National Library of Energy BETA

Sample records for thermal test specimen

  1. Influence of thermal conditioning media on Charpy specimen test temperature

    SciTech Connect (OSTI)

    Nanstad, R.K.; Swain, R.L.; Berggren, R.G.

    1989-01-01

    The Charpy V-notch (CVN) impact test is used extensively for determining the toughness of structural materials. Research programs in many technologies concerned with structural integrity perform such testing to obtain Charpy energy vs temperature curves. American Society for Testing and Materials Method E 23 includes rather strict requirements regarding determination and control of specimen test temperature. It specifies minimum soaking times dependent on the use of liquids or gases as the medium for thermally conditioning the specimen. The method also requires that impact of the specimen occur within 5 s removal from the conditioning medium. It does not, however, provide guidance regarding choice of conditioning media. This investigation was primarily conducted to investigate the changes in specimen temperature which occur when water is used for thermal conditioning. A standard CVN impact specimen of low-alloy steel was instrumented with surface-mounted and embedded thermocouples. Dependent on the media used, the specimen was heated or cooled to selected temperatures in the range {minus}100 to 100{degree}C using cold nitrogen gas, heated air, acetone and dry ice, methanol and dry ice, heated oil, or heated water. After temperature stabilization, the specimen was removed from the conditioning medium while the temperatures were recorded four times per second from all thermocouples using a data acquisition system and a computer. The results show that evaporative cooling causes significant changes in the specimen temperatures when water is used for conditioning. Conditioning in the other media did not result in such significant changes. The results demonstrate that, even within the guidelines of E 23, significant test temperature changes can occur which may substantially affect the Charpy impact test results if water is used for temperature conditioning. 7 refs., 11 figs.

  2. Manipulator having thermally conductive rotary joint for transferring heat from a test specimen

    DOE Patents [OSTI]

    Haney, Steven J.; Stulen, Richard H.; Toly, Norman F.

    1985-01-01

    A manipulator for rotatably moving a test specimen in an ultra-high vacuum chamber includes a translational unit movable in three mutually perpendicular directions. A manipulator frame is rigidly secured to the translational unit for rotatably supporting a rotary shaft. A first copper disc is rigidly secured to an end of the rotary shaft for rotary movement within the vacuum chamber. A second copper disc is supported upon the first disc. The second disc receives a cryogenic cold head and does not rotate with the first disc. A sapphire plate is interposed between the first and second discs to prevent galling of the copper material while maintaining high thermal conductivity between the first and second discs. A spring is disposed on the shaft to urge the second disc toward the first disc and compressingly engage the interposed sapphire plate. A specimen mount is secured to the first disc for rotation within the vacuum chamber. The specimen maintains high thermal conductivity with the second disc receiving the cryogenic transfer line.

  3. Manipulator having thermally conductive rotary joint for transferring heat from a test specimen

    DOE Patents [OSTI]

    Haney, S.J.; Stulen, R.H.; Toly, N.F.

    1983-05-03

    A manipulator for rotatably moving a test specimen in an ultra-high vacuum chamber includes a translational unit movable in three mutually perpendicular directions. A manipulator frame is rigidly secured to the translational unit for rotatably supporting a rotary shaft. A first copper disc is rigidly secured to an end of the rotary shaft for rotary movement within the vacuum chamber. A second copper disc is supported upon the first disc. The second disc receives a cryogenic cold head and does not rotate with the first disc. The second disc receives a cryogenic cold head and does not rotate with the first disc. A sapphire plate is interposed between the first and second discs to prevent galling of the copper material while maintaining high thermal conductivity between the first and second discs. A spring is disposed on the shaft to urge the second disc toward the first disc and compressingly engage the interposed sapphire plate. A specimen mount is secured to the first disc for rotation within the vacuum chamber. The specimen maintains high thermal conductivity with the second disc receiving the cryogenic transfer line.

  4. Baseline Test Specimen Machining Report

    SciTech Connect (OSTI)

    mark Carroll

    2009-08-01

    The Next Generation Nuclear Plant (NGNP) Project is tasked with selecting a high temperature gas reactor technology that will be capable of generating electricity and supplying large amounts of process heat. The NGNP is presently being designed as a helium-cooled high temperature gas reactor (HTGR) with a large graphite core. The graphite baseline characterization project is conducting the research and development (R&D) activities deemed necessary to fully qualify nuclear-grade graphite for use in the NGNP reactor. Establishing nonirradiated thermomechanical and thermophysical properties by characterizing lot-to-lot and billet-to-billet variations (for probabilistic baseline data needs) through extensive data collection and statistical analysis is one of the major fundamental objectives of the project. The reactor core will be made up of stacks of graphite moderator blocks. In order to gain a more comprehensive understanding of the varying characteristics in a wide range of suitable graphites, any of which can be classified as “nuclear grade,” an experimental program has been initiated to develop an extensive database of the baseline characteristics of numerous candidate graphites. Various factors known to affect the properties of graphite will be investigated, including specimen size, spatial location within a graphite billet, specimen orientation within a billet (either parallel to [P] or transverse to [T] the long axis of the as-produced billet), and billet-to-billet variations within a lot or across different production lots. Because each data point is based on a certain position within a given billet of graphite, particular attention must be paid to the traceability of each specimen and its spatial location and orientation within each billet. The evaluation of these properties is discussed in the Graphite Technology Development Plan (Windes et. al, 2007). One of the key components in the evaluation of these graphite types will be mechanical testing on specimens drawn from carefully controlled sections of each billet. To this end, this report will discuss the machining of the first set of test specimens that will be evaluated in this program through tensile, compressive, and flexural testing. Validation that the test specimens have been produced to the tolerances required by the applicable ASTM standards, and to the quality control levels required by this program, will demonstrate the viability of sending graphite to selected suppliers that will provide valuable and certifiable data to future data sets that are integral to the NGNP program and beyond.

  5. Apparatus for automated testing of biological specimens

    DOE Patents [OSTI]

    Layne, Scott P. (Los Angeles, CA); Beugelsdijk, Tony J. (Los Alamos, NM)

    1999-01-01

    An apparatus for performing automated testing of infections biological specimens is disclosed. The apparatus comprise a process controller for translating user commands into test instrument suite commands, and a test instrument suite comprising a means to treat the specimen to manifest an observable result, and a detector for measuring the observable result to generate specimen test results.

  6. Development of a Test Technique to Determine the Thermal Conductivity...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Development of a Test Technique to Determine the Thermal Conductivity of Large Refractory Ceramic Test Specimens Citation Details In-Document Search Title: ...

  7. Apparatus for tensile testing plate-type ceramic specimens

    DOE Patents [OSTI]

    Liu, Kenneth C. (Oak Ridge, TN)

    1993-01-01

    Apparatus for tensile testing plate-type ceramic specimens having dogbone- or T-shaped end sections without introducing bending stresses in the specimens during the application of a dynamic tensile loading on the specimens is described. A pair of elongated pull rods disposed in a side-by-side relationship are used to grip the shoulders on each T-shaped end section. The pull rods are pivotally attached to a piston-displaceable, disk-shaped member so as to be longitudinally movable with respect to one another effecting the self-alignment thereof with the shoulders on the T-shaped end sections of the specimen to compensate for shoulders being located in different longitudinal positions.

  8. Thick Concrete Specimen Construction, Testing, and Preliminary Analysis

    SciTech Connect (OSTI)

    Clayton, Dwight A.; Hoegh, Kyle; Khazanovich, Lev

    2015-03-01

    The purpose of the U.S. Department of Energy Office of Nuclear Energy’s Light Water Reactor Sustainability (LWRS) Program is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the operating lifetimes of nuclear power plants (NPPs) beyond 60 years. Since many important safety structures in an NPP are constructed of concrete, inspection techniques must be developed and tested to evaluate the internal condition. In-service containment structures generally do not allow for the destructive measures necessary to validate the accuracy of these inspection techniques. This creates a need for comparative testing of the various nondestructive evaluation (NDE) measurement techniques on concrete specimens with known material properties, voids, internal microstructure flaws, and reinforcement locations. A preliminary report detailed some of the challenges associated with thick reinforced concrete sections and prioritized conceptual designs of specimens that could be fabricated to represent NPP concrete structures for using in NDE evaluation comparisons. This led to the construction of the concrete specimen presented in this report, which has sufficient reinforcement density and cross-sectional size to represent an NPP containment wall. Details on how a suitably thick concrete specimen was constructed are presented, including the construction materials, final nominal design schematic, as well as formwork and rigging required to safely meet the desired dimensions of the concrete structure. The report also details the type and methods of forming the concrete specimen as well as information on how the rebar and simulated defects were embedded. Details on how the resulting specimen was transported, safely anchored, and marked to allow access for systematic comparative NDE testing of defects in a representative NPP containment wall concrete specimen are also given. Data collection using the MIRA Ultrasonic NDE equipment and initial results are also presented along with a discussion of the preliminary findings. Comparative NDE of various defects in reinforced concrete specimens is a key component in identifying the most promising techniques and directing the research and development efforts needed to characterize concrete degradation in commercial NPPs. This requires access to the specimens for data collection using state-of-the-art technology. The construction of the specimen detailed in this report allows for an evaluation of how different NDE techniques may interact with the size and complexities of NPP concrete structures. These factors were taken into account when determining specimen size and features to ensure a realistic design. The lateral dimensions of the specimen were also chosen to mitigate unrealistic boundary effects that would not affect the results of field NPP concrete testing. Preliminary results show that, while the current methods are able to identify some of the deeper defects, improvements in data processing or hardware are necessary to be able to achieve the precision and reliability achieved in evaluating thinner and less heavily reinforced concrete structures.

  9. Apparatus for tensile testing plate-type ceramic specimens

    DOE Patents [OSTI]

    Liu, K.C.

    1993-08-24

    Apparatus is described for gripping a plate-type tensile specimen having generally T-shaped end regions in a dynamic tension fatigue testing apparatus comprising an annular housing having an open-ended elongated cavity therein, a plurality of hydraulic piston means supported by the housing in a spaced array about the cavity, and a specimen-supporting plate means overlying the piston means at one end of the elongated cavity and displaceable by said piston means in a longitudinal direction with respect to the longitudinal axis of the cavity, said apparatus for gripping a flat plate-type tensile specimen comprising: a pair of elongated pull rods each having oppositely disposed first and second end regions; a pair of mounting means carried by said plate means with each mounting means for pivotally attaching the first end region of each of said pull rods in a central region of said plate means for supporting said pair of elongated pull rods in a side-by-side relationship along a common longitudinal centerline within said cavity; recess means in the second end region of each of said pull rods in adjacently disposed surface regions thereof with said recess means facing one another and each adapted to receive one side of one of the generally T-shaped end regions of the plate-type tensile specimen; and load-bearing means positionable in each of said recess means and adapted to bear against a shoulder on each side of the generally T-shaped end region of the plate-type tensile specimen when a tensile loading is applied thereon.

  10. Thermal spray and cold spray analysis of density, porosity, and tensile Specimens for use with LIGA applications

    SciTech Connect (OSTI)

    DECKER,MERLIN K.; SMITH,MARK F.

    2000-02-01

    This analysis provides a preliminary investigation into using Twin-Wire Arc Thermal Spray and Cold Spray as material deposition processes for LIGA applications. These spray material processes were studied to make an initial determination of their potential as alternatives to producing mechanical parts via the electroplating process. Three materials, UltraMachinable{reg_sign} Stainless Steel, BondArc{reg_sign}, and aluminum, were sprayed using Thermal Spray. Only aluminum was sprayed using the Cold Spray process. Following the spray procedure, the test specimens were released from a copper mold and then tested. Three tests, density, tensile strength, and porosity, were performed on the specimens to determine the spray effect on material properties. Twin-Wire Arc Thermal Spray did not demonstrate adequate deposition properties and does not appear to be a good process candidate for LIGA. However, Cold Spray yielded better density results and warrants further investigation to analyze the minimum feature size produced by the process.

  11. Apparatus and method for fatigue testing of a material specimen...

    Office of Scientific and Technical Information (OSTI)

    In some examples, the specimen is surrounded by hydrogen. Authors: Wang, Jy-An ; Feng, Zhili ; Anovitz, Lawrence M ; Liu, Kenneth C Publication Date: 2013-06-04 OSTI Identifier: ...

  12. Apparatus and method for fatigue testing of a material specimen in a

    Office of Scientific and Technical Information (OSTI)

    high-pressure fluid environment (Patent) | SciTech Connect Patent: Apparatus and method for fatigue testing of a material specimen in a high-pressure fluid environment Citation Details In-Document Search Title: Apparatus and method for fatigue testing of a material specimen in a high-pressure fluid environment The invention provides fatigue testing of a material specimen while the specimen is disposed in a high pressure fluid environment. A specimen is placed between receivers in an end cap

  13. Development of a Test Technique to Determine the Thermal Conductivity of

    Office of Scientific and Technical Information (OSTI)

    Large Refractory Ceramic Test Specimens (Journal Article) | SciTech Connect Journal Article: Development of a Test Technique to Determine the Thermal Conductivity of Large Refractory Ceramic Test Specimens Citation Details In-Document Search Title: Development of a Test Technique to Determine the Thermal Conductivity of Large Refractory Ceramic Test Specimens A method has been developed to utilize the High Intensity Infrared lamp located at Oak Ridge National Laboratory for the measurement

  14. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Energy Conversion Efficiency/Solar Energy/Concentrating Solar Power (CSP)/National Solar Thermal Test Facility - National Solar Thermal Test Facilityadmin2016-02-25T20:11:27+00:00 Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility of this type in the United States. The NSTTF's primary goal is to provide experimental engineering data for the design, construction, and

  15. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility - Sandia's Continuously Recirculating Falling-Particle Receiver Placed Atop the Solar Tower Sandia began first-of-its-kind testing using its continuously recirculating falling-particle receiver atop the National Solar Thermal Test Facility (NSTTF). The falling-particle receiver drops sand-like ceramic particles through NSTTF's concentrated sunlight beam, capturing and storing the heated particles in an insulated tank. Compared to conventional molten-salt

  16. Improved flywheel materials : characterization of nanofiber modified flywheel test specimen.

    SciTech Connect (OSTI)

    Boyle, Timothy J.; Bell, Nelson Simmons; Ehlen, Mark Andrew; Anderson, Benjamin John; Miller, William Kenneth

    2013-09-01

    As alternative energy generating devices (i.e., solar, wind, etc) are added onto the electrical energy grid (AC grid), irregularities in the available electricity due to natural occurrences (i.e., clouds reducing solar input or wind burst increasing wind powered turbines) will be dramatically increased. Due to their almost instantaneous response, modern flywheel-based energy storage devices can act a mechanical mechanism to regulate the AC grid; however, improved spin speeds will be required to meet the necessary energy levels to balance thesegreen' energy variances. Focusing on composite flywheels, we have investigated methods for improving the spin speeds based on materials needs. The so-called composite flywheels are composed of carbon fiber (C-fiber), glass fiber, and aglue' (resin) to hold them together. For this effort, we have focused on the addition of fillers to the resin in order to improve its properties. Based on the high loads required for standard meso-sized fillers, this project investigated the utility of ceramic nanofillers since they can be added at very low load levels due to their high surface area. The impact that TiO2 nanowires had on the final strength of the flywheel material was determined by athree-point-bend' test. The results of the introduction of nanomaterials demonstrated an increase instrength' of the flywheel's C-fiber-resin moiety, with an upper limit of a 30% increase being reported. An analysis of the economic impact concerning the utilization of the nanowires was undertaken and after accounting for new-technology and additional production costs, return on improved-nanocomposite investment was approximated at 4-6% per year over the 20-year expected service life. Further, it was determined based on the 30% improvement in strength, this change may enable a 20-30% reduction in flywheel energy storage cost (%24/kW-h).

  17. Thermal well-test method

    DOE Patents [OSTI]

    Tsang, Chin-Fu; Doughty, Christine A.

    1985-01-01

    A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

  18. Modeling and Testing Miniature Torsion Specimens for SiC Joining Development Studies for Fusion

    SciTech Connect (OSTI)

    Henager, Charles H.; Nguyen, Ba Nghiep; Kurtz, Richard J.; Roosendaal, Timothy J.; Borlaug, Brennan A.; Ferraris, Monica; Ventrella, Andrea; Katoh, Yutai

    2015-08-19

    The international fusion community has designed a miniature torsion specimen for neutron irradiation studies of joined SiC and SiC/SiC composite materials. Miniature torsion joints based on this specimen design were fabricated using displacement reactions between Si and TiC to produce Ti3SiC2 + SiC joints with CVD-SiC and tested in torsion-shear prior to and after neutron irradiation. However, many of these miniature torsion specimens fail out-of-plane within the CVD-SiC specimen body, which makes it problematic to assign a shear strength value to the joints and makes it difficult to compare unirradiated and irradiated joint strengths to determine the effects of the irradiation. Finite element elastic damage and elastic-plastic damage models of miniature torsion joints are developed that indicate shear fracture is likely to occur within the body of the joined sample and cause out-of-plane failures for miniature torsion specimens when a certain modulus and strength ratio between the joint material and the joined material exists. The model results are compared and discussed with regard to unirradiated and irradiated joint test data for a variety of joint materials. The unirradiated data includes Ti3SiC2 + SiC/CVD-SiC joints with tailored joint moduli, and includes steel/epoxy and CVD-SiC/epoxy joints. The implications for joint data based on this sample design are discussed.

  19. Electrochemical polishing of thread fastener test specimens of nickel-chromium iron alloys

    DOE Patents [OSTI]

    Kephart, Alan R.

    1991-01-01

    An electrochemical polishing device and method for selective anodic dissolution of the surface of test specimens comprised, for example, of nickel-chromium-iron alloys, which provides for uniform dissolution at the localized sites to remove metal through the use of a coiled wire electrode (cathode) placed in the immediate proximity of the working, surface resulting in a polished and uniform grain boundary.

  20. COMPARISON OF SHEAR STRENGTH OF CERAMIC JOINTS DETERMINED BY VARIOUS TEST METHODS WITH SMALL SPECIMENS

    SciTech Connect (OSTI)

    Katoh, Yutai; Kiggans Jr, James O; Khalifa, Hesham; Back, Christina A.; Hinoki, Tatsuya; Ferraris, Monica

    2015-01-01

    Four different shear test methods i.e. doubled notched shear test, asymmetrical four point bend test, Iosipescu test, and torsion test, were investigated for their ability to evaluate one standard SiC to SiC ceramic brittle joint while using small size specimens. Double notched shear test showed higher stress concentration at the notch base and a lower nominal shear strength. Both asymmetrical four point bend test and Iosipescu test utilized epoxy jointed metal extensors, which failed during test and caused misalignment and tensile type of failure. Torsion test can deliver true shear loading. However, base material failure was observed for the torsion joint samples in this study. None of the tests can successfully induce true shear failure of the joint because the joint is stronger and tougher than the SiC substrate. Torsion test appears to be promising because of the pure shear loading, less stress concentration, and easy alignment.

  1. Thermal well-test method

    DOE Patents [OSTI]

    Tsang, C.F.; Doughty, C.A.

    1984-02-24

    A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir is disclosed. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

  2. Recent Accomplishments in the Irradiation Testing of Engineering-Scale Monolithic Fuel Specimens

    SciTech Connect (OSTI)

    N.E. Woolstenhulme; D.M. Wachs; M.K. Meyer; H.W. Glunz; R.B. Nielson

    2012-10-01

    The US fuel development team is focused on qualification and demonstration of the uranium-molybdenum monolithic fuel including irradiation testing of engineering-scale specimens. The team has recently accomplished the successful irradiation of the first monolithic multi-plate fuel element assembly within the AFIP-7 campaign. The AFIP-6 MKII campaign, while somewhat truncated by hardware challenges, exhibited successful irradiation of a large-scale monolithic specimen under extreme irradiation conditions. The channel gap and ultrasonic data are presented for AFIP-7 and AFIP-6 MKII, respectively. Finally, design concepts are summarized for future irradiations such as the base fuel demonstration and design demonstration experiment campaigns.

  3. Battery Thermal Modeling and Testing (Presentation)

    SciTech Connect (OSTI)

    Smith, K.

    2011-05-01

    This presentation summarizes NREL battery thermal modeling and testing work for the DOE Annual Merit Review, May 9, 2011.

  4. Load apparatus and method for bolt-loaded compact tension test specimen

    DOE Patents [OSTI]

    Buescher, B.J. Jr.; Lloyd, W.R.; Ward, M.B.; Epstein, J.S.

    1997-02-04

    A bolt-loaded compact tension test specimen load apparatus includes: (a) a body having first and second opposing longitudinal ends, the first end comprising an externally threaded portion sized to be threadedly received within the test specimen threaded opening; (b) a longitudinal loading rod having first and second opposing longitudinal ends, the loading rod being slidably received in a longitudinal direction within the body internally through the externally threaded portion and slidably extending longitudinally outward of the body first longitudinal end; (c) a force sensitive transducer slidably received within the body and positioned to engage relative to the loading rod second longitudinal end; and (d) a loading bolt threadedly received relative to the body, the loading bolt having a bearing end surface and being positioned to bear against the transducer to forcibly sandwich the transducer between the loading bolt and loading rod. Also disclosed is a method of in situ determining applied force during crack propagation in a bolt-loaded compact tension test specimen. 6 figs.

  5. Load apparatus and method for bolt-loaded compact tension test specimen

    DOE Patents [OSTI]

    Buescher, Jr., Brent J.; Lloyd, W. Randolph; Ward, Michael B.; Epstein, Jonathan S.

    1997-01-01

    A bolt-loaded compact tension test specimen load apparatus includes: a) a body having first and second opposing longitudinal ends, the first end comprising an externally threaded portion sized to be threadedly received within the test specimen threaded opening; b) a longitudinal loading rod having first and second opposing longitudinal ends, the loading rod being slidably received in a longitudinal direction within the body internally through the externally threaded portion and slidably extending longitudinally outward of the body first longitudinal end; c) a force sensitive transducer slidably received within the body and positioned to engage relative to the loading rod second longitudinal end; and d) a loading bolt threadedly received relative to the body, the loading bolt having a bearing end surface and being positioned to bear against the transducer to forcibly sandwich the transducer between the loading bolt and loading rod. Also disclosed is a method of in situ determining applied force during crack propagation in a bolt-loaded compact tension test specimen.

  6. Test Proposal Document for Phased Field Thermal Testing in Salt |

    Energy Savers [EERE]

    Department of Energy Test Proposal Document for Phased Field Thermal Testing in Salt Test Proposal Document for Phased Field Thermal Testing in Salt The document summarizes how a new round of staged thermal field testing will help to augment the safety case for disposal of heat generating nuclear waste in salt. The objectives of the proposed test plan are to: (1) address features, events, and processes (FEPs), (2) build scientific and public confidence, (3) foster international

  7. Apparatus and method for fatigue testing of a material specimen in a high-pressure fluid environment

    DOE Patents [OSTI]

    Wang, Jy-An; Feng, Zhili; Anovitz, Lawrence M; Liu, Kenneth C

    2013-06-04

    The invention provides fatigue testing of a material specimen while the specimen is disposed in a high pressure fluid environment. A specimen is placed between receivers in an end cap of a vessel and a piston that is moveable within the vessel. Pressurized fluid is provided to compression and tension chambers defined between the piston and the vessel. When the pressure in the compression chamber is greater than the pressure in the tension chamber, the specimen is subjected to a compression force. When the pressure in the tension chamber is greater than the pressure in the compression chamber, the specimen is subjected to a tension force. While the specimen is subjected to either force, it is also surrounded by the pressurized fluid in the tension chamber. In some examples, the specimen is surrounded by hydrogen.

  8. Fracture toughness results and preliminary analysis for International Cooperative Test Program on specimens containing surface cracks

    SciTech Connect (OSTI)

    Reuter, W.G.; Elfer, N.C.; Hull, D.A.; Newman, J.C. Jr.; Munz, D.; Panontin, T.L.

    1997-12-31

    Specimens containing surface cracks were tested in either tension or bending to compare the stress intensity factor at failure with plane strain fracture toughness (K{sub Ic}) in an International Cooperative Test Program. The material was heat treated to {sigma}{sub ys} = 1 587 MPa and K{sub Ic} = 54 MPa m{sub 1/2}. Because substantial stable crack growth occurred for some specimens, the test plan was modified to include detecting the onset of crack growth. It is shown that P{sub max} and the original fatigue precrack size cannot be employed to calculate K{sub max} for comparison with K{sub Ic} when significant stable crack growth occurs. However, using P{sub init} (load at which stable crack growth is initiated) and the original fatigue precrack size to calculate K{sub max} or K{sub {phi}=30{degree}} provides a very useful comparison with K{sub Ic}. The influence of variations in fatigue precrack configuration on test results are also discussed.

  9. Apparatus for pre-stress-straining rod-type specimens in tension for in-situ passive fracture testing

    DOE Patents [OSTI]

    Wang, John Jy-an (Oak Ridge, TN); Liu, Ken C. (Oak Ridge, TN); Feng, Zhili (Knoxville, TN)

    2013-07-31

    A stress-strain testing apparatus imposes a stress-strain on a specimen while disposed in a controlled environment. Each end of the specimen is fastened to an end cap and a strain gage is attached to the specimen. An adjusting mechanism and a compression element are disposed between the end caps forming a frame for applying forces to the end caps and thereby stress-straining the specimen. The adjusting mechanism may be extended or retracted to increase or decrease the imposed stress-strain on the specimen, and the stress-strain is measured by the strain gage on the specimen while the apparatus is exposed to an environment such as high pressure hydrogen. Strain gages may be placed on the frame to measure stress-strains in the frame that may be caused by the environment.

  10. Sandia Energy - Thermal Pulses for Boeing Test Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Pulses for Boeing Test Article Home Renewable Energy Energy Partnership News EC Concentrating Solar Power Solar National Solar Thermal Test Facility Thermal Pulses for...

  11. AFCI Fuel Irradiation Test Plan, Test Specimens AFC-1Æ and AFC-1F

    SciTech Connect (OSTI)

    D. C. Crawford; S. L. Hayes; B. A. Hilton; M. K. Meyer; R. G. Ambrosek; G. S. Chang; D. J. Utterbeck

    2003-11-01

    The U. S. Advanced Fuel Cycle Initiative (AFCI) seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products, thereby dramatically decreasing the volume of material requiring disposition and the long-term radiotoxicity and heat load of high-level waste sent to a geologic repository (DOE, 2003). One important component of the technology development is actinide-bearing transmutation fuel forms containing plutonium, neptunium, americium (and possibly curium) isotopes. There are little irradiation performance data available on non-fertile fuel forms, which would maximize the destruction rate of plutonium, and low-fertile (i.e., uranium-bearing) fuel forms, which would support a sustainable nuclear energy option. Initial scoping level irradiation tests on a variety of candidate fuel forms are needed to establish a transmutation fuel form design and evaluate deployment of transmutation fuels.

  12. Mechanical Testing of TR-55 Rubber Thermally Aged Under Tensile...

    Office of Scientific and Technical Information (OSTI)

    100 days before tensile testing. A single dog bone was cut from each specimen and a stress-strain curve was obtained. The elastic modulus of each specimen was calculated....

  13. Machining Test Specimens from Harvested Zion RPV Segments for Through Wall Attenuation Studies

    SciTech Connect (OSTI)

    Rosseel, Thomas M; Sokolov, Mikhail A; Nanstad, Randy K

    2015-01-01

    The decommissioning of the Zion Units 1 and 2 Nuclear Generating Station (NGS) in Zion, Illinois presents a special opportunity for developing a better understanding of materials degradation and other issues associated with extending the lifetime of existing Nuclear Power Plants (NPPs) beyond 60 years of service. In support of extended service and current operations of the US nuclear reactor fleet, the Oak Ridge National Laboratory (ORNL), through the Department of Energy (DOE), Light Water Reactor Sustainability (LWRS) Program, is coordinating and contracting with Zion Solutions, LLC, a subsidiary of Energy Solutions, the selective procurement of materials, structures, and components from the decommissioned reactors. In this paper, we will discuss the acquisition of segments of the Zion Unit 2 Reactor Pressure Vessel (RPV), the cutting of these segments into sections and blocks from the beltline and upper vertical welds and plate material, the current status of machining those blocks into mechanical (Charpy, compact tension, and tensile) test specimens and coupons for chemical and microstructural (TEM, APT, SANS, and nano indention) characterization, as well as the current test plans and possible collaborative projects. Access to service-irradiated RPV welds and plate sections will allow through wall attenuation studies to be performed, which will be used to assess current radiation damage models (Rosseel et al. (2012) and Rosseel et al. (2015)).

  14. Capillary test specimen, system, and methods for in-situ visualization of capillary flow and fillet formation

    DOE Patents [OSTI]

    Hall, Aaron C.; Hosking, F. Michael ,; Reece, Mark

    2003-06-24

    A capillary test specimen, method, and system for visualizing and quantifying capillary flow of liquids under realistic conditions, including polymer underfilling, injection molding, soldering, brazing, and casting. The capillary test specimen simulates complex joint geometries and has an open cross-section to permit easy visual access from the side. A high-speed, high-magnification camera system records the location and shape of the moving liquid front in real-time, in-situ as it flows out of a source cavity, through an open capillary channel between two surfaces having a controlled capillary gap, and into an open fillet cavity, where it subsequently forms a fillet on free surfaces that have been configured to simulate realistic joint geometries. Electric resistance heating rapidly heats the test specimen, without using a furnace. Image-processing software analyzes the recorded images and calculates the velocity of the moving liquid front, fillet contact angles, and shape of the fillet's meniscus, among other parameters.

  15. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  16. Mechanical Testing of TR-55 Rubber Thermally Aged Under Tensile...

    Office of Scientific and Technical Information (OSTI)

    Mechanical Testing of TR-55 Rubber Thermally Aged Under Tensile Strain Citation Details In-Document Search Title: Mechanical Testing of TR-55 Rubber Thermally Aged Under Tensile...

  17. Advanced Powertrain Research Facility Vehicle Test Cell Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powertrain Research Facility Vehicle Test Cell Thermal Upgrade Advanced Powertrain Research Facility Vehicle Test Cell Thermal Upgrade 2010 DOE Vehicle Technologies and Hydrogen...

  18. Sandia Energy - National Solar Thermal Testing Facility Beam...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Testing Facility Beam Profiling Home Renewable Energy News Concentrating Solar Power Solar National Solar Thermal Testing Facility Beam Profiling Previous...

  19. Thermal Regenerator Testing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regenerator Testing Thermal Regenerator Testing Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_crane.pdf More Documents & Publications Phase 1 of the Advanced Collaborative Emissions Study (ACES): Highlights of Project Finding Engine Tests of an Active PM Filter Regeneration

  20. NREL Researchers Test Solar Thermal Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A prototype heliostat which could take solar technology a step into the future is being tested at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL). It was developed by Science Applications International Corporations (SAIC) Golden office. The heliostat is a large tracking mirror for use in solar thermal power plants. SAIC's prototype heliostat incorporates a number of design and manufacturing modifications that could lead to significant cost reductions. The major

  1. THERMAL TESTING OF PROTOTYPE GENERAL PURPOSE FISSILE PACKAGES USING A FURNACE

    SciTech Connect (OSTI)

    Smith, A; Lawrence Gelder, L; Paul Blanton, P

    2007-02-16

    The 9977/9978 General Purpose Fissile Package (GPFP) was designed by SRNL to replace the DOT 6M Specification Package and ship Plutonium and Uranium metals and oxides. Urethane foam was used for the overpack to ensure the package would withstand the 10CFR71.73(c)(2) crush test, which is a severe test for drum-type packages. In addition, it was necessary to confirm that the urethane foam configuration provided adequate thermal protection for the containment vessel during the subsequent 10CFR71.73(c)(4) thermal test. Development tests were performed on early prototype test specimens of different diameter overpacks and a range of urethane foam densities. The thermal test was performed using an industrial furnace. Test results were used to optimize the selection of package diameter and foam density, and provided the basis for design enhancements incorporated into the final package design.

  2. Project Profile: National Solar Thermal Test Facility | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy National Solar Thermal Test Facility Project Profile: National Solar Thermal Test Facility SNL logo The first solar receivers ever tested in the world were tested at the National Solar Thermal Test Facility (NSTTF). The receivers were each rated up to 5 megawatts thermal (MWt). Receivers with various working fluids have been tested here over the years, including air, water-steam, molten salt, liquid sodium, and solid particles. The NSTTF has also been used for a large variety of other

  3. NREL Battery Thermal and Life Test Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NREL Battery Thermal and Life Test Facility NREL Battery Thermal and Life Test Facility 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt079_es_keyser_2011_p.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: Battery Thermal Characterization Battery Thermal Modeling and Testing Vehicle Technologies Office Merit Review 2015: Battery Thermal Characterization

  4. Thermal properties of soils and soils testing

    SciTech Connect (OSTI)

    Not Available

    1981-02-17

    The thermal properties of soils are reviewed with reference to the use of soils as heat sources, heat sinks, or thermal storage. Specific heat and thermal conductivity are discussed. (ACR)

  5. Battery Thermal Modeling and Testing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Modeling and Testing Battery Thermal Modeling and Testing 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es110_smith_2011_p.pdf More Documents & Publications NREL Battery Thermal and Life Test Facility Vehicle Technologies Office Merit Review 2014: Overview and Progress of the Battery Testing, Design and Analysis Activity Overview and Progress of the Battery Testing, Analysis, and Design Activity

  6. Flexible thermal cycle test equipment for concentrator solar cells

    DOE Patents [OSTI]

    Hebert, Peter H.; Brandt, Randolph J.

    2012-06-19

    A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.

  7. ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER...

    Office of Scientific and Technical Information (OSTI)

    Conference: ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER SYSTEMS AT THE IDAHO NATIONAL LABORATORY BETTER SIMULATES ENVIRONMENTAL CONDITIONS OF SPACE Citation...

  8. Sandia Energy » National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solarreserve-is-testing-prototype-heliostats-at-nsttffeed 0 Solar Regional Test Center in Vermont Achieves Milestone Installation http:energy.sandia.gov...

  9. Test facilities for evaluating nuclear thermal propulsion systems

    SciTech Connect (OSTI)

    Beck, D.F.; Allen, G.C.; Shipers, L.R.; Dobranich, D.; Ottinger, C.A.; Harmon, C.D.; Fan, W.C. ); Todosow, M. )

    1992-09-22

    Interagency panels evaluating nuclear thermal propulsion (NTP) development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and baseline performance of some of the major subsystems designed to support a proposed ground test complex for evaluating nuclear thermal propulsion fuel elements and engines being developed for the Space Nuclear Thermal Propulsion (SNTP) program. Some preliminary results of evaluating this facility for use in testing other NTP concepts are also summarized.

  10. Advanced Powertrain Research Facility Vehicle Test Cell Thermal Upgrade |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Powertrain Research Facility Vehicle Test Cell Thermal Upgrade Advanced Powertrain Research Facility Vehicle Test Cell Thermal Upgrade 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vss030_keller_2010_p.pdf More Documents & Publications AVTA: Quantifying the Effects of Idle Stop Systems on Fuel Economy Evaluation and Adaptation of 5-Cycle Fuel Economy Testing and

  11. ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER SYSTEMS AT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    THE IDAHO NATIONAL LABORATORY BETTER SIMULATES ENVIRONMENTAL CONDITIONS OF SPACE (Conference) | SciTech Connect Conference: ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER SYSTEMS AT THE IDAHO NATIONAL LABORATORY BETTER SIMULATES ENVIRONMENTAL CONDITIONS OF SPACE Citation Details In-Document Search Title: ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER SYSTEMS AT THE IDAHO NATIONAL LABORATORY BETTER SIMULATES ENVIRONMENTAL CONDITIONS OF SPACE The Idaho National

  12. NREL Researchers Test Solar Thermal Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Motorists who look north while driving on Interstate 70 may notice a large, alien-looking device on the mesa-top above the main research facilities of the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL). The 40-foot high, mirror-laden machine actually is a heliostat, a down-to-earth way of converting the sun's heat into electricity. Researchers at the lab are testing the prototype heliostat developed by Science Applications International Corporation's (SAIC) Golden

  13. Pretest Caluculations of Temperature Changes for Field Thermal Conductivity Tests

    SciTech Connect (OSTI)

    N.S. Brodsky

    2002-07-17

    A large volume fraction of the potential monitored geologic repository at Yucca Mountain may reside in the Tptpll (Tertiary, Paintbrush Group, Topopah Spring Tuff, crystal poor, lower lithophysal) lithostratigraphic unit. This unit is characterized by voids, or lithophysae, which range in size from centimeters to meters. A series of thermal conductivity field tests are planned in the Enhanced Characterization of the Repository Block (ECRB) Cross Drift. The objective of the pretest calculation described in this document is to predict changes in temperatures in the surrounding rock for these tests for a given heater power and a set of thermal transport properties. The calculation can be extended, as described in this document, to obtain thermal conductivity, thermal capacitance (density x heat capacity, J {center_dot} m{sup -3} {center_dot} K{sup -1}), and thermal diffusivity from the field data. The work has been conducted under the ''Technical Work Plan For: Testing and Monitoring'' (BSC 2001). One of the outcomes of this analysis is to determine the initial output of the heater. This heater output must be sufficiently high that it will provide results in a reasonably short period of time (within several weeks or a month) and be sufficiently high that the heat increase is detectable by the instruments employed in the test. The test will be conducted in stages and heater output will be step increased as the test progresses. If the initial temperature is set too high, the experiment will not have as many steps and thus fewer thermal conductivity data points will result.

  14. Effluent treatment options for nuclear thermal propulsion system ground tests

    SciTech Connect (OSTI)

    Shipers, L.R.; Brockmann, J.E.

    1992-10-16

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests.

  15. Mathematical model of testing of pipeline integrity by thermal fields

    SciTech Connect (OSTI)

    Vaganova, Nataliia

    2014-11-18

    Thermal fields testing at the ground surface above a pipeline are considered. One method to obtain and investigate an ideal thermal field in different environments is a direct numerical simulation of heat transfer processes taking into account the most important physical factors. In the paper a mathematical model of heat propagation from an underground source is described with accounting of physical factors such as filtration of water in soil and solar radiation. Thermal processes are considered in 3D origin where the heat source is a pipeline with constant temperature and non-uniform isolated shell (with 'damages'). This problem leads to solution of heat diffusivity equation with nonlinear boundary conditions. Approaches to analysis of thermal fields are considered to detect damages.

  16. NESC VII European project: demonstration of warm pre-stressing effect in biaxial loading conditions - Bending tests on 18MND5 cruciform specimens and their interpretation

    SciTech Connect (OSTI)

    Jacquemoud, C.; Yuritzinn, T.; Marie, S.

    2012-07-01

    In the framework of the NESC VII European project, a large experimental program has been dedicated to characterize the Warm Pre-Stressing (WPS) effect in different testing configurations. One of the CEA (France) contributions to this project is the realization of five point bending tests on large cruciform specimens considering different WPS loading cycles. The five cruciform specimens, sponsored by EDF (France) and IRSN (France), are made of 18MND5 steel. Two of them have been tested on a same LCF (Load-Cool-Fracture) loading cycle and two others on the same LCTF (Load-Cool-Transient-Fracture) loading cycle. The experimental results presented in this paper give a successful demonstration of the WPS effect in biaxial loading conditions either on a LCF or on a LCTF cycle. During the test interpretations, different models have then been tested and compared in order to evaluate their ability to predict the cleavage fracture in the case of different WPS loading cycles. They all provide very conservative predictions whatever loading cycle is concerned. (authors)

  17. Biaxial Creep Specimen Fabrication

    SciTech Connect (OSTI)

    JL Bump; RF Luther

    2006-02-09

    This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Naval Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments.

  18. Fabrication Control Plan for ORNL RH-LOCA ATF Test Specimens to be Irradiated in the ATR

    SciTech Connect (OSTI)

    Kevin G. Field; Richard Howard; Michael Teague

    2014-06-01

    The purpose of this fabrication plan is (1) to summarize the design of a set of rodlets that will be fabricated and then irradiated in the Advanced Test Reactor (ATR) and (2) provide requirements for fabrication and acceptance criteria for inspections of the Light Water Reactor (LWR) – Accident Tolerant Fuels (ATF) rodlet components. The functional and operational (F&OR) requirements for the ATF program are identified in the ATF Test Plan. The scope of this document only covers fabrication and inspections of rodlet components detailed in drawings 604496 and 604497. It does not cover the assembly of these items to form a completed test irradiation assembly or the inspection of the final assembly, which will be included in a separate INL final test assembly specification/inspection document. The controls support the requirements that the test irradiations must be performed safely and that subsequent examinations must provide valid results.

  19. Scaling issues associated with thermal and structural modeling and testing

    SciTech Connect (OSTI)

    Thomas, R.K.; Moya, J.L.; Skocypec, R.D.

    1993-10-01

    Sandia National Laboratories (SNL) is actively engaged in research to characterize abnormal environments, and to improve our capability to accurately predict the response of engineered systems to thermal and structural events. Abnormal environments, such as impact and fire, are complex and highly nonlinear phenomena which are difficult to model by computer simulation. Validation of computer results with full scale, high fidelity test data is required. The number of possible abnormal environments and the range of initial conditions are very large. Because full-scale tests are very costly, only a minimal number have been conducted. Scale model tests are often performed to span the range of abnormal environments and initial conditions unobtainable by full-scale testing. This paper will discuss testing capabilities at SNL, issues associated with thermal and structural scaling, and issues associated with extrapolating scale model data to full-scale system response. Situated a few minutes from Albuquerque, New Mexico, are the unique test facilities of Sandia National Laboratories. The testing complex is comprised of over 40 facilities which occupy over 40 square miles. Many of the facilities have been designed and built by SNL to simulate complex problems encountered in engineering analysis and design. The facilities can provide response measurements, under closely controlled conditions, to both verify mathematical models of engineered systems and satisfy design specifications.

  20. Determination of Interfacial Mechanical Properties of Ceramic Composites by the Compression of Micro-pillar Test Specimens

    SciTech Connect (OSTI)

    Shih, Chunghao; Katoh, Yutai; Leonard, Keith J; Bei, Hongbin; Lara-Curzio, Edgar

    2013-01-01

    A novel method to determine the fiber-matrix interfacial properties of ceramic matrix composites is proposed and evaluated; where micro- pillar samples containing inclined fiber/matrix interfaces were prepared from a SiC fiber reinforced SiC matrix composites then compression-tested using the nano-indentation technique. This new test method employs a simple geometry and mitigates the uncertainties associated with complex stress state in the conventional single filament push-out method for the determination of interfacial properties. Based on the test results using samples with different interface orientations , the interfacial debond shear strength and the internal friction coefficient are explicitly determined and compared with values obtained by other test methods.

  1. Parametric Thermal Models of the Transient Reactor Test Facility (TREAT)

    SciTech Connect (OSTI)

    Bradley K. Heath

    2014-03-01

    This work supports the restart of transient testing in the United States using the Department of Energy’s Transient Reactor Test Facility at the Idaho National Laboratory. It also supports the Global Threat Reduction Initiative by reducing proliferation risk of high enriched uranium fuel. The work involves the creation of a nuclear fuel assembly model using the fuel performance code known as BISON. The model simulates the thermal behavior of a nuclear fuel assembly during steady state and transient operational modes. Additional models of the same geometry but differing material properties are created to perform parametric studies. The results show that fuel and cladding thermal conductivity have the greatest effect on fuel temperature under the steady state operational mode. Fuel density and fuel specific heat have the greatest effect for transient operational model. When considering a new fuel type it is recommended to use materials that decrease the specific heat of the fuel and the thermal conductivity of the fuel’s cladding in order to deal with higher density fuels that accompany the LEU conversion process. Data on the latest operating conditions of TREAT need to be attained in order to validate BISON’s results. BISON’s models for TREAT (material models, boundary convection models) are modest and need additional work to ensure accuracy and confidence in results.

  2. Apparatuses for prestressing rod-type specimens in torsion for in-situ passive fracture toughness testing in an extremely high-pressure environment of hydrogen

    DOE Patents [OSTI]

    Wang, Jy-an (Oak Ridge, TN); Liu, Ken C. (Oak Ridge, TN); Feng, Zhili (Knoxville, TN)

    2012-05-15

    An in-situ specimen fixture particularly adapted for prestressing rod-type SNTT-type specimens comprising a tube and end cap wherein the specimen is secured at one end to the tube, and at the opposite end to the end cap. The end cap is rotatable relative to the tube, and may be fixedly secured for creating a torsional force prestressing the specimen enclosed within the tube.

  3. Test program element II blanket and shield thermal-hydraulic and thermomechanical testing, experimental facility survey

    SciTech Connect (OSTI)

    Ware, A.G.; Longhurst, G.R.

    1981-12-01

    This report presents results of a survey conducted by EG and G Idaho to determine facilities available to conduct thermal-hydraulic and thermomechanical testing for the Department of Energy Office of Fusion Energy First Wall/Blanket/Shield Engineering Test Program. In response to EG and G queries, twelve organizations (in addition to EG and G and General Atomic) expressed interest in providing experimental facilities. A variety of methods of supplying heat is available.

  4. FFTF thermal-hydraulic testing results affecting piping and vessel component design in LMFBR's

    SciTech Connect (OSTI)

    Stover, R.L.; Beaver, T.R.; Chang, S.C.

    1983-01-01

    The Fast Flux Test Facility completed four years of pre-operational testing in April 1982. This paper describes thermal-hydraulic testing results from this period which impact piping and vessel component design in LMFBRs. Data discussed are piping flow oscillations, piping thermal stratification and vessel upper plenum stratification. Results from testing verified that plant design limits were met.

  5. Multiple Irradiation Capsule Experiment (MICE)-3B Irradiation Test of Space Fuel Specimens in the Advanced Test Reactor (ATR) - Close Out Documentation for Naval Reactors (NR) Information

    SciTech Connect (OSTI)

    M. Chen; CM Regan; D. Noe

    2006-01-09

    Few data exist for UO{sub 2} or UN within the notional design space for the Prometheus-1 reactor (low fission rate, high temperature, long duration). As such, basic testing is required to validate predictions (and in some cases determine) performance aspects of these fuels. Therefore, the MICE-3B test of UO{sub 2} pellets was designed to provide data on gas release, unrestrained swelling, and restrained swelling at the upper range of fission rates expected for a space reactor. These data would be compared with model predictions and used to determine adequacy of a space reactor design basis relative to fission gas release and swelling of UO{sub 2} fuel and to assess potential pellet-clad interactions. A primary goal of an irradiation test for UN fuel was to assess performance issues currently associated with this fuel type such as gas release, swelling and transient performance. Information learned from this effort may have enabled use of UN fuel for future applications.

  6. Report on FY15 Two-Bar Thermal Ratcheting Test Results

    SciTech Connect (OSTI)

    Wang, Yanli; Jetter, Robert I; Baird, Seth T; Pu, Chao; Sham, Sam

    2015-06-22

    Alloy 617 is a reference structural material for very high temperature components of advanced-gas cooled reactors with outlet temperatures in the range of . In order for designers to be able to use Alloy 617 for these high temperature components, Alloy 617 has to be approved for use in Section III (the nuclear section) of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code. A plan has been developed to submit a draft code for Alloy 617 to ASME Section III by 2015. However, the current rules in Subsection NH* for the evaluation of strain limits and creep-fatigue damage using simplified methods based on elastic analysis have been deemed inappropriate for Alloy 617 at temperatures above . The rationale for this exclusion is that at higher temperatures it is not feasible to decouple plasticity and creep deformation, which is the basis for the current simplified rules. This temperature, , is well below the temperature range of interest for this material in High Temperature Gas Cooled Reactor (HTGR) applications. The only current alternative is, thus, a full inelastic analysis which requires sophisticated material models which have been formulated but not yet verified. To address this issue, proposed code rules have been developed which are based on the use of elastic-perfectly plastic (EPP) analysis methods and which are expected to be applicable to very high temperatures. These newly proposed rules also address a long-term objective to provide an option for more simple, comprehensive and easily applied rules than the current so called simplified rules These two-bar tests discussed herein are part of an ongoing series of tests with cyclic loading at high temperatures using specimens representing key features of potential component designs. The initial focus of the two-bar ratcheting test program, to verify the procedure for evaluation of strain limits for Alloy 617 at very high temperatures, has been expanded to respond to guidance from ASME Code committees that the proposed EPP methodology should also apply to other Subsection NH materials throughout their allowed temperature range. To support these objectives, two suites of tests have been accomplished during this reporting period. One suite addresses the issue of the response of Alloy 617 at a lower temperature with tests in range of 500 800oC and a few at 350 650°C. The other suite addresses the response of SS316H up to its current maximum allowed temperature of 1500°F (815°C) In the two-bar test methodology, the two bars can be viewed as specimens taken out of a tubular component across the wall thickness representing the inner wall element and the outer wall element respectively. The two bars are alternately heated and cooled under sustained axial loading to generate ratcheting. A sustained hold time is introduced at the hot extreme of the cycle to capture the accelerated ratcheting and strain accumulation due to creep. Since the boundary conditions are a combination of strain control and load control it is necessary to use two coupled servo-controlled testing machines to achieve the key features of the two-bar representation of actual component behavior. Two-bar thermal ratcheting test results with combinations of applied mean stresses, transient temperature difference and heating and cooling rates were recorded. Tests performed at heating and cooling rates of 30°C/min are comparable to a strain rate of 10 ⁻⁔/sec. At high mean stresses in tension the direction of ratcheting was in-phase with the load, e.g. tensile strain ratcheting under high tensile loading; however, at lower loads, strain ratcheting in compression was observed under net tensile mean stresses. The strain accumulation was proportional to the applied thermal load. However, there was a narrow range of applied load in which the high applied thermal loading did not result in significant strain accumulation. Unfortunately, when the proposed EPP strain limit evaluation rules were applied to the loading history for the two-bar configuration, the predicted narrow range of low strain accumulation did not coincide with the experimental data. However, by the use of inelastic analysis in conjunction with an analytic experiment it was possible to show that the EPP strain limit code case rules could be applied to high temperature structures where the stress and temperature is not uniform throughout which is the general case. Interestingly, the suite of tests on Alloy 617 at the lower temperature range of 500°C to 800oC showed good agreement with the proposed EPP strain limit rules with a much wider band of applied load that exhibited minimal ratcheting. The four tests conducted at the lower temperature range of 350°C to 650°C showed no ratcheting. The suite of tests on SS316H at a temperature range of 515°C to 815°C resembled the results from the tests on Alloy 617 at 650°C to 950°C. Both exhibited a narrow band of applied load wher...

  7. Lockheed Testing the Waters for Ocean Thermal Energy System | Department of

    Energy Savers [EERE]

    Energy Lockheed Testing the Waters for Ocean Thermal Energy System Lockheed Testing the Waters for Ocean Thermal Energy System May 27, 2010 - 11:46am Addthis Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs A floating platform, simple turbine and tropical oceans could be the key to producing 30 percent or more of the total energy the world consumes today, according to Lockheed Martin. The technology in play: Ocean Thermal Energy Conversion (OTEC). Lockheed Martin

  8. Twenty Years On!: Updating the IEA BESTEST Building Thermal Fabric Test Cases for ASHRAE Standard 140

    SciTech Connect (OSTI)

    Judkoff, R.; Neymark, J.

    2013-07-01

    ANSI/ASHRAE Standard 140, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs applies the IEA BESTEST building thermal fabric test cases and example simulation results originally published in 1995. These software accuracy test cases and their example simulation results, which comprise the first test suite adapted for the initial 2001 version of Standard 140, are approaching their 20th anniversary. In response to the evolution of the state of the art in building thermal fabric modeling since the test cases and example simulation results were developed, work is commencing to update the normative test specification and the informative example results.

  9. Thermal vacuum life test facility for radioisotope thermoelectric generators

    SciTech Connect (OSTI)

    Deaton, R.L.; Goebel, C.J.; Amos, W.R.

    1990-01-01

    In the late 1970's, the Department of Energy (DOE) assigned Monsanto Research Corporation, Mound Facility, now operated by EG G Mound Applied Technologies, the responsibility for assembling and testing General Purpose Heat Source (GPHS) radioisotope thermoelectric generators (RTGs). Assembled and tested were five RTGs, which included four flight units and one non-flight qualification unit. Figure 1 shows the RTG, which was designed by General Electric AstroSpace Division (GE/ASD) to produce 285 W of electrical power. A detailed description of the processes for RTG assembly and testing is presented by Amos and Goebel (1989). The RTG performance data are described by Bennett, et al. (1986). The flight units will provide electrical power for the National Aeronautics and Space Administration's (NASA) Galileo mission to Jupiter (two RTGs) and the joint NASA/European Space Agency (ESA) Ulysses mission to study the polar regions of the sun (one RTG). The remaining flight unit will serve as the spare for both missions, and a non-flight qualification unit was assembled and tested to ensure that performance criteria were adequately met. 4 refs., 3 figs.

  10. Thermal desorption treatability test conducted with VAC*TRAX Unit

    SciTech Connect (OSTI)

    1996-01-01

    In 1992, Congress passed the Federal Facilities Compliance Act, requiring the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with Resource Conservation and Recovery Act (RCRA) treatment standards. In response to the need for mixed-waste treatment capacity, where off-site commercial treatment facilities do not exist or cannot be used, the DOE Albuquerque Operations Office (DOE-AL) organized a Treatment Selection Team to match mixed waste with treatment options and develop a strategy for treatment of mixed waste. DOE-AL manages nine sites with mixed-waste inventories. The Treatment Selection Team determined a need to develop mobile treatment units (MTUs) to treat waste at the sites where the wastes are generated. Treatment processes used for mixed wastes must remove the hazardous component (i.e., meet RCRA treatment standards) and contain the radioactive component in a form that will protect the worker, public, and environment. On the basis of the recommendations of the Treatment Selection Team, DOE-AL assigned projects to the sites to bring mixed-waste treatment capacity on-line. The three technologies assigned to the DOE Grand Junction Projects Office (DOE-GJPO) include thermal desorption (TD), evaporative oxidation, and waste water evaporation.

  11. Normal conditions of transport thermal analysis and testing of a Type B drum package

    SciTech Connect (OSTI)

    Jerrell, J.W.; Alstine, M.N. van; Gromada, R.J.

    1995-11-01

    Increasing the content limits of radioactive material packagings can save money and increase transportation safety by decreasing the total number of shipments required to transport large quantities of material. The contents of drum packages can be limited by unacceptable containment vessel pressures and temperatures due to the thermal properties of the insulation. The purpose of this work is to understand and predict the effects of insulation properties on containment system performance. The type B shipping container used in the study is a double containment fiberboard drum package. The package is primarily used to transport uranium and plutonium metals and oxides. A normal condition of transport (NCT) thermal test was performed to benchmark an NCT analysis of the package. A 21 W heater was placed in an instrumented package to simulate the maximum source decay heat. The package reached thermal equilibrium 120 hours after the heater was turned on. Testing took place indoors to minimize ambient temperature fluctuations. The thermal analysis of the package used fiberboard properties reported in the literature and resulted in temperature significantly greater than those measured during the test. Details of the NCT test will be described and transient temperatures at key thermocouple locations within the package will be presented. Analytical results using nominal fiberboard properties will be presented. Explanations of the results and the attempt to benchmark the analysis will be presented. The discovery that fiberboard has an anisotropic thermal conductivity and its effect on thermal performance will also be discussed.

  12. Method for thinning specimen

    DOE Patents [OSTI]

    Follstaedt, David M.; Moran, Michael P.

    2005-03-15

    A method for thinning (such as in grinding and polishing) a material surface using an instrument means for moving an article with a discontinuous surface with an abrasive material dispersed between the material surface and the discontinuous surface where the discontinuous surface of the moving article provides an efficient means for maintaining contact of the abrasive with the material surface. When used to dimple specimens for microscopy analysis, a wheel with a surface that has been modified to produce a uniform or random discontinuous surface significantly improves the speed of the dimpling process without loss of quality of finish.

  13. Mechanical and Thermal Prototype Testing for a Rotatable Collimator for the LHC Phase II Collimation Upgrade

    SciTech Connect (OSTI)

    Smith, Jeffrey Claiborne; Doyle, Eric; Keller, Lewis; Lundgren, Steven; Markiewicz, Thomas Walter; ,

    2010-08-26

    The Phase II upgrade to the LHC collimation system calls for complementing the robust Phase I graphite collimators with high Z, low impedance Phase II collimators. The design for the collimation upgrade has not been finalized. One option is to use metallic rotatable collimators and testing of this design will be discussed here. The Phase II collimators must be robust in various operating conditions and accident scenarios. A prototype collimator jaw has been tested for both mechanical and thermal compliance with the design goals. Thermal expansion bench-top tests are compared to ANSYS simulation results.

  14. Thermal lag test engines evaluated and compared to equivalent Stirling engines

    SciTech Connect (OSTI)

    Tailer, P.L.

    1995-12-31

    Thermal lag engines run both free piston and with pistons kinematically linked. Free piston, a thermal lag engine may be the simplest of all piston engines as it is valveless and has only one moving part, the piston. Horizontal and vertical thermal lag engines with substantially identical cooled pistons and cylinders are tested and evaluated, particularly as to power density. The horizontal engine has an elongated, small diameter heated chamber and the vertical engine has a large diameter flat heated chamber. Both heated chambers may be altered in volume to maximize engine power at optimum compression ratios. The power density of unpressurized thermal lag engines is compared to that of early commercial Stirling cycle unpressurized air engines. The comparison indicates the potential for applying well-known modern Stirling technology to thermal lag engines.

  15. The Envelope Thermal Test Unit (ETTU): Full Measurement of WallPerform ance

    SciTech Connect (OSTI)

    Sonderegger, R.C.; Sherman, M.H.; Adams, J.W.

    1981-10-01

    There are many ways of calculating the dynamic thermal performance of walls and many ways of measuring the performance of walls in the laboratory, relatively few field measurements have been made of the dynamic performance of wall in situ. Measuring the thermal performance of walls in situ poses two separate problems: measuring the heat fluxes and surface temperatures of the wall, and reducing this data set into usable parameters. We have solved the first problem by developing the Envelope Thermal Test Unit (ETTU). ETTU consists of two specially constructed polystyrene blankets, 1.2m square, placed on either side of the test wall that both control and measure the surface fluxes and surface temperatures of the wall. To solve the second problem we have developed a simplified dynamic model that describes the thermal performance of a wall in terms of its steady-state conductance, a time constant, and some storage terms. We have used ETTU in the field to measure the thermal performance of walls, and have applied our simplified analysis to calculate simplified thermal parameters from this data set. In this report, we present the in-situ measurements made to date using ETTU, and the resulting model predictions. The agreement between measured and predicted surface fluxes demonstrates the ability of our test unit and analytic model to describe the dynamic performance of walls in situ.

  16. ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER SYSTEMS AT THE IDAHO NATIONAL LABORATORY BETTER SIMULATES ENVIRONMENTAL CONDITIONS OF SPACE

    SciTech Connect (OSTI)

    J. C. Giglio; A. A. Jackson

    2012-03-01

    The Idaho National Laboratory (INL) is preparing to fuel and test the Advanced Stirling Radioisotope Generator (ASRG), the next generation space power generator. The INL identified the thermal vacuum test chamber used to test past generators as inadequate. A second vacuum chamber was upgraded with a thermal shroud to process the unique needs and to test the full power capability of the new generator. The thermal vacuum test chamber is the first of its kind capable of testing a fueled power system to temperature that accurately simulate space. This paper outlines the new test and set up capabilities at the INL.

  17. STRESS CORROSION CRACKING IN TEAR DROP SPECIMENS

    SciTech Connect (OSTI)

    Lam, P; Philip Zapp, P; Jonathan Duffey, J; Kerry Dunn, K

    2009-05-01

    Laboratory tests were conducted to investigate the stress corrosion cracking (SCC) of 304L stainless steel used to construct the containment vessels for the storage of plutonium-bearing materials. The tear drop corrosion specimens each with an autogenous weld in the center were placed in contact with moist plutonium oxide and chloride salt mixtures. Cracking was found in two of the specimens in the heat affected zone (HAZ) at the apex area. Finite element analysis was performed to simulate the specimen fabrication for determining the internal stress which caused SCC to occur. It was found that the tensile stress at the crack initiation site was about 30% lower than the highest stress which had been shifted to the shoulders of the specimen due to the specimen fabrication process. This finding appears to indicate that the SCC initiation took place in favor of the possibly weaker weld/base metal interface at a sufficiently high level of background stress. The base material, even subject to a higher tensile stress, was not cracked. The relieving of tensile stress due to SCC initiation and growth in the HAZ and the weld might have foreclosed the potential for cracking at the specimen shoulders where higher stress was found.

  18. Thermal testing of the proposed HUD energy efficiency standard for new manufactured homes

    SciTech Connect (OSTI)

    Judkoff, R.D.; Barker, G.M.

    1992-06-01

    Thermal testing of two manufactured homes was performed at the National Renewable Energy Laboratory's (NREL's) Collaborative Manufactured Buildings Facility for Energy Research and Testing (CMFERT) environmental enclosure in the winter and spring of 1991. The primary objective of the study was to directly measure the thermal performance of the two homes, each built according to a proposed new US Department of Housing and Urban Development (HUD) standard. Secondary objectives were to test the accuracy of an accompanying compliance calculation method and to help manufacturers find cost-effective ways to meet the new standard. Both homes performed within the standard without major design or production line modifications. Their performance fell within 8% of predictions based on the new draft HUD calculation manual; however, models with minimum window area were selected by the manufacturer. Models with more typical window area would have required substantive design changes to meet the standard. Several other tests were also performed on the homes by both NREL and the Florida Solar Energy Center (FSEC) to uncover potential thermal anomalies and to explore the degradation in thermal performance that might occur because of (a) penetrations in the rodent barrier from field hookups and repairs, (b) closing of interior doors with and without operation of the furnace blower, and (c) exposure to winds.

  19. Thermal testing of the proposed HUD energy efficiency standard for new manufactured homes

    SciTech Connect (OSTI)

    Judkoff, R.D.; Barker, G.M.

    1992-06-01

    Thermal testing of two manufactured homes was performed at the National Renewable Energy Laboratory`s (NREL`s) Collaborative Manufactured Buildings Facility for Energy Research and Testing (CMFERT) environmental enclosure in the winter and spring of 1991. The primary objective of the study was to directly measure the thermal performance of the two homes, each built according to a proposed new US Department of Housing and Urban Development (HUD) standard. Secondary objectives were to test the accuracy of an accompanying compliance calculation method and to help manufacturers find cost-effective ways to meet the new standard. Both homes performed within the standard without major design or production line modifications. Their performance fell within 8% of predictions based on the new draft HUD calculation manual; however, models with minimum window area were selected by the manufacturer. Models with more typical window area would have required substantive design changes to meet the standard. Several other tests were also performed on the homes by both NREL and the Florida Solar Energy Center (FSEC) to uncover potential thermal anomalies and to explore the degradation in thermal performance that might occur because of (a) penetrations in the rodent barrier from field hookups and repairs, (b) closing of interior doors with and without operation of the furnace blower, and (c) exposure to winds.

  20. THERMAL TESTING OF 9977 GENERAL PURPOSE FISSILE PACKAGE USING A POOL FIRE

    SciTech Connect (OSTI)

    Smith, A; Cecil May, C; Lawrence Gelder, L; Glenn Abramczyk, G

    2007-02-15

    The 9977/9978 General Purpose Fissile Package (GPFP), has been designed as a cost-effective, user-friendly replacement for the DOT 6M Specification Package for transporting Plutonium and Uranium metals and oxides. To ensure the capability of the 9977 GPFP to withstand the regulatory crush test, urethane foam was chosen for the impact absorbing overpack. As part of the package development it was necessary to confirm that the urethane foam overpack would provide the required protection for the containment vessel during the thermal test portion of the Hypothetical Accident Conditions Sequential Tests. Development tests of early prototypes were performed, using a furnace. Based on the results of the development tests, detailed design enhancements were incorporated into the final design. Examples of the definitive 9977 design configuration were subjected to an all-engulfing pool fire test, as part of the HAC Sequential Tests, to support the application for certification. Testing has confirmed the package's ability to withstand the HAC thermal tests.

  1. Compendium of information on identification and testing of materials for plastic solar thermal collectors

    SciTech Connect (OSTI)

    McGinniss, V.D.; Sliemers, F.A.; Landstrom, D.K.; Talbert, S.G.

    1980-07-31

    This report is intended to organize and summarize prior and current literature concerning the weathering, aging, durability, degradation, and testing methodologies as applied to materials for plastic solar thermal collectors. Topics covered include (1) rate of aging of polymeric materials; (2) environmental factors affecting performance; (3) evaluation and prediction of service life; (4) measurement of physical and chemical properties; (5) discussion of evaluation techniques and specific instrumentation; (6) degradation reactions and mechanisms; (7) weathering of specific polymeric materials; and (8) exposure testing methodology. Major emphasis has been placed on defining the current state of the art in plastics degradation and on identifying information that can be utilized in applying appropriate and effective aging tests for use in projecting service life of plastic solar thermal collectors. This information will also be of value where polymeric components are utilized in the construction of conventional solar collectors or any application where plastic degradation and weathering are prime factors in material selection.

  2. Side-by-Side Thermal Tests of Modular Offices: A Validation Study of the STEM Method

    SciTech Connect (OSTI)

    Judkoff, R.; Balcomb, J.D.; Hancock, C.E.; Barker, G.; Subbarao, K.

    2001-01-11

    Two modular office units were tested at the National Renewable Energy Laboratory (NREL) to establish each unit's thermal performance. The two units were nearly identical in appearance, but one was built with structural insulating panels (SIP), and the other was built using standard frame construction. The primary objective of these tests was to compare the thermal performance of buildings using SIP and standard frame construction. Both units were tested under carefully controlled steady-state conditions in the NREL large-scale environmental enclosure. They were then moved outdoors where Short-Term Energy Monitoring (STEM) tests were performed, and long-term heating and cooling energy use was measured. A secondary objective was to evaluate the accuracy of the NREL STEM method by comparing the results of outdoor STEM tests to steady-state indoor test results. STEM is a method developed by NREL to determine key thermal parameters of a building in-situ, based on a 3-day test sequence. The indoor test facility also provided the opportunity to investigate the phenomenon of infiltration heat recovery in a real building, under carefully controlled conditions, to evaluate the stability of the concentration decay method of tracer gas-based infiltration monitoring, and to compare the blower-door method with the tracer-gas technique in determining infiltration.This project was a cooperative effort with the Structural Insulated Panel Association, the Modular Building Institute, All-American Modular (AAM, the manufacturer of the units), and GE Capitol (the owner of the units). Richard Harmon, the president of AAM, requested NREL's assistance in exploring the feasibility of converting his manufacturing process to SIP construction. His engineering staff needed to assess which comfort and energy benefits might be associated with this new technology. AAM manufactured the two units, and NREL tested the modules for 8 months.

  3. Design and calibration of a test facility for MLI thermal performance measurements below 80K

    SciTech Connect (OSTI)

    Boroski, W.; Kunzelman, R.; Ruschman, M.; Schoo, C.

    1992-04-01

    The design geometry of the SSC dipole cryostat includes active thermal radiation shields operating at 80K and 20K respectively. Extensive measurements conducted in a Heat Leak Test Facility (HLTF) have been used to evaluate the thermal performance of candidate multilayer insulation (MLI) systems for the 80K thermal shield, with the present system design based upon those measurement results. With the 80K MLI geometry established, efforts have focused on measuring the performance of MLI systems near 20K. A redesign of the HLTF has produced a measurement facility capable of conducting measurements with the warm boundary fixed at 80K and the cold boundary variable from 10K to 50K. Removing the 80K shield permits measurements with a warm boundary at 300K. The 80K boundary consists of a copper shield thermally anchored to a liquid nitrogen reservoir. The cold boundary consists of a copper anchor plate whose temperature is varied through boil-off gas from a 500 liter helium supply dewar. A transfer line heat exchanger supplies the boil-off gas to the anchor plate at a constant and controlled rate. The gas, which serves as cooling gas, is routed through a copper cooling tube soldered into the anchor plate. Varying the cooling gas flow rate varies the amount of refrigeration supplied to the anchor plate, thereby determining the plate temperature. A resistance heater installed on the anchor plate is regulated by a cryogenic temperature controller to provide final temperature control. Heat leak values are measured using a heatmeter which senses heat flow as a temperature gradient across a fixed thermal impedance. Since the thermal conductivity of the thermal impedance changes with temperature, the heatmeter is calibrated at key cold boundary temperatures. Thus, the system is capable of obtaining measurement data under a variety of system conditions. 7 refs.

  4. OTEC (Ocean Thermal Energy Conversion) CWP (Cold Water Pipe) Laboratory Test Program. Materials Project Test Report

    SciTech Connect (OSTI)

    Not Available

    1981-04-01

    Fiberglass sandwich wall structures emerged as leading candidates for the OTEC cold water pipe because of their high strength to weight ratio, their flexibility in selecting directional properties, their resistance to electrochemical interaction, their ease of deployment and their relative low cost. A review of the literature established reasonable confidence that FRP laminates could meet the OTEC requirements; however, little information was available on the performance of core materials suitable for OTEC applications. Syntactic foam cores of various composition and density were developed and tested for mechanical properties and seawater absorption.

  5. Twenty Years On!: Updating the IEA BESTEST Building Thermal Fabric Test Cases for ASHRAE Standard 140: Preprint

    SciTech Connect (OSTI)

    Judkoff, R.; Neymark, J.

    2013-07-01

    ANSI/ASHRAE Standard 140, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs applies the IEA BESTEST building thermal fabric test cases and example simulation results originally published in 1995. These software accuracy test cases and their example simulation results, which comprise the first test suite adapted for the initial 2001 version of Standard 140, are approaching their 20th anniversary. In response to the evolution of the state of the art in building thermal fabric modeling since the test cases and example simulation results were developed, work is commencing to update the normative test specification and the informative example results.

  6. Solar heat pipe testing of the Stirling thermal motors 4-120 Stirling engine

    SciTech Connect (OSTI)

    Andraka, C.E.; Rawlinson, K.S.; Moss, T.A.; Adkins, D.R.; Moreno, J.B.; Gallup, D.R.; Cordeiro, P.G.; Johansson, S.

    1996-07-01

    Stirling-cycle engines have been identified as a promising technology for the conversion of concentrated solar energy into usable electrical power. A 25kW electric system takes advantage of existing Stirling-cycle engines and existing parabolic concentrator designs. In previous work, the concentrated sunlight impinged directly on the heater head tubes of the Stirling Thermal Motors (STM) 4-120 engine. A Sandia-designed felt-metal-wick heat pipe receiver was fitted to the STM 4-120 engine for on-sun testing on Sandia`s Test Bed Solar Concentrator. The heat pipe uses sodium metal as an intermediate two-phase heat transfer fluid. The receiver replaces the directly-illuminated heater head previously tested. The heat pipe receiver provides heat isothermally to the engine, and the heater head tube length is reduced, both resulting in improved engine performance. The receiver also has less thermal losses than the tube receiver. The heat pipe receiver design is based on Sandia`s second-generation felt-wick heat pipe receiver. This paper presents the interface design, and compares the heat pipe/engine test results to those of the directly-illuminated receiver/engine package.

  7. Manufacturing of Plutonium Tensile Specimens

    SciTech Connect (OSTI)

    Knapp, Cameron M

    2012-08-01

    Details workflow conducted to manufacture high density alpha Plutonium tensile specimens to support Los Alamos National Laboratory's science campaigns. Introduces topics including the metallurgical challenge of Plutonium and the use of high performance super-computing to drive design. Addresses the utilization of Abaqus finite element analysis, programmable computer numerical controlled (CNC) machining, as well as glove box ergonomics and safety in order to design a process that will yield high quality Plutonium tensile specimens.

  8. Acceptance Performance Test Guideline for Utility Scale Parabolic Trough and Other CSP Solar Thermal Systems: Preprint

    SciTech Connect (OSTI)

    Mehos, M. S.; Wagner, M. J.; Kearney, D. W.

    2011-08-01

    Prior to commercial operation, large solar systems in utility-size power plants need to pass a performance acceptance test conducted by the engineering, procurement, and construction (EPC) contractor or owners. In lieu of the present absence of ASME or other international test codes developed for this purpose, the National Renewable Energy Laboratory has undertaken the development of interim guidelines to provide recommendations for test procedures that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. Progress on interim guidelines was presented at SolarPACES 2010. Significant additions and modifications were made to the guidelines since that time, resulting in a final report published by NREL in April 2011. This paper summarizes those changes, which emphasize criteria for assuring thermal equilibrium and steady state conditions within the solar field.

  9. Ground Testing a Nuclear Thermal Rocket: Design of a sub-scale demonstration experiment

    SciTech Connect (OSTI)

    David Bedsun; Debra Lee; Margaret Townsend; Clay A. Cooper; Jennifer Chapman; Ronald Samborsky; Mel Bulman; Daniel Brasuell; Stanley K. Borowski

    2012-07-01

    In 2008, the NASA Mars Architecture Team found that the Nuclear Thermal Rocket (NTR) was the preferred propulsion system out of all the combinations of chemical propulsion, solar electric, nuclear electric, aerobrake, and NTR studied. Recently, the National Research Council committee reviewing the NASA Technology Roadmaps recommended the NTR as one of the top 16 technologies that should be pursued by NASA. One of the main issues with developing a NTR for future missions is the ability to economically test the full system on the ground. In the late 1990s, the Sub-surface Active Filtering of Exhaust (SAFE) concept was first proposed by Howe as a method to test NTRs at full power and full duration. The concept relied on firing the NTR into one of the test holes at the Nevada Test Site which had been constructed to test nuclear weapons. In 2011, the cost of testing a NTR and the cost of performing a proof of concept experiment were evaluated.

  10. Testing of and model development for double-walled thermal tubular

    SciTech Connect (OSTI)

    Satchwell, R.M.; Johnson, L.A. Jr.

    1992-08-01

    Insulated tubular products have become essential for use in steam injection projects. In a steam injection project, steam is created at the surface by either steam boilers or generators. During this process, steam travels from a boiler through surface lines to the wellhead, down the wellbore to the sandface, and into the reservoir. For some projects to be an economic success, cost must be reduced and oil recoveries must be increased by reducing heat losses in the wellbore. With reduced heats losses, steam generation costs are lowered and higher quality steam can be injected into the formation. To address this need, work under this project consisted of the design and construction of a thermal flow loop, testing a double-walled tubular product that was manufactured by Inter-Mountain Pipe Company, and the development and verification of a thermal hydraulic numerical simulator for steam injection. Four different experimental configurations of the double-walled pipe were tested. These configurations included: (1) bare pipe case, (2) bare pipe case with an applied annular vacuum, (3) insulated annular pipe case, and (4) insulated annular pipe case with an applied annular vacuum. Both the pipe body and coupling were tested with each configuration. The results of the experimental tests showed that the Inter-Mountain Pipe Company double-walled pipe body achieved a 98 percent reduction in heat loss when insulation was applied to the annular portion of the pipe. The application of insulation to the annular portion of the coupling reduced the heat losses by only 6 percent. In tests that specified the use of a vacuum in the annular portion of the pipe, leaks were detected and the vacuum could not be held.

  11. Thermal analysis for a spent reactor fuel storage test in granite

    SciTech Connect (OSTI)

    Montan, D.N.

    1980-09-01

    A test is conducted in which spent fuel assemblies from an operating commercial nuclear power reactor are emplaced in the Climax granite at the US Department of Energy`s Nevada Test Site. In this generic test, 11 canisters of spent PWR fuel are emplaced vertically along with 6 electrical simulator canisters on 3 m centers, 4 m below the floor of a storage drift which is 420 m below the surface. Two adjacent parallel drifts contain electrical heaters, operated to simulate (in the vicinity of the storage drift) the temperature fields of a large repository. This test, planned for up to five years duration, uses fairly young fuel (2.5 years out of core) so that the thermal peak will occur during the time frame of the test and will not exceed the peak that would not occur until about 40 years of storage had older fuel (5 to 15 years out of core) been used. This paper describes the calculational techniques and summarizes the results of a large number of thermal calculations used in the concept, basic design and final design of the spent fuel test. The results of the preliminary calculations show the effects of spacing and spent fuel age. Either radiation or convection is sufficient to make the drifts much better thermal conductors than the rock that was removed to create them. The combination of radiation and convection causes the drift surfaces to be nearly isothermal even though the heat source is below the floor. With a nominal ventilation rate of 2 m{sup 3}/s and an ambient rock temperature of 23{sup 0}C, the maximum calculated rock temperature (near the center of the heat source) is about 100{sup 0}C while the maximum air temperature in the drift is around 40{sup 0}C. This ventilation (1 m{sup 3}/s through the main drift and 1/2 m{sup 3}/s through each of the side drifts) will remove about 1/3 of the heat generated during the first five years of storage.

  12. Maximizing Thermal Efficiency and Optimizing Energy Management (Fact Sheet), Thermal Test Facility (TTF), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maximizing Thermal Efficiency and Optimizing Energy Management Scientists at this living laboratory develop optimal solutions for managing energy flows within buildings and transportation systems. The built environment is stressing the utility grid to a greater degree than ever before. Growing demand for electric vehicles, space conditioning, and plug loads presents a critical opportunity for more effective energy management and development of efficiency technologies. Researchers at the Thermal

  13. Seawater test results of open-cycle ocean thermal energy conversion (OC-OTEC) components

    SciTech Connect (OSTI)

    Zangrando, F.; Bharathan, D.; Link, H. ); Panchal, C.B. )

    1994-01-01

    Key components of open-cycle ocean thermal energy conversion systems--the flash evaporator, mist eliminator, passive predeaerator, two surface condenser stages, and two direct-contact condenser stages--have been tested using seawater. These components operate at lower steam pressures and higher inlet noncondensable gas concentrations than do conventional power plant heat exchangers. The rate of heat exchanged between the evaporator and the condenser is on the order of 1.25MW-thermal, requiring a warm seawater flow of about 0.1 m[sup 3]/s; the cold seawater flow is on the order of half the warm water flow. In addition to characterizing the performance of the various components, the system has produced potable water from condensation of the steam produced in the evaporator. The information obtained in these tests is being used to design a larger scale experiment in which net power production is expected to be demonstrate for the first time using OC-OTEC technology.

  14. Estimation of host rock thermal conductivities using thetemperature data from the drift-scale test at Yucca Mountain,Nevada

    SciTech Connect (OSTI)

    Mukhopadhyay, Sumitra; Tsang, Y.W.

    2003-11-25

    A large volume of temperature data has been collected from a very large, underground heater test, the Drift Scale Test (DST) at Yucca Mountain, Nevada. The DST was designed to obtain thermal, hydrological, mechanical, and chemical (THMC) data in the unsaturated fractured rock of Yucca Mountain. Sophisticated numerical models have been developed to analyze the collected THMC data. In these analyses, thermal conductivities measured from core samples have been used as input parameters to the model. However, it was not known whether these core measurements represented the true field-scale thermal conductivity of the host rock. Realizing these difficulties, elaborate, computationally intensive geostatistical simulations have also been performed to obtain field-scale thermal conductivity of the host rock from the core measurements. In this paper, we use the temperature data from the DST as the input (instead of the measured core-scale thermal conductivity values) to develop an estimate of the field-scale thermal conductivity values. Assuming a conductive thermal regime, we develop an analytical solution for the temperature rise in the host rock of the DST; and using a nonlinear fitting routine, we obtain a best-fit estimate of field-scale thermal conductivity for the DST host rock. The temperature data collected from the DST shows clear evidence of two distinct thermal regimes: a zone below boiling (wet) and a zone above boiling (dry). We obtain estimates of thermal conductivity for both the wet and dry zones. We also analyze the sensitivity of these estimates to the input heating power of the DST.

  15. Thermal hydraulic performance testing of printed circuit heat exchangers in a high-temperature helium test facility

    SciTech Connect (OSTI)

    Sai K. Mylavarapu; Xiaodong Sun; Richard E. Glosup; Richard N. Christensen; Michael W. Patterson

    2014-04-01

    In high-temperature gas-cooled reactors, such as a very high temperature reactor (VHTR), an intermediate heat exchanger (IHX) is required to efficiently transfer the core thermal output to a secondary fluid for electricity generation with an indirect power cycle and/or process heat applications. Currently, there is no proven high-temperature (750–800 °C or higher) compact heat exchanger technology for high-temperature reactor design concepts. In this study, printed circuit heat exchanger (PCHE), a potential IHX concept for high-temperature applications, has been investigated for their heat transfer and pressure drop characteristics under high operating temperatures and pressures. Two PCHEs, each having 10 hot and 10 cold plates with 12 channels (semicircular cross-section) in each plate are fabricated using Alloy 617 plates and tested for their performance in a high-temperature helium test facility (HTHF). The PCHE inlet temperature and pressure were varied from 85 to 390 °C/1.0–2.7 MPa for the cold side and 208–790 °C/1.0–2.7 MPa for the hot side, respectively, while the mass flow rate of helium was varied from 15 to 49 kg/h. This range of mass flow rates corresponds to PCHE channel Reynolds numbers of 950 to 4100 for the cold side and 900 to 3900 for the hot side (corresponding to the laminar and laminar-to-turbulent transition flow regimes). The obtained experimental data have been analyzed for the pressure drop and heat transfer characteristics of the heat transfer surface of the PCHEs and compared with the available models and correlations in the literature. In addition, a numerical treatment of hydrodynamically developing and hydrodynamically fully-developed laminar flow through a semicircular duct is presented. Relations developed for determining the hydrodynamic entrance length in a semicircular duct and the friction factor (or pressure drop) in the hydrodynamic entry length region for laminar flow through a semicircular duct are given. Various hydrodynamic entrance region parameters, such as incremental pressure drop number, apparent Fanning friction factor, and hydrodynamic entrance length in a semicircular duct have been numerically estimated.

  16. Experiments and analyses on undermatched interleaf specimens in bending

    SciTech Connect (OSTI)

    Parks, D.M.; Ganti, S.; McClintock, F.A.; Epstein, J.S.; Lloyd, L.R.; Reuter, W.G.

    1995-12-31

    Model weldment fracture specimens have been fabricated, tested, and analyzed using finite elements. The specimens consist of an interleaf of commercially pure titanium diffusion-bonded to a harder alloy titanium. A deep edge crack is introduced symmetrically into the interleaf, and the specimens are loaded in pure bending. Variation of the thickness (2h) of the soft interleaf layer provides insight into effects of weld geometry in strongly undermatched weldments tested in plane strain bending. Ductile crack growth (beyond blunting) initiated at loads giving J {doteq} 95 kJ/m{sup 2} in all specimens. In the thickest interleaf geometries, stable tearing was obtained, but in the thinnest interleaf (2h {doteq} 3mm), crack initiation resulted in a massive pop-in of 5.4 mm across an initial ligament of 12 mm. Finite element studies show that the thinnest interleaf geometry had slightly higher peak stress triaxiality at the beginning of cracking, and that the highest triaxiality extended over a larger region than in the thicker interleaf specimens loaded to the same initiation J-values. More importantly, the blockage of plastic straining above and below the crack tip in the 3 mm interleaf specimen forced higher values of plastic strain to spread forward into the {+-} 45{degree} sector of highest stress triaxiality directly ahead of the crack tip. The higher strains, in conjunction with the slightly higher stress triaxiality, led to the unstable pop-in initiation.

  17. Building Energy Simulation Test for Existing Homes (BESTEST-EX); Phase 1 Test Procedure: Building Thermal Fabric Cases

    SciTech Connect (OSTI)

    Judkoff, Ron

    2010-08-01

    This report documents the initial Phase 1 test process for testing the reliability of software models that predict retrofit energy savings of existing homes, including their associated calibration methods.

  18. Ocean Thermal Energy Conversion cold water pipe at-sea test program status report. Design, fabrication, materials testing

    SciTech Connect (OSTI)

    Not Available

    1982-02-01

    This report describes the selection, testing, fabrication, and eventual deployment of a piping system for an OTEC platform.

  19. Testing thermal gradient driving force for grain boundary migration using molecular dynamics simulations

    SciTech Connect (OSTI)

    Bai, Xian-Ming; Zhang, Yongfeng; Tonks, Michael R.

    2015-02-01

    Strong thermal gradients in low-thermal-conductivity ceramics may drive extended defects, such as grain boundaries and voids, to migrate in preferential directions. In this work, molecular dynamics simulations are conducted to study thermal gradient driven grain boundary migration and to verify a previously proposed thermal gradient driving force equation, using uranium dioxide as a model system. It is found that a thermal gradient drives grain boundaries to migrate up the gradient and the migration velocity increases under a constant gradient owing to the increase in mobility with temperature. Different grain boundaries migrate at very different rates due to their different intrinsic mobilities. The extracted mobilities from the thermal gradient driven simulations are compared with those calculated from two other well-established methods and good agreement between the three different methods is found, demonstrating that the theoretical equation of the thermal gradient driving force is valid, although a correction of one input parameter should be made. The discrepancy in the grain boundary mobilities between modeling and experiments is also discussed.

  20. Permeability, geochemical, and water quality tests in support of an aquifer thermal energy storage site in Minnesota

    SciTech Connect (OSTI)

    Blair, S.C.; Deutsch, W.J.; Mitchell, P.J.

    1985-04-01

    This report describes the Underground Energy Storage Program's efforts to characterize physicochemical processes at DOE's ATES Field Test Facility (FTF) located on the University of Minnesota campus at St. Paul, Minnesota. Experimental efforts include: field tests at the St. Paul FTF to characterize fluid injectability and to evaluate the effectiveness of fluid-conditioning equipment, geochemical studies to investigate chemical reactions resulting from alterations to the aquifer's thermal regime, and laboratory tests on sandstone core from the site. Each experimental area is discussed and results obtained thus far are reported. 23 refs., 39 figs., 12 tabs.

  1. Instrumentation of the thermal/structural interactions in situ tests at the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    Munson, D.E.; Hoag, D.L.; Blankenship, D.A.; DeYonge, W.F.; Schiermeister, D.M.

    1997-04-01

    The Department of Energy has constructed the Waste Isolation Pilot Plant (WIPP) to develop the technology for the disposal of radioactive waste from defense programs. Sandia National Laboratories had the responsibility for the experimental activities at the WIPP and fielded several large-scale Thermal/Structural Interactions (TSI) in situ tests to validate techniques used to predict repository performance. The instrumentation of these tests involved the placement of over 4,200 gages including room closure gages, borehole extensometers, stress gages, borehole inclinometers, fixed reference gages, borehole strain gages, thermocouples, thermal flux meters, heater power gages, environmental gages, and ventilation gages. Most of the gages were remotely read instruments that were monitored by an automated data acquisition system, but manually read instruments were also used to provide early deformation information and to provide a redundancy of measurement for the remote gages. Instruments were selected that could operate in the harsh environment of the test rooms and that could accommodate the ranges of test room responses predicted by pretest calculations. Instruments were tested in the field prior to installation at the WIPP site and were modified to improve their performance. Other modifications were made to gages as the TSI tests progressed using knowledge gained from test maintenance. Quality assurance procedures were developed for all aspects of instrumentation including calibration, installation, and maintenance. The instrumentation performed exceptionally well and has produced a large quantity of quality information.

  2. Design and calibration of a test facility for MLI thermal performance measurements below 80K. [Multilayer insulation (MLI)

    SciTech Connect (OSTI)

    Boroski, W.; Kunzelman, R.; Ruschman, M.; Schoo, C.

    1992-04-01

    The design geometry of the SSC dipole cryostat includes active thermal radiation shields operating at 80K and 20K respectively. Extensive measurements conducted in a Heat Leak Test Facility (HLTF) have been used to evaluate the thermal performance of candidate multilayer insulation (MLI) systems for the 80K thermal shield, with the present system design based upon those measurement results. With the 80K MLI geometry established, efforts have focused on measuring the performance of MLI systems near 20K. A redesign of the HLTF has produced a measurement facility capable of conducting measurements with the warm boundary fixed at 80K and the cold boundary variable from 10K to 50K. Removing the 80K shield permits measurements with a warm boundary at 300K. The 80K boundary consists of a copper shield thermally anchored to a liquid nitrogen reservoir. The cold boundary consists of a copper anchor plate whose temperature is varied through boil-off gas from a 500 liter helium supply dewar. A transfer line heat exchanger supplies the boil-off gas to the anchor plate at a constant and controlled rate. The gas, which serves as cooling gas, is routed through a copper cooling tube soldered into the anchor plate. Varying the cooling gas flow rate varies the amount of refrigeration supplied to the anchor plate, thereby determining the plate temperature. A resistance heater installed on the anchor plate is regulated by a cryogenic temperature controller to provide final temperature control. Heat leak values are measured using a heatmeter which senses heat flow as a temperature gradient across a fixed thermal impedance. Since the thermal conductivity of the thermal impedance changes with temperature, the heatmeter is calibrated at key cold boundary temperatures. Thus, the system is capable of obtaining measurement data under a variety of system conditions. 7 refs.

  3. Building Energy Simulation Test for Existing Homes (BESTEST-EX); Phase 1 Test Procedure: Building Thermal Fabric Cases

    SciTech Connect (OSTI)

    Judkoff, R.; Polly, B.; Bianchi, M.; Neymark, J.

    2010-08-01

    The U.S. Department of Energy tasked NREL to develop a process for testing the reliability of models that predict retrofit energy savings, including their associated calibration methods. DOE asked NREL to conduct the work in phases so that a test procedure would be ready should DOE need it to meet legislative requirements related to residential retrofits in FY 2010. This report documents the initial 'Phase 1' test procedure.

  4. Dynamic Mechanical Thermal Analysis of Virgin TR-55 Silicone Rubber

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Dynamic Mechanical Thermal Analysis of Virgin TR-55 Silicone Rubber Citation Details In-Document Search Title: Dynamic Mechanical Thermal Analysis of Virgin TR-55 Silicone Rubber Dynamic mechanical thermal analysis (DMTA) of virgin TR-55 silicone rubber specimens was conducted. Dynamic frequency/temperature sweep tests were conducted over the ranges 0.1-100 rad/s and 30-100 C using a parallel plate test geometry. A strain of 0.2% was used, which was near

  5. Determining mechanical behavior of solid materials using miniature specimens

    DOE Patents [OSTI]

    Manahan, Michael P. (Columbus, OH); Argon, Ali S. (Belmont, MA); Harling, Otto K. (Hingham, MA)

    1986-01-01

    A Miniaturized Bend Test (MBT) capable of extracting and determining mechanical behavior information from specimens only so large as to have at least a volume or smallest dimension sufficient to satisfy continuum behavior in all directions. The mechanical behavior of the material is determined from the measurements taken during the bending of the specimen and is processed according to the principles of linear or nonlinear material mechanics or both. In a preferred embodiment the determination is carried out by a code which is constructed according to the finite element method, and the specimen used for the determinations is a miniature disk simply supported for central loading at the axis on the center of the disk.

  6. Determining mechanical behavior of solid materials using miniature specimens

    DOE Patents [OSTI]

    Manahan, M.P.; Argon, A.S.; Harling, O.K.

    1986-02-04

    A Miniaturized Bend Test (MBT) capable of extracting and determining mechanical behavior information from specimens only so large as to have at least a volume or smallest dimension sufficient to satisfy continuum behavior in all directions is disclosed. The mechanical behavior of the material is determined from the measurements taken during the bending of the specimen and is processed according to the principles of linear or nonlinear material mechanics or both. In a preferred embodiment the determination is carried out by a code which is constructed according to the finite element method, and the specimen used for the determinations is a miniature disk simply supported for central loading at the axis on the center of the disk. 51 figs.

  7. Thermal performance testing of two Thales 9310 pulse-tube cryocoolers for PHyTIR

    SciTech Connect (OSTI)

    Paine, Christopher G.

    2014-01-29

    PHyTIR is a NASA-funded technology demonstration for a near-term earth-observing instrument in the thermal infrared spectrum, intended for use in the HyspIRI mission. PHyTIR will use two Thales 9310 single-stage pulse tube cryocoolers, one to directly cool the FPA, the other to simulate a passive radiator. We report performance measurements for the two Thales 9310 cryocoolers intended for inclusion in the PHyTIR demonstrator.

  8. In-Situ Measurement of Power Loss for Crystalline Silicon Modules Undergoing Thermal Cycling and Mechanical Loading Stress Testing: Preprint

    SciTech Connect (OSTI)

    Spataru, Sergiu; Hacke, Pater; Sera, Dezso

    2015-09-15

    We analyze the degradation of multi-crystalline silicon photovoltaic modules undergoing simultaneous thermal, mechanical, and humidity stress testing to develop a dark environmental chamber in-situ measurement procedure for determining module power loss. From the analysis we determine three main categories of failure modes associated with the module degradation consisting of: shunting, recombination losses, increased series resistance losses, and current mismatch losses associated with a decrease in photo-current generation by removal of some cell areas due to cell fractures. Based on the analysis, we propose an in-situ module power loss monitoring procedure that relies on dark current-voltage measurements taken during the stress test, and initial and final module flash testing, to determine the power degradation characteristic of the module.

  9. Test procedures and protocols: Their relevance to the figure of merit for thermal distribution systems. Volume 1: Informal report

    SciTech Connect (OSTI)

    Andrews, J.W.

    1993-09-01

    A conceptual framework is developed that categorizes measurement protocols for forced-air thermal distribution systems in small buildings. This framework is based on the distinction between two generic approaches. The {open_quote}system-comparison{close_quote} approach seeks to determine, via a pair of whole-house energy-use measurements, the difference in energy use between the house with the as-found duct system and the same house with no energy losses attributable to the thermal distribution system. The {open_quote}component loss-factor{close_quote} approach identifies and measures the individual causes of duct losses, and then builds up a value for the net overall duct efficiency, usually with the help of computer simulation. Examples of each approach are analyzed and related to a proposed Figure of Merit for thermal distribution systems. This Figure of Merit would serve as the basis for a Standard Method of Test analogous to those already in place for furnaces, boilers, air conditioners, and heat pumps.

  10. A Testing Platform for Validation of Overhead Conductor Aging Models and Understanding Thermal Limits

    SciTech Connect (OSTI)

    Irminger, Philip; Starke, Michael R; Dimitrovski, Aleksandar D; Young II, Marcus Aaron; Rizy, D Tom; Stovall, John P; Overholt, Philip N

    2014-01-01

    Power system equipment manufacturers and researchers continue to experiment with novel overhead electric conductor designs that support better conductor performance and address congestion issues. To address the technology gap in testing these novel designs, Oak Ridge National Laboratory constructed the Powerline Conductor Accelerated Testing (PCAT) facility to evaluate the performance of novel overhead conductors in an accelerated fashion in a field environment. Additionally, PCAT has the capability to test advanced sensors and measurement methods for accessing overhead conductor performance and condition. Equipped with extensive measurement and monitoring devices, PCAT provides a platform to improve/validate conductor computer models and assess the performance of novel conductors. The PCAT facility and its testing capabilities are described in this paper.

  11. Verification Test Suite (VERTS) For Rail Gun Applications using ALE3D: 2-D Hydrodynamics & Thermal Cases

    SciTech Connect (OSTI)

    Najjar, F M; Solberg, J; White, D

    2008-04-17

    A verification test suite has been assessed with primary focus on low reynolds number flow of liquid metals. This is representative of the interface between the armature and rail in gun applications. The computational multiphysics framework, ALE3D, is used. The main objective of the current study is to provide guidance and gain confidence in the results obtained with ALE3D. A verification test suite based on 2-D cases is proposed and includes the lid-driven cavity and the Couette flow are investigated. The hydro and thermal fields are assumed to be steady and laminar in nature. Results are compared with analytical solutions and previously published data. Mesh resolution studies are performed along with various models for the equation of state.

  12. JV Task 46 - Development and Testing of a Thermally Integrated SOFC-Gasification System for Biomass Power Generation

    SciTech Connect (OSTI)

    Phillip Hutton; Nikhil Patel; Kyle Martin; Devinder Singh

    2008-02-01

    The Energy & Environmental Research Center has designed a biomass power system using a solid oxide fuel cell (SOFC) thermally integrated with a downdraft gasifier. In this system, the high-temperature effluent from the SOFC enables the operation of a substoichiometric air downdraft gasifier at an elevated temperature (1000 C). At this temperature, moisture in the biomass acts as an essential carbon-gasifying medium, reducing the equivalence ratio at which the gasifier can operate with complete carbon conversion. Calculations show gross conversion efficiencies up to 45% (higher heating value) for biomass moisture levels up to 40% (wt basis). Experimental work on a bench-scale gasifier demonstrated increased tar cracking within the gasifier and increased energy density of the resultant syngas. A series of experiments on wood chips demonstrated tar output in the range of 9.9 and 234 mg/m{sup 3}. Both button cells and a 100-watt stack was tested on syngas from the gasifier. Both achieved steady-state operation with a 22% and 15% drop in performance, respectively, relative to pure hydrogen. In addition, tar tolerance testing on button cells demonstrated an upper limit of tar tolerance of approximately 1%, well above the tar output of the gasifier. The predicted system efficiency was revised down to 33% gross and 27% net system efficiency because of the results of the gasifier and fuel cell experiments. These results demonstrate the feasibility and benefits of thermally integrating a gasifier and a high-temperature fuel cell in small distributed power systems.

  13. Results of scoping tests for open-cycle OTEC (ocean thermal energy conversion) components operating with seawater

    SciTech Connect (OSTI)

    Zangrando, F; Bharathan, D; Green, H J; Link, H F; Parsons, B K; Parsons, J M; Pesaran, A A; Panchal, C B

    1990-09-01

    This report presents comprehensive documentation of the experimental research conducted on open-cycle ocean thermal energy conversion (OC-OTEC) components operating with seawater as a working fluid. The results of this research are presented in the context of previous analysis and fresh-water testing; they provide a basis for understanding and predicting with confidence the performance of all components of an OC-OTEC system except the turbine. Seawater tests have confirmed the results that were obtained in fresh-water tests and predicted by the analytical models of the components. A sound technical basis has been established for the design of larger systems in which net power will be produced for the first time from OC-OTEC technology. Design and operation of a complete OC-OTEC system that produces power will provide sufficient confidence to warrant complete transfer of OC-OTEC technology to the private sector. Each components performance is described in a separate chapter written by the principal investigator responsible for technical aspects of the specific tests. Chapters have been indexed separately for inclusion on the data base.

  14. Comparison of experimental and analytical temperatures achieved by DT-18 and PC-1 shipping containers during hypothetical thermal accident tests

    SciTech Connect (OSTI)

    Anderson, J.C.

    1992-03-01

    Temperatures were monitored at various locations on DT-18 and PC-1 shipping packages during furnace tests at the Y-12 Plant in Oak Ridge, Tennessee. The furnace tests are intended to simulate hypothetical thermal accident conditions specified in Title 10 CFR, Pt. 71.73 (c)(3). Maximum temperatures of the outer containers ranged from 750 to 965{degrees}C while typical maximum temperatures recorded on the inner containers were 60 to 77{degrees}C. One exceptionally high temperature of 196{degrees}C occurred on the PC-1 inner container. Heating 7.1 models of both the DT-18 and PC-1 packages were developed. Models with and without heat generation in the inner containers were developed for each shipping package. The models with heat generation are intended to simulate condensation and convection of hot vapors generated during the heating of the Celotex{trademark} insulating material used in the packages. In general, the analytical models calculate temperatures for the outer containers which agree well with the test data. The HEATING models with and without heat generation bound the inner container test data. These findings are significant in that they lead to the conclusion that heat is transferred to the inner containers through a mechanism other than conduction alone. The high temperature of 196{degrees}C recorded at the PC-1 inner container is within 4{degrees}C of the maximum temperature calculated by the PC-1 HEATING model with heat generation.

  15. Solar tests of aperture plate materials for solar thermal dish collectors

    SciTech Connect (OSTI)

    Jaffe, L.D.

    1983-08-15

    In parabolic dish solar collectors, walk-off of the spot of concentrated sunlight can be a hazard if a malfunction causes the concentration to stop following the sun. Therefore, a test program was carried out to evaluate the behavior of various ceramics, metals, and polymers under solar irradiation of about 7000 kW/m/sup 2/ (peak) for 15 minutes. The only materials that did not slump or shatter were two grades of medium-grain extruded graphite. High-purity, slip-cast silica might be satisfactory at somewhat lower flux. Oxidation of the graphite appeared acceptable during tests simulating walk-off, acquisition (2000 cycles on/off sun), and spillage (continuous on-sun operation).

  16. Integral and Separate Effects Tests for Thermal Hydraulics Code Validation for Liquid-Salt Cooled Nuclear Reactors

    SciTech Connect (OSTI)

    Peterson, Per

    2012-10-30

    The objective of the 3-year project was to collect integral effects test (IET) data to validate the RELAP5-3D code and other thermal hydraulics codes for use in predicting the transient thermal hydraulics response of liquid salt cooled reactor systems, including integral transient response for forced and natural circulation operation. The reference system for the project is a modular, 900-MWth Pebble Bed Advanced High Temperature Reactor (PB-AHTR), a specific type of Fluoride salt-cooled High temperature Reactor (FHR). Two experimental facilities were developed for thermal-hydraulic integral effects tests (IETs) and separate effects tests (SETs). The facilities use simulant fluids for the liquid fluoride salts, with very little distortion to the heat transfer and fluid dynamics behavior. The CIET Test Bay facility was designed, built, and operated. IET data for steady state and transient natural circulation was collected. SET data for convective heat transfer in pebble beds and straight channel geometries was collected. The facility continues to be operational and will be used for future experiments, and for component development. The CIET 2 facility is larger in scope, and its construction and operation has a longer timeline than the duration of this grant. The design for the CIET 2 facility has drawn heavily on the experience and data collected on the CIET Test Bay, and it was completed in parallel with operation of the CIET Test Bay. CIET 2 will demonstrate start-up and shut-down transients and control logic, in addition to LOFC and LOHS transients, and buoyant shut down rod operation during transients. Design of the CIET 2 Facility is complete, and engineering drawings have been submitted to an external vendor for outsourced quality controlled construction. CIET 2 construction and operation continue under another NEUP grant. IET data from both CIET facilities is to be used for validation of system codes used for FHR modeling, such as RELAP5-3D. A set of numerical models were developed in parallel to the experimental work. RELAP5-3D models were developed for the salt-cooled PB-AHTR, and for the simulat fluid CIET natural circulation experimental loop. These models are to be validated by the data collected from CIET. COMSOL finite element models were used to predict the temperature and fluid flow distribution in the annular pebble bed core; they were instrumental for design of SETs, and they can be used for code-to-code comparisons with RELAP5-3D. A number of other small SETs, and numerical models were constructed, as needed, in support of this work. The experiments were designed, constructed and performed to meet CAES quality assurance requirements for test planning, implementation, and documentation; equipment calibration and documentation, procurement document control; training and personnel qualification; analysis/modeling software verification and validation; data acquisition/collection and analysis; and peer review.

  17. Measuring the Optical Performance of Evacuated Receivers via an Outdoor Thermal Transient Test: Preprint

    SciTech Connect (OSTI)

    Kutscher, C.; Burkholder, F.; Netter, J.

    2011-08-01

    Modern parabolic trough solar collectors operated at high temperatures to provide the heat input to Rankine steam power cycles employ evacuated receiver tubes along the collector focal line. High performance is achieved via the use of a selective surface with a high absorptance for incoming short-wave solar radiation and a low emittance for outgoing long-wave infrared radiation, as well as the use of a hard vacuum to essentially eliminate convective and conductive heat losses. This paper describes a new method that determines receiver overall optical efficiency by exposing a fluid-filled, pre-cooled receiver to one sun outdoors and measuring the slope of the temperature curve at the point where the receiver temperature passes the glass envelope temperature (that is, the point at which there is no heat gain or loss from the absorber). This transient test method offers the potential advantages of simplicity, high accuracy, and the use of the actual solar spectrum.

  18. Simultaneous specimen and stage cleaning device for analytical electron microscope

    DOE Patents [OSTI]

    Zaluzec, Nestor J. (Bolingbrook, IL)

    1996-01-01

    An improved method and apparatus are provided for cleaning both a specimen stage, a specimen and an interior of an analytical electron microscope (AEM). The apparatus for cleaning a specimen stage and specimen comprising a plasma chamber for containing a gas plasma and an air lock coupled to the plasma chamber for permitting passage of the specimen stage and specimen into the plasma chamber and maintaining an airtight chamber. The specimen stage and specimen are subjected to a reactive plasma gas that is either DC or RF excited. The apparatus can be mounted on the analytical electron microscope (AEM) for cleaning the interior of the microscope.

  19. Motorized manipulator for positioning a TEM specimen

    DOE Patents [OSTI]

    Schmid, Andreas Karl (Berkeley, CA); Andresen, Nord (Berkeley, CA)

    2010-12-14

    The invention relates to a motorized manipulator for positioning a TEM specimen holder with sub-micron resolution parallel to a y-z plane and rotating the specimen holder in the y-z plane, the manipulator comprising a base (2), and attachment means (30) for attaching the specimen holder to the manipulator, characterized in that the manipulator further comprises at least three nano-actuators (3.sup.a, 3.sup.b, 3.sup.c) mounted on the base, each nano-actuator showing a tip (4.sup.a, 4.sup.b, 4.sup.c), the at least three tips defining the y-z plane, each tip capable of moving with respect to the base in the y-z plane; a platform (5) in contact with the tips of the nano-actuators; and clamping means (6) for pressing the platform against the tips of the nano-actuators; as a result of which the nano-actuators can rotate the platform with respect to the base in the y-z plane and translate the platform parallel to the y-z plane.

  20. An Experimental Study of Shear-Dominated Failure in the 2013 Sandia Fracture Challenge Specimen

    SciTech Connect (OSTI)

    Corona, Edmundo; Deibler, Lisa Anne; Reedlunn, Benjamin; Ingraham, Mathew Duffy; Williams, Shelley

    2015-04-01

    This report presents an experimental study motivated by results obtained during the 2013 Sandia Fracture Challenge. The challenge involved A286 steel, shear-dominated compression specimens whose load-deflection response contained a load maximum fol- lowed by significant displacement under decreasing load, ending with a catastrophic fracture. Blind numerical simulations deviated from the experiments well before the maximum load and did not predict the failure displacement. A series of new tests were conducted on specimens machined from the original A286 steel stock to learn more about the deformation and failure processes in the specimen and potentially improve future numerical simulations. The study consisted of several uniaxial tension tests to explore anisotropy in the material, and a set of new tests on the compression speci- men. In some compression specimen tests, stereo digital image correlation (DIC) was used to measure the surface strain fields local to the region of interest. In others, the compression specimen was loaded to a given displacement prior to failure, unloaded, sectioned, and imaged under the microscope to determine when material damage first appeared and how it spread. The experiments brought the following observations to light. The tensile tests revealed that the plastic response of the material is anisotropic. DIC during the shear- dominated compression tests showed that all three in-plane surface strain components had maxima in the order of 50% at the maximum load. Sectioning of the specimens revealed no signs of material damage at the point where simulations deviated from the experiments. Cracks and other damage did start to form approximately when the max- imum load was reached, and they grew as the load decreased, eventually culminating in catastrophic failure of the specimens. In addition to the steel specimens, a similar study was carried out for aluminum 7075-T651 specimens. These specimens achieved much lower loads and displacements, and failure occurred very close to the maximum in the load-deflection response. No material damage was observed in these specimens, even when failure was imminent. In the future, we plan to use these experimental results to improve numerical simu- lations of the A286 steel experiments, and to improve plasticity and failure models for the Al 7075 stock. The ultimate goal of our efforts is to increase our confidence in the results of numerical simulations of elastic-plastic structural behavior and failure.

  1. Evaluation of the thermal-hydraulic response and fuel rod thermal and mechanical deformation behavior during the power burst facility test LOC-3. [PWR

    SciTech Connect (OSTI)

    Yackle, T.R.; MacDonald, P.E.; Broughton, J.M.

    1980-01-01

    An evaluation of the results from the LOC-3 nuclear blowdown test conducted in the Power Burst Facility is presented. The test objective was to examine fuel and cladding behavior during a postulated cold leg break accident in a pressurized water reactor (PWR). Separate effects of rod internal pressure and the degree of irradiation were investigated in the four-rod test. Extensive cladding deformation (ballooning) and failure occurred during blowdown. The deformation of the low and high pressure rods was similar; however, the previously irradiated test rod deformed to a greater extent than a similar fresh rod exposed to identical system conditions.

  2. Rotary turret and reusable specimen holder for mass spectrometer

    DOE Patents [OSTI]

    Banar, Joseph C. (Los Alamos, NM); Perrin, Richard E. (Jemez Springs, NM); Ostrenga, Raymond A. (Los Alamos, NM)

    1988-01-01

    A sample holder for use in a mass spectrometer is provided for heating a sample to discharge ions through an electrostatic field which focuses and accelerates the ions for analysis. Individual specimen holders form a plurality of filaments for heating the sample materials for ion emission. Mounting devices hold the plurality of filaments at regular spaced apart angles in a closed configuration adjacent the electrostatic field elements. A substantially solid ceramic turret is provided with a plurality of electrical contacts which engage the individual holder means for energizing the filaments and forming a corresponding plurality of radially facing, axially extending first conductive surfaces. A substantially solid stationary turret bearing member is mounted about the rotating turret with a plurality of radially biased second electrical conductive surfaces, mounted to electrically contact facing ones of the plurality of radially facing first conductive surfaces. The assembly provides a large thermal mass for thermal stability and large electrical contact areas for repeatable, stable power input for heating the sample materials. An improved sample holder is also provided having a ceramic body portion for removably engaging conductive wires. The conductive wires are compatible with a selected filament element and the sample material to be analyzed.

  3. Investigation of Asphalt Mixture Creep Behavior Using Thin Beam Specimens

    SciTech Connect (OSTI)

    Zofka, Adam; Marasteanu, Mihai; Turos, Mugur

    2008-02-15

    The asphalt pavement layer consists of two or more lifts of compacted asphalt mixture; the top of the layer is also exposed to aging, a factor that significantly affects the mixture properties. The current testing specifications use rather thick specimens that cannot be used to investigate the gradual change in properties with pavement depth. This paper investigates the feasibility of using the 3-point bending test with thin asphalt mixture beams (127x12.7x6.35 mm) to determine the low-temperature creep compliance of the mixtures. Several theoretical and semi-empirical models, from the theory of composites, are reviewed and evaluated using numerical and experimental data. Preliminary results show that this method can be used for low-temperature mixture characterization but several crucial factors need further inspection and interpretation.

  4. Specimen illumination apparatus with optical cavity for dark field illumination

    DOE Patents [OSTI]

    Pinkel, Daniel (Walnut Creek, CA); Sudar, Damir (Walnut Creek, CA); Albertson, Donna (Lafayette, CA)

    1999-01-01

    An illumination apparatus with a specimen slide holder, an illumination source, an optical cavity producing multiple reflection of illumination light to a specimen comprising a first and a second reflective surface arranged to achieve multiple reflections of light to a specimen is provided. The apparatus can further include additional reflective surfaces to achieve the optical cavity, a slide for mounting the specimen, a coverslip which is a reflective component of the optical cavity, one or more prisms for directing light within the optical cavity, antifading solutions for improving the viewing properties of the specimen, an array of materials for analysis, fluorescent components, curved reflective surfaces as components of the optical cavity, specimen detection apparatus, optical detection equipment, computers for analysis of optical images, a plane polarizer, fiberoptics, light transmission apertures, microscopic components, lenses for viewing the specimen, and upper and lower mirrors above and below the specimen slide as components of the optical cavity. Methods of using the apparatus are also provided.

  5. Validation Specimen for Contour Method Extension to Multiple Residual Stress Components

    SciTech Connect (OSTI)

    Pagliaro, Pierluigi; Prime, Michael B; Zuccarello, B; Clausen, Bjorn; Watkins, Thomas R

    2007-01-01

    A new theoretical development of the contour method, that allow the user to measure the three normal residual stress components on cross sections of a generic mechanical part, is presented. To validate such a theoretical development, a residual stress test specimen was properly designed, fabricated and then tested with different experimental techniques.

  6. Radionuclide release from PWR spent fuel specimens with induced cladding defects

    SciTech Connect (OSTI)

    Wilson, C.N.; Oversby, V.M.

    1984-03-01

    Radionuclide releases from pressurized water reactor (PWR) spent fuel rod specimens containing various artificially induced cladding defects were compared by leach testing. The study was conducted in support of the Nevada Nuclear Waste Storage Investigations (NNWSI) Waste Package Task to evaluate the effectiveness of failed cladding as a barrier to radionuclide release. Test description and results are presented. 6 references, 4 figures.

  7. Radionuclide release from PWR spent fuel specimens with induced cladding defects

    SciTech Connect (OSTI)

    Wilson, C.N.; Oversby, V.M.

    1984-03-01

    Radionuclide releases from pressurized water reactor (PWR) spent fuel rod specimens containing various artificially induced cladding defects were compared by leach testing. The study was conducted in support of the Nevada Nuclear Waste Storage Investigations (NNWSI) Waste Package Task to evaluate the effectiveness of failed cladding as a barrier to radionuclide release. Test description and results are presented.

  8. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    SciTech Connect (OSTI)

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

    2007-06-30

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition from normal high-flow operation to natural circulation. Low-flow coolant events are the most difficult to design for because they involve the most complex thermal-hydraulic behavior induced by the dominance of thermal-buoyancy forces acting on the coolants. Such behavior can cause multiple-component flow interaction phenomena, which are not adequately understood or appreciated by reactor designers as to their impact on reactor performance and safety. Since the early 1990s, when DOE canceled the U.S. Liquid Metal Fast Breeder Reactor (LMFBR) program, little has been done experimentally to further understand the importance of the complex thermal-buoyancy phenomena and their impact on reactor design or to improve the ability of three-dimensional (3-D) transient computational fluid dynamics (CFD) and structures codes to model the phenomena. An improved experimental data base and the associated improved validated codes would provide needed design tools to the reactor community. The improved codes would also facilitate scale-up from small-scale testing to prototype size and would facilitate comparing performance of one reactor/component design with another. The codes would also have relevance to the design and safety of water-cooled reactors. To accomplish the preceding, it is proposed to establish a national GNEP-LMR research and development center at Argonne having as its foundation state-of-art science-based infrastructure consisting of: (a) thermal-hydraulic experimental capabilities for conducting both water and sodium testing of individual reactor components and complete reactor in-vessel models and (b) a computational modeling development and validation capability that is strongly interfaced with the experimental facilities. The proposed center would greatly advance capabilities for reactor development by establishing the validity of high-fidelity (i.e., close to first principles) models and tools. Such tools could be used directly for reactor design or for qualifying/tuning of lower-fidelity models, which now require costly experimental qualification for each different type of design

  9. Apparatus and method for magnetically processing a specimen

    DOE Patents [OSTI]

    Ludtka, Gerard M; Ludtka, Gail M; Wilgen, John B; Kisner, Roger A; Jaramillo, Roger A

    2013-09-03

    An apparatus for magnetically processing a specimen that couples high field strength magnetic fields with the magnetocaloric effect includes a high field strength magnet capable of generating a magnetic field of at least 1 Tesla and a magnetocaloric insert disposed within a bore of the high field strength magnet. A method for magnetically processing a specimen includes positioning a specimen adjacent to a magnetocaloric insert within a bore of a magnet and applying a high field strength magnetic field of at least 1 Tesla to the specimen and to the magnetocaloric insert. The temperature of the specimen changes during the application of the high field strength magnetic field due to the magnetocaloric effect.

  10. Strain rate and inertial effects on impact loaded single-edge notch bend specimens

    SciTech Connect (OSTI)

    Vargas, P.M.; Dodds, R.H. Jr.

    1995-12-31

    Many problems in fracture mechanics of ductile metals involve surface breaking defects located in structures subjected to impact or blast. When the severity of impact loads is sufficient to produce large inelastic deformations, the assessment of crack-tip conditions must include the effects of plasticity, strain rate and inertia. This work examines the interaction of impact loading, inelastic material deformation and rate sensitivity with the goal of improving the interpretation of ductile fracture toughness values measured under dynamic loading. The authors focus on shallow and deeply notched bend test specimens, SE(B)s, employed routinely to measure the static fracture toughness of a material. A thorough understanding of the test specimen`s dynamic behavior is a prerequisite to the application of measured fracture properties in structural applications. Three-dimensional, nonlinear dynamic analyses are performed for SE(B) fracture specimens subjected to impact loading. Loading rates obtained in conventional drop tower tests are applied in the analyses. An explicit time integration procedure coupled with an efficient (one-point) element integration scheme is employed to compute the dynamic response of the specimen. Strain-rate sensitivity is introduced via a new, efficient implementation of the Bodner-Partom viscoplastic constitutive model. Material properties for A533B steel are used in the analyses. Static analyses of the SE(B) specimens provide baseline responses for assessment of inertial effects. Similarly, dynamic analyses using a strain-rate insensitive material provide reference responses for the assessment of strain rate effects. Strains at key locations on the specimens and the support reactions are extracted from the analyses to assess the accuracy of static formulas commonly used to estimate applied J values. Inertial effects on the applied J are quantified by examining the acceleration component of J evaluated through a domain integral procedure.

  11. INFLUENCE OF SPECIMEN SIZE/TYPE ON THE FRACTURE TOUGHNESS OF FIVE IRRADIATED RPV MATERIALS

    SciTech Connect (OSTI)

    Sokolov, Mikhail A; Lucon, Enrico

    2015-01-01

    The Heavy-Section Steel Irradiation (HSSI) Program had previously irradiated five reactor pressure vessel (RPV) steels/welds at fast neutron fluxes of about 4 to 8 1011 n/cm2/s (>1 MeV) to fluences from 0.5 to 3.4 1019 n/cm2 and at 288 C. The unirradiated fracture toughness tests were performed by Oak Ridge National Laboratory with 12.7-mm and 25.4-mm thick (0.5T and 1T) compact specimens, while the HSSI Program provided tensile and 5 10-mm three-point bend specimens to SCK CEN for irradiation in the in-pile section of the Belgian Reactor BR2 at fluxes >1013 n/cm2/s and subsequent testing by SCK CEN. The BR2 irradiations were conducted at about 2 and 4 1013 n/cm2/s with irradiation temperature between 295 C and 300 C (water temperature), and to fluences between 6 and10 1019 n/cm2. The irradiation-induced shifts of the Master Curve reference temperatures, T0, for most of the materials deviated from the embrittlement correlations much more than expected, motivating the testing of 5 10-mm three-point bend specimens of all five materials in the unirradiated condition to eliminate specimen size and geometry as a variable. Tests of the unirradiated small bend specimens resulted in Master Curve reference temperatures, T0, 25 C to 53 C lower than those from the larger compact specimens, meaning that the irradiation-induced reference temperature shifts, T0, were larger than the initial measurements, resulting in much improved agreement between the measured and predicted fracture toughness shifts.

  12. Thermal annealing recovery of fracture toughness in HT9 steel after irradation to high doses

    SciTech Connect (OSTI)

    Byun, Thak Sang; Baek, Jong-Hyuk; Anderoglu, Osman; Maloy, Stuart A.; Toloczko, Mychailo B.

    2014-12-31

    The HT9 ferritic/martensitic steel with a nominal chemistry of Fe(bal.)–12%Cr–1%MoVW has been used as a primary core material for fast fission reactors such as FFTF because of its high resistance to radiationinduced swelling and embrittlement. Both static and dynamic fracture test results have shown that the HT9 steel can become brittle when it is exposed to high dose irradiation at a relatively low temperature 430 C). This article aims at a comprehensive discussion on the thermal annealing recovery of fracture toughness in the HT9 steel after irradiation up to 3–148 dpa at 378–504 C. A specimen reuse technique has been established and applied to this study: the fracture specimens were tested Charpy specimens or broken halves of Charpy bars (13 3 4 mm). The post-anneal fracture test results indicated that much of the radiation-induced damage can be recovered by a simple thermal annealing schedule: the fracture toughness was incompletely recovered by 550 C annealing, while nearly complete or complete recovery occurred after 650 C annealing. This indicates that thermal annealing is a feasible damage mitigation technique for the reactor components made of HT9 steel. The partial recovery is probably due to the non-removable microstructural damages such as void or gas bubble formation, elemental segregation and precipitation.

  13. Spatially resolved thermal desorption/ionization coupled with mass spectrometry

    DOE Patents [OSTI]

    Jesse, Stephen; Van Berkel, Gary J; Ovchinnikova, Olga S

    2013-02-26

    A system and method for sub-micron analysis of a chemical composition of a specimen are described. The method includes providing a specimen for evaluation and a thermal desorption probe, thermally desorbing an analyte from a target site of said specimen using the thermally active tip to form a gaseous analyte, ionizing the gaseous analyte to form an ionized analyte, and analyzing a chemical composition of the ionized analyte. The thermally desorbing step can include heating said thermally active tip to above 200.degree. C., and positioning the target site and the thermally active tip such that the heating step forms the gaseous analyte. The thermal desorption probe can include a thermally active tip extending from a cantilever body and an apex of the thermally active tip can have a radius of 250 nm or less.

  14. Simulation of the passive condensation cooling tank of the PASCAL test facility using the component thermal-hydraulic analysis code CUPID

    SciTech Connect (OSTI)

    Cho, H. K.; Lee, S. J.; Kang, K. H.; Yoon, H. Y.

    2012-07-01

    For the analysis of transient two-phase flows in nuclear reactor components, a three-dimensional thermal hydraulics code, named CUPID, has been being developed. In the present study, the CUPID code was applied for the simulation of the PASCAL (PAFS Condensing Heat Removal Assessment Loop) test facility constructed with an aim of validating the cooling and operational performance of the PAFS (Passive Auxiliary Feedwater System). The PAFS is one of the advanced safety features adopted in the APR+ (Advanced Power Reactor +), which is intended to completely replace the conventional active auxiliary feedwater system. This paper presents the preliminary simulation results of the PASCAL facility performed with the CUPID code in order to verify its applicability to the thermal-hydraulic phenomena inside the system. A standalone calculation for the passive condensation cooling tank was performed by imposing a heat source boundary condition and the transient thermal-hydraulic behaviors inside the system, such as the water level, temperature and velocity, were qualitatively investigated. The simulation results verified that the natural circulation and boiling phenomena in the water pool can be well reproduced by the CUPID code. (authors)

  15. Design and experimental testing of the performance of an outdoor LiBr/H{sub 2}O solar thermal absorption cooling system with a cold store

    SciTech Connect (OSTI)

    Agyenim, Francis; Knight, Ian; Rhodes, Michael

    2010-05-15

    A domestic-scale prototype experimental solar cooling system has been developed based on a LiBr/H{sub 2}O absorption system and tested during the 2007 summer and autumn months in Cardiff University, UK. The system consisted of a 12 m{sup 2} vacuum tube solar collector, a 4.5 kW LiBr/H{sub 2}O absorption chiller, a 1000 l cold storage tank and a 6 kW fan coil. The system performance, as well as the performances of the individual components in the system, were evaluated based on the physical measurements of the daily solar radiation, ambient temperature, inlet and outlet fluid temperatures, mass flow rates and electrical consumption by component. The average coefficient of thermal performance (COP) of the system was 0.58, based on the thermal cooling power output per unit of available thermal solar energy from the 12 m{sup 2} Thermomax DF100 vacuum tube collector on a hot sunny day with average peak insolation of 800 W/m{sup 2} (between 11 and 13.30 h) and ambient temperature of 24 C. The system produced an electrical COP of 3.6. Experimental results prove the feasibility of the new concept of cold store at this scale, with chilled water temperatures as low as 7.4 C, demonstrating its potential use in cooling domestic scale buildings. (author)

  16. Halo-independent tests of dark matter direct detection signals: local DM density, LHC, and thermal freeze-out

    SciTech Connect (OSTI)

    Blennow, Mattias; Herrero-Garcia, Juan; Schwetz, Thomas; Vogl, Stefan

    2015-08-19

    From an assumed signal in a Dark Matter (DM) direct detection experiment a lower bound on the product of the DM-nucleon scattering cross section and the local DM density is derived, which is independent of the local DM velocity distribution. This can be combined with astrophysical determinations of the local DM density. Within a given particle physics model the bound also allows a robust comparison of a direct detection signal with limits from the LHC. Furthermore, the bound can be used to formulate a condition which has to be fulfilled if the particle responsible for the direct detection signal is a thermal relic, regardless of whether it constitutes all DM or only part of it. We illustrate the arguments by adopting a simplified DM model with a Z{sup â€Č} mediator and assuming a signal in a future xenon direct detection experiment.

  17. Operation Greenhouse. Scientific Director's report of atomic-weapon tests at Eniwetok, 1951. Annex 2. 7. Thermal radiation injury

    SciTech Connect (OSTI)

    Pearse, H.E.; Kingsley, H.D.; Schilling, J.A.; Hogg; Blakney, R.M.

    1985-09-01

    Information concerning the flash burn resulting from an atomic bomb explosion was necessary to understand the lesion, its systematic effects, and prevention and treatment of these effects. In order to reproduce similar sources in the laboratory, it was essential to know the characteristics of the energy producing the biological effect. In order to obtain this information, anesthetized experimental animals were placed in shielded positions at varying distances from bomb zero to cover a wide range of thermal-radiation intensities. Small areas of each animal's skin were exposed through aperture plates which were designed to analyze burn production as a function of time, intensity, and spectrum. Protection of the animal by fabrics covering the skin was also evaluated. Following exposure, animals were retrieved from the exposure stations and transported to a laboratory for analysis of the burn lesions by description, color photography, and microscopic study of biopsy materials.

  18. Comparison of electromagnetic, thermal and mechanical calculations with rf test results in rf-dipole deflecting/crabbing cavities

    SciTech Connect (OSTI)

    Park, HyeKyoung [JLAB, ODU; De Silva, Subashini U. [ODU; Delayen, Jean R. [ODU, JLAB

    2013-12-01

    The current requirements of higher gradients and strict dimensional constraints in the emerging applications have required the designing of compact deflecting and crabbing rf structures. The superconducting rf-dipole cavity is one of the first novel compact designs with attractive properties such as higher gradients, higher shunt impedance and widely separated higher order modes. The recent tests performed on proof-of-principle designs of the rf-dipole geometry at 4.2 K and 2.0 K in the vertical test area at Jefferson Lab have proven the designs to achieve higher gradients with higher intrinsic quality factors and easily processed multipacting conditions. The cavity characteristics, such as pressure sensitivity and Lorentz force detuning, were studied using ANSYS before the fabrication. These characteristics were measured during the cavity test. The comparison between the simulation and the measurement provides insight how the simulation can be used for design and fabrication of future cavities.

  19. Thermally-related safety issues associated with thermal batteries.

    SciTech Connect (OSTI)

    Guidotti, Ronald Armand

    2006-06-01

    Thermal batteries can experience thermal runaway under certain usage conditions. This can lead to safety issues for personnel and cause damage to associated test equipment if the battery thermally self destructs. This report discusses a number of thermal and design related issues that can lead to catastrophic destruction of thermal batteries under certain conditions. Contributing factors are identified and mitigating actions are presented to minimize or prevent undesirable thermal runaway.

  20. Coupled optical/thermal/fluid analysis and design requirements for operation and testing of a supercritical CO2 solar receiver.

    SciTech Connect (OSTI)

    Khivsara, Sagar

    2015-01-01

    Recent studies have evaluated closed-loop supercritical carbon dioxide (s-CO2) Brayton cycles to be a higher energy-density system in comparison to conventional superheated steam Rankine systems. At turbine inlet conditions of 923K and 25 MPa, high thermal efficiency (~50%) can be achieved. Achieving these high efficiencies will make concentrating solar power (CSP) technologies a competitive alternative to current power generation methods. To incorporate a s-CO2 Brayton power cycle in a solar power tower system, the development of a solar receiver capable of providing an outlet temperature of 923 K (at 25 MPa) is necessary. To satisfy the temperature requirements of a s-CO2 Brayton cycle with recuperation and recompression, it is required to heat s-CO2 by a temperature of ~200 K as it passes through the solar receiver. Our objective was to develop an optical-thermal-fluid model to design and evaluate a tubular receiver that will receive a heat input ~1 MWth from a heliostat field. We also undertook the documentation of design requirements for the development, testing and safe operation of a direct s-CO2 solar receiver. The main purpose of this document is to serve as a reference and guideline for design and testing requirements, as well as to address the technical challenges and provide initial parameters for the computational models that will be employed for the development of s-CO2 receivers.

  1. Ultra high vacuum heating and rotating specimen stage

    DOE Patents [OSTI]

    Coombs, A.W. III

    1995-05-02

    A heating and rotating specimen stage provides for simultaneous specimen heating and rotating. The stage is ideally suited for operation in ultrahigh vacuum (1{times}10{sup {minus}9} torr or less), but is useful at atmosphere and in pressurized systems as well. A specimen is placed on a specimen holder that is attached to a heater that, in turn, is attached to a top housing. The top housing is rotated relative to a bottom housing and electrically connected thereto by electrically conductive brushes. This stage is made of materials that are compatible with UHV, able to withstand high temperatures, possess low outgassing rates, are gall and seize resistant, and are able to carry substantial electrical loading without overheating. 5 figs.

  2. Fracture toughness determination using spiral-grooved cylindrical specimen and pure torsional loading

    DOE Patents [OSTI]

    Wang, Jy-An; Liu, Kenneth C.

    2003-07-08

    A method for determining fracture toughness K.sub.IC of materials ranging from metallic alloys, brittle ceramics and their composites, and weldments. A cylindrical specimen having a helical V-groove with a 45.degree. pitch is subjected to pure torsion. This loading configuration creates a uniform tensile-stress crack-opening mode, and a transverse plane-strain state along the helical groove. The full length of the spiral groove is equivalent to the thickness of a conventional compact-type specimen. K.sub.IC values are determined from the fracture torque and crack length measured from the test specimen using a 3-D finite element program (TOR3D-KIC) developed for the purpose. In addition, a mixed mode (combined tensile and shear stress mode) fracture toughness value can be determined by varying the pitch of the helical groove. Since the key information needed for determining the K.sub.IC value is condensed in the vicinity of the crack tip, the specimen can be significantly miniaturized without the loss of generality.

  3. A nanostructure thermal property measurement platform. (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect A nanostructure thermal property measurement platform. Citation Details In-Document Search Title: A nanostructure thermal property measurement platform. Measurements of the electrical and thermal transport properties of one-dimensional nanostructures (e.g., nanotubes and nanowires) typically are obtained without detailed knowledge of the specimen's atomic-scale structure or defects. To address this deficiency we have developed a microfabricated, chip-based characterization

  4. Resonance test system

    DOE Patents [OSTI]

    Musial, Walter; White, Darris

    2011-05-31

    An apparatus (10) for applying at least one load to a specimen (12) according to one embodiment of the invention may comprise a mass (18). An actuator (20) mounted to the specimen (12) and operatively associated with the mass (18) moves the mass (18) along a linear displacement path (22) that is perpendicular to a longitudinal axis of the specimen (12). A control system (26) operatively associated with the actuator (20) operates the actuator (20) to reciprocate the mass (18) along the linear displacement path (22) at a reciprocating frequency, the reciprocating frequency being about equal to a resonance frequency of the specimen (12) in a test configuration.

  5. NREL: Transportation Research - Vehicle Thermal Management Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Thermal Management Facilities Image of a building with two semi truck cabs in front of it. The VTIF is used for thermal testing of every class of on-road vehicle. Photo by Dennis Schroeder, NREL The National Renewable Energy Laboratory (NREL) uses research and testing facilities to develop advanced thermal management technologies for vehicles. Vehicle Testing and Integration Facility The Vehicle Testing and Integration Facility features a test pad to conduct vehicle thermal soak testing

  6. Dynamic Mechanical Thermal Analysis of Virgin TR-55 Silicone Rubber

    SciTech Connect (OSTI)

    Small IV, W; Wilson, T S

    2009-10-09

    Dynamic mechanical thermal analysis (DMTA) of virgin TR-55 silicone rubber specimens was conducted. Dynamic frequency/temperature sweep tests were conducted over the ranges 0.1-100 rad/s and 30-100 C using a parallel plate test geometry. A strain of 0.2% was used, which was near the upper limit of the linear viscoelastic region of the material based on initial dynamic strain sweep tests. Master curves of G{prime} and G{double_prime} as a function of frequency were generated using time-temperature superposition (horizontal shift with initial vertical correction). The activation energy calculated from an Arrhenius fit to the horizontal shift factors was 178-355 kJ/mol. The calculated percent load retention at {approx}50 years was 61-68%.

  7. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water ...

  8. Automatic grinding apparatus to control uniform specimen thicknesses

    DOE Patents [OSTI]

    Bryner, J.S.

    1981-01-07

    This invention is directed to a new and improved grinding apparatus comprisng: (1) a movable grinding surface; (2) a specimen holder; (3) a dislacing means for moving the holder and/or grinding surface toward one another; and (4) at least three means for limiting displacement of the holder to the grinding surface.

  9. Automatic grinding apparatus to control uniform specimen thicknesses

    DOE Patents [OSTI]

    Bryner, Joseph S. (Pittsburgh, PA)

    1982-01-01

    This invention is directed to a new and improved grinding apparatus comprising (1) a movable grinding surface, (2) a specimen holder, (3) a displacing device for moving the holder and/or grinding surface toward one another, and (4) at least three devices for limiting displacement of the holder to the grinding surface.

  10. Investigation of temperature dependence of fracture toughness in high-dose HT9 steel using small-specimen reuse technique

    SciTech Connect (OSTI)

    Baek, Jong-Hyuk; Byun, Thak Sang; Maloy, Stuart A.; Toloczko, Mychailo B.

    2014-01-01

    The temperature dependence of fracture toughness in HT9 steel irradiated to 3–145 dpa at 380–503 degrees*C was investigated using miniature three-point bend (TPB) fracture specimens. A miniature-specimen reuse technique has been established: the tested halves of subsize Charpy impact specimens with dimensions of 27 mm *3mm* 4 mm were reused for this fracture test campaign by cutting a notch with a diamond-saw in the middle of each half, and by fatigue-precracking to generate a sharp crack tip. It was confirmed that the fracture toughness of HT9 steel in the dose range depends more strongly on the irradiation temperature than the irradiation dose. At an irradiation temperature <430 *degreesC, the fracture toughness of irradiated HT9 increased with the test temperature, reached an upper shelf of 180—200 MPa*m^.5 at 350–450 degrees*C, and then decreased with the test temperature. At an irradiation temperature >430 degrees*C, the fracture toughness was nearly unchanged up to about 450 *degreesC and decreased slowly with test temperatures in a higher temperature range. Such a rather monotonic test temperature dependence after high-temperature irradiation is similar to that observed for an archive material generally showing a higher degree of toughness. A brittle fracture without stable crack growth occurred in only a few specimens with relatively lower irradiation and test temperatures. In this discussion, these TPB fracture toughness data are compared with previously published data from 12.7 mm diameter disc compact tension (DCT) specimens.

  11. DEVELOPMENT OF BURN TEST SPECIFICATIONS FOR FIRE PROTECTION MATERIALS IN RAM PACKAGES

    SciTech Connect (OSTI)

    Gupta, N.

    2010-03-03

    The regulations in 10 CFR 71 require that the radioactive material (RAM) packages must be able to withstand specific fire conditions given in 10 CFR 71.73 during Hypothetical Accident Conditions (HAC). This requirement is normally satisfied by extensive testing of full scale test specimens under required test conditions. Since fire test planning and execution is expensive and only provides a single snapshot into a package performance, every effort is made to minimize testing and supplement tests with results from computational thermal models. However, the accuracy of such thermal models depends heavily on the thermal properties of the fire insulating materials that are rarely available at the regulatory fire temperatures. To the best of authors knowledge no test standards exist that could be used to test the insulating materials and derive their thermal properties for the RAM package design. This paper presents a review of the existing industry fire testing standards and proposes testing methods that could serve as a standardized specification for testing fire insulating materials for use in RAM packages.

  12. Method for non-destructive testing

    DOE Patents [OSTI]

    Akers, Douglas W. (Idaho Falls, ID)

    2011-08-30

    Non-destructive testing method may include providing a source material that emits positrons in response to bombardment of the source material with photons. The source material is exposed to photons. The source material is positioned adjacent the specimen, the specimen being exposed to at least some of the positrons emitted by the source material. Annihilation gamma rays emitted by the specimen are detected.

  13. Central Receiver Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Receiver Test Facility - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Applications National Solar Thermal Test Facility Nuclear Energy Systems ...

  14. Localized surface plasmon assisted contrast microscopy for ultrathin transparent specimens

    SciTech Connect (OSTI)

    Wei, Feifei; Lu, Dylan; Aguinaldo, Ryan; Ma, Yicong; Sinha, Sunil K.; Liu, Zhaowei

    2014-10-20

    We demonstrate a high contrast imaging technique, termed localized surface plasmon assisted contrast microscopy, by combining localized surface plasmon resonances (LSPR) and dark-field microscopy technique. Due to the sensitive response of LSPR to the refractive index of the surrounding media, this technique is capable of converting a small refractive index difference to a change in scattering intensity, resulting in a high-contrast, diffraction limited image of a thin unstained specimen with small, gradual refractive-index variation.

  15. EMC WCD for TEM/SEM Specimen Preparation Work | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WCD for TEM/SEM Specimen Preparation Work PDF icon EMC_Sample_preparation_safety_analysis

  16. Effect of air movement on thermal resistance of loose-fill thermal insulations

    SciTech Connect (OSTI)

    Yarbrough, D.W.; Toor, I.A.

    1981-12-01

    An apparatus to measure the heat flux through horizontally applied loosefill insulations with air movement above the insulation has been constructed and used to test specimens of loose-fill cellulosic, fiberglass, and rock wool insulations. Heat flux divided by the temperature difference across insulation specimens was measured for air velocities up to 92 cm/s. An increase in the heat flux term with air movement was observed and correlated with air velocity and specimen density. The magnitude of the increase in the heat flux term was greatest for the specimen of low-density fiberglass insulation.

  17. Effect of air movement on thermal resistance of loose-fill thermal insulations

    SciTech Connect (OSTI)

    Yarbrough, D.W.; Toor, I.A.

    1983-01-01

    An apparatus to measure the heat flux through horizontally applied loose-fill insulations with air movement above the insulation has been constructed and used to test specimens of loose-fill cellulosic, fiberglass, and rock wool insulations. Heat flux divided by the temperature difference across insulation specimens was measured for air velocities up to 92 cm/s. An increase in the heat flux term with air movement was observed and correlated with air velocity and specimen density. The magnitude of the increase in the heat flux term was greatest for the specimen of low-density fiberglass insulation.

  18. Thick Thermal Barrier Coatings (TTBCs) for Low Emission, High Efficiency Diesel Engine Components

    SciTech Connect (OSTI)

    M. Brad Beardsley, Caterpillar Inc.; Dr. Darrell Socie, University of Illinois; Dr. Ed Redja, University of Illinois; Dr. Christopher Berndt, State University of New York at Stony Brook

    2006-03-02

    The objective of this program was to advance the fundamental understanding of thick thermal barrier coating (TTBC) systems for application to low heat rejection diesel engine combustion chambers. Previous reviews of thermal barrier coating technology concluded that the current level of understanding of coating system behavior is inadequate and the lack of fundamental understanding may impede the application of thermal barrier coating to diesel engines.(1) Areas of TTBC technology examined in this program include powder characteristics and chemistry; bond coating composition, coating design, microstructure and thickness as they affect properties, durability, and reliability; and TTBC "aging" effects (microstructural and property changes) under diesel engine operating conditions. Fifteen TTBC ceramic powders were evaluated. These powders were selected to investigate the effects of different chemistries, different manufacturing methods, lot-to-lot variations, different suppliers and varying impurity levels. Each of the fifteen materials has been sprayed using 36 parameters selected by a design of experiments (DOE) to determine the effects of primary gas (Ar and N2), primary gas flow rate, voltage, arc current, powder feed rate, carrier gas flow rate, and spraying distance. The deposition efficiency, density, and thermal conductivity of the resulting coatings were measured. A coating with a high deposition efficiency and low thermal conductivity is desired from an economic standpoint. An optimum combination of thermal conductivity and disposition efficiency was found for each lot of powder in follow-on experiments and disposition parameters were chosen for full characterization.(2) Strengths of the optimized coatings were determined using 4-point bending specimens. The tensile strength was determined using free-standing coatings made by spraying onto mild steel substrates which were subsequently removed by chemical etching. The compressive strengths of the coatings were determined using composite specimens of ceramic coated onto stainless steel substrates, tested with the coating in compression and the steel in tension. The strength of the coating was determined from an elastic bi-material analysis of the resulting failure of the coating in compression.(3) Altough initial comparisons of the materials would appear to be straight forward from these results, the results of the aging tests of the materials are necessary to insure that trends in properties remain after long term exposure to a diesel environment. Some comparisons can be made, such as the comparison between for lot-to-lot variation. An axial fatigue test to determine the high cycle fatigue behavior of TTBCs was developed at the University of Illinois under funding from this program.(4) A fatigue test apparatus has been designed and initial work performed which demonstrates the ability to provide a routine method of axial testing of coating. The test fixture replaces the normal load frame and fixtures used to transmit the hydraulic oil loading to the sample with the TTBC specimen itself. The TTBC specimen is a composite metal/coating with stainless steel ends. The coating is sprayed onto a mild steel center tube section onto which the stainless steel ends are press fit. The specimen is then machined. After machining, the specimen is placed in an acid bath which etches the mild steel away leaving the TTBC attached to the the stainless steel ends. Plugs are then installed in the ends and the composite specimen loaded in the test fixture where the hydraulic oil pressurizes each end to apply the load. Since oil transmits the load, bending loads are minimized. This test fixture has been modified to allow piston ends to be attached to the specimen which allows tensile loading as well as compressive loading of the specimen. In addition to the room temperature data, specimens have been tested at 800 Degrees C with the surprising result that at high temperature, the TTBC exhibits much higher fatigue strength. Testing of the TTBC using tension/compression cycling has been conducted using the modified test fixture. The goal of this work was to investigate the failure mechanisms of the coating and to determine if tensile and compressive fatigue damage would interact to influence the resulting life of the coating. Coating samples were run with various mean compressive loads and constant tensile loading approximately equal to 90% of the tensile strength of the coating. The results of this testing shows no interaction of failure resulting from the tensile and compressive load. The material fails in tension at the life predicted by the maximum tensile stress or in compression at the life predicted by the compressive stress. This indicates that there are two differing failure mechanisms for the TTBC in tension and compression.

  19. Thermal Effusivity Tomography from Pulsed Thermal Imaging

    Energy Science and Technology Software Center (OSTI)

    2006-12-01

    The software program generates 3D volume distribution of thermal effusivity within a test material from one-sided pulsed thermal imaging data. Thsi is the first software capable of accurate, fast and automated thermal tomographic imaging of inhomogeneous materials to produce 3D images similar to those obtained from 3D X-ray CT (all previous thermal-imaging software can only produce 2D results). Because thermal effusivity is an intrisic material property that is related to material constituent, density, conductivity, etc.,more » quantitative imaging of effusivity allowed direct visualization of material's internal constituent/structure and damage distributions, thereby potentially leading to quantitative prediction of other material properties such as strength. I can be therefre be used for 3D imaging of material structure in fundamental material studies, nondestructive characterization of defects/flaws in structural engineering components, health monitoring of material damage and degradation during service, and medical imaging and diagnostics. This technology is one-sided, non contact and sensitive to material's thermal property and discontinuity. One major advantage of this tomographic technology over x-ray CT and ultrasounds is its natural efficiency for 3D imaging of the volume under a large surface area. This software is implemented with a method for thermal computed tomography of thermal effusivity from one-sided pulsed thermal imaging (or thermography) data. The method is based on several solutions of the governing heat transfer equation under pulsed thermography test condition. In particular, it consists of three components. 1) It utilized the thermal effusivity as the imaging parameter to construct the 3D image. 2) It established a relationship between the space (depth) and the time, because thermography data are in the time domain. 3) It incorporated a deconvolution algorithm to solve the depth porfile of the material thermal effusivity from the measured (temporal) surface temperature data. The predicted effusivity is a direct function of depth, not an average or convolved parameter, so it is an accurate (and more sensitive) representation of local property along depth.« less

  20. 2015 Accomplishments-Tritium aging studies on stainless steel. Effects of hydrogen isotopes, crack orientation, and specimen geometry on fracture toughness

    SciTech Connect (OSTI)

    Morgan, Michael J.

    2016-01-01

    This study reports on the effects of hydrogen isotopes, crack orientation, and specimen geometry on the fracture toughness of stainless steels. Fracture toughness variability was investigated for Type 21-6-9 stainless steel using the 7K0004 forging. Fracture toughness specimens were cut from the forging in two different geometric configurations: arc shape and disc shape. The fracture toughness properties were measured at ambient temperature before and after exposure to hydrogen gas and compared to prior studies. There are three main conclusions that can be drawn from the results. First, the fracture toughness properties of actual reservoir forgings and contemporary heats of steel are much higher than those measured in earlier studies that used heats of steel from the 1980s and 1990s and forward extruded forgings which were designed to simulate reservoir microstructures. This is true for as-forged heats as well as forged heats exposed to hydrogen gas. Secondly, the study confirms the well-known observation that cracks oriented parallel to the forging grain flow will propagate easier than those oriented perpendicular to the grain flow. However, what was not known, but is shown here, is that this effect is more pronounced, particularly after hydrogen exposures, when the forging is given a larger upset. In brick forgings, which have a relatively low amount of upset, the fracture toughness variation with specimen orientation is less than 5%; whereas, in cup forgings, the fracture toughness is about 20% lower than that forging to show how specimen geometry affects fracture toughness values. The American Society for Testing Materials (ASTM) specifies minimum specimen section sizes for valid fracture toughness values. However, sub-size specimens have long been used to study tritium effects because of the physical limitation of diffusing hydrogen isotopes into stainless steel at mild temperatures so as to not disturb the underlying forged microstructure. This study shows that fracture toughness values of larger specimens are higher and more representative of the material’s fracture behavior in a fully constrained tritium reservoir. The toughness properties measured for sub-size specimens were about 65-75% of the values for larger specimens. While the data from sub-size specimens are conservative, they may be overly so. The fracture toughness properties from sub-size specimens are valuable in that they can be used for tritium effects studies and show the same trends and alloy differences as those seen from larger specimen data. Additional work is planned, including finite element modeling, to see if sub-size specimen data could be adjusted in some way to be more closely aligned with the actual material behavior in a fully constrained pressure vessel.

  1. Specimen coordinate automated measuring machine/fiducial automated measuring machine

    DOE Patents [OSTI]

    Hedglen, Robert E.; Jacket, Howard S.; Schwartz, Allan I.

    1991-01-01

    The Specimen coordinate Automated Measuring Machine (SCAMM) and the Fiducial Automated Measuring Machine (FAMM) is a computer controlled metrology system capable of measuring length, width, and thickness, and of locating fiducial marks. SCAMM and FAMM have many similarities in their designs, and they can be converted from one to the other without taking them out of the hot cell. Both have means for: supporting a plurality of samples and a standard; controlling the movement of the samples in the +/- X and Y directions; determining the coordinates of the sample; compensating for temperature effects; and verifying the accuracy of the measurements and repeating as necessary. SCAMM and FAMM are designed to be used in hot cells.

  2. Critical heat flux test apparatus

    DOE Patents [OSTI]

    Welsh, Robert E.; Doman, Marvin J.; Wilson, Edward C.

    1992-01-01

    An apparatus for testing, in situ, highly irradiated specimens at high temperature transients is provided. A specimen, which has a thermocouple device attached thereto, is manipulated into test position in a sealed quartz heating tube by a robot. An induction coil around a heating portion of the tube is powered by a radio frequency generator to heat the specimen. Sensors are connected to monitor the temperatures of the specimen and the induction coil. A quench chamber is located below the heating portion to permit rapid cooling of the specimen which is moved into this quench chamber once it is heated to a critical temperature. A vacuum pump is connected to the apparatus to collect any released fission gases which are analyzed at a remote location.

  3. Specimen Machining for the Study of the Effect of Swelling on CGR in PWR Environment.

    SciTech Connect (OSTI)

    Teysseyre, Sebastien Paul

    2015-06-01

    This report describes the preparation of ten specimens to be used for the study of the effect of swelling on the propagation of irradiation assisted stress corrosion cracking cracks. Four compact tension specimens, four microscopy plates and two tensile specimens were machined from a AISI 304 material that was irradiated up to 33 dpa. The specimens had been machined such as to represent the behavior of materials with 3.7%swelling and <2% swelling.

  4. Effect of long-term thermal aging on the fracture toughness of austenitic stainless steel base and weld metals

    SciTech Connect (OSTI)

    Huang, F.F.

    1995-09-27

    Compact tension specimens taken from FFTF primary piping materials (Type 316 stainless steel (SS) and 16-8-2 SS weld metal) and from reactor vessel materials (304 SS and 308 SS weld metal) were heated in laboratory furnaces from 100,000 hours. Fracture toughness testing was performed on these specimens, which are 7.62- and 25.4-mm thick, respectively at the aging temperature (482 and 427 degrees). Results were analyzed with the multiple-specimen method. Thermal aging continues to reduce the fracture toughness of FFTF component materials. Results show that thermal aging has a strong effect on the toughness degradation of weld metals, particularly for 16-8-2 SS weld whose aged/unaged Jc ratio is only 0.31 after 100,000-hour aging. The fracture toughness of the 308 and 16-8-2 SS weld metals fluctuated during 20,000 to 50,000-hour aging but deteriorated as the aging time increased to 100,000 hours; the toughness degradation is significant. Fracture control based on a fracture mechanics approach should be considered

  5. Apparatus for testing for infection by a retrovirus

    DOE Patents [OSTI]

    Layne, Scott P. (Los Angeles, CA); Beugelsdijk, Tony J. (Los Alamos, NM)

    1999-01-01

    An apparatus for testing specimens for infection by a retrovirus is described. The apparatus comprises a process controller including a communications module for translating user commands into test instrument suite commands and a means for communicating specimen test results to a user. The apparatus further comprises a test instrument suite including a means for treating the specimen to manifest an observable result and a detector for measuring the observable result.

  6. Mixed Stream Test Rig Winter FY-2011 Report

    SciTech Connect (OSTI)

    Chalres Park; Tedd Lister; Kevin DeWall

    2011-04-01

    This report describes the data and analysis of the initial testing campaign of the Mixed Stream Test Rig (MISTER) at Idaho National Laboratory (INL). It describes the test specimen selection, physical configuration of the test equipment, operations methodology, and data and analysis of specimens exposed in two environments designed to represent those expected for high temperature steam electrolysis (HTSE).

  7. Apparatus for X-ray diffraction microscopy and tomography of cryo specimens

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Beetz, T.; Howells, M. R.; Jacobsen, C.; Kao, C. -C.; Kirz, J.; Lima, E.; Mentes, T. O.; Miao, H.; Sanchez-Hanke, C.; Sayre, D.; et al

    2005-03-14

    An apparatus for diffraction microscopy of biological and materials science specimens is described. In this system, a coherent soft X-ray beam is selected with a pinhole, and the illuminated specimen is followed by an adjustable beamstop and CCD camera to record diffraction data from non-crystalline specimens. In addition, a Fresnel zone plate can be inserted to allow for direct imaging. The system makes use of a cryogenic specimen holder with cryotransfer capabilities to allow frozen hydrated specimens to be loaded. The specimen can be tilted over a range of ± 80 ° degrees for three-dimensional imaging; this is done bymore » computer-controlled motors, enabling automated alignment of the specimen through a tilt series. The system is now in use for experiments in soft X-ray diffraction microscopy.« less

  8. Test Site Operations & Maintenance Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test Site Operations & Maintenance Safety - Sandia Energy Energy Search Icon Sandia Home ... Applications National Solar Thermal Test Facility Nuclear Energy Systems ...

  9. In-situ Creep Testing Capability Development for Advanced Test Reactor

    SciTech Connect (OSTI)

    B. G. Kim; J. L. Rempe; D. L. Knudson; K. G. Condie; B. H. Sencer

    2010-08-01

    Creep is the slow, time-dependent strain that occurs in a material under a constant strees (or load) at high temperature. High temperature is a relative term, dependent on the materials being evaluated. A typical creep curve is shown in Figure 1-1. In a creep test, a constant load is applied to a tensile specimen maintained at a constant temperature. Strain is then measured over a period of time. The slope of the curve, identified in the figure below, is the strain rate of the test during Stage II or the creep rate of the material. Primary creep, Stage I, is a period of decreasing creep rate due to work hardening of the material. Primary creep is a period of primarily transient creep. During this period, deformation takes place and the resistance to creep increases until Stage II, Secondary creep. Stage II creep is a period with a roughly constant creep rate. Stage II is referred to as steady-state creep because a balance is achieved between the work hardening and annealing (thermal softening) processes. Tertiary creep, Stage III, occurs when there is a reduction in cross sectional area due to necking or effective reduction in area due to internal void formation; that is, the creep rate increases due to necking of the specimen and the associated increase in local stress.

  10. Report on thermal aging effects on tensile properties of ferritic-martensitic steels.

    SciTech Connect (OSTI)

    Li, M.; Soppet, W.K.; Rink, D.L.; Listwan, J.T.; Natesan, K.

    2012-05-10

    This report provides an update on the evaluation of thermal-aging induced degradation of tensile properties of advanced ferritic-martensitic steels. The report is the first deliverable (level 3) in FY11 (M3A11AN04030103), under the Work Package A-11AN040301, 'Advanced Alloy Testing' performed by Argonne National Laboratory, as part of Advanced Structural Materials Program for the Advanced Reactor Concepts. This work package supports the advanced structural materials development by providing tensile data on aged alloys and a mechanistic model, validated by experiments, with a predictive capability on long-term performance. The scope of work is to evaluate the effect of thermal aging on the tensile properties of advanced alloys such as ferritic-martensitic steels, mod.9Cr-1Mo, NF616, and advanced austenitic stainless steel, HT-UPS. The aging experiments have been conducted over a temperature of 550-750 C for various time periods to simulate the microstructural changes in the alloys as a function of time at temperature. In addition, a mechanistic model based on thermodynamics and kinetics has been used to address the changes in microstructure of the alloys as a function of time and temperature, which is developed in the companion work package at ANL. The focus of this project is advanced alloy testing and understanding the effects of long-term thermal aging on the tensile properties. Advanced materials examined in this project include ferritic-martensitic steels mod.9Cr-1Mo and NF616, and austenitic steel, HT-UPS. The report summarizes the tensile testing results of thermally-aged mod.9Cr-1Mo, NF616 H1 and NF616 H2 ferritic-martensitic steels. NF616 H1 and NF616 H2 experienced different thermal-mechanical treatments before thermal aging experiments. NF616 H1 was normalized and tempered, and NF616 H2 was normalized and tempered and cold-rolled. By examining these two heats, we evaluated the effects of thermal-mechanical treatments on material microstructures and associated mechanical properties during long-term aging at elevated temperatures. Thermal aging experiments at different temperatures and periods of time have been completed: 550 C for up to 5000 h, 600 C for up to 7500 h, and 650 C for more than 10,000 h. Tensile properties were measured on thermally aged specimens and aging effect on tensile behavior was assessed. Effects of thermal aging on deformation and failure mechanisms were investigated by using in-situ straining technique with simultaneous synchrotron XRD measurements.

  11. Thermal-Hydraulic Analysis of an Experimental Reactor Cavity Cooling System with Air. Part I: Experiments; Part II: Separate Effects Tests and Modeling

    SciTech Connect (OSTI)

    Corradin, Michael; Anderson, M.; Muci, M.; Hassan, Yassin; Dominguez, A.; Tokuhiro, Akira; Hamman, K.

    2014-10-15

    This experimental study investigates the thermal hydraulic behavior and the heat removal performance for a scaled Reactor Cavity Cooling System (RCCS) with air. A quarter-scale RCCS facility was designed and built based on a full-scale General Atomics (GA) RCCS design concept for the Modular High Temperature Gas Reactor (MHTGR). The GA RCCS is a passive cooling system that draws in air to use as the cooling fluid to remove heat radiated from the reactor pressure vessel to the air-cooled riser tubes and discharged the heated air into the atmosphere. Scaling laws were used to preserve key aspects and to maintain similarity. The scaled air RCCS facility at UW-Madison is a quarter-scale reduced length experiment housing six riser ducts that represent a 9.5° sector slice of the full-scale GA air RCCS concept. Radiant heaters were used to simulate the heat radiation from the reactor pressure vessel. The maximum power that can be achieved with the radiant heaters is 40 kW with a peak heat flux of 25 kW per meter squared. The quarter-scale RCCS was run under different heat loading cases and operated successfully. Instabilities were observed in some experiments in which one of the two exhaust ducts experienced a flow reversal for a period of time. The data and analysis presented show that the RCCS has promising potential to be a decay heat removal system during an accident scenario.

  12. Design and Laboratory Evaluation of Future Elongation and Diameter Measurements at the Advanced Test Reactor

    SciTech Connect (OSTI)

    K. L. Davis; D. L. Knudson; J. L. Rempe; J. C. Crepeau; S. Solstad

    2015-07-01

    New materials are being considered for fuel, cladding, and structures in next generation and existing nuclear reactors. Such materials can undergo significant dimensional and physical changes during high temperature irradiations. In order to accurately predict these changes, real-time data must be obtained under prototypic irradiation conditions for model development and validation. To provide such data, researchers at the Idaho National Laboratory (INL) High Temperature Test Laboratory (HTTL) are developing several instrumented test rigs to obtain data real-time from specimens irradiated in well-controlled pressurized water reactor (PWR) coolant conditions in the Advanced Test Reactor (ATR). This paper reports the status of INL efforts to develop and evaluate prototype test rigs that rely on Linear Variable Differential Transformers (LVDTs) in laboratory settings. Although similar LVDT-based test rigs have been deployed in lower flux Materials Testing Reactors (MTRs), this effort is unique because it relies on robust LVDTs that can withstand higher temperatures and higher fluxes than often found in other MTR irradiations. Specifically, the test rigs are designed for detecting changes in length and diameter of specimens irradiated in ATR PWR loops. Once implemented, these test rigs will provide ATR users with unique capabilities that are sorely needed to obtain measurements such as elongation caused by thermal expansion and/or creep loading and diameter changes associated with fuel and cladding swelling, pellet-clad interaction, and crud buildup.

  13. Space-Age Ceramics Get Their Toughest Test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    volume-rendered microtomography images from a specimen tested at 1750C at several applied loads (10, 127, and 98 newtons, respectively). *Load reading after first matrix crack...

  14. 2009 PILOT SCALE FLUIDIZED BED STEAM REFORMING TESTING USING THE THOR (THERMAL ORGANIC REDUCTION) PROCESS: ANALYTICAL RESULTS FOR TANK 48H ORGANIC DESTRUCTION - 10408

    SciTech Connect (OSTI)

    Williams, M.; Jantzen, C.; Burket, P.; Crawford, C.; Daniel, G.; Aponte, C.; Johnson, C.

    2009-12-28

    The Savannah River Site (SRS) must empty the contents of Tank 48H, a 1.3 million gallon Type IIIA HLW storage tank, to return this tank to service. The tank contains organic compounds, mainly potassium tetraphenylborate that cannot be processed downstream until the organic components are destroyed. The THOR{reg_sign} Treatment Technologies (TTT) Fluidized Bed Steam Reforming (FBSR) technology, herein after referred to as steam reforming, has been demonstrated to be a viable process to remove greater than 99.9% of the organics from Tank 48H during various bench scale and pilot scale tests. These demonstrations were supported by Savannah River Remediation (SRR) and the Department of Energy (DOE) has concurred with the SRR recommendation to proceed with the deployment of the FBSR technology to treat the contents of Tank 48H. The Savannah River National Laboratory (SRNL) developed and proved the concept with non-radioactive simulants for SRR beginning in 2003. By 2008, several pilot scale campaigns had been completed and extensive crucible testing and bench scale testing were performed in the SRNL Shielded Cells using Tank 48H radioactive sample. SRNL developed a Tank 48H non-radioactive simulant complete with organic compounds, salt, and metals characteristic of those measured in a sample of the radioactive contents of Tank 48H. FBSR Pilot Scaled Testing with the Tank 48H simulant has demonstrated the ability to remove greater than 98% of the nitrites and greater than 99.5% of the nitrates from the Tank 48H simulant, and to form a solid product that is primarily alkali carbonate. The alkali carbonate is soluble and, thus, amenable to pumping as a liquid to downstream facilities for processing. The FBSR technology was demonstrated in October of 2006 in the Engineering Scale Test Demonstration (ESTD) pilot scale steam reformer at the Hazen Research Inc. (HRI) facility in Golden, CO. Additional ESTD tests were completed in 2008 and in 2009 that further demonstrated the TTT steam reforming process ability to destroy organics in the Tank 48 simulant and produce a soluble carbonate waste form. The ESTD was operated at varying feed rates and Denitration and Mineralization Reformer (DMR) temperatures, and at a constant Carbon Reduction Reformer (CRR) temperature of 950 C. The process produced a dissolvable carbonate product suitable for processing downstream. ESTD testing was performed in 2009 at the Hazen facility to demonstrate the long term operability of an integrated FBSR processing system with carbonate product and carbonate slurry handling capability. The final testing demonstrated the integrated TTT FBSR capability to process the Tank 48 simulant from a slurry feed into a greater than 99.9% organic free and primarily dissolved carbonate FBSR product slurry. This paper will discuss the SRNL analytical results of samples analyzed from the 2008 and 2009 THOR{reg_sign} steam reforming ESTD performed with Tank 48H simulant at HRI in Golden, Colorado. The final analytical results will be compared to prior analytical results from samples in terms of organic, nitrite, and nitrate destruction.

  15. The IAEA Coordinated Research Program on HTGR Reactor Physics, Thermal-hydraulics and Depletion Uncertainty Analysis: Description of the Benchmark Test Cases and Phases

    SciTech Connect (OSTI)

    Frederik Reitsma; Gerhard Strydom; Bismark Tyobeka; Kostadin Ivanov

    2012-10-01

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The uncertainties in the HTR analysis tools are today typically assessed with sensitivity analysis and then a few important input uncertainties (typically based on a PIRT process) are varied in the analysis to find a spread in the parameter of importance. However, one wish to apply a more fundamental approach to determine the predictive capability and accuracies of coupled neutronics/thermal-hydraulics and depletion simulations used for reactor design and safety assessment. Today there is a broader acceptance of the use of uncertainty analysis even in safety studies and it has been accepted by regulators in some cases to replace the traditional conservative analysis. Finally, there is also a renewed focus in supplying reliable covariance data (nuclear data uncertainties) that can then be used in uncertainty methods. Uncertainty and sensitivity studies are therefore becoming an essential component of any significant effort in data and simulation improvement. In order to address uncertainty in analysis and methods in the HTGR community the IAEA launched a Coordinated Research Project (CRP) on the HTGR Uncertainty Analysis in Modelling early in 2012. The project is built on the experience of the OECD/NEA Light Water Reactor (LWR) Uncertainty Analysis in Best-Estimate Modelling (UAM) benchmark activity, but focuses specifically on the peculiarities of HTGR designs and its simulation requirements. Two benchmark problems were defined with the prismatic type design represented by the MHTGR-350 design from General Atomics (GA) while a 250 MW modular pebble bed design, similar to the INET (China) and indirect-cycle PBMR (South Africa) designs are also included. In the paper more detail on the benchmark cases, the different specific phases and tasks and the latest status and plans are presented.

  16. Effect of internal heating during hot compression testing on the stress-strain behavior and hot working characteristics of Alloy 304L

    SciTech Connect (OSTI)

    Mataya, M.C.; Sackschewsky, V.E.

    1993-05-01

    Temperature change from conversion of deformation to internal heat, and its effect on stress-strain behavior of alloy 304L was investigated by initially isothermal (temperature of specimen, compression dies, environment equilibrated at initiation of test) uniaxial compression. Strain rate was varied 0.01 s{sup {minus}1} to 1 s{sup {minus}1} (thermal state of specimen varied from nearly isothermal to nearly adiabatic). Specimens were deformed at 750 to 1150 to a strain of 1. Change in temperature with strain was calculated via finite element analysis from measured stress-strain data and predictions were confirmed with thermocouples to verify the model. Temperature increased nearly linearly at the highest strain rate, consistent with temperature rise being a linear function of strain (adiabatic). As strain rate was lowered, heat transfer from superheated specimen to cooler dies caused sample temperature to increase and then decrease with strain as the sample thinned and specimen-die contact area increased. As-measured stress was corrected. Resulting isothermal flow curves were compared to predictions of a simplified method suggested by Thomas and Shrinivasan and differences are discussed. Strain rate sensitivity, activation energy for deformation, and flow curve peak associated with onset of dynamic recrystallization were determined from both as-measured and isothermal stress-strain data and found to vary widely. The impact of utilizing as-measured stress-strain data, not corrected for internal heating, on results of a number of published investigations is discussed.

  17. Coaxial test fixture

    DOE Patents [OSTI]

    Praeg, Walter F.

    1986-01-01

    An assembly is provided for testing one or more contact material samples in a vacuum environment. The samples are positioned as an inner conductive cylinder assembly which is mounted for reciprocal vertical motion as well as deflection from a vertical axis. An outer conductive cylinder is coaxially positioned around the inner cylinder and test specimen to provide a vacuum enclosure therefor. A power source needed to drive test currents through the test specimens is connected to the bottom of each conductive cylinder, through two specially formed conductive plates. The plates are similar in form, having a plurality of equal resistance current paths connecting the power source to a central connecting ring. The connecting rings are secured to the bottom of the inner conductive assembly and the outer cylinder, respectively. A hydraulic actuator is also connected to the bottom of the inner conductor assembly to adjust the pressure applied to the test specimens during testing. The test assembly controls magnetic forces such that the current distribution through the test samples is symmetrical and that contact pressure is not reduced or otherwise disturbed.

  18. Apparent thermal conductivity measurements by an unguarded technique

    SciTech Connect (OSTI)

    Graves, R.S.; Yarbrough, D.W.; McElroy, D.L.

    1983-01-01

    An unguarded longitudinal heat-flow apparatus for measuring the apparent thermal conductivity (lambda/sub a) of insulations was tested with mean specimen temperatures from 300 to 330/sup 0/K on samples up to 0.91 m wide, 1.52 m long, and 0.15 m thick. Heat flow is provided by a horizontal electrically heated Nichrome screen sandwiched between test samples that are bounded by temperature controlled copper plates and 9 cm of mineral fiber insulation. A determinate error analysis shows lambda/sub a/ measurement uncertainty to be less than +- 1.7% for insulating materials as thin as 3 cm. Three-dimensional thermal modeling indicates negligible error in lambda/sub a/ due to edge loss for insulations up to 7.62 cm thick when the temperature difference across the sample is measured at the sceen center. System repeatability and reproducibility were determined to be +- 0.2%. Differences of lambda/sub a/ results from the screen tester and results from the National Bureau of Standards were 0.1% for a 10-kg/m/sup 3/ Calibration Transfer Standard and 0.9% for 127-kg/m/sup 3/ fibrous glass board (SRM 1450b). Measurements on fiberglass and rock wool batt insulations showed the dependence of lambda/sub a/ on density, temperature, temperature difference, plate emittance, and heat flow direction. Results obtained for lambda/sub a/ as a function of density at 24/sup 0/C differed by less than 2% from values obtained with a guarded hot plate. These results demonstrate that this simple technique has the accuracy and sensitivity needed for useful lambda/sub a/ measurements on thermal insulating materials.

  19. Analysis of structure and deformation behavior of AISI 316L tensile specimens from the second operational target module at the Spallation Neutron Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gussev, Maxim N.; McClintock, David A.; Garner, Frank

    2015-08-05

    In an earlier publication, tensile testing was performed on specimens removed from the first two operational targets of the Spallation Neutron Source (SNS). There were several anomalous features in the results. First, some specimens had very large elongations (up to 57%) while others had significantly smaller values. Second, there was a larger than the usual amount of data scatter in the elongation results. Third, the stress-strain diagrams of nominally similar specimens spanned a wide range of behavior ranging from expected irradiation-induced hardening to varying levels of force drop after yield point and indirect signs of "traveling deformation wave" behavior associatedmore »with strain-induced martensite formation. To investigate the cause(s) of such variable tensile behavior, several specimens from Target 2, spanning the range of observed tensile behavior, were chosen for detailed microstructural examination using electron backscattering analysis (EBSD). It was also shown that the steel employed in the construction of the target contained an unexpected bimodal grain size distribution, containing very large out-of-specification grains surrounded by necklaces of grains of within-specification sizes. The large grains were frequently comparable to the width of the gauge section of the tensile specimen. Moreover, the propensity to form martensite during deformation was shown to be accelerated by radiation but also to be very sensitive to the relative orientation of the grains with respect to the tensile axis. Specimens having large grains in the gauge that were most favorably oriented for production of martensite strongly exhibited the traveling deformation wave phenomenon, while those specimens with less favorably oriented grains had lesser or no degree of the wave effect, thereby accounting for the larger than expected data scatter.« less

  20. Thermal-shock behavior of advanced ceramic/composite hot-gas filters

    SciTech Connect (OSTI)

    Singh, J.P.; Sutaria, M.; Bielke, W.

    1997-02-01

    The thermal shock/fatigue behavior of monolithic and composite hot-gas candle filters obtained from various manufacturers was evaluated. The composite filters were made of both oxide and nonoxide materials; the monolithic filters were made only of nonoxide materials. During single-cycle thermal shock tests, composite filters show little or no strength degradation when quenched from temperatures between 900 and 1000{degrees}C. At higher quenching temperatures, slow strength degradation was observed. Regular monolithic SiC filters showed no strength degradation when quenched from temperatures up to {approx}700-900{degrees}C, whereas at higher quenching temperatures, the strength decreased at a relatively sharper rate. On the other hand, recrystallized monolithic SiC filters showed higher initial strength and retained this strength to higher quenching temperatures when compared with regular SiC filters. This finding may be related to the difference in the strength of grain boundary phases in the two filters. For thermal cycles between room temperature and 800-1000{degrees}C, composite filters show little (18-24%) strength degradation up to three cycles, beyond which the strength remains unchanged. Similar behavior, with an initial strength drop of 15-28%, was observed for monolithic filter specimens that were thermally cycled between room temperature and 800{degrees}C.

  1. thermal energy power conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    thermal energy power conversion - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  2. Shallow Flaws Under Biaxial Loading Conditions, Part II: Application of a Weibull Stress Analysis of the Cruciform Bend Specimen Using a Hydrostatic Stress Criterion

    SciTech Connect (OSTI)

    Bass, B.R.; McAfee, W.J.; Williams, P.T.

    1999-08-01

    Cruciform beam fracture mechanics specimensl have been developed in the Heavy Section Steel Technology (HSST) Program at Oak Ridge National Laboratory (ORNL) to introduce a prototypic, far- field, out-of-plane biaxird bending stress component in the test section that approximates the nonlinear biaxial stresses resulting from pressurized-thernxd-shock or pressure-temperature loading of a nuclear reactor pressure vessel (RPV). Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shtdlow, surface flaws. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for RPV materials. Two and three- parameter Weibull models have been calibrated using a new scheme (developed at the University of Illinois) that maps toughness data from test specimens with distinctly different levels of crack-tip constraint to a small scale yielding (SSY) Weibull stress space. These models, using the new hydrostatic stress criterion in place of the more commonly used maximum principal stress in the kernel of the OW integral definition, have been shown to correlate the experimentally observed biaxiaI effect in cruciform specimens, thereby providing a scaling mechanism between uniaxial and biaxial loading states.

  3. Data summary report for fission product release Test VI-7

    SciTech Connect (OSTI)

    Osborne, M.F.; Lorentz, R.A.; Travis, J.R.; Collins, J.L.; Webster, C.S.

    1995-05-01

    Test VI-7 was the final test in the VI series conducted in the vertical furnace. The fuel specimen was a 15.2-cm-long section of a fuel rod from the Monticello boiling water reactor (BWR). The fuel had experienced a burnup of {approximately}-40 Mwd/kg U. It was heated in an induction furnace for successive 20-min periods at 2000 and 2300 K in a moist air-helium atmosphere. Integral releases were 69% for {sup 85}Kr, 52% for {sup 125}Sb, 71% for both {sup 134}Cs and {sup 137}Cs, and 0.04% for {sup 154}Eu. For the non-gamma-emitting species, release values for 42% for I, 4.1% for Ba, 5.3% for Mo, and 1.2% for Sr were determined. The total mass released from the furnace to the collection system, including fission products, fuel, and structural materials, was 0.89 g, with 37% being collected on the thermal gradient tubes and 63% downstream on filters. Posttest examination of the fuel specimen indicated that most of the cladding was completely oxidized to ZrO{sub 2}, but that oxidation was not quite complete at the upper end. The release behaviors for the most volatile elements, Kr and Cs, were in good agreement with the ORNL-Booth Model.

  4. Sensitivity Test Analysis

    Energy Science and Technology Software Center (OSTI)

    1992-02-20

    SENSIT,MUSIG,COMSEN is a set of three related programs for sensitivity test analysis. SENSIT conducts sensitivity tests. These tests are also known as threshold tests, LD50 tests, gap tests, drop weight tests, etc. SENSIT interactively instructs the experimenter on the proper level at which to stress the next specimen, based on the results of previous responses. MUSIG analyzes the results of a sensitivity test to determine the mean and standard deviation of the underlying population bymore » computing maximum likelihood estimates of these parameters. MUSIG also computes likelihood ratio joint confidence regions and individual confidence intervals. COMSEN compares the results of two sensitivity tests to see if the underlying populations are significantly different. COMSEN provides an unbiased method of distinguishing between statistical variation of the estimates of the parameters of the population and true population difference.« less

  5. Thermal properties and chemical reactivity. Quarterly report, October 1971--December 1971

    SciTech Connect (OSTI)

    Myers, L.C.

    1998-12-31

    A very high boiling impurity was concentrated from a sample of FEFO with a hexane wash. Additional washing of this sample has increased the concentration of this impurity. A mass spectrum was obtained but an identification has not been made. The results of the analysis of the products from the thermal decomposition of FEFO at 120, 135, 150 C are discussed. A chromatogram of FEFO heated for 22 hours at 150 C shows a definite increase in low and high boiling impurities. The evaluation of the condition of the two coupon test assemblies aged at 80 C for 21 and 27 months are discussed. Thermal analysis of the LX-09 from these two coupon tests, a PASS A mechanical test specimen and a control sample are reported. A PDP-12/30 was interfaced with a Perkin Elmer DSC-1 to measure the heat of fusion of PETN. Some of the problems associated with getting reproducible data are discussed. The heat of fusion for six lots of LX-13 grade PETN are given.

  6. Sandia Energy - National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety,...

  7. Test methods for determining short and long term VOC emissions from latex paint

    SciTech Connect (OSTI)

    Krebs, K.; Lao, H.C.; Fortmann, R.; Tichenor, B.

    1998-09-01

    The paper discusses an evaluation of latex paint (interior, water based) as a source of indoor pollution. A major objective of the research is the development of methods for predicting emissions of volatile organic compounds (VOCs) over time. Test specimens of painted gypsumboard are placed in dynamic flow-through test chambers. Samples of the outlet air are collected on Tenax sorbents and thermally desorbed for analysis by gas chromatography/flame ionization detection. These tests produce short- and long-term data for latex paint emissions of Texanol, 2-2(-butoxyethoxy)-ethanol, and glycols. Evaluation of the data shows that most of the Texanol emissions occur within the first few days, and emissions of the glycols occur over several months. This behavior may be described by an evaporative mass transfer process that dominates the short-term emissions, while long-term emissions are limited by diffusion processes within the dry paint-gypsumboard.

  8. Sandia Energy - Pratt Whitney Rocketdyne Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pratt Whitney Rocketdyne Testing Home Renewable Energy Energy Facilities Partnership News EC News & Events Concentrating Solar Power Solar National Solar Thermal Test Facility...

  9. Thermal And-Or Near Infrared At Railroad Valley Area (Laney,...

    Open Energy Info (EERE)

    phenomena. The second objective relates to testing satellite thermal infrared (TIR) data for locating thermal anomalies that may be related to blind systems. A third...

  10. Modeling the thermal deformation of TATB-based explosives. Part 1: Thermal expansion of “neat-pressed” polycrystalline TATB

    SciTech Connect (OSTI)

    Luscher, Darby J.

    2014-05-08

    We detail a modeling approach to simulate the anisotropic thermal expansion of polycrystalline (1,3,5-triamino-2,4,6-trinitrobenzene) TATB-based explosives that utilizes microstructural information including porosity, crystal aspect ratio, and processing-induced texture. This report, the first in a series, focuses on nonlinear thermal expansion of “neat-pressed” polycrystalline TATB specimens which do not contain any binder; additional complexities related to polymeric binder and irreversible ratcheting behavior are briefly discussed, however detailed investigation of these aspects are deferred to subsequent reports. In this work we have, for the first time, developed a mesoscale continuum model relating the thermal expansion of polycrystal TATB specimens to their microstructural characteristics. A self-consistent homogenization procedure is used to relate macroscopic thermoelastic response to the constitutive behavior of single-crystal TATB. The model includes a representation of grain aspect ratio, porosity, and crystallographic texture attributed to the consolidation process. A quantitative model is proposed to describe the evolution of preferred orientation of graphitic planes in TATB during consolidation and an algorithm constructed to develop a discrete representation of the associated orientation distribution function. Analytical and numerical solutions using this model are shown to produce textures consistent with previous measurements and characterization for isostatic and uniaxial “die-pressed” specimens. Predicted thermal strain versus temperature for textured specimens are shown to be in agreement with corresponding experimental measurements. Using the developed modeling approach, several simulations have been run to investigate the influence of microstructure on macroscopic thermal expansion behavior. Results from these simulations are used to identify qualitative trends. Implications of the identified trends are discussed in the context of thermal deformation of engineered components whose consolidation process is generally more complex than isostatic or die-pressed specimens. Finally, an envisioned application of the modeling approach to simulating thermal expansion of weapon systems and components is outlined along with necessary future work to introduce the effects of binder and ratcheting behavior. Key conclusions from this work include the following. Both porosity and grain aspect ratio have an influence on the thermal expansion of polycrystal TATB considering realistic material variability. Thepreferred orientation of the single crystal TATB [001] poles within a polycrystal gives rise to pronounced anisotropy of the macroscopic thermal expansion. The extent of this preferred orientation depends on the magnitude of deformation, and consequently, is expected to vary spatially throughout manufactured components much like porosity. The modeling approach presented here has utility toward bringing spatially variable microstructural features into macroscale system engineering modelsAbstract Not Provided

  11. High-Heat Flux Testing of Irradiated Tungsten based Materials for Fusion Applications using Infrared Plasma Arc Lamps

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sabau, Adrian S; Ohriner, Evan Keith; Kiggans, Jr, James O; Schaich, Charles Ross; Ueda, Yoshio; Harper, David C; Katoh, Yutai; Snead, Lance Lewis; Byun, Thak Sang

    2014-01-01

    Testing of advanced materials and component mock-ups under prototypical fusion high-heat flux conditions, while historically a mainstay of fusion research has proved challenging, especially for irradiated materials. A new high-heat flux testing facility based on water-wall Plasma Arc Lamps (PALs) is now being used for materials and small component testing. Two PAL systems, utilizing a 12,000 C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, are currently in use. The first PAL system provides a maximum incident heat flux of 4.2 MW/m2 over an area of 9x12 cm2. The secondmore » PAL available at ORNL provides a maximum incident heat flux of 27 MW/m2 over an area of 1x10 cm2. The absorbed heat fluxes into a tungsten target for the two PALs are approximately 1.97 and 12.7 MW/m2, respectively. This paper will present the overall design of the new PAL facilities as well as the design and implementation of the Irradiated Material Target Station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interested, such as those for plasma facing components. Moreover, IMTS designs are underway to extend the testing of small mock-ups for assessing the combined heating and thermomechanical effects of cooled, irradiated components. For the testing of material coupons , the specimens are placed in a shallow recess within the molybdenum holder that is attached to a water-cooled copper alloy rod. As the measurement of the specimen temperature for PAL is historically challenging since traditional approaches of temperature measurement cannot be employed due to the infrared heating and proximity of the PAL reflector to the specimen that does not allow a direct line of site, experiments for temperature calibration are presented. Finally, results for the high-heat flux testing of tungsten-based materials using the PAL are presented. As a demonstration of the system, results will be shown of thermal fatigue and high-heat flux testing of tungsten coupon specimens that were neutron irradiated in the HFIR reactor to neutron dose consistent to ITER lifetime.« less

  12. High-Heat Flux Testing of Irradiated Tungsten based Materials for Fusion Applications using Infrared Plasma Arc Lamps

    SciTech Connect (OSTI)

    Sabau, Adrian S; Ohriner, Evan Keith; Kiggans Jr, James O; Schaich, Charles Ross; Ueda, Yoshio; Harper, David C; Katoh, Yutai; Snead, Lance Lewis; Byun, Thak Sang

    2014-01-01

    Testing of advanced materials and component mock-ups under prototypical fusion high-heat flux conditions, while historically a mainstay of fusion research has proved challenging, especially for irradiated materials. A new high-heat flux testing facility based on water-wall Plasma Arc Lamps (PALs) is now being used for materials and small component testing. Two PAL systems, utilizing a 12,000 C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, are currently in use. The first PAL system provides a maximum incident heat flux of 4.2 MW/m2 over an area of 9x12 cm2. The second PAL available at ORNL provides a maximum incident heat flux of 27 MW/m2 over an area of 1x10 cm2. The absorbed heat fluxes into a tungsten target for the two PALs are approximately 1.97 and 12.7 MW/m2, respectively. This paper will present the overall design of the new PAL facilities as well as the design and implementation of the Irradiated Material Target Station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interested, such as those for plasma facing components. Moreover, IMTS designs are underway to extend the testing of small mock-ups for assessing the combined heating and thermomechanical effects of cooled, irradiated components. For the testing of material coupons , the specimens are placed in a shallow recess within the molybdenum holder that is attached to a water-cooled copper alloy rod. As the measurement of the specimen temperature for PAL is historically challenging since traditional approaches of temperature measurement cannot be employed due to the infrared heating and proximity of the PAL reflector to the specimen that does not allow a direct line of site, experiments for temperature calibration are presented. Finally, results for the high-heat flux testing of tungsten-based materials using the PAL are presented. As a demonstration of the system, results will be shown of thermal fatigue and high-heat flux testing of tungsten coupon specimens that were neutron irradiated in the HFIR reactor to neutron dose consistent to ITER lifetime.

  13. Non-destructive testing method and apparatus

    DOE Patents [OSTI]

    Akers, Douglas W. (Idaho Falls, ID)

    2011-10-04

    Non-destructive testing apparatus may comprise a photon source and a source material that emits positrons in response to bombardment of the source material with photons. The source material is positionable adjacent the photon source and a specimen so that when the source material is positioned adjacent the photon source it is exposed to photons produced thereby. When the source material is positioned adjacent the specimen, the specimen is exposed to at least some of the positrons emitted by the source material. A detector system positioned adjacent the specimen detects annihilation gamma rays emitted by the specimen. Another embodiment comprises a neutron source and a source material that emits positrons in response to neutron bombardment.

  14. Effects of thermal fluctuations on thermal inflation

    SciTech Connect (OSTI)

    Hiramatsu, Takashi; Miyamoto, Yuhei; Yokoyama, Jun’ichi

    2015-03-12

    The mechanism of thermal inflation, a relatively short period of accelerated expansion after primordial inflation, is a desirable ingredient for a certain class of particle physics models if they are not to be in contention with the cosmology of the early Universe. Though thermal inflation is most simply described in terms of a thermal effective potential, a thermal environment also gives rise to thermal fluctuations that must be taken into account. We numerically study the effects of these thermal fluctuations using lattice simulations. We conclude that though they do not ruin the thermal inflation scenario, the phase transition at the end of thermal inflation proceeds through phase mixing and is therefore not accompanied by the formations of bubbles nor appreciable amplitude of gravitational waves.

  15. High Temperature Thermal Array for Next Generation Solar Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This ...

  16. NREL: Transportation Research - Electric Motor Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Motor Thermal Management A photo of a piece of laboratory testing equipment. NREL research in electric motors is helping to improve the performance and reliability of electric-drive vehicles. Photo by Kevin Bennion, NREL NREL's electric motor thermal management research generates experimental data and simulation processes for the modeling, analysis, design, and construction of new electric motors. Electric motor thermal management involves a multifaceted interaction of motor operating

  17. Results of charpy V-notch impact testing of structural steel...

    Office of Scientific and Technical Information (OSTI)

    MATERIALS SCIENCE; FERRITIC STEELS; PHYSICAL RADIATION EFFECTS; TENSILE PROPERTIES; IRRADIATION; CHARPY TEST A capsule containing Charpy V-notch (CVN) and mini-tensile specimens...

  18. Thermal Control & System Integration

    Broader source: Energy.gov [DOE]

    The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

  19. DYNA3D Material Model 71 - Solid Element Test Problem

    SciTech Connect (OSTI)

    Zywicz, E

    2008-01-24

    A general phenomenological-based elasto-plastic nonlinear isotropic strain hardening material model was implemented in DYNA3D for use in solid, beam, truss, and shell elements. The constitutive model, Model 71, is based upon conventional J2 plasticity and affords optional temperature and rate dependence (visco-plasticity). The expressions for strain hardening, temperature dependence, and rate dependence allow it to represent a wide variety of material responses. Options to capture temperature changes due to adiabatic heating and thermal straining are incorporated into the constitutive framework as well. The verification problem developed for this constitutive model consists of four uni-axial right cylinders subject to constant true strain-rate boundary conditions. Three of the specimens have different constant strain rates imposed, while the fourth specimen is subjected to several strain rate jumps. The material parameters developed by Fehlmann (2005) for 21-6-9 Nitronic steel are utilized. As demonstrated below, the finite element (FE) simulations are in excellent agreement with the theoretical responses and indicated the model is functioning as desired. Consequently, this problem serves as both a verification problem and regression test problem for DYNA3D.

  20. Process for measuring low cadmium levels in blood and other biological specimens

    DOE Patents [OSTI]

    Peterson, David P.; Huff, Edmund A.; Bhattacharyya, Maryka H.

    1994-05-03

    A process for measuring low levels of cadmium in blood and other biological specimens is provided without interference from high levels of alkali metal contaminants by forming an aqueous solution and without contamination by environmental cadmium absent the proteins from the specimen, selectively removing cadmium from the aqueous solution on an anion exchange resin, thereby removing the alkali metal contaminants, resolubilizing cadmium from the resin to form a second solution and analyzing the second solution for cadmium, the process being carried out in a cadmium-free environment.

  1. Process for measuring low cadmium levels in blood and other biological specimens

    DOE Patents [OSTI]

    Peterson, David P. (Orland Park, IL); Huff, Edmund A. (Lemont, IL); Bhattacharyya, Maryka H. (Naperville, IL)

    1994-01-01

    A process for measuring low levels of cadmium in blood and other biological specimens is provided without interference from high levels of alkali metal contaminants by forming an aqueous solution and without contamination by environmental cadmium absent the proteins from the specimen, selectively removing cadmium from the aqueous solution on an anion exchange resin, thereby removing the alkali metal contaminants, resolubilizing cadmium from the resin to form a second solution and analyzing the second solution for cadmium, the process being carried out in a cadmium-free environment.

  2. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Use of Laser Engineered Net Shaping for Rapid Manufacturing of Dies with Protective Coatings and Improved Thermal Management

    SciTech Connect (OSTI)

    Brevick, Jerald R.

    2014-06-13

    In the high pressure die casting process, molten metal is introduced into a die cavity at high pressure and velocity, enabling castings of thin wall section and complex geometry to be obtained. Traditional die materials have been hot work die steels, commonly H13. Manufacture of the dies involves machining the desired geometry from monolithic blocks of annealed tool steel, heat treating to desired hardness and toughness, and final machining, grinding and polishing. The die is fabricated with internal water cooling passages created by drilling. These materials and fabrication methods have been used for many years, however, there are limitations. Tool steels have relatively low thermal conductivity, and as a result, it takes time to remove the heat from the tool steel via the drilled internal water cooling passages. Furthermore, the low thermal conductivity generates large thermal gradients at the die cavity surfaces, which ultimately leads to thermal fatigue cracking on the surfaces of the die steel. The high die surface temperatures also promote the metallurgical bonding of the aluminum casting alloy to the surface of the die steel (soldering). In terms of process efficiency, these tooling limitations reduce the number of die castings that can be made per unit time by increasing cycle time required for cooling, and increasing downtime and cost to replace tooling which has failed either by soldering or by thermal fatigue cracking (heat checking). The objective of this research was to evaluate the feasibility of designing, fabricating, and testing high pressure die casting tooling having properties equivalent to H13 on the surface in contact with molten casting alloy - for high temperature and high velocity molten metal erosion resistance – but with the ability to conduct heat rapidly to interior water cooling passages. A layered bimetallic tool design was selected, and the design evaluated for thermal and mechanical performance via finite element analysis. H13 was retained as the exterior layer of the tooling, while commercially pure copper was chosen for the interior structure of the tooling. The tooling was fabricated by traditional machining of the copper substrate, and H13 powder was deposited on the copper via the Laser Engineered Net Shape (LENSTM) process. The H13 deposition layer was then final machined by traditional methods. Two tooling components were designed and fabricated; a thermal fatigue test specimen, and a core for a commercial aluminum high pressure die casting tool. The bimetallic thermal fatigue specimen demonstrated promising performance during testing, and the test results were used to improve the design and LENS TM deposition methods for subsequent manufacture of the commercial core. Results of the thermal finite element analysis for the thermal fatigue test specimen indicate that it has the ability to lose heat to the internal water cooling passages, and to external spray cooling, significantly faster than a monolithic H13 thermal fatigue sample. The commercial core is currently in the final stages of fabrication, and will be evaluated in an actual production environment at Shiloh Die casting. In this research, the feasibility of designing and fabricating copper/H13 bimetallic die casting tooling via LENS TM processing, for the purpose of improving die casting process efficiency, is demonstrated.

  3. Validation of thermal models for a prototypical MEMS thermal actuator.

    SciTech Connect (OSTI)

    Gallis, Michail A.; Torczynski, John Robert; Piekos, Edward Stanley; Serrano, Justin Raymond; Gorby, Allen D.; Phinney, Leslie Mary

    2008-09-01

    This report documents technical work performed to complete the ASC Level 2 Milestone 2841: validation of thermal models for a prototypical MEMS thermal actuator. This effort requires completion of the following task: the comparison between calculated and measured temperature profiles of a heated stationary microbeam in air. Such heated microbeams are prototypical structures in virtually all electrically driven microscale thermal actuators. This task is divided into four major subtasks. (1) Perform validation experiments on prototypical heated stationary microbeams in which material properties such as thermal conductivity and electrical resistivity are measured if not known and temperature profiles along the beams are measured as a function of electrical power and gas pressure. (2) Develop a noncontinuum gas-phase heat-transfer model for typical MEMS situations including effects such as temperature discontinuities at gas-solid interfaces across which heat is flowing, and incorporate this model into the ASC FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (3) Develop a noncontinuum solid-phase heat transfer model for typical MEMS situations including an effective thermal conductivity that depends on device geometry and grain size, and incorporate this model into the FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (4) Perform combined gas-solid heat-transfer simulations using Calore with these models for the experimentally investigated devices, and compare simulation and experimental temperature profiles to assess model accuracy. These subtasks have been completed successfully, thereby completing the milestone task. Model and experimental temperature profiles are found to be in reasonable agreement for all cases examined. Modest systematic differences appear to be related to uncertainties in the geometric dimensions of the test structures and in the thermal conductivity of the polycrystalline silicon test structures, as well as uncontrolled nonuniform changes in this quantity over time and during operation.

  4. Testing of a Transport Cask for Research Reactor Spent Fuel - 13003

    SciTech Connect (OSTI)

    Mourao, Rogerio P.; Leite da Silva, Luiz; Miranda, Carlos A.; Mattar Neto, Miguel; Quintana, Jose F.A.; Saliba, Roberto O.; Novara, Oscar E.

    2013-07-01

    Since the beginning of the last decade three Latin American countries that operate research reactors - Argentina, Brazil and Chile - have been joining efforts to improve the regional capability in the management of spent fuel elements from the TRIGA and MTR reactors operated in the region. A main drive in this initiative, sponsored by the International Atomic Energy Agency, is the fact that no definite solution regarding the back end of the research reactor fuel cycle has been taken by any of the participating country. However, any long-term solution - either disposition in a repository or storage away from reactor - will involve at some stage the transportation of the spent fuel through public roads. Therefore, a licensed cask that provides adequate shielding, assurance of subcriticality, and conformance to internationally accepted safety, security and safeguards regimes is considered a strategic part of any future solution to be adopted at a regional level. As a step in this direction, a packaging for the transport of irradiated fuel for MTR and TRIGA research reactors was designed by the tri-national team and a half-scale model equipped with the MTR version of the internal basket was constructed in Argentina and Brazil and tested in Brazil. Three test campaigns have been carried out so far, covering both normal conditions of transportation and hypothetical accident conditions. After failing the tests in the first two test series, the specimen successfully underwent the last test sequence. A second specimen, incorporating the structural improvements in view of the previous tests results, will be tested in the near future. Numerical simulations of the free drop and thermal tests are being carried out in parallel, in order to validate the computational modeling that is going to be used as a support for the package certification. (authors)

  5. Recapturing NERVA-Derived Fuels for Nuclear Thermal Propulsion...

    Office of Scientific and Technical Information (OSTI)

    the technology and the issues associated with using it for the next generation of nuclear thermal rockets. The issues discussed include a comparison of today's testing...

  6. Test fire environmental testing operations at Mound Applied Technologies

    SciTech Connect (OSTI)

    1992-03-01

    This paper describes Mound Laboratory`s environmental testing operations. The function of environmental testing is to perform quality environmental (thermal, mechanical, spin, resistance, visual) testing/conditioning of inert/explosive products to assure their compliance with specified customer acceptance criteria. Capabilities, organization, equipment specifications, and test facilities are summarized.

  7. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    2012-01-01

    HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  8. FRACTURE MECHANICS APPROACH TO ESTIMATE FATIGUE LIVES OF WELDED LAP-SHEAR SPECIMENS

    SciTech Connect (OSTI)

    Lam, P.; Michigan, J.

    2014-04-25

    A full range of stress intensity factor solutions for a kinked crack is developed as a function of weld width and the sheet thickness. When used with the associated main crack solutions (global stress intensity factors) in terms of the applied load and specimen geometry, the fatigue lives can be estimated for the laser-welded lap-shear specimens. The estimations are in good agreement with the experimental data. A classical solution for an infinitesimal kink is also employed in the approach. However, the life predictions tend to overestimate the actual fatigue lives. The traditional life estimations with the structural stress along with the experimental stress-fatigue life data (S-N curve) are also provided. In this case, the estimations only agree with the experimental data under higher load conditions.

  9. NREL: Energy Systems Integration Facility - Thermal Distribution Bus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Distribution Bus The Energy Systems Integration Facility's integrated thermal distribution bus consists of a thermal water loop connected to a research boiler and chiller that provide precise and efficient control of the water temperature delivered to laboratories. The thermal distribution bus allows the research community to study and test heating, ventilation, and air conditioning systems as well as combined heat and power applications that require controlled input water temperature or

  10. Thermal Energy Storage

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Cooperman, Alissa; Bouza, Antonio

    2013-06-05

    The article discusses thermal energy storage technologies. This article addresses benefits of TES at both the building site and the electricity generation source. The energy savings and market potential of thermal energy store are reviewed as well.

  11. In-Situ Creep Testing Capability for the Advanced Test Reactor

    SciTech Connect (OSTI)

    B. G. Kim; J. L. Rempe; D. L. Knudson; K. G. Condie; B. H. Sencer

    2012-09-01

    An instrumented creep testing capability is being developed for specimens irradiated in Pressurized Water Reactor (PWR) coolant conditions at the Advanced Test Reactor (ATR). The test rig has been developed such that samples will be subjected to stresses ranging from 92 to 350 MPa at temperatures between 290 and 370 °C up to at least 2 dpa (displacement per atom). The status of Idaho National Laboratory (INL) efforts to develop the test rig in-situ creep testing capability for the ATR is described. In addition to providing an overview of in-pile creep test capabilities available at other test reactors, this paper reports efforts by INL to evaluate a prototype test rig in an autoclave at INL’s High Temperature Test Laboratory (HTTL). Initial data from autoclave tests with 304 stainless steel (304 SS) specimens are reported.

  12. Chemical Quantification of Atomic-Scale EDS Maps under Thin Specimen Conditions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lu, Ping; Romero, Eric; Lee, Shinbuhm; MacManus-Driscoll, Judith L.; Jia, Quanxi

    2014-10-13

    We report our effort to quantify atomic-scale chemical maps obtained by collecting energy-dispersive X-ray spectra (EDS) using scanning transmission electron microscopy (STEM) (STEM-EDS). Under a thin specimen condition and when the EDS scattering potential is localized, the X-ray counts from atomic columns can be properly counted by fitting Gaussian peaks at the atomic columns, and can then be used for site-by-site chemical quantification. The effects of specimen thickness and X-ray energy on the Gaussian peak-width are investigated by using SrTiO3 (STO) as a model specimen. The relationship between the peak-width and spatial-resolution of an EDS map is also studied. Furthermore,more » the method developed by this work is applied to study a Sm-doped STO thin film and antiphase boundaries present within the STO film. We find that Sm atoms occupy both Sr and Ti sites but preferably the Sr sites, and Sm atoms are relatively depleted at the antiphase boundaries likely due to the effect of strain.« less

  13. Microstructural and micromechanical characterization of IN718 theta shaped specimens built with electron beam melting

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cakmak, Ercan; Kirka, Michael M.; Watkins, Thomas R.; Cooper, Ryan C.; An, Ke; Choo, Hahn; Wu, Wei; Dehoff, Ryan R.; Babu, Sudarsanam S.

    2016-02-23

    Theta-shaped specimens were additively manufactured out of Inconel 718 powders using an electron beam melting technique, as a model complex load bearing structure. We employed two different build strategies; producing two sets of specimens. Microstructural and micro-mechanical characterizations were performed using electron back-scatter, synchrotron x-ray and in-situ neutron diffraction techniques. In particular, the cross-members of the specimens were the focus of the synchrotron x-ray and in-situ neutron diffraction measurements. The build strategies employed resulted in the formation of distinct microstructures and crystallographic textures, signifying the importance of build-parameter manipulation for microstructural optimization. Large strain anisotropy of the different lattice planesmore » was observed during in-situ loading. Texture was concluded to have a distinct effect upon both the axial and transverse strain responses of the cross-members. In particular, the (200), (220) and (420) transverse lattice strains all showed unexpected overlapping trends in both builds. This was related to the strong {200} textures along the build/loading direction, providing agreement between the experimental and calculated results.« less

  14. Data summary report for fission product release test HI-1. [PWR; BWR

    SciTech Connect (OSTI)

    Osborne, M.F.; lorenz, R.A.; Travis, J.R.; Webster, C.S.

    1982-12-01

    This first in a series of high-temperature fission product release tests was conducted for 30 min at 1400/sup 0/C, with the release taking place into flowing steam. The fuel specimen was a 20-cm-long section of H.B. Robinson fuel rod, irradiated to 28,000 MWd per metric ton (t). After the test, the Zircaloy cladding of the specimen was almost completely oxidized and was quite fragile. The fission product collection system included a thermal gradient tube (700-150/sup 0/C), filters, heated charcoal, and cooled charcoal. Gamma ray analysis of apparatus components and collectors showed that about 2.83% of the /sup 85/Kr and 1.75% of the /sup 137/Cs were released from the fuel. Activation analysis of leach solutions from these components indicated that 2.04% of the /sup 129/I was released. Other analyses revealed small but significant releases of the radionuclides /sup 125/Sb and /sup 106/Ru, and of the elements Br, Rb, Sr, Zr, Ag, Sn, Te, Ba, and La.

  15. A proposed benchmark for simulation in radiographic testing

    SciTech Connect (OSTI)

    Jaenisch, G.-R.; Deresch, A.; Bellon, C.; Schumm, A.; Guerin, P.

    2014-02-18

    The purpose of this benchmark study is to compare simulation results predicted by various models of radiographic testing, in particular those that are capable of separately predicting primary and scatter radiation for specimens of arbitrary geometry.

  16. Thermal Performance Benchmarking (Presentation)

    SciTech Connect (OSTI)

    Moreno, G.

    2014-11-01

    This project will benchmark the thermal characteristics of automotive power electronics and electric motor thermal management systems. Recent vehicle systems will be benchmarked to establish baseline metrics, evaluate advantages and disadvantages of different thermal management systems, and identify areas of improvement to advance the state-of-the-art.

  17. Thermal neutron detection system

    DOE Patents [OSTI]

    Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

    2000-01-01

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  18. Thermal Analysis of Closed Systems

    Energy Science and Technology Software Center (OSTI)

    1987-10-01

    TAP-LOOP is a finite-difference program designed for steady-state and transient thermal analysis of recirculating fluid loops and associated heat transfer equipment; however, it is not limited to loop analysis. TAP-LOOP was developed to perform scoping and conceptual design analyses for closed test loops in the Fast Flux Test Facility (FFTF), but it can handle a variety of problems which can be described in terms of potentials, sources, sinks, and storage including, in addition to heatmore » transfer problems, studies of potential fluid flow, electrical networks, and stress analysis.« less

  19. Translaminar fracture toughness test methods and results from interlaboratory tests of carbon/epoxy laminates

    SciTech Connect (OSTI)

    Underwood, J.H.; Kortschot, M.T.; Lloyd, W.R.; Eidinoff, H.L.; Wilson, D.A.; Ashbaugh, N.

    1995-12-31

    Fracture tests were performed with carbon/polymer laminates and analyzed for the purpose of developing translaminar fracture toughness test and analysis procedures. Notched specimens were tested of two types of symmetrical layups--quasi-isotropic [0/45/90] and [0/90]; two carbon fiber/epoxy materials--a relatively brittle T300 fiber/976 epoxy and a tougher AS4 fiber/977-2 epoxy; two laminate thicknesses--2 mm and 4 mm; and three specimen configurations--the standard three-point bend and compact configurations, and an extended compact specimen with arm-height to specimen-width ratio of 1.9. Stress and displacement expressions were obtained for the extended compact specimen, including those for stress intensity factor, K, and crack mouth opening displacement, V, in terms of relative notch length, a/W, and for a/W in terms of V. Relationships for the bending stresses that control self-similar and off-axis cracking for the extended compact specimen were derived.

  20. Charpy impact test results on five materials and NIST verification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    specimens using instrumented 2-mm and 8-mm strikers (Conference) | SciTech Connect Charpy impact test results on five materials and NIST verification specimens using instrumented 2-mm and 8-mm strikers Citation Details In-Document Search Title: Charpy impact test results on five materials and NIST verification specimens using instrumented 2-mm and 8-mm strikers × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of

  1. Underground Thermal Energy Storage (UTES) Via Borehole and Aquifer...

    Energy Savers [EERE]

    Conductivity Test (LTCT) or Distributed Thermal Response Test (DTRT) * Marines Corps Logistics Base, Albany GA (MCLB) * 110 m u-bend borehole heat exchanger * A 72 hours LTCT was...

  2. Sandia Energy - Air Force Research Laboratory Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from the Air Force Research Laboratory in Albuquerque utilized the site at the National Solar Thermal Test Facility to evaluate seismic and optical activity from explosives set...

  3. Sandia Energy - Air Force Research Laboratory Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Air Force Research Laboratory (AFRL) in Albuquerque utilized the site at the National Solar Thermal Test Facility (NSTTF) to evaluate seismic and optical activity from...

  4. Advanced thermal barrier coating system development: Technical progress report

    SciTech Connect (OSTI)

    1996-08-07

    Objectives are to provide an improved TBC system with increased temperature capability and improved reliability, for the Advanced Turbine Systems program (gas turbine). The base program consists of three phases: Phase I, program planning (complete); Phase II, development; and Phase III (selected specimen-bench test). Work is currently being performed in Phase II.

  5. Sandia Energy - Photovoltaic (PV) Regional Test Center (RTC)...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic (PV) Regional Test Center (RTC) Website Goes Live Home Renewable Energy Energy Partnership News SunShot News & Events Photovoltaic Solar National Solar Thermal Test...

  6. Catalytic thermal barrier coatings

    DOE Patents [OSTI]

    Kulkarni, Anand A. (Orlando, FL); Campbell, Christian X. (Orlando, FL); Subramanian, Ramesh (Oviedo, FL)

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  7. Scattering Solar Thermal Concentrators

    Office of Environmental Management (EM)

    sunshot DOEGO-102012-3669 * September 2012 MOTIVATION All thermal concentrating solar power (CSP) systems use solar tracking, which involves moving large mirror surfaces...

  8. Battery Thermal Characterization

    SciTech Connect (OSTI)

    Saxon, Aron; Powell, Mitchell; Shi, Ying

    2015-06-09

    This presentation provides an update of NREL's battery thermal characterization efforts for the 2015 U.S. Department of Energy Annual Merit Reviews.

  9. Sandia Thermal Program

    Energy Science and Technology Software Center (OSTI)

    2005-11-23

    Thermal analysis in 1-D planar, cylindrical and spherical geometries using control volume finite element spatial discretization with 1st and 2nd order implicit time integrators.

  10. NREL: TroughNet - Parabolic Trough System and Component Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parabolic Trough System and Component Testing Here you'll find information about parabolic trough system and components testing, as well facilities and laboratories used for testing. Tests include those for: Concentrator thermal efficiency Receiver thermal performance Mirror contour and collector alignment Mirror reflectivity and durability Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Concentrator Thermal Efficiency Testing Researchers and industry

  11. Variable pressure thermal insulating jacket

    DOE Patents [OSTI]

    Nelson, Paul A. (Wheaton, IL); Malecha, Richard F. (Naperville, IL); Chilenskas, Albert A. (Chicago, IL)

    1994-01-01

    A device for controlled insulation of a thermal device. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communcation with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket.

  12. Variable pressure thermal insulating jacket

    DOE Patents [OSTI]

    Nelson, P.A.; Malecha, R.F.; Chilenskas, A.A.

    1994-09-20

    A device for controlled insulation of a thermal device is disclosed. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communication with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket. 10 figs.

  13. Thermal Shock-resistant Cement

    SciTech Connect (OSTI)

    Sugama T.; Pyatina, T.; Gill, S.

    2012-02-01

    We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cement’s resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved cement, causing its volume to expand.

  14. Thermal Management Studies and Modeling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Studies and Modeling Thermal Management Studies and Modeling 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon es_12_pesaran.pdf More Documents & Publications Battery Thermal Modeling and Testing Vehicle Technologies Office Merit Review 2014: Overview and Progress of the Battery Testing, Design and Analysis Activity Overview and Progress of the Battery Testing, Analysis, and Design Acti

  15. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, G.A.; Elder, M.G.; Kemme, J.E.

    1984-03-20

    The disclosure is directed to an apparatus for thermally protecting sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components such as electronics to a heat sink such as ice.

  16. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, Gloria A. (Los Alamos, NM); Elder, Michael G. (Los Alamos, NM); Kemme, Joseph E. (Albuquerque, NM)

    1985-01-01

    An apparatus which thermally protects sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components to a heat sink such as ice.

  17. Tunable thermal link

    DOE Patents [OSTI]

    Chang, Chih-Wei; Majumdar, Arunava; Zettl, Alexander K.

    2014-07-15

    Disclosed is a device whereby the thermal conductance of a multiwalled nanostructure such as a multiwalled carbon nanotube (MWCNT) can be controllably and reversibly tuned by sliding one or more outer shells with respect to the inner core. As one example, the thermal conductance of an MWCNT dropped to 15% of the original value after extending the length of the MWCNT by 190 nm. The thermal conductivity returned when the tube was contracted. The device may comprise numbers of multiwalled nanotubes or other graphitic layers connected to a heat source and a heat drain and various means for tuning the overall thermal conductance for applications in structure heat management, heat flow in nanoscale or microscale devices and thermal logic devices.

  18. Thermal treatment wall

    DOE Patents [OSTI]

    Aines, Roger D. (Livermore, CA); Newmark, Robin L. (Livermore, CA); Knauss, Kevin G. (Livermore, CA)

    2000-01-01

    A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.

  19. Solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L. (Livermore, CA)

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  20. Examination of a Size-Change Test for Photovoltaic Encapsulation Materials: Preprint

    SciTech Connect (OSTI)

    Miller, D. C.; Wohlgemuth, J. H.; Gu, X.; Ji, L.; Kelly, G.; Gu, X.; Nickel, N.; Norum, P.; Shioda, T.; Tamizhmani, G.

    2012-08-01

    We examine a proposed test standard that can be used to evaluate the maximum representative change in linear dimensions of sheet encapsulation products for photovoltaic modules (resulting from their thermal processing). The proposed protocol is part of a series of material-level tests being developed within Working Group 2 of the Technical Committee 82 of the International Electrotechnical Commission. The characterization tests are being developed to aid module design (by identifying the essential characteristics that should be communicated on a datasheet), quality control (via internal material acceptance and process control), and failure analysis. Discovery and interlaboratory experiments were used to select particular parameters for the size-change test. The choice of a sand substrate and aluminum carrier is explored relative to other options. The temperature uniformity of +/- 5C for the substrate was confirmed using thermography. Considerations related to the heating device (hot-plate or oven) are explored. The time duration of 5 minutes was identified from the time-series photographic characterization of material specimens (EVA, ionomer, PVB, TPO, and TPU). The test procedure was revised to account for observed effects of size and edges. The interlaboratory study identified typical size-change characteristics, and also verified the absolute reproducibility of +/- 5% between laboratories.

  1. Trial Run of a Junction-Box Attachment Test for Use in Photovoltaic Module Qualification (Presentation)

    SciTech Connect (OSTI)

    Miller, D.; Deibert, S.; Wohlgemuth, J.

    2014-06-01

    Engineering robust adhesion of the junction-box (j-box) is a hurdle typically encountered by photovoltaic (PV) module manufacturers during product development and manufacturing process control. There are historical incidences of adverse effects (e.g., fires), caused when the j-box/adhesive/module system has failed in the field. The addition of a weight to the j-box during the 'damp-heat', 'thermal-cycle', or 'creep' tests within the IEC qualification protocol is proposed to verify the basic robustness of the adhesion system. The details of the proposed test are described, in addition to a trial run of the test procedure. The described experiments examine 4 moisture-cured silicones, 4 foam tapes, and a hot-melt adhesive used in conjunction with glass, KPE, THV, and TPE substrates. For the purpose of validating the experiment, j-boxes were adhered to a substrate, loaded with a prescribed weight, and then subjected to aging. The replicate mock-modules were aged in an environmental chamber (at 85 deg C/85% relative humidity for 1000 hours; then 100 degrees C/<10% relative humidity for 200 hours) or fielded in Golden, Miami, and Phoenix for 1 year. Attachment strength tests, including pluck and shear test geometries, were also performed on smaller component specimens.

  2. Thermal Systems Process and Components Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Thermal Systems Process and Components Laboratory at the Energy Systems Integration Facility. The focus of the Thermal Systems Process and Components Laboratory at NREL's Energy Systems Integration Facility (ESIF) is to research, develop, test, and evaluate new techniques for thermal energy storage systems that are relevant to utility-scale concentrating solar power plants. The laboratory holds test systems that can provide heat transfer fluids for the evaluation of heat exchangers and thermal energy storage devices. The existing system provides molten salt at temperatures up to 800 C. This unit is charged with nitrate salt rated to 600 C, but is capable of handling other heat transfer fluid compositions. Three additional test bays are available for future deployment of alternative heat transfer fluids such as hot air, carbon dioxide, or steam systems. The Thermal Systems Process and Components Laboratory performs pilot-scale thermal energy storage system testing through multiple charge and discharge cycles to evaluate heat exchanger performance and storage efficiency. The laboratory equipment can also be utilized to test instrument and sensor compatibility with hot heat transfer fluids. Future applications in the laboratory may include the evaluation of thermal energy storage systems designed to operate with supercritical heat transfer fluids such as steam or carbon dioxide. These tests will require the installation of test systems capable of providing supercritical fluids at temperatures up to 700 C.

  3. One-Dimensional Time to Explosion (Thermal Sensitivity) of ANPZ

    SciTech Connect (OSTI)

    Hsu, P.; Hust, G.; McClelland, M.; Gresshoff, M.

    2014-11-12

    Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 C) and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. This report summarizes the recent ODTX experimental data and modeling results for 2,6-diamino-3,5-dintropyrazine (ANPZ).

  4. Scattering Solar Thermal Concentrators

    SciTech Connect (OSTI)

    Giebink, Noel C.

    2015-01-31

    This program set out to explore a scattering-based approach to concentrate sunlight with the aim of improving collector field reliability and of eliminating wind loading and gross mechanical movement through the use of a stationary collection optic. The approach is based on scattering sunlight from the focal point of a fixed collection optic into the confined modes of a sliding planar waveguide, where it is transported to stationary tubular heat transfer elements located at the edges. Optical design for the first stage of solar concentration, which entails focusing sunlight within a plane over a wide range of incidence angles (>120 degree full field of view) at fixed tilt, led to the development of a new, folded-path collection optic that dramatically out-performs the current state-of-the-art in scattering concentration. Rigorous optical simulation and experimental testing of this collection optic have validated its performance. In the course of this work, we also identified an opportunity for concentrating photovoltaics involving the use of high efficiency microcells made in collaboration with partners at the University of Illinois. This opportunity exploited the same collection optic design as used for the scattering solar thermal concentrator and was therefore pursued in parallel. This system was experimentally demonstrated to achieve >200x optical concentration with >70% optical efficiency over a full day by tracking with <1 cm of lateral movement at fixed latitude tilt. The entire scattering concentrator waveguide optical system has been simulated, tested, and assembled at small scale to verify ray tracing models. These models were subsequently used to predict the full system optical performance at larger, deployment scale ranging up to >1 meter aperture width. Simulations at an aperture widths less than approximately 0.5 m with geometric gains ~100x predict an overall optical efficiency in the range 60-70% for angles up to 50 degrees from normal. However, the concentrator optical efficiency was found to decrease significantly with increasing aperture width beyond 0.5 m due to parasitic waveguide out-coupling loss and low-level absorption that become dominant at larger scale. A heat transfer model was subsequently implemented to predict collector fluid heat gain and outlet temperature as a function of flow rate using the optical model as a flux input. It was found that the aperture width size limitation imposed by the optical efficiency characteristics of the waveguide limits the absolute optical power delivered to the heat transfer element per unit length. As compared to state-of-the-art parabolic trough CPV system aperture widths approaching 5 m, this limitation leads to an approximate factor of order of magnitude increase in heat transfer tube length to achieve the same heat transfer fluid outlet temperature. The conclusion of this work is that scattering solar thermal concentration cannot be implemented at the scale and efficiency required to compete with the performance of current parabolic trough CSP systems. Applied within the alternate context of CPV, however, the results of this work have likely opened up a transformative new path that enables quasi-static, high efficiency CPV to be implemented on rooftops in the form factor of traditional fixed-panel photovoltaics.

  5. Design and reliability of a MEMS thermal rotary actuator. (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Design and reliability of a MEMS thermal rotary actuator. Citation Details In-Document Search Title: Design and reliability of a MEMS thermal rotary actuator. A new rotary MEMS actuator has been developed and tested at Sandia National Laboratories that utilizes a linear thermal actuator as the drive mechanism. This actuator was designed to be a low-voltage, high-force alternative to the existing electrostatic torsional ratcheting actuator (TRA) [1]. The new actuator, called

  6. Operating temperatures of recessed fluorescent fixtures with thermal insulation

    SciTech Connect (OSTI)

    Yarbrough, D.W.; Toor, I.A.

    1981-05-01

    Tests were performed to determine steady state surface temperatures for recessed fluorescent fixtures operated with and without thermal insulation on the top side of the fixture and to identify potential problems associated with the installation of thermal insulation. In addition to measuring temperatures, means were sought by which the fixtures can be thermally insulated and operated without fire hazards or damage to the fixture. (MCW)

  7. CoolCab Truck Thermal Load Reduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Truck Thermal Load Reduction CoolCab Truck Thermal Load Reduction 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon vssp_09_proc.pdf More Documents & Publications CoolCab Test and Evaluation CoolCab Thermal Load Reduction Project: CoolCalc HVAC Tool Development

  8. Evaluation on the Feasibility of Using Ultrasonic Testing of Reactor Pressure Vessel Welds for Assessing Flaw Density/Distribution per 10 CFR 50.61a, Alternate Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock

    SciTech Connect (OSTI)

    Sullivan, Edmund J.; Anderson, Michael T.

    2014-06-10

    This technical letter report provides the status of an assessment undertaken by PNNL at the request of the NRC to verify the capability of periodic ASME-required volumetric examinations of reactor vessels to characterize the density and distribution of flaws of interest for applying §50.61a on a plant-by-plant basis. The PTS rule, described in the Code of Federal Regulations, Title 10, Section 50.61 (§50.61), "Fracture Toughness Requirements for Protection against Pressurized Thermal Shock Events," establishes screening criteria to ensure that the potential for a reactor vessel to fail due to a PTS event is deemed to be acceptably low. Recently, the NRC completed a research program that concluded that the risk of through-wall cracking due to a PTS event is much lower than previously estimated. The NRC subsequently developed and promulgated an alternate PTS rule, §50.61a, that can be implemented by PWR licensees. The §50.61a rule differs from §50.61 in that it requires licensees who choose to follow this alternate method to analyze the results from periodic volumetric examinations required by the ASME Code, Section XI, Rules for Inservice Inspection (ISI) of Nuclear Power Plants.

  9. Biomass thermal conversion research at SERI

    SciTech Connect (OSTI)

    Milne, T. A.; Desrosiers, R. E.; Reed, T. B.

    1980-09-01

    SERI's involvement in the thermochemical conversion of biomass to fuels and chemicals is reviewed. The scope and activities of the Biomass Thermal Conversion and Exploratory Branch are reviewed. The current status and future plans for three tasks are presented: (1) Pyrolysis Mechanisms; (2) High Pressure O/sub 2/ Gasifier; and (3) Gasification Test Facility.

  10. Multilayer thermal barrier coating systems

    DOE Patents [OSTI]

    Vance, Steven J. (Orlando, FL); Goedjen, John G. (Oviedo, FL); Sabol, Stephen M. (Orlando, FL); Sloan, Kelly M. (Longwood, FL)

    2000-01-01

    The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

  11. Thermal Properties Measurement Report

    SciTech Connect (OSTI)

    Carmack, Jon; Braase, Lori; Papesch, Cynthia; Hurley, David; Tonks, Michael; Zhang, Yongfeng; Gofryk, Krzysztof; Harp, Jason; Fielding, Randy; Knight, Collin; Meyer, Mitch

    2015-08-01

    The Thermal Properties Measurement Report summarizes the research, development, installation, and initial use of significant experimental thermal property characterization capabilities at the INL in FY 2015. These new capabilities were used to characterize a U3Si2 (candidate Accident Tolerant) fuel sample fabricated at the INL. The ability to perform measurements at various length scales are important and provide additional data that is not currently in the literature. However, the real value of the data will be in accomplishing a phenomenological understanding of the thermal conductivity in fuels and the ties to predictive modeling. Thus, the MARMOT advanced modeling and simulation capability was utilized to illustrate how the microstructural data can be modeled and compared with bulk characterization data. A scientific method was established for thermal property measurement capability on irradiated nuclear fuel samples, which will be installed in the Irradiated Material Characterization Laboratory (IMCL).

  12. Thermal insulations using vacuum panels

    DOE Patents [OSTI]

    Glicksman, Leon R. (Lynnfield, MA); Burke, Melissa S. (Pittsburgh, PA)

    1991-07-16

    Thermal insulation vacuum panels are formed of an inner core of compressed low thermal conductivity powders enclosed by a ceramic/glass envelope evaluated to a low pressure.

  13. Thermal Reliability Study of Bypass Diodes in Photovoltaic Modules (Poster)

    SciTech Connect (OSTI)

    Zhang, Z.; Wohlgemuth, J.; Kurtz, S.

    2013-05-01

    This paper presents the result of high-temperature durability and thermal cycling testing and analysis for the selected diodes to study the detail of the thermal design and relative long-term reliability of the bypass diodes used to limit the detrimental effects of module hot-spot susceptibility.

  14. Maximizing Thermal Efficiency and Optimizing Energy Management (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    Researchers at the Thermal Test Facility (TTF) on the campus of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in Golden, Colorado, are addressing maximizing thermal efficiency and optimizing energy management through analysis of efficient heating, ventilating, and air conditioning (HVAC) strategies, automated home energy management (AHEM), and energy storage systems.

  15. Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Granular

    Office of Environmental Management (EM)

    Salt Consolidation, Constitutive Model and Micromechanics | Department of Energy Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Granular Salt Consolidation, Constitutive Model and Micromechanics Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Granular Salt Consolidation, Constitutive Model and Micromechanics The report addresses granular salt reconsolidation from three vantage points: laboratory testing, modeling, and petrofabrics. The experimental data 1)

  16. Gas Test Loop Booster Fuel Hydraulic Testing

    SciTech Connect (OSTI)

    Gas Test Loop Hydraulic Testing Staff

    2006-09-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

  17. Turbine Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine Thermal Management Fact Sheets Research Team Members Key Contacts Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances to current land-based turbines are directly linked to our country's economic and energy security. Technical advancement for any type of gas turbine generally implies better performance, greater efficiency, and extended component life. From the standpoint of cycle efficiency and durability, this suggests that a continual

  18. Underhood Thermal Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Underhood Thermal Performance This email address is being protected from spambots. You need JavaScript enabled to view it. - Computational Fluid Dynamics Project Leader Background As vehicle technology advances, automakers need a better understanding of underhood heat loads, especially as they relate to emissions and fuel efficiency. Manufacturers of heavy-duty vehicles and off-road machines have similar concerns. Ineffective underhood thermal management can lead to higher emissions, reduced

  19. Photovoltaic-thermal collectors

    DOE Patents [OSTI]

    Cox, III, Charles H. (Carlisle, MA)

    1984-04-24

    A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

  20. SINGLE HEATER TEST FINAL REPORT

    SciTech Connect (OSTI)

    J.B. Cho

    1999-05-01

    The Single Heater Test is the first of the in-situ thermal tests conducted by the U.S. Department of Energy as part of its program of characterizing Yucca Mountain in Nevada as the potential site for a proposed deep geologic repository for the disposal of spent nuclear fuel and high-level nuclear waste. The Site Characterization Plan (DOE 1988) contained an extensive plan of in-situ thermal tests aimed at understanding specific aspects of the response of the local rock-mass around the potential repository to the heat from the radioactive decay of the emplaced waste. With the refocusing of the Site Characterization Plan by the ''Civilian Radioactive Waste Management Program Plan'' (DOE 1994), a consolidated thermal testing program emerged by 1995 as documented in the reports ''In-Situ Thermal Testing Program Strategy'' (DOE 1995) and ''Updated In-Situ Thermal Testing Program Strategy'' (CRWMS M&O 1997a). The concept of the Single Heater Test took shape in the summer of 1995 and detailed planning and design of the test started with the beginning fiscal year 1996. The overall objective of the Single Heater Test was to gain an understanding of the coupled thermal, mechanical, hydrological, and chemical processes that are anticipated to occur in the local rock-mass in the potential repository as a result of heat from radioactive decay of the emplaced waste. This included making a priori predictions of the test results using existing models and subsequently refining or modifying the models, on the basis of comparative and interpretive analyses of the measurements and predictions. A second, no less important, objective was to try out, in a full-scale field setting, the various instruments and equipment to be employed in the future on a much larger, more complex, thermal test of longer duration, such as the Drift Scale Test. This ''shake down'' or trial aspect of the Single Heater Test applied not just to the hardware, but also to the teamwork and cooperation between multiple organizations performing their part in the test.

  1. Assessment of the integrity of spent fuel assemblies used in dry storage demonstrations at the Nevada Test Site

    SciTech Connect (OSTI)

    Johnson, A.B. Jr.; Dobbins, J.C.; Zaloudek, F.R.

    1987-07-01

    This report summarizes the histories of 17 Zircaloy-clad spent fuel assemblies used in dry storage tests and demonstrations at the Engine Maintenance and Disassembly (EMAD) and Climax facilities at the Nevada Test Site (NTS). The 18th assembly was shipped to the Battelle Columbus Laboratory (BCL) and remained there for extensive characterization and as a source of specimens for whole-rod and rod-segment dry storage tests. The report traces the history of the assemblies after discharge from the Turkey Point Unit 3 pressurized-water reactor (1975 and 1977) through shipment (first arrival at EMAD in December 1978), dry storage tests and demonstrations, and shipment by truck cask from EMAD to the Idaho National Engineering Laboratory (INEL) in May/June 1986. The principal objectives of this report are to assess and document the integrity of the fuel during the extensive dry storage activities at NTS and BCL, and to briefly summarize the dry storage technologies and procedures demonstrated in this program. The dry storage tests and demonstrations involved the following concepts and facilities: (1) surface drywells (EMAD); (2) deep drywells (425 m underground in the Climax granite formation); (3) concrete silo (EMAD); (4) air-cooled vault (EMAD); (5) electrically-heated module for fuel assembly thermal calibration and testing (EMAD/FAITM). 20 refs., 43 figs., 9 tabs.

  2. Material test machine for tension-compression tests at high temperature

    DOE Patents [OSTI]

    Cioletti, Olisse C. (Pittsburgh, PA)

    1988-01-01

    Apparatus providing a device for testing the properties of material specimens at high temperatures and pressures in controlled water chemistries includes, inter alia, an autoclave housing the specimen which is being tested. The specimen is connected to a pull rod which couples out of the autoclave to an external assembly which includes one or more transducers, a force balance chamber and a piston type actuator. The pull rod feeds through the force balance chamber and is compensated thereby for the pressure conditions existing within the autoclave and tending to eject the pull rod therefrom. The upper end of the push rod is connected to the actuator through elements containing a transducer comprising a linear variable differential transformer (LVDT). The housing and coil assembly of the LVDT is coupled to a tube which runs through a central bore of the pull rod into the autoclave where it is connected to one side of the specimen. The movable core of the LVDT is coupled to a stem which runs through the tube where it is then connected to the other side of the specimen through a coupling member. A transducer in the form of a load cell including one or more strain gages is located on a necked-down portion of the upper part of the pull rod intermediate the LVDT and force balance chamber.

  3. Test and User Facilities | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test and User Facilities Our test and user facilities are available to industry and other organizations for researching, developing, and evaluating energy technologies. We can work with you to design the tests and operate the equipment. A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Advanced Research Turbines B Battery Thermal and Life Test Facility C Controllable Grid Interface Test System D Distributed Energy Resources Test Facility

  4. THERMAL CONDUCTIVITY AND OTHER PROPERTIES OF CEMENTITIOUS GROUTS

    SciTech Connect (OSTI)

    ALLAN,M.

    1998-05-01

    The thermal conductivity and other properties cementitious grouts have been investigated in order to determine suitability of these materials for grouting vertical boreholes used with geothermal heat pumps. The roles of mix variables such as water/cement ratio, sand/cement ratio and superplasticizer dosage were measured. In addition to thermal conductivity, the cementitious grouts were also tested for bleeding, permeability, bond to HDPE pipe, shrinkage, coefficient of thermal expansion, exotherm, durability and environmental impact. This paper summarizes the results for selected grout mixes. Relatively high thermal conductivities were obtained and this leads to reduction in predicted bore length and installation costs. Improvements in shrinkage resistance and bonding were achieved.

  5. A miniature shock-activated thermal battery for munitions applications

    SciTech Connect (OSTI)

    Guidotti, R.A.; Kirby, D.L.; Reinhardt, F.W.

    1998-04-01

    The feasibility of a small, fast-rise thermal battery for non-spinning munitions applications was examined by studying the response of conventional thermal cells to impact (mechanical) energy to simulate a setback environment. This is an extension of earlier work that demonstrated that shock activation could be used to produce power from a conventional thermal-battery cell. The results of tests with both single and multiple cells are presented, along with data for a 5-cell miniature (5-mm diameter) thermal battery. The issues needing to be resolved before such a device can become a commercial reality are also discussed.

  6. Article for thermal energy storage

    DOE Patents [OSTI]

    Salyer, Ival O.

    2000-06-27

    A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

  7. Highly directional thermal emitter

    DOE Patents [OSTI]

    Ribaudo, Troy; Shaner, Eric A; Davids, Paul; Peters, David W

    2015-03-24

    A highly directional thermal emitter device comprises a two-dimensional periodic array of heavily doped semiconductor structures on a surface of a substrate. The array provides a highly directional thermal emission at a peak wavelength between 3 and 15 microns when the array is heated. For example, highly doped silicon (HDSi) with a plasma frequency in the mid-wave infrared was used to fabricate nearly perfect absorbing two-dimensional gratings structures that function as highly directional thermal radiators. The absorption and emission characteristics of the HDSi devices possessed a high degree of angular dependence for infrared absorption in the 10-12 micron range, while maintaining high reflectivity of solar radiation (.about.64%) at large incidence angles.

  8. Thermal insulated glazing unit

    DOE Patents [OSTI]

    Selkowitz, S.E.; Arasteh, D.K.; Hartmann, J.L.

    1988-04-05

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas. 2 figs.

  9. Thermal insulated glazing unit

    DOE Patents [OSTI]

    Selkowitz, Stephen E. (Piedmont, CA); Arasteh, Dariush K. (Oakland, CA); Hartmann, John L. (Seattle, WA)

    1991-01-01

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas.

  10. Thermal trim for luminaire

    DOE Patents [OSTI]

    Bazydola, Sarah; Ghiu, Camil-Daniel; Harrison, Robert; Jeswani, Anil

    2013-11-19

    A luminaire with a thermal pathway to reduce the junction temperature of the luminaire's light source, and methods for so doing, are disclosed. The luminaire includes a can, a light engine, and a trim, that define a substantially continuous thermal pathway from the light engine to a surrounding environment. The can defines a can cavity and includes a can end region. The light engine is within the can cavity and includes a light source and a heat sink, including a heat sink end region, coupled thereto. The trim is at least partially disposed within the can cavity and includes a first trim end region coupled to the heat sink end region and a second trim end region coupled to the can end region. Thermal interface material may be located between: the heat sink and the trim, the trim and the can, and/or the heat sink and the light source.

  11. Stability testing of low-level waste forms

    SciTech Connect (OSTI)

    Piciulo, P.L.; Shea, C.E.; Barletta, R.E.

    1983-01-01

    The NRC Technical Position on Waste Form identifies methods for thermal cycle testing and biodegradation testing of low-level waste forms. These tests were carried out on low-level waste forms to establish whether the tests are reasonable and can be achieved. The thermal-cycle test is believed adequate for demonstrating the thermal stability of solidified waste forms. The biodegradation tests are sufficient for distinguishing materials that are susceptible to biodegradation. However, failure of either of these tests should not be regarded of itself as an indication that the waste form will biodegrade to an extent that the form does not meet the stability requirements of 10 CFR Part 61.

  12. Incinerator thermal release valve risk assessment

    SciTech Connect (OSTI)

    Stevens, J.B.

    1998-12-31

    Human health risk assessments were conducted on emissions from several types of incinerators--a hazardous waste combustor, a medical waste/tire combustor, and a refuse derived fuel combustor in three different states. As part of these studies, the short-term emissions from thermal release valves operating during upset conditions were additionally evaluated. The latter assessments addressed two specific risk-related questions: (1) what are the incremental long-term risks/hazards associated with these short-term emissions; (2) what are the acute health hazards associated with these emissions? For each study, emission estimates for both the incinerator stack and the thermal release valve were obtained from the facility. Stack testing was utilized to obtain stack gas concentrations of emissions at one facility; engineering estimates were used to ascertain emissions from the thermal release valve. The two facilities were proposed incinerators, so literature-derived emissions were used throughout.

  13. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, Roy (Columbus, IN); Kakwani, Ramesh M. (Columbus, IN); Valdmanis, Edgars (Columbus, IN); Woods, Melvins E. (Columbus, IN)

    1988-01-01

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m.degree. C. and a specific heat greater than 480 J/kg.degree. C. with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber.

  14. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

    1988-04-19

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

  15. RESULTS OF THE EXAMINATION OF ELECTROCHEMICAL NOISE PROBE SPECIMENS REMOVED FROM TANK 241-AN-107 JUNE 2010

    SciTech Connect (OSTI)

    COOKE GA; WYRWAS RB; DUNCAN JB

    2010-11-11

    An Integrated Multi-function Corrosion Probe (IMCP) was installed in Tank 241-AN-107 on September 20, 2006. A portion of the probe was retrieved on June 8, 2010 and the sections holding the detectors were delivered to the 222-S Laboratory for analysis. The examination and disassembly of the probe sections encountered a number of challenges. However, disassembly and relevant analyses were successfully completed. The following summarizes our observations. Brittle failure of the fiberglass probe in the middle of detector 2 resulted in the recovery of only three vapor space C-rings and six supernatant bullet specimens. The design of the bullets and how they were attached to the probe made the recovery of the components more difficult. The use of glue/epoxy on the bullets and the attachment of the flat bottom of the bullets to the curved surface of the fiberglass probe body meant that weight loss on cleaning and surface area of the specimens could not be determined with acceptable accuracy. Macrophotography of all specimens reveals that corrosion was slight in the vapor space and extremely slight in the supernatant. The one pre-cracked C-ring recovered from the vapor space still had the stress bulge visible on the polished surface, indicating that crack propagation had not occurred in the tank. No photographs were taken of the C-ring before deployment. No further analysis was conducted on this specimen. A detailed discussion and photographic documentation are provided in this report.

  16. Trial-Run of a Junction-Box Attachment Test for Use in Photovoltaic Module Qualification: Preprint

    SciTech Connect (OSTI)

    Miller, D. C.; Deibert, S. L.; Wohlgemuth, J. H.

    2014-06-01

    Engineering robust adhesion of the junction box (j-box) is a hurdle typically encountered by photovoltaic module manufacturers during product development and manufacturing process control. There are historical incidences of adverse effects (e.g., fires) caused when the j-box/adhesive/module system has failed in the field. The addition of a weight to the j-box during the 'damp-heat,' 'thermal-cycle,' or 'creep' tests within the IEC qualification protocol is proposed to verify the basic robustness of the adhesion system. The details of the proposed test are described, in addition to a trial-run of the test procedure. The described experiments examine four moisture-cured silicones, four foam tapes, and a hot-melt adhesive used in conjunction with glass, KPE, THV, and TPE substrates. For the purpose of validating the experiment, j-boxes were adhered to a substrate, loaded with a prescribed weight, and then subjected to aging. The replicate mock-modules were aged in an environmental chamber (at 85 degrees C/85% relative humidity for 1000 hours; then 100 degrees C/<10% relative humidity for 200 hours) or fielded in Golden (CO), Miami (FL), and Phoenix (AZ) for one year. Attachment strength tests, including pluck and shear test geometries, were also performed on smaller component specimens.

  17. STUDY OF THERMAL SENSITIVITY AND THERMAL EXPLOSION VIOLENCE OF ENERGETIC MATERIALS IN THE LLNL ODTX SYSTEM

    SciTech Connect (OSTI)

    HSU, P C; Hust, G; May, C; Howard, M; Chidester, S K; Springer, H K; Maienschein, J L

    2011-08-03

    Some energetic materials may explode at fairly low temperatures and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults for safe handling and storage of energetic materials. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory can measure times to explosion, lowest explosion temperatures, and determine kinetic parameters of energetic materials. Samples of different configurations can be tested in the system. The ODTX testing can also generate useful data for determining thermal explosion violence of energetic materials. We also performed detonation experiments of LX-10 in aluminum anvils to determine the detonation violence and validated the Zerilli Armstrong aluminum model. Results of the detonation experiments agreed well with the model prediction.

  18. Thermal Reactor Safety

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

  19. Thermal barrier coating

    DOE Patents [OSTI]

    Bowker, Jeffrey Charles (Gibsonia, PA); Sabol, Stephen M. (Orlando, FL); Goedjen, John G. (Oviedo, FL)

    2001-01-01

    A thermal barrier coating for hot gas path components of a combustion turbine based on a zirconia-scandia system. A layer of zirconium scandate having the hexagonal Zr.sub.3 Sc.sub.4 O.sub.12 structure is formed directly on a superalloy substrate or on a bond coat formed on the substrate.

  20. Ocean thermal energy conversion

    SciTech Connect (OSTI)

    Avery, W.H.

    1983-03-17

    A brief explanation of the Ocean Thermal Energy Conversion (OTEC) concept and an estimate of the amount of energy that can be produced from the ocean resource without introducing environmental concerns are presented. Use of the OTEC system to generate electric power and products which can replace fossil fuels is shown. The OTEC program status and its prospects for the future are discussed.

  1. Thermal performance of a full-scale stratified chilled-water thermal storage tank

    SciTech Connect (OSTI)

    Bahnfleth, W.P.; Musser, A.

    1998-12-31

    The thermal performance of a full-scale 1.47 million gallon (5300 m{sup 3}), 44.5 ft (13.6 m) water-depth, naturally stratified chilled-water thermal storage tank with radial diffusers is analyzed. Controlled, constant inlet flow rate tests covering the full range of the system have been performed for both charge and discharge processes. Thermal performance for these half-cycle tests is quantified using performance metrics similar to the figure of merit (FOM). Lost capacity, a new measure of performance with practical significance, is also presented. Uncertainty analysis shows that under some circumstances, particularly for tall tanks, lost capacity allows thermal performance to be quantified with less experimental uncertainty than FOM. Results of these tests indicate that discharge cycles performance is not as good as charge cycle performance at the same flow rate. However, the half-cycle figure of merit for all cycles tested was in excess of 90%, despite the fact that the inlet Reynolds number exceeded that recommended in the literature by up to a factor of five.

  2. High Temperature Thermal Array for Next Generation Solar Thermal Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production | Department of Energy High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon csp_review_meeting_042413_obrey.pdf More Documents & Publications A Method for Evaluating Fire After Earthquake Scenarios for Single

  3. TEST-HOLE CONSTRUCTION FOR A NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Ohlinger, L.A.; Seitz, F.; Young, G.J.

    1959-02-17

    Test-hole construction is described for a reactor which provides safe and ready access to the neutron flux region for specimen materials which are to be irradiated therein. An elongated tubular thimble adapted to be inserted in the access hole through the wall of the reactor is constructed of aluminum and is provided with a plurality of holes parallel to the axis of the thimble for conveying the test specimens into position for irradiation, and a conduit for the circulation of coolant. A laminated shield formed of alternate layers of steel and pressed wood fiber is disposed lengthwise of the thimble near the outer end thereof.

  4. Sandia Energy - NASA's Solar Tower Test of the 1-Meter Aeroshell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NASA's Solar Tower Test of the 1-Meter Aeroshell Home Videos Renewable Energy Energy Facilities Partnership News Concentrating Solar Power Solar National Solar Thermal Test...

  5. THERMAL OSCILLATIONS IN LIQUID HELIUM TARGETS.

    SciTech Connect (OSTI)

    WANG,L.; JIA,L.X.

    2001-07-16

    A liquid helium target for the high-energy physics was built and installed in the proton beam line at the Alternate Gradient Synchrotron of Brookhaven National Laboratory in 2001. The target flask has a liquid volume of 8.25 liters and is made of thin Mylar film. A G-M/J-T cryocooler of five-watts at 4.2K was used to produce liquid helium and refrigerate the target. A thermosyphon circuit for the target was connected to the J-T circuit by a liquid/gas separator. Because of the large heat load to the target and its long transfer lines, thermal oscillations were observed during the system tests. To eliminate the oscillation, a series of tests and analyses were carried out. This paper describes the phenomena and provides the understanding of the thermal oscillations in the target system.

  6. Thermal Damage Characterization of Energetic Materials

    SciTech Connect (OSTI)

    Hsu, P C; DeHaven, M R; Springer, H K; Maienschein, J L

    2009-08-14

    We conducted thermal damage experiments at 180?C on PBXN-9 and characterized its material properties. Volume expansion at high temperatures was very significant which led to a reduction in material density. 2.6% of weight loss was observed, which was higher than other HMX-based formulations. Porosity of PBXN-9 increased to 16% after thermal exposure. Small-scale safety tests (impact, friction, and spark) showed no significant sensitization when the damaged samples were tested at room temperature. Gas permeation measurements showed that gas permeability in damaged materials was several orders of magnitude higher than that in pristine materials. In-situ measurements of gas permeability and density were proved to be possible at higher temperatures.

  7. NREL Test-to-Failure Protocol (Presentation)

    SciTech Connect (OSTI)

    Hacke, P.

    2012-03-01

    The presentation describes the test-to-failure protocol that was developed and piloted at NREL, stressing PV modules with multiple applications of damp heat (with bias) and thermal cycling until they fail.

  8. Fracture toughness testing of bi-material joints with high strength mis-match

    SciTech Connect (OSTI)

    Kocak, M.; Hornet, P.; Cornec, A.; Schwalbe, K.H.

    1995-12-31

    This paper deals with the influence of strength mis-match on CTOD ({delta}{sub 5}) R-curves obtained from homogeneous and electron beam (EB) welded bimaterial CT and SENB specimens of two aluminum alloys. The R-curves of metal-metal bimaterial specimens are compared with the R-curves of each alloy to determine the effect of strength mismatch on the locally measured CTOD ({delta}{sub 5}) fracture toughness properties. The homogeneous specimens of two different aluminum alloys, namely 2024-FC and 2024-T351 with yield strengths of 80 and 360 MPa respectively, as well as EB welded bi-material 5 mm thick CT and SENB specimens (a/W = 0.15 and 0.5) have been tested at room temperature. The local CTOD ({delta}{sub 5}) fracture toughness measurements on such composite specimen configurations produced generally strength mis-match and geometry independent R-curves.

  9. ENGINEERING TEST REACTOR

    DOE Patents [OSTI]

    De Boisblanc, D.R.; Thomas, M.E.; Jones, R.M.; Hanson, G.H.

    1958-10-21

    Heterogeneous reactors of the type which is both cooled and moderated by the same fluid, preferably water, and employs highly enriched fuel are reported. In this design, an inner pressure vessel is located within a main outer pressure vessel. The reactor core and its surrounding reflector are disposed in the inner pressure vessel which in turn is surrounded by a thermal shield, Coolant fluid enters the main pressure vessel, fiows downward into the inner vessel where it passes through the core containing tbe fissionable fuel assemblies and control rods, through the reflector, thence out through the bottom of the inner vessel and up past the thermal shield to the discharge port in the main vessel. The fuel assemblles are arranged in the core in the form of a cross having an opening extending therethrough to serve as a high fast flux test facility.

  10. Thermal synthesis apparatus

    DOE Patents [OSTI]

    Fincke, James R. (Idaho Falls, ID) [Idaho Falls, ID; Detering, Brent A. (Idaho Falls, ID) [Idaho Falls, ID

    2009-08-18

    An apparatus for thermal conversion of one or more reactants to desired end products includes an insulated reactor chamber having a high temperature heater such as a plasma torch at its inlet end and, optionally, a restrictive convergent-divergent nozzle at its outlet end. In a thermal conversion method, reactants are injected upstream from the reactor chamber and thoroughly mixed with the plasma stream before entering the reactor chamber. The reactor chamber has a reaction zone that is maintained at a substantially uniform temperature. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle, which "freezes" the desired end product(s) in the heated equilibrium reaction stage, or is discharged through an outlet pipe without the convergent-divergent nozzle. The desired end products are then separated from the gaseous stream.

  11. Underground Coal Thermal Treatment

    SciTech Connect (OSTI)

    Smith, P.; Deo, M.; Eddings, E.; Sarofim, A.; Gueishen, K.; Hradisky, M.; Kelly, K.; Mandalaparty, P.; Zhang, H.

    2012-01-11

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal's carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO2 sequestration.

  12. Thermally stable diamond brazing

    DOE Patents [OSTI]

    Radtke, Robert P. (Kingwood, TX)

    2009-02-10

    A cutting element and a method for forming a cutting element is described and shown. The cutting element includes a substrate, a TSP diamond layer, a metal interlayer between the substrate and the diamond layer, and a braze joint securing the diamond layer to the substrate. The thickness of the metal interlayer is determined according to a formula. The formula takes into account the thickness and modulus of elasticity of the metal interlayer and the thickness of the TSP diamond. This prevents the use of a too thin or too thick metal interlayer. A metal interlayer that is too thin is not capable of absorbing enough energy to prevent the TSP diamond from fracturing. A metal interlayer that is too thick may allow the TSP diamond to fracture by reason of bending stress. A coating may be provided between the TSP diamond layer and the metal interlayer. This coating serves as a thermal barrier and to control residual thermal stress.

  13. Liquid metal thermal electric converter

    DOE Patents [OSTI]

    Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

    1989-01-01

    A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

  14. Thermal reactor safety

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport.

  15. Thermally actuated thermionic switch

    DOE Patents [OSTI]

    Barrus, Donald M.; Shires, Charles D.

    1988-01-01

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  16. Thermally actuated thermionic switch

    DOE Patents [OSTI]

    Barrus, D.M.; Shires, C.D.

    1982-09-30

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  17. Solar Thermal Electric | Open Energy Information

    Open Energy Info (EERE)

    Thermal Electric Jump to: navigation, search TODO: Add description List of Solar Thermal Electric Incentives Retrieved from "http:en.openei.orgwindex.php?titleSolarThermalEl...

  18. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Motor Thermal Control Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Integrated Vehicle Thermal Management

  19. Methods of forming thermal management systems and thermal management methods

    DOE Patents [OSTI]

    Gering, Kevin L.; Haefner, Daryl R.

    2012-06-05

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  20. Thermal control structure and garment

    DOE Patents [OSTI]

    Klett, James W.; Cameron, Christopher Stan

    2012-03-13

    A flexible thermally conductive structure. The structure generally includes a plurality of thermally conductive yarns, at least some of which are at least partially disposed adjacent to an elastomeric material. Typically, at least a portion of the plurality of thermally conductive yarns is configured as a sheet. The yarns may be constructed from graphite, metal, or similar materials. The elastomeric material may be formed from urethane or silicone foam that is at least partially collapsed, or from a similar material. A thermal management garment is provided, the garment incorporating a flexible thermally conductive structure.

  1. High Strain Rate Tensile Testing of DOP-26 Iridium

    SciTech Connect (OSTI)

    Schneibel, Joachim H; Carmichael Jr, Cecil Albert; George, Easo P

    2007-11-01

    The iridium alloy DOP-26 was developed through the Radioisotope Power Systems Program in the Office of Nuclear Energy of the Department of Energy. It is used for clad vent set cups containing radioactive fuel in radioisotope thermoelectric generator (RTG) heat sources which provide electric power for spacecraft. This report describes mechanical testing results for DOP-26. Specimens were given a vacuum recrystallization anneal of 1 hour at 1375 C and tested in tension in orientations parallel and perpendicular to the rolling direction of the sheet from which they were fabricated. The tests were performed at temperatures ranging from room temperature to 1090 C and strain rates ranging from 1 x 10{sup -3} to 50 s{sup -1}. Room temperature testing was performed in air, while testing at elevated temperatures was performed in a vacuum better than 1 x 10{sup -4} Torr. The yield stress (YS) and the ultimate tensile stress (UTS) decreased with increasing temperature and increased with increasing strain rate. Between 600 and 1090 C, the ductility showed a slight increase with increasing temperature. Within the scatter of the data, the ductility did not depend on the strain rate. The reduction in area (RA), on the other hand, decreased with increasing strain rate. The YS and UTS values did not differ significantly for the longitudinal and transverse specimens. The ductility and RA values of the transverse specimens were marginally lower than those of the longitudinal specimens.

  2. Design and testing of a thermal liquid level sensor

    SciTech Connect (OSTI)

    Levin, A.E.; Schneider, A.; Harris, J.D.; Pfeifer, H.; Croft, W.D.

    1989-01-01

    Liquid level detection is of extreme importance in nuclear reactor systems. In the event of a loss of coolant, plant operators should be able to ascertain quickly whether there is danger of the core becoming uncovered. 3 refs., 8 figs., 1 tab.

  3. Thermal management systems and methods

    DOE Patents [OSTI]

    Gering, Kevin L.; Haefner, Daryl R.

    2006-12-12

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  4. SSC 50 mm dipole magnet cryostat thermal measurement results

    SciTech Connect (OSTI)

    Boroski, W.N.; Nicol, T.H.; Ruschman, M.K.; Schoo, C.J.

    1993-05-01

    A prototype Superconducting Super Collider (SSC) 50 mm dipole magnet cryostat, DCA323, was instrumented at Fermilab and delivered to the SSC Laboratory for installation into the accelerator systems string test facility. In series with other magnets, the instrumented cryostat will be used to quantify and verify cryostat thermal performance with respect to design requirements. Prior to leaving Fermilab, DCA323 was subjected to magnetic testing at the Magnet Test Facility (MTF). This presented an opportunity to obtain preliminary thermal performance data under simulated operating conditions. It should be noted that measurements of overall cryostat thermal performance were not possible during the MTF measurements as the magnet test stands are designed for magnetic rather than thermal testing. They are not designed to limit heat inleak to the ends of the cryostat, which has been shown to have a significant effect on overall measured thermal performance. Nonetheless, these measurements do offer insight into the performance of several of the cryostat components and sub-systems.

  5. High Thermal Efficiency and Low Emissions with Supercritical Gasoline

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Injection-Ignition in a Light Duty Engine | Department of Energy High Thermal Efficiency and Low Emissions with Supercritical Gasoline Injection-Ignition in a Light Duty Engine High Thermal Efficiency and Low Emissions with Supercritical Gasoline Injection-Ignition in a Light Duty Engine A novel fuel injector has been developed and tested that addresses the technical challenges of LTC, HCCI, gasoline PPC, and RCCI by reducing complexity and cost. PDF icon p-16_zoldak.pdf More Documents &

  6. Project Profile: Scattering Solar Thermal Concentrators | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Scattering Solar Thermal Concentrators Project Profile: Scattering Solar Thermal Concentrators Pennsylvania State University logo Pennsylvania State University, under the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is designing and testing a novel solar collector system that relies on stationary optics, avoiding the need for mirror movement. The system is capable of achieving optical performance equal to state-of-the-art parabolic trough systems, but at a lower cost.

  7. 400 Area/Fast Flux Test Facility - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    325 Building 400 AreaFast Flux Test Facility 618-10 ... Test Facility D and DR Reactors Effluent Treatment ... (thermal) liquid-metal (sodium)-cooled nuclear research ...

  8. Thermal control system for SSF sensor/electronics

    SciTech Connect (OSTI)

    Akau, R.L.; Lee, D.E.

    1992-12-31

    As part of the Defense Meteorological Support Program (DMSP) with Martin Marieta Astro-Space Division, a thermal control system was designed for the SSF (Special Sensor F) sensor/electronics box (SSTACK) located on the precision mounting platform of the DMSP satellite. Multi-layer insulation and heaters are used to maintain the temperatures of the critical components within their operating and survival temperature limits. Detailed and simplified SSTACK thermal models were developed and temperatures were calculated for worst-case orbital conditions. A comparison between the two models showed very good agreement. Temperature predictions were also compared to measured temperatures from a thermal-vacuum test

  9. Thermal network reduction

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1983-01-01

    A method is presented for reducing the number of elements required in a thermal network representation of a building. The method is based on matching the actual building response at two frequencies, the diurnal response and 3-day response. The procedure provides a straightforward methodology for combining all the various materials inside a discrete building zone into a few nodes while retaining a high degree of accuracy in the dynamic response. An example is given showing a comparison between a large network and the reduced network.

  10. Thermal network reduction

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1983-06-01

    A method is presented for reducing the number of elements required in a thermal network representation of a building. The method is based on matching the actual building response at two frequencies, the diurnal response and 3-day response. The procedure provides a straightforward methodology for combining all the various materials inside a discrete building zone into a few nodes while retaining a high degree of accuracy in the dynamic response. An example is given showing a comparison between a large network and the reduced network.

  11. Thermal transient anemometer

    DOE Patents [OSTI]

    Bailey, J.L.; Vresk, J.

    1989-07-18

    A thermal transient anemometer is disclosed having a thermocouple probe which is utilized to measure the change in temperature over a period of time to provide a measure of fluid flow velocity. The thermocouple probe is located in the fluid flow path and pulsed to heat or cool the probe. The cooling of the heated probe or the heating of the cooled probe from the fluid flow over a period of time is measured to determine the fluid flow velocity. The probe is desired to be locally heated near the tip to increase the efficiency of devices incorporating the probe. 12 figs.

  12. Response microcantilever thermal detector

    DOE Patents [OSTI]

    Cunningham, Joseph P.; Rajic, Slobodan; Datskos, Panagiotis G.; Evans III, Boyd M.

    2004-10-19

    A "folded leg" thermal detector microcantilever constructed of a substrate with at least one leg interposed between a fixed end and a deflective end, each leg having at least three essentially parallel leg segments interconnected on alternate opposing ends and aligned in a serpentine pattern with only the first leg segment attached to the fixed end and only the last leg segment attached to the deflective end. Alternate leg segment are coated on the pentalever with coating applied to the top of the first, third, and fifth leg segments of each leg and to the bottom of the second and fourth leg segments of each leg.

  13. Thermal indicator for wells

    DOE Patents [OSTI]

    Gaven, Jr., Joseph V. (Oakton, VA); Bak, Chan S. (Newbury Park, CA)

    1983-01-01

    Minute durable plate-like thermal indicators are employed for precision measuring static and dynamic temperatures of well drilling fluids. The indicators are small enough and sufficiently durable to be circulated in the well with drilling fluids during the drilling operation. The indicators include a heat resistant indicating layer, a coacting meltable solid component and a retainer body which serves to unitize each indicator and which may carry permanent indicator identifying indicia. The indicators are recovered from the drilling fluid at ground level by known techniques.

  14. Thermal transient anemometer

    DOE Patents [OSTI]

    Bailey, James L.; Vresk, Josip

    1989-01-01

    A thermal transient anemometer having a thermocouple probe which is utilized to measure the change in temperature over a period of time to provide a measure of fluid flow velocity. The thermocouple probe is located in the fluid flow path and pulsed to heat or cool the probe. The cooling of the heated probe or the heating of the cooled probe from the fluid flow over a period of time is measured to determine the fluid flow velocity. The probe is desired to be locally heated near the tip to increase the efficiency of devices incorporating the probe.

  15. Thermally cleavable surfactants

    DOE Patents [OSTI]

    McElhanon, James R. (Manteca, CA); Simmons, Blake A. (San Francisco, CA); Zifer, Thomas (Manteca, CA); Jamison, Gregory M. (Albuquerque, NM); Loy, Douglas A. (Albuquerque, NM); Rahimian, Kamyar (Albuquerque, NM); Long, Timothy M. (Urbana, IL); Wheeler, David R. (Albuquerque, NM); Staiger, Chad L. (Albuquerque, NM)

    2006-04-04

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments and the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  16. Thermally cleavable surfactants

    DOE Patents [OSTI]

    McElhanon, James R. (Manteca, CA); Simmons, Blake A. (San Francisco, CA); Zifer, Thomas (Manteca, CA); Jamison, Gregory M. (Albuquerque, NM); Loy, Douglas A. (Albuquerque, NM); Rahimian, Kamyar (Albuquerque, NM); Long, Timothy M. (Urbana, IL); Wheeler, David R. (Albuquerque, NM); Staiger, Chad L. (Albuquerque, NM)

    2009-11-24

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  17. Thermally cleavable surfactants

    DOE Patents [OSTI]

    McElhanon, James R. (Manteca, CA); Simmons, Blake A. (San Francisco, CA); Zifer, Thomas (Manteca, CA); Jamison, Gregory M. (Albuquerque, NM); Loy, Douglas A. (Albuquerque, NM); Rahimian, Kamyar (Albuquerque, NM); Long, Timothy M. (Urbana, IL); Wheeler, David R. (Albuquerque, NM); Staiger, Chad L. (Albuquerque, NM)

    2009-09-29

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  18. Thermally switchable dielectrics

    DOE Patents [OSTI]

    Dirk, Shawn M.; Johnson, Ross S.

    2013-04-30

    Precursor polymers to conjugated polymers, such as poly(phenylene vinylene), poly(poly(thiophene vinylene), poly(aniline vinylene), and poly(pyrrole vinylene), can be used as thermally switchable capacitor dielectrics that fail at a specific temperature due to the non-conjugated precursor polymer irreversibly switching from an insulator to the conjugated polymer, which serves as a bleed resistor. The precursor polymer is a good dielectric until it reaches a specific temperature determined by the stability of the leaving groups. Conjugation of the polymer backbone at high temperature effectively disables the capacitor, providing a `built-in` safety mechanism for electronic devices.

  19. Integrated Vehicle Thermal Management Systems (VTMS) Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Integrated Vehicle Thermal Management Power Electronic Thermal System Performance and Integration Characterization and Development of Advanced...

  20. Ultratough, Thermally Stable Polycrystalline Diamond/Silicon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultratough, Thermally Stable Polycrystalline DiamondSilicon Carbide Nanocomposites for Drill Bits Ultratough, Thermally Stable Polycrystalline DiamondSilicon Carbide ...

  1. Smoldering combustion hazards of thermal insulation materials

    SciTech Connect (OSTI)

    Ohlemiller, T.J.; Rogers, F.E.

    1980-07-01

    Work on the smolder ignitability in cellulosic insulation and on thermal analytical characterization of the oxidation of this material is presented. Thermal analysis (TGA and DSC) shows that both retarded and unretarded cellulosic insulation oxidizes in two overall stages, both of which are exothermic. The second stage (oxidation of the char left as a residue of the first stage) is much more energetic on a unit mass basis than the first. However, kinetics and a sufficient exothermicity make the first stage responsible for ignition in most realistic circumstances. Existing smolder retardants such as boric acid have their major effect on the kinetics of the second oxidation stage and thus produce only a rather small (20/sup 0/C) increase in smolder ignition temperature. Several simplified analogs of attic insulations have been tested to determine the variability of minimum smolder ignition temperature. These employed planar or tubular constant temperature heat sources in a thermal environment quite similar to a realistic attic application. Go/no-go tests provided the borderline (minimum) ignition temperature for each configuration. The wide range (150/sup 0/C) of minimum ignition temperatures confirmed the predominant dependence of smolder ignition on heat flow geometry. Other factors (bulk density, retardants) produced much less effect on ignitability.

  2. NREL Battery Testing Capabilities Get a Boost - News Feature | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Battery Testing Capabilities Get a Boost February 5, 2010 Photo of a Test engineer standing next to a camera showing a thermal image of a battery being tested. Enlarge image Engineer Dirk Long uses thermal imaging equipment to capture a battery's infrared fingerprint to diagnose its behavior. NREL soon will be ramping up testing as the battery industry uses stimulus funding to enhance batteries used in advanced vehicles. Credit: Pat Corkery Batteries are the heart of today's advanced

  3. Solar thermal power system

    DOE Patents [OSTI]

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  4. Electric Vehicle Battery Thermal Issues and Thermal Management Techniques (Presentation)

    SciTech Connect (OSTI)

    Rugh, J. P.; Pesaran, A.; Smith, K.

    2013-07-01

    This presentation examines the issues concerning thermal management in electric drive vehicles and management techniques for improving the life of a Li-ion battery in an EDV.

  5. Reversible Bending Fatigue Testing on Zry-4 Surrogate Rods

    SciTech Connect (OSTI)

    Wang, Jy-An John; Wang, Hong; Bevard, Bruce Balkcom; Howard, Rob L

    2014-01-01

    Testing high-burnup spent nuclear fuel (SNF) presents many challenges in areas such as specimen preparation, specimen installation, mechanical loading, load control, measurements, data acquisition, and specimen disposal because these tasks are complicated by the radioactivity of the test specimens. Research and comparison studies conducted at Oak Ridge National Laboratory (ORNL) resulted in a new concept in 2010 for a U-frame testing setup on which to perform hot-cell reversible bending fatigue testing. Subsequently, the three-dimensional finite element analysis and the engineering design of components were completed. In 2013 the ORNL team finalized the upgrade of the U-frame testing setup and the integration of the U-frame setup into a Bose dual linear motor test bench to develop a cyclic integrated reversible-bending fatigue tester (CIRFT). A final check was conducted on the CIRFT test system in August 2013, and the CIRFT was installed in the hot cell in September 2013 to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The fatigue responses of Zircaloy-4 (Zry-4) cladding and the role of pellet pellet and pellet clad interactions are critical to SNF vibration integrity, but such data are not available due to the unavailability of an effective testing system. While the deployment of the developed CIRFT test system in a hot cell will provide the opportunity to generate the data, the use of a surrogate rod has proven quite effective in identifying the underlying deformation mechanism of an SNF composite rod under an equivalent loading condition. This paper presents the experimental results of using surrogate rods under CIRFT reversible cyclic loading. Specifically, monotonic and cyclic bending tests were conducted on surrogate rods made of a Zry-4 tube and alumina pellet inserts, both with and without an epoxy bond.

  6. Concentrating Solar Program; Session: Thermal Storage - Overview (Presentation)

    SciTech Connect (OSTI)

    Glatzmaier, G.; Mehos, M.; Mancini, T.

    2008-04-01

    The project overview of this presentation is: (1) description--(a) laboratory R and D in advanced heat transfer fluids (HTF) and thermal storage systems; (b) FOA activities in solar collector and component development for use of molten salt as a heat transfer and storage fluid; (c) applications for all activities include line focus and point focus solar concentrating technologies; (2) Major FY08 Activities--(a) advanced HTF development with novel molten salt compositions with low freezing temperatures, nanofluids molecular modeling and experimental studies, and use with molten salt HTF in solar collector field; (b) thermal storage systems--cost analysis and updates for 2-tank and thermocline storage and model development and analysis to support near-term trought deployment; (c) thermal storage components--facility upgrade to support molten salt component testing for freeze-thaw receiver testing, long-shafted molten salt pump for parabolic trough and power tower thermal storage systems; (d) CSP FOA support--testing and evaluation support for molten salt component and field testing work, advanced fluids and storage solicitation preparation, and proposal evaluation for new advanced HTF and thermal storage FOA.

  7. Stand Alone Battery Thermal Management System

    SciTech Connect (OSTI)

    Brodie, Brad

    2015-09-30

    The objective of this project is research, development and demonstration of innovative thermal management concepts that reduce the cell or battery weight, complexity (component count) and/or cost by at least 20%. The project addresses two issues that are common problems with current state of the art lithium ion battery packs used in vehicles; low power at cold temperatures and reduced battery life when exposed to high temperatures. Typically, battery packs are “oversized” to satisfy the two issues mentioned above. The first phase of the project was spent making a battery pack simulation model using AMEsim software. The battery pack used as a benchmark was from the Fiat 500EV. FCA and NREL provided vehicle data and cell data that allowed an accurate model to be created that matched the electrical and thermal characteristics of the actual battery pack. The second phase involved using the battery model from the first phase and evaluate different thermal management concepts. In the end, a gas injection heat pump system was chosen as the dedicated thermal system to both heat and cool the battery pack. Based on the simulation model. The heat pump system could use 50% less energy to heat the battery pack in -20°C ambient conditions, and by keeping the battery cooler at hot climates, the battery pack size could be reduced by 5% and still meet the warranty requirements. During the final phase, the actual battery pack and heat pump system were installed in a test bench at DENSO to validate the simulation results. Also during this phase, the system was moved to NREL where testing was also done to validate the results. In conclusion, the heat pump system can improve “fuel economy” (for electric vehicle) by 12% average in cold climates. Also, the battery pack size, or capacity, could be reduced 5%, or if pack size is kept constant, the pack life could be increased by two years. Finally, the total battery pack and thermal system cost could be reduced 5% only if the system is integrated with the vehicle cabin air conditioning system. The reason why we were not able to achieve the 20% reduction target is because of the natural decay of the battery cell due to the number of cycles. Perhaps newer battery chemistries that are not so sensitive to cycling would have more potential for reducing the battery size due to thermal issues.

  8. Actively driven thermal radiation shield

    DOE Patents [OSTI]

    Madden, Norman W. (Livermore, CA); Cork, Christopher P. (Pleasant Hill, CA); Becker, John A. (Alameda, CA); Knapp, David A. (Livermore, CA)

    2002-01-01

    A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

  9. Overview of solar thermal technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The solar-thermal overview section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  10. Thermal barrier coatings

    DOE Patents [OSTI]

    Alvin, Mary Anne (Pittsburg, PA)

    2010-06-22

    This disclosure addresses the issue of providing a metallic-ceramic overlay coating that potentially serves as an interface or bond coat layer to provide enhanced oxidation resistance to the underlying superalloy substrate via the formation of a diffusion barrier regime within the supporting base material. Furthermore, the metallic-ceramic coating is expected to limit the growth of a continuous thermally grown oxide (TGO) layer that has been primarily considered to be the principal cause for failure of existing TBC systems. Compositional compatibility of the metallic-ceramic with traditional yttria-stabilized zirconia (YSZ) top coats is provided to further limit debond or spallation of the coating during operational use. A metallic-ceramic architecture is disclosed wherein enhanced oxidation resistance is imparted to the surface of nickel-based superalloy or single crystal metal substrate, with simultaneous integration of the yttria stabilized zirconia (YSZ) within the metallic-ceramic overlayer.

  11. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, Gloria A. (Los Alamos, NM); Moore, Troy K. (Los Alamos, NM)

    1988-01-01

    An apparatus for thermally protecting heat sensitive components of tools. The apparatus comprises a Dewar for holding the heat sensitive components. The Dewar has spaced-apart inside and outside walls, an open top end and a bottom end. An insulating plug is located in the top end. The inside wall has portions defining an inside wall aperture located at the bottom of the Dewar and the outside wall has portions defining an outside wall aperture located at the bottom of the Dewar. A bottom connector has inside and outside components. The inside component sealably engages the inside wall aperture and the outside component sealably engages the outside wall aperture. The inside component is operatively connected to the heat sensitive components and to the outside component. The connections can be made with optical fibers or with electrically conducting wires.

  12. Thermally stabilized heliostat

    DOE Patents [OSTI]

    Anderson, Alfred J. (Littleton, CO)

    1983-01-01

    An improvement in a heliostat having a main support structure and pivoting and tilting motors and gears and a mirror module for reflecting solar energy onto a collector, the improvement being characterized by an internal support structure within each mirror module and front and back sheets attached to the internal support structure, the front and back sheets having the same coefficient of thermal expansion such that no curvature is induced by temperature change, and a layer of adhesive adhering the mirror to the front sheet. The adhesive is water repellent and has adequate set strength to support the mirror but has sufficient shear tolerance to permit the differential expansion of the mirror and the front sheet without inducing stresses or currature effect. The adhesive also serves to dampen fluttering of the mirror and to protect the mirror backside against the adverse effects of weather. Also disclosed are specific details of the preferred embodiment.

  13. Impact of Dynamic Specimen Shape Evolution on the Atom Probe Tomography Results of Doped Epitaxial Oxide Multilayers: Comparison of Experiment and Simulation

    SciTech Connect (OSTI)

    Madaan, Nitesh; Bao, Jie; Nandasiri, Manjula I.; Xu, Zhijie; Thevuthasan, Suntharampillai; Devaraj, Arun

    2015-08-31

    The experimental atom probe tomography results from two different specimen orientations (top-down and side-ways) of a high oxygen ion conducting Samaria-doped-ceria/Scandia-stabilized-zirconia multilayer thin film solid oxide fuel cell electrolyte was correlated with level-set method based field evaporation simulations for the same specimen orientations. This experiment-theory correlation explains the dynamic specimen shape evolution and ion trajectory aberrations that can induce density artifacts in final reconstruction leading to inaccurate estimation of interfacial intermixing. This study highlights the need and importance of correlating experimental results with field evaporation simulations when using atom probe tomography for studying oxide heterostructure interfaces.

  14. Hot wire thermal conductivity measurements in high temperature refractories

    SciTech Connect (OSTI)

    Dils, R.R.; Allen, J.D.; Richmond, J.C.; McNeil, M.B.

    1982-01-01

    In the hot wire thermal conductivity test, a wire embedded in the material to be tested is heated with constant power input, and the temperature is measured at short time intervals. The thermal conductivity is computed from the known power input to the wire and the measured rate of increase in the wire temperature after about 700 s of heating. A finite-difference computer simulation of the hot wire test was developed to evaluate the effects of several variables in the properties of the materials tested and in the test procedures on the measured thermal conductivity. Equations relating the radiant heat transfer in a material to its optical properties were developed and a radiant heat transfer component was developed for the finite-difference simulation. Equations were derived to compute the spectral optical properties of a test material from the measured spectral normal-hemispherical transmittance of a sample of the material of known thickness that is thin enough to have a measurable transmittance over the wavelength range of about 500 to 20,000 nm, and the spectral near-normal hemispherical reflectance of a sample of the material thick enough to be completely opaque, over the same wavelength range. The optical extinction coefficient, and the ratio of the scattering coefficient, to the absorption coefficient, of MinK 2000 and K3000 brick were evaluated from their measured spectral transmittances and reflectances, and used to compute the radiant heat transfer component in these materials. The hot wire test measures an average thermal conductivity for all directions away from the wire in a plane normal to the wire. Extensive tests were made of MinK 2000 and K3000, and the measured values are compared to the guarded hot plate thermal conductivity, which is unidirectional normal to the face of a brick. 67 references, 31 figures, 23 tables.

  15. Analysisi Benchmark of the Single Heater Test

    SciTech Connect (OSTI)

    H.M. Wade; H. Marr; M.J. Anderson

    2006-07-27

    The Single Heater Test (SHT) is the first of three in-situ thermal tests included in the site characterization program for the potential nuclear waste monitored geologic repository at Yucca Mountain. The heating phase of the SHT started in August 1996 and was concluded in May 1997 after 9 months of heating. Cooling continued until January 1998, at which time post-test characterization of the test block commenced. Numerous thermal, hydrological, mechanical, and chemical sensors monitored the coupled processes in the unsaturated fractured rock mass around the heater (CRWMS M&O 1999). The objective of this calculation is to benchmark a numerical simulation of the rock mass thermal behavior against the extensive data set that is available from the thermal test. The scope is limited to three-dimensional (3-D) numerical simulations of the computational domain of the Single Heater Test and surrounding rock mass. This calculation supports the waste package thermal design methodology, and is developed by Waste Package Department (WPD) under Office of Civilian Radioactive Waste Management (OCRWM) procedure AP-3.12Q, Revision 0, ICN 3, BSCN 1, Calculations.

  16. THERMAL IMAGING OF ACTIVE MAGNETIC REGERNERATOR MCE MATERIALS DURING OPERATION

    SciTech Connect (OSTI)

    Shassere, Benjamin [ORNL] [ORNL; West, David L [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Evans III, Boyd Mccutchen [ORNL] [ORNL

    2012-01-01

    An active magnetic regenerator (AMR) prototype was constructed that incorporates a Gd sheet into the regenerator wall to enable visualization of the system s thermal transients. In this experiment, the thermal conditions inside the AMR are observed under a variety of operating conditions. An infrared (IR) camera is employed to visualize the thermal transients within the AMR. The IR camera is used to visually and quantitatively evaluate the temperature difference and thus giving means to calculate the performance of the system under the various operating conditions. Thermal imaging results are presented for two differing experimental test runs. Real time imaging of the thermal state of the AMR has been conducted while operating the system over a range of conditions. A 1 Tesla twin-coil electromagnet (situated on a C frame base) is used for this experiment such that all components are stationary during testing. A modular, linear reciprocating system has been realized in which the effects of regenerator porosity and utilization factor can be investigated. To evaluate the performance variation in porosity and utilization factor the AMR housing was constructed such that the plate spacing of the Gd sheets may be varied. Each Gd sheet has dimensions of 38 mm wide and 66 mm long with a thickness of 1 mm and the regenerator can hold a maximum of 29 plates with a spacing of 0.25 mm. Quantitative and thermal imaging results are presented for several regenerator configurations.

  17. Peg supported thermal insulation panel

    DOE Patents [OSTI]

    Nowobilski, Jeffert J. (Orchard Park, NY); Owens, William J. (Kenmore, NY)

    1985-01-01

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprising high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure.

  18. Peg supported thermal insulation panel

    DOE Patents [OSTI]

    Nowobilski, J.J.; Owens, W.J.

    1985-04-30

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprises high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure. 2 figs.

  19. Round-Robin Verification and Final Development of the IEC 62788-1-5 Encapsulation Size Change Test; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Wohlgemuth, J.; Bokria, J.; Gu, X.; Honeker, C.; Murua, N.; Nickel, N.; Sakurai, K.; Shioda, T.; Tamizhmani, G.; Wang, E.; Yang, S.; Yoshihara, T.

    2015-02-23

    Polymeric encapsulation materials may a change size when processed at typical module lamination temperatures. The relief of residual strain, trapped during the manufacture of encapsulation sheet, can affect module performance and reliability. For example, displaced cells and interconnects threaten: cell fracture; broken interconnects (open circuits and ground faults); delamination at interfaces; and void formation. A standardized test for the characterization of change in linear dimensions of encapsulation sheet has been developed and verified. The IEC 62788-1-5 standard quantifies the maximum change in linear dimensions that may occur to allow for process control of size change. Developments incorporated into the Committee Draft (CD) of the standard as well as the assessment of the repeatability and reproducibility of the test method are described here. No pass/fail criteria are given in the standard, rather a repeatable protocol to quantify the change in dimension is provided to aid those working with encapsulation. The round-robin experiment described here identified that the repeatability and reproducibility of measurements is on the order of 1%. Recent refinements to the test procedure to improve repeatability and reproducibility include: the use of a convection oven to improve the thermal equilibration time constant and its uniformity; well-defined measurement locations reduce the effects of sampling size -and location- relative to the specimen edges; a standardized sand substrate may be readily obtained to reduce friction that would otherwise complicate the results; specimen sampling is defined, so that material is examined at known sites across the width and length of rolls; and encapsulation should be examined at the manufacturer’s recommended processing temperature, except when a cross-linking reaction may limit the size change. EVA, for example, should be examined 100 °C, between its melt transition (occurring up to 80 °C) and the onset of cross-linking (often at 100 °C).

  20. Damage of MEMS thermal actuators heated by laser irradiation.

    SciTech Connect (OSTI)

    Walraven, Jeremy Allen; Klody, Kelly Anne; Sackos, John T.; Phinney, Leslie Mary

    2005-01-01

    Optical actuation of microelectromechanical systems (MEMS) is advantageous for applications for which electrical isolation is desired. Thirty-two polycrystalline silicon opto-thermal actuators, optically-powered MEMS thermal actuators, were designed, fabricated, and tested. The design of the opto-thermal actuators consists of a target for laser illumination suspended between angled legs that expand when heated, providing the displacement and force output. While the amount of displacement observed for the opto-thermal actuators was fairly uniform for the actuators, the amount of damage resulting from the laser heating ranged from essentially no damage to significant amounts of damage on the target. The likelihood of damage depended on the target design with two of the four target designs being more susceptible to damage. Failure analysis of damaged targets revealed the extent and depth of the damage.

  1. Damage of MEMS thermal actuators heated by laser irradiation.

    SciTech Connect (OSTI)

    Walraven, Jeremy Allen; Klody, Kelly Anne; Sackos, John T.; Phinney, Leslie Mary

    2004-11-01

    Optical actuation of microelectromechanical systems (MEMS) is advantageous for applications for which electrical isolation is desired. Thirty-two polycrystalline silicon opto-thermal actuators, optically-powered MEMS thermal actuators, were designed, fabricated, and tested. The design of the opto-thermal actuators consists of a target for laser illumination suspended between angled legs that expand when heated, providing the displacement and force output. While the amount of displacement observed for the opto-thermal actuators was fairly uniform for the actuators, the amount of damage resulting from the laser heating ranged from essentially no damage to significant amounts of damage on the target. The likelihood of damage depended on the target design with two of the four target designs being more susceptible to damage. Failure analysis of damaged targets revealed the extent and depth of the damage.

  2. Clip gage attachment for frictionless measurement of displacement during high-temperature mechanical testing

    DOE Patents [OSTI]

    Alexander, David J. (Oak Ridge, TN)

    1994-01-01

    An attachment for placement between a test specimen and a remote clip gage extensometer providing improved fracture toughness tests of materials at elevated temperature. Using a cylindrical tube and axial rod in new relationship, the device transfers the displacement signal of the fracture toughness test specimen directly to a clip gage extensometer located outside the high temperature furnace. Virtually frictionless operation is assured by having the test specimen center one end of the rod in one end of the tube, while the clip gage extensometer arms center the other end of the rod in the other end of the tube. By providing positive control over both ends of both rod and tube, the attachment may be operated in orientations other than vertical.

  3. Clip gage attachment for frictionless measurement of displacement during high-temperature mechanical testing

    DOE Patents [OSTI]

    Alexander, D.J.

    1994-01-04

    An attachment for placement between a test specimen and a remote clip gage extensometer providing improved fracture toughness tests of materials at elevated temperature is described. Using a cylindrical tube and axial rod in new relationship, the device transfers the displacement signal of the fracture toughness test specimen directly to a clip gage extensometer located outside the high temperature furnace. Virtually frictionless operation is assured by having the test specimen center one end of the rod in one end of the tube, while the clip gage extensometer arms center the other end of the rod in the other end of the tube. By providing positive control over both ends of both rod and tube, the attachment may be operated in orientations other than vertical. 1 figure.

  4. Forklift Test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forklift Safety Test Instructions: All Training and Testing Material is for LSU CAMD Users ONLY! Please enter your personal information in the spaces below. A minimum passing score is 80% (8 out of 10) This test can only be taken once in a thirty day period. All fields are required to be filled in. Login: Login First Name: Last Name: Phone Number: Contact: 1. When carrying a load, always: a. tilt the load forward. b. center the load c. carry the load as high as possible d. none of the above 2.

  5. Crane Test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crane Safety Test Instructions: All Training and Testing Material is for LSU CAMD Users ONLY! Please enter your personal information in the spaces below. A minimum passing score is 80% (8 out of 10) This test can only be taken once in a thirty day period. All fields are required to be filled in. Login: Login First Name: Last Name: Phone Number: Contact: 1. The first thing you should do when using the crane is to: a. verify the battery power on the remote control. b. drag the load to the desired

  6. Microelectromechanical (MEM) thermal actuator

    DOE Patents [OSTI]

    Garcia, Ernest J. (Albuquerque, NM); Fulcher, Clay W. G. (Sandia Park, NM)

    2012-07-31

    Microelectromechanical (MEM) buckling beam thermal actuators are disclosed wherein the buckling direction of a beam is constrained to a desired direction of actuation, which can be in-plane or out-of-plane with respect to a support substrate. The actuators comprise as-fabricated, linear beams of uniform cross section supported above the substrate by supports which rigidly attach a beam to the substrate. The beams can be heated by methods including the passage of an electrical current through them. The buckling direction of an initially straight beam upon heating and expansion is controlled by incorporating one or more directional constraints attached to the substrate and proximal to the mid-point of the beam. In the event that the beam initially buckles in an undesired direction, deformation of the beam induced by contact with a directional constraint generates an opposing force to re-direct the buckling beam into the desired direction. The displacement and force generated by the movement of the buckling beam can be harnessed to perform useful work, such as closing contacts in an electrical switch.

  7. Thermal energy storage apparatus

    SciTech Connect (OSTI)

    Thoma, P.E.

    1980-04-22

    A thermal energy storage apparatus and method employs a container formed of soda lime glass and having a smooth, defectfree inner wall. The container is filled substantially with a material that can be supercooled to a temperature greater than 5* F., such as ethylene carbonate, benzophenone, phenyl sulfoxide, di-2-pyridyl ketone, phenyl ether, diphenylmethane, ethylene trithiocarbonate, diphenyl carbonate, diphenylamine, 2benzoylpyridine, 3-benzoylpyridine, 4-benzoylpyridine, 4methylbenzophenone, 4-bromobenzophenone, phenyl salicylate, diphenylcyclopropenone, benzyl sulfoxide, 4-methoxy-4prmethylbenzophenone, n-benzoylpiperidine, 3,3pr,4,4pr,5 pentamethoxybenzophenone, 4,4'-bis-(Dimethylamino)-benzophenone, diphenylboron bromide, benzalphthalide, benzophenone oxime, azobenzene. A nucleating means such as a seed crystal, a cold finger or pointed member is movable into the supercoolable material. A heating element heats the supercoolable material above the melting temperature to store heat. The material is then allowed to cool to a supercooled temperature below the melting temperature, but above the natural, spontaneous nucleating temperature. The liquid in each container is selectively initiated into nucleation to release the heat of fusion. The heat may be transferred directly or through a heat exchange unit within the material.

  8. Solar Thermal Demonstration Project

    SciTech Connect (OSTI)

    Biesinger, K.; Cuppett, D.; Dyer, D.

    2012-01-30

    HVAC Retrofit and Energy Efficiency Upgrades at Clark High School, Las Vegas, Nevada The overall objectives of this project are to increase usage of alternative/renewable fuels, create a better and more reliable learning environment for the students, and reduce energy costs. Utilizing the grant resources and local bond revenues, the District proposes to reduce electricity consumption by installing within the existing limited space, one principal energy efficient 100 ton adsorption chiller working in concert with two 500 ton electric chillers. The main heating source will be primarily from low nitrogen oxide (NOX), high efficiency natural gas fired boilers. With the use of this type of chiller, the electric power and cost requirements will be greatly reduced. To provide cooling to the information technology centers and equipment rooms of the school during off-peak hours, the District will install water source heat pumps. In another measure to reduce the cooling requirements at Clark High School, the District will replace single pane glass and metal panels with â??Kalwallâ?? building panels. An added feature of the â??Kalwallâ? system is that it will allow for natural day lighting in the student center. This system will significantly reduce thermal heat/cooling loss and control solar heat gain, thus delivering significant savings in heating ventilation and air conditioning (HVAC) costs.

  9. Waste Acceptance Testing of Secondary Waste Forms: Cast Stone, Ceramicrete and DuraLith

    SciTech Connect (OSTI)

    Mattigod, Shas V.; Westsik, Joseph H.; Chung, Chul-Woo; Lindberg, Michael J.; Parker, Kent E.

    2011-08-12

    To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions has initiated secondary-waste-form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is conducting tests on four candidate waste forms to evaluate their ability to meet potential waste acceptance criteria for immobilized secondary wastes that would be placed in the IDF. All three waste forms demonstrated compressive strengths above the minimum 3.45 MPa (500 psi) set as a target for cement-based waste forms. Further, none of the waste forms showed any significant degradation in compressive strength after undergoing thermal cycling (30 cycles in a 10 day period) between -40 C and 60 C or water immersion for 90 days. The three leach test methods are intended to measure the diffusion rates of contaminants from the waste forms. Results are reported in terms of diffusion coefficients and a leachability index (LI) calculated based on the diffusion coefficients. A smaller diffusion coefficient and a larger LI are desired. The NRC, in its Waste Form Technical Position (NRC 1991), provides recommendations and guidance regarding methods to demonstrate waste stability for land disposal of radioactive waste. Included is a recommendation to conduct leach tests using the ANS 16.1 method. The resulting leachability index (LI) should be greater than 6.0. For Hanford secondary wastes, the LI > 6.0 criterion applies to sodium leached from the waste form. For technetium and iodine, higher targets of LI > 9 for Tc and LI > 11 for iodine have been set based on early waste-disposal risk and performance assessment analyses. The results of these three leach tests conducted for a total time between 11days (ASTM C1308) to 90 days (ANS 16.1) showed: (1) Technetium diffusivity: ANSI/ANS 16.1, ASTM C1308, and EPA 1315 tests indicated that all the waste forms had leachability indices better than the target LI > 9 for technetium; (2) Rhenium diffusivity: Cast Stone 2M specimens, when tested using EPA 1315 protocol, had leachability indices better than the target LI > 9 for technetium based on rhenium as a surrogate for technetium. All other waste forms tested by ANSI/ANS 16.1, ASTM C1308, and EPA 1315 test methods had leachability indices that were below the target LI > 9 for Tc based on rhenium release. These studies indicated that use of Re(VII) as a surrogate for 99Tc(VII) in low temperature secondary waste forms containing reductants will provide overestimated diffusivity values for 99Tc. Therefore, it is not appropriate to use Re as a surrogate 99Tc in future low temperature waste form studies. (3) Iodine diffusivity: ANSI/ANS 16.1, ASTM C1308, and EPA 1315 tests indicated that the three waste forms had leachability indices that were below the target LI > 11 for iodine. Therefore, it may be necessary to use a more effective sequestering material than silver zeolite used in two of the waste forms (Ceramicrete and DuraLith); (4) Sodium diffusivity: All the waste form specimens tested by the three leach methods (ANSI/ANS 16.1, ASTM C1308, and EPA 1315) exceeded the target LI value of 6; (5) All three leach methods (ANS 16.1, ASTM C1308 and EPA 1315) provided similar 99Tc diffusivity values for both short-time transient diffusivity effects as well as long-term ({approx}90 days) steady diffusivity from each of the three tested waste forms (Cast Stone 2M, Ceramicrete and DuraLith). Therefore, any one of the three methods can be used to determine the contaminant diffusivities from a selected waste form.

  10. Motor Thermal Control | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Control Motor Thermal Control 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ape030_bennion_2010_p.pdf More Documents & Publications Thermal Management of PHEV / EV Charging Systems Integrated Vehicle Thermal Management Power Electronic Thermal System Performance and Integration

  11. Thermal to electricity conversion using thermal magnetic properties

    DOE Patents [OSTI]

    West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID

    2010-04-27

    A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.

  12. Thermal Enhancer - Airless Exhaust Thermal Management Device | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Enhancer - Airless Exhaust Thermal Management Device Thermal Enhancer - Airless Exhaust Thermal Management Device Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_coker.pdf More Documents & Publications Heavy Duty Vehicle In-Use Emission Performance Why Light Duty Diesels Make Sense in the North American Market Scalable, Low-Cost, High

  13. Impact Testing of Stainless Steel Material at Cold Temperatures

    SciTech Connect (OSTI)

    Spencer D. Snow; D. Keith Morton; Robert K. Blandford

    2008-07-01

    Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates during accidental drop events. Mechanical characteristics of these base materials and their welds under dynamic loads in the strain rate range of concern are not well documented. However, a previous paper [1] reported on impact testing and analysis results performed at the Idaho National Laboratory using 304/304L and 316/316L stainless steel base material specimens at room and elevated temperatures. The goal of the work presented herein is to add recently completed impact tensile testing results at -20 degrees F conditions for dual-marked 304/304L and 316/316L stainless steel material specimens (hereafter referred to as 304L and 316L, respectively). Recently completed welded material impact testing at -20 degrees F, room, 300 degrees F, and 600 degrees F is also reported. Utilizing a drop-weight impact test machine and 1/4-inch to 1/2-inch thick dog-bone shaped test specimens, the impact tests achieved strain rates in the 4 to 40 per second range, depending upon the material temperature. Elevated true stress-strain curves for these materials reflecting varying strain rates and temperatures are presented herein.

  14. Experimental Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  15. Mechanical Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  16. Battery Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  17. Thermal Performance and Reliability Characterization of Bonded Interface Materials (BIMs): Preprint

    SciTech Connect (OSTI)

    DeVoto, D.; Paret, P.; Mihalic, M.; Narumanchi, S.; Bar-Cohen, A.; Matin, K.

    2014-08-01

    Thermal interface materials are an important enabler for low thermal resistance and reliable electronics packaging for a wide array of applications. There is a trend towards bonded interface materials (BIMs) because of their potential for low thermal resistivity (< 1 mm2K/W). However, BIMs induce thermomechanical stresses in the package and can be prone to failures and integrity risks. Deteriorated interfaces can result in high thermal resistance in the package and degradation and/or failure of the electronics. DARPA's Thermal Management Technologies program has addressed this challenge, supporting the development of mechanically-compliant, low resistivity nano-thermal interface (NTI) materials. In this work, we describe the testing procedure and report the results of NREL's thermal performance and reliability characterization of an initial sample of four different NTI-BIMs.

  18. Project Profile: High-Efficiency Thermal Energy Storage System for CSP |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High-Efficiency Thermal Energy Storage System for CSP Project Profile: High-Efficiency Thermal Energy Storage System for CSP ANL logo Argonne National Laboratory and project partner Ohio Aerospace Institute, under the National Laboratory R&D competitive funding opportunity, will design, develop, and test a prototype high-temperature and high-efficiency thermal energy storage (TES) system with rapid charging and discharging times. By increasing the efficiency of TES

  19. Characterization of Contact and Bulk Thermal Resistance of Laminations for Electric Machines

    SciTech Connect (OSTI)

    Cousineau, J. Emily; Bennion, Kevin; DeVoto, Doug; Mihalic, Mark; Narumanchi, Sreekant

    2015-06-30

    The ability to remove heat from an electric machine depends on the passive stack thermal resistances within the machine and the convective cooling performance of the selected cooling technology. This report focuses on the passive thermal design, specifically properties of the stator and rotor lamination stacks. Orthotropic thermal conductivity, specific heat, and density are reported. Four materials commonly used in electric machines were tested, including M19 (29 and 26 gauge), HF10, and Arnon 7 materials.

  20. CoolCab Thermal Load Reduction Project: CoolCalc HVAC Tool Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Thermal Load Reduction Project: CoolCalc HVAC Tool Development CoolCab Thermal Load Reduction Project: CoolCalc HVAC Tool Development 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vss022_rugh_2010_o.pdf More Documents & Publications CoolCab Truck Thermal Load Reduction CoolCab Test and Evaluation

  1. Advanced Wellbore Thermal Simulator

    Energy Science and Technology Software Center (OSTI)

    1992-03-04

    GEOTEMP2, which is based on the earlier GEOTEMP program, is a wellbore thermal simulator designed for geothermal well drilling and production applications. The code treats natural and forced convection and conduction within the wellbore and heat conduction within the surrounding rock matrix. A variety of well operations can be modeled including injection, production, forward and reverse circulation with gas or liquid, gas or liquid drilling, and two-phase steam injection and production. Well completion with severalmore » different casing sizes and cement intervals can be modeled. The code allows variables, such as flow rate, to change with time enabling a realistic treatment of well operations. Provision is made in the flow equations to allow the flow areas of the tubing to vary with depth in the wellbore. Multiple liquids can exist in GEOTEMP2 simulations. Liquid interfaces are tracked through the tubing and annulus as one liquid displaces another. GEOTEMP2, however, does not attempt to simulate displacement of liquids with a gas or two-phase steam or vice versa. This means that it is not possible to simulate an operation where the type of drilling fluid changes, e.g. mud going to air. GEOTEMP2 was designed primarily for use in predicting the behavior of geothermal wells, but it is flexible enough to handle many typical drilling, production, and injection problems in the oil industry as well. However, GEOTEMP2 does not allow the modeling of gas-filled annuli in production or injection problems. In gas or mist drilling, no radiation losses are included in the energy balance. No attempt is made to model flow in the formation. Average execution time is 50 CP seconds on a CDC CYBER170. This edition of GEOTEMP2 is designated as Version 2.0 by the contributors.« less

  2. Methodology for Mechanical Property Testing of Fuel Cladding Using a Expanded Plug Wedge Test

    SciTech Connect (OSTI)

    Jiang, Hao; Wang, Jy-An John

    2014-01-01

    An expanded plug method was developed earlier for determining the tensile properties of irradiated fuel cladding. This method tests fuel rod cladding ductility by utilizing an expandable plug to radially stretch a small ring of irradiated cladding material. The circumferential or hoop strain is determined from the measured diametrical expansion of the ring. A developed procedure is used to convert the load circumferential strain data from the ring tests into material pseudo-stress-strain curves, from which material properties of the cladding can be extracted. However, several deficiencies existed in this expanded-plug test that can impact the accuracy of test results, such as that the large axial compressive stress resulted from the expansion plug test can potentially induce the shear failure mode of the tested specimen. Moreover, highly nonuniform stress and strain distribution in the deformed clad gage section and significant compressive stresses, induced by bending deformation due to clad bulging effect, will further result in highly nonconservative estimates of the mechanical properties for both strength and ductility of the tested clad. To overcome the aforementioned deficiencies associated with the current expansion plug test, systematic studies have been conducted. By optimizing the specific geometry designs, selecting the appropriate material for the expansion plug, and adding new components into the testing system, a modified expansion plug testing protocol has been developed. A general procedure was also developed to determine the hoop stress in the tested ring specimen. A scaling factor, -factor, was used to convert the ring load Fring into hoop stress , and is written as _ = F_ring/tl , where t is the clad thickness and l is the clad length. The generated stress-strain curve agrees well with the associated tensile test data in both elastic and plastic deformation regions.

  3. Rapid thermal processing by stamping

    DOE Patents [OSTI]

    Stradins, Pauls; Wang, Qi

    2013-03-05

    A rapid thermal processing device and methods are provided for thermal processing of samples such as semiconductor wafers. The device has components including a stamp (35) having a stamping surface and a heater or cooler (40) to bring it to a selected processing temperature, a sample holder (20) for holding a sample (10) in position for intimate contact with the stamping surface; and positioning components (25) for moving the stamping surface and the stamp (35) in and away from intimate, substantially non-pressured contact. Methods for using and making such devices are also provided. These devices and methods allow inexpensive, efficient, easily controllable thermal processing.

  4. Ocean Thermal Extractable Energy Visualization

    SciTech Connect (OSTI)

    Ascari, Matthew

    2012-10-28

    The Ocean Thermal Extractable Energy Visualization (OTEEV) project focuses on assessing the Maximum Practicably Extractable Energy (MPEE) from the world’s ocean thermal resources. MPEE is defined as being sustainable and technically feasible, given today’s state-of-the-art ocean energy technology. Under this project the OTEEV team developed a comprehensive Geospatial Information System (GIS) dataset and software tool, and used the tool to provide a meaningful assessment of MPEE from the global and domestic U.S. ocean thermal resources.

  5. Oxidation and degradation of a plasma-sprayed thermal barrier coating system

    SciTech Connect (OSTI)

    Haynes, J.A.; Ferber, M.K.; Porter, W.D.

    1996-04-01

    The isothermal oxidation behavior of thermal barrier coating (TBC) specimens consisting of single-crystal superalloy substrates, vacuum plasma-sprayed Ni-22Cr-10Al-1Y bond coatings and air plasma-sprayed 7.5 wt.% yttria stabilized zirconia top coatings was evaluated by thermogravimetric analysis at 1150{degrees}C for up to 200 hours. Coating durability was assessed by furnace cycling at 1150{degrees}C. Coatings and reaction products were identified by x-ray diffraction, field-emission scanning electron microscopy and energy dispersive spectroscopy.

  6. Analytical thermal model validation for Cassini radioisotope thermoelectric generator

    SciTech Connect (OSTI)

    Lin, E.I.

    1997-12-31

    The Saturn-bound Cassini spacecraft is designed to rely, without precedent, on the waste heat from its three radioisotope thermoelectric generators (RTGs) to warm the propulsion module subsystem, and the RTG end dome temperature is a key determining factor of the amount of waste heat delivered. A previously validated SINDA thermal model of the RTG was the sole guide to understanding its complex thermal behavior, but displayed large discrepancies against some initial thermal development test data. A careful revalidation effort led to significant modifications and adjustments of the model, which result in a doubling of the radiative heat transfer from the heat source support assemblies to the end domes and bring up the end dome and flange temperature predictions to within 2 C of the pertinent test data. The increased inboard end dome temperature has a considerable impact on thermal control of the spacecraft central body. The validation process offers an example of physically-driven analytical model calibration with test data from not only an electrical simulator but also a nuclear-fueled flight unit, and has established the end dome temperatures of a flight RTG where no in-flight or ground-test data existed before.

  7. Simulation of thermal-well sucker-rod pumping

    SciTech Connect (OSTI)

    Wong, A. (Alberta Oil Sands Technology and Research Authority (CA)); Sudol, T.A. (Alberta Research Council (CA))

    1992-05-01

    A major problem experienced in pumping thermal wells is low volumetric efficiencies resulting from steam and noncondensable gas interference. This paper examines the results of physical simulations performed on a full-scale sucker-rod pump test facility and numerical simulations that used an equation of state (EOS) to predict theoretical volumetric pump efficiencies.

  8. Radiography used to image thermal explosions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October » Radiography used to image thermal explosions Radiography used to image thermal explosions Researchers have gained an understanding of the mechanism of thermal explosions and have created a model capturing the stages of the explosion. October 9, 2012 Tabletop X-ray radiography of a thermal explosion. Tabletop X-ray radiography of a thermal explosion. Researchers have gained an understanding of the mechanism of thermal explosions and have created a model capturing the stages of the

  9. Analysis of Gas Turbine Thermal Performances | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of Gas Turbine Thermal Performances

  10. Amulaire Thermal Technology | Open Energy Information

    Open Energy Info (EERE)

    Amulaire Thermal Technology Jump to: navigation, search Name: Amulaire Thermal Technology Address: 11555 Sorrento Valley Road Place: San Diego, California Zip: 92121 Region:...

  11. Materials Selection Considerations for Thermal Process Equipment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Selection Considerations for Thermal Process Equipment: A BestPractices Process Heating Technical Brief Materials Selection Considerations for Thermal Process Equipment:...

  12. Thermal-Mechanical Technologies | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of thermal-mechanical research includes: Single and two phase heat transfer Nanomaterial synthesis Heat transfer fluids Engine and power electronics cooling Thermal energy...

  13. Develop & evaluate materials & additives that enhance thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    evaluate materials & additives that enhance thermal & overcharge abuse Develop & evaluate materials & additives that enhance thermal & overcharge abuse 2009 DOE Hydrogen Program ...

  14. Develop & Evaluate Materials & Additives that Enhance Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluate Materials & Additives that Enhance Thermal & Overcharge Abuse Develop & Evaluate Materials & Additives that Enhance Thermal & Overcharge Abuse 2011 DOE Hydrogen and Fuel ...

  15. turbine thermal index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine Thermal Management Fact Sheets Research Team Members Key Contacts Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances...

  16. Nextreme Thermal Solutions Inc | Open Energy Information

    Open Energy Info (EERE)

    Nextreme Thermal Solutions Inc Jump to: navigation, search Name: Nextreme Thermal Solutions Inc Place: North Carolina Zip: 27709-3981 Product: String representation "Manufactures...

  17. Chemically homogeneous and thermally reversible oxidation of...

    Office of Scientific and Technical Information (OSTI)

    Chemically homogeneous and thermally reversible oxidation of epitaxial graphene Citation Details In-Document Search Title: Chemically homogeneous and thermally reversible oxidation ...

  18. Ocean Thermal Extractable Energy Visualization: Final Technical...

    Broader source: Energy.gov (indexed) [DOE]

    Report about the Ocean Thermal Extractable Energy Visualization project, which focuses on assessing the Maximum Practicably Extractable Energy from the world's ocean thermal ...

  19. Stewart Thermal Ltd | Open Energy Information

    Open Energy Info (EERE)

    Thermal Ltd Jump to: navigation, search Name: Stewart Thermal Ltd Place: United Kingdom Sector: Biomass Product: Provides specialist advice in the field of biomass energy....

  20. NREL: Energy Storage - Energy Storage Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Thermal Management Infrared image of rectangular battery cell. Infrared thermal image of a lithium-ion battery cell with poor terminal design. Graph of relative ...

  1. Advanced Thermally Stable Jet Fuels

    SciTech Connect (OSTI)

    A. Boehman; C. Song; H. H. Schobert; M. M. Coleman; P. G. Hatcher; S. Eser

    1998-01-01

    The Penn State program in advanced thermally stable jet fuels has five components: 1) development of mechanisms of degradation and solids formation; 2) quantitative measurement of growth of sub-micrometer and micrometer-sized particles during thermal stressing; 3) characterization of carbonaceous deposits by various instrumental and microscopic methods; 4) elucidation of the role of additives in retarding the formation of carbonaceous solids; and 5) assessment of the potential of producing high yields of cycloalkanes and hydroaromatics from coal.

  2. Lih thermal energy storage device

    DOE Patents [OSTI]

    Olszewski, Mitchell; Morris, David G.

    1994-01-01

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.

  3. Power Electronics Thermal Control (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.

    2010-05-05

    Thermal management plays an important part in the cost of electric drives in terms of power electronics packaging. Very promising results have been obtained by using microporous coatings and skived surfaces in conjunction with single-phase and two-phase flows. Sintered materials and thermoplastics with embedded fibers show significant promise as thermal interface materials, or TIMs. Appropriate cooling technologies depend on the power electronics package application and reliability.

  4. Thermally activated technologies: Technology Roadmap

    SciTech Connect (OSTI)

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting America’s wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  5. Rapid heating tensile tests of hydrogen-charged high-energy-rate-forged 316L stainless steel

    SciTech Connect (OSTI)

    Mosley, W.C.

    1989-05-19

    316L stainless steel is a candidate material for construction of equipment that will be exposed to tritium. Proper design of the equipment will require an understanding of how tritium and its decay product helium affect mechanical properties. This memorandum describes results of rapid heating tensile testing of hydrogen-charged specimens of high-energy-rate-forged (HERF) 316L stainless steel. These results provide a data base for comparison with uncharged and tritium-charged-and-aged specimens to distinguish the effects of hydrogen and helium. Details of the experimental equipment and procedures and results for uncharged specimens were reported previously. 3 refs., 10 figs.

  6. Thermal Batteries for Electric Vehicles

    SciTech Connect (OSTI)

    2011-11-21

    HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

  7. Low Thermal Conductivity, High Durability Thermal Barrier Coatings for IGCC Environments

    SciTech Connect (OSTI)

    Jordan, Eric; Gell, Maurice

    2015-01-15

    Advanced thermal barrier coatings (TBC) are crucial to improved energy efficiency in next generation gas turbine engines. The use of traditional topcoat materials, e.g. yttria-stabilized zirconia (YSZ), is limited at elevated temperatures due to (1) the accelerated undesirable phase transformations and (2) corrosive attacks by calcium-magnesium-aluminum-silicate (CMAS) deposits and moisture. The first goal of this project is to use the Solution Precursor Plasma Spray (SPPS) process to further reduce the thermal conductivity of YSZ TBCs by introducing a unique microstructural feature of layered porosity, called inter-pass boundaries (IPBs). Extensive process optimization accompanied with hundreds of spray trials as well as associated SEM cross-section and laser-flash measurements, yielded a thermal conductivity as low as 0.62 Wm?čK?č in SPPS YSZ TBCs, approximately 50% reduction of APS TBCs; while other engine critical properties, such as cyclic durability, erosion resistance and sintering resistance, were characterized to be equivalent or better than APS baselines. In addition, modifications were introduced to SPPS TBCs so as to enhance their resistance to CMAS under harsh IGCC environments. Several mitigation approaches were explored, including doping the coatings with Al?O? and TiO?, applying a CMAS infiltration-inhibiting surface layer, and filling topcoat cracks with blocking substances. The efficacy of all these modifications was assessed with a set of novel CMAS-TBC interaction tests, and the moisture resistance was tested in a custom-built high-temperature moisture rig. In the end, the optimal low thermal conductivity TBC system was selected based on all evaluation tests and its processing conditions were documented. The optimal coating consisted on a thick inner layer of YSZ coating made by the SPPS process having a thermal conductivity 50% lower than standard YSZ coatings topped with a high temperature tolerant CMAS resistant gadolinium zirconate Coating made by the SPPS process. Noteworthy was the fact that the YSZ to GZO interface made by the SPPS process was not the failure location as had been observed in APS coatings.

  8. Microgrid Testing

    SciTech Connect (OSTI)

    Shirazi, M.; Kroposki, B.

    2012-01-01

    With the publication of IEEE 1574.4 Guide for Design, Operation, and Integration of Distributed Resource Island Systems with Electric Power Systems, there is an increasing amount of attention on not only the design and operations of microgrids, but also on the proper operation and testing of these systems. This standard provides alternative approaches and good practices for the design, operation, and integration of microgrids. This includes the ability to separate from and reconnect to part of the utility grid while providing power to the islanded power system. This presentation addresses the industry need to develop standardized testing and evaluation procedures for microgrids in order to assure quality operation in the grid connected and islanded modes of operation.

  9. Residential solar-absorption chiller thermal dynamics

    SciTech Connect (OSTI)

    Guertin, J.M.; Wood, B.D.; McNeill, B.W.

    1981-03-01

    Research is reported on the transient performance of a commercial residential 3 ton lithium bromide-water absorption chiller designed for solar firing. Emphasis was placed on separating the chiller response from that of the entire test facility so that its transient response could solely be observed and quantified. It was found that the entire system time response and thermal capacitance has a major impact on performance degradation due to transient operation. Tests run to ascertain computer algorithms which simulate system isolated chiller performance, revealed processes hitherto undocumented. Transient operation is simulated by three distinct algorithms associated with the three phases of chiller operation. The first phase is start up time. It was revealed during testing that the time required to reach steady state performance values, when the chiller was turned on, was a linear function of steady state water supply temperatures. The second phase is quasi steady state performance. Test facility's performance compared favorably with the manufacturer's published data. The third phase is the extra capacity produced during spin down. Spin down occurs when the hot water supply pump is turned off while the other system pumps remain operating for a few minutes, thus allowing extra chiller capacity to be realized. The computer algorithms were used to generate plots which show the operational surface of an isolated absorption chiller subjected to off design and transient operation.

  10. Novel Thermal Storage Technologies for Concentrating Solar Power Generation

    SciTech Connect (OSTI)

    Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

    2013-06-20

    The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300oC and 850oC using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

  11. Enhanced thermal stability of Ag nanorods through capping

    SciTech Connect (OSTI)

    Bachenheimer, Lou; Elliott, Paul; Stagon, Stephen; Huang, Hanchen

    2014-11-24

    Ag nanorods may serve as sensors in the detection of trace amounts of chemical agents, even single molecules, through surface enhanced Raman spectroscopy (SERS). However, thermal coarsening of Ag nanorods near room temperature limits their applications. This letter proposes the use of a thin oxide capping layer to enhance the thermal stability of Ag nanorods beyond 100?°C. Using electron microscopy characterization and SERS tests, the authors show that the proposed method is effective in stabilizing both morphology and sensitivity of Ag nanorods. The results of this work extend the applicability of Ag nanorods as chemical sensors to higher temperatures.

  12. Preparation of actinide specimens for the US/UK joint experiment in the Dounreay Prototype Fast Reactor

    SciTech Connect (OSTI)

    Quinby, T C; Adair, H L; Kobisk, E H

    1982-05-01

    A joint research program involving the United States and the United Kingdom was initiated about four years ago for the purpose of studying the fuel behavior of higher actinides using in-core irradiation in the fast reactor at Dounreay, Scotland. Simultaneously, determination of integral cross sections of a wide variety of higher actinide isotopes (physics specimens) was proposed. Coincidental neutron flux and energy spectral measurements were to be made using vanadium encapsulated dosimetry materials in the immediate region of the fuel pellets and physics samples. The higher actinide samples chosen for the fuel study were /sup 241/Am and /sup 244/Cm in the forms of Am/sub 2/O/sub 3/, Cm/sub 2/O/sub 3/, and Am/sub 6/Cm(RE)/sub 7/O/sub 21/, where (RE) represents a mixture of lanthanides. Milligram quantities of actinide oxides of /sup 248/Cm, /sup 246/Cm, /sup 244/Cm, /sup 243/Cm, /sup 243/Am, /sup 241/Am, /sup 244/Pu, /sup 242/Pu, /sup 241/Pu, /sup 240/Pu, /sup 239/Pu, /sup 238/Pu, /sup 237/Np, /sup 238/U, /sup 236/U, /sup 235/U, /sup 234/U, /sup 233/U, /sup 232/Th, /sup 230/Th, and /sup 231/Pa were encapsulated to obtain nuclear cross section and reaction rate data for these materials.

  13. Battery Thermal Management System Design Modeling (Presentation)

    SciTech Connect (OSTI)

    Kim, G-H.; Pesaran, A.

    2006-10-01

    Presents the objectives and motivations for a battery thermal management vehicle system design study.

  14. Integrated Vehicle Thermal Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management Integrated Vehicle Thermal Management 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vss028_thornton_2010_o.pdf More Documents & Publications Motor Thermal Control Thermal Management of PHEV / EV Charging Systems Power Electronic Thermal System Performance and Integration

  15. Thermal storage module for solar dynamic receivers

    DOE Patents [OSTI]

    Beatty, Ronald L. (Farragut, TN); Lauf, Robert J. (Oak Ridge, TN)

    1991-01-01

    A thermal energy storage system comprising a germanium phase change material and a graphite container.

  16. Evaluation of test methods for dynamic toughness characterization of duplex stainless steel forgings

    SciTech Connect (OSTI)

    Natishan, M.E.; Tregoning, R.L.

    1995-12-31

    Ferralium is a dual-phase stainless steel which consists of roughly equal amounts of ferrite and austenite. Conventional Charpy V-notch impact tests were performed on specimens taken from several locations in three orientations from a forged Ferralium plate to quantify the materials dynamic fracture performance. The Charpy tests were compared with 2.54 cm thick (1T) single edge bend (SE(B)) specimens that were tested in a drop tower to measure dynamic fracture initiation toughness (K{sub Id}). SE(B) specimens were removed from three plate locations and tested in a single orientation. Charpy and K{sub Id} tests were performed over the entire fracture mode transition temperature range, but the bulk of testing was concentrated at a single temperature {minus}2 C to provide a statistically significant number of tests at a representative point in the ferritic fracture mode transition region. Charpy impact energy varied consistently with both orientation and location within the forged plate even though large scatter was present in the results. This large scatter precluded an accurate assessment of the materials fracture performance within the transition region. The scatter in the drop tower (SE(B)) results was much less and indicated that plate location had a minimal affect on performance. The reduced scatter in the SE(B) specimens is attributed to two factors. First, the microstructure of Ferralium, while macroscopically homogeneous, contains ferritic and austenitic phase sizes that approach the dimensions of the standard Charpy specimen. Second, the Charpy testing technique causes more variation than the standard SE(B) K{sub Id} tests within the transition region.

  17. Thermal Decomposition of IMX-104: Ingredient Interactions Govern Thermal Insensitivity

    SciTech Connect (OSTI)

    Maharrey, Sean; Wiese-Smith, Deneille; Highley, Aaron M.; Steill, Jeffrey D.; Behrens, Richard; Kay, Jeffrey J.

    2015-04-01

    This report summarizes initial studies into the chemical basis of the thermal insensitivity of INMX-104. The work follows upon similar efforts investigating this behavior for another DNAN-based insensitive explosive, IMX-101. The experiments described demonstrate a clear similarity between the ingredient interactions that were shown to lead to the thermal insensitivity observed in IMX-101 and those that are active in IMX-104 at elevated temperatures. Specifically, the onset of decomposition of RDX is shifted to a lower temperature based on the interaction of the RDX with liquid DNAN. This early onset of decomposition dissipates some stored energy that is then unavailable for a delayed, more violent release.

  18. Low Temperature Waste Immobilization Testing Vol. I

    SciTech Connect (OSTI)

    Russell, Renee L.; Schweiger, Michael J.; Westsik, Joseph H.; Hrma, Pavel R.; Smith, D. E.; Gallegos, Autumn B.; Telander, Monty R.; Pitman, Stan G.

    2006-09-14

    The Pacific Northwest National Laboratory (PNNL) is evaluating low-temperature technologies to immobilize mixed radioactive and hazardous waste. Three waste forms—alkali-aluminosilicate hydroceramic cement, “Ceramicrete” phosphate-bonded ceramic, and “DuraLith” alkali-aluminosilicate geopolymer—were selected through a competitive solicitation for fabrication and characterization of waste-form properties. The three contractors prepared their respective waste forms using simulants of a Hanford secondary waste and Idaho sodium bearing waste provided by PNNL and characterized their waste forms with respect to the Toxicity Characteristic Leaching Procedure (TCLP) and compressive strength. The contractors sent specimens to PNNL, and PNNL then conducted durability (American National Standards Institute/American Nuclear Society [ANSI/ANS] 16.1 Leachability Index [LI] and modified Product Consistency Test [PCT]) and compressive strength testing (both irradiated and as-received samples). This report presents the results of these characterization tests.

  19. Device for thermal transfer and power generation

    DOE Patents [OSTI]

    Weaver, Stanton Earl (Northville, NY); Arik, Mehmet (Niskayuna, NY)

    2011-04-19

    A system is provided. The system includes a device that includes top and bottom thermally conductive substrates positioned opposite to one another, wherein a top surface of the bottom thermally conductive substrate is substantially atomically flat and a thermal blocking layer disposed between the top and bottom thermally conductive substrates. The device also includes top and bottom electrodes separated from one another between the top and bottom thermally conductive substrates to define a tunneling path, wherein the top electrode is disposed on the thermal blocking layer and the bottom electrode is disposed on the bottom thermally conductive substrate.

  20. Thermal-mechanical stability of single crystal oxide refractive concentrators for high-temperature solar thermal propulsion

    SciTech Connect (OSTI)

    Zhu, D.; Jacobson, S.; Miller, R.A.

    1999-07-01

    Single crystal oxides such as yttria-stabilized zirconia (Y{sub 2}O{sub 3}-ZrO{sub 2}), yttrium aluminum garnet (Y{sub 3}Al{sub 5}O{sub 12}, or YAG), magnesium oxide (MgO) and sapphire (Al{sub 2}O{sub 3}) are candidate refractive secondary concentrator materials for high temperature solar propulsion applications. However, thermo-mechanical reliability of these components in severe thermal environments during the space mission sun/shade transition is of great concern. Simulated mission tests are important for evaluating these candidate oxide materials under a variety of transient and steady-state heat flux conditions, and thus provide vital information for the component design. In this paper, a controlled heat flux thermal shock test approach is established for the single crystal oxide materials using a 3.0 kW continuous wave CO{sub 2} laser, with a wavelength 10.6 micron. Thermal fracture behavior and failure mechanisms of these oxide materials are investigated and critical temperature gradients are determined under various temperature and heating conditions. The test results show that single crystal sapphire is able to sustain the highest temperature gradient and heating-cooling rate, and thus exhibit the best thermal shock resistance, as compared to the yttria-stabilized zirconia, yttrium aluminum garnet and magnesium oxide.

  1. Review of computational thermal-hydraulic modeling

    SciTech Connect (OSTI)

    Keefer, R.H.; Keeton, L.W.

    1995-12-31

    Corrosion of heat transfer tubing in nuclear steam generators has been a persistent problem in the power generation industry, assuming many different forms over the years depending on chemistry and operating conditions. Whatever the corrosion mechanism, a fundamental understanding of the process is essential to establish effective management strategies. To gain this fundamental understanding requires an integrated investigative approach that merges technology from many diverse scientific disciplines. An important aspect of an integrated approach is characterization of the corrosive environment at high temperature. This begins with a thorough understanding of local thermal-hydraulic conditions, since they affect deposit formation, chemical concentration, and ultimately corrosion. Computational Fluid Dynamics (CFD) can and should play an important role in characterizing the thermal-hydraulic environment and in predicting the consequences of that environment,. The evolution of CFD technology now allows accurate calculation of steam generator thermal-hydraulic conditions and the resulting sludge deposit profiles. Similar calculations are also possible for model boilers, so that tests can be designed to be prototypic of the heat exchanger environment they are supposed to simulate. This paper illustrates the utility of CFD technology by way of examples in each of these two areas. This technology can be further extended to produce more detailed local calculations of the chemical environment in support plate crevices, beneath thick deposits on tubes, and deep in tubesheet sludge piles. Knowledge of this local chemical environment will provide the foundation for development of mechanistic corrosion models, which can be used to optimize inspection and cleaning schedules and focus the search for a viable fix.

  2. Thermal conductivity of semitransparent materials

    SciTech Connect (OSTI)

    Fine, H.A.; Jury, S.H.; McElroy, D.L.; Yarbrough, D.W.

    1981-01-01

    The three-region approximate solution for coupled conductive and radiative heat transfer and an exact solution for uncoupled conductive and radiative heat transfer in a grey semitransparent medium bounded by infinite parallel isothermal plates are employed to establish the dependence of the apparent thermal conductivity of semitransparent materials on other material properties and boundary conditions. An application of the analyses which uses apparent thermal conductivity versus density data to predict the dependence of apparent thermal conductivity on temperature is demonstrated. The predictions for seven sets of R-11 fiberglass and rock wool insulations agree with published measured values to within the limits of experimental error (+- 3%). Agreement for three sets of R-19 fiberglass insulations was, however, not good.

  3. Thermal trim for a luminaire

    DOE Patents [OSTI]

    Bazydola, Sarah; Ghiu, Camil-Daniel; Harrison, Robert; Jeswani, Anil

    2013-02-19

    A luminaire with a thermal pathway to reduce the junction temperature of the luminaire's light source, and methods for so doing, are disclosed. The luminaire includes a can, a light engine, and a trim, that define a substantially continuous thermal pathway from the light engine to a surrounding environment. The can defines a can cavity and includes a can end region. The light engine is within the can cavity and includes a light source and a heat sink, including a heat sink end region, coupled thereto. The trim is at least partially disposed within the can cavity and includes a first trim end region coupled to the heat sink end region and a second trim end region coupled to the can end region. Thermal interface material may be located between: the heat sink and the trim, the trim and the can, and/or the heat sink and the light source.

  4. Patent: MEMS based pyroelectric thermal energy harvester | DOEpatents

    Office of Scientific and Technical Information (OSTI)

    MEMS based pyroelectric thermal energy harvester Citation Details Title: MEMS based pyroelectric thermal energy harvester

  5. On the Occurrence of Thermal Runaway in Diode in the J-Box | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy On the Occurrence of Thermal Runaway in Diode in the J-Box On the Occurrence of Thermal Runaway in Diode in the J-Box This PowerPoint presentation, focused on the environmental testing of diodes, was originally presented at the International PV Module Quality Assurance Forum on Feb. 26-27, 2013 in Denver, CO. It details the thermal runaway tests of J-boxes and discusses the Tj measurement method for bypass diodes. The presentation wraps up with a discussion of the team's anticipated

  6. Strains in Thermally Growing Alumina Films Measured in-situ usingSynchrotron X-rays

    SciTech Connect (OSTI)

    Hou, P.Y.; Paulikas, A.P.; Veal, B.W.

    2006-01-02

    Strains in thermally grown oxides have been measured in-situ, as the oxides develop and evolve. Extensive data have been acquired from oxides grown in air at elevated temperatures on different model alloys that form Al{sub 2}O{sub 3}. Using synchrotron x-rays at the Advanced Photon Source (Beamline 12BM, Argonne National Laboratory), Debye-Scherrer diffraction patterns from the oxidizing specimen were recorded every 5 minutes during oxidation and subsequent cooling. The diffraction patterns were analyzed to determine strains in the oxides, as well as phase changes and the degree of texture. To study a specimen's response to stress perturbation, the oxidizing temperature was quickly cooled from 1100 to 950 C to impose a compressive thermal stress in the scale. This paper describes this new experimental approach and gives examples from oxidized {beta}-NiAl, Fe-20Cr-10Al, Fe-28Al-5Cr and H{sub 2}-annealed Fe-28Al-5Cr (all at. %) alloys to illustrate some current understanding of the development and relaxation of growth stresses in Al{sub 2}O{sub 3}.

  7. Evaluation of thermal gradients in longitudinal spin Seebeck effect measurements

    SciTech Connect (OSTI)

    Sola, A. Kuepferling, M.; Basso, V.; Pasquale, M.; Kikkawa, T.; Uchida, K.; Saitoh, E.

    2015-05-07

    In the framework of the longitudinal spin Seebeck effect (LSSE), we developed an experimental setup for the characterization of LSSE devices. This class of device consists in a layered structure formed by a substrate, a ferrimagnetic insulator (YIG) where the spin current is thermally generated, and a paramagnetic metal (Pt) for the detection of the spin current via the inverse spin-Hall effect. In this kind of experiments, the evaluation of a thermal gradient through the thin YIG layer is a crucial point. In this work, we perform an indirect determination of the thermal gradient through the measurement of the heat flux. We developed an experimental setup using Peltier cells that allow us to measure the heat flux through a given sample. In order to test the technique, a standard LSSE device produced at Tohoku University was measured. We find a spin Seebeck S{sub SSE} coefficient of 2.8Ś10{sup ?7} V K{sup ?1}.

  8. Compound Refractive Lenses for Thermal Neutron Applications

    SciTech Connect (OSTI)

    Gary, Charles K.

    2013-11-12

    This project designed and built compound refractive lenses (CRLs) that are able to focus, collimate and image using thermal neutrons. Neutrons are difficult to manipulate compared to visible light or even x rays; however, CRLs can provide a powerful tool for focusing, collimating and imaging neutrons. Previous neutron CRLs were limited to long focal lengths, small fields of view and poor resolution due to the materials available and manufacturing techniques. By demonstrating a fabrication method that can produce accurate, small features, we have already dramatically improved the focal length of thermal neutron CRLs, and the manufacture of Fresnel lens CRLs that greatly increases the collection area, and thus efficiency, of neutron CRLs. Unlike a single lens, a compound lens is a row of N lenslets that combine to produce an N-fold increase in the refraction of neutrons. While CRLs can be made from a variety of materials, we have chosen to mold Teflon lenses. Teflon has excellent neutron refraction, yet can be molded into nearly arbitrary shapes. We designed, fabricated and tested Teflon CRLs for neutrons. We demonstrated imaging at wavelengths as short as 1.26 ? with large fields of view and achieved resolution finer than 250 ?m which is better than has been previously shown. We have also determined designs for Fresnel CRLs that will greatly improve performance.

  9. Surface studies on aluminized and thermally oxidized superalloy 690 substrates interacted with simulated nuclear waste and sodium borosilicate melt

    SciTech Connect (OSTI)

    Yusufali, C. Sengupta, P.; Dutta, R. S.; Dey, G. K.; Kshirsagar, R. J.; Mishra, R. K.; Kaushik, C. P.

    2014-04-24

    Aluminized and thermally oxidized Ni-Cr-Fe based superalloy 690 substrates with Al{sub 2}O{sub 3} layer on top have been exposed in nitrate based environment (simulated high level nuclear liquid waste) at 373 K for 216 hours and sodium borosilicate melt at 1248 K for 192 hours. The surfaces of exposed samples have been characterized by using Electron probe micro-analyzer (EPMA). Elemental X-ray mapping on coated specimen that exposed in simulated nuclear waste solution revealed that the surface is enriched with Ni, Cr and Al. X-ray mapping on surface of the specimen that interacted with sodium borosilicate melt indicated that the surface is composed of Al, Fe, Ni and Cr.

  10. Tension bending ratcheting tests of 304 stainless steel

    SciTech Connect (OSTI)

    Larson, L.D.; Jones, D.P.; Rapp, D.G.

    1996-12-31

    This paper discusses results of an experimental program conducted to investigate the strain ratcheting behavior of 304 stainless steel under various combinations of applied membrane load and displacement controlled cyclic bending strain. Tests were performed on uniaxial specimens at temperatures of 70 F (21 C) and 550 F (288 C). Bending strain, ratchet strain and axial displacement of the specimens were monitored throughout the tests. Membrane stress to monotonic yield stress ratios of 2/3, 1/2, and 1/3 were tested with pseudo-elastic bending stress to yield stress ratios ranging from 1.4 to 10.7. Test output was in the form of plots of cumulative axial membrane strain versus cycles up to the point of shakedown, i.e., the point at which no additional progressive strain was observed. Shakedown was demonstrated in the 500 F tests but not the room temperature tests. The 550 F results are shown in terms of shakedown membrane strain versus equivalent bending stress ratio for each of the tested membrane stress ratios. The cyclic and monotonic stress-strain curves for the test materials are presented to enable the use of various models for predicting the ratcheting and shakedown behavior. The results may be used to develop improved ratcheting and shakedown rules permitting a relaxation of the traditional ratcheting rules in the ASME Boiler and Pressure Vessel Code.

  11. Sun{diamond}Lab test facilities

    SciTech Connect (OSTI)

    Not Available

    1998-04-01

    This country`s efforts to successfully develop and commercialize concentrating solar power (CSP) technologies depend on specialized research and testing capabilities. To Support this effort, the US Department of Energy`s Concentrating Solar Power Program maintains two major test facilities: the National Solar Thermal Test Facility at Sandia National Laboratories in Albuquerque, New Mexico, and the High Flux Solar Furnace at the National Renewable Energy Laboratory in Golden, Colorado. These test facilities combine to be instrumental in the development of parabolic dishes, troughs, and solar power towers.

  12. Sun{diamond}Lab test facilities

    SciTech Connect (OSTI)

    1998-04-01

    This country's efforts to successfully develop and commercialize concentrating solar power (CSP) technologies depend on specialized research and testing capabilities. To Support this effort, the US Department of Energy's Concentrating Solar Power Program maintains two major test facilities: the National Solar Thermal Test Facility at Sandia National Laboratories in Albuquerque, New Mexico, and the High Flux Solar Furnace at the National Renewable Energy Laboratory in Golden, Colorado. These test facilities combine to be instrumental in the development of parabolic dishes, troughs, and solar power towers.

  13. Ocean Thermal Energy Conversion Act of 1980

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    A legislative proposal to develop ocean thermal energy conversion (OTEC) facilities for power generation was the subject of hearings held on April 10 and May 1, 1980. Following the test of S. 2492 are the statements of 20 witnesses and additional materials submitted for consideration. The need for a large-scale demonstration of OTEC and the need for a Federal regulatory, siting, and financial-assistance framework are the major commercialization issues. S. 2492 provides one-stop licensing by treating the facilities as vessels and making them eligible for loan guarantees. The bill complements S. 1430, which deals with the demonstration program. OTEC development in Hawaii has progressed to a second pilot project. (DCK)

  14. Molecular theory of fluid thermal properties

    SciTech Connect (OSTI)

    Tewari, K.P.; Zhang, S.; White, J.A.

    1993-04-01

    A recently developed renormalization group theory of condensable gases that takes into account short range attractive intermolecular forces is successful in describing the thermal properties of real fluids both at the critical point and in a large adjoining neighborhood. The theory has been tested for a variety of models, and for real gases such as argon and ethane. In its simplest form, the theory employs three free parameters - attraction constant a, hard core volume b, and cohesion volume c of the molecules. These parameters can be calculated from the theory and the authors have done so using Lennard-Jones and Yukawa potentials with hard cores. A brief review of the theory will be presented and results discussed.

  15. A new tribological test for candidate brush seal materials evaluation

    SciTech Connect (OSTI)

    Fellenstein, J.A.; DellaCorte, C.

    1994-10-01

    A new tribological test for candidate brush seal materials evaluation has been developed. The sliding contact between the brush seal wires and their mating counterface journal is simulated by testing a small tuft of wire against the outside diameter of a high speed rotating shaft. The test configuration is similar to a standard block on ring geometry. The new tester provides the capability to measure both the friction and wear of candidate wire and counterface materials under controlled loading conditions in the gram to kilogram range. A wide test condition latitude of speeds (1 to 27 m/s), temperatures (25 to 700C), and loads (0.5 to 10 N) enables the simulation of many of the important tribological parameters found in turbine engine brush seals. This paper describes the new test rig and specimen configuration and presents initial data for candidate seal materials comparing tuft test results and wear surface morphology to field tested seal components.

  16. Synthesis report on thermally driven coupled processes

    SciTech Connect (OSTI)

    Hardin, E.L.

    1997-10-15

    The main purpose of this report is to document observations and data on thermally coupled processes for conditions that are expected to occur within and around a repository at Yucca Mountain. Some attempt is made to summarize values of properties (e.g., thermal properties, hydrologic properties) that can be measured in the laboratory on intact samples of the rock matrix. Variation of these properties with temperature, or with conditions likely to be encountered at elevated temperature in the host rock, is of particular interest. However, the main emphasis of this report is on direct observation of thermally coupled processes at various scales. Direct phenomenological observations are vitally important in developing and testing conceptual models. If the mathematical implementation of a conceptual model predicts a consequence that is not observed, either (1) the parameters or the boundary conditions used in the calculation are incorrect or (2) the conceptual basis of the model does not fit the experiment; in either case, the model must be revised. For example, the effective continuum model that has been used in thermohydrology studies combines matrix and fracture flow in a way that is equivalent to an assumption that water is imbibed instantaneously from fractures into adjacent, partially saturated matrix. Based on this approximation, the continuum-flow response that is analogous to fracture flow will not occur until the effective continuum is almost completely saturated. This approximation is not entirely consistent with some of the experimental data presented in this report. This report documents laboratory work and field studies undertaken in FY96 and FY97 to investigate thermally coupled processes such as heat pipes and fracture-matrix coupling. In addition, relevant activities from past years, and work undertaken outside the Yucca Mountain project are summarized and discussed. Natural and artificial analogs are also discussed to provide a convenient source of material documenting the conceptual and mathematical basis for modeling coupled phenomena. The actual models and codes, and their specific empirical and theoretical bases, will be documented in a separate report to be delivered in FY99.

  17. What can recycling in thermal reactors accomplish?

    SciTech Connect (OSTI)

    Piet, Steven J.; Matthern, Gretchen E.; Jacobson, Jacob J.

    2007-07-01

    Thermal recycle provides several potential benefits when used as stop-gap, mixed, or backup recycling to recycling in fast reactors. These three roles involve a mixture of thermal and fast recycling; fast reactors are required to some degree at some time. Stop-gap uses thermal reactors only until fast reactors are adequately deployed and until any thermal-recycle-only facilities have met their economic lifetime. Mixed uses thermal and fast reactors symbiotically for an extended period of time. Backup uses thermal reactors only if problems later develop in the fast reactor portion of a recycling system. Thermal recycle can also provide benefits when used as pure thermal recycling, with no intention to use fast reactors. However, long term, the pure thermal recycling approach is inadequate to meet several objectives. (authors)

  18. On the modeling of the Taylor cylinder impact test for orthotropic textured materials: Calculations and experiments

    SciTech Connect (OSTI)

    Maudlin, P.J.; Bingert, J.F.; House, J.W.

    1997-04-01

    Taylor impact tests using specimens cut from a rolled plate of Ta were conducted. The Ta was well-characterized in terms of flow stress and crystallographic texture. A piece-wise yield surface was interrogated from this orthotropic texture, and used in EPIC-95 3D simulations of the Taylor test. Good agreement was realized between the calculations and the post-test geometries in terms of major and minor side profiles and impact-interface footprints.

  19. HYDROGEOLOGY OF THE THERMAL LANDSLIDE

    SciTech Connect (OSTI)

    Vantine, J.

    1985-01-22

    The large Thermal Landslide overlies the initial area of geothermal development at The Geysers. The landslide is waterbearing while the underlying Franciscan formation bedrock units are essentially non-waterbearing except where affected by hydrothermal alteration. Perched ground water moving through the landslide is heated prior to discharge as spring flow.

  20. Ocean thermal energy conversion (OTEC)

    SciTech Connect (OSTI)

    Lockerby, R.W.

    1981-01-01

    Ocean thermal energy conversion (OTEC) is reviewed briefly. The two types of OTEC system (open and closed) are described and limitations are pointed out. A bibliography of 148 references on OTEC is given for the time period 1975 to 1980. Entries are arranged alphabetically according to the author's name. (MJJ)

  1. THERMAL EVALUATION OF ALTERNATE SHIPPING CASK FOR IRRADIATED EXPERIMENTS

    SciTech Connect (OSTI)

    Donna Post Guillen

    2015-06-01

    Results of a thermal evaluation are provided for a new shipping cask under consideration for transporting irradiated experiments between the test reactor and post-irradiation examination (PIE) facilities. Most of the experiments will be irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL), then later shipped to the Hot Fuel Examination Facility (HFEF) located at the Materials and Fuels Complex for PIE. To date, the General Electric (GE)-2000 cask has been used to transport experiment payloads between these facilities. However, the availability of the GE-2000 cask to support future experiment shipping is uncertain. In addition, the internal cavity of the GE-2000 cask is too short to accommodate shipping the larger payloads. Therefore, an alternate shipping capability is being pursued. The Battelle Energy Alliance, LLC, Research Reactor (BRR) cask has been determined to be the best alternative to the GE-2000 cask. An evaluation of the thermal performance of the BRR cask is necessary before proceeding with fabrication of the newly designed cask hardware and the development of handling, shipping and transport procedures. This paper presents the results of the thermal evaluation of the BRR cask loaded with a representative set of fueled and non-fueled payloads. When analyzed with identical payloads, experiment temperatures were found to be lower with the BRR cask than with the GE-2000 cask. From a thermal standpoint, the BRR cask was found to be a suitable alternate to the GE-2000 cask for shipping irradiated experiment payloads.

  2. Advanced thermally stable jet fuels

    SciTech Connect (OSTI)

    Schobert, H.H.

    1999-01-31

    The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume (Sections 1 through 5).

  3. Solar energy thermalization and storage device

    DOE Patents [OSTI]

    McClelland, John F. (Ames, IA)

    1981-09-01

    A passive solar thermalization and thermal energy storage assembly which is visually transparent. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  4. Solar energy thermalization and storage device

    DOE Patents [OSTI]

    McClelland, J.F.

    A passive solar thermalization and thermal energy storage assembly which is visually transparent is described. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  5. Use of instrumented Charpy tests to determine onset of upper-shelf energy

    SciTech Connect (OSTI)

    Canonico, D.A.; Stelzman, W.J., Berggren, R.G.; Nanstad, R.K.

    1981-05-01

    Identifying the onset of C/sub v/ upper-shelf toughness is of paramount importance to the continued integrity of a pressure vessel. Most in-service surveillance programs require that the C/sub v/ upper-shelf toughness be determined. This is particularly true for the surveillance programs for nuclear pressure vessels. In the nuclear systems the change in C/sub v/ upper-shelf energy due to irradiation must frequently be determined with a limited number of surveillance specimens. Currently, fracture appearance is the criterion used to assure that the tests are being conducted in the C/sub v/ upper-shelf temperature range. This procedure is satisfactory when a number of specimens are available and accessible for interpretation. This is not always the case; irradiated specimens must be remotely tested and interpreted. Examining a specimen remotely may result in an erroneous interpretation of the fracture surface. To avoid this possibility we have developed a procedure, using an instrumented Charpy impact tester, that by linear extrapolation can identify the onset of the C/sub v/ upper-shelf toughness regime with as few as two specimens. This paper discusses the development of the procedure and its application.

  6. Computational Design and Experimental Validation of New Thermal Barrier Systems

    SciTech Connect (OSTI)

    Guo, Shengmin; Yang, Shizhong; Khosravi, Ebrahim

    2012-10-01

    This project (10/01/2010-9/30/2013), “Computational Design and Experimental Validation of New Thermal Barrier Systems”, originates from Louisiana State University (LSU) Mechanical Engineering Department and Southern University (SU) Department of Computer Science. This project will directly support the technical goals specified in DEFOA- 0000248, Topic Area 3: Turbine Materials, by addressing key technologies needed to enable the development of advanced turbines and turbine-based systems that will operate safely and efficiently using coal-derived synthesis gases. We will develop and implement novel molecular dynamics method to improve the efficiency of simulation on novel TBC materials; perform high performance computing (HPC) on complex TBC structures to screen the most promising TBC compositions; perform material characterizations and oxidation/corrosion tests; and demonstrate our new thermal barrier coating (TBC) systems experimentally under integrated gasification combined cycle (IGCC) environments. The durability of the coating will be examined using the proposed Durability Test Rig.

  7. Dynamic Testing of Gasifier Refractory

    SciTech Connect (OSTI)

    Michael D. Mann; Devdutt Shukla; Xi Hong; John P. Hurley

    2004-09-27

    The University of North Dakota (UND) Chemical Engineering Department in conjunction with the UND Energy & Environmental Research Center (EERC) have initiated a program to thoroughly examine the combined chemical (reaction and phase change) and physical (erosion) effects experienced by a variety of refractory materials during both normal operation and thermal cycling under slagging coal gasification conditions. The goal of this work is to devise a mechanism of refractory loss under these conditions. The controlled-atmospheric dynamic corrodent application furnace (CADCAF) is being utilized to simulate refractory/slag interactions under dynamic conditions that more realistically simulate the environment in a slagging coal gasifier than any of the static tests used previously by refractory manufacturers and researchers. Shakedown testing of the CADCAF has been completed. Samples of slag and refractory from the Tampa Electric Polk Power Station have been obtained for testing in the CADCAF. The slag has been dried and sieved to the size needed for our flowing slag corrosion tests. Screening tests are in currently in progress. Detailed analysis of corrosion rates from the first tests is in progress.

  8. Determines the Thermal and Optical Properties of Fenestration Systems

    Energy Science and Technology Software Center (OSTI)

    1995-01-27

    WINDOW4.1 computes the thermal properties of windows and other fenestration elements used in typical residential and commercial buildings. Manufactures, specifiers, architects, consumers, and the energy code specialists all need to know these properties (U-values, Solar Heat Gain Coefficients, optical properties). The use of this program to calculate these properties is typically much more cost effective than laboratory test procedures. Properties of complete window systems are based on libraries (or user input) component data.

  9. Proceedings: Fourth Parabolic Dish Solar Thermal Power Program Review

    SciTech Connect (OSTI)

    Not Available

    1983-02-01

    The results of activities within the parabolic dish technology and applications development program are presented. Stirling, organic Rankine and Brayton module technologies, associated hardware and test results to date, concentrator development and progress, economic analyses, and international dish development activities are covered. Two panel discussions, concerning industry issues affecting solar thermal dish development and dish technology from a utility/user perspective, are also included.

  10. NREL: Transportation Research - Heavy-Duty Vehicle Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heavy-Duty Vehicle Thermal Management Infrared image of a semi cab and two people. NREL testing and modeling assess the energy saving impact of advanced climate control materials and equipment on heavy-duty vehicles. Photo by Dennis Schroeder, NREL Illustration of a truck with labeled energy-saving elements. NREL researchers assess the energy saving potential of films, paints, advanced insulation, micro-environmental design, and idle reduction technologies. Illustration by Ray David, NREL

  11. Conceptual Thermal Treatment Technologies Feasibility Study

    SciTech Connect (OSTI)

    Suer, A.

    1996-02-28

    This report presents a conceptual Thermal Treatment Technologies Feasibility Study (FS) for the Savannah River Site (SRS) focusing exclusively on thermal treatment technologies for contaminated soil, sediment, or sludge remediation projects.

  12. Thermal synthesis apparatus and process

    DOE Patents [OSTI]

    Fincke, James R.; Detering, Brent A.

    2004-11-23

    An apparatus for thermal conversion of one or more reactants to desired end products includes an insulated reactor chamber having a high temperature heater such as a plasma torch at its inlet end and, optionally, a restrictive convergent-divergent nozzle at its outlet end. In a thermal conversion method, reactants are injected upstream from the reactor chamber and thoroughly mixed with the plasma stream before entering the reactor chamber. The reactor chamber has a reaction zone that is maintained at a substantially uniform temperature. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle, which "freezes" the desired end product(s) in the heated equilibrium reaction stage, or is discharged through an outlet pipe without the convergent-divergent nozzle. The desired end products are then separated from the gaseous stream.

  13. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, I.O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

  14. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

  15. Tunable Thermal Link - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tunable Thermal Link Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryThermal links are incorporated into everything from frying pans to internal combustion engine spark plugs and heat sinks on integrated circuit boards. Typically, the link's thermal resistance is fixed and cannot be tuned after manufacture. While the ability to tune electrical resistors is widespread, virtually no tunable thermal resistance link exists, which has held back the

  16. Battery Thermal Management System Design Modeling

    SciTech Connect (OSTI)

    Pesaran, A.; Kim, G. H.

    2006-11-01

    Looks at the impact of cooling strategies with air and both direct and indirect liquid cooling for battery thermal management.

  17. Thermal Spray Coatings for Coastal Infrastructure

    SciTech Connect (OSTI)

    Holcomb, G.R.; Covino, BernardS. Jr.; Cramer, S.D.; Bullard, S.J.

    1997-11-01

    Several protection strategies for coastal infrastructure using thermal-spray technology are presented from research at the Albany Research Center. Thermal-sprayed zinc coatings for anodes in impressed current cathodic protection systems are used to extend the service lives of reinforced concrete bridges along the Oregon coast. Thermal-sprayed Ti is examined as an alternative to the consumable zinc anode. Sealed thermal-sprayed Al is examined as an alternative coating to zinc dust filled polyurethane paint for steel structures.

  18. Thermomechanical measurements on thermal microactuators. (Technical Report)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Technical Report: Thermomechanical measurements on thermal microactuators. Citation Details In-Document Search Title: Thermomechanical measurements on thermal microactuators. Due to the coupling of thermal and mechanical behaviors at small scales, a Campaign 6 project was created to investigate thermomechanical phenomena in microsystems. This report documents experimental measurements conducted under the auspices of this project. Since thermal and mechanical measurements

  19. Electric thermal storage demonstration program

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and one affiliate in Rhode Island, responded to a Department of Energy request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. In this progress report, cost savings at Bolyston light department is discussed. (JL)

  20. Electric thermal storage demonstration program

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and one affiliate in Rhode Island, responded to a Department of Energy request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. In this progress report, cost savings at Bolyston light department is discussed. (JL)

  1. Thermal Stability Of Formohydroxamic Acid

    SciTech Connect (OSTI)

    Fondeur, F. F.; Rudisill, T. S.

    2011-10-21

    The thermal stability of formohydroxamic acid (FHA) was evaluated to address the potential for exothermic decomposition during storage and its use in the uranium extraction process. Accelerating rate calorimetry showed rapid decomposition at a temperature above 65 {degree}?C; although, the rate of pressure rise was greater than two orders of magnitude less than the lower bound for materials which have no explosive properties with respect to transportation. FHA solutions in water and nitric acid did not reach runaway conditions until 150 {degree}?C. Analysis by differential scanning calorimetry showed that FHA melted at 67 {degree}?C and thermally decomposed at 90 {degree}?C with an enthalpy of -1924 J/g. The energics of the FHA thermal decomposition are comparable to those measured for aqueous solutions of hydroxylamine nitrate. Solid FHA should be stored in a location where the temperature does not exceed 20-25 {degree}?C. As a best practice, the solid material should be stored in a climate-controlled environment such as a refrigerator or freezer. FHA solutions in water are not susceptible to degradation by acid hydrolysis and are the preferred way to handle FHA prior to use.

  2. Overview of Thermal Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Management Overview of Thermal Management 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon vss_13_routbort.pdf More Documents & Publications Nanofluids for Thermal Conditions … Underhood Heat Transfer Nanofluid Development for Engine Cooling Systems Erosion of Radiator Materials by Nanofluids

  3. Electric Motor Thermal Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ape030_bennion_2012_o.pdf More Documents & Publications Electric Motor Thermal Management Electric Motor Thermal Management Vehicle Technologies Office Merit Review 2015: Electric Motor Thermal Management R&D

  4. Electric Motor Thermal Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ape030_bennion_2011_o.pdf More Documents & Publications Motor Thermal Control Electric Motor Thermal Management Electric Motor Thermal Management

  5. Development of a Thermal Transport Database for Air Plasma Sprayed...

    Office of Scientific and Technical Information (OSTI)

    Due to the complicated microstructure and other processing related parameters, thermal ... thermal diffusivity and thermal barrier coating Word Cloud More Like This Full Text ...

  6. Biomass Thermal Energy Council (BTEC) | Open Energy Information

    Open Energy Info (EERE)

    Thermal Energy Council (BTEC) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Thermal Energy Council (BTEC) AgencyCompany Organization: Biomass Thermal Energy...

  7. Thermal Multi-layer Coating Analysis | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Multi-layer Coating Analysis Key to Argonne's thermal multi-layer analysis method is the numerical algorithm used for automated analysis of thermal imaging data for...

  8. Linearly Polarized Thermal Emitter for More Efficient Thermophotovolta...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Solar Thermal Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Linearly Polarized Thermal Emitter for More Efficient Thermophotovoltaic Devices...

  9. Development of an Airless Thermal Enhancer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of a Thermal Enhancer for Combined Partial Range Burning and Hydrocarbon Dosing Thermal Enhancer - Airless Exhaust Thermal Management Device SCR...

  10. Impact Tensile Testing of Stainless Steels at Various Temperatures

    SciTech Connect (OSTI)

    D. K. Morton

    2008-03-01

    Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates during accidental drop events. Mechanical characteristics of these base materials and their welds under dynamic loads in the strain rate range of concern (1 to 300 per second) are not well documented. However, research is being performed at the Idaho National Laboratory to quantify these characteristics. The work presented herein discusses tensile impact testing of dual-marked 304/304L and 316/316L stainless steel material specimens. Both base material and welded material specimens were tested at -20 oF, room temperature, 300 oF, and 600 oF conditions. Utilizing a drop weight impact test machine and 1/4-inch and 1/2-inch thick dog bone-shaped test specimens, a strain rate range of approximately 4 to 40 per second (depending on initial temperature conditions) was achieved. Factors were determined that reflect the amount of increased strain energy the material can absorb due to strain rate effects. Using the factors, elevated true stress-strain curves for these materials at various strain rates and temperatures were generated. By incorporating the strain rate elevated true stress-strain material curves into an inelastic finite element computer program as the defined material input, significant improvement in the accuracy of the computer analyses was attained. However, additional impact testing is necessary to achieve higher strain rates (up to 300 per second) before complete definition of strain rate effects can be made for accidental drop events and other similar energy-limited impulsive loads. This research approach, using impact testing and a total energy analysis methodology to quantify strain rate effects, can be applied to many other materials used in government and industry.

  11. Thermal conductance measurements of bolted copper joints for SuperCDMS

    SciTech Connect (OSTI)

    Schmitt, R.; Tatkowski, Greg; Ruschman, M.; Golwala, S. R.; Kellaris, N.; Daal, M.; Hall, Jeter C.; Hoppe, Eric W.

    2015-09-01

    Joint thermal conductance testing has been undertaken for bolted copper to copper connections from 60 mK to 26 K. This testing was performed to validate an initial design basis for the SuperCDMS experiment, where a dilution refrigerator will be coupled to a cryostat via multiple bolted connections. Copper used during testing was either gold plated or passivated with citric acid to prevent surface oxidation. Results obtained are well fit by a power law regression of joint thermal conductance to temperature and match well with data collected during a literature review.

  12. The effect of thermal aging on the thermal conductivity of plasma sprayed and EB-PVD thermal barrier coatings

    SciTech Connect (OSTI)

    Dinwiddie, R.B.; Beecher, S.C.; Porter, W.D.; Nagaraj, B.A.

    1996-05-01

    Thermal barrier coatings (TBCs) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBCs is of primary importance. Electron beam-physical vapor deposition (EV-PVD) and air plasma spraying (APS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The density of the APS coatings was controlled by varying the spray parameters. The low density APS yttria-partially stabilized zirconia (yttria-PSZ) coatings yielded a thermal conductivity that is lower than both the high density APS coatings and the EB-PVD coatings. The thermal aging of both fully and partially stabilized zirconia are compared. The thermal conductivity of the coatings permanently increases upon exposure to high temperatures. These increases are attributed to microstructural changes within the coatings. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the EB-PVD coatings are less susceptible to thermal aging effects, results suggest that they typically have a higher thermal conductivity than APS coatings before thermal aging. The increases in thermal conductivity due to thermal aging for plasma sprayed partially stabilized zirconia have been found to be less than for plasma sprayed fully stabilized zirconia coatings.

  13. The Phenix ultimate natural convection test

    SciTech Connect (OSTI)

    Gauthe, P.; Pialla, D.; Tenchine, D.; Vasile, A.; Rochwerger, D.

    2012-07-01

    The French sodium cooled fast reactor Phenix was shut down in 2009 after 35 years of operation. Before decommissioning, a final set of tests were performed by the CEA during 9 months. Several topics were involved such as thermal hydraulics, core physics and fuel behaviour. Among these ultimate experiments, two thermal hydraulic tests were performed: an asymmetrical test consisting in a trip of one secondary pump and a natural convection test in the primary circuit. Recognizing the unique opportunity offered by these Phenix ultimate tests, IAEA decided in 2007 to launch a Coordinated Research Project (CRP) devoted to benchmarking analyses with system codes on the Phenix natural convection test. One objective of the natural convection test in Phenix reactor is the assessment of the CATHARE system code for safety studies on future and advanced sodium cooled fast reactors. The aim of this paper is to describe this test, which was performed on June 22-23, 2009, and the associated benchmark specifications for the CRP work. The paper reminds briefly the Phenix reactor with the main physical parameters and the instrumentation used during the natural convection test. After that, the test scenario is described: - initial state at a power of 120 MWth, - test beginning resulting from a manual dry out of the two steam generators, - manual scram, - manual trip on the three primary pumps without back-up by pony motors, - setting and development of natural convection in the primary circuit, in a first phase without significant heat sink in the secondary circuits and in a second phase with significant heat sink in the secondary circuits, by opening the casing of steam generators to create an efficient heat sink, by air natural circulation in the steam generators casing. The benchmark case ends after this second phase, which corresponds to the experimental test duration of nearly 7 hours. The paper presents also the benchmark specifications data supplied by the CEA to all participants of this CRP in order to perform calculations (core, primary circuit, primary pumps, IHX, shutdown system, operating parameters, test scenario and real test conditions). Finally, main test results and analyses are presented including the evolution of the core and of the heat exchangers inlet and outlet temperatures, and some local temperature measurements. The natural convection has been easily set up in the pool type reactor Phenix with different boundary conditions at the secondary side, with or without heat sink. The data obtained during this unique test represent some very useful and precious results for the development of SFR in a wide range of thematic such as numerical methods dedicated to thermal-hydraulics safety analyses (system codes, CFD codes and coupling system and CFD codes) and instrumentation. (authors)

  14. Dynamic Testing of Gasifier Refractory

    SciTech Connect (OSTI)

    Michael D. Mann; Devdutt Shukla; John P. Hurley

    2003-09-27

    The University of North Dakota (UND) Chemical Engineering Department in conjunction with the UND Energy & Environmental Research Center (EERC) have initiated a program to thoroughly examine the combined chemical (reaction and phase change) and physical (erosion) effects experienced by a variety of refractory materials during both normal operation and thermal cycling under slagging coal gasification conditions. The goal of this work is to devise a mechanism of refractory loss under these conditions. The controlled-atmospheric dynamic corrodent application furnace (CADCAF) is being utilized to simulate refractory/slag interactions under dynamic conditions that more realistically simulate the environment in a slagging coal gasifier than any of the static tests used previously by refractory manufacturers and researchers. Shakedown testing of the CADCAF is in progress. Samples of slag and refractory from the Tampa Electric Polk Power Station have been obtained for testing in the CADCAF. The slag has been dried and sieved to the size needed for our flowing slag corrosion tests. Testing is expected to begin in October.

  15. Ocean thermal energy conversion: Perspective and status

    SciTech Connect (OSTI)

    Thomas, A.; Hillis, D.L.

    1990-01-01

    The use of the thermal gradient between the warm surface waters and the deep cold waters of tropical oceans was first proposed by J. A. d'Arsonval in 1881 and tried unsuccessfully be George Claude in 1930. Interest in Ocean Thermal Energy Conversion (OTEC) and other renewable energy sources revived in the 1970s as a result of oil embargoes. At that time, the emphasis was on large floating plants miles from shore producing 250--400 MW for maintained grids. When the problems of such plants became better understood and the price of oil reversed its upward trend, the emphasis shifted to smaller (10 MW) shore-based plants on tropical islands. Such plants would be especially attractive if they produce fresh water as a by-product. During the past 15 years, major progress has been made in converting OTEC unknowns into knowns. Mini-OTEC proved the closed-cycle concept. Cost-effective heat-exchanger concepts were identified. An effective biofouling control technique was discovered. Aluminum was determined to be promising for OTEC heat exchangers. Heat-transfer augmentation techniques were identified, which promised a reduction on heat-exchanger size and cost. Fresh water was produced by an OTEC open-cycle flash evaporator, using the heat energy in the seawater itself. The current R D emphasis is on the design and construction of a test facility to demonstrate the technical feasibility of the open-cycle process. The 10 MW shore-based, closed-cycle plant can be built with today's technology; with the incorporation of a flash evaporator, it will produce fresh water as well as electrical power -- both valuable commodities on many tropical islands. The open-cycle process has unknowns that require solution before the technical feasibility can be demonstrated. The economic viability of either cycle depends on reducing the capital costs of OTEC plants and on future trends in the costs of conventional energy sources. 7 refs.

  16. Thermal wake/vessel detection technique

    DOE Patents [OSTI]

    Roskovensky, John K. (Albuquerque, NM); Nandy, Prabal (Albuquerque, NM); Post, Brian N (Albuquerque, NM)

    2012-01-10

    A computer-automated method for detecting a vessel in water based on an image of a portion of Earth includes generating a thermal anomaly mask. The thermal anomaly mask flags each pixel of the image initially deemed to be a wake pixel based on a comparison of a thermal value of each pixel against other thermal values of other pixels localized about each pixel. Contiguous pixels flagged by the thermal anomaly mask are grouped into pixel clusters. A shape of each of the pixel clusters is analyzed to determine whether each of the pixel clusters represents a possible vessel detection event. The possible vessel detection events are represented visually within the image.

  17. Accelerated Stress Testing, Qualification Testing, HAST, Field...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerated Stress Testing, Qualification Testing, HAST, Field Experience This presentation, which was the opening session of the NREL 2013 Photovoltaic Module Reliability Workshop ...

  18. Further testing and development of an 11-watt Stirling converter

    SciTech Connect (OSTI)

    Ross, B.A.; Montgomery, W.L.

    1995-12-31

    Three previous IECEC papers describe the development of an 11-watt Radioisotope Stirling Generator (RSG) intended for remote power applications. This paper describes more recent testing and development activities. Testing of the engineering model (EM) was performed to determine the effect of heat rejection temperature, thermal input and initial charge pressure on thermal efficiency. Shock testing of the generator included a drop test and 3 hours of testing in a random vibration environment where g{sup 2}/Hz = 0.04. Endurance testing of a complete Stirling converter continues, with over 15,000 maintenance-free operating hours. Endurance testing of critical subsystems and components has achieved 14,000 to 26,000 hours of operation without failure. Minor changes to the RSG prototype design, based on the development of the EM, are described.

  19. Accelerating Fatigue Testing for Cu Ribbon Interconnects | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Accelerating Fatigue Testing for Cu Ribbon Interconnects Accelerating Fatigue Testing for Cu Ribbon Interconnects Presented at the 2013 Photovoltaic Module Reliability Workshop; 26-27 February 2013; Denver, Colorado PDF icon 58369.pdf More Documents & Publications Thermal Cycling Combined with Dynamic Mechanical Load: Preliminary Report Physics of Failure of Electrical Interconnects Reliability of Electrical Interconnects

  20. Superheated-steam test of ethylene propylene rubber cables using a simultaneous aging and accident environment

    SciTech Connect (OSTI)

    Bennett, P.R.; St. Clair, S.D.; Gilmore, T.W.

    1986-06-01

    The superheated-steam test exposed different ethylene propylene rubber (EPR) cables and insulation specimens to simultaneous aging and a 21-day simultaneous accident environment. In addition, some insulation specimens were exposed to five different aging conditions prior to the 21-day simultaneous accident simulation. The purpose of this superheated-steam test (a follow-on to the saturated-steam tests (NUREG/CR-3538)) was to: (1) examine electrical degradation of different configurations of EPR cables; (2) investigate differences between using superheated-steam or saturated-steam at the start of an accident simulation; (3) determine whether the aging technique used in the saturated-steam test induced artificial degradation; and (4) identify the constituents in EPR that affect moisture absorption.

  1. The Solar Thermal Design Assistance Center report of its activities and accomplishments in Fiscal Year 1993

    SciTech Connect (OSTI)

    Menicucci, D.F.

    1994-03-01

    The Solar Thermal Design Assistance Center (STDAC) at Sandia National Laboratories is a resource provided by the US Department of Energy`s Solar Thermal Program. Its major objectives are to accelerate the use of solar thermal systems through (a) direct technical assistance to users, (b) cooperative test, evaluation, and development efforts with private industry, and (c) educational outreach activities. This report outlines the major activities and accomplishments of the STDAC in Fiscal Year 1993. The report also contains a comprehensive list of persons who contacted the STDAC by telephone for information or technical consulting.

  2. Neutrino Physics with Thermal Detectors

    SciTech Connect (OSTI)

    Nucciotti, A. [Dipartimento di Fisica, Universita di Milano Bicocca and INFN Sezione di Milano-Bicocca Piazza della Scienza, 3, 20126 Milano (Italy)

    2009-11-09

    The investigation of fundamental neutrino properties like its mass and its nature calls for the design of a new generation of experiments. High sensitivity, high energy resolution, and versatility together with the possibility of a simple multiplexing scheme are the key features of future detectors for these experiments. Thermal detectors can combine all these features. This paper reviews the status and the perspectives for what concerns the application of this type of detectors to neutrino physics, focusing on direct neutrino mass measurements and neutrinoless double beta decay searches.

  3. Status of the NGNP graphite creep experiments AGC-1 and AGC-2 irradiated in the advanced test reactor

    SciTech Connect (OSTI)

    S. Blaine Grover

    2014-05-01

    The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Program will be irradiating six nuclear graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the next generation nuclear plant (NGNP) very high temperature gas reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain six peripheral stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six peripheral stacks will have three different compressive loads applied to the top half of three diametrically opposite pairs of specimen stacks, while a seventh stack will not have a compressive load. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during irradiation of the experiment.

  4. Thermal Interface Materials for Power Electronics Applications: Preprint

    SciTech Connect (OSTI)

    Narumanchi, S.; Mihalic, M.; Kelly, K.; Eesley, G.

    2008-07-01

    The thermal resistance of the thermal interface material layer greatly affects the maximum temperature of the power electronics.

  5. Develop and Evaluate Materials and Additives that Enhance Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Develop & evaluate materials & additives that enhance thermal & overcharge abuse Develop & Evaluate Materials & Additives that Enhance Thermal & ...

  6. Next-Generation LED Package Architectures Enabled by Thermally...

    Energy Savers [EERE]

    LED Package Architectures Enabled by Thermally Conductive Transparent Encapsulants Next-Generation LED Package Architectures Enabled by Thermally Conductive Transparent ...

  7. Develop and Evaluate Materials and Additives that Enhance Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develop & Evaluate Materials & Additives that Enhance Thermal & Overcharge Abuse Develop & Evaluate Materials & Additives that Enhance Thermal & Overcharge Abuse High Voltage ...

  8. A thermal control system for long-term survival of scientific instruments on lunar surface

    SciTech Connect (OSTI)

    Ogawa, K.; Iijima, Y.; Tanaka, S.; Sakatani, N.; Otake, H.

    2014-03-15

    A thermal control system is being developed for scientific instruments placed on the lunar surface. This thermal control system, Lunar Mission Survival Module (MSM), was designed for scientific instruments that are planned to be operated for over a year in the future Japanese lunar landing mission SELENE-2. For the long-term operations, the lunar surface is a severe environment because the soil (regolith) temperature varies widely from nighttime ?200 degC to daytime 100 degC approximately in which space electronics can hardly survive. The MSM has a tent of multi-layered insulators and performs a “regolith mound”. Temperature of internal devices is less variable just like in the lunar underground layers. The insulators retain heat in the regolith soil in the daylight, and it can keep the device warm in the night. We conducted the concept design of the lunar survival module, and estimated its potential by a thermal mathematical model on the assumption of using a lunar seismometer designed for SELENE-2. Thermal vacuum tests were also conducted by using a thermal evaluation model in order to estimate the validity of some thermal parameters assumed in the computed thermal model. The numerical and experimental results indicated a sufficient survivability potential of the concept of our thermal control system.

  9. High thermal expansion, sealing glass

    DOE Patents [OSTI]

    Brow, R.K.; Kovacic, L.

    1993-11-16

    A glass composition is described for hermetically sealing to high thermal expansion materials such as aluminum alloys, stainless steels, copper, and copper/beryllium alloys, which includes between about 10 and about 25 mole percent Na[sub 2]O, between about 10 and about 25 mole percent K[sub 2]O, between about 5 and about 15 mole percent Al[sub 2]O[sub 3], between about 35 and about 50 mole percent P[sub 2]O[sub 5] and between about 5 and about 15 mole percent of one of PbO, BaO, and mixtures thereof. The composition, which may also include between 0 and about 5 mole percent Fe[sub 2]O[sub 3] and between 0 and about 10 mole percent B[sub 2]O[sub 3], has a thermal expansion coefficient in a range of between about 160 and 210[times]10[sup [minus]7]/C and a dissolution rate in a range of between about 2[times]10[sup [minus]7] and 2[times]10[sup [minus]9]g/cm[sup 2]-min. This composition is suitable to hermetically seal to metallic electrical components which will be subjected to humid environments over an extended period of time.

  10. High thermal expansion, sealing glass

    DOE Patents [OSTI]

    Brow, Richard K. (Albuquerque, NM); Kovacic, Larry (Albuquerque, NM)

    1993-01-01

    A glass composition for hermetically sealing to high thermal expansion materials such as aluminum alloys, stainless steels, copper, and copper/beryllium alloys, which includes between about 10 and about 25 mole percent Na.sub.2 O, between about 10 and about 25 mole percent K.sub.2 O, between about 5 and about 15 mole percent Al.sub.2 O.sub.3, between about 35 and about 50 mole percent P.sub.2 O.sub.5 and between about 5 and about 15 mole percent of one of PbO, BaO, and mixtures thereof. The composition, which may also include between 0 and about 5 mole percent Fe.sub.2 O.sub.3 and between 0 and about 10 mole percent B.sub.2 O.sub.3, has a thermal expansion coefficient in a range of between about 160 and 210.times.10-7/.degree.C. and a dissolution rate in a range of between about 2.times.10.sup.- 7 and 2.times.10.sup.-9 g/cm.sup.2 -min. This composition is suitable to hermetically seal to metallic electrical components which will be subjected to humid environments over an extended period of time.

  11. SLAC Accelerator Test Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FACET & TF Careers & Education Archived FACET User Facility Quick Launch About FACET & Test Facilities Expand About FACET & Test Facilities FACET & Test Facilities User Portal...

  12. CNP_TEST_SUITE

    Energy Science and Technology Software Center (OSTI)

    002854MLTPL00 Automated Nuclear Data Test Suite  file:///usr/gapps/CNP_src/us/RR/test_suite_cz/cnp_test_suite 

  13. Ultra low thermal expansion, highly thermal shock resistant ceramic

    DOE Patents [OSTI]

    Limaye, Santosh Y. (1440 Sandpiper Cir. #38, Salt Lake City, UT 84117)

    1996-01-01

    Three families of ceramic compositions having the given formula: .phi..sub.1+X Zr.sub.4 P.sub.6-2X Si.sub.2X O.sub.24, .phi..sub.1+X Zr.sub.4-2X Y.sub.2X P.sub.6 O.sub.24 and .phi..sub.1+X Zr.sub.4-X Y.sub.X P.sub.6-2X Si.sub.X O.sub.24 wherein .phi. is either Strontium or Barium and X has a value from about 0.2 to about 0.8 have been disclosed. Ceramics formed from these compositions exhibit very low, generally near neutral, thermal expansion over a wide range of elevated temperatures.

  14. Ultra low thermal expansion, highly thermal shock resistant ceramic

    DOE Patents [OSTI]

    Limaye, S.Y.

    1996-01-30

    Three families of ceramic compositions having the given formula: {phi}{sub 1+X}Zr{sub 4}P{sub 6{minus}2X}Si{sub 2X}O{sub 24}, {phi}{sub 1+X}Zr{sub 4{minus}2X}Y{sub 2X}P{sub 6}O{sub 24} and {phi}{sub 1+X}Zr{sub 4{minus}X}Y{sub X}P{sub 6{minus}2X}Si{sub X}O{sub 24} wherein {phi} is either strontium or barium and X has a value from about 0.2 to about 0.8 have been disclosed. Ceramics formed from these compositions exhibit very low, generally near neutral, thermal expansion over a wide range of elevated temperatures. 7 figs.

  15. Reducing cold-start emissions by catalytic converter thermal management

    SciTech Connect (OSTI)

    Burch, S D; Potter, T F; Keyser, M A; Brady, M J; Michaels, K F

    1995-01-01

    Vacuum insulation and phase-change thermal storage have been used to enhance the heat retention of a prototype catalytic converter. Storing heat in the converter between trips allows exhaust gases to be converted more quickly, significantly reducing cold-start emissions. Using a small metal hydride, the thermal conductance of the vacuum insulation can be varied continuously between 0.49 and 27 W/m{sup 2}K (R-12 to R-0.2 insulation) to prevent overheating of the catalyst. A prototype was installed in a Dodge Neon with a 2.0-liter engine. Following a standard preconditioning and a 23-hour cold soak, an FTP (Federal Test Procedure) emissions test was performed. Although exhaust temperatures during the preconditioning were not hot enough to melt the phase-change material, the vacuum insulation performed well, resulting in a converter temperature of 146{degrees}C after the 23-hour cold soak at 27{degrees}C. Compared to the same converter at ambient conditions, overall emissions of CO and HC were reduced by 52 % and 29 %, to 0.27 and 0.037 g/mile, respectively. The maximum converter temperature during the FTP cycle was 720{degrees}C. This limited testing was performed with a nearly-fresh palladium-only catalyst, but demonstrates the potential of this vacuum insulation approach for emissions reduction and thermal control. Further testing is ongoing. An initial assessment of several production issues is made, including high-volume fabrication challenges, durability, and cost.

  16. Adaptation of Crack Growth Detection Techniques to US Material Test Reactors

    SciTech Connect (OSTI)

    A. Joseph Palmer; Sebastien P. Teysseyre; Kurt L. Davis; Joy L. Rempe; Gordon Kohse; Yakov Ostrovsky; David M. Carpenter

    2014-04-01

    A key component in evaluating the ability of Light Water Reactors to operate beyond 60 years is characterizing the degradation of materials exposed to radiation and various water chemistries. Of particular concern is the response of reactor materials to Irradiation Assisted Stress Corrosion Cracking (IASCC). Some materials testing reactors (MTRs) outside the U.S., such as the Halden Boiling Water Reactor (HBWR), have deployed a technique to measure crack growth propagation during irradiation. This technique incorporates a compact loading mechanism to stress the specimen during irradiation. A crack in the specimen is monitored using the Direct Current Potential Drop (DCPD) method. A project is underway to develop and demonstrate the performance of a similar type of test rig for use in U.S. MTRs. The first year of this three year project was devoted to designing, analyzing, fabricating, and bench top testing a mechanism capable of applying a controlled stress to specimens while they are irradiated in a pressurized water loop (simulating PWR reactor conditions). During the second year, the mechanism will be tested in autoclaves containing high pressure, high temperature water with representative water chemistries. In addition, necessary documentation and safety reviews for testing in a reactor environment will be completed. In the third year, the assembly will be tested in the Massachusetts Institute of Technology Reactor (MITR) and Post Irradiation Examinations (PIE) will be performed.

  17. Lattice thermal conductivity of filled skutterudites: An anharmonicity perspective

    SciTech Connect (OSTI)

    Geng, Huiyuan, E-mail: genghuiyuan@hit.edu.cn; Meng, Xianfu; Zhang, Hao; Zhang, Jian [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China)

    2014-10-28

    We report a phenomenological model to calculate the high-temperature lattice thermal conductivity of filled skutterudite antimonides. The model needs no phonon resonant scattering terms. Instead, we assume that umklapp processes dominate the high-temperature phonon scattering. In order to represent the anharmonicity introduced by the filling atom, we introduce a Gaussian term into the relaxation time of the umklapp process. The developed model agrees remarkably well with the experimental results of RE{sub f}Co{sub 4}Sb{sub 12} and RE{sub f}Fe{sub 4}Sb{sub 12} (RE?=?Yb, Ba, and Ca) alloys. To further test the validity of our model, we calculate the lattice thermal conductivity of nanostructured or multi-filled skutterudites. The calculation results are also in good agreement with experiment, increasing our confidence in the developed anharmonicity model.

  18. Computational Design and Experimental Validation of New Thermal Barrier Systems

    SciTech Connect (OSTI)

    Guo, Shengmin; Yang, Shizhong; Khosravi, Ebrahim

    2014-04-01

    This project (10/01/2010-9/30/2014), “Computational Design and Experimental Validation of New Thermal Barrier Systems”, originates from Louisiana State University (LSU) Mechanical Engineering Department and Southern University (SU) Department of Computer Science. This project will directly support the technical goals specified in DE-FOA-0000248, Topic Area 3: Turbine Materials, by addressing key technologies needed to enable the development of advanced turbines and turbine-based systems that will operate safely and efficiently using coal-derived synthesis gases. In this project, the focus is to develop and implement novel molecular dynamics method to improve the efficiency of simulation on novel TBC materials; perform high performance computing (HPC) on complex TBC structures to screen the most promising TBC compositions; perform material characterizations and oxidation/corrosion tests; and demonstrate our new thermal barrier coating (TBC) systems experimentally under integrated gasification combined cycle (IGCC) environments.

  19. Thermal modeling of an indirectly heated E-beam gun

    SciTech Connect (OSTI)

    Jallouk, P.A.

    1994-12-31

    Uranium atomic vapor for the Atomic Vapor Laser Isotope Separation (AVLIS) process is produced by magnetically steering a high-power electron beam to the surface of the uranium melt. The electron beam is produced by a Pierce-type axial E-beam gun with an indirectly heated emitter (IDHE)-the industry standard for high-power melting and vaporization. AVLIS process design requirements for the E-beam gun are stringent, particularly in the areas of modularity, compactness, and lifetime. The gun assembly details are complex, geometric clearances are tight, and operating temperatures and stress levels are at the upper limits of acceptability. Detailed three-dimensional finite-element thermal models of the E-beam gun have been developed to address this challenging thermal packaging issue. These models are used in conjunction with design and testing activities to develop a gun exhibiting a high level of reliability for acceptable operation in a plant environment.

  20. AN OBSERVED CORRELATION BETWEEN THERMAL AND NON-THERMAL EMISSION IN

    Office of Scientific and Technical Information (OSTI)

    GAMMA-RAY BURSTS (Journal Article) | SciTech Connect AN OBSERVED CORRELATION BETWEEN THERMAL AND NON-THERMAL EMISSION IN GAMMA-RAY BURSTS Citation Details In-Document Search Title: AN OBSERVED CORRELATION BETWEEN THERMAL AND NON-THERMAL EMISSION IN GAMMA-RAY BURSTS Recent observations by the Fermi Gamma-ray Space Telescope have confirmed the existence of thermal and non-thermal components in the prompt photon spectra of some gamma-ray bursts (GRBs). Through an analysis of six bright Fermi

  1. Pressurized electrolysis stack with thermal expansion capability

    DOE Patents [OSTI]

    Bourgeois, Richard Scott

    2015-07-14

    The present techniques provide systems and methods for mounting an electrolyzer stack in an outer shell so as to allow for differential thermal expansion of the electrolyzer stack and shell. Generally, an electrolyzer stack may be formed from a material with a high coefficient of thermal expansion, while the shell may be formed from a material having a lower coefficient of thermal expansion. The differences between the coefficients of thermal expansion may lead to damage to the electrolyzer stack as the shell may restrain the thermal expansion of the electrolyzer stack. To allow for the differences in thermal expansion, the electrolyzer stack may be mounted within the shell leaving a space between the electrolyzer stack and shell. The space between the electrolyzer stack and the shell may be filled with a non-conductive fluid to further equalize pressure inside and outside of the electrolyzer stack.

  2. Thermal barrier characteristics of partially stabilized zirconia coatings on INCOLOY alloy 909; A controlled expansion alloy

    SciTech Connect (OSTI)

    Smith, G.D. )

    1991-01-01

    This paper reports on INCOLOY{sup 1} alloy 909 which is a low-expansion alloy used in critical seal and shaft applications within the gas turbine engine. However, because of its poor oxidation resistance at elevated temperatures, the maximum service temperature is limited. Since its coefficient of expansion is similar to that of partially stabilized zirconia for temperatures to 1200{degrees}F (649{degrees}C), it has been proposed to use this metal-ceramic combination for dimensionally critical, air-cooled jet engine components. This coating system should extend temperature limitations by reducing metal temperatures and providing oxidation resistance. The performance advantage offered by a thermal barrier coating has been investigated at temperatures up to 2000{degrees}F (1093{degrees}C) and the results are presented in this paper. Metal temperatures and heat flow rates of coated and bare specimens are compared for two air-cooling flow rates.

  3. Plasma-Thermal Synthesis - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Synthesis Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary INL's Plasma-Thermal Synthesis process improves the conversion process for natural gas into liquid hydrocarbon fuels. Description This process provides a method and apparatus for increasing acetylene yield from the thermal conversion of natural gas. The reactants inserted into the reactor chamber are applied at a high temperature of ionized gas. At this time, the reactants are changed to

  4. Scattering Solar Thermal Concentrators | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scattering Solar Thermal Concentrators Scattering Solar Thermal Concentrators "This fact sheet describes a scattering solar thermal concentrators project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Pennsylvania State University, is working to demonstrate a new, scattering-based approach to concentrating sunlight that aims to improve the overall performance and reliability of the collector field. The research team aims to show

  5. ARM - Lesson Plans: Thermal Expansion of Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Expansion of Water Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Lesson Plans: Thermal Expansion of Water Objective The objective of this activity is to demonstrate the concept of thermal expansion of water when heated. Materials Each student or group of students will need the

  6. NREL: Transportation Research - Power Electronics Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Electronics Thermal Management A photo of water boiling in liquid cooling lab equipment. Power electronics thermal management research aims to help lower the cost and improve the performance of electric-drive vehicles. Photo by Dennis Schroeder, NREL NREL investigates and develops thermal management strategies for power electronics systems that use wide-bandgap technology, which enables the development of devices that are smaller than those based on other materials, demonstrating

  7. NREL: Transportation Research - Thermal Performance Benchmarking

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Performance Benchmarking A photo of the internal components of an automotive inverter. NREL thermal performance benchmarking of state-of-the-art power electronics and electric motors helps guide future R&D efforts as well as industry product-development efforts. Photo by Scot Waye, NREL NREL's thermal performance benchmarking research focuses on state-of-the-art technologies used in electric-drive vehicle (EDV) systems. Benchmarks are shared with industry so that systems can be

  8. NREL: Transportation Research - Vehicle Thermal Management Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Explore NREL's recent publications about light- and heavy-duty vehicle thermal management. For the complete collection of NREL's vehicle thermal management publications, search the NREL Publications Database. All Light-Duty Electric-Drive Light-Duty Conventional Heavy-Duty 2015 Combined Fluid Loop Thermal Management for Electric Drive Vehicle Range Improvement. Leighton, D. (2015). SAE Int. J. Passeng. Cars - Mech. Syst. 8(2):711-720. (Presented at the SAE 2015 World Congress and

  9. ZiaTest

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ZiaTest ZiaTest Description This test executes a new proposed standard benchmark method ... Specifically, the test consists of the following steps: Record a time stamp for when the ...

  10. test | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    test PDF icon test More Documents & Publications 2009 ECR FINAL REPORT 2010 Final ECR 2008 Report Environmental Conflict Resolution

  11. Thermal Gradient Holes | Open Energy Information

    Open Energy Info (EERE)

    Holes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Thermal Gradient Holes Details Activities (67) Areas (48) Regions (4) NEPA(33) Exploration...

  12. Chemical preconcentrator with integral thermal flow sensor

    DOE Patents [OSTI]

    Manginell, Ronald P. (Albuquerque, NM); Frye-Mason, Gregory C. (Cedar Crest, NM)

    2003-01-01

    A chemical preconcentrator with integral thermal flow sensor can be used to accurately measure fluid flow rate in a microanalytical system. The thermal flow sensor can be operated in either constant temperature or constant power mode and variants thereof. The chemical preconcentrator with integral thermal flow sensor can be fabricated with the same MEMS technology as the rest of the microanlaytical system. Because of its low heat capacity, low-loss, and small size, the chemical preconcentrator with integral thermal flow sensor is fast and efficient enough to be used in battery-powered, portable microanalytical systems.

  13. Thermal Management Using Carbon Nanotubes - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Management Using Carbon Nanotubes Oak Ridge National Laboratory Contact ORNL About This Technology Vertically Aligned Carbon Nanotubes Vertically Aligned Carbon Nanotubes...

  14. Thermal Scout Software - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Analysis Find More Like This Return to Search Thermal Scout Software National Renewable Energy Laboratory Contact NREL About This Technology Publications:...

  15. Thermal Waters of Nevada | Open Energy Information

    Open Energy Info (EERE)

    to library Report: Thermal Waters of Nevada Abstract Abstract unavailable. Authors Larry J. Garside and John H. Schilling Organization Nevada Bureau of Mines and Geology Published...

  16. Thermal tolerant avicelase from acidothermus cellulolyticus ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Visit the NREL Commercialization and Technology Transfer Website Abstract: The invention provides a thermal tolerant (thermostable) cellulase that is a member of the...

  17. Thermal tolerant mannanase from acidothermus cellulolyticus ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Visit the NREL Commercialization and Technology Transfer Website Abstract: The invention provides a thermal tolerant mannanase that is a member of the glycoside hydrolase...

  18. Thermal tolerant exoglucanase from acidothermus cellulolyticus...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Visit the NREL Commercialization and Technology Transfer Website Abstract: The invention provides a thermal tolerant cellulase that is a member of the glycoside hydrolase...

  19. Thermal tolerant cellulase from acidothermus cellulolyticus ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Visit the NREL Commercialization and Technology Transfer Website Abstract: The invention provides a thermal tolerant cellulase that is a member of the glycoside hydrolase...

  20. Thermal tolerant cellulase from Acidothermus cellulolyticus ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enzymes for the Conversion of Biomass to Biofuels and Chemicals Abstract: The invention provides a thermal tolerant cellulase that is a member of the glycoside hydrolase...