste Treatment Facility Following Federal Inspection, DOE Milestone April 23, 2012 - 12:00pm Addthis A controlled, phased startup of the Integrated Waste Treatment Unit began today after the facility passed a federal inspection. A controlled, phased startup of the Integrated Waste Treatment Unit began today after the facility passed a federal inspection. A view of the interior of the Integrated Waste Treatment Unit. A view of the interior of the Integrated Waste Treatment Unit. A controlled, phased startup of the Integrated Waste Treatment Unit began today after the facility passed a federal inspection. A view of the interior of the Integrated Waste

273

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ng ng United States Government Department of Energy Memorandum OFFICE OF INSPECTOR GENERAL DATE: APR 18 2003 REPLY TO ATTN OF: IG-34 (A02PR010) Audit Report No.: OAS-L-03-15 SUBJECT: Audit of the Weatherization Assistance Program TO: Director, Weatherization and Intergovernmental Program, EE-2K The purpose of this report is to inform you of the results of our audit of the Weatherization Assistance Program. INTRODUCTION AND OBJECTIVE The Weatherization Assistance Program (Program) was established to increase energy efficiency in dwellings owned or occupied by low-income persons to reduce their residential energy expenditures and improve their health and safety. Since its inception in 1976, the Program has reported that approximately 5 million dwelling units owned or occupied by low-income individuals have been weatherized.

274

United States Government Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OE r 1325.0 OE r 1325.0 (01.93) United States Government Department of memorandum DATE: March 23, 2006 Audit Report Number: OAS-L-06-09 REPLY TO ATTN OF: IG-32 (A060R040) SUBJECT: Audit of"The Department of Energy's Management of the Northeast Home Heating Oil Reserve" TO, Deputy Assistant Secrctary for Petroleum Reserves INTRODUCTION AND OBJECTIVE The Energy Act of 2000 authorized the Secretary of Energy to create a Northeast Home Heating Oil Reserve (Reserve). The Reserve was established as an "emergency buffer" to supplement commercial supplies should a severe supply disruption occur in the heavily heating oil-dependent northeast United States. The Reserve consists of 2 million barrels of emergency home heating oil, enough to provide Northeast consumers adequate supplies for approximately

275

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States Government United States Government Department of Energy Memorandum DATE: July 29, 2005 REPLY TO ATTN TO: IG-34 (A05HQ002) Audit Report No. OAS-L-05-10 SUBJECT: Agreed-Upon Procedures for Federal Payroll TO: Director, Office of Management, Budget, and Evaluation/Chief Financial Officer, ME-1 INTRODUCTION AND OBJECTIVE The Office of Management and Budget (OMB) Bulletin No. 01-02, "Audit Requirements for Federal Financial Statement," dated October 16, 2000, requires an annual audit of civilian payroll of executive departments and other Government agencies. Auditors are required to follow the agreed-upon procedures in Appendix I-1 of OMB Bulletin No. 01-02, to assess the reasonableness of life insurance, health benefits, and retirement withholdings and contributions.

276

UNITED STATES GOVERNMENT  

Office of Legacy Management (LM)

Menxmmhmz 9 Menxmmhmz 9 1 / UNITED STATES GOVERNMENT i TO : ThcFFles . mx.f I A. B. Piccct, +3lation section : DATE: .@.eti 16, 1949 SUBJECT: VISIT To HAVY OFfDHAlfCE DEPOT, EARIZ, B.J. FmmlTo ,sYmOL: DH:ARP . . : OnJuly 8,&g the uriterattendedameeting at the Navy Oxdnce Depot at Farle, Ii. J. for the purpose of advising the navy on i-adlatlon hazards involved In the dmping of contadnated AEC wastes at /?ea. " Presint were: J. Cook - Traffic & Transportation, AEC ~J.Moren- Utilifation, AEC ..J. Ccnmigl.io - Chief of Middlesex Operaticns A. PIhot -~Hadiation Section, AEC Captain Blossoin - Navy Captain hall - Navy ThefoSkndngwas agreedupcmby AFC andthe l&v. 1. 2. 3. 4. Contaminatedmaterial dnmied, I (loose in case of large contaminated units) loaded on truck&and lsonltored at'

277

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

uv /uu/u* ±.u.. J.OJ..L rAA , *. . uv /uu/u* ±.u.. J.OJ..L rAA , *. . 'A4 .. ± OO, I U444 flmI I.j102 ' -f- $I)002 EP<.1 (o-.vu) United States Government Department of Energy memorandum DATE: January 30, 2004 REP.YTO: IG-35 (A03DN039) Audit Report No.: OAS-L-04-10 SUBJECT: Audit of the Safeguards and Security Program at the Rocky Flats Environmental Technology Site To: Frazer Lockhart, Manager, Rocky Flats Field Office INTRODUCTION AND OBJECTIVE Because of the terrorist attacks against the United States on September 11, 2001, the Department of Energy (Department) instituted additional security requirements beyond those already in place for normal security operations. These "Security Conditions" requirements were established by Department Notice 473.8 (Notice). The requirements are based on

278

United States Environmental Monitoring  

Office of Legacy Management (LM)

EPA 60014-91/030 EPA 60014-91/030 Environmental Protection Systems Laboratory DOE/DP00539-063 Agency P.O. Box 93478 Las Vegas NV 891 93-3478 Research and Development Offsite Environmental Monitoring Report: 1 - 3 5 Radiation Monitorina Around * / (- P 7 1 United States ~ u c l g a r Test Areas Calendar Year 1990 This page intentionally left blank EPN60014-90 DOWDP Offsite Environmental Monitoring Report: Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1990 Contributors: D.J. Chaloud, B.B. Dicey, D.G. Easterly, C.A. Fontana, R.W. Holloway, A.A. Mullen, V.E. Niemann, W.G. Phillips, D.D. Smith, N.R. Sunderland, D.J. Thome, and Nuclear Radiation Assessment Division Prepared for: U.S. Department of Energy under Interagency Agreement Number DE-A108-86-NV10522

279

l UNITED STATES GOVERNMENT  

Office of Legacy Management (LM)

UNITED STATES GOVERNMENT UNITED STATES GOVERNMENT lb 15 SUBJECT: THORFJM PROCURENENT PMF'N:TBU Jesse C. Johnson, Gtnager of IRaw Materials Operations3s.Office 3 R. W. Cook, Director of Production ~',LL:::+ I--- DATE: MAR ! 9 1951 The following list of suppliers of thorium and the amounts of materials procured from them by the Mew York Operations Office during calendar year 1950 is being supplied in accordance with Mr. Spelmanls telephone request of March 19. Thorium Lannett Bleachery iinde Air Products Co. Lindsey Light & Chemical Co. lliscellaneous NY0 Liscensing Division Rare Earths, Inc. Wolff-Alport Total - (kilograms) 179 38,2;2 -3 4,210 /vyeoi 4 -q- 2 : i ' \ iti 1 i 0 ;;\I:' --' I F 10 i;;;?/ \ --' L & ;:I :,- :,j( EZi 5 1 :' -I I ri _ I ' R i; .- . )- .i

280

Laser system preset unit  

DOE Patents (OSTI)

An electronic circuit is provided which may be used to preset a digital display unit of a Zeeman-effect layer interferometer system which derives distance measurements by comparing a reference signal to a Doppler signal generated at the output of the interferometer laser head. The circuit presets dimensional offsets in the interferometer digital display by electronically inducing a variation in either the Doppler signal or the reference signal, depending upon the direction of the offset, to achieve the desired display preset.

Goodwin, William L. (Knoxville, TN)

1977-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal treatment unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Hoechst plans Mexican unit  

SciTech Connect

Hoechst is considering plans to build its first ethoxylates project in Mexico, Mark Sijthoff, head of surfactants and auxiliaries for Hoechst`s specialty chemical business unit, tells CW. The company expects to make a decision on the 30,000-m.t./year project by the end of the year. Sijthoff would not disclose the site or where ethylene oxide (EO) feed would be obtained. The plan may depend on results of the privatization of Petroleos Mexicanos (Pemex), which is the only producer of EO in Mexico. Hoechst is part of a consortium bidding on the privatization. Sources say the unit will be built at Quimica Hoechst`s Coatzacoalcos site, close to Pemex`s EO plants at Cangregera and Morelos. A planned EO expansion at Morelos will probably move ahead when the sell-off is completed. Sijthoff says that Hoechst is also looking at improving its US surfactants position, although the company has no plans to expand ethoxylates, as there is {open_quotes}plenty of capacity.{close_quotes} Hoechst started up a 150-million lbs/year plant at Clear Lake, TX last year, ending a tolling agreement with Union Carbide. In addition, Rhone-Poulenc recently started a unit at Marcus Hook, PA, and Condea Vista is doubling its ethoxylation capacity at Lake Charles, LA. Meanwhile, Hoechst is still considering construction of 30,000-m.t./year ethoxylation plant in India or China. A decision is expected later this year.

Wood, A.; Alperowicz, N.

1996-05-22T23:59:59.000Z

282

Variable pressure thermal insulating jacket  

DOE Patents (OSTI)

A device for controlled insulation of a thermal device. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communcation with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket.

Nelson, Paul A. (Wheaton, IL); Malecha, Richard F. (Naperville, IL); Chilenskas, Albert A. (Chicago, IL)

1994-01-01T23:59:59.000Z

283

Variable pressure thermal insulating jacket  

DOE Patents (OSTI)

A device for controlled insulation of a thermal device is disclosed. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communication with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket. 10 figs.

Nelson, P.A.; Malecha, R.F.; Chilenskas, A.A.

1994-09-20T23:59:59.000Z

284

Engineering design and test plan for demonstrating DETOX treatment of mixed wastes  

SciTech Connect

DETOX is a cocatalyzed wet oxidation process in which the catalysts are a relatively great concentration of iron ions (typically as iron(III) chloride) in the presence of small amounts of platinum and ruthenium ions. Organic compounds are oxidized completely to carbon dioxide, water, and (if chlorinated) hydrogen chloride. The process has shown promise as a non-thermal alternative to incineration for treatment and/or volume reduction of hazardous, radioactive, and mixed wastes. Design and fabrication of a demonstration unit capable of destroying 25. Kg/hr of organic material is now in progress. This paper describes the Title 2 design of the demonstration unit, and the planned demonstration effort at Savannah River Site (SRS) and Weldon Spring Site Remedial Action Project (WSSRAP).

Goldblatt, S.; Dhooge, P.

1995-03-01T23:59:59.000Z

285

Preliminary development of thermal nuclear cell homogenization code  

SciTech Connect

Nuclear fuel cell homogenization for thermal reactors usually include three main parts, i.e., fast energy resonance part which usually adopt narrow resonance approximation to treat the resonance, low (intermediate) energy region in which the resonance can not be treated accurately using NR approximation and therefore we should use intermediate resonance treatment, and thermal energy region (very low) in which the effect of thermal must be treated properly. In n this study the application of the intermediate resonance approximation treatment for low energy nuclear resonance is discussed. The method is iterative based. As a sample the method is applied in U-235 low lying resonance and the result is presented and discussed.

Su'ud, Z.; Shafii, M. A.; Yudha, S. P.; Waris, A.; Rijal, K. [Nuclear Research group, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Jl. Ganesha 10, Bandung40132 (Indonesia)

2012-06-06T23:59:59.000Z

286

Mathematical structure of unit systems  

E-Print Network (OSTI)

We investigate the mathematical structure of unit systems and the relations between them. Looking over the entire set of unit systems, we can find a mathematical structure that is called preorder (or quasi-order). For some pair of unit systems, there exists a relation of preorder such that one unit system is transferable to the other unit system. The transfer (or conversion) is possible only when all of the quantities distinguishable in the latter system are always distinguishable in the former system. By utilizing this structure, we can systematically compare the representations in different unit systems. Especially, the equivalence class of unit systems (EUS) plays an important role because the representations of physical quantities and equations are of the same form in unit systems belonging to an EUS. The dimension of quantities is uniquely defined in each EUS. The EUS's form a partially ordered set. Using these mathematical structures, unit systems and EUS's are systematically classified and organized as a hierarchical tree.

Masao Kitano

2013-05-04T23:59:59.000Z

287

Electron thermal conduction in LASNEX  

SciTech Connect

This report is a transcription of hand-written notes by DM dated 29 January 1986, transcribed by SW, with some clarifying comments added and details specific to running the LASNEX code deleted. Reference to the esoteric measurement units employed in LASNEX has also been deleted by SW (hopefully, without introducing errors in the numerical constants). The report describes the physics equations only, and only of electron conduction. That is, it does not describe the numerical method, which may be finite difference or finite element treatment in space, and (usually) implicit treatment in time. It does not touch on other electron transport packages which are available, and which include suprathermal electrons, nonlocal conduction, Krook model conduction, and modifications to electron conduction by magnetic fields. Nevertheless, this model is employed for the preponderance of LASNEX simulations.

Munro, D.; Weber, S.

1994-12-16T23:59:59.000Z

288

Thermal protection apparatus  

DOE Patents (OSTI)

An apparatus which thermally protects sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components to a heat sink such as ice.

Bennett, Gloria A. (Los Alamos, NM); Elder, Michael G. (Los Alamos, NM); Kemme, Joseph E. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

289

Thermal protection apparatus  

DOE Patents (OSTI)

The disclosure is directed to an apparatus for thermally protecting sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components such as electronics to a heat sink such as ice.

Bennett, G.A.; Elder, M.G.; Kemme, J.E.

1984-03-20T23:59:59.000Z

290

Thermal masses in leptogenesis  

E-Print Network (OSTI)

We investigate the validity of using thermal masses in the kinematics of final states in the decay rate of heavy neutrinos in leptogenesis calculations. We find that using thermal masses this way is a reasonable approximation, but corrections arise through quantum statistical distribution functions and leptonic quasiparticles.

Kiessig, Clemens P

2009-01-01T23:59:59.000Z

291

Solar thermal aircraft  

DOE Patents (OSTI)

A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2007-09-18T23:59:59.000Z

292

B Plant complex treatment, storage, and disposal units inspection plan  

Science Conference Proceedings (OSTI)

Owners or operators of facilities that treat, store, and/or dispose of dangerous waste and/or mixed waste as defined by WAC 173-303, {open_quotes}Dangerous Waste Regulations,{close_quotes} must inspect their facilities to prevent malfunctions and deteriorations, operator errors, and discharges that may cause or lead to the release of hazardous waste constituents to the environment and/or cause a threat to human health. The WAC regulations require a written inspection schedule be developed, implemented, and kept at the facility.

Beam, T.G.

1994-10-01T23:59:59.000Z

293

Treatment of produced water using chemical and biological unit operations.  

E-Print Network (OSTI)

??Water generated along with oil and gas during coal bed methane and oil shale operations is commonly known as produced water, formation water, or oilfield (more)

Li, Liang

2010-01-01T23:59:59.000Z

294

Thermally-related safety issues associated with thermal batteries.  

DOE Green Energy (OSTI)

Thermal batteries can experience thermal runaway under certain usage conditions. This can lead to safety issues for personnel and cause damage to associated test equipment if the battery thermally self destructs. This report discusses a number of thermal and design related issues that can lead to catastrophic destruction of thermal batteries under certain conditions. Contributing factors are identified and mitigating actions are presented to minimize or prevent undesirable thermal runaway.

Guidotti, Ronald Armand

2006-06-01T23:59:59.000Z

295

Sandia National Laboratories: National Solar Thermal Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

ECISEnergyRenewable EnergySolar EnergyConcentrating Solar Power ECISEnergyRenewable EnergySolar EnergyConcentrating Solar Power (CSP)National Solar Thermal Test Facility National Solar Thermal Test Facility NSTTF Interactive Tour National Solar Thermal Test Facility (NSTTF) Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility of this type in the United States. The NSTTF's primary goal is to provide experimental engineering data for the design, construction, and operation of unique components and systems in proposed solar thermal electrical plants planned for large-scale power generation. In addition, the site was built and instrumented to provide test facilities for a variety of solar and nonsolar applications. The facility can provide

296

Review and summary of Solar Thermal Conversion Program planning assistance  

DOE Green Energy (OSTI)

The Solar Thermal Conversion Program comprises a major part of the national solar energy program which must be continuously reviewed and modified where necessary. Modifications are typically required to reflect technical achievements and uncertainties which arise from within the program or from other technical programs, changes in budgets available for supporting the program as well as internal program funding priorities, changing goals such as through acceleration or stretch-out of the program schedule, significant organizational changes involving responsible governmental agencies, the introduction of new project management support contractors, and required budget or schedule changes occurring within individual projects that make up the Solar Thermal Conversion Program. The Aerospace Corporation has provided data to assist in planning, review, coordination, and documentation of the overall Solar Thermal Conversion Program. The Solar Thermal Conversion Program Plan is described in detail. Sections 2.0 through 5.0 cover the discussion and detail planning covering the objectives, justification, basic and alternative plans, budgets, and schedules for the Solar Thermal sub-unit portion of the Solar Electric Applications effort. Appendices B1, B2, and B3 include the March 21, March 28, and April 5, 1975, Program Plan submissions of the complete Solar Electric Applications effort. In Appendix B the Solar Thermal, Solar Photovoltaic, Wind Energy, and Ocean Thermal sub-unit texts have been condensed and formatted for integration in the overall ERDA budget package. (WHK)

Not Available

1975-06-01T23:59:59.000Z

297

Links to on-line unit conversions  

Science Conference Proceedings (OSTI)

... Basic physical quantities. General unit, currency, and temperature conversion. ... Many conversions, including unusual and ancient units. ...

298

Supply Fan Control for Constant Air Volume Air Handling Units  

E-Print Network (OSTI)

Since terminal boxes do not have a modulation damper in constant volume (CV) air handling unit (AHU) systems, zone reheat coils have to be modulated to maintain the space temperature with constant supply airflow. This conventional control sequence causes a significant amount of reheat and constant fan power under partial load conditions. Variable Frequency Drives (VFDs) can be installed on these constant air volume systems. The fan speed can be modulated based on the maximum zone load. This paper present the procedure to control the supply fan speed and analyzes the thermal performance and major fan energy and thermal energy savings without expensive VAV retrofit through the actual system operation.

Cho, Y.; Wang, G.; Liu, M.

2007-01-01T23:59:59.000Z

299

Damage Evolution in Thermal Barrier Coatings with Thermal Cycling  

Science Conference Proceedings (OSTI)

Abstract Scope, Thermal barrier coatings typically fail on cooling after prolonged thermal cycling by the growth of sub-critical interface separations. Observations...

300

Efficient thermal management for multiprocessor systems  

E-Print Network (OSTI)

2.2.4 Thermal Modeling . . . . . . . .63 Table 4.3: Thermal Hot Spots . . . . . . . . . . . . . .Performance-Efficient Thermal Management . . . . . . . . . .

Co?kun, Ay?e K?v?lc?m

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal treatment unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Review of the Sodium Bearing Waste Treatment Project - Integrated...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IWTU Integrated Waste Treatment Unit LCO Limiting Condition for Operation LSS Life Safety Systems MSA Management Self-Assessment OFI Opportunity for Improvement ORR Operational...

302

Review of the Sodium Bearing Waste Treatment Project - Integrated...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IWTU Integrated Waste Treatment Unit LCO Limiting Condition for Operation LSS Life Safety Systems MSA Management Self-Assessment OFI Opportunity for Improvement OGC Off-Gas...

303

Development of a Improved Heat Treatment for Investment Cast ...  

Science Conference Proceedings (OSTI)

Development of a Improved Heat Treatment for Investment Cast Inconel718 ( PWA 649). John J. Schirra. United Technologies Corporation - Pratt & Whitney.

304

" Million U.S. Housing Units"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Lighting Usage Indicators by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ,"Housing Units (millions)","Single-Family Units",,"Apartments in...

305

Million U.S. Housing Units Total...............................  

U.S. Energy Information Administration (EIA) Indexed Site

Attached 2 to 4 Units Table HC2.12 Home Electronics Usage Indicators by Type of Housing Unit, 2005 5 or More Units Mobile Homes Type of Housing Unit Housing Units (millions)...

306

Current Name Academic Unit Request  

E-Print Network (OSTI)

Current Name Academic Unit Request Department/College/School/Institute/Center Names: New or Changes This form is to be used to request new academic units (departments, colleges, schools, institutes, or centers) or to request changes to existing academic units. Complete the following and submit

Hart, Gus

307

Cooling thermal storage  

Science Conference Proceedings (OSTI)

This article gives some overall guidelines for successful operation of cooling thermal storage installations. Electric utilities use rates and other incentives to encourage thermal storage, which not only reduces their system peaks but also transfers a portion of their load from expensive daytime inefficient peaking plants to less expensive nighttime base load high efficiency coal and nuclear plants. There are hundreds of thermal storage installations around the country. Some of these are very successful; others have failed to achieve all of their predicted benefits because application considerations were not properly addressed.

Gatley, D.P.

1987-04-01T23:59:59.000Z

308

Solar Thermal Conversion  

DOE Green Energy (OSTI)

The thermal conversion process of solar energy is based on well-known phenomena of heat transfer (Kreith 1976). In all thermal conversion processes, solar radiation is absorbed at the surface of a receiver, which contains or is in contact with flow passages through which a working fluid passes. As the receiver heats up, heat is transferred to the working fluid which may be air, water, oil, or a molten salt. The upper temperature that can be achieved in solar thermal conversion depends on the insolation, the degree to which the sunlight is concentrated, and the measures taken to reduce heat losses from the working fluid.

Kreith, F.; Meyer, R. T.

1982-11-01T23:59:59.000Z

309

Multilayer thermal barrier coating systems  

DOE Patents (OSTI)

The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

Vance, Steven J. (Orlando, FL); Goedjen, John G. (Oviedo, FL); Sabol, Stephen M. (Orlando, FL); Sloan, Kelly M. (Longwood, FL)

2000-01-01T23:59:59.000Z

310

Verti Jack Pumping Unit evaluation  

Science Conference Proceedings (OSTI)

The Verti Jack Pumping Unit was tested primarily to establish the energy comsumption efficiency of the unit as compared with that of conventional pumping unit. Before the unit was field tested, extensive static testing was performed to determine the effect of the counterbalance system throughout the operational cycle. The field test included comparing the performance of the Verti Jack Unit and conventional pump jacks - a Bethlehem 16 and Cabot 25 pumping unit. The Verti Jack unit was operated at four different pumping conditions. The Verti Jack unit peformed satisfactorily during the testing. Only minor problems that could not be attributed to the design or operation of the unit were encountered. Changing the stroke length was difficult in the field, but such operational problems were expected in operating the first phototype and can be corrected on future models. During the higher pumping rate tests of the Verti Jack unit, the well ceased to deliver fluid quantities at rates adequate to the pumping rate. These data are shown in table 8. Therefore, evaluation data are based on theoretical pump performance and are presented in table 9. The data show that the Verti Jack is more efficient than the conventional units tested. The most direct comparison was the Verti Jack test at 36-inch stroke and 12 1/2 strokes per minute versus the Cabot unit at 37-inch stroke and 12 strokes per minute. In the comparison the Verti Jack operated about 24 percent more efficiently than the Cabot unit. Comparing the summation of all Verti Jack tests with that of all conventional unit tests, the Verti Jack operated about 15 percent more efficiently. Compared to the Cabot unit only, the Verti Jack was about 17 percent more energy efficient. 13 figs., 12 tabs.

Porter, R.; Spence, K.

1985-11-01T23:59:59.000Z

311

Thermal insulations using vacuum panels  

DOE Patents (OSTI)

Thermal insulation vacuum panels are formed of an inner core of compressed low thermal conductivity powders enclosed by a ceramic/glass envelope evaluated to a low pressure.

Glicksman, Leon R. (Lynnfield, MA); Burke, Melissa S. (Pittsburgh, PA)

1991-07-16T23:59:59.000Z

312

Ocean Thermal | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Ocean Thermal Jump to: navigation, search TODO: Add description List of Ocean Thermal Incentives...

313

Comparison of Thermal Insulation Materials.  

E-Print Network (OSTI)

??This thesis is about comparing of different thermal insulation materials of different manufactures. In our days there are a lot of different thermal insulation materials (more)

Chaykovskiy, German

2010-01-01T23:59:59.000Z

314

,. United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

i. 001 i. 001 DOE F 1325.8 (8-89) EFG (07-90) ,. United States Government Department of Energy memorandum DATE: September 11, 2003 REPLYTO: IG-34 (A03NE045) Audit Report No.: OAS-L-03-20 SUBJECT: Audit of Procurement Administration at the Oak Ridge National Laboratory TO: Director, Office of Management, Budget and Evaluation/Chief Financial Officer, ME-1 The purpose of this report is to inform you of the results of our survey of procurement administration at the Oak Ridge National Laboratory (Laboratory). This review was initiated in May 2003 and fieldwork was conducted through August 2003. Our review methodology is described in an attachment to this report. INTRODUCTION AND OBJECTIVE In Fiscal Year (FY) 2002, the Department of Energy's (Department) management contractors procured approximately $6.4 billion worth of goods and services from

315

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OEF 1325.8 OEF 1325.8 (U8-93) United States Government Department of Energy memorandum DATE: April 11, 2007 Audit Report Number: OAS-L-07-I1 REPLY TO ATTN OF: IG-32 (A07DN056) SUSJECT: Audit of the Department of Energy's Community and Regulatory Support Funding at the Richland Operations Office TO: Manager, Richland Operations Office INTRODUCTION AND OBJECTIVE The Department of Energy's (Department) Office of Environmental Management provided $60.1 million in Community and Regulatory Support funding in Fiscal Year (FY) 2005 to a number of Departm- nt sites. The funding is intended to be used for activities indirectly related to nuclear and hazardous waste cleanup, such as agreements with state regulatory agencies and transportation departments. During FY 2005, the Department's Richland

316

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a . a . r-z . "*& ., . .. uoi UA o. --.- flI gj UUX DOE F 1325.8 (08.93) United States Government Department of Ene memorandum DATE: August 19, 2004 Audit Report Number: OAS-L-04-18 REPLY TO ATTN OF: IG-36 (A03IF009) SUBJECT: Audit of the "Revised Pit 9 Cleanup Project at the Idaho National Engineering and Environmental Laboratory" TO: Paul Golan, Acting Assistant Secretary, Office of Environmental Management INTRODUCTION AND OBJECTIVE The Idaho National Engineering and Environmental Laboratory's (iNEEL) subsurface disposal area was established in 1952 for disposal of solid radioactive waste and now encompasses an area of approximately 88 acres. Wastes from the INEEL and other Department of Energy (Department) sites, rmost notably Rocky Flats, were buried in

317

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

vu & . vu & . ,I / v a L U ; .8 " ',X v &..'*. "o uu V"x Ijo tf J ,*- , , i 4 w i tiJ U U 1 OEF S.a 135 (0B93) United States Government - Department of Energy memorandum DATE: February 27, 2007 REPLY TO Audit Repor Number: OAS-L-07-08 ATTN OF: IG-32 (A06ID015) SUBJECT: Audit of the "Design of the Engineered Barrier System at the Yucca Mountain Site" TO: Principal Deputy Director, Office of Civilian Radioactive Waste Management INTRODUCTION AND OBJECTrVE In accordance with the Nuclear Waste Policy Act of 1982, the Department of Energy's (Department) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for designing, licensing, constructing, and operating a repository, known as Yucca Mountain, for the permanent disposal of spent nuclear fuel and high-level -

318

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

F 1325.8 F 1325.8 (08-93) United States Government Department of Energy memorandum DATE: August 13, 2007 . . Audit Report Number: OAS-L-07-18 REPLY TO ATTN OF: IG-32 (A07PR061) SUBJECT: Audit of Executive Compensation at Brookhaven National Laboratory TO: Manager, Brookhaven Site Office INTRODUCTION AND OBJECTIVE As part of a Department of Energy-wide audit of executive compensation, we reviewed executive compensation at the Office of Science's Brookhaven National La --- _ .r . . tc. av .... n . Ou audit covered executive cuupoci'A ;is in curred and claimed for Fiscal Years 2003, 2004, and 2005. Brookhaven Science Associates, LLC, operated Brookhaven under Department of Energy (Department) contract number DE-AC02-98CH10886. The amount of executive compensation that can be reimbursed to Department

319

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

')/06 MON 14:28 FAX 423 241 3897 OIG ')/06 MON 14:28 FAX 423 241 3897 OIG --- HQ 1o001 ,O " F 1325.8 (08-93) United States Government Department of Energy memorandum DATE: April 10, 2006 Audit Report No.: OAS-L-06-11 REPLY TO ATTN OF: IG-32 (A05ID043) SUBJECT: Audit of "Contract Transition Activities at the Idaho Operations Office" TO: Manager, Idaho Operations Office INTRODUCTION AND OBJECTIVE The Department of Energy's Idaho Operations Office has ongoing missions focused primarily in the areas of nuclear energy and environmental cleanup. From October 1, 1999 to February 1, 2005, Bechtel BWXT Idaho, LLC (Bechtel) managed facility operations for both of these missions. In Fiscal Year 2005, two separate contracts began in order to add focus and clarity to each respective mission. First, the Idaho National

320

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-93) -93) United States Government Department of Energy memorandum DATE: July 12, 2007 Audit Report Number: OAS-L-07-15 REPLY TO ATnN OF: IG-32 (A07ID055) SUBJECr: Audit of the Idaho National Laboratory Facility Footprint Reduction TO: Manager, Idaho Operations Office INTRODUCTION AND OBJECTTVE On February 1, 2005, Battelle Energy Alliance, LLC (BEA) assumed responsibility for managing and operating the Idaho National Laboratory (INL) for the Department of Energy (Department) under a new 10 year contract. ThI m.ion for ,the L s to nntance the Nation's energy security by becoming the preeminent, internationally recognized nuclear energy research, development, and demonstration laboratory.. To accomplish this mission, BEA proposed aggressive infrastructure initiatives

Note: This page contains sample records for the topic "thermal treatment unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

United States Government Departmen  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7/05 TUE 07:58 FAX 423 241 3897 OIG -** HQ @]002 7/05 TUE 07:58 FAX 423 241 3897 OIG -** HQ @]002 DOE F 1325.8 (08-93) United States Government Departmen of Energy memorandum DATE: December 20, 2005 Audit Report Number: OAS-L-06-03 REPLY TO A1TN OF; IG-36 (A05SR025) SUBJECT: Audit of "Defense Waste Processing Facility Operations at the Savannah River Site" TO: Jeffrey M. Allison, Manager, Savannah River Operations Office INTRODUCTION AND OBJECTIVE The Department of Energy's (Department) Savannah River Site stores approximately 36 million gallons of liquid, high-level radioactive waste in 49 underground waste storage tanks. The contents of the waste tanks are broadly characterized as either "sludge waste" or "salt waste". Sludge waste is insoluble and settles to the bottom of a waste tank, beneath a layer of liquid supernate. Salt

322

* United States Government  

Office of Legacy Management (LM)

-- -- DE;$r,e /q f-j * I3 - I * United States Government memorandum MAY 21 I991 DATE: REPLY TO Al-fN OF: 4ih55YhL Department of Energy JT:,i 5, f&A 0 ' - j4.~, ' -/ jl.a' \ A t -3 __..-_-. EM-421 SUBJECT: Elimination of the American Potash and Chemical Site The File TO: I have reviewed the attached site summary and elimination recommendation for the American Potash and Chemical Company Site in West Hanover, Massachusetts. I have determined that there is little likelihood of radioactive contamination at this site. Based on the above, the American Potash and Chemical Company site is hereby eliminated from further consideration under the Formerly Utilized Sites Remedial Action Program. W. Alexander Williams, PhD Designation and Certification Manager

323

United States Goveinment  

Office of Legacy Management (LM)

,325.B ,325.B jO8.93) United States Goveinment ~~~rntir-andu~rvi Depr?rtnient of Energy \L, IO' " 1' !ATE:' MAY i o 1995 ,' Kzb9. ":cz$ EM-421 (W.,A. Williams, 301-903-8149) SUBJECT: Records for the West Chicago Site .The File TO: After review.of the available r&rds concerning the former 'Lindsay Light and Chemical.Corhpany site in West Chicago, Illinois. I have determined that it is not necessary to transmit Department of Energy (DOE) records to the municipa,llty to inform public officials of the activities at this ~ site. This site has been licgnsed by the Nuclear Regulatory Commission (NRC) for many.years, and the nature of the. rare'earth and thorium production at the site, are well known. Remediation of this faci'lity ii~ being addressed by the current owner, 'the NRC, the U.S; Environmental

324

; United States Government  

Office of Legacy Management (LM)

Don F 1328.8 Don F 1328.8 . . .449J ' Em wm ; United States Government , % - memorandum L c*m Al.)G 2 9 a34 yz;; EM-421 (If. A. Willlams, 427-1719) lq,iMAL Department of Energy m5 MA, \i& SUBJECT: Elimination of the Sites from the Formerly Utllized Sites Remedial A&Ion Prograa ' a The File In 1990, with the assistance of Hr. Doug Tonkay and Ms. Htchelle L&is, I reviewed a number of sites that had fomerly provided goods and/or services to the Fernald faclllty as subcontractors. For 24 of.these sites, recoarwndations were ude to eliainate thm from further consideratton under Formerly Utilized Sites Reaedial Actlon Progrm (FUSRAP). In each case, I made or revlewed the evaluation, and, in each case, a handwritten evaluation was prepared. This is to provide a more

325

UNITED STATES GOVERNMENT  

Office of Legacy Management (LM)

'.... '|le , * f C. '.... '|le , * f C. Office Memorandum · UNITED STATES GOVERNMENT .-- J TO ' Leo Graup, Chief, DATE: September 29, 1958 Property Management Branch rFi0 : M. S. Weinstein Industrial Hygiene Branch, HASL SUBJBT: SURVEY AT HAIST PROPETIY SYMBOL: HSH:MSW. Thisl property was purchased during MED operation and used as a dumping ground for refinery residues generated by Linde Air Products during their period of participation in the refinery operations program. \It 2 consists of 10 acres in addition to a perpetual .ease- ment right to a strip of land, 10 feet wide and 3600 feet long. The area is located in North Tonawanda, New York near the Niagara River. Because of the growth of adjacent industries, this particular piece of property has appreciated in value. During its tenure as responsible property management office, Oak

326

United States Government  

Office of Legacy Management (LM)

OOE F 1325.8 OOE F 1325.8 - EFgzk3) United States Government tiemorandum 0 wt;? -J Department of Energy DATE: SEP 2 5 1992 REPLY TO Al-TN OF: EM-421 (W. A. W illiams, 903-8149) SUBJECT: Authorization for Remedial Action at Diamond Magnesium Site in Painesville, Ohio TO: L. Price, OR The former Diamond Magnesium Company site located at 720 Fairport-Nursery Road in Painesville, Ohio, is designated for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The site is owned by Uniroyal Chemical Company and by Lonza Chemical, Incorporated. This designation is based on the results of a radiological survey and conclusions from an authority review as noted in the attached Designation Summary. Copies of the radiological survey reports and the authority

327

United States Government  

Office of Legacy Management (LM)

Z&Et,? y-p . c' Z&Et,? y-p . c' )7q/ I cuq,~ United States Government Department of Energy memoranduin I " . : I ;/ ,I DATE: hufi 2 9 1594 \ ' - y:oTFq M-421 (W. A. Ylllius, 427-1719) ' ii Y - SIJWECT: Elimination of the Sites from the Formerly Utilfzed Sites Remedial Actjon Progru TO The File In 1990, with the assistance of Mr. reviewed a number of sites that had services to the Fernald facility as sites, recommendations were made to ___ _- _ consideration under Formerly Utiltzed Sites Remedial Action Program (FUSRAP). In each case, I made or reviewed the evaluation, and, in each case, a handwritten evaluation was prepared. This is to provide a more formal record of the decision on these sites and to ratify and confirm the prior elimination of each site froa FUSRAP.

328

United States Government  

Office of Legacy Management (LM)

DOE F t325.8 DOE F t325.8 (s8s) Dl? l 36-z EFG (07-90) United States Government m e m o randum Department of Energy DATE: LUG 2 ' 3 1394 ",cl,'," EM-421 (W. A. W illiams, 427-1719) SUBJECT: Elimination of the Sites from the Formerly Utilized Sites Remedial Action Program To' The File In 1990, with the assistance of M r. Doug Tonkay and Ms. M ichelle Landis, I reviewed a number of sites that had formerly provided goods and/or services to the Fernald facility as subcontractors. For 24 of these sites, recoamnendations were aade to eliminate them from further consideration under Formerly Utilized Sites Remedial Action Program (FUSRAP). In each case, I made or reviewed the evaluation, and, in each case, a handwritten evaluation was prepared. This is to provide a more

329

- United States Government  

Office of Legacy Management (LM)

8 8 my EFG (07.90) . - United States Government . * Department of. Energy * inemorandum DATE: DEC :! ;j 1993 REPLY TO ATTN OF: EM-421 (W.'A. W illiams, 903-8149) : NY 41 I .' 41 G I? SUBJECT: Elimination of the T itanium Alloy Manufacturing Co., Niagara Falls, New York TO: The F ile I have reviewed the attached site. summary and elimination recommendation for the T itanium Alloy Manufacturing Company. I have determined that the potential for radiological contamination is low because of the lim ited duration of the activities at the site. Further, at least some of the contractual activities at the site were licensed under the Atomic Energy Act, and the licensed activities are thereby disqualified from further consideration under the Department of Energy's Formerly Utilized Sites

330

United States Government  

Office of Legacy Management (LM)

UOEF 1325.8 UOEF 1325.8 (5831 , - a.. L . . L. . c ,, . . . t ,' <, .* -,. .--1^ a "-2 (J 7 , pe-;L, United States Government memorandum Departmen: of Energy DATEAUG 1 0 1984 REPLY TO Al-fN OF: NE-20 SUBJECT: Action Description Memorandum (ADM) Review: Wayne, New Jersey Proposed 1984 Remedial Actions at TO: File After reviewing all of the pertinent facts including the attached Action Description Memorandum (ADM), I have determined that the remedial action described in the subject ADM is an action which in and of itself will have a clearly insignificant impact on the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA), 42 U.S.C. 4321 et seq. The Conference Report accompanying the Energy and Water Appropriation Act

331

United States Government  

Office of Legacy Management (LM)

I8 891 I8 891 EFG (07.90) United States Government m e m o randum bepartrne% of Energy -P ' ; N. A *I Pi id : DATE: AUG 3, 9 1994 REPLY TO Al-iN OF: EM-421 (W. A. W illiams, 427-1719) r, )' \, ! c ' d, ' t ' 3 ' 2 -L SUBJECT: Elimination of the Sites from the Formerly Utilized Sites Remedial Action Program To' The File In 1990, with the assistance of M r. Doug Tonlsay and Ms. M ichelle Landis, I reviewed a nmber of sites that had formerly provided goods and/or services to the Fernald facility as subcontractors. For 24 of.these sites, recommdations were made to eliminate them from further consideration under Formerly Utilized Sites Remedial Action Program (FUSRAP). In each case, I made or reviewed the evaluation, and, in each case, a handwritten evaluation was prepared. This is to provide a more

332

United States Government  

Office of Legacy Management (LM)

81278 81278 United States Government Department of Energy memorandum - ?71 S.EP 23 F; i: 54 DATE: SEP 1 8 1991 REPLY TO ATTNOF: EM-421 (P. Blom, 3-8148) SUBJECT: Approved Categorical Exclusion for Removal Actions at Elza Gate, Tennessee TO: Lester K. Price, OR Attached is a copy of the approved Categorical Exclusion (CX) for removal of contaminated material at the Elza Gate site in Tennessee. The removal action involves the removal of radioactive contaminated soil and concrete as well as the removal of Polychlorinated Biphenyl (PCB) contaminated soil. This CX was approved by Carol Borgstrom, Office of National Environmental Policy Act Oversight (EH-25), September 9, 1991. Paul F. Blom Off-Site Branch Division of Eastern Area Programs Office of Environmental Restoration

333

United States Government  

Office of Legacy Management (LM)

D;F&g,8 C-r-I 3-3 D;F&g,8 C-r-I 3-3 .*. United States Government . memorandum DATE: JUNZO 1994 -... REPLY TO A?TN OF: EM-421 (W. A. Williams, 903-8149) Authority Determination -- Combustion Engineering Site, Windsor, SUBJECT: Connecticut To' The File The attached review, documents the basis for determining whether the Department of Energy (DOE) has authority for taking remedial action at the Combustion Engineering (CE) Site in Windsor, Connecticut, under the Formerly Utilized Sites Remedial Action Program. CE was a prime contractor for the Atomic Energy Commission (AEC) and performed high-enriched uranium fuel fabrication work from 1955 to 1967. The services furnished at the CE site included some experimental work; however, it primarily consisted of fabrication of high-enriched uranium

334

United States Government  

Office of Legacy Management (LM)

DOEF1325.8 P4 0 * 1 - 1 DOEF1325.8 P4 0 * 1 - 1 - Iq \ b- United States Government memorandum pJ .T\ \b Department of Energy DATE: OCT 9 1984 REPLY TO NE-20 All-N OF: .- Authorizations for Actions Under the Formerly Utilized Sites Remedial Action SUBJECT: Program (FUSRAP) at the St. Louis Airport Storage Site, St. Louis, MO. and the W. R. Grace Site at Curtis Bay, Md. To: J. LaGrone, Manager Oak Ridge Operations Office St. Louis Airport Storage Site, MO The House and Senate Reports for the Energy and Water Development Appropriation Act (P.L. 98-360) directed the Department of Energy "...to take the necessary steps to consolidate and dispose of the waste material from the Latty Avenue site and nearby St. Louis Airport vicinity properties locally, by reacquiring, stabilizing, and using the old 21.7

335

United States Government  

Office of Legacy Management (LM)

ooc F r325.8 ooc F r325.8 imo, EFO ,ww United States Government memorandum Department of Energy -fw?w 81ua DATE: FEB 1 5 1991 l+Ks6 sUsJECT: Elimination of the Buflovak Company Site from FUSRAP ho: The File I have reiiewed the attached preliminary site summary and recommendation for the Buflovak Company site in Buffalo, New York. I have determined that there is little likelihood of contamination at this site. Based on the above, the Buflovak Company site is hereby eliminated from further consideration under the Formerly Utilized Sites Remedial Action Program. W. Alexander Williams Designation and Certification Manager Off-Site Branch Division of Eastern Area Programs Office of Environmental Restoration Attachment - I . b e e : W e s to n E M - 4 0 ( 3 ) E M - 4 2 ( 2 ) W illiams r

336

United States Government Memorandum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Department of Energy United States Government Memorandum DATE: March 21, 2008 Audit Report Number: OAS-L-08-08 REPLY TO ATTN OF: IG-321 (A07LV042) SUBJECT: Audit Report on "Accountability of Sensitive and High Risk Property at the Nevada Site Office" TO: Acting Manager, Nevada Site Office INTRODUCTION AND OBJECTIVE and control over sensitive and high risk property because of the vulnerability to loss, theft or misuse and its potential impact on national security interests or proliferation concerns. Items such as portable and desktop computers, ammunition. and firearms are examples of sensitive property. In addition, federal regulations require that Departmental organizations and designated contractors account for and control govemroent-owned high risk property, such as body armor and gas masks,

337

United States Government DATE:  

Office of Legacy Management (LM)

5oE(E;,8 ' 0 H .2+ L-1 5oE(E;,8 ' 0 H .2+ L-1 United States Government DATE: MAR 0 8 1994 REPLY TO AlTN OF: EM-421 (W. A. Williams, 903-8149) SUBJECT: Authority Determination -- Former Herring-Hall-Marvin Safe Co., Hamilton, Ohio TO: The File The attached review documents the basis for determining whether the Department of Energy (DOE) has authority for taking remedial action at the former Herring-Hall-Marvin Safe Co. facility in Hamilton, Ohio, under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The facility was used for the shaping and machining of uranium metal by the Manhattan Engineer District (MED) during the Second World War. The following factors are significant in reaching a decision and are discussed in more detail in the attached authority review:

338

United States Government  

Office of Legacy Management (LM)

D;il$;,8 p! A . I I& - ' D;il$;,8 p! A . I I& - ' z United States Government &mtrne&' of Energy DATE: &uG 3, 9 394 REPLY TO AITN OF: EH-421 (W. A. Williams, 427-1719) SUBJECT: Elimination of the Sites from the Formerly Utilized Sites Remedial Action Program To' The File In 1990, with the assistance of Mr. Doug Toukay and Ms. Michelle Landis, I reviewed a number of sites that had formerly provided goods and/or services to the Fernald facility as subcontractors. For 24 of.these sites, recommdations were made to eliminate them from further consideration under Formerly Utilized Sites Remedial Action Program (FUSRAP). In each case, I made or reviewed the evaluation, and, in each case, a handwritten evaluation was prepared. This is to provide a more formal record of the decision on these sites and to ratify and confirm the

339

Unite2 States Government  

Office of Legacy Management (LM)

+39J +39J t% (3740~ - Unite2 States Government m e m o randuin L3 DATE: AU6 3, 9 %g4 REPLY TO All-N OF: m -421 (U. A. W illiams, 427-1719) -. - >' SUBJECT: Elimination of the Sites from the Formerly Utilized Sites Remedial Action Program To' The File In 1990, with the assistance of Hr. Doug Toukay and Ms. M ichelle Landis, I reviewed a number of sites that had formerly provided goods and/or services to the Fernald facility as subcontractors. For 24 of.these sites, recouwndations were made to eliminate them from further consideration under Formerly Utilized Sites Remedial Action Program (FUSRAP). In each case, I made or reviewed the evaluation, and, in each case, a handwritten evaluation was prepared. This is to provide a more formal record of the decision on these sites and to ratify and confirm the

340

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LICE F 137: r.e Electr LICE F 137: r.e Electr onic Form App roved by CllR - 1010fJI2002 i/JI~~I United States Government Department of Energy Bonneville Power Admi istration memorandum DATE : REPLY TO AnN OF : KEPR-4 SUBJECT: Environmental Clearance Memorandum TO: Stephen Duncan Project Manager - TERS-3 Proposed Action: Removal of de-stabilized and downed trees resulting from a December 200 8 wind storm on the de-energized Lyons Ultra High Voltage Test Line NO.1. PP&A Project No.: PP&A 1309 Budget Information: Work Order # 184006 Categorical Exclusion Applied (from Subpart 0, 10 C.F.R. Part 1021): B 1.3 Routine maintenance/custodial services for buildings, structures, infrastructures, equipment. Location: Fee-owned ROW on the de-energized Lyons UHV Te st Line No .1 to the south of

Note: This page contains sample records for the topic "thermal treatment unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

United States Government Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

B.89) B.89) EFO (07-90) United States Government Department of Energ Memorandum SEP 24 20t DATE: REPLY TO: IG-34 (A04TG032) Audit Report No.: OAS-L-04-21 SUBJECT: Evaluation of "The Federal Energy Regulatory Commission's Cyber Security Program - 2004" TO: Chairman, Federal Energy Regulatory Commission The purpose of this report is to inform you of the results of our annual evaluation of the Federal Energy Regulatory Commission's unclassified cyber security program. This evaluation was initiated in June 2004 and our field work was conducted through September 2004. The evaluation methodology is described in the attachment to this report. Introduction and Objective The Commission's increasing reliance on information technology (IT) is consistent with satisfying the President's Management Agenda initiative of expanding electronic

342

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

/18/04 THU 11:31 FAX 423 241 3897 OIG -- /18/04 THU 11:31 FAX 423 241 3897 OIG -- + HQ 1002 DOE F 1325.8 (08-93) United States Government Department of Energy Memorandum DATE: March 17, 2004 Audit Report No. OAS-L-04-1 1 REPLY TO IG-36 (A04DN003) ATTN OF: SUBJECT; Audit of "Requests for Equitable Adjustment at the Rocky Flats Environmental Technology Site" TO: Frazer R. Lockhart, Manager, Rocky Flats Project Office INTRODUCTION AND OBJECTIVE Effective February 1, 2000, the Department of Energy's (Department) Rocky Flats Project Office (RFPO) and Kaiser-Hill Co., LLC (Kaiser-Hill), entered into a cost- plus-incentive-fee contract to close the Rocky Flats Environmental Technology Site (Rocky Flats) by December 15, 2006. Under the contract terms, Kaiser-Hlill's final incentive fee earned will be based on how well it meets established cost targets. For

343

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

. . . .... ...... ..... .. . .. . . .. . , . . . . ..- - --. -- -. , . . DOEF 1325,8 (08.93) United States Government Department of Energy memorandum DATE: August 13, 2007 1 Audit Report Number: OAS-L-07-21 REPLY TO ATTN OF: IG-32 (A06PR047) SUBJECT: Audit of Executive Compensation at Selected National Nuclear Security Administration Sites TO: Director, Policy and Internal Controls Management, NA-66 INTRODUCTION AND OBJECTIVE As part of a Department of Energy-wide audit of executive compensation, we reviewed fourN* Lti nai-.AL 4 ... :.. ,._*i Amiinistration (NiNSA)SsitCe. Speuiiiu-~l we reviewed executive cormpeisation costs incurred and claimed for Fiscal Years 2003, 2004, and 2005 at Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories, and the Y-12

344

United States Government  

Office of Legacy Management (LM)

. v-w. . v-w. ' ;H; (07.901 United States Government 0' ; Td 2, <.<~ Department of Energy ' m e m o randum DATE: REPLY TO Al-TN OF: EM-421 (W. A. W illiams, 903-8149) SUBJECT: Authorization for Remedial Action at Alba Craft Laboratory in Oxford, Ohio L. Price, OR TO: The former Alba Craft Laboratory site at lo-14 West Rose Avenue, Oxford, Ohio, is designated for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP). Dr. and M rs. Gilbert Pacey, of Oxford, Ohio, own the site. This designation is based on the results of a radiological survey and conclusions from an authority review as noted in the attached Designation Summary. Copies of the radiological survey letter report and the authority review are provided for your information.

345

UNITED STATES GOVERKMENT  

Office of Legacy Management (LM)

Ojice Memornndz~nz 0 Ojice Memornndz~nz 0 UNITED STATES GOVERKMENT By application dated ;!ay 11, 1959, as a~zen:ii:d Hay 25, 1959, the a--T+- I-r-- cant requests that its license SW-33 be amend,ed to authorizt? proced- ures for t>e CCLl-ect conversion of LT6 to '3$ and by applicaticn datzci June 29, 1959, a.3 n:odifizd July 15, 1059, the shipment of uranium rdioxide pellets. Based on our rexiew of the information finished by the applicant, it is hereby determined that the applicant is qualified, by training and experience, to use special nuclear material for the pwpose requested and that the ap@icant's procedures, facilities and equip- ment are adequate to protect health and minimize danger to life and property. It is, therefore, determined that ~NM-33 may be amended to

346

United States Government  

Office of Legacy Management (LM)

ocy F 1325.8 ocy F 1325.8 rcro1 . 6Fo0?-001 w 2 3-q United States Government Department of Energ) ~mc DATE: AUG 3,9 1994 y$Jf EH-421 (W. A. Yllliams, 427-1719) MA. \tQ SUBJECT: _ Elirinrtion of the Sites froa the Formerly Utilized Sites Remedial Action Program TQ The File In 1990, with the assistance of Hr. Doug Tonkay and Hr. Nlchelle Landis, I reviewed a number of sites that had fomerly provided goods and/or services to the Fernald facility as subcontractors. For 24 of.these sites, recomendations were made to eliminate them from further consideration under Forwrly Utilized Sites Remedial A&Ion Program (FUSRAP). In each case, I made or reviewed the evaluation, and, in each case, a handwritten evaluation was prepared. This is to provide a more formal record of the decision on these sites l hd to ratify and confim the

347

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

:)£ F 13 :)£ F 13 ;' 5 H e Etectroou: Form Approved by CGJR - 01120195 (n·/w! United States Government Department of Energy Bonneville Power Administration memorandum DATE: 0 I. 7 20D 9 REPLY TO AnN OF: KEP-4 SUBJECT: Environmental Clearance Memorandum TO : Robert Macy Project Manager - TELF-TPP-3 Proposed Action: Perform routine access road maintenance to the Rockdale Microwave site . Budget Information: Work Order #180709 PP&A Project No.: 1389 Categorical Exclusions Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3, Routine maintenance activities .. .for structures, rights-of-way, infrastructures such as roads, equipment. .. routine maintenance activities, corrective .... are required to maintain ... infrastructures . ..in a condition suitable for a facility to be used for its designed purpose.

348

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE:F 1325.8 7 DOE:F 1325.8 7 (08-93) United States Government Department of Energy memorandum DATE: April 10, 2006 REPLY TO ATTN OF: IG-32 (A05AL045) Audit Report Number: OAS-L-06-12 SUBJECT: Audit of Sandia National Laboratories' Safeguards and Security Path Forward Management Plan TO: Associate Administrator for Defense Nuclear Security INTRODUCTION AND OBJECTIVE From 2001 to 2003, approximately 500 security-related findings and observations were identified at Sandia National Laboratories (Sandia) by the Department of Energy's Office of Independent Oversight and Performance Assurance (OA), the National Nuclear Security Administration's (NNSA) Sandia Site Office (SSO), and Sandia's self assessments. Sandia senior management acknowledged the significance of the numerous findings and, in

349

United States Government Memorandum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy United States Government Memorandum DATE: January 26, 2007 Audit Report Number: OAS-L-07-05 REPLY TO ATTN OF: IG-34 (A06GT035) SUBJECT: Report on "The Department of Energy's Implementation of Revised OMB Circular No. A-123" TO: Acting Chief Financial Officer, CF-1 INTRODUCTION AND OBJECTIVE The Office of Management arid Budget's (OMB) revised Circular No. A-123 (Circular) requires Federal agencies to assess the adequacy of their internal controls. Beginning in Fiscal Year (FY) 2006, the Circular requires agencies to strengthen their assessment, documentation and testing of internal controls over financial reporting and prepare an annual assurance statement on the operating effectiveness of those controls. In August 2005, the Department of Energy's

350

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 DOE F 1325.8 (08-93) United States Government Department of Energy memorandum DATE: April 23, 2004 Audit Report Number: OAS-L-04-16 REPLY TO ATTN OF: IG-35 (A04YT023) SUBJECT: Audit Report on "Modernization Activities at the Y-12 National Security Complex" TO: Richard Speidel, Director, Policy and Internal Controls Management, NA-66 INTRODUCTION AND OBJECTIVE As part of the National Nuclear Security Administration's (NNSA) nuclear weapons complex, the Y-12 National Security Complex (Y-12) performs critical roles in strengthening national security and reducing the global threat from weapons of mass destruction. The Y-12 modernization plan (plan) seeks to foster the development of a physical plant that is efficient and effective in serving its national security missions. The

351

. United States Government  

Office of Legacy Management (LM)

,:n5.5.8 ,:n5.5.8 ,849, EfG pw, . United States Government DATE: AUG 2 i994 y#J;; EM-421 (W. A. Williams, 427-1719) sUBJECT: -Elimination of the Robbins & Myers Site, Springfield, Ohio 11179 I The File TO: I have reviewed the attached elimination recommendation and the original historical records for the Myers & Robbins facility in Springfield, Ohio. I have determined that there is little likelihood of radioactive contamination at these sites. The only record of activity at this site by Department of Energy predecessors is an equipment test of a pump in March 1975. This test involved limited amounts of radioactive materials and there was a serious effort to decontaminate the equipment at the conclusion of the tests. Based on the above, the Myers & Robbins site in Springfield, Ohio, is

352

United States Government  

Office of Legacy Management (LM)

DOE F 1325.8 DOE F 1325.8 E&M&& +\A .wz United States Government Department of Energy DATE: RUG 3, 9 %g4 y;;;; EM-421 (W. A. W illiaas, 427-1719) "; :+ 1 SUBJECT: Elimination of the Sites from the Formerly Utilized Sites Remedial Action Program To' The File In 1990, with the assistance of M r. Doug Tohkay and Ms. M ichelle Landis, I reviewed a number of sites that had formerly provided goods and/or services to the Fernald facility as subcontractors. For 24 of.these sites, recomendations were made to eliminate then from further consideration under Formerly Utilized Sites Remedial Action Program (FUSRAP). In each case, I made or reviewed the evaluation, and, in each case, a handwritten evaluation was prepared. This is to provide a more formal record of the decision on these sites and to ratify and confirm the

353

Uniter+ States Government  

Office of Legacy Management (LM)

EFG (07-90) EFG (07-90) Uniter+ States Government ~L.aQ-i; Department of Energy inemorandum DATE: SEP 2 5 1992 REPLY TO Al-fN OF: EM-421 (W. A. W illiams, 903-8149) SUBJECT: Authorization for Remedial Action at the Former Dow Chemical Company Facility in M a d ison, Illinois TO: L. Price, OR The site of the Former Dow Chemical Company in M a d ison, Illinois, which is currently owned and operated by the Spectrulite Consortium, is designated for inclusion in the Formerly Utilized Sites Remedial Action Program (FUSRAP). This designation is based upon the results of a preliminary radiological survey and other information described in the attached Designation Summary. The authority determination and preliminary survey report also are attached for information. The site has been assigned a low priority under the FUSRAP protocol, as

354

United States Government  

Office of Legacy Management (LM)

# Xx i' # Xx i' !325 8 I c&egJw, i&l d, 4 -1 United States Government Department of Energy DATE; AUG 3, 9 !gg4 I REPLYTo m-421 (W. A. Williams, 427-1719) sy I AlTN OF: SUBJECT: Elimination of the Sites from the Formerly Utilized Sites Remedial Action Program To' The File In 1990, with the assistance of Mr. Doug Tonkay and Ms. Nichelle Landis, I reviewed a number of sites that had formerly provided goods a&/or services to the Fernald facility as subcontractors. For 24 of these sites, recoumendations were made to eliminate them from further consideration under Formerly Utilized Sites Remedial Action Program (FUSRAP). In each case, I made or reviewed the evaluation, and, in each case, a handwritten evaluation was prepared. This is to provide a more

355

United States Government  

Office of Legacy Management (LM)

EFS (07-W EFS (07-W United States Government memorandukn Department of Energy j ; I.-- ' -i;: /J DATE: j.gjG 2 9 1994 REPLY TO En-421 (W. A. Williams, 427-1719) AlTN OF: h p)\;--/ ;,;' J ( SUBJECT: Elimination of the Sites from the Formerly Utilized Sites Remedial Action Program To' The File In 1990, with the assistance of Ur. Doug Tonkay and Us. Michelle Landis, I reviewed a number of sites that had formerly provided goods and/or services to the Fernald facility as subcontractors. For 24 of.these sites, recoPraendations were made to eliminate them from further consideration under Formerly Utilized Sites Remedial Action Program (FUSRAP). In each case, I made or reviewed the evaluation, and, in each case, a handwritten evaluation was prepared. This is to provide a more

356

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

nUnited States Government Department of Energy Bonneville Power Administration memorandum REPLY TO AnN OF: KEP-4 SUBJECT: Environmental Clearance Memorandum TO: Robert Macy Project Manager - TELF-TPP-3 Proposed Action: Access road improvement and bridge replacement for the Raver-Paul No. transmission line structure 18/1. Budget Information: Work Order # 00220048 PP&A Project No.: 954 Proposed by: Bonneville Power Administration (BPA) Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3, Routine maintenance activities .. .for structures, rights-of-way, infrastructures such as roads, equipment. .. routine maintenance activities, corrective ....are required to

357

United States Government Memorandum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8/16/07 09:15 FAX 301 903 4656 CAPITAL REGION 8/16/07 09:15 FAX 301 903 4656 CAPITAL REGION * 002 DOE F 1325.8 (08-93) Department of Energy United States Government Memorandum DATE: August 15, 2007 Audit Report Number: OAS-L-07-22 REPLY TO ATTN OF: IG-34 (A06GT006) SUBJECT: Report on "Hazardous Chemicals Inventory Management at the Savannah River Site" TO: Manager, Savannah River Operations Office BACKGROUND The Savannah River Site (Savannah River) maintains large inventories of hazardous chemicals for its scientific, environmental cleanup and production operations. Many of these chemicals are known carcinogens; some are corrosive, while others are highly flammable. As such, these chemicals can pose serious health and safety risks to workers and members of the public, the environment, and to emergency first responders if not properly managed and controlled.

358

United States Attorney General  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

93, 5 U.S. Op. Off. Legal Counsel 1, 1981 WL 30865 (U.S.A.G.) 93, 5 U.S. Op. Off. Legal Counsel 1, 1981 WL 30865 (U.S.A.G.) United States Attorney General ***1 *293 January 16, 1981 **1 The President The White House Washington, D.C. 20500 MY DEAR MR. PRESIDENT: You have asked my opinion concerning the scope of currently existing legal and constitutional authorities for the continuance of government functions during a temporary lapse in appropriations, such as the Government sustained on October 1, 1980. As you know, some initial determination concerning the extent of these authorities had to be made in the waning hours of the last fiscal year in order to avoid extreme administrative confusion that might have arisen from Congress' failure timely to enact 11 of the 13 anticipated regular appropriations bills, FN;B1[FN1]FN;F1 or a

359

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3/02 TUE 08:59 FAX 423 241 3897 OIG *-* HQ 00o2 3/02 TUE 08:59 FAX 423 241 3897 OIG *-* HQ 00o2 DOE F 132,.8 W.I: ((07.9u) United States Government Department of Energy Memorandum DATE: December 2, 2002 REPLY TO REPLY TO -36 (A02SR013) Audit Report No.: OAS-L-03-07 ATTN OF: SUBJECT: Audit of Subcontracting Practices at the Savannah River Site TO: Jeffrey M. Allison, Acting Manager, Savannah River Operations Office INTRODUCTION AND OBJECTIVE The Department of Energy (Department) has contracted with Westinghouse Savannah River Company, LLC (Westinghouse) to manage and operate the Savannah River Site (Savannah River) through September 30, 2006. As of August 2, 2002, Westinghouse had 534 open and active service procurements worth $100,000 or more each, with a total value of about $518 million, that it had awarded since October 1996.

360

United States Goverment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6/03 15:37 FAX 301 903 4656 _ CAPITAL REGION * FORS FIVEA 91002/004 6/03 15:37 FAX 301 903 4656 _ CAPITAL REGION * FORS FIVEA 91002/004 DOE-F 1325.8 (68-93) Depament of Energy United States Goverment Department of Energy Memorandum OFFICE OF .NSPECTOR GENERAL DATE: February 26, 2003 REPLY TO ATTN OF: IG-34 (A02CG004) Audit Report No.: OAS-L-03-11 SUBJECT: Audit of the Office of Science Infrastructure Modernization Initiatives TO: Acting Associate Director, Office of Laboratory Operations and Environment, Safety and Health, SC-80 The purpose of this report is to inform you of the results of our audit of the Office of Science's infrastructure modernization initiatives. The audit was performed between May and September 2002 at Departmental Headquarters, Brookhaven National Laboratory, and Argonne National Laboratory. The audit methodology is described in

Note: This page contains sample records for the topic "thermal treatment unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

w w f.b wr w f k--w .^^- - w w f.b wr w f k--w .^^- - - r - T- - * -* p -ldt - f f - - -J -vv- A n JV DOE F 1325.8 (08-93) United States Government ------- Department of Energy memorandum DATE: June 15, 2006 REPLY TO Audit Report Number: OAS-L-06-15 ATTN OF: IG-32 (A05SR029) SUBJECT Audit of "Storage Capacity of the Iligh Level Waste Tanks at the Savannah River TO: Manager, Savannah River Operations Office INTRODUCTION AND OBJECTIVE The Savannah River Site in South Carolina currently stores about 36 million gallons of waste in 49 active underground storag,* .ks. Twenty-two of these .anks do not meet Environmcntal Protection A&-.y (EPA) requirements ybr full secondary containment and must be emptied and closed by 2022 in accordance with a closure schedule approved by the EPA and the 5oith Carolina Department

362

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0/02 WED 09:58 FAX 423 241 3897 OIG 0/02 WED 09:58 FAX 423 241 3897 OIG -.- +-+ HQ ]002 rFG (07-;1) United States Government Department of Energy Memorandum DATE: October 29, 2002 REPLY TO 1G-36 (A02DN028) Audit Report No.: OAS-L-03-01 ATTN OF; SUBJECT: Audit of Procurement at the Rocky Flats Environmental Technology Site TO: Eugene Schmitt, Manager, Rocky Flats Field Office ' INTRODUCTION AND OBJECTIVE The Department of Energy (Department) and its site contractor, Kaiser-Hill Company, LLC (Kaiser-Hill), contracted in January 2000 to close the Rocky Flats Environmental Technology Site (Rocky Flats) by a target date of December'15, 2006. As of May 2002, Kaiser-Hill had awarded 784 procurements worth more than $25,000 each, with a total value of about $368.6 million, to support the complex activities required for site closure.

363

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

uV,./ J.r./ i L .. * i. uV,./ J.r./ i L .. * i. 0 r '± J o ,. NL . Jurt -. rur.mO rI[ V Jg, ]VJUU"/UU4 DOE F 1325.8 (08-93) United States Government Department of Energy Memorandum OFFICE OF INSPECTOR GENERAL DATE: January 10, 2006 REPLY TO ATTN OF: IG-34 (A06GT029) Audit Report No.: OAS-L-06-06 SUBJECT: Review of the Independent Auditor's Report on The Institute for Genomic Research for the Year Ending December 31, 2004 * TO: Manager, Chicago Office INTRODUCTION AND OBJECTIVE The Institute for Genomic Research (Institute) in Rockville, Maryland is a not-for- profit center that studies areas such as plant, microbial and mammalian genomics. The Institute receives funding from seven Federal agencies to advance its research and development. As required by the Office of Management and Budget (0MB)

364

Integrability vs Quantum Thermalization  

E-Print Network (OSTI)

Non-integrability is often taken as a prerequisite for quantum thermalization. Still, a generally accepted definition of quantum integrability is lacking. With the basis in the driven Rabi model we discuss this careless usage of the term "integrability" in connection to quantum thermalization. The model would be classified as non-integrable according to the most commonly used definitions, for example, the only preserved quantity is the total energy. Despite this fact, a thorough analysis conjectures that the system will not thermalize. Thus, our findings suggest first of all (i) that care should be paid when linking non-integrability with thermalization, and secondly (ii) that the standardly used definitions for quantum integrability are unsatisfactory.

Jonas Larson

2013-04-12T23:59:59.000Z

365

Contact thermal lithography  

E-Print Network (OSTI)

Contact thermal lithography is a method for fabricating microscale patterns using heat transfer. In contrast to photolithography, where the minimum achievable feature size is proportional to the wavelength of light used ...

Schmidt, Aaron Jerome, 1979-

2004-01-01T23:59:59.000Z

366

Properties of Thermal Glueballs  

E-Print Network (OSTI)

We study the properties of the 0++ glueball at finite temperature using SU(3) quenched lattice QCD. We find a significant thermal effects near T_c. We perform the \\chi^2 fit analyses adopting two Ansaetze for the spectral function, i.e., the conventional narrow-peak Ansatz and an advanced Breit-Wigner Ansatz. The latter is an extension of the former, taking account of the appearance of the thermal width at T>0. We also perform the MEM analysis. These analyses indicate that the thermal effect on the glueball is a significant thermal-width broadening \\Gamma(T_c) \\sim 300 MeV together with a modest reduction in the peak center \\Delta\\omega_0(T_c) \\sim 100 MeV.

Noriyoshi Ishii; Hideo Suganuma

2003-12-27T23:59:59.000Z

367

Thermal springs of Wyoming  

SciTech Connect

This bulletin attempts, first, to provide a comprehensive inventory of the thermal springs of Wyoming; second, to explore the geologic and hydrologic factors producing these springs; and, third, to analyze the springs collectively as an indicator of the geothermal resources of the state. A general discussion of the state's geology and the mechanisms of thermal spring production, along with a brief comparison of Wyoming's springs with worldwide thermal features are included. A discussion of geothermal energy resources, a guide for visitors, and an analysis of the flora of Wyoming's springs follow the spring inventory. The listing and analysis of Wyoming's thermal springs are arranged alphabetically by county. Tabulated data are given on elevation, ownership, access, water temperature, and flow rate. Each spring system is described and its history, general characteristics and uses, geology, hydrology, and chemistry are discussed. (MHR)

Breckenridge, R.M.; Hinckley, B.S.

1978-01-01T23:59:59.000Z

368

Thermal springs of Wyoming  

DOE Green Energy (OSTI)

This bulletin attempts, first, to provide a comprehensive inventory of the thermal springs of Wyoming; second, to explore the geologic and hydrologic factors producing these springs; and, third, to analyze the springs collectively as an indicator of the geothermal resources of the state. A general discussion of the state's geology and the mechanisms of thermal spring production, along with a brief comparison of Wyoming's springs with worldwide thermal features are included. A discussion of geothermal energy resources, a guide for visitors, and an analysis of the flora of Wyoming's springs follow the spring inventory. The listing and analysis of Wyoming's thermal springs are arranged alphabetically by county. Tabulated data are given on elevation, ownership, access, water temperature, and flow rate. Each spring system is described and its history, general characteristics and uses, geology, hydrology, and chemistry are discussed. (MHR)

Breckenridge, R.M.; Hinckley, B.S.

1978-01-01T23:59:59.000Z

369

Solar Thermal Manufacturing Activities  

Reports and Publications (EIA)

This report, Solar Thermal Collector Manufacturing Activities, providesan overview and tables with historical data spanning 2000-2009. These tables willcorrespond to similar tables to be presented in the Renewable Energy Annual 2009 andare numbered accordingly.

Michele Simmons

2010-12-01T23:59:59.000Z

370

Texas Thermal Comfort Report  

NLE Websites -- All DOE Office Websites (Extended Search)

thermal comfort thermal comfort Too often, the systems in our houses are both physically and intellectually inaccessible. In the SNAP House, HVAC components are integrated into the overall structure, and act as an experiential threshold between public and private spaces. They are located in a central, structural chase that supports the clerestory and gives the systems a functional presence within the interior. Each individual component is contained within a single chase

371

Photovoltaic-thermal collectors  

DOE Patents (OSTI)

A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

Cox, III, Charles H. (Carlisle, MA)

1984-04-24T23:59:59.000Z

372

Thermal Energy Storage  

Science Conference Proceedings (OSTI)

This Technology Brief provides an update on the current state of cool thermal energy storage systems (TES) for end-use applications. Because of its ability to shape energy use, TES is strategic technology that allows end-users to reduce their energy costs while simultaneously providing benefits for electric utilities through persistent peak demand reduction and peak shifting. In addition to discussing the concepts of thermal energy storage, the Brief discusses the current state of TES technologies and dr...

2008-12-16T23:59:59.000Z

373

ENERGY STAR Score for Wastewater Treatment Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

!! !! July 2013 ENERGY STAR Score for Wastewater Treatment Plants in the United States Page 1 ENERGY STAR Score for Wastewater Treatment Plants in the United States Technical Reference OVERVIEW ! The ENERGY STAR Score for Wastewater Treatment Plants applies to primary, secondary, and advanced treatment facilities with or without nutrient removal capacity. The objective of the ENERGY STAR score is to provide a fair assessment of the energy performance of a property relative to its peers, taking into account the climate, weather, and business activities at the property. To identify the aspects of building activity that are significant drivers of energy

374

High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems  

DOE Green Energy (OSTI)

This document is the sixth volume of the Building America Best Practices Series. It presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific climate zones that are presented in the first five Best Practices volumes. It provides an introduction to current photovoltaic and solar thermal building practices. Information about window selection and shading is included.

Baechler, M.; Gilbride, T.; Ruiz, K.; Steward, H.; Love, P.

2007-06-01T23:59:59.000Z

375

Thermal hydraulics development for CASL  

SciTech Connect

This talk will describe the technical direction of the Thermal-Hydraulics (T-H) Project within the Consortium for Advanced Simulation of Light Water Reactors (CASL) Department of Energy Innovation Hub. CASL is focused on developing a 'virtual reactor', that will simulate the physical processes that occur within a light-water reactor. These simulations will address several challenge problems, defined by laboratory, university, and industrial partners that make up CASL. CASL's T-H efforts are encompassed in two sub-projects: (1) Computational Fluid Dynamics (CFD), (2) Interface Treatment Methods (ITM). The CFD subproject will develop non-proprietary, scalable, verified and validated macroscale CFD simulation tools. These tools typically require closures for their turbulence and boiling models, which will be provided by the ITM sub-project, via experiments and microscale (such as DNS) simulation results. The near-term milestones and longer term plans of these two sub-projects will be discussed.

Lowrie, Robert B [Los Alamos National Laboratory

2010-12-07T23:59:59.000Z

376

Aquifer thermal energy storage: a survey  

DOE Green Energy (OSTI)

The disparity between energy production and demand in many power plants has led to increased research on the long-term, large-scale storage of thermal energy in aquifers. Field experiments have been conducted in Switzerland, France, the United States, Japan, and the People's Republic of China to study various technical aspects of aquifer storage of both hot and cold water. Furthermore, feasibility studies now in progress include technical, economic, and environmental analyses, regional exploration to locate favorable storage sites, and evaluation and design of pilot plants. Several theoretical and modeling studies are also under way. Among the topics being studied using numerical models are fluid and heat flow, dispersion, land subsidence or uplift, the efficiency of different injection/withdrawal schemes, buoyancy tilting, numerical dispersion, the use of compensation wells to counter regional flow, steam injection, and storage in narrow glacial deposits of high permeability. Experiments to date illustrate the need for further research and development to ensure successful implementation of an aquifer storage system. Some of the areas identified for further research include shape and location of the hydrodynamic and thermal fronts, choice of appropriate aquifers, thermal dispersion, possibility of land subsidence or uplift, thermal pollution, water chemistry, wellbore plugging and heat exchange efficiency, and control of corrosion.

Tsang, C.F.; Hopkins, D.; Hellstroem, G.

1980-01-01T23:59:59.000Z

377

Solar thermal power systems. Summary report  

DOE Green Energy (OSTI)

The work accomplished by the Aerospace Corporation from April 1973 through November 1979 in the mission analysis of solar thermal power systems is summarized. Sponsorship of this effort was initiated by the National Science Foundation, continued by the Energy Research and Development Administration, and most recently directed by the United States Department of Energy, Division of Solar Thermal Systems. Major findings and conclusions are sumarized for large power systems, small power systems, solar total energy systems, and solar irrigation systems, as well as special studies in the areas of energy storage, industrial process heat, and solar fuels and chemicals. The various data bases and computer programs utilized in these studies are described, and tables are provided listing financial and solar cost assumptions for each study. An extensive bibliography is included to facilitate review of specific study results and methodology.

Not Available

1980-06-01T23:59:59.000Z

378

Portable treatment systems study  

SciTech Connect

In developing their Site Treatment Plans (STPs), many of the Department of Energy installations identified some form of portable treatment, to facilitate compliant disposition of select mixed low-level wastestreams. The Environmental Management Office of Science and Technology requested that a systems study be performed to better define the potential role of portable treatment with respect to mixed low-level waste, highlight obstacles to implementation, and identify opportunities for future research and development emphasis. The study was performed by first establishing a representative set of mixed waste, then formulating portable treatment system concepts to meet the required processing needs for these wastes. The portable systems that were conceptualized were evaluated and compared to a fixed centralized treatment alternative. The system evaluations include a life-cycle cost analysis and an assessment of regulatory, institutional, and technical issues associated with the potential use of portable systems. The results of this study show that when all costs are included, there are no significant cost differences between portable systems and fixed systems. However, it is also emphasized that many uncertainties exist that could impact the cost of implementing portable treatment systems. Portable treatment could be made more attractive through private sector implementation, although there is little economic incentive for a commercial vendor to develop small, specialized treatment capabilities with limited applicability. Alternatively, there may also be valid reasons why fixed units cannot be used for some problematic wastestreams. In any event, there are some site-specific problems that still need to be addressed, and there may be some opportunity for research and development to make a positive impact in these areas.

Sherick, M.J.; Schwinkendorf, W.E.; Bechtold, T.E.; Cole, L.T.

1997-03-01T23:59:59.000Z

379

Integrated heat pipe-thermal storage system performance evaluation  

SciTech Connect

Performance verification tests of an integrated heat pipe-thermal energy storage system have been conducted. This system is being developed as a part of an Organic Rankine Cycle-Solar Dynamic Power System (ORC-SDPS) receiver for future space stations. The integrated system consists of potassium heat pipe elements that incorporate thermal energy storage (TES) canisters within the vapor space along with an organic fluid (toluene) heater tube used as the condenser region of the heat pipe. During the insolation period of the earth orbit, solar energy is delivered to the surface of the heat pipe elements of the ORC-SDPS receiver and is internally transferred by the potassium vapor for use and storage. Part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the stored energy in the TES units is transferred by the potassium vapor to the toluene heater tube. A developmental heat pipe element was fabricated that employs axial arteries and a distribution wick connecting the wicked TES units and the heater to the solar insolation surface of the heat pipe. Tests were conducted to verify the heat pipe operation and to evaluate the heat pipe/TES units/heater tube operation by interfacing the heater unit to a heat exchanger.

Keddy, E.; Sena, J.T.; Merrigan, M.

1987-01-01T23:59:59.000Z

380

Thermal Performance Engineer's Handbook: Introduction to Thermal Performance  

Science Conference Proceedings (OSTI)

The two-volume Thermal Performance Engineer Handbook will assist thermal performance engineers in identifying and investigating the cause of megawatt (MWe) losses as well as in proposing new ways to increase MWe output. Volume 1 contains a thermal performance primer to provide a brief review of thermodynamic principles involved in the stream power plant thermal cycle. The primer also contains brief descriptions of the equipment and systems in the cycle that can be sources of thermal losses. Also in Volum...

1998-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal treatment unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Thermal Management of Solar Cells  

E-Print Network (OSTI)

UNIVERSITY OF CALIFORNIA RIVERSIDE Thermal Management ofUniversity of California, Riverside Acknowledgments First, I

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

382

Multilayer Nanoscale Thermal Barrier Coatings  

Science Conference Proceedings (OSTI)

Advanced high-efficiency gas turbines require thermal barrier coatings (TBCs) with low thermal conductivity and excellent thermal-cycling resistance. The multilayer TBC developed in this project has a thermal conductivity about half that of conventional TBCs and also rejects up to 70 percent of incoming radiant energy.

1999-05-26T23:59:59.000Z

383

United States Goverment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UO/J±0ou4 TcdJ ± O:S'. Aa. ou* o *.I. I 01j ' . UO/J±0ou4 TcdJ ± O:S'. Aa. ou* o *.I. I 01j ' . - - 00E F 1325,8 (08-93) United States Goverment Department of Energy memorandum DATE: August 13, 2007 Audit Report Number: OAS-L-07-19 REPLY TO ATTN OF: IG-32 (A07PR059) SUBJECT: Audit of Executive Compensation at Selected Office of Science Sites TO: Chief Operating, Officer, Office of Science INTRODUCTION AND OBJECTIVE As part of a Department of Energy-wide audit of executive compensation, we reviewed seven Office of Science sites. Specifically, we reviewed executive compensation costs incurred ~,r claim~.- fr- F".*l*- Y. rs 2003, 2 , and 2005 at - Argonne National Laboratory (Argonne), Brookhaven National Laboratory (Brookhaven), Lawrence Berkeley National Laboratory (LBNL), Oak Ridge Institute for Science and Education, Oak Ridge National Laboratory, Princeton Plasma Physics

384

United States Government Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1/03 07:45 FAX 301 903 4656 CAPITAL REGION -* FORS FIVEA I002/004 1/03 07:45 FAX 301 903 4656 CAPITAL REGION -* FORS FIVEA I002/004 DOE F 1325 ' (8-69) EFO (07-90) United States Government Department of Eneray memorandum DATE: PR17 2003 Audit Report No.: OAS-L-03-14 REPLY TO ATTN OF: IG-34 (A03PT040) SUBJECT: Audit of the Office of Energy Efficiency and Renewable Energy's (EE) Grants, Subsidies, and Cost Sharing Arrangements TO: Assistant Secretary for Energy Efficiency and Renewable Energy, EE-1 The purpose of this report is to inform you of the results of our review of the Office of Energy Efficiency and Renewable Energy's (EE) incentive payments and cost-share arrangements. The review was initiated in February 2003, and fieldwork was conducted through April 2003 at Department of Energy (Department) Headquarters. Our methodology is described in the attachment to this report.

385

Second United Nations  

NLE Websites -- All DOE Office Websites (Extended Search)

i' i' Second United Nations t Jnternational Conference 1 , of Atomic Energy on the Peaceful Uses 4 i \ Confidential until official release during Conference ORIGINAL: ENGLISH METHODS O F PARTICLE DETECTION FOR HIGH-ENERGY PHYSICS EXPERIMENTS t * H. B r a d n e r and D. A. Glaser - INTRODUCTION J 1 % c Recent advances in our knowledge of t h e phenomena of high-energy physics and o'f the e l e m e n t a r y p a r t i c l e s h a s r e s u l t e d f r o m rapid advances in the technology of p a r t i c l e a c c e l e r a t o r s and the art of p a r t i c l e detection. cl'asses: (1) the "track-imaging" device in which one s e e s o r photographs t r a c k s which coincide with the a c t u a l path taken by the p a r t i c l e s , and ( 2 ) counting d e - v i c e s which give only an indication that the p a r t i c l e s p a s s somewhere in the

386

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

uq/Uu.3/uo U-L:i ' rAA OuL a uo oUu. 0tri.l± i m,.i,*, u". run.' r.yrcir V e.u uq/Uu.3/uo U-L:i ' rAA OuL a uo oUu. 0tri.l± i m,.i,*, u". run.' r.yrcir V e.u O000DOE F 1325.8 (08-93) Department of Energy United States Government Department of Energy Memorandum OFFICE OF INSPECTOR GENERAL DATE: March 31,2006 REPLY TO ATTN OF: IG-34 (A05TG028) Audit Report No.: OAS-L-06-10 SUBJECT: Report on Audit of "The Department's Information Technology Capital Planning and Investment Control Process" TO: Chief Information Officer, IM-1 INTRODUCTION AND OBJECTIVE Federal guidance requires that Agencies develop and implement capital planning and investment control (CPIC) processes to help ensure that their major information technology investments achieve intended outcomes, represent the best allocation of resources, and reach strategic goals and objectives. The Department of Energy

387

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2/04 THU 14:52 FAX 423 241 3897 OIG -**- HQ l015 2/04 THU 14:52 FAX 423 241 3897 OIG -**- HQ l015 ol: Fi 13 5.8 (8-09) £1*G (in'mi^)) United States Government Department of Energy Memorandum DATE: April. 22, 2004 REPLY TO ATTN OF: T -36 (A04RL018) Audit Report No.: OAS-L-04-15 SUBJECT: Audit of Disposition of Excess Facilities at the Hanford Site TO: Keith A. Klein, Manager, Richland Operations Office INTRODUCTION AND OBJECTIVE The Hanford Site (Hanford) is the largest of the three original defense production sites founded during World War II. Between 1943 and 1963, nine plutonium production reactors were built along the Columbia River and five processing facilities were built on the site's Central Plateau, with about 1,000 support facilities. Currently, Hanford has a total of 1,500 facilities of which an estimated 1,000 are excess to current and future mission

388

THERMAL PERFORMANCE MEASUREMENTS ON ULTIMATE HEAT SINKS - COOLING PONDS  

Office of Scientific and Technical Information (OSTI)

THERMAL PERFORMANCE MEASUREMENTS THERMAL PERFORMANCE MEASUREMENTS ON ULTIMATE HEAT SINKS - COOLING PONDS R. K. Hadlock 0 . B. Abbey Battelle Pacific Northwest Laboratories Prepared for U. S. Nuclear Regulatory Commission b + NOTICE This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Nuclear Regulatory Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, nor assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, pro- duct or process disclosed, nor represents that its use would not infringe privately owned rights. F Available from National Technical Information Service

389

Mixed waste characterization, treatment, and disposal focus area. Technology summary  

Science Conference Proceedings (OSTI)

This paper presents details about the technology development programs of the Department of Energy. In this document, waste characterization, thermal treatment processes, non-thermal treatment processes, effluent monitors and controls, development of on-site innovative technologies, and DOE business opportunities are applied to environmental restoration. The focus areas for research are: contaminant plume containment and remediation; mixed waste characterization, treatment, and disposal; high-level waste tank remediation; landfill stabilization; and decontamination and decommissioning.

NONE

1995-06-01T23:59:59.000Z

390

Total U.S. Housing Units.................................  

U.S. Energy Information Administration (EIA) Indexed Site

Housing Units (millions) Single-Family Units Apartments in Buildings With-- Space Heating Usage Indicators Million U.S. Housing Units Detached Attached Energy Information...

391

Maximal Reliability for Unit-weighted Composites  

E-Print Network (OSTI)

Maximal Reliability for Unit-weighted Composites Peter M.Maximal Reliability for Unit-weighted Composites Althoughconsistency coefficient for a unit-weighted composite. The

Peter M. Bentler

2011-01-01T23:59:59.000Z

392

Collaborative Unit Construction in Korean: Pivot Turns  

E-Print Network (OSTI)

A. (1996). Interactional units in conversation: Syntactic,M. (2000). The construction of units in conversational talk.character of grammatical units in conversation: Conditional

Ju, Hee

2011-01-01T23:59:59.000Z

393

Unsuspected Pulmonary Embolism in Observation Unit Patients  

E-Print Network (OSTI)

department observation unit. Emerg Med Clin North Am. 2001;ED) managed acute care unit on ED overcrowding and emergencyof a chest pain observation unit compared with routine care.

Limkakeng, Alexander T.; Glickman, Seth W; Cairns, Charles B; Chandra, Abhinav

2009-01-01T23:59:59.000Z

394

Solar thermal repowering systems integration. Final report  

DOE Green Energy (OSTI)

This report is a solar repowering integration analysis which defines the balance-of-plant characteristics and costs associated with the solar thermal repowering of existing gas/oil-fired electric generating plants. Solar repowering interface requirements for water/steam and salt or sodium-cooled central receivers are defined for unit sizes ranging from 50 MWe non-reheat to 350 MWe reheat. Finally balance-of-plant cost estimates are presented for each of six combinations of plant type, receiver type and percent solar repowering.

Dubberly, L. J.; Gormely, J. E.; McKenzie, A. W.

1979-08-01T23:59:59.000Z

395

Solar-thermal technology  

DOE Green Energy (OSTI)

Solar-thermal technology converts sunlight into thermal energy. It stands alongside other solar technologies including solar-electric and photovoltaic technologies, both of which convert sunlight into electricity. Photovoltaic technology converts by direct conversion, and solar-electric converts by using sunlight`s thermal energy in thermodynamic power cycles. The numerous up-and-running solar energy systems prove solar-thermal technology works. But when is it cost-effective, and how can HVAC engineers and facility owners quickly identify cost-effective applications? This article addresses these questions by guiding the reader through the basics of solar-thermal technology. The first section provides an overview of today`s technology including discussions of collectors and typical systems. The next section presents an easy method for identifying potentially cost-effective applications. This section also identifies sources for obtaining more information on the technology--collector ratings and performance, solar manufacturers, and solar design and analysis tools. The article discusses only those collectors and systems that are most often used. Many others are on the market--the article does not, by omission, mean to infer that one is better than the other.

Bennett, C. [Sandia National Labs., Albuquerque, NM (United States)

1995-09-01T23:59:59.000Z

396

Design of solar water-heater installations for seasonal users of thermal energy  

SciTech Connect

A mathematical model has been developed for a solar water-heating unit intended to be employed by seasonal users of thermal energy. The expected characteristics of such units are calculated for an ''average'' operating season.

Valyuzhinich, A.A.; Myshko, Yu.L.; Smirnov, S.I.

1980-01-01T23:59:59.000Z

397

Article for thermal energy storage  

DOE Patents (OSTI)

A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

Salyer, Ival O. (Dayton, OH)

2000-06-27T23:59:59.000Z

398

Ultrasonic Transducers and Search Units  

Science Conference Proceedings (OSTI)

Table 2   Primary applications of ultrasonic search units...tears, seams, cracks Castings??slag, porosity, cold shuts, tears, shrinkage cracks,

399

OpenEI - United Nations  

Open Energy Info (EERE)

http:en.openei.orgdatasetstaxonomyterm5810 en Overview of the United Nations Environment Programme's Solar and Wind Energy Resource Assessment (SWERA) Project http:...

400

THERMAL NEUTRON BACKSCATTER IMAGING.  

DOE Green Energy (OSTI)

Objects of various shapes, with some appreciable hydrogen content, were exposed to fast neutrons from a pulsed D-T generator, resulting in a partially-moderated spectrum of backscattered neutrons. The thermal component of the backscatter was used to form images of the objects by means of a coded aperture thermal neutron imaging system. Timing signals from the neutron generator were used to gate the detection system so as to record only events consistent with thermal neutrons traveling the distance between the target and the detector. It was shown that this time-of-flight method provided a significant improvement in image contrast compared to counting all events detected by the position-sensitive {sup 3}He proportional chamber used in the imager. The technique may have application in the detection and shape-determination of land mines, particularly non-metallic types.

VANIER,P.; FORMAN,L.; HUNTER,S.; HARRIS,E.; SMITH,G.

2004-10-16T23:59:59.000Z

Note: This page contains sample records for the topic "thermal treatment unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Thermal energy storage material  

DOE Patents (OSTI)

A thermal energy storage material which is stable at atmospheric temperature and pressure and has a melting point higher than 32.degree.F. is prepared by dissolving a specific class of clathrate forming compounds, such as tetra n-propyl or tetra n-butyl ammonium fluoride, in water to form a substantially solid clathrate. The resultant thermal energy storage material is capable of absorbing heat from or releasing heat to a given region as it transforms between solid and liquid states in response to temperature changes in the region above and below its melting point.

Leifer, Leslie (Hancock, MI)

1976-01-01T23:59:59.000Z

402

Thermal test options  

SciTech Connect

Shipping containers for radioactive materials must be qualified to meet a thermal accident environment specified in regulations, such at Title 10, Code of Federal Regulations, Part 71. Aimed primarily at the shipping container design, this report discusses the thermal testing options available for meeting the regulatory requirements, and states the advantages and disadvantages of each approach. The principal options considered are testing with radiant heat, furnaces, and open pool fires. The report also identifies some of the facilities available and current contacts. Finally, the report makes some recommendations on the appropriate use of these different testing methods.

Koski, J.A.; Keltner, N.R.; Sobolik, K.B.

1993-02-01T23:59:59.000Z

403

Thermal ignition combustion system  

DOE Patents (OSTI)

The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

1988-04-19T23:59:59.000Z

404

Thermal Insulation Systems  

E-Print Network (OSTI)

Thermal insulation systems are receiving a high degree of attention in view of increasing energy cost. Industrial, commercial and residential energy users are all well aware of energy cost increases and great emphasis is being directed to energy cost reduction programs. One of the best places to start with energy conservation is to employ proper insulation systems. This article discusses the significant properties of thermal insulation materials primarily for industrial application. Some of the information is applicable to commercial and residential insulation. Only hot service conditions will be covered.

Stanley, T. F.

1982-01-01T23:59:59.000Z

405

Hourly Energy Emission Factors for Electricity Generation in the United  

Open Energy Info (EERE)

Hourly Energy Emission Factors for Electricity Generation in the United Hourly Energy Emission Factors for Electricity Generation in the United States Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. This project utilized GridViewTM, an electric grid dispatch software package, to estimate hourly emission factors for all of the eGRID subregions in the continental United States. These factors took into account electricity imports and exports

406

Pd/k for RTF and 232-H TCAP units  

DOE Green Energy (OSTI)

The Thermal Cycling Absorption Process (TCAP) will be used in the Replacement Tritium Facility (RTF) and 232-H Tritium Facility for separation of hydrogen isotopes. These TCAP units will be filled with palladium deposited on kieselguhr (Pd/k) that has been heat treated to reduce particle breakdown and sieved to remove particles smaller than 50 mesh (300{mu}m). Pd/k ordered for several applications in the RTF, including TCAP, was received at SRL in April 1989. Shortly thereafter, flow restriction caused by breakdown of the Pd/k particles was detected during operation of a TCAP unit in the Advanced Hydride Laboratory (AHL). Subsequent research at SRL showed that heating Pd/k at 1100{degrees}C in air for 2 hours greatly reduces mechanical breakdown. Based on these favorable results, sufficient Pd/k was heat treated to fill RTF and Building 232-H TCAP units. 11 refs., 11 figs., 7 tabs.

Mosley, W.C.

1991-01-29T23:59:59.000Z

407

Estimated United States Residential Energy Use in 2005  

DOE Green Energy (OSTI)

A flow chart depicting energy flow in the residential sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 11,000 trillion British Thermal Units (trBTUs) of electricity and fuels were used throughout the United States residential sector in lighting, electronics, air conditioning, space heating, water heating, washing appliances, cooking appliances, refrigerators, and other appliances. The residential sector is powered mainly by electricity and natural gas. Other fuels used include petroleum products (fuel oil, liquefied petroleum gas and kerosene), biomass (wood), and on-premises solar, wind, and geothermal energy. The flow patterns represent a comprehensive systems view of energy used within the residential sector.

Smith, C A; Johnson, D M; Simon, A J; Belles, R D

2011-12-12T23:59:59.000Z

408

" Million U.S. Housing Units"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Household Characteristics by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit"...

409

NIST: Hydrocarbons - Special Units, ... and Useful Conv. ...  

Science Conference Proceedings (OSTI)

5. Special Units, Fundamental Constants, and Useful Conversion Factors. 5.a. Special Units. ... 5.b. Fundamental Constants and Conversion Factors. ...

410

International System of Units from NIST  

Science Conference Proceedings (OSTI)

... Background Definitions of the SI base units and their historical context International aspects of the SI Unit conversions. Bibliography ...

411

United States Environmental Protection Agency  

E-Print Network (OSTI)

, University of Salford, Salford, UK. Nigel Langford is in the BNFL Corporate Communication Research Unit, University of Salford, Salford, UK. Richard J. Varey is in the BNFL Corporate Communication Research Unit University Press . ISSN 1356-3289 #12;As organizations grow and segment through specialization, so do zones

412

Geothermal Resource-Reservoir Investigations Based On Heat Flow And Thermal  

Open Energy Info (EERE)

Resource-Reservoir Investigations Based On Heat Flow And Thermal Resource-Reservoir Investigations Based On Heat Flow And Thermal Gradient Data For The United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal Resource-Reservoir Investigations Based On Heat Flow And Thermal Gradient Data For The United States Details Activities (2) Areas (2) Regions (0) Abstract: Several activities related to geothermal resources in the western United States are described in this report. A database of geothermal site-specific thermal gradient and heat flow results from individual exploration wells in the western US has been assembled. Extensive temperature gradient and heat flow exploration data from the active exploration of the 1970's and 1980's were collected, compiled, and synthesized, emphasizing previously unavailable company data. Examples of

413

Solar thermal financing guidebook  

DOE Green Energy (OSTI)

This guidebook contains information on alternative financing methods that could be used to develop solar thermal systems. The financing arrangements discussed include several lease alternatives, joint venture financing, R and D partnerships, industrial revenue bonds, and ordinary sales. In many situations, alternative financing arrangements can significantly enhance the economic attractiveness of solar thermal investments by providing a means to efficiently allocate elements of risk, return on investment, required capital investment, and tax benefits. A net present value approach is an appropriate method that can be used to investigate the economic attractiveness of alternative financing methods. Although other methods are applicable, the net present value approach has advantages of accounting for the time value of money, yielding a single valued solution to the financial analysis, focusing attention on the opportunity cost of capital, and being a commonly understood concept that is relatively simple to apply. A personal computer model for quickly assessing the present value of investments in solar thermal plants with alternative financing methods is presented in this guidebook. General types of financing arrangements that may be desirable for an individual can be chosen based on an assessment of his goals in investing in solar thermal systems and knowledge of the individual's tax situation. Once general financing arrangements have been selected, a screening analysis can quickly determine if the solar investment is worthy of detailed study.

Williams, T.A.; Cole, R.J.; Brown, D.R.; Dirks, J.A.; Edelhertz, H.; Holmlund, I.; Malhotra, S.; Smith, S.A.; Sommers, P.; Willke, T.L.

1983-05-01T23:59:59.000Z

414

Thermal Reactor Safety  

Science Conference Proceedings (OSTI)

Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

Not Available

1980-06-01T23:59:59.000Z

415

Thermal barrier coating  

SciTech Connect

A thermal barrier coating for hot gas path components of a combustion turbine based on a zirconia-scandia system. A layer of zirconium scandate having the hexagonal Zr.sub.3 Sc.sub.4 O.sub.12 structure is formed directly on a superalloy substrate or on a bond coat formed on the substrate.

Bowker, Jeffrey Charles (Gibsonia, PA); Sabol, Stephen M. (Orlando, FL); Goedjen, John G. (Oviedo, FL)

2001-01-01T23:59:59.000Z

416

Cylindrical thermal contact conductance  

E-Print Network (OSTI)

Thermal contact conductance is highly important in a wide variety of applications, from the cooling of electronic chips to the thermal management of spacecraft. The demand for increased efficiency means that components need to withstand higher temperatures and heat transfer rates. Many situations call for contact heat transfer through nominally cylindrical interfaces, yet relatively few studies of contact conductance through cylindrical interfaces have been undertaken. This study presents a review of the experimental and theoretical investigations of the heat transfer characteristics of composite cylinders, presenting data available in open literature in comparison with relevant correlations. The present investigation presents a study of the thermal contact conductance of cylindrical interfaces. The experimental investigation of sixteen different material combinations offers an opportunity to develop predictive correlations of the contact conductance, in conjunction with an analysis of the interface pressure as a function of the thermal state of the individual cylindrical shells. Experimental results of the present study are compared with previously published conductance data and conductance models.

Ayers, George Harold

2003-08-01T23:59:59.000Z

417

Waste Treatment  

Science Conference Proceedings (OSTI)

...rates, and batch collection volume requirements Water conservation possibilities What is required to meet discharge limits Availability and type of treatment chemicals How sludge will be dewatered, dried, and disposed...

418

Thermal Systems Process and Components Laboratory (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Thermal Systems Process and Components Laboratory at the Energy Systems Integration Facility. The focus of the Thermal Systems Process and Components Laboratory at NREL's Energy Systems Integration Facility (ESIF) is to research, develop, test, and evaluate new techniques for thermal energy storage systems that are relevant to utility-scale concentrating solar power plants. The laboratory holds test systems that can provide heat transfer fluids for the evaluation of heat exchangers and thermal energy storage devices. The existing system provides molten salt at temperatures up to 800 C. This unit is charged with nitrate salt rated to 600 C, but is capable of handling other heat transfer fluid compositions. Three additional test bays are available for future deployment of alternative heat transfer fluids such as hot air, carbon dioxide, or steam systems. The Thermal Systems Process and Components Laboratory performs pilot-scale thermal energy storage system testing through multiple charge and discharge cycles to evaluate heat exchanger performance and storage efficiency. The laboratory equipment can also be utilized to test instrument and sensor compatibility with hot heat transfer fluids. Future applications in the laboratory may include the evaluation of thermal energy storage systems designed to operate with supercritical heat transfer fluids such as steam or carbon dioxide. These tests will require the installation of test systems capable of providing supercritical fluids at temperatures up to 700 C.

Not Available

2011-10-01T23:59:59.000Z

419

Preliminary requirements for thermal storage subsystems in solar thermal applications  

DOE Green Energy (OSTI)

Methodologies for the analysis of value and comparing thermal storage concepts are presented. Value is a measure of worth and is determined by the cost of conventional fuel systems. Value data for thermal storage in large solar thermal electric power applications are presented. Thermal storage concepts must be compared when all are performing the same mission. A method for doing that analysis, called the ranking index, is derived. Necessary data to use the methodology are included.

Copeland, R.J.

1980-04-01T23:59:59.000Z

420

Advanced Unit Commitment Strategies in the United States Eastern Interconnection  

DOE Green Energy (OSTI)

This project sought to evaluate the impacts of high wind penetrations on the U.S. Eastern Interconnection and analyze how different unit commitment strategies may affect these impacts.

Meibom, P.; Larsen, H. V.; Barth, R.; Brand, H.; Tuohy, A.; Ela, E.

2011-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal treatment unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

,"Housing Units1","Average Square Footage Per Housing Unit",...  

U.S. Energy Information Administration (EIA) Indexed Site

the U.S. Department of Energy's Office of Energy and Efficiency and Renewable Energy (EERE). 5Rented includes households that occupy their primary housing unit without payment of...

422

Effect of Thermal-Mechanical Treatment on the Fatigue Crack ...  

Science Conference Proceedings (OSTI)

that fatigue crack propagation (FCP) resistance without holding time has no significant difference between three alloys with 718Plus being the best and 718 the...

423

Three-Dimensional Thermal Tomography Advances Cancer Treatment ...  

Because they grow more quickly than healthy cells, ... Solar Photovoltaic; ... the researchers discovered the effusivity values of damaged skin tissue differ from ...

424

Influence of Thermal Treatment on Magnetocaloric Properties of Gd ...  

Science Conference Proceedings (OSTI)

... values for designing high-frequency heat exchangers for magnetic refrigeration devices. Thinning of the Gd samples were carried out on 40 mm diameter mill.

425

Three-Dimensional Thermal Tomography Advances Cancer Treatment  

Jiangang Sun Contact Argonne Technology Development and Commercialization partners@anl.gov ne_TT3Dfs_0812. Title:

426

Thermal regimes of Malaysian sedimentary basins  

Science Conference Proceedings (OSTI)

Properly corrected and calibrated thermal data are important in estimating source-rock maturation, diagenetics, evolution of reservoirs, pressure regimes, and hydrodynamics. Geothermal gradient, thermal conductivity, and heat flow have been determined for the sedimentary succession penetrated by exploratory wells in Malaysia. Geothermal gradient and heat-flow maps show that the highest average values are in the Malay Basin. The values in the Sarawak basin are intermediate between those of the Malay basin and the Sabah Basin, which contains the lowest average values. Temperature data were analyzed from more than 400 wells. An important parameter that was studied in detail is the circulation time. The correct circulation time is essential in determining the correct geothermal gradient of a well. It was found that the most suitable circulation time for the Sabah Basin is 20 hr, 30 hr for the Sarawak Basin and 40 hr for the Malay Basin. Values of thermal conductivity, determined from measurement and calibrated calculations, were grouped according to depositional units and cycles in each basin.

Abdul Halim, M.F. (Petronas Research and Scientific Services, Selangor (Malaysia))

1994-07-01T23:59:59.000Z

427

National Solar Thermal Test Facility  

SciTech Connect

This is a brief report about a Sandia National Laboratory facility which can provide high-thermal flux for simulation of nuclear thermal flash, measurements of the effects of aerodynamic heating on radar transmission, etc

Cameron, C.P.

1989-12-31T23:59:59.000Z

428

Solar thermal energy contract list, fiscal year 1990  

DOE Green Energy (OSTI)

The federal government has conducted the national Solar Thermal Technology Program since 1975. Its purpose is to provide focus, direction, and funding for the development of solar thermal technology as an energy option for the United States. This year's document is more concise than the summaries of previous years. The FY 1990 contract overview comprises a list of all subcontracts begun, ongoing, or completed during FY 1990 (October 1, 1989, through September 30, 1990). Under each managing laboratory projects are listed alphabetically by project area and then by subcontractor name. Amount of funding milestones are listed.

Not Available

1991-09-01T23:59:59.000Z

429

THERMAL INSULATION MATERIALS TEST METHOD ...  

Science Conference Proceedings (OSTI)

... _____ 01/W01 CAN/CGSB-51.2-M88 Thermal Insulation, Calcium Silicate, for Piping, Machinery and Boilers _____ ...

2012-05-22T23:59:59.000Z

430

Liquid metal thermal electric converter  

DOE Patents (OSTI)

A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

1989-01-01T23:59:59.000Z

431

NVLAP Thermal Insulation Materials LAP  

Science Conference Proceedings (OSTI)

... for thermal insulation materials. The final report for Round 31 was released in February 2010. Proficiency testing is on hold ...

2013-07-18T23:59:59.000Z

432

Survey of solar thermal energy storage subsystems for thermal/electric applications  

SciTech Connect

A survey of the current technology and estimated costs of subsystems for storing the thermal energy produced by solar collectors is presented. The systems considered were capable of producing both electricity and space conditioning for three types of loads: a single-family detached residence, an apartment complex of 100 units, and a city of 30,000 residents, containing both single-family residences and apartments. Collector temperatures will be in four ranges: (1) 100 to 250/sup 0/F (used for space heating and single-cycle air conditioners and organic Rankine low-temperature turbines); (2) 300 to 400/sup 0/F (used for dual-cycle air conditioners and low-temperature turbines); (3) 400 to 600/sup 0/F (using fluids from parabolic trough collectors to run Rankine turbines); (4) 800 to 1000/sup 0/F (using fluids from heliostats to run closed-cycle gas turbines and steam Rankine turbines). The solar thermal energy subsystems will require from 60 to 36 x 10/sup 5/ kWhr (2.05 x 10/sup 5/ to 1.23 x 10/sup 10/ Btu) of thermal storage capacity. In addition to sensible heat and latent heat storage materials, several other media were investigated as potential thermal energy storage materials, including the clathrate and semiclathrate hydrates, various metal hydrides, and heat storage based on inorganic chemical reactions.

Segaser, C. L.

1978-08-01T23:59:59.000Z

433

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network (OSTI)

High temperature underground thermal energy storage, inProceedings, Thermal Energy Storage in Aquifers Workshop:underground thermal energy storage, in ATES newsletter:

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

434

Thermal Transport in Graphene Multilayers and Nanoribbons  

E-Print Network (OSTI)

1 CHAPTER 2 Thermal transport atvalues of graphenes thermal conductivity and different1 Thermal conductivity : metals and non - metallic

Subrina, Samia

2011-01-01T23:59:59.000Z

435

Modeling thermal comfort in stratified environments  

E-Print Network (OSTI)

Arens E. , and Wang D. 2004. "Thermal sensation and comfortin transient non-uniform thermal environments", European7730, 1994, Moderate Thermal Environments Determination of

Zhang, H.; Huizenga, C.; Arens, Edward A; Yu, T.

2005-01-01T23:59:59.000Z

436

Thermal Conduction in Graphene and Graphene Multilayers  

E-Print Network (OSTI)

1 1.2 Thermal transport atxv Introduction xii 1.1 Thermal conductivity and65 4.13 Thermal conductivity of graphene as a function of

Ghosh, Suchismita

2009-01-01T23:59:59.000Z

437

Indoor Thermal Comfort, an Evolutionary Biology Perspective  

E-Print Network (OSTI)

ASHRAE Standard 55-2004: Thermal environmental conditionsA behavioural approach to thermal comfort assessment inBerger, X. , 1998. Human thermal comfort at Nimes in summer

Stoops, John L.

2006-01-01T23:59:59.000Z

438

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network (OSTI)

1978, High temperature underground thermal energy storage,in Proceedings, Thermal Energy Storage in Aquifers Workshop:High temperature underground thermal energy storage, in ATES

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

439

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

B. Quale. Seasonal storage of thermal energy in water in theand J. Schwarz, Survey of Thermal Energy Storage in AquifersSecond Annual Thermal Energy Storage Contractors'

Authors, Various

2011-01-01T23:59:59.000Z

440

Review of the Sodium Bearing Waste Treatment Project - Integrated Waste Treatment Unit Federal Operational Readiness Review  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Operational Readiness Review June 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Background ............................................................................................................................................ 1 3.0 Scope ...................................................................................................................................................... 2 4.0 Results ................................................................................................................................................... 2

Note: This page contains sample records for the topic "thermal treatment unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Thermal denitration and mineralization of waste constituents  

SciTech Connect

In order to produce a quality grout from LLW using hydraulic cements, proper conditioning of the waste is essential for complete cement curing. Several technologies were investigated as options for conditions. Since the LLW is dilute, removal of all, or most, of the water will significantly reduce the final waste volume. Neutralization of the LLW is also desirable since acidic liquids to not allow cement to cure properly. The nitrate compounds are very soluble and easily leached from solid waste forms; therefore, denitration is desirable. Thermal and chemical denitration technologies have the advantages of water removal, neutralization, and denitration. The inclusion of additives during thermal treatment were investigated as a method of forming insoluable waste conditions.

Nenni, J.A.; Boardman, R.D.

1997-08-01T23:59:59.000Z

442

Process and apparatus for thermal enhancement  

DOE Patents (OSTI)

Thermal treatment apparatus for downhole deployment comprising a combustion stage with an elongated hot wall combustion zone for the substantially complete combustion of the fuel-air mixture and an ignition zone immediately upstream from the combustion zone in which a mixture of atomized liquid fuel and air at or below stoichiometric ratio is ignited; together with a water injection stage immediately downstream from the combustion zone through which essentially partuculate free high temperature combustion products flow from the combustion zone and into which water is sprayed. The resulting mixture of steam and combustion products is injected into an oil formation for enhancing the speed and effectiveness of reservoir response due to physical, chemical, and/or thermal stimulation interactions.

Burrill, Jr., Charles E. (Billerica, MA); Smirlock, Martin E. (Brimfield, MA); Krepchin, Ira P. (Newton Upper Falls, MA)

1984-06-26T23:59:59.000Z

443

Holographic Thermal Helicity  

E-Print Network (OSTI)

We study the thermal helicity, defined in arXiv:1211.3850, of a conformal field theory with anomalies in the context of AdS$_{2n+1}$/CFT$_{2n}$. To do so, we consider large charged rotating AdS black holes in the Einstein-Maxwell-Chern-Simons theory with a negative cosmological constant using fluid/gravity expansion. We compute the anomaly-induced current and stress tensor of the dual CFT in leading order of the fluid/gravity derivative expansion and show their agreement with the field theoretical replacement rule for the thermal helicity. Such replacement rule is reflected in the bulk by new replacement rules obeyed by the Hall currents around the black hole.

Tatsuo Azeyanagi; R. Loganayagam; Gim Seng Ng; Maria J. Rodriguez

2013-11-12T23:59:59.000Z

444

Reactor Thermal-Hydraulics  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal-Hydraulics Thermal-Hydraulics Dr. Tanju Sofu, Argonne National Laboratory In a power reactor, the energy produced in fission reaction manifests itself as heat to be removed by a coolant and utilized in a thermodynamic energy conversion cycle to produce electricity. A simplified schematic of a typical nuclear power plant is shown in the diagram below. Primary coolant loop Steam Reactor Heat exchanger Primary pump Secondary pump Condenser Turbine Water Although this process is essentially the same as in any other steam plant configuration, the power density in a nuclear reactor core is typically four orders of magnitude higher than a fossil fueled plant and therefore it poses significant heat transfer challenges. Maximum power that can be obtained from a nuclear reactor is often limited by the

445

Thermally stable diamond brazing  

DOE Patents (OSTI)

A cutting element and a method for forming a cutting element is described and shown. The cutting element includes a substrate, a TSP diamond layer, a metal interlayer between the substrate and the diamond layer, and a braze joint securing the diamond layer to the substrate. The thickness of the metal interlayer is determined according to a formula. The formula takes into account the thickness and modulus of elasticity of the metal interlayer and the thickness of the TSP diamond. This prevents the use of a too thin or too thick metal interlayer. A metal interlayer that is too thin is not capable of absorbing enough energy to prevent the TSP diamond from fracturing. A metal interlayer that is too thick may allow the TSP diamond to fracture by reason of bending stress. A coating may be provided between the TSP diamond layer and the metal interlayer. This coating serves as a thermal barrier and to control residual thermal stress.

Radtke, Robert P. (Kingwood, TX)

2009-02-10T23:59:59.000Z

446

Thermal spallation drilling  

DOE Green Energy (OSTI)

Thermal spallation drilling is an underdeveloped process with great potential for reducing the costs of drilling holes and mining shafts and tunnels in most very hard rocks. Industry has used this process to drill blast holes for emplacing explosives and to quarry granite. Some theoretical work has been performed, and many signs point to a great future for this process. The Los Alamos National Laboratory has studied the theory of the spallation process and is conducting experiments to prove out the system and to adapt it for use with a conventional rotary rig. This report describes work that has been accomplished at the Laboratory on the development of thermal spallation drilling and some work that is projected for the future on the system. 3 references, 3 figures.

Williams, R.E.

1985-01-01T23:59:59.000Z

447

Thermal Stabilization Blend Plan  

SciTech Connect

This Blend Plan documents the feed material items that are stored in 2736-2 vaults, the 2736-ZB 638 cage, the 192C vault, and the 225 vault that will be processed through the thermal stabilization furnaces. The purpose of thermal stabilization is to heat the material to 1000 degrees Celsius to drive off all water and leave the plutonium and/or uranium as oxides. The stabilized material will be sampled to determine the Loss On Ignition (LOI) or percent water. The stabilized material must meet water content or LOI of less than 0.5% to be acceptable for storage under DOE-STD-3013-99 specifications. Out of specification material will be recycled through the furnaces until the water or LOI limits are met.

RISENMAY, H.R.

2000-05-02T23:59:59.000Z

448

Concentrating Solar Thermal Technology  

Science Conference Proceedings (OSTI)

After nearly 20 years of commercial dormancy, concentrating solar thermal (CST) power development and investment activity is heating up globally. Encouraged by volatile energy prices, carbon markets, and renewable-friendly policies, an increasing number of established companies, newcomers, utilities, and government agencies are planning to deploy CST systems to tap the technologies' improving conversion efficiencies and low-cost electricity production potential. This renewable energy technology perspecti...

2009-03-27T23:59:59.000Z

449

THERMAL NEUTRONIC REACTOR  

DOE Patents (OSTI)

A novel thermal reactor was designed in which a first reflector formed from a high atomic weight, nonmoderating material is disposed immediately adjacent to the reactor core. A second reflector composed of a moderating material is disposed outwardly of the first reflector. The advantage of this novel reflector arrangement is that the first reflector provides a high slow neutron flux in the second reflector, where irradiation experiments may be conducted with a small effect on reactor reactivity.

Spinrad, B.I.

1960-01-12T23:59:59.000Z

450

Thermal reactor safety  

SciTech Connect

Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport.

1980-06-01T23:59:59.000Z

451

Thermally actuated thermionic switch  

DOE Patents (OSTI)

A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

Barrus, D.M.; Shires, C.D.

1982-09-30T23:59:59.000Z

452

New Mexico grape growers unite  

NLE Websites -- All DOE Office Websites (Extended Search)

New Mexico grape growers unite, increase production New Mexico grape growers unite, increase production Grape Growers Association enlivens agriculture Growers association unites small parcels of land, enlivens production, protects water rights for Northern New Mexico agriculturists. August 6, 2012 Northern New Mexico Micro Grape Growers Association The NMSBA Entrepreneurial Networking program is helping Lucia Sanchez (C) Tim Martinez (R) and Robert Naranjo, the Northern New Mexico Micro Grape Growers Association, put small parcels of land back into production in Rio Arriba County. Contact Mariann Johnston (505) 667-4391 Email New Mexico grape growers unite to increase production, with help of Northern New Mexico Connect Over the last decade, a string of wineries has come to grace the scenic High Road to Taos. In 2010, Robert Naranjo, network facilitator for the

453

Energy Management in Olefins Units  

E-Print Network (OSTI)

The previous generations of olefin units were typically importers of utilities such as high pressure steam and electricity. But, in the new generation of units, diligent energy conservation efforts have reduced the high pressure steam demand to the point where waste heat from pyrolysis generates more than enough steam to power the olefins unit recovery section. Furthermore, incorporating gas turbine driven electrical generators or process compressors adds to the utility export potential of the unit. It is necessary, therefore, to consider utility export as a valuable byproduct of olefins production and incorporate it within the utility network of the petrochemical complex. As with any byproduct of a process, it is necessary to be able to control its production and distribution.

Wells, T. A.

1982-01-01T23:59:59.000Z

454

DROUGHT IN THE UNITED STATES  

Science Conference Proceedings (OSTI)

Using state monthly values of the Palmer Drought Index from January 1895 through April 1981, thespatial and temporal features of dry and wet episodes over the contiguous United States were analyzed. Thevariance spectrum of the area under both ...

Henry F. Diaz

1983-01-01T23:59:59.000Z

455

(12) United States Patent x ...................................  

Science Conference Proceedings (OSTI)

... The electrical resistance per unit length of each section ... 4(b): T2>TI' The electric field in each ... 0I holes were drilled through the cooling copper blocks ...

2010-07-27T23:59:59.000Z

456

LS-145 STANDARD SYMBOLS FOR UNITS OF MEASURE  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 STANDARD SYMBOLS FOR UNITS OF MEASURE ____________________________________________________________________________________ AIP IEEE CDR APS ____________________________________________________________________________________ ampere A A A A ampere hour Ah Ah A·h A·h ampere turn At A A At angstrom A · A · Å atmosphere, std atm atm atm atm atomic mass unit amu u amu atomic percent at.% - at.% atomic unit a.u. - a.u. atomic weight at.wt. - at.wt. bar bar bar bar bar British Thermal Unit Btu Btu Btu calorie (cgs) cal cal cal centimeter cm cm cm cm coulomb C C C C cubic centimeter cm 3 cm 3 cm 3 cycles per second Hz, cps, Hz, c/s Hz Hz c/s, c/sec cubic meter m 3 m 3 decibel dB dB dB dB decibel above 1 mW dBm - dBm degree (plane angle) ...°, deg ...° ...°,deg ...°, deg degree Celsius °C °C °C °C degree Fahrenheit °F °F °F °F electromagnetic unit

457

Mobile Window Thermal Test  

NLE Websites -- All DOE Office Websites (Extended Search)

Mobile Window Thermal Test (MoWiTT) Facility Mobile Window Thermal Test (MoWiTT) Facility winter.jpg (469135 bytes) The window has come a long way since the days when it was a single pane of glass in a wood frame. Low-emissivity windows were designed to help buildings retain some of the energy that would have leaked out of less efficient windows. Designing efficient window-and-frame systems is one strategy for reducing the energy use of buildings. But the net energy flowing through a window is a combination of temperature- driven thermal flows and transmission of incident solar energy, both of which vary with time. U-factor and solar heat gain coefficient (SHGC), the window properties that control these flows, depend partly on ambient conditions. Window energy flows can affect how much energy a building uses, depending on when the window flows are available to help meet other energy demands within the building, and when they are adverse, adding to building energy use. This leads to a second strategy for reducing building energy use: using the beneficial solar gain available through a window, either for winter heating or for daylighting, while minimizing adverse flows.

458

OpenEI - United States  

Open Energy Info (EERE)

United States United States Renewable Energy Technical Potential http://en.openei.org/datasets/node/912 License

459

THERMAL TREATMENT REVIEW . WTE I THERMAL TREATMENT Since the beginning of this century, global waste-to-energy capacity  

E-Print Network (OSTI)

at the dust source, changed intensity of the atmospheric flow or to changed scavenging parameters. Furthermore supported by funding agencies in Denmark (SNF), Belgium (FNRS-CFB), France (IFRTP and INSU/CNRS), Ger-5 many.: Oxygen isotope and palaeotem- perature records from six Greenland ice-core stations: Camp Century, Dye-3

Columbia University

460

Design for Krypton-85 Enrichment by Thermal Diffusion  

SciTech Connect

Substantial quantities of krypton having a krypton-85 concentration of less than 10% will become available if nuclear fuel-processing plants are required to collect the gaseous fission products rather than releasing them into the atmosphere. A modular thermal diffusion unit was designed for the enrichment of the krypton-85 to useful concentrations of greater than 45%. The design emphasizes reliability and integrity by incorporating no moving parts within the unit. The modular design also offers flexibility in the size of the enrichment facility that need be constructed at any time.

Schwind, Roger A.; Rutherford, William M.

1973-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal treatment unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Million U.S. Housing Units Total............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Attached Attached 2 to 4 Units Table HC2.12 Home Electronics Usage Indicators by Type of Housing Unit, 2005 5 or More Units Mobile Homes Type of Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Home Electronics Usage Indicators Detached Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Attached 2 to 4 Units Table HC2.12 Home Electronics Usage Indicators by Type of Housing Unit, 2005 5 or More Units Mobile Homes Type of Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Home Electronics Usage Indicators Detached Status of PC When Not in Use Left On..............................................................

462

Thermal Performance Impacts of Center-of-Glass Deflections in Installed  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Performance Impacts of Center-of-Glass Deflections in Installed Thermal Performance Impacts of Center-of-Glass Deflections in Installed Insulating Glazing Units Title Thermal Performance Impacts of Center-of-Glass Deflections in Installed Insulating Glazing Units Publication Type Journal Article LBNL Report Number LBNL-5800E Year of Publication 2012 Authors Hart, Robert, Howdy Goudey, Dariush K. Arasteh, and Dragan C. Curcija Journal Energy and Buildings Volume 54 Issue November 2012 Pagination 453-460 Date Published 11/2012 Keywords concave, convex, deflection, field test, gap, insulating glass unit, thermal performance, thermal transmittance, u-factor Abstract This study examines the thermal performance impact of center-of-glass (COG) deflections in double- and triple-pane insulating glass units (IGUs) installed at several locations throughout the US. Deflection was measured during summer and winter temperatures; the results show that outdoor temperature variations can be represented a linear change in COG gap width in double- and triple-pane IGUs within the temperature ranges measured. However, the summer-winter temperature-induced deflection is similar in magnitude to the observed spread in COG deflection of similar units at the same temperature, which suggests that factors other than temperature are of equal importance in determining the in-situ deflection of windows. The effect of deflection on thermal performance depends on the IGU's designed gap. Units constructed with smaller-than-optimal gaps often exhibit significant U-factor change due to temperature-induced reduction in gap width. This effect is particularly problematic in high-performance triple glazing where small gap dimension changes can have a large impact on performance.

463

Various Arsenic Treatments in Non-Ferrous Metallurgy and Other ...  

Science Conference Proceedings (OSTI)

Presentation Title, Various Arsenic Treatments in Non-Ferrous Metallurgy and ... from the Coking Wastewater Using Three-Dimensional Electrode Reactor ... Phase Equilibrium and Characterization Studies of Binary Organic Thermal Energy...

464

Weather pattern climatology of the United States  

DOE Green Energy (OSTI)

In this study the geographic domain covered the 48 conterminous states of the United States. The daily synoptic weather pattern was classified into nine types for the 10-year period January 1, 1969 to December 31, 1978. Weather pattern types were defined relative to the classical polar front model of a mid-latitude cyclonic storm system and its associated air masses. Guidelines for classifying weather patterns on an operational basis were developed. These were applied to 3652 daily surface weather maps to produce a time series of weather pattern type at 120 grid points of a 160 point, 3/sup 0/ latitude by 4/sup 0/ longitude array over the United States. Statistics on the frequency of occurrence, persistence and alternation of weather patterns were calculated for each grid point. Summary statistics for the entire grid and for six regions were also presented. Frequency of occurrence and persistence were found to depend on the size and speed of movement of the weather pattern. Large, slow moving air masses had higher frequency of occurrence and longer persistence than small (fronts) or rapidly moving (or changing) features (fronts, storm centers). Some types showed distinct regional preferences. The subtropical maritime high occurred mainly in the south central and southeast. An indeterminate weather pattern type accounted for those weather patterns that did not fit the polar front model or were too disorganized to be classified. The intermountain thermal low of the desert southwest was one such feature that dominated both frequency of occurrence and persistence in this region. Alternation from one weather pattern to another followed the polar front model of a moving cyclonic storm. The tendency for anticyclonic weather patterns to become disorganized as they weakened was seen in the high percentage of these patterns that changed to an indeterminate pattern as they aged.

Barchet, W.R.; Davis, W.E.

1984-01-01T23:59:59.000Z

465

CALIFORNIA SOLAR INITIATIVE-THERMAL PROGRAMHANDBOOK  

E-Print Network (OSTI)

CALIFORNIA SOLAR INITIATIVE-THERMAL PROGRAMHANDBOOK CALIFORNIA PUBLIC UTILITIES California Solar Initiative Thermal Program Handbook i 1. Introduction to CSI-Thermal Program...........................................................................................................................11 #12;Table of Contents California Solar Initiative Thermal Program Handbook ii 2.5 Surface

466

Thermal and non-thermal energies in solar flares  

E-Print Network (OSTI)

The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same magnitude. This surprising result may be interpreted by an efficient conversion of non-thermal energy to hot flare plasma.

Pascal Saint-Hilaire; Arnold O. Benz

2005-03-03T23:59:59.000Z

467

Buildings Energy Data Book: 5.5 Thermal Distribution Systems  

Buildings Energy Data Book (EERE)

5 5 Typical Commercial Building Thermal Energy Distribution Design Load Intensities (Watts per SF) Distribution System Fans Other Central System Supply Fans Cooling Tower Fan Central System Return Fans Air-Cooled Chiller Condenser Fan 0.6 Terminal Box Fans 0.5 Exhaust Fans (2) Fan-Coil Unit Fans (1) Condenser Fans 0.6 Packaged or Split System Indoor Blower 0.6 Pumps Chilled Water Pump Condenser Water Pump Heating Water Pump Note(s): Source(s): 0.1 - 0.2 0.1 - 0.2 1) Unducted units are lower than those with some ductwork. 2) Strong dependence on building type. BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II:Thermal Distribution, Auxiliary Equipment, and Ventilation, Oct. 1999, Table 3-1, p. 3-6. 0.3 - 1.0 0.1 - 0.3 0.1 - 0.4

468

Integrated demonstration of molten salt oxidation with salt recycle for mixed waste treatment  

Science Conference Proceedings (OSTI)

Molten Salt Oxidation (MSO) is a thermal, nonflame process that has the inherent capability of completely destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility and constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are performed under carefully controlled (experimental) conditions. The system consists of a MSO processor with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. This integrated system was designed and engineered based on laboratory experience with a smaller engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. In this paper we present design and engineering details of the system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is identification of the most suitable waste streams and waste types for MSO treatment.

Hsu, P.C.

1997-11-01T23:59:59.000Z

469

Analytical solution for unsteady thermal stresses in an infinite cylinder composed of two materials  

SciTech Connect

An exact analytical solution for unsteady thermal stresses in an infinitely long solid composite cylinder is presented. The unsteady temperature field is determined following Ozisik's (1980) treatment, but a more general solution is achieved by the present approach by considering a heat convection situation at the outer boundary. The plane stress and plane strain states are considered next, and the thermal stresses are evaluated. Results are provided as dimensionless plots for several combinations of thermal and mechanical parameters of practical interest. 6 references.

Pardo, E.; Sanchez Sarmiento, G.; Laura, P.A.A.; Gutierrez, R.H.

1987-01-01T23:59:59.000Z

470

A multi-criteria assessment of scenarios on thermal processing of infectious hospital wastes: A case study for Central Macedonia  

Science Conference Proceedings (OSTI)

In Greece more than 14,000 tonnes of infectious hospital waste are produced yearly; a significant part of it is still mismanaged. Only one off-site licensed incineration facility for hospital wastes is in operation, with the remaining of the market covered by various hydroclave and autoclave units, whereas numerous problems are still generally encountered regarding waste segregation, collection, transportation and management, as well as often excessive entailed costs. Everyday practices still include dumping the majority of solid hospital waste into household disposal sites and landfills after sterilization, still largely without any preceding recycling and separation steps. Discussed in the present paper are the implemented and future treatment practices of infectious hospital wastes in Central Macedonia; produced quantities are reviewed, actual treatment costs are addressed critically, whereas the overall situation in Greece is discussed. Moreover, thermal treatment processes that could be applied for the treatment of infectious hospital wastes in the region are assessed via the multi-criteria decision method Analytic Hierarchy Process. Furthermore, a sensitivity analysis was performed and the analysis demonstrated that a centralized autoclave or hydroclave plant near Thessaloniki is the best performing option, depending however on the selection and weighing of criteria of the multi-criteria process. Moreover the study found that a common treatment option for the treatment of all infectious hospital wastes produced in the Region of Central Macedonia, could offer cost and environmental benefits. In general the multi-criteria decision method, as well as the conclusions and remarks of this study can be used as a basis for future planning and anticipation of the needs for investments in the area of medical waste management.

Karagiannidis, A. [Laboratory of Heat Transfer and Environmental Engineering, Aristotle University of Thessaloniki, Box 483, GR-54124 Thessaloniki (Greece); Papageorgiou, A., E-mail: apapa@auth.g [Laboratory of Heat Transfer and Environmental Engineering, Aristotle University of Thessaloniki, Box 483, GR-54124 Thessaloniki (Greece); Perkoulidis, G. [Laboratory of Heat Transfer and Environmental Engineering, Aristotle University of Thessaloniki, Box 483, GR-54124 Thessaloniki (Greece); Sanida, G. [3rd Health Region Administration (Macedonia), 16 Aristotelous Str, GR-54623 Thessaloniki (Greece); Samaras, P. [Technological Education Institution of West Macedonia, Department of Pollution Control Technologies, 50100 Kozani (Greece)

<