Powered by Deep Web Technologies
Note: This page contains sample records for the topic "thermal test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

National Solar Thermal Test Facility  

SciTech Connect

This is a brief report about a Sandia National Laboratory facility which can provide high-thermal flux for simulation of nuclear thermal flash, measurements of the effects of aerodynamic heating on radar transmission, etc

Cameron, C.P.

1989-12-31T23:59:59.000Z

2

Solar Thermal Test Facility experiment manual  

DOE Green Energy (OSTI)

Information is provided on administrative procedures, capabilities, and requirements of experimenters using the Solar Thermal Test Facility. (MHR)

Darsey, D. M.; Holmes, J. T.; Seamons, L. O.; Kuehl, D. J.; Davis, D. B.; Stomp, J. M.; Matthews, L. K.; Otts, J. V.

1977-10-01T23:59:59.000Z

3

THE MOBILE WINDOW THERMAL TEST FACILITY (MoWiTT)  

E-Print Network (OSTI)

December 3-5, 1979 THE MOBILE WINDOW THERMAL TEST FACILITY (Orlando, Florida. The Mobile Window Thermal Test Facility (Press, 197 . THE NOBILE WINDOW THERMAL TEST FACILITY (

Klems, J. H.

2011-01-01T23:59:59.000Z

4

Survey of solar thermal test facilities  

DOE Green Energy (OSTI)

The facilities that are presently available for testing solar thermal energy collection and conversion systems are briefly described. Facilities that are known to meet ASHRAE standard 93-77 for testing flat-plate collectors are listed. The DOE programs and test needs for distributed concentrating collectors are identified. Existing and planned facilities that meet these needs are described and continued support for most of them is recommended. The needs and facilities that are suitable for testing components of central receiver systems, several of which are located overseas, are identified. The central contact point for obtaining additional details and test procedures for these facilities is the Solar Thermal Test Facilities Users' Association in Albuquerque, N.M. The appendices contain data sheets and tables which give additional details on the technical capabilities of each facility. Also included is the 1975 Aerospace Corporation report on test facilities that is frequently referenced in the present work.

Masterson, K.

1979-08-01T23:59:59.000Z

5

NREL Battery Thermal and Life Test Facility (Presentation)  

DOE Green Energy (OSTI)

This presentation describes NREL's Battery Thermal Test Facility and identifies test requirements and equipment and planned upgrades to the facility.

Keyser, M.

2011-05-01T23:59:59.000Z

6

Sandia National Laboratories: National Solar Thermal Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

ECISEnergyRenewable EnergySolar EnergyConcentrating Solar Power ECISEnergyRenewable EnergySolar EnergyConcentrating Solar Power (CSP)National Solar Thermal Test Facility National Solar Thermal Test Facility NSTTF Interactive Tour National Solar Thermal Test Facility (NSTTF) Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility of this type in the United States. The NSTTF's primary goal is to provide experimental engineering data for the design, construction, and operation of unique components and systems in proposed solar thermal electrical plants planned for large-scale power generation. In addition, the site was built and instrumented to provide test facilities for a variety of solar and nonsolar applications. The facility can provide

7

MoWiTT: The Mobile Window Thermal Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Airflow schematic MoWiTT: The Mobile Window Thermal Test Facility In the MoWiTT facility, efficient window-and-frame systems are measured to understand the flow of energy through...

8

MoWiTT:Mobile Window Thermal Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 MoWiTT: Mobile Window Thermal Test Facility The window has come a long way since the days when it was a single pane of glass in a wood frame. Low-emissivity windows were designed to help buildings retain some of the energy that would have leaked out of less efficient windows. Designing efficient window-and-frame systems requires accurate measurement of the flow of energy through windows in realistic conditions, a capability provided by the Mobile Window Thermal Test facility. Consisting of a pair of outdoor, room-sized calorimeters, MoWiTT measures the net energy flow through two window samples in side-by-side tests using ambient weather conditions. MoWiTT characterizes the net energy flow as a function of time and measures the temperatures, solar fluxes, and

9

An assessment of testing requirement impacts on nuclear thermal propulsion ground test facility design  

SciTech Connect

Programs to develop solid core nuclear thermal propulsion (NTP) systems have been under way at the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA), and the Department of Energy (DOE). These programs have recognized the need for a new ground test facility to support development of NTP systems. However, the different military and civilian applications have led to different ground test facility requirements. The Department of Energy (DOE) in its role as landlord and operator of the proposed research reactor test facilities has initiated an effort to explore opportunities for a common ground test facility to meet both DoD and NASA needs. The baseline design and operating limits of the proposed DoD NTP ground test facility are described. The NASA ground test facility requirements are reviewed and their potential impact on the DoD facility baseline is discussed.

Shipers, L.R.; Ottinger, C.A.; Sanchez, L.C.

1993-10-25T23:59:59.000Z

10

10-MWe pilot-plant-receiver-panel test-requirements document: Solar Thermal Test Facility  

DOE Green Energy (OSTI)

Plans are presented for insolation testing of a full-scale test receiver panel and supporting hardware which essentially duplicate both physically and functionally the design planned for the 10 MWe pilot plant. Testing includes operation during normal start and shutdown, intermittent cloud conditions, and emergencies to determine the transient and steady state operating characteristics and performance under conditions equal to or exceeding those expected in the pilot plant. The effects of variations of input and output conditions on receiver operation are also to be investigated. A brief description of the pilot plant receiver subsystem is presented, followed by a detailed description of the receiver assembly to be tested at the Solar Thermal Test Facility. Major subassemblies are described, including the receiver panel, flow control, electrical control and instrumentation, and the structural assembly. Requirements of the Solar Thermal Test Facility for the tests are given. System safety measures are described. The tests, operating conditions, and expected results are presented. Quality assurance, task responsibilities, and test documentation are also discussed. (LEW)

Not Available

1978-06-10T23:59:59.000Z

11

10-MWe pilot-plant-receiver panel test requirements document solar thermal test facility  

DOE Green Energy (OSTI)

Testing plans for a full-scale test receiver panel and supporting hardware which essentially duplicate both physically and functionally, the design planned for the Barstow Solar Pilot Plant are presented. Testing is to include operation during normal start and shutdown, intermittent cloud conditions, and emergencies to determine the panel's transient and steady state operating characteristics and performance under conditions equal to or exceeding those expected in the pilot plant. The effects of variations of input and output conditions on receiver operation are also to be investigated. Test hardware are described, including the pilot plant receiver, the test receiver assembly, receiver panel, flow control, electrical control and instrumentation, and structural assembly. Requirements for the Solar Thermal Test Facility for the tests are given. The safety of the system is briefly discussed, and procedures are described for assembly, installation, checkout, normal and abnormal operations, maintenance, removal and disposition. Also briefly discussed are quality assurance, contract responsibilities, and test documentation. (LEW)

Not Available

1978-08-25T23:59:59.000Z

12

Thermal vacuum life test facility for radioisotope thermoelectric generators  

DOE Green Energy (OSTI)

In the late 1970's, the Department of Energy (DOE) assigned Monsanto Research Corporation, Mound Facility, now operated by EG G Mound Applied Technologies, the responsibility for assembling and testing General Purpose Heat Source (GPHS) radioisotope thermoelectric generators (RTGs). Assembled and tested were five RTGs, which included four flight units and one non-flight qualification unit. Figure 1 shows the RTG, which was designed by General Electric AstroSpace Division (GE/ASD) to produce 285 W of electrical power. A detailed description of the processes for RTG assembly and testing is presented by Amos and Goebel (1989). The RTG performance data are described by Bennett, et al. (1986). The flight units will provide electrical power for the National Aeronautics and Space Administration's (NASA) Galileo mission to Jupiter (two RTGs) and the joint NASA/European Space Agency (ESA) Ulysses mission to study the polar regions of the sun (one RTG). The remaining flight unit will serve as the spare for both missions, and a non-flight qualification unit was assembled and tested to ensure that performance criteria were adequately met. 4 refs., 3 figs.

Deaton, R.L.; Goebel, C.J.; Amos, W.R.

1990-01-01T23:59:59.000Z

13

5-Megawatt solar-thermal test facility: facility construction-cost analysis  

SciTech Connect

The appropriation analysis, cash flow analysis, monthly cash flow analysis and construction cost estimate are tabulated for the 1 MW And 5 MW test facilities based upon limited initial appropriations, including work sheets for the construction cost estimates. (LEW)

1975-12-08T23:59:59.000Z

14

Recent National Solar Thermal Test Facility activities, in partnership with industry  

DOE Green Energy (OSTI)

The National Solar Thermal Test Facility (NSTTF) at Sandia National Laboratories in Albuquerque, New Mexico, USA conducts testing of solar thermal components and systems, funded primarily by the US Department of Energy. Activities are conducted in support of Central Receiver Technology, Distributed Receiver Technology and Design Assistance projects. All activities are performed in support of various cost-shared government/industry joint ventures and, on a design assistance basis, in support of a number of other industry partners.

Ghanbari, C.; Cameron, C.P.; Ralph, M.E.; Pacheco, J.E.; Rawlinson, K.S. [Sandia National Labs., Albuquerque, NM (United States); Evans, L.R. [Ewing Technical Design, Albuquerque, NM (United States)

1994-10-01T23:59:59.000Z

15

Lead Coolant Test Facility Systems Design, Thermal Hydraulic Analysis and Cost Estimate  

SciTech Connect

The Idaho National Laboratory prepared a preliminary technical and functional requirements (T&FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic coolant. Based on review of current world lead or lead-bismuth test facilities and research needs listed in the Generation IV Roadmap, five broad areas of requirements were identified as listed: (1) Develop and Demonstrate Feasibility of Submerged Heat Exchanger; (2) Develop and Demonstrate Open-lattice Flow in Electrically Heated Core; (3) Develop and Demonstrate Chemistry Control; (4) Demonstrate Safe Operation; and (5) Provision for Future Testing. This paper discusses the preliminary design of systems, thermal hydraulic analysis, and simplified cost estimate. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 4200 C. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M (in 2006 $). It is also estimated that the facility will require two years to be constructed and ready for operation.

Soli Khericha; Edwin Harvego; John Svoboda; Ryan Dalling

2012-01-01T23:59:59.000Z

16

Maximizing Thermal Efficiency and Optimizing Energy Management (Fact Sheet), Thermal Test Facility (TTF), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Maximizing Thermal Efficiency and Maximizing Thermal Efficiency and Optimizing Energy Management Scientists at this living laboratory develop optimal solutions for managing energy flows within buildings and transportation systems. The built environment is stressing the utility grid to a greater degree than ever before. Growing demand for electric vehicles, space conditioning, and plug loads presents a critical opportunity for more effective energy management and development of efficiency technologies. Researchers at the Thermal Test Facility (TTF) on the campus of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in Golden, Colorado, are addressing this opportunity. Through analysis of efficient heating, ventilating, and air conditioning (HVAC) strategies, automated home energy management (AHEM), and energy storage systems,

17

Eye hazard and glint evaluation for the 5-MW/sub t/ Solar Thermal Test Facility  

DOE Green Energy (OSTI)

Potential eye hazards associated with concentrated reflected light are evaluated for the ERDA 5-MW/sub t/ Solar Thermal Test Facility to be constructed at Sandia Laboratories, Albuquerque, New Mexico. Light intensities and hazardous ranges of single and multiple coincident heliostat beams are evaluated at ground level and in the air space above the facility. Possible long-range and short-range effects of distractive effects of reflected beams are discussed. Also described are certain beam control modifications which were incorporated to minimize the altitudes at which overflying aircraft could encounter unsafe levels. Recommendations are made for further evaluation of intensity excursions during fail-safe shutdown situations, and for experiments to verify analytical models and to assess distractive glint effects.

Brumleve, T.D.

1977-05-01T23:59:59.000Z

18

Ocean Thermal Energy Conversion (OTEC) test facilities study program. Final report. Volume II. Part C  

DOE Green Energy (OSTI)

Results are presented of an 8-month study to develop alternative non-site-specific OTEC facilities/platform requirements for an integrated OTEC Test Program which may include land and floating test facilities. Volume II--Appendixes is bound in three parts (A, B, and C) which together comprise a compendium of the most significant detailed data developed during the study. Part C describes test facility support, data acquisition and control system design, cost data, energy self-sufficiency, and test facility applications.

None

1977-01-17T23:59:59.000Z

19

Ocean Thermal Energy Converstion (OTEC) test facilities study program. Final report. Volume II. Part B  

DOE Green Energy (OSTI)

Results are presented of an 8-month study to develop alternative non-site-specific OTEC facilities/platform requirements for an integrated OTEC test program which may include land and floating test facilities. Volume II--Appendixes is bound in three parts (A, B, and C) which together comprise a compendium of the most significant detailed data developed during the study. Part B provides an annotated test list and describes component tests and system tests.

None

1977-01-17T23:59:59.000Z

20

Ocean Thermal Energy Conversion (OTEC) test facilities study program. Final report. Volume II. Part A  

DOE Green Energy (OSTI)

Results are presented of an 8-month study to develop alternative non-site-specific OTEC facilities/platform requirements for an integrated OTEC Test Program which may include land and floating test facilities. The document, Volume II - Appendixes is bound in three parts (A, B, and C) which together comprise a compendium of the most significant detailed data developed during the study. Part A contains definitions, baseline revisions, test plans, and energy utilization sections.

Not Available

1977-01-17T23:59:59.000Z

Note: This page contains sample records for the topic "thermal test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Ocean Thermal Energy Conversion (OTEC) test facilities study program. Final report. Volume I  

DOE Green Energy (OSTI)

A comprehensive test program has been envisioned by ERDA to accomplish the OTEC program objectives of developing an industrial and technological base that will lead to the commercial capability to successfully construct and economically operate OTEC plants. This study was performed to develop alternative non-site specific OTEC test facilities/platform requirements for an integrated OTEC test program including both land and floating test facilities. A progression of tests was established in which OTEC power cycle component designs proceed through advanced research and technology, component, and systems test phases. This progression leads to the first OTEC pilot plant and provides support for following developments which potentially reduce the cost of OTEC energy. It also includes provisions for feedback of results from all test phases to enhance modifications to existing designs or development of new concepts. The tests described should be considered as representative of generic types since specifics can be expected to change as the OTEC plant design evolves. Emphasis is placed on defining the test facility which is capable of supporting the spectrum of tests envisioned. All test support facilities and equipment have been identified and included in terms of space, utilities, cost, schedule, and constraints or risks. A highly integrated data acquisition and control system has been included to improve test operations and facility effectiveness through a centralized computer system capable of automatic test control, real-time data analysis, engineering analyses, and selected facility control including safety alarms. Electrical power, hydrogen, and ammonia are shown to be technically feasible as means for transmitting OTEC power to a land-based distribution point. (WHK)

None

1977-01-17T23:59:59.000Z

22

Hot Hydrogen Test Facility  

DOE Green Energy (OSTI)

The core in a nuclear thermal rocket will operate at high temperatures and in hydrogen. One of the important parameters in evaluating the performance of a nuclear thermal rocket is specific impulse, ISp. This quantity is proportional to the square root of the propellant’s absolute temperature and inversely proportional to square root of its molecular weight. Therefore, high temperature hydrogen is a favored propellant of nuclear thermal rocket designers. Previous work has shown that one of the life-limiting phenomena for thermal rocket nuclear cores is mass loss of fuel to flowing hydrogen at high temperatures. The hot hydrogen test facility located at the Idaho National Lab (INL) is designed to test suitability of different core materials in 2500°C hydrogen flowing at 1500 liters per minute. The facility is intended to test non-uranium containing materials and therefore is particularly suited for testing potential cladding and coating materials. In this first installment the facility is described. Automated Data acquisition, flow and temperature control, vessel compatibility with various core geometries and overall capabilities are discussed.

W. David Swank

2007-02-01T23:59:59.000Z

23

SunLab Test Facilities  

DOE Green Energy (OSTI)

The U.S. Department of Energy maintains two major test facilities in support of its Solar Thermal Electric Program--Sandia's National Solar Thermal Test Facility (NSTTF) in Albuquerque, New Mexico, and NREL's High-Flux Solar Furnace (HFSF) in Golden, Colorado. Manufacturers can use the NSTTF to test new designs, ideas, and products in an outdoor environment much like the environment the equipment will be in when it is used in the field; the operational characteristics and size of NREL's 10-kilowatt HFSF make it ideal for testing prototype hardware and calibrating flux gauges, which are used to measure levels of concentrated sunlight.

Not Available

1997-11-01T23:59:59.000Z

24

Thermal test options  

SciTech Connect

Shipping containers for radioactive materials must be qualified to meet a thermal accident environment specified in regulations, such at Title 10, Code of Federal Regulations, Part 71. Aimed primarily at the shipping container design, this report discusses the thermal testing options available for meeting the regulatory requirements, and states the advantages and disadvantages of each approach. The principal options considered are testing with radiant heat, furnaces, and open pool fires. The report also identifies some of the facilities available and current contacts. Finally, the report makes some recommendations on the appropriate use of these different testing methods.

Koski, J.A.; Keltner, N.R.; Sobolik, K.B.

1993-02-01T23:59:59.000Z

25

Geothermal component test facility  

DOE Green Energy (OSTI)

A description is given of the East Mesa geothermal facility and the services provided. The facility provides for testing various types of geothermal energy-conversion equipment and materials under field conditions using geothermal fluids from three existing wells. (LBS)

Not Available

1976-04-01T23:59:59.000Z

26

Lighting Systems Test Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurement equipment with light beam Lighting Systems Test Facilities NOTICE Due to the current lapse of federal funding, Berkeley Lab websites are accessible, but may not be...

27

BNL | Accelerator Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerator Test Facility Accelerator Test Facility Home Core Capabilities Photoinjector S-Band Linac Laser Systems CO2 Laser Nd:Yag Laser Beamlines Beamline Simulation Data Beamline Parameters Beam Diagnostics Detectors Beam Schedule Operations Resources Fact Sheet (.pdf) Image Library Upgrade Proposal (.pdf) Publications ES&H Experiment Start-up ATF Handbook Laser Safety Collider-Accelerator Dept. C-AD ES&H Resources Staff Users' Place Apply for Access ATF photo ATF photo ATF photo ATF photo ATF photo A user facility for advanced accelerator research The Brookhaven Accelerator Test Facility (ATF) is a proposal driven, steering committee reviewed facility that provides users with high-brightness electron- and laser-beams. The ATF pioneered the concept of a user facility for studying complex properties of modern accelerators and

28

Thermal performance measurements of sealed insulating glass units with low-E coatings using the MoWiTT (Mobile Window Thermal Test) field-test facility  

SciTech Connect

Using data obtained in a mobile field-test facility, measured performance of clear and low-emissivity double-glazing units is presented for south-facing and north-facing orientations. The changes in U-value and shading coefficient resulting from addition of the low-E coating are found to agree with theoretical expectations for the cold spring test conditions. Accurate nighttime U-values were derived from the data and found to agree with calculations. Expected correlation between U-value and wind speed was not observed in the data; a plausible experimental reason for this is advanced.

Klems, J.; Keller, H.

1986-12-01T23:59:59.000Z

29

Highlighting High Performance: National Renewable Energy Laboratory's Thermal Test Facility, Golden, Colorado. Office of Building Technology State and Community Programs (BTS) Brochure  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory's Thermal Test Facility in Golden, Colorado, was designed using a whole-building approach--looking at the way the building's systems worked together most efficiently. Researchers monitor the performance of the 11,000-square-foot building, which boasts an energy cost savings of 63% for heating, cooling, and lighting. The basic plan of the building can be adapted to many needs, including retail and warehouse space. The Thermal Test Facility contains office and laboratory space; research focuses on the development of energy-efficiency and renewable energy technologies that are cost-effective and environmentally friendly.

Burgert, S.

2002-10-21T23:59:59.000Z

30

HELIOS: a computer program for modeling the solar thermal test facility, a users guide  

DOE Green Energy (OSTI)

HELIOS is a flexible computer code for evaluations of proposed designs for central tower solar energy collector systems, for safety calculations on the threat to personnel and to the facility itself, for determination of how various input parameters alter the power collected, and for design trade-offs. Input variables include atmospheric transmission effects, reflector shape and surface errors, suntracking errors, focusing and alignment strategies, receiver design, placement positions of the tower and mirrors, time-of-day, and day-of-year for the calculation. Plotting and editing computer codes are available. Complete input instructions, code-structure details, and output explanation are given. The code is in use on CDC 6600 and CDC 7600 computers.

Vittitoe, C.N.; Biggs, F.; Lighthill, R.E.

1977-03-01T23:59:59.000Z

31

Measurement of single and double glazing thermal performance under realistic conditions using the mobile window thermal test (MoWiTT) facility  

SciTech Connect

The thermal performance of single glazing, clear double glazing, and double glazing with a low-emissivity coating was measured in both south-facing and north-facing orientations under realistic field conditions using the new MoWiTT field test facility. The time-dependent net heat flow through each fenestration was found to be consistent with the predictions of the standard simplified heat transfer model, provided that an angle-dependent shading coefficient is used and diffuse solar gain is included in the calculation. Summer-condition average U-values were derived for each glazing type and were found to agree with the expected values for both types of double glazing. The measured U-value for single glazing was lower than predicted.

Klems, J.; Keller, H.

1986-11-01T23:59:59.000Z

32

Midtemperature solar systems test facility predictions for thermal performance based on test data: Sun-Heet nontracking solar collector  

DOE Green Energy (OSTI)

Sandia National Laboratories, Albuquerque (SNLA), is currently conducting a program to predict the performance and measure the characteristics of commercially available solar collectors that have the potential for use in industrial process heat and enhanced oil recovery applications. The thermal performance predictions for the Sun-Heet nontracking, line-focusing parabolic trough collector at five cities in the US are presented. (WHK)

Harrison, T.D.

1981-03-01T23:59:59.000Z

33

Advanced Windows Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior of Advanced Windows Test Facility Exterior of Advanced Windows Test Facility Advanced Windows Test Facility This multi-room laboratory's purpose is to test the performance and properties of advanced windows and window systems such as electrochromic windows, and automatically controlled shutters and blinds. The lab simulates real-world office spaces. Embedded instrumentation throughout the lab records solar gains and losses for specified time periods, weather conditions, energy use, and human comfort indicators. Electrochromic glazings promise to be a major advance in energy-efficient window technology, helping to achieve the goal of transforming windows and skylights from an energy liability in buildings to an energy source. The glazing can be reversibly switched from a clear to a transparent, colored

34

Mobile Window Thermal Test  

NLE Websites -- All DOE Office Websites (Extended Search)

Mobile Window Thermal Test (MoWiTT) Facility Mobile Window Thermal Test (MoWiTT) Facility winter.jpg (469135 bytes) The window has come a long way since the days when it was a single pane of glass in a wood frame. Low-emissivity windows were designed to help buildings retain some of the energy that would have leaked out of less efficient windows. Designing efficient window-and-frame systems is one strategy for reducing the energy use of buildings. But the net energy flowing through a window is a combination of temperature- driven thermal flows and transmission of incident solar energy, both of which vary with time. U-factor and solar heat gain coefficient (SHGC), the window properties that control these flows, depend partly on ambient conditions. Window energy flows can affect how much energy a building uses, depending on when the window flows are available to help meet other energy demands within the building, and when they are adverse, adding to building energy use. This leads to a second strategy for reducing building energy use: using the beneficial solar gain available through a window, either for winter heating or for daylighting, while minimizing adverse flows.

35

NREL: Research Facilities - Test and User Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Test and User Facilities Test and User Facilities NREL has test and user facilities available to industry and other organizations for researching, developing, and evaluating renewable energy and energy efficiency technologies. Here you'll find an alphabetical listing and brief descriptions of NREL's test and user facilities. A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Advanced Research Turbines At our wind testing facilities, we have turbines available to test new control schemes and equipment for reducing loads on wind turbine components. Learn more about the Advanced Research Turbines on our Wind Research website. Back to Top D Distributed Energy Resources Test Facility This facility was designed to assist the distributed power industry in the

36

ORNL rod-bundle heat-transfer test data. Volume 6. Thermal-hydraulic test facility experimental data report for test 3. 05. 5B - double-ended cold-leg break simulation  

SciTech Connect

Thermal-Hydraulic Test Facility (THTF) Test 3.05.5B was conducted by members of the ORNL PWR Blowdown Heat Transfer Separate-Effects Program on July 3, 1980. The objective of the program is to investigate heat transfer phenomena believed to occur in PWRs during accidents, including small and large break loss-of-coolant accidents. Test 3.05.5B was designed to provide transient thermal-hydraulics data in rod bundle geometry under reactor accident-type conditions. Reduced instrument responses are presented. Also included are uncertainties in the instrument responses, calculated mass flows, and calculated rod powers.

Mullins, C.B.; Felde, D.K.; Sutton, A.G.; Gould, S.S.; Morris, D.G.; Robinson, J.J.; Schwinkendorf, K.N.

1982-05-18T23:59:59.000Z

37

SEU Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Logo The SEU Test Facility Logo The SEU Test Facility 1. Introduction The uninterrupted and progressive miniaturization of microelectronic devices while resulting in more powerful computers, has also made these computers more susceptible to the effects of ionizing radiation. This is of particular concern for space applications due to the radiation fields encountered outside the protective terrestrial atmosphere and magnetosphere. Starting in 1987, a coalition of US government agencies (NSA, NASA, NRL and USASSDC ) collaborated with BNL to develop a powerful and user-friendly test facility for investigating space-radiation effects on micro-electronic devices[1]. The main type of effects studied are the so called Single Event Upsets (SEUs) where ionization caused by the passage of

38

The University of Minnesota aquifer thermal energy storage (ATES) field test facility -- system description, aquifer characterization, and results of short-term test cycles  

DOE Green Energy (OSTI)

Phase 1 of the Aquifer Thermal Energy Storage (ATES) Project at the University of Minnesota was to test the feasibility, and model, the ATES concept at temperatures above 100{degrees}C using a confined aquifer for the storage and recovery of hot water. Phase 1 included design, construction, and operation of a 5-MW thermal input/output field test facility (FTF) for four short-term ATES cycles (8 days each of heat injection, storage, and heat recover). Phase 1 was conducted from May 1980 to December 1983. This report describes the FTF, the Franconia-Ironton-Galesville (FIG) aquifer used for the test, and the four short-term ATES cycles. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic effects are all included. The FTF consists of monitoring wells and the source and storage well doublet completed in the FIG aquifer with heat exchangers and a fixed-bed precipitator between the wells of the doublet. The FIG aquifer is highly layered and a really anisotropic. The upper Franconia and Ironton-Galesville parts of the aquifer, those parts screened, have hydraulic conductivities of {approximately}0.6 and {approximately}1.0 m/d, respectively. Primary ions in the ambient ground water are calcium and magnesium bicarbonate. Ambient temperature FIG ground water is saturated with respect to calcium/magnesium bicarbonate. Heating the ground water caused most of the dissolved calcium to precipitate out as calcium carbonate in the heat exchanger and precipitator. Silica, calcium, and magnesium were significantly higher in recovered water than in injected water, suggesting dissolution of some constituents of the aquifer during the cycles. Further work on the ground water chemistry is required to understand water-rock interactions.

Walton, M.; Hoyer, M.C.; Eisenreich, S.J.; Holm, N.L.; Holm, T.R.; Kanivetsky, R.; Jirsa, M.A.; Lee, H.C.; Lauer, J.L.; Miller, R.T.; Norton, J.L.; Runke, H. (Minnesota Geological Survey, St. Paul, MN (United States))

1991-06-01T23:59:59.000Z

39

LINX Test Facility at SLAC  

NLE Websites -- All DOE Office Websites (Extended Search)

LINX LINear collider X-ing Linear Collider Interaction Region Engineering Test Facility at SLAC The NLC collaboration is proposing to create the LINX test facility at SLAC to...

40

Evaluation of the thermal-hydraulic response and fuel rod thermal and mechanical deformation behavior during the power burst facility test LOC-3. [PWR  

Science Conference Proceedings (OSTI)

An evaluation of the results from the LOC-3 nuclear blowdown test conducted in the Power Burst Facility is presented. The test objective was to examine fuel and cladding behavior during a postulated cold leg break accident in a pressurized water reactor (PWR). Separate effects of rod internal pressure and the degree of irradiation were investigated in the four-rod test. Extensive cladding deformation (ballooning) and failure occurred during blowdown. The deformation of the low and high pressure rods was similar; however, the previously irradiated test rod deformed to a greater extent than a similar fresh rod exposed to identical system conditions.

Yackle, T.R.; MacDonald, P.E.; Broughton, J.M.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Midtemperature solar systems test facility predictions for thermal performance based on test data. Toltec two-axis tracking solar collector with 3M acrylic polyester film reflector surface  

DOE Green Energy (OSTI)

Thermal performance predictions based on test data are presented for the Toltec solar collector, with acrylic film reflector surface, for three output temperatures at five cities in the United States.

Harrison, T.D.

1981-06-01T23:59:59.000Z

42

Midtemperature solar systems test facility predictions for thermal performance based on test data. Polisolar Model POL solar collector with glass reflector surface  

DOE Green Energy (OSTI)

Thermal performance predictions based on test data are presented for the Polisolar Model POL solar collector, with glass reflector surfaces, for three output temperatures at five cities in the United States.

Harrison, T.D.

1981-05-01T23:59:59.000Z

43

LOFT facility and test program  

SciTech Connect

The Loss-of-Fluid Test (LOFT) test facility, program objectives, and the experiments planned are described. The LOFT facility is related to the smaller Semiscale facility and the larger commercial pressurized water reactors. The fact that LOFT is a computer model assessment tool rather than a demonstration test is emphasized. Various types of reactor safety experiments planned through 1983 are presented.

McPherson, G.D.

1979-11-01T23:59:59.000Z

44

Sun{diamond}Lab test facilities  

DOE Green Energy (OSTI)

This country's efforts to successfully develop and commercialize concentrating solar power (CSP) technologies depend on specialized research and testing capabilities. To Support this effort, the US Department of Energy's Concentrating Solar Power Program maintains two major test facilities: the National Solar Thermal Test Facility at Sandia National Laboratories in Albuquerque, New Mexico, and the High Flux Solar Furnace at the National Renewable Energy Laboratory in Golden, Colorado. These test facilities combine to be instrumental in the development of parabolic dishes, troughs, and solar power towers.

NONE

1998-04-01T23:59:59.000Z

45

Sun{diamond}Lab test facilities  

DOE Green Energy (OSTI)

This country`s efforts to successfully develop and commercialize concentrating solar power (CSP) technologies depend on specialized research and testing capabilities. To Support this effort, the US Department of Energy`s Concentrating Solar Power Program maintains two major test facilities: the National Solar Thermal Test Facility at Sandia National Laboratories in Albuquerque, New Mexico, and the High Flux Solar Furnace at the National Renewable Energy Laboratory in Golden, Colorado. These test facilities combine to be instrumental in the development of parabolic dishes, troughs, and solar power towers.

Not Available

1998-04-01T23:59:59.000Z

46

ORNL rod-bundle heat-transfer test data. Volume 3. Thermal-hydraulic test facility experimental data report for test 3. 06. 6B - transient film boiling in upflow. [PWR  

SciTech Connect

Reduced instrument responses are presented for Thermal-Hyraulic Test Facility (THTF) Test 3.06.6B. This test was conducted by members of the Oak Ridge National Laboratory Pressurized-Water-Reactor (PWR) Blowdown Heat Transfer (BDHT) Separate-Effects Program on August 29, 1980. The objective of the program was to investigate heat transfer phenomena believed to occur in PWR's during accidents, including small and large break loss-of-coolant accidents. Test 3.06.6B was conducted to obtain transient film boiling data in rod bundle geometry under reactor accident-type conditions. The primary purpose of this report is to make the reduced instrument responses for THTF Test 3.06.6B available. Included in the report are uncertainties in the instrument responses, calculated mass flows, and calculated rod powers.

Mullins, C.B.; Felde, D.K.; Sutton, A.G.; Gould, S.S.; Morris, D.G.; Robinson, J.J.

1982-05-01T23:59:59.000Z

47

Midtemperature Solar Systems Test Facility predictions for thermal performance based on test data: Custom Engineering trough with glass reflector surface and Sandia-designed receivers  

DOE Green Energy (OSTI)

Thermal performance predictions based on test data are presented for the Custom Engineering trough and Sandia-designed receivers, with glass reflector surface, for three output temperatures at five cities in the United States. Two experimental receivers were tested, one with an antireflective coating on the glass envelope around the receiver tube and one without the antireflective coating.

Harrison, T.D.

1981-05-01T23:59:59.000Z

48

NREL: Photovoltaics Research - Outdoor Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Outdoor Test Facility Aerial photo of the Outdoor Test Facility. The Outdoor Test Facility at NREL is used to evaluate prototype, precommercial, and commercial modules. Outdoor...

49

Thermal Hydraulic Analysis of a Reduced Scale High Temperature Gas-Cooled Reactor Test Facility and its Prototype with MELCOR  

E-Print Network (OSTI)

Pursuant to the energy policy act of 2005, the High Temperature Gas-Cooled Reactor (HTGR) has been selected as the Very High Temperature Reactor (VHTR) that will become the Next Generation Nuclear Plant (NGNP). Although plans to build a demonstration plant at Idaho National Laboratories (INL) are currently on hold, a cooperative agreement on HTGR research between the U.S. Nuclear Regulatory Commission (NRC) and several academic investigators remains in place. One component of this agreement relates to validation of systems-level computer code modeling capabilities in anticipation of the eventual need to perform HTGR licensing analyses. Because the NRC has used MELCOR for LWR licensing in the past and because MELCOR was recently updated to include gas-cooled reactor physics models, MELCOR is among the system codes of interest in the cooperative agreement. The impetus for this thesis was a code-to-experiment validation study wherein MELCOR computer code predictions were to be benchmarked against experimental data from a reduced-scale HTGR testing apparatus called the High Temperature Test Facility (HTTF). For various reasons, HTTF data is not yet available from facility designers at Oregon State University, and hence the scope of this thesis was narrowed to include only computational studies of the HTTF and its prototype, General Atomics’ Modular High Temperature Gas-Cooled Reactor (MHTGR). Using the most complete literature references available for MHTGR design and using preliminary design information on the HTTF, MELCOR input decks for both systems were developed. Normal and off-normal system operating conditions were modeled via implementation of appropriate boundary and inititial conditions. MELCOR Predictions of system response for steady-state, pressurized conduction cool-down (PCC), and depressurized conduction cool-down (DCC) conditions were checked against nominal design parameters, physical intuition, and some computational results available from previous RELAP5-3D analyses at INL. All MELCOR input decks were successfully built and all scenarios were successfully modeled under certain assumptions. Given that the HTTF input deck is preliminary and was based on dated references, the results were altogether imperfect but encouraging since no indications of as yet unknown deficiencies in MELCOR modeling capability were observed. Researchers at TAMU are in a good position to revise the MELCOR models upon receipt of new information and to move forward with MELCOR-to-HTTF benchmarking when and if test data becomes available.

Beeny, Bradley 1988-

2012-12-01T23:59:59.000Z

50

Hawaii Fuel Cell Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Test Facility presented to DOE Hydrogen Codes and Standards Coordinating Committee Fuel Purity Specifications Workshop Renaissance Hollywood Hotel by Rick Rocheleau...

51

Midtemperature solar systems test facility predictions for thermal performance of the Acurex solar collector with FEK 244 reflector surface  

DOE Green Energy (OSTI)

Thermal performance predictions are presented for the Acurex solar collector, with FEK 244 reflector surface, for three output temperatures at five cities in the United States.

Harrison, T.D.

1981-01-01T23:59:59.000Z

52

PRELIMINARY THERMAL AND THERMOMECH-ANICAL MODELING FOR THE NEAR SURFACE TEST FACILITY HEATER EXPERIMANTS AT HANFORD: Appendix D  

E-Print Network (OSTI)

Heater Experiments at Hanford V O L U M E II (Appendix D) TENG-48 and for Rockwell Hanford Operations — a Department ofFACILITY HEATER EXPERIMENTS AT HANFORD Volume 2 (Appendix D)

Chan, T.

2011-01-01T23:59:59.000Z

53

Robotics Test Facility  

Science Conference Proceedings (OSTI)

... 5000 square foot) high bay, holding most of the test methods; ... to help engineers view robot performance remotely and for recording testing events. ...

2013-05-23T23:59:59.000Z

54

Central Receiver Test Facility (CRTF) experiment manual  

DOE Green Energy (OSTI)

The Central Receiver Test Facility is operated by Sandia Laboratories for the US Department of Energy. The CRTF is being used for component and subsystem evaluation within the Solar Thermal Large Power Systems Program. This experiment manual provides users of the CRTF detailed information about: (1) implementation of testing at the CRTF; (2) details of the CRTF capabilities and interfaces, and (3) requirements of experimenters.

Holmes, J. T.; Matthews, L. K.; Seamons, L. O.; Davis, D. B.; King, D. L.

1979-10-01T23:59:59.000Z

55

America's Wind Testing Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home America's Wind Testing Facilities America's Wind Testing Facilities Addthis National Wind Technology...

56

Midtemperature solar systems test facility predictions for thermal performance based on test data: AAI solar collector with pressure-formed glass reflector surface  

DOE Green Energy (OSTI)

Sandia National Laboratories, Albuquerque (SNLA), is currently conducting a program to predict the performance and measure the characteristics of commercially available solar collectors that have the potential for use in industrial process heat and enhance oil recovery applications. The thermal performance predictions for the AAI solar line-focusing slat-type collector for five cities in the US are presented. (WHK)

Harrison, T.D.

1981-03-01T23:59:59.000Z

57

Category:Testing Facilities | Open Energy Information  

Open Energy Info (EERE)

Facilities Facilities Jump to: navigation, search This category is defined by the form Testing Facility. Subcategories This category has only the following subcategory. H [×] Hydrodynamic Testing Facility Type‎ 9 pages Pages in category "Testing Facilities" The following 82 pages are in this category, out of 82 total. 1 1.5-ft Wave Flume Facility 10-ft Wave Flume Facility 11-ft Wave Flume Facility 2 2-ft Flume Facility 3 3-ft Wave Flume Facility 5 5-ft Wave Flume Facility 6 6-ft Wave Flume Facility A Alden Large Flume Alden Small Flume Alden Tow Tank Alden Wave Basin B Breakwater Research Facility Bucknell Hydraulic Flume C Carderock 2-ft Variable Pressure Cavitation Water Tunnel Carderock 3-ft Variable Pressure Cavitation Water Tunnel Carderock Circulating Water Channel

58

Midtemperature solar systems test facility predictions for thermal performance based on test data: solar kinetics T-600 solar collector with FEK 244 reflector surface  

DOE Green Energy (OSTI)

Sandia National Laboratories, Albuquerque (SNLA), is currently conducting a program to predict the performance and measure the characteristics of commercially available solar collectors that have the potential for use in industrial process heat and enhanced oil recovery applications. The thermal performance predictions for the Solar Kinetics T-600 solar line-focusing parabolic trough collector are presented for three output temperatures at five cities in the US. (WHK)

Harrison, T.D.

1981-04-01T23:59:59.000Z

59

High Temperature Corrosion Test Facilities and High Pressure Test  

NLE Websites -- All DOE Office Websites (Extended Search)

High Temperature High Temperature Corrosion Test Facilities and High Pressure Test Facilities for Metal Dusting Test Facilities for Metal Dusting Overview Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr High Temperature Corrosion Test Facilities and High Pressure Test Facilities for Metal Dusting Six corrosion test facilities and two thermogravimetric systems for conducting corrosion tests in complex mixed gas environments, in steam and in the presence of deposits, and five facilities for metal dusting degradation Bookmark and Share The High Temperature Corrosion Test Facilities and High Pressure Test Facilities for Metal Dusting include: High Pressure Test Facility for Metal Dusting Resistance:

60

Non-Destructive Evaluation (NDE) and Testing Facilities - Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities > Non-Destructive Facilities > Non-Destructive Evaluation (NDE) and Testing Facilities Non-Destructive Evaluation (NDE) and Testing Facilities Overview MTS Table Top Load Frame X-ray Inspection Systems Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Non-Destructive Evaluation (NDE) and Testing Facilities The Non-Destructive Evaluation (NDE) and Testing Facilities contain state-of-the-art NDE laboratories including microwave/millimeter wave, acoustic/ultrasonic, X-ray, thermal imaging, optics, and eddy current for health monitoring of materials and components used in aerospace, defense, and power generation (fossil and nuclear) industries as well as for medical and scientific research. Bookmark and Share

Note: This page contains sample records for the topic "thermal test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Hydrodynamic Testing Facilities Database | Open Energy Information  

Open Energy Info (EERE)

Hydrodynamic Testing Facilities Database Hydrodynamic Testing Facilities Database (Redirected from Hydrodynamic Testing Facilities) Jump to: navigation, search Facility Operators By viewing Hydrodynamic Testing Facilities in the list accompanying the map, one will be provided with data on a range of test capabilities and services available at commercial, academic, and government facilities and offshore berths within the United States. Click on a thumbnail in the adjacent map in order to view a testing facility operator's profile page. This page will include in depth information about the testing facilities that each operator oversees. Click on this link, CSV ,to download all of the information on all hydrodynamic testing facilities. Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":5000,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

62

Material Science Advances Using Test Reactor Facilities  

Science Conference Proceedings (OSTI)

Aug 2, 2010 ... About this Symposium. Meeting, 2011 TMS Annual Meeting & Exhibition. Symposium, Material Science Advances Using Test Reactor Facilities.

63

Hydrodynamic Testing Facilities Database | Open Energy Information  

Open Energy Info (EERE)

Hydrodynamic Testing Facilities Database Hydrodynamic Testing Facilities Database Jump to: navigation, search Facility Operators By viewing Hydrodynamic Testing Facilities in the list accompanying the map, one will be provided with data on a range of test capabilities and services available at commercial, academic, and government facilities and offshore berths within the United States. Click on a thumbnail in the adjacent map in order to view a testing facility operator's profile page. This page will include in depth information about the testing facilities that each operator oversees. Click on this link, CSV ,to download all of the information on all hydrodynamic testing facilities. Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":5000,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

64

10-MWe solar-thermal central-receiver pilot plant, solar-facilities design integration: system integration laboratory test plan (RADL item 6-4)  

DOE Green Energy (OSTI)

A general demonstration test plan is provided for the activities to be accomplished at the Systems Integration Laboratory. The Master Control System, Subsystem Distributed Process Control, Representative Signal Conditioning Units, and Redline Units from the Receiver Subsystem and the Thermal Storage Subsystem and other external interface operational functions will be integrated and functionally demonstrated. The Beckman Multivariable Control Unit will be tested for frequency response, static checks, configuration changes, switching transients, and input-output interfaces. Maximum System Integration Laboratory testing will demonstrate the operational readiness of Pilot Plant controls and external interfaces that are available. Minimum System Integration Laboratory testing will be accomplished with reduced set of hardware, which will provide capability for continued development and demonstration of Operational Control System plant control application software. Beam Control System Integration Laboratory testing will demonstrate the operational readiness of the Beam Control System equipment and software. (LEW)

Not Available

1980-10-01T23:59:59.000Z

65

Advanced Thermal Simulator Testing: Thermal Analysis and Test Results  

SciTech Connect

Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the potential development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a liquid metal cooled reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.

Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Reid, Robert; Adams, Mike; Davis, Joe [NASA Marshall Space Flight Center, Nuclear Systems Branch/ER24, MSFC, AL 35812 (United States)

2008-01-21T23:59:59.000Z

66

Residential Fuel Cell Performance Test Facility  

Science Conference Proceedings (OSTI)

... Currently, the test facility is setup to deliver natural gas as the fuel, but ... A turbine and magnetic flow meter measure the flow of water for the domestic ...

2011-11-15T23:59:59.000Z

67

Midtemperature Solar Systems Test Facility predictions for thermal performance based on test data. Alpha Solarco Model 104 solar collector with 0. 125-inch Schott low-iron glass reflector surface  

DOE Green Energy (OSTI)

Thermal performance predictions based on test data are presented for the Alpha Solarco Model 104 solar collector, with 0.125-inch Schott low-iron glass reflector surface, for three output temperatures at five cities in the United States.

Harrison, T.D.

1981-04-01T23:59:59.000Z

68

CPC thermal collector test plan  

DOE Green Energy (OSTI)

A comprehensive set of test procedures has evolved at Argonne National Laboratory for establishing the performance of compound parabolic and related concentrating thermal collectors with large angular fields of view. The procedures range from separate thermal and optical tests, to overall performance tests. A calorimetric ratio technique has been developed to determine the heat output of a collector without knowledge of the heat transfer fluid's mass flow rate and heat capacity. Sepcial attention is paid to the problem of defining and measuring the incident solar flux with respect to which the collector efficiency is to be calculated.

Reed, K A

1977-01-01T23:59:59.000Z

69

Development and Testing of the MIT Acoustic Levitation Test Facilities  

Science Conference Proceedings (OSTI)

Two acoustic levitation test facilities have been developed for cloud physics experimentation. These facilities utilize acoustic standing wave energy to suspend both solid and liquid objects in a contact-free environment. In the still-air ...

Victor D. Lupi; R. John Hansman

1991-08-01T23:59:59.000Z

70

Net Zero Residential Test Facility Gaithersburg, MD Solar Photovoltaic Panels  

E-Print Network (OSTI)

1 Net Zero Residential Test Facility Gaithersburg, MD Solar Photovoltaic Panels Solar Thermal R-35 Rim Joist Area 5" open cell spray foam 2" mineral wool insulation blanket R-10 Basement Slab electric WH #12;NZERTF Gaithersburg, MD Solar Photovoltaic Array Roof Mounted South half of main roof

Oak Ridge National Laboratory

71

New Facility Will Test Disposal Cell Cover Renovation | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services Ecosystem Management Team New Facility Will Test Disposal Cell Cover Renovation New Facility Will Test Disposal Cell Cover Renovation Calibration Facilities...

72

Thermal well-test method  

DOE Patents (OSTI)

A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

Tsang, Chin-Fu (Albany, CA); Doughty, Christine A. (Berkeley, CA)

1985-01-01T23:59:59.000Z

73

TTRDC - Facilities - APRF - Environmental Test Cell  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Powertrain Research Facility: Advanced Powertrain Research Facility: Environmental Test Cell Allows Extremes of Hot and Cold environmental test cell Environmental Test Cell showing its solar lamps on the ceiling. Inside Argonne's new Environmental Test Cell (ETC), vehicle researchers are able to simulate a range of external temperatures-from frigid cold to blistering heat-in order to study the impact of temperature on the performance of electrified vehicles (EVs). The ETC is a major upgrade to Argonne's world-class Advanced Powertrain Research Facility (APRF). The ETC allows vehicles to be tested at a temperature range between 20°F to 95°F under simulated sunshine. Previously, Argonne researchers were only able to test from 72°F to 95°F without a solar load. In addition, in the upgraded test cell researchers can now perform the new

74

Fusion Test Facilities John Sheffield  

E-Print Network (OSTI)

flexing tests - Testing nuclear fuel assemblies to meltdown--PHEBUS reactor #12;#12;Released on February REACTOR--CADARACHE · Purpose: studies of hypothetical accidents in pressurized water reactors · Type: pool.78% · The reactor was transformed into a miniature PWR (scale 1/5000) for the program Phébus PFF, a study

75

Environmental Energy Technologies Division Thermal Field Tests  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Field Tests Joseph H. Klems, LBNL DOE PEER Review San Francisco, CA April 20, 1999 Environmental Energy Technologies Division Current Work l Skylight Thermal Performance *...

76

Sandia National Laboratories: Locations: Kauai Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Test Facility P.O. Box 308 Waimea, Kauai HI 96796-0308 7:30 a.m. - 4:30 p.m. Hawaii-Aleutian Standard Time, M - F Steven Lautenschleger, Manager (505) 845-9234,...

77

Ground test facility for nuclear testing of space reactor subsystems  

SciTech Connect

Two major reactor facilities at the INEL have been identified as easily adaptable for supporting the nuclear testing of the SP-100 reactor subsystem. They are the Engineering Test Reactor (ETR) and the Loss of Fluid Test Reactor (LOFT). In addition, there are machine shops, analytical laboratories, hot cells, and the supporting services (fire protection, safety, security, medical, waste management, etc.) necessary to conducting a nuclear test program. This paper presents the conceptual approach for modifying these reactor facilities for the ground engineering test facility for the SP-100 nuclear subsystem. 4 figs.

Quapp, W.J.; Watts, K.D.

1985-01-01T23:59:59.000Z

78

Category:Hydrodynamic Testing Facility Type | Open Energy Information  

Open Energy Info (EERE)

Hydrodynamic Testing Facility Type Jump to: navigation, search This page contains all of the various types of technologies used in Hydrodynamic Testing Facilities for testing new...

79

PIA - Advanced Test Reactor National Scientific User Facility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor...

80

Massachusetts Large Blade Test Facility Final Report  

DOE Green Energy (OSTI)

Project Objective: The Massachusetts Clean Energy Center (CEC) will design, construct, and ultimately have responsibility for the operation of the Large Wind Turbine Blade Test Facility, which is an advanced blade testing facility capable of testing wind turbine blades up to at least 90 meters in length on three test stands. Background: Wind turbine blade testing is required to meet international design standards, and is a critical factor in maintaining high levels of reliability and mitigating the technical and financial risk of deploying massproduced wind turbine models. Testing is also needed to identify specific blade design issues that may contribute to reduced wind turbine reliability and performance. Testing is also required to optimize aerodynamics, structural performance, encourage new technologies and materials development making wind even more competitive. The objective of this project is to accelerate the design and construction of a large wind blade testing facility capable of testing blades with minimum queue times at a reasonable cost. This testing facility will encourage and provide the opportunity for the U.S wind industry to conduct more rigorous testing of blades to improve wind turbine reliability.

Rahul Yarala; Rob Priore

2011-09-02T23:59:59.000Z

Note: This page contains sample records for the topic "thermal test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Thermal well-test method  

DOE Patents (OSTI)

A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir is disclosed. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

Tsang, C.F.; Doughty, C.A.

1984-02-24T23:59:59.000Z

82

America's Wind Testing Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Testing Facilities Wind Testing Facilities America's Wind Testing Facilities Addthis National Wind Technology Center - Colorado 1 of 7 National Wind Technology Center - Colorado The first of 4 towers is lifted as work continues on the 2 MW Gamesa wind turbine being installed at NREL's National Wind Technology Center (NWTC). | Photo by Dennis Schroeder. Date taken: 2011-09-15 13:53 National Wind Technology Center - Colorado 2 of 7 National Wind Technology Center - Colorado Workers use a giant crane for lifting the blade assembly as work continues on the 2 MW Gamesa wind turbine being installed at NREL's National Wind Technology Center (NWTC). | Photo by Dennis Schroeder. Date taken: 2011-09-22 12:06 Wind Technology Testing Center - Boston 3 of 7 Wind Technology Testing Center - Boston

83

Integrated Geothermal Well Testing: Test Objectives and Facilities  

DOE Green Energy (OSTI)

A new and highly integrated geothermal well test program was designed for three geothermal operators in the US (MCR, RGI and Mapco Geothermal). This program required the design, construction and operation of new well test facilities. The main objectives of the test program and facilities are to investigate the critical potential and worst problems associated with the well and produced fluids in a period of approximately 30 days. Field and laboratory investigations are required to determine and quantify the problems of fluid production, utilization and reinjection. The facilities are designed to handle a flow rate from a geothermal well of one million pounds per hour at a wellhead temperature of approximately 268 C (515 F). The facilities will handle an entire spectrum of temperature and rate conditions up to these limits. All pertinent conditions for future fluid exploitations can be duplicated with these facilities, thus providing critical information at the very early stages of field development. The new well test facilities have been used to test high temperature, liquid-dominated geothermal wells in the Imperial Valley of California. The test facilities still have some problems which should be solvable. The accomplishments of this new and highly integrated geothermal well test program are described in this paper.

Nicholson, R. W.; Vetter, O. J.

1981-01-01T23:59:59.000Z

84

Thermal Response Testing for Geothermal Heat Exchangers ...  

Science Conference Proceedings (OSTI)

Thermal Response Testing for Geothermal Heat Exchangers Begins. The Net-Zero house features a geothermal heat pump ...

2013-03-12T23:59:59.000Z

85

Battery Thermal Modeling and Testing (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes NREL battery thermal modeling and testing work for the DOE Annual Merit Review, May 9, 2011.

Smith, K.

2011-05-01T23:59:59.000Z

86

Dual Axis Radiographic Hydrodynamic Test Facility, IG-0599 |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Dual Axis Radiographic Hydrodynamic Test Facility, IG-0599 Dual Axis Radiographic Hydrodynamic Test Facility, IG-0599 The Dual...

87

DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiographic Hydrodynamic Test Facility DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT, supports a critical component of LANL's primary mission: to ensure...

88

Dual Axis Radiographic Hydrodynamic Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

DARHT Facility: A critical component of stockpile stewardship DARHT Facility: A critical component of stockpile stewardship A new research frontier awaits! Our door is open and we thrive on mutually beneficial partnerships, collaborations that drive innovations and new technologies. April 12, 2012 Dominic Tafoya and Dave Honaberger prepare a refurbished DARHT (Dual Axis Radiographic Hydrotest Facility) 2nd axis accelerator cell for magnetic axis alignment measurements. Contact Group Leader Terry Priestley (505) 665-1330 Email Deputy Group Leader Tim Ferris (505) 665-2179 Email Hydrotests are critical in assessing nuclear weapons in nation's stockpile Dual Axis Radiographic Hydrodynamic Test facility 4:17 How DARHT Works The weapons programs at Los Alamos have one principal mission: ensure the safety, security, and effectiveness of nuclear weapons in our nation's

89

HiR Thermal Testing Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Testing Data Summary - Summary Plots - - Comparison Plots - - Prototype Drawings - Prototype Summary prototype prototype description (test conditions: cold side -18C,...

90

Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility  

Science Conference Proceedings (OSTI)

A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: • Identifies pre-conceptual design requirements • Develops test loop equipment schematics and layout • Identifies space allocations for each of the facility functions, as required • Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems • Identifies pre-conceptual utility and support system needs • Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs.

S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

2008-04-01T23:59:59.000Z

91

Power Systems Development Facility: Test Results 2006  

Science Conference Proceedings (OSTI)

The Transport Gasifier test facility at the Power Systems Development Facility (PSDF) has operated for almost 9,150 hours, gasifying bituminous and sub-bituminous coals and lignites using air and oxygen as the oxidant. During this time plant reliability and performance has improved progressively and the high degree of process understanding developed has been used to improve designs for key equipment items, such as coal feeding and coarse and fine ash removal. Using state-of-the-art data analysis and mode...

2006-12-11T23:59:59.000Z

92

Net-Zero Energy Residential Test Facility (NZERTF) ...  

Science Conference Proceedings (OSTI)

... NZERTF). NIST Unveils Net-Zero Energy Residential Test Facility to Improve Testing of Energy-Efficient Technologies. Welcome. ...

2013-11-04T23:59:59.000Z

93

THERMAL INSULATION MATERIALS TEST METHOD ...  

Science Conference Proceedings (OSTI)

... _____ 01/W01 CAN/CGSB-51.2-M88 Thermal Insulation, Calcium Silicate, for Piping, Machinery and Boilers _____ ...

2012-05-22T23:59:59.000Z

94

Thermal Storage Systems at IBM Facilities  

E-Print Network (OSTI)

In 1979, IBM commissioned its first large scale thermal storage system with a capacity of 2.7 million gallons of chilled water and 1.2 million gallons of reclaimed, low temperature hot water. The stored cooling energy represents approximately 27,000 ton hours. Through reduced chiller plant capacity and annual operating cost savings in primarily electric demand charges the payback will be approximately 3 1/2 years. The water is stored in multiple, insulated tanks, located above the ground. A similar but smaller system at IBM's Charlotte, North Carolina plant has no provisions for heat reclaim. Instead, it uses cooling tower water directly in the chilled water circuit when outside conditions permit. This paper presents system designs, control modes and economic considerations and describes IBM's experience to date with large volume storage systems.

Koch, G.

1981-01-01T23:59:59.000Z

95

ARGONNE'S BATTERY POST-TEST FACILITY W  

NLE Websites -- All DOE Office Websites (Extended Search)

Increasing the LIFE of batteries ARGONNE'S BATTERY POST-TEST FACILITY W h a t h a p p e n s t o b a t t e r ie s a s t h e y a g e ? H o w c a n w e e n s u r e s a f e u s e o f b...

96

Modular High Current Test Facility at LLNL  

SciTech Connect

This paper describes the 1 MA, 225 kJ test facility in operation at Lawrence Livermore National Laboratory (LLNL). The capacitor bank is constructed from three parallel 1.5 mF modules. The modules are capable of switching simultaneously or sequentially via solid dielectric puncture switches. The bank nominally operates up to 10 kV and reaches peak current with all three cabled modules in approximately 30 {micro}s. Parallel output plates from the bank allow for cable or busbar interfacing to the load. This versatile bank is currently in use for code validation experiments, railgun related activities, switch testing, and diagnostic development.

Tully, L K; Goerz, D A; Speer, R D; Ferriera, T J

2008-05-20T23:59:59.000Z

97

Property:Hydrodynamic Testing Facility Type | Open Energy Information  

Open Energy Info (EERE)

Hydrodynamic Testing Facility Type Hydrodynamic Testing Facility Type Jump to: navigation, search Property Name Hydrodynamic Testing Facility Type Property Type Page Pages using the property "Hydrodynamic Testing Facility Type" Showing 25 pages using this property. (previous 25) (next 25) 1 1.5-ft Wave Flume Facility + Flume + 10-ft Wave Flume Facility + Flume + 11-ft Wave Flume Facility + Flume + 2 2-ft Flume Facility + Flume + 3 3-ft Wave Flume Facility + Flume + 5 5-ft Wave Flume Facility + Flume + 6 6-ft Wave Flume Facility + Flume + A Alden Large Flume + Flume + Alden Small Flume + Flume + Alden Tow Tank + Tow Tank + Alden Wave Basin + Wave Basin + B Breakwater Research Facility + Wave Basin + Bucknell Hydraulic Flume + Flume + C Carderock 2-ft Variable Pressure Cavitation Water Tunnel + Tunnel +

98

Infrared Thermography Measurements of Window Thermal Test Specimen...  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrared Thermography Measurements of Window Thermal Test Specimen: Surface Temperatures Title Infrared Thermography Measurements of Window Thermal Test Specimen: Surface...

99

Vitrification Facility integrated system performance testing report  

Science Conference Proceedings (OSTI)

This report provides a summary of component and system performance testing associated with the Vitrification Facility (VF) following construction turnover. The VF at the West Valley Demonstration Project (WVDP) was designed to convert stored radioactive waste into a stable glass form for eventual disposal in a federal repository. Following an initial Functional and Checkout Testing of Systems (FACTS) Program and subsequent conversion of test stand equipment into the final VF, a testing program was executed to demonstrate successful performance of the components, subsystems, and systems that make up the vitrification process. Systems were started up and brought on line as construction was completed, until integrated system operation could be demonstrated to produce borosilicate glass using nonradioactive waste simulant. Integrated system testing and operation culminated with a successful Operational Readiness Review (ORR) and Department of Energy (DOE) approval to initiate vitrification of high-level waste (HLW) on June 19, 1996. Performance and integrated operational test runs conducted during the test program provided a means for critical examination, observation, and evaluation of the vitrification system. Test data taken for each Test Instruction Procedure (TIP) was used to evaluate component performance against system design and acceptance criteria, while test observations were used to correct, modify, or improve system operation. This process was critical in establishing operating conditions for the entire vitrification process.

Elliott, D.

1997-05-01T23:59:59.000Z

100

Advanced Test Reactor National Scientific User Facility  

Science Conference Proceedings (OSTI)

The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

Frances M. Marshall; Jeff Benson; Mary Catherine Thelen

2011-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

AEC PHOTOVOLTAIC TEST FACILITY FIRST YEAR TEST DATA James Krumsick  

E-Print Network (OSTI)

of Oregon Solar Radiation Lab 1274 University of Oregon Eugene, OR 97403-1274 e-mail: fev, the University of Oregon Solar Radiation Monitoring Lab (UO SRML) under a contract with the Energy Trust environmental conditions. The test facility consists of a 25 KW rooftop array separated into eight systems. Each

Oregon, University of

102

THERMAL HYDRAULIC ANALYSIS OF A GAS TEST LOOP SYSTEM  

Science Conference Proceedings (OSTI)

This paper discusses thermal hydraulic calculations for a Gas Test Loop (GTL) system designed to provide a high intensity fast-flux irradiation environment for testing fuels and materials for advanced concept nuclear reactors. To assess the performance of candidate reactor fuels, these fuels must be irradiated under actual fast reactor flux conditions and operating environments, preferably in an existing irradiation facility [1]. Potential users of the GTL include the Generation IV Reactor Program, the Advanced Fuel Cycle Initiative and Space Nuclear Programs.

Donna Post Guillen; James E. Fisher

2005-11-01T23:59:59.000Z

103

SASE FEL at the TESLA Facility, Phase 2 The TESLA Test Facility FEL team  

E-Print Network (OSTI)

SASE FEL at the TESLA Facility, Phase 2 The TESLA Test Facility FEL team June 2002, TESLA-FEL 2002-01 #12;SASE FEL at the TESLA Facility, Phase 2 Abstract The last description of the TESLA Test Facility FEL has been written in 1995 (TESLA- FEL report 95-03). Since then, many changes have developed

104

Assessment of a hot hydrogen nuclear propulsion fuel test facility  

DOE Green Energy (OSTI)

Subsequent to the announcement of the Space Exploration Initiative (SEI), several studies and review groups have identified nuclear thermal propulsion as a high priority technology for development. To achieve the goals of SEI to place man on Mars, a nuclear rocket will operate at near 2700K and in a hydrogen environment at near 60 atmospheres. Under these conditions, the operational lifetime of the rocket will be limited by the corrosion rate at the hydrogen/fuel interface. Consequently, the Los Alamos National Laboratory has been evaluating requirements and design issues for a test facility. The facility will be able to directly heat fuel samples by electrical resistance, microwave deposition, or radio frequency induction heating to temperatures near 3000K. Hydrogen gas at variable pressure and temperatures will flow through the samples. The thermal gradients, power density, and operating times envisioned for nuclear rockets will be duplicated as close as reasonable. The post-sample flow stream will then be scrubbed and cooled before reprocessing. The baseline design and timetable for the facility will be discussed. 7 refs.

Watanabe, H.H.; Howe, S.D.; Wantuck, P.J.

1991-01-01T23:59:59.000Z

105

CLOSEOUT REPORT FOR HYBRID SULFUR PRESSURIZED BUTTON CELL TEST FACILITY  

DOE Green Energy (OSTI)

This document is the Close-Out Report for design and partial fabrication of the Pressurized Button Cell Test Facility at Savannah River National Laboratory (SRNL). This facility was planned to help develop the sulfur dioxide depolarized electrolyzer (SDE) that is a key component of the Hybrid Sulfur Cycle for generating hydrogen. The purpose of this report is to provide as much information as possible in case the decision is made to resume research. This report satisfies DOE Milestone M3GSR10VH030107.0. The HyS Cycle is a hybrid thermochemical cycle that may be used in conjunction with advanced nuclear reactors or centralized solar receivers to produce hydrogen by watersplitting. The HyS Cycle utilizes the high temperature (>800 C) thermal decomposition of sulfuric acid to produce oxygen and regenerate sulfur dioxide. The unique aspect of HyS is the generation of hydrogen in a water electrolyzer that is operated under conditions where dissolved sulfur dioxide depolarizes the anodic reaction, resulting in substantial voltage reduction. Low cell voltage is essential for both high thermodynamic efficiency and low hydrogen cost. Sulfur dioxide is oxidized at the anode, producing sulfuric acid that is sent to the high temperature acid decomposition portion of the cycle. Sulfur dioxide from the decomposer is cycled back to electrolyzers. The electrolyzer cell uses the membrane electrode assembly (MEA) concept. Anode and cathode are formed by spraying a catalyst, typically platinized carbon, on both sides of a Proton Exchange Membrane (PEM). SRNL has been testing SDEs for several years including an atmospheric pressure Button Cell electrolyzer (2 cm{sup 2} active area) and an elevated temperature/pressure Single Cell electrolyzer (54.8 cm{sup 2} active area). SRNL tested 37 MEAs in the Single Cell electrolyzer facility from June 2005 until June 2009, when funding was discontinued. An important result of the final months of testing was the development of a method that prevents the formation of a sulfur layer previously observed in MEAs used in the Hybrid Sulfur Cycle electrolyzer. This result is very important because the sulfur layer increased cell voltage and eventually destroyed the MEA that is the heart of the cell. Steimke and Steeper [2005, 2006, 2007, 2008] reported on testing in the Single Cell Electrolyzer test facility in several periodic reports. Steimke et. al [2010] issued a final facility close-out report summarizing all the testing in the Single Cell Electrolyzer test facility. During early tests, significant deterioration of the membrane occurred in 10 hours or less; the latest tests ran for at least 200 hours with no sign of deterioration. Ironically, the success with the Single Cell electrolyzer meant that it became dedicated to long runs and not available for quick membrane evaluations. Early in this research period, the ambient pressure Button Cell Electrolyzer test facility was constructed to quickly evaluate membrane materials. Its small size allowed testing of newly developed membranes that typically were not available in sizes large enough to test in the Single Cell electrolyzer. The most promising membranes were tested in the Single Cell Electrolyzer as soon as sufficient large membranes could be obtained. However, since the concentration of SO{sub 2} gas in sulfuric acid decreases rapidly with increasing temperature, the ambient pressure Button Cell was no longer able to achieve the operating conditions needed to evaluate the newer improved high temperature membranes. Significantly higher pressure operation was required to force SO{sub 2} into the sulfuric acid to obtain meaningful concentrations at increased temperatures. A high pressure (200 psig), high temperature (120 C) Button Cell was designed and partially fabricated just before funding was discontinued in June 2009. SRNL completed the majority of the design of the test facility, including preparation of a process and instrument drawing (P&ID) and preliminary designs for the major components. SRNL intended to complete the designs and procu

Steeper, T.

2010-09-15T23:59:59.000Z

106

Review of Test Facilities for Distributed Energy Resources  

E-Print Network (OSTI)

troughs and a Solar Furnace. Currently, the facility is testing a 10 kW grid-connected Stirling engine

107

Preliminary Nuclear Calculations for the Shield Test Facility  

SciTech Connect

To find the critical size of the proposed shield test facility based upon available data and present construction concepts.

Baucom, H.H.

1960-01-11T23:59:59.000Z

108

Idaho Waste Treatment Facility Startup Testing Suspended To Evaluate...  

NLE Websites -- All DOE Office Websites (Extended Search)

Idaho Waste Treatment Facility Startup Testing Suspended To Evaluate System IDAHO FALLS, ID- On Saturday, June 16, startup testing was suspended at the Integrated Waste Treatment...

109

Test Results From The Idaho National Laboratory 15kW High Temperature Electrolysis Test Facility  

DOE Green Energy (OSTI)

A 15kW high temperature electrolysis test facility has been developed at the Idaho National Laboratory under the United States Department of Energy Nuclear Hydrogen Initiative. This facility is intended to study the technology readiness of using high temperature solid oxide cells for large scale nuclear powered hydrogen production. It is designed to address larger-scale issues such as thermal management (feed-stock heating, high temperature gas handling, heat recuperation), multiple-stack hot zone design, multiple-stack electrical configurations, etc. Heat recuperation and hydrogen recycle are incorporated into the design. The facility was operated for 1080 hours and successfully demonstrated the largest scale high temperature solid-oxide-based production of hydrogen to date.

Carl M. Stoots; Keith G. Condie; James E. O'Brien; J. Stephen Herring; Joseph J. Hartvigsen

2009-07-01T23:59:59.000Z

110

Thermal analysis of the FSP-1RR irradiation test  

SciTech Connect

The thermal analysis of four unirradiated fuel pins to be tested in the FSP-1RR fuels irradiation experiment was completed. This test is a follow-on experiment in the series of fuel pin irradiation tests conducted by the SP-100 Program in the Fast Flux Test Facility. One of the pins contains several meltwire temperature monitors within the fuel and the Li annulus. A post-irradiation examination will verify the accuracy of the pre-irradiation thermal analysis. The purpose of the pre-irradiation analysis was to determine the appropriate insulating gap gas compositions required to provide the design goal cladding operating temperatures and to ensure that the meltwire temperature ranges in the temperature monitored pin bracket peak irradiation temperatures. This paper discusses the methodology and summarizes the results of the analysis.

Webb, R.H.; Lyon, W.F. III

1992-10-14T23:59:59.000Z

111

EFFLUENT TREATMENT FACILITY PEROXIDE DESTRUCTION CATALYST TESTING  

SciTech Connect

The 200 Area Effluent Treatment Facility (ETF) main treatment train includes the peroxide destruction module (PDM) where the hydrogen peroxide residual from the upstream ultraviolet light/hydrogen peroxide oxidation unit is destroyed. Removal of the residual peroxide is necessary to protect downstream membranes from the strong oxidizer. The main component of the PDM is two reaction vessels utilizing granular activated carbon (GAC) as the reaction media. The PDM experienced a number of operability problems, including frequent plugging, and has not been utilized since the ETF changed to groundwater as the predominant feed. The unit seemed to be underperforming in regards to peroxide removal during the early periods of operation as well. It is anticipated that a functional PDM will be required for wastewater from the vitrification plant and other future streams. An alternate media or methodology needs to be identified to replace the GAC in the PDMs. This series of bench scale tests is to develop information to support an engineering study on the options for replacement of the existing GAC method for peroxide destruction at the ETF. A number of different catalysts will be compared as well as other potential methods such as strong reducing agents. The testing should lead to general conclusions on the viability of different catalysts and identify candidates for further study and evaluation.

HALGREN DL

2008-07-30T23:59:59.000Z

112

An Overview of Facilities and Capabilities to Support the Development of Nuclear Thermal Propulsion  

DOE Green Energy (OSTI)

Abstract. The future of American space exploration depends on the ability to rapidly and economically access locations of interest throughout the solar system. There is a large body of work (both in the US and the Former Soviet Union) that show that Nuclear Thermal Propulsion (NTP) is the most technically mature, advanced propulsion system that can enable this rapid and economical access by its ability to provide a step increase above what is a feasible using a traditional chemical rocket system. For an NTP system to be deployed, the earlier measurements and recent predictions of the performance of the fuel and the reactor system need to be confirmed experimentally prior to launch. Major fuel and reactor system issues to be addressed include fuel performance at temperature, hydrogen compatibility, fission product retention, and restart capability. The prime issue to be addressed for reactor system performance testing involves finding an affordable and environmentally acceptable method to test a range of engine sizes using a combination of nuclear and non-nuclear test facilities. This paper provides an assessment of some of the capabilities and facilities that are available or will be needed to develop and test the nuclear fuel, and reactor components. It will also address briefly options to take advantage of the greatly improvement in computation/simulation and materials processing capabilities that would contribute to making the development of an NTP system more affordable. Keywords: Nuclear Thermal Propulsion (NTP), Fuel fabrication, nuclear testing, test facilities.

James Werner; Sam Bhattacharyya; Mike Houts

2011-02-01T23:59:59.000Z

113

Thermal testing of solid neutron shielding materials  

Science Conference Proceedings (OSTI)

Two legal-weight truck casks the GA-4 and GA-9, will carry four PWR and nine BWR spent fuel assemblies, respectively. Each cask has a solid neutron shielding material separating the steel body and the outer steel skin. In the thermal accident specified by NRC regulations in 10CFR Part 71, the cask is subjected to an 800[degree]C environment for 30 minutes. The neutron shield need not perform any shielding function during or after the thermal accident, but its behavior must not compromise the ability of the cask to contain the radioactive contents. In May-June 1989 the first series of full-scale thermal tests was performed on three shielding materials: Bisco Products NS-4-FR, and Reactor Experiments RX-201 and RX-207. The tests are described in Thermal Testing of Solid Neutron Shielding Materials, GA-AL 9897, R. H. Boonstra, General Atomics (1990), and demonstrated the acceptability of these materials in a thermal accident. Subsequent design changes to the cask rendered these materials unattractive in terms of weight or adequate service temperature margin. For the second test series, a material specification was developed for a polypropylene based neutron shield with a softening point of at least 280[degree]F. The neutron shield materials tested were boronated (0.8--4.5%) polymers (polypropylene, HDPE, NS-4). The Envirotech and Bisco materials are not polypropylene, but were tested as potential backup materials in the event that a satisfactory polypropylene could not be found.

Boonstra, R.H.

1992-09-01T23:59:59.000Z

114

Thermocline Thermal Storage Test for Large-Scale Solar Thermal Power Plants  

DOE Green Energy (OSTI)

Solar thermal-to-electric power plants have been tested and investigated at Sandia National Laboratories (SNL) since the late 1970s, and thermal storage has always been an area of key study because it affords an economical method of delivering solar-electricity during non-daylight hours. This paper describes the design considerations of a new, single-tank, thermal storage system and details the benefits of employing this technology in large-scale (10MW to 100MW) solar thermal power plants. Since December 1999, solar engineers at Sandia National Laboratories' National Solar Thermal Test Facility (NSTTF) have designed and are constructing a thermal storage test called the thermocline system. This technology, which employs a single thermocline tank, has the potential to replace the traditional and more expensive two-tank storage systems. The thermocline tank approach uses a mixture of silica sand and quartzite rock to displace a significant portion of the volume in the tank. Then it is filled with the heat transfer fluid, a molten nitrate salt. A thermal gradient separates the hot and cold salt. Loading the tank with the combination of sand, rock, and molten salt instead of just molten salt dramatically reduces the system cost. The typical cost of the molten nitrate salt is $800 per ton versus the cost of the sand and rock portion at $70 per ton. Construction of the thermocline system will be completed in August 2000, and testing will run for two to three months. The testing results will be used to determine the economic viability of the single-tank (thermocline) storage technology for large-scale solar thermal power plants. Also discussed in this paper are the safety issues involving molten nitrate salts and other heat transfer fluids, such as synthetic heat transfer oils, and the impact of these issues on the system design.

ST.LAURENT,STEVEN J.

2000-08-14T23:59:59.000Z

115

HEATER TEST PLANNING FOR THE NEAR SURFACE TEST FACILITY AT THE HANFORD RESERVATION  

E-Print Network (OSTI)

B. C. , 1978. Report on Hydrofracturing Tests for In SituStress Measurements, Near Surface Test Facility, Hole DC-11,Layout for Hanford Near-Surface Test Facility. Submitted to

DuBois, A.

2010-01-01T23:59:59.000Z

116

Argonne Transportation Technology R&D Center - Battery Test Facility...  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Analysis Computing Center Working With Argonne Contact TTRDC Battery Test Facility Argonne researcher Lee Walker Argonne researcher Lee Walker examines a...

117

Argonne, China sign agreement to develop Zero Power Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne, China sign agreement to develop Zero Power Test Facility Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia...

118

NREL: News - New Wind Turbine Dynamometer Test Facility Dedicated...  

NLE Websites -- All DOE Office Websites (Extended Search)

913 New Wind Turbine Dynamometer Test Facility Dedicated at NREL November 19, 2013 Today, the Energy Department (DOE) and its National Renewable Energy Laboratory (NREL) dedicated...

119

Idaho waste treatment facility startup testing suspended to evaluate system  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

waste treatment facility startup testing suspended to waste treatment facility startup testing suspended to evaluate system response Idaho waste treatment facility startup testing suspended to evaluate system response June 20, 2012 - 12:00pm Addthis Media Contacts Brad Bugger 208-526-0833 Danielle Miller 208-526-5709 IDAHO FALLS, ID- On Saturday, June 16, startup testing was suspended at the Integrated Waste Treatment Unit (IWTU) located at the U.S. Department of Energy's Idaho Site. Testing and plant heat-up was suspended to allow detailed evaluation of a system pressure event observed during testing on Saturday. Facility startup testing has been ongoing for the past month, evaluating system and component operation and response during operating conditions. No radioactive or hazardous waste has been introduced into the facility,

120

Battery test facility hardware, software, and system operation  

SciTech Connect

Division 2525 Battery Test Laboratory is a fully automated battery testing facility used in evaluating various battery technologies. The results of these tests are used to verify developers` claims, characterize prototypes, and assist in identifying the strengths and weaknesses of each technology. The Test Facility consists of a central computer and nine remote computer controlled battery test systems. Data acquired during the battery testing process is sent to the central computer system. The test data is then stored in a large database for future analysis. The central computer system is also used in configuring battery tests. These test configurations are then sent to their appropriate remote battery test sites. The Battery Test Facility can perform a variety of battery tests, which include the following: Life Cycle Testing; Parametric Testing at various temperature levels, cutoff parameters, charge rates, and discharge rates; Constant Power Testing at various power levels; Peak Power Testing at various State-of-Charge levels; Simplified Federal Urban Driving Schedule Tests (SFUDS79). The Battery Test Facility is capable of charging a battery either by constant current, constant voltage, step current levels, or any combination of them. Discharge cycles can be by constant current, constant resistance, constant power, step current levels, or also any combination of them. The Battery Test Facility has been configured to provide the flexibility to evaluate a large variety of battery technologies. These technologies include Lead-Acid, Sodium/Sulfur, Zinc/Bromine, Nickel/Hydrogen, Aluminum/Air, and Nickel/Cadmium batteries.

Rodriguez, G.P.

1991-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Battery test facility hardware, software, and system operation  

SciTech Connect

Division 2525 Battery Test Laboratory is a fully automated battery testing facility used in evaluating various battery technologies. The results of these tests are used to verify developers' claims, characterize prototypes, and assist in identifying the strengths and weaknesses of each technology. The Test Facility consists of a central computer and nine remote computer controlled battery test systems. Data acquired during the battery testing process is sent to the central computer system. The test data is then stored in a large database for future analysis. The central computer system is also used in configuring battery tests. These test configurations are then sent to their appropriate remote battery test sites. The Battery Test Facility can perform a variety of battery tests, which include the following: Life Cycle Testing; Parametric Testing at various temperature levels, cutoff parameters, charge rates, and discharge rates; Constant Power Testing at various power levels; Peak Power Testing at various State-of-Charge levels; Simplified Federal Urban Driving Schedule Tests (SFUDS79). The Battery Test Facility is capable of charging a battery either by constant current, constant voltage, step current levels, or any combination of them. Discharge cycles can be by constant current, constant resistance, constant power, step current levels, or also any combination of them. The Battery Test Facility has been configured to provide the flexibility to evaluate a large variety of battery technologies. These technologies include Lead-Acid, Sodium/Sulfur, Zinc/Bromine, Nickel/Hydrogen, Aluminum/Air, and Nickel/Cadmium batteries.

Rodriguez, G.P.

1991-09-01T23:59:59.000Z

122

High temperature superconducting current lead test facility with heat pipe intercepts  

SciTech Connect

A high temperature superconducting (HTS) current lead test facility using heat pipe thermal intercepts is under development at the Superconducting Technology Center at Los Alamos National Laboratory. The facility can be configured for tests at currents up to 1,000 A. Mechanical cryocoolers provide refrigeration to the leads. Electrical isolation is maintained by intercepting thermal energy from the leads through cryogenic heat pipes. HST lead warm end temperature is variable from 65 K to over 90 K by controlling heat pipe evaporator temperature. Cold end temperature is variable up to 30 K. Performance predictions in terms of heat pipe evaporator temperature as a function of lead current are presented for the initial facility configuration, which supports testing up to 200 A. Measurements are to include temperature and voltage gradient in the conventional and HTS lead sections, temperature and heat transfer rate in the heat pipes. as well as optimum and off-optimum performance of the conventional lead sections.

Blumenfeld, P.E.; Prenger, C.; Roth, E.W.; Stewart, J.A.

1998-12-31T23:59:59.000Z

123

Desiccant contamination research: Report on the desiccant contamination test facility  

DOE Green Energy (OSTI)

The activity in the cooling systems research involves research on high performance dehumidifiers and chillers that can operate efficiently with the variable thermal outputs and delivery temperatures associated with solar collectors. It also includes work on advanced passive cooling techniques. This report describes the work conducted to improve the durability of solid desiccant dehumidifiers by investigating the causes of degradation of desiccant materials from airborne contaminants and thermal cycling. The performance of a dehumidifier strongly depends on the physical properties and durability of the desiccant material. To make durable and reliable dehumidifiers, an understanding is needed of how and to what degree the performance of a dehumidifier is affected by desiccant degradation. This report, an account of work under Cooling Systems Research, documents the efforts to design and fabricate a test facility to investigate desiccant contamination based on industry and academia recommendations. It also discusses the experimental techniques needed for obtaining high-quality data and presents plans for next year. Researchers of the Mechanical and Industrial Technology Division performed this work at the Solar Energy Research Institute in FY 1988 for DOE's Office of Solar Heat Technologies. 7 refs., 19 figs., 1 tab.

Pesaran, A.A.; Bingham, C.E.

1991-07-01T23:59:59.000Z

124

Desiccant contamination research: Report on the desiccant contamination test facility  

SciTech Connect

The activity in the cooling systems research involves research on high performance dehumidifiers and chillers that can operate efficiently with the variable thermal outputs and delivery temperatures associated with solar collectors. It also includes work on advanced passive cooling techniques. This report describes the work conducted to improve the durability of solid desiccant dehumidifiers by investigating the causes of degradation of desiccant materials from airborne contaminants and thermal cycling. The performance of a dehumidifier strongly depends on the physical properties and durability of the desiccant material. To make durable and reliable dehumidifiers, an understanding is needed of how and to what degree the performance of a dehumidifier is affected by desiccant degradation. This report, an account of work under Cooling Systems Research, documents the efforts to design and fabricate a test facility to investigate desiccant contamination based on industry and academia recommendations. It also discusses the experimental techniques needed for obtaining high-quality data and presents plans for next year. Researchers of the Mechanical and Industrial Technology Division performed this work at the Solar Energy Research Institute in FY 1988 for DOE's Office of Solar Heat Technologies. 7 refs., 19 figs., 1 tab.

Pesaran, A.A.; Bingham, C.E.

1991-07-01T23:59:59.000Z

125

REED BESLER BOILER HIGH PRESSURE STEAM SYSTEM AND THERMAL CYCLING FACILITY. Summary Report  

SciTech Connect

A high pressure boiler has been installed at ORNL. This Besler boiler is capabie of producing from 150 to 2000 psi saturated steam at steaming rates up to 5000 lbs/hr. The boiler is part of a water-steam circuit whteh also includes two spray water pumps, a steam pressure control valve, a high pressure trapping station, and a low pressure deaerated feedwater system. The new boiler system is piped and instrumented to serve as a thermal cycling facility. Shakedown test thermal cycles to requirements set forth in HRT Specification 1113a have been conducted using the existing Dump Test Autoclave as a test piece. Fourty-four cycles have been run through mid February, 1958. The boiler has been operated a total of 142 hours. Cycles are run completely automatically. Better than three- fourths of the cycles as run fall within the specification prescribed limits. (auth)

Holz, P.P.

1958-02-12T23:59:59.000Z

126

200 Area treated effluent disposal facility operational test report  

Science Conference Proceedings (OSTI)

This document reports the results of the 200 Area Treated Effluent Disposal Facility (200 Area TEDF) operational testing activities. These completed operational testing activities demonstrated the functional, operational and design requirements of the 200 Area TEDF have been met.

Crane, A.F.

1995-03-01T23:59:59.000Z

127

COST AND SCHEDULE FOR DRILLING AND MINING UNDERGROUND TEST FACILITIES  

E-Print Network (OSTI)

TYPE OF ESTIMATE Cost Estimate for NUMBER CHKD KJW/RL SNTTABLE 4 CLIENT PROJECT Cost Estimate for U/G Test FacilityTABLE 4 PROJECT No. Cost Estimate for DESCRIPTION Test QUANT

Lamb, D.W.

2013-01-01T23:59:59.000Z

128

Thermal Systems Process and Components Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory), Energy Systems Integration Facility (ESIF)  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Process and Systems Process and Components Laboratory may include: * CSP technology developers * Utilities * Certification laboratories * Government agencies * Universities * Other National laboratories Contact Us If you are interested in working with NREL's Thermal Systems Process and Components Laboratory, please contact: ESIF Manager Carolyn Elam Carolyn.Elam@nrel.gov 303-275-4311 Thermal Systems Process and Components Laboratory The focus of the Thermal Systems Process and Components Laboratory at NREL's Energy Systems Integration Facility (ESIF) is to research, develop, test, and evaluate new techniques for thermal energy storage systems that are relevant to utility-scale concentrating solar power plants. The laboratory holds

129

CGI Information Technology Security Evaluation & Test Facility  

Science Conference Proceedings (OSTI)

... [17CMH2/02] Test methods for Physical Security Level 4, in accordance with FIPS 140-2. Cryptographic Modules – Software 1 Testing. ...

2013-08-02T23:59:59.000Z

130

NETL: News Release - Premier Power Plant Test Facility Achieves Milestone,  

NLE Websites -- All DOE Office Websites (Extended Search)

May 8, 2000 May 8, 2000 Premier Power Plant Test Facility Achieves Milestone,Raises Hopes for New Clean Coal Technology The world's premier test facility for future power plants has achieved a major milestone - and in the process, raised prospects for a new class of coal technology that researchers now believe could lead to cleaner, more efficient and lower cost electric power generation. The Power System Development Facility The Power System Development Facility at Wilsonville, Alabama, is the Nation's state-of-the-art test facility for 21st century power generating technologies. The U.S. Department of Energy and Southern Company today jointly announced the first successful test of a new type of technology for turning coal into gas. The gas could then be used in future turbines or fuel cells to

131

Power Systems Development Facility: Test Results 2007  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) established the Power Systems Development Facility (PSDF) to fulfill two major objectives. The first was to develop a gasifier able to process low-rank fuels more efficiently and cost-effectively than currently available designs. This work resulted in the Transport Gasifier for which two commercial projects have been announced. The second objective was to develop high-temperature, high-pressure (HTHP) filtration to facilitate high-temperature syngas cleanup and, thereb...

2007-12-19T23:59:59.000Z

132

Power Systems Development Facility: Test Results 2008  

Science Conference Proceedings (OSTI)

The United States Department of Energy (US DOE) established the Power Systems Development Facility (PSDF) to fulfill two major objectives. The first was to develop a gasifier able to process low-rank fuels more efficiently and cost-effectively than currently available designs. This work resulted in the Transport Gasifier for which two commercial projects have been announced. The second objective was to develop high-temperature, high-pressure (HTHP) filtration to facilitate high-temperature syngas cleanup...

2008-12-23T23:59:59.000Z

133

Advanced Test Reactor National Scientific User Facility Progress  

SciTech Connect

The Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) is one of the world’s premier test reactors for studying the effects of intense neutron radiation on reactor materials and fuels. The ATR began operation in 1967, and has operated continuously since then, averaging approximately 250 operating days per year. The combination of high flux, large test volumes, and multiple experiment configuration options provide unique testing opportunities for nuclear fuels and material researchers. The ATR is a pressurized, light-water moderated and cooled, beryllium-reflected highly-enriched uranium fueled, reactor with a maximum operating power of 250 MWth. The ATR peak thermal flux can reach 1.0 x1015 n/cm2-sec, and the core configuration creates five main reactor power lobes (regions) that can be operated at different powers during the same operating cycle. In addition to these nine flux traps there are 68 irradiation positions in the reactor core reflector tank. The test positions range from 0.5” to 5.0” in diameter and are all 48” in length, the active length of the fuel. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material radiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. Goals of the ATR NSUF are to define the cutting edge of nuclear technology research in high temperature and radiation environments, contribute to improved industry performance of current and future light water reactors, and stimulate cooperative research between user groups conducting basic and applied research. The ATR NSUF has developed partnerships with other universities and national laboratories to enable ATR NSUF researchers to perform research at these other facilities, when the research objectives cannot be met using the INL facilities. The ATR NSUF program includes a robust education program enabling students to participate in their research at INL and the partner facilities, attend the ATR NSUF annual User Week, and compete for prizes at sponsored conferences. Development of additional research capabilities is also a key component of the ATR NSUF Program; researchers are encouraged to propose research projects leading to these enhanced capabilities. Some ATR irradiation experiment projects irradiate more specimens than are tested, resulting in irradiated materials available for post irradiation examination by other researchers. These “extra” specimens comprise the ATR NSUF Sample Library. This presentation will highlight the ATR NSUF Sample Library and the process open to researchers who want to access these materials and how to propose research projects using them. This presentation will provide the current status of all the ATR NSUF Program elements. Many of these were not envisioned in 2007, when DOE established the ATR NSUF.

Frances M. Marshall; Todd R. Allen; James I. Cole; Jeff B. Benson; Mary Catherine Thelen

2012-10-01T23:59:59.000Z

134

Pre-test evaluation of LLTR Series II Test A-6. [Large Leak Test Facility  

SciTech Connect

Purpose of this report is to present pre-test predictions of pressure histories for the A6 test to be conducted in the Large Leak Test Facility (LLTF) at the Energy Technology Engineering Center. A6 is part of a test program being conducted to evaluate the effects of leaks produced by a double-ended guillotine rupture of a single tube. A6 will provide data on the CRBR prototypical double rupture disc performance.

Knittle, D.

1980-11-01T23:59:59.000Z

135

RELAP5 Prediction of Transient Tests in the RD-14 Test Facility  

Science Conference Proceedings (OSTI)

Although the RELAP5 computer code has been developed for best-estimate transient simulation of a pressurized water reactor and its associated systems, it could not assess the thermal-hydraulic behavior of a Canada deuterium uranium (CANDU) reactor adequately. However, some studies have been initiated to explore the applicability for simulating a large-break loss-of-coolant accident in CANDU reactors. In the present study, the small-reactor inlet header break test and the steam generator secondary-side depressurization test conducted in the RD-14 test facility were simulated with the RELAP5/MOD3.2.2 code to examine its extended capability for all the postulated transients and accidents in CANDU reactors. The results were compared with experimental data and those of the CATHENA code performed by Atomic Energy of Canada Limited.In the RELAP5 analyses, the heated sections in the facility were simulated as a multichannel with five pipe models, which have identical flow areas and hydraulic elevations, as well as a single-pipe model.The results of the small-reactor inlet header break and the steam generator secondary-side depressurization simulations predicted experimental data reasonably well. However, some discrepancies in the depressurization of the primary heat transport system after the header break and consequent time delay of the major phenomena were observed in the simulation of the small-reactor inlet header break test.

Lee, Sukho [Korea Institute of Nuclear Safety (Korea, Republic of); Kim, Manwoong [Korea Institute of Nuclear Safety (Korea, Republic of); Kim, Hho-Jung [Korea Institute of Nuclear Safety (Korea, Republic of); Lee, John C. [University of Michigan (United States)

2005-09-15T23:59:59.000Z

136

200 Area treated effluent disposal facility operational test specification  

Science Conference Proceedings (OSTI)

This document identifies the test specification and test requirements for the 200 Area Treated Effluent Disposal Facility (200 Area TEDF) operational testing activities. These operational testing activities, when completed, demonstrate the functional, operational and design requirements of the 200 Area TEDF have been met.

Crane, A.F.

1995-01-12T23:59:59.000Z

137

200 Area treated effluent disposal facility operational test specification  

Science Conference Proceedings (OSTI)

This document identifies the test specification and test requirements for the 200 Area Treated Effluent Disposal Facility (200 Area TEDF) operational testing activities. These operational testing activities, when completed, demonstrate the functional, operational and design requirements of the 200 Area TEDF have been met.

Crane, A.F.

1995-02-02T23:59:59.000Z

138

Sodium Reaction Experimental Test Facility (SRETF) - Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Form Modeling Departments Engineering Analysis Nuclear Systems Analysis Research & Test Reactor Nonproliferation and National Security Detection & Diagnostic Systems...

139

THERMAL PREDICTIONS OF NEW COMPOSITE MATERIAL DURING INPILE TESTING  

Science Conference Proceedings (OSTI)

An inpile experiment is currently underway wherein specimens comprised of a newly developed material are being irradiated at Idaho National Laboratory's Advanced Test Reactor (ATR) in conjunction with Utah State University under the auspices of the ATR National Scientific User Facility. This paper provides the thermophysical properties of this new material measured prior to irradiation. After the irradiation campaign is complete, the thermophysical properties of the specimens will be measured and compared to the preirradiation values. A finite-element model was constructed to predict bounding specimen temperatures during irradiation. Results from the thermal hydraulic modeling, including the steady-state temperatures of the specimens within sealed capsules, are presented. After the irradiation campaign is completed, best-estimate thermal predictions will be performed for the individual specimens using the actual as-run irradiation power levels.

Donna Post Guillen; W. David Swank; Heng Ban; Kurt Harris; Adam Zabriskie

2011-09-01T23:59:59.000Z

140

Irradiated Materials Examination and Testing Facility (IMET) | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Irradiated Materials Examination and Testing Facility Irradiated Materials Examination and Testing Facility May 30, 2013 The Irradiated Material Examination and Testing (IMET) Facility was designed and built as a hot cell facility. It is a two-story block and brick structure with a two-story high bay that houses six heavily shielded cells and an array of sixty shielded storage wells. It includes the Specimen Prep Lab (SPL) with its associated laboratory hood and glove boxes, an Operating Area, where the control and monitoring instruments supporting the in-cell test equipment are staged, a utility corridor, a hot equipment storage area, a tank vault room, office space, a trucking area with access to the high bay, and an outside steel building for storage. The tests and examinations are conducted in six examination "hot" cells

Note: This page contains sample records for the topic "thermal test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

NREL: News Feature - New Test Facility to Improve Wind Turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

Test Facility to Improve Wind Turbines Test Facility to Improve Wind Turbines December 26, 2013 Two men stand in front of the test equipment in the dynamometer facility discussing work being done. Behind them are two large blue machines that make up the dynamometer test apparatus. A white wind turbine nacelle system is attached to these devices to their left. Enlarge image NREL engineer Scott Lambert (left) and Project Manager Mark McDade discuss calibrations being done on the new dynamometer at the 5-MW Dynamometer Test Facility at NREL's National Wind Technology Center (NWTC). Credit: Dennis Schroeder Premature failures of mechanical systems have a significant impact on the cost of wind turbine operations and thus the total cost of wind energy. Recently, the Energy Department's National Renewable Energy Laboratory

142

Test facility for PLT TF coils  

SciTech Connect

Past experience with the model C stellerator and other toroidal field devices indicates that mechanical and electrical tests of a toroidal field coil prior to maximum field operation of the device is prudent and desirable. This paper describes a test program for the PLT-TF coils. The test stand consists of one test coil, two background coils and a steel supporting structure. The three coil configuration produces a 67.5 kG field at the inner conductor (38 kG at the bore center) and simulates a 1/R field distribution in the bore of the test coil. The resolution of the field force system and resultant stresses within the test structure are discussed. A test procedure is described which maximizes the information obtained from a 100,000 pulse program. (auth)

Hearney, J.; File, J.; Dreskin, S.

1975-01-01T23:59:59.000Z

143

Closed Loop Test Facility for hot dirty gas valves  

SciTech Connect

A design study of a closed loop test facility for eight-inch hot dirty gas valves is presented. The objective of the facility is to quality valves for use in coal gasifiers, combined cycle plants, and pressurized fluid bed combustors. Outline sketches and estimated costs are presented for the selected design.

Not Available

1980-02-06T23:59:59.000Z

144

702AZ aging waste ventilation facility year 2000 test procedure  

SciTech Connect

This test procedure was developed to determine if the 702AZ Tank Ventilation Facility system is Year 2000 Compliant. The procedure provides detailed instructions for performing the operations necessary and documenting the results. This verification procedure will document that the 702AZ Facility Systems are year 2000 compliant and will correctly meet the criteria established in this procedure.

Winkelman, W.D.

1998-07-22T23:59:59.000Z

145

LARGO hot water system thermal performance test report  

DOE Green Energy (OSTI)

The thermal performance tests and results on the LARGO Solar Hot Water System under natural environmental conditions are presented. Some objectives of these evaluations are to determine the amount of energy collected, the amount of energy delivered to the household as contributed by solar power supplied to operate the system and auxiliary power to maintain tank temperature at proper level, overall system efficiency and to determine temperature distribution within the tank. The tests and evaluation were performed at the Marshall Space Flight Center solar test facility. The Solar Hot Water system is termed a ''Dump-type'' because of the draining system for freeze protection. The solar collector is a single glazed flat plate. An 82-gallon domestic water heater is provided as the energy storage vessel. Water is circulated through the collector and water heater by a 5.3 GPM capacity pump, and control of the pump motor is achieved by a differential temperature controller.

Not Available

1978-11-01T23:59:59.000Z

146

Furnace characterization for horizontal shipping container thermal testing  

SciTech Connect

In order to perform regulatory thermal tests required by 10 CFR 71.73(c)(3) on the newly designed Horizontal Shipping Container (HSC), it was necessary to find a company involved in the business of heat treating who was willing to allow their furnace to be used for these tests. Of the companies responding to a request for interest, Lindberg Heat Treating Company`s Solon, Ohio, facility was found to be the best available vendor for this activity. Their furnace was instrumented and characterized such that these tests could be performed in a manner that would conform to the specifications contained in 10 CFR 71. It was found that Lindberg`s furnace was usable for this task, and recommendations concerning the use of this furnace for the above stated purpose are made herein.

Feldman, M.R.

1994-05-01T23:59:59.000Z

147

NIST News -- Robot Test Facility 2013  

Science Conference Proceedings (OSTI)

... will use NIST-developed standard test methods for emergency response robots. ... similar to those they would encounter in an emergency or disaster. ...

2013-06-05T23:59:59.000Z

148

NIST Building Facility for Hydrogen Pipeline Testing  

Science Conference Proceedings (OSTI)

... long-term exposure to hydrogen can embrittle existing pipelines, increasing the ... term service tests and apply them to study pipeline materials and ...

2012-10-02T23:59:59.000Z

149

Terahertz- and Millimeter-Wave Test Facility  

chemicals and nuclear materials • Locate and track chemical and radioactive plumes • Perform medical imaging Instruments at Argonne’s Terahertz Test

150

Large-Scale Structures Testing Facility  

Science Conference Proceedings (OSTI)

... a 13.7m-high reaction buttress equipped with a horizontal hydraulic ram. ... Another test series evaluated fracture propagation in steel plates 1 m wide ...

2011-12-22T23:59:59.000Z

151

Property:Testing Facilities Overseen | Open Energy Information  

Open Energy Info (EERE)

Testing Facilities Overseen Testing Facilities Overseen Jump to: navigation, search This is a property of type Page and uses the Testing Facility form Pages using the property "Testing Facilities Overseen" Showing 25 pages using this property. A Alden Research Laboratory, Inc + Alden Tow Tank +, Alden Wave Basin +, Alden Small Flume +, ... B Bucknell University + Bucknell Hydraulic Flume + C Cornell University Hydrodynamics + DeFrees Flume 1 +, DeFrees Flume 2 +, DeFrees Flume 3 +, ... M Massachusetts Institute of Technology Hydrodynamics + MIT Tow Tank + O Ohmsett + Ohmsett Tow Tank + Oregon State University Hydrodynamics + Hinsdale Wave Basin 1 +, Hinsdale Wave Basin 2 + P Pennsylvania State University Hydrodynamics + Penn Reverberant Tank +, Penn Small Water Tunnel +, Penn Large Water Tunnel +

152

DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT, supports a critical component of LANL's primary mission: to ensure the safety, security, and effectiveness of nuclear weapons in our nation's stockpile. Los Alamos scientists built DARHT, the world's most powerful x-ray machine, to analyze mockups of nuclear weapons. At the Los Alamos National Laboratory (LANL), the Dual-Axis Radiographic Hydrodynamic Test Facility, or DARHT, supports a critical component of LANL's primary mission: to ensure the safety, security, and effectiveness of nuclear weapons in our nation's stockpile. Los Alamos scientists built DARHT, the world's most powerful x-ray machine, to analyze mockups of nuclear weapons.

153

Fast Flux Test Facility project plan. Revision 2  

Science Conference Proceedings (OSTI)

The Fast Flux Test Facility (FFTF) Transition Project Plan, Revision 2, provides changes to the major elements and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

Hulvey, R.K.

1995-11-01T23:59:59.000Z

154

NREL: Wind Research - Five Megawatt Dynamometer Test Facility...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy's National Wind Technology Center. We're here today in the new 5 megawatt drive train testing facility that has been developed over the last few years. This terrific new...

155

EIS-0228: Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility  

Energy.gov (U.S. Department of Energy (DOE))

This EIS evaluates the potential environmental impact of a proposal to construct and operate the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory (LANL)...

156

Record of Decision Dual Axis Radiographic Hydrodynamic Test Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8:45 am BILLING CODE 6450-01-P Record of Decision Dual Axis Radiographic Hydrodynamic Test Facility AGENCY: Department of Energy. ACTION: Record of decision. SUMMARY: The...

157

Category:Testing Facility Operators | Open Energy Information  

Open Energy Info (EERE)

Facility Operators Facility Operators Jump to: navigation, search This category contains facilities for research on renewable technologies and uses the form Testing Facility Operator. Pages in category "Testing Facility Operators" The following 26 pages are in this category, out of 26 total. A Alden Research Laboratory, Inc B Bucknell University C Colorado State University Hydrodynamics Cornell University Hydrodynamics M Massachusetts Institute of Technology Hydrodynamics O Ohmsett Oregon State University Hydrodynamics P Pennsylvania State University Hydrodynamics S Sandia National Laboratories Hydrodynamics S cont. Stevens Institute of Technology T Texas A&M (Haynes) Texas A&M (OTRC) U United States Army Corp of Engineers (ERDC) United States Geological Survey, HIF United States Geological Survey, LSC

158

Argonne Transportation - Advanced Powertrain Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Powertrain Test Cell A hybrid electric vehicle (HEV) has both an electric motor and a fuel-using device, such as a small gasoline engine. The two power sources can work together in...

159

Geothermal pump test facility. Final report, July 1977--July 1978  

DOE Green Energy (OSTI)

The design configuration and fabrication description of a transportable geothermal pump test facility are discussed. The test facility, consisting of a test rig and data acquisition system trailer, provides the user with the unique opportunity to develop and calibrate geothermal pumps with less liability and risk, and at lower cost than would be incurred by actually installing the pump in a geothermal well. Pump tests may be performed using either domestic water, heated by pumping energy, or by using actual geothermal brines supplied directly to the test rig which would be located adjacent to the well. The geothermal pump test facility is completely self supporting and requires only an electrical supply source to become fully operational. Information and discussion presented provide substantive background, design and operational capabilities, and pertinent fabrication details.

Blakemore, R.W.

1978-09-01T23:59:59.000Z

160

Fast Flux Test Facility (FFTF) standby plan  

Science Conference Proceedings (OSTI)

The FFTF Standby Plan, Revision 0, provides changes to the major elements and project baselines to maintain the FFTF plant in a standby condition and to continue washing sodium from irradiated reactor fuel. The Plan is consistent with the Memorandum of Decision approved by the Secretary of Energy on January 17, 1997, which directed that FFTF be maintained in a standby condition to permit the Department to make a decision on whether the facility should play a future role in the Department of Energy`s dual track tritium production strategy. This decision would be made in parallel with the intended December 1998 decision on the selection of the primary, long- term source of tritium. This also allows the Department to review the economic and technical feasibility of using the FFTF to produce isotopes for the medical community. Formal direction has been received from DOE-RL and Fluor 2020 Daniel Hanford to implement the FFTF standby decision. The objective of the Plan is maintain the condition of the FFTF systems, equipment and personnel to preserve the option for plant restart within three and one-half years of a decision to restart, while continuing deactivation work which is consistent with the standby mode.

Hulvey, R.K.

1997-03-06T23:59:59.000Z

Note: This page contains sample records for the topic "thermal test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Natural Convection Shutdown Heat Removal Test Facility (NSTF)  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Convection Natural Convection Shutdown Heat Removal Test Facility Scaling Basis Full Scale Half Scale NSTF Argonne National Laboratory's Natural Convection Shutdown Heat Removal Test Facility (NSTF) - one of the world's largest facilities for ex-vessel passive decay heat removal testing-confirms the performance of reactor cavity cooling systems (RCCS) and similar passive confinement or containment decay heat removal systems in modern Small Modular Reactors. Originally built to aid in the development of General Electric's Power Reactor Innovative Small Module (PRISM) Reactor Vessel Auxiliary Cooling System (RVACS), the NSTF has a long history of providing confirmatory data for the airside of the RVACS. Argonne National Laboratory's NSTF is a state-of-the-art, large-scale facility for evaluating performance

162

WIND TURBINE DRIVETRAIN TEST FACILITY DATA ACQUISITION SYSTEM  

DOE Green Energy (OSTI)

The Wind Turbine Drivetrain Test Facility (WTDTF) is a state-of-the-art industrial facility used for testing wind turbine drivetrains and generators. Large power output wind turbines are primarily installed for off-shore wind power generation. The facility includes two test bays: one to accommodate turbine nacelles up to 7.5 MW and one for nacelles up to 15 MW. For each test bay, an independent data acquisition system (DAS) records signals from various sensors required for turbine testing. These signals include resistance temperature devices, current and voltage sensors, bridge/strain gauge transducers, charge amplifiers, and accelerometers. Each WTDTF DAS also interfaces with the drivetrain load applicator control system, electrical grid monitoring system and vibration analysis system.

Mcintosh, J.

2012-01-03T23:59:59.000Z

163

CURRENT TESTING ACTIVITIES AT THE ACRELAB RENEWABLE ENERGY SYSTEMS TEST FACILITY , E S Spooner2  

E-Print Network (OSTI)

undertaken within this facility. Testing of PV systems in the ACRELab facilities has included Solar Home Systems and small PV systems for remote communities in Australia. The results of the development of test performance will also be addressed. Keywords: Qualification and Testing, Reliability, Performance 1

164

Lead Coolant Test Facility Technical and Functional Requirements, Conceptual Design, Cost and Construction Schedule  

Science Conference Proceedings (OSTI)

This report presents preliminary technical and functional requirements (T&FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic. Based on review of current world lead or lead-bismuth test facilities and research need listed in the Generation IV Roadmap, five broad areas of requirements of basis are identified: Develop and Demonstrate Prototype Lead/Lead-Bismuth Liquid Metal Flow Loop Develop and Demonstrate Feasibility of Submerged Heat Exchanger Develop and Demonstrate Open-lattice Flow in Electrically Heated Core Develop and Demonstrate Chemistry Control Demonstrate Safe Operation and Provision for Future Testing. These five broad areas are divided into twenty-one (21) specific requirements ranging from coolant temperature to design lifetime. An overview of project engineering requirements, design requirements, QA and environmental requirements are also presented. The purpose of this T&FRs is to focus the lead fast reactor community domestically on the requirements for the next unique state of the art test facility. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 420oC. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M. It is also estimated that the facility will require two years to be constructed and ready for operation.

Soli T. Khericha

2006-09-01T23:59:59.000Z

165

HEATER TEST PLANNING FOR THE NEAR SURFACE TEST FACILITY AT THE HANFORD RESERVATION  

E-Print Network (OSTI)

Heater Experiment at Hanford. Berkeley, Lawre ;e BerkeleyTest Facility, Hole DC-11, Hanford Reservation. Prepared forof Gable Mountain Basalt Cores, Hanford Nuclear Reservation.

DuBois, A.

2010-01-01T23:59:59.000Z

166

Design and operation of a counter-rotating aspirated compressor blowdown test facility; Counter-rotating aspirated compressor blowdown test facility.  

E-Print Network (OSTI)

??A unique counter-rotating aspirated compressor was tested in a blowdown facility at the Gas Turbine Laboratory at MIT. The facility expanded on experience from previous… (more)

Parker, David V. (David Vickery)

2005-01-01T23:59:59.000Z

167

SLIDESHOW: America's Wind Testing Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SLIDESHOW: America's Wind Testing Facilities SLIDESHOW: America's Wind Testing Facilities SLIDESHOW: America's Wind Testing Facilities July 17, 2012 - 4:51pm Addthis National Wind Technology Center - Colorado 1 of 7 National Wind Technology Center - Colorado The first of 4 towers is lifted as work continues on the 2 MW Gamesa wind turbine being installed at NREL's National Wind Technology Center (NWTC). | Photo by Dennis Schroeder. Date taken: 2011-09-15 13:53 National Wind Technology Center - Colorado 2 of 7 National Wind Technology Center - Colorado Workers use a giant crane for lifting the blade assembly as work continues on the 2 MW Gamesa wind turbine being installed at NREL's National Wind Technology Center (NWTC). | Photo by Dennis Schroeder. Date taken: 2011-09-22 12:06 Wind Technology Testing Center - Boston

168

SLIDESHOW: America's Wind Testing Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

America's Wind Testing Facilities America's Wind Testing Facilities SLIDESHOW: America's Wind Testing Facilities July 17, 2012 - 4:51pm Addthis National Wind Technology Center - Colorado 1 of 7 National Wind Technology Center - Colorado The first of 4 towers is lifted as work continues on the 2 MW Gamesa wind turbine being installed at NREL's National Wind Technology Center (NWTC). | Photo by Dennis Schroeder. Date taken: 2011-09-15 13:53 National Wind Technology Center - Colorado 2 of 7 National Wind Technology Center - Colorado Workers use a giant crane for lifting the blade assembly as work continues on the 2 MW Gamesa wind turbine being installed at NREL's National Wind Technology Center (NWTC). | Photo by Dennis Schroeder. Date taken: 2011-09-22 12:06 Wind Technology Testing Center - Boston

169

Acceptance test procedure: RMW Land Disposal Facility Project W-025  

SciTech Connect

This ATP establishes field testing procedures to demonstrate that the electrical/instrumentation system functions as intended by design for the Radioactive Mixed Waste Land Disposal Facility. Procedures are outlined for the field testing of the following: electrical heat trace system; transducers and meter/controllers; pumps; leachate storage tank; and building power and lighting.

Roscha, V. [Westinghouse Hanford Co., Richland, WA (United States)

1994-12-12T23:59:59.000Z

170

200 area effluent treatment facility opertaional test report  

Science Conference Proceedings (OSTI)

This document reports the results of the 200 Area Effluent Treatment Facility (200 Area ETF) operational testing activities. These Operational testing activities demonstrated that the functional, operational and design requirements of the 200 Area ETF have been met and identified open items which require retesting.

Crane, A.F.

1995-10-26T23:59:59.000Z

171

The Power Systems Development Facility: Test Results 2005  

Science Conference Proceedings (OSTI)

The Transport Gasifier test facility at the Power Systems Development Facility (PSDF) has operated for over 7,750 hours, gasifying bituminous and sub-bituminous coals and lignites using air and oxygen as the oxidant. During this time plant reliability and performance has improved progressively and the high degree of process understanding developed has been used to improve designs for key equipment items, such as coal feeding and ash removal. Using state-of-the-art data analysis and modeling software, the...

2005-12-21T23:59:59.000Z

172

Final Focus Test Facility ATF2 Status  

Science Conference Proceedings (OSTI)

ATF2 is a final-focus test beam line which aims to focus the low emittance beam from the ATF damping ring to a vertical size of about 37 nm and to demonstrate nanometre level beam stability. Several advanced beam diagnostics and feedback tools are used. In December 2008, construction and installation were completed and beam commissioning started, supported by an international team of Asian, European and American scientists. In this paper, the present status and performance of the recently deployed ATF2 systems are briefly described, based on the first experience with beam measurements and tuning during winter, spring and early autumn of 2009. The near and longer term plans are outlined as well. The ATF collaboration has completed the construction of ATF2 and has started its commissioning. Important experience operating the new cavity BPM and BSM instrumentation in real conditions has been gained and first beam measurements have been performed in a magnetic configuration with reduced optical demagnification. Both horizontal and vertical emittances were successfully tuned and measured in the extraction line, with values approaching the design values of 2 nm and 12 pm, respectively. First checks of the first order optics along the beam line and at the IP were also done. Hardware developments for the second ATF2 goal are being pursued in parallel with the present commissioning work for the first goal. The collaboration is also preparing several near and long terms plans for ATF2. In the next few years, information very valuable for any future collider with local chromaticity correction and tuning of very low emittance beams can be expected. In the previous experience at the FFTB, the smallest vertical beam sizes which were achieved were about 70 nanometers. The work described here continues to address this largely unexplored regime in a systematic way.

Bambade, P.; /KEK, Tsukuba /Orsay, LAL; Seryi, A.; /SLAC; Tauchi, T.; /KEK, Tsukuba

2012-04-06T23:59:59.000Z

173

WCI | Cutting-Edge Facilities | Site 300 Experimental Test Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Site 300 Site Access Contained Firing Facility (CFF) Continuously Operating Reference Station (CORS) What is Site 300? Lawrence Livermore National Laboratory's Site 300 is an experimental test site operated by the Lawrence Livermore National Security, LLC, for the Department of Energy's National Nuclear Security Administration. It is situated on 7,000 acres in rural foothills approximately six miles southwest of downtown Tracy and 15 miles southeast of Livermore. Site 300 was established in 1955 as a non-nuclear explosives test facility to support Livermore Laboratory's national security mission. The site gets its name from the early days of Lawrence Livermore, when the main laboratory was called Site 200 and the test facility was Site 300 (Lawrence Berkeley National Laboratory was Site 100). Today, work at Site 300

174

Flexible thermal cycle test equipment for concentrator solar cells  

SciTech Connect

A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.

Hebert, Peter H. (Glendale, CA); Brandt, Randolph J. (Palmdale, CA)

2012-06-19T23:59:59.000Z

175

R and D needs assessment for the Engineering Test Facility  

SciTech Connect

The Engineering Test Facility (ETF), planned to be the next major US magnetic fusion device, has its mission (1) to provide the capability for moving into the engineering phase of fusion development and (2) to provide a test-bed for reactor components in a fusion environment. The design, construction, and operation of the ETF requires an increasing emphasis on certain key research and development (R and D) programs in magnetic fusion in order to provide the necessary facility design base. This report identifies these needs and discusses the apparent inadequacies of the presently planned US program to meet them, commensurate with the ETF schedule.

Not Available

1980-10-01T23:59:59.000Z

176

Concentrating Photovoltaic Module Testing at NREL's Concentrating Solar Radiation Users Facility  

DOE Green Energy (OSTI)

There has been much recent interest in photovoltaic modules designed to operate with concentrated sunlight (>100 suns). Concentrating photovoltaic (CPV) technology offers an exciting new opportunity as a viable alternative to dish Stirling engines. Advantages of CPV include potential for>40% cell efficiency in the long term (25% now), no moving parts, no intervening heat transfer surface, near-ambient temperature operation, no thermal mass, fast response, concentration reduces cost of cells relative to optics, and scalable to a range of sizes. Over the last few years, we have conducted testing of several CPV modules for DOEs Concentrating Solar Power (CSP) program. The testing facilities are located at the Concentrating Solar Radiation Users Facility (CRULF) and consist the 10 kW High-Flux Solar Furnace (HFSF) and a 14m2 Concentrating Technologies, LLC (CTEK) dish. This paper will primarily describe the test capabilities; module test results will be detailed in the presentation.

Bingham, C.; Lewandowski, A.; Stone, K.; Sherif, R.; Ortabasi, U.; Kusek, S.

2003-05-01T23:59:59.000Z

177

Argonne National Laboratory Terahertz- and Millimeter-Wave Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

PROFILE: PROFILE: Argonne Homeland Security Technologies APPLICATIONS A R G O N N E N A T I O N A L L A B O R A T O R Y Terahertz- and Millimeter-Wave Test Facility B E N E F I T S Detect Terrorist-Related Contraband with Terahertz Technology * Spectral "fingerprints" uniquely identify materials * Can identify the factory where explosives and other chemicals were manufactured * Detects minute amounts of chemicals from a distance * Identifies materials in seconds Companies that develop or manufacture instruments to detect terrorist contraband can benefit by using a unique facility at the U.S. Department of Energy's Argonne National Laboratory. Called the Terahertz Test Facility, its sensitive, new instruments - developed at Argonne and available nowhere else in the world - can obtain spectral "fingerprints" that uniquely

178

Thermal Storage Applications for Commercial/Industrial Facilities  

E-Print Network (OSTI)

Texas Utilities Electric Company has been actively encouraging installations of thermal storage since 1981. Financial incentives and advantageous rates can make thermal storage an attractive cooling concept in Texas Utilities Electric Company service area. Currently, 14 million square feet of commercial building space in Dallas is either constructing thermal storage or using it on a day-by-day basis. This presentation will discuss three technologies for thermal storage systems noting the particular advantages of each. Thermal storage technologies are selected by the temperature range of the storage media. This is not a design-oriented presentation, but an overview of what one utility sees taking place in the commercial and industrial refrigeration market place.

Knipp, R. L.

1986-06-01T23:59:59.000Z

179

Cryogenic vertical test facility for the SRF cavities at BNL  

SciTech Connect

A vertical test facility has been constructed to test SRF cavities and can be utilized for other applications. The liquid helium volume for the large vertical dewar is approximate 2.1m tall by 1m diameter with a clearance inner diameter of 0.95m after the inner cold magnetic shield installed. For radiation enclosure, the test dewar is located inside a concrete block structure. The structure is above ground, accessible from the top, and equipped with a retractable concrete roof. A second radiation concrete facility, with ground level access via a labyrinth, is also available for testing smaller cavities in 2 smaller dewars. The cryogenic transfer lines installation between the large vertical test dewar and the cryo plant's sub components is currently near completion. Controls and instrumentations wiring are also nearing completion. The Vertical Test Facility will allow onsite testing of SRF cavities with a maximum overall envelope of 0.9 m diameter and 2.1 m height in the large dewar and smaller SRF cavities and assemblies with a maximum overall envelope of 0.66 m diameter and 1.6 m height.

Than, R.; Liaw, CJ; Porqueddu, R.; Grau, M.; Tuozzolo, J.; Tallerico, T.; McIntyre, G.; Lederle, D.; Ben-Zvi, I.; Burrill, A.; Pate, D.

2011-03-28T23:59:59.000Z

180

Cryogenic controls for Fermilab's SRF cavities and test facility  

Science Conference Proceedings (OSTI)

A new superconducting radio frequency (SRF) cavities test facility is now operational at Fermilab's Meson Detector Building (MDB). The facility is supplied cryogens from the Cryogenic Test Facility (CTF) located in a separate building 500-m away. The design incorporates ambient temperature pumping for super-fluid helium production, as well as three 0.6-kW at 4.5-K refrigerators, five screw compressors, a helium purifier, helium and nitrogen inventory, cryogenic distribution system, and a variety of test cryostats. To control and monitor the vastly distributed cryogenic system, a flexible scheme has been developed. Both commercial and experimental physics tools are used. APACS+{trademark}, a process automation control system from Siemens-Moore, is at the heart of the design. APACS+{trademark} allows engineers to configure an ever evolving test facility while maintaining control over the plant and distribution system. APACS+{trademark} nodes at CTF and MDB are coupled by a fiber optic network. DirectLogic205 PLC's by KOYO{reg_sign} are used as the field level interface to most I/O. The top layer of this system uses EPICS (Experimental Physics and Industrial Control System) as a SCADA/HMI. Utilities for graphical display, control loop setting, real time/historical plotting and alarming have been implemented by using the world-wide library of applications for EPICS. OPC client/server technology is used to bridge across each different platform. This paper presents this design and its successful implementation.

Norris, B.; Bossert, R.; Klebaner, A.; Lackey, S.; Martinez, A.; Pei, L.; Soyars, W.; Sirotenko, V.; /Fermilab

2007-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Advanced Test Reactor National Scientific User Facility Partnerships  

SciTech Connect

In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of Wisconsin-Madison; (8) Illinois Institute of Technology (IIT) Materials Research Collaborative Access Team (MRCAT) beamline at Argonne National Laboratory's Advanced Photon Source; and (9) Nanoindenter in the University of California at Berkeley (UCB) Nuclear Engineering laboratory Materials have been analyzed for ATR NSUF users at the Advanced Photon Source at the MRCAT beam, the NIST Center for Neutron Research in Gaithersburg, MD, the Los Alamos Neutron Science Center, and the SHaRE user facility at Oak Ridge National Laboratory (ORNL). Additionally, ORNL has been accepted as a partner facility to enable ATR NSUF users to access the facilities at the High Flux Isotope Reactor and related facilities.

Frances M. Marshall; Todd R. Allen; Jeff B. Benson; James I. Cole; Mary Catherine Thelen

2012-03-01T23:59:59.000Z

182

Superconducting magnet development capability of the LLNL (Lawrence Livermore National Laboratory) High Field Test Facility  

SciTech Connect

This paper discusses the following topics: High-Field Test Facility Equipment at LLNL; FENIX Magnet Facility; High-Field Test Facility (HFTF) 2-m Solenoid; Cryogenic Mechanical Test Facility; Electro-Mechanical Conductor Test Apparatus; Electro-Mechanical Wire Test Apparatus; FENIX/HFTF Data System and Network Topology; Helium Gas Management System (HGMS); Airco Helium Liquefier/Refrigerator; CTI 2800 Helium Liquefier; and MFTF-B/ITER Magnet Test Facility.

Miller, J.R.; Shen, S.; Summers, L.T.

1990-02-01T23:59:59.000Z

183

RF Test Results from Cryomodule 1 at the Fermilab SRF Beam Test Facility  

E-Print Network (OSTI)

Powered operation of Cryomodule 1 (CM-1) at the Fermilab SRF Beam Test Facility began in late 2010. Since then a series of tests first on the eight individual cavities and then the full cryomodule have been performed. We report on the results of these tests and lessons learned which will have an impact on future module testing at Fermilab.

Harms, E; Chase, B; Cullerton, E; Hocker, A; Jensen, C; Joireman, P; Klebaner, A; Kubicki, T; Kucera, M; Legan, A; Leibfritz, J; Martinez, A; McGee, M; Nagaitsev, S; Nezhevenko, O; Nicklaus, D; Pfeffer, H; Pischalnikov, Y; Prieto, P; Reid, J; Schappert, W; Tupikov, V; Varghese, P; Branlard, J

2012-01-01T23:59:59.000Z

184

Bus Research and Testing Program Heavy-duty Chassis Dynamometer and Emissions Testing Facility  

E-Print Network (OSTI)

Bus Research and Testing Program Heavy-duty Chassis Dynamometer and Emissions Testing Facility, hydrocarbons and carbon dioxide from transit buses and heavy-duty vehicles when they are tested on simulated includes a heavy-duty chassis dynamometer, required for conducting these tests, as well as a heavy

Lee, Dongwon

185

Hydrologic test plan for the Environmental Remediation Disposal Facility  

SciTech Connect

Hydrologic tests are planned at seven wells that will be drilled at the proposed Environmental Remediation Disposal Facility (ERDF). These wells are supporting hydrologic, geologic, and hydrochemical characterization at this new facility. Hydrologic testing will consist of instantaneous slug tests, slug interference tests, step-drawdown tests, and constant rate discharge tests (generally single-well). These test results and later groundwater monitoring data will be used to determine groundwater flow directions, flow rates, and the chemical makeup of the groundwater below the proposed ERDF. The seven wells will be drilled in two phases. In Phase I four wells will be drilled and tested: Two to the top of the uppermost aquifer (water table) and two as characterization boreholes to the top of basalt. The Phase I wells are located in the northern portion of the proposed ERDF site (699-32-72, 699-SDF-6, -7 and -8) (Figure 1). If Phase II drilling proceeds, the remaining three wells will be installed and tested (two deep and one shallow). A phased approach to drilling is warranted because of current uncertainty in the land use requirements at the proposed ERDF.

Swanson, L.C.

1993-09-30T23:59:59.000Z

186

East Mesa geothermal pump test facility (EMPTF). Final report  

DOE Green Energy (OSTI)

The design, fabrication and installation of a geothermal pump test facility (EMPFT) at the DOE geothermal site at East Mesa, California which is capable of testing 70 to 750 horsepower downwell pumps in a controlled geothermal environment were completed. The facility consists of a skid-mounted brine control module, a 160 foot below test well section, a hydraulic turbine for power recovery, a gantry-mounted hoist for pump handling and a 3-phase, 480 VAC, 1200 amp power supply to handle pump electric requirements. Geothermal brine is supplied to the EMPTF from one of the facility wells at East Mesa. The EMPTF is designed with a great amount of flexibility. The 20-inch diameter test well can accommodate a wide variety of pumps. The controls are interactive and can be adjusted to obtain a full complement of pump operation data, or set to maintain constant conditions to allow long-term testing with a minimum of operator support. The hydraulic turbine allows the EMPTF user to recover approximately 46% of the input pump power to help defray the operating cost of the unit. The hoist is provided for material handling and pump servicing and reduces the equipment that the user must supply for pump installation, inspection and removal.

Olander, R.G.; Roberts, G.K.

1984-11-28T23:59:59.000Z

187

East Mesa geothermal pump test facility (EMPTF). Final report  

DOE Green Energy (OSTI)

Barber-Nichols has completed the design, fabrication and installation of a geothermal pump test facility at the DOE geothermal site at East Mesa, California which is capable of testing 70 to 750 horsepower downwell pumps in a controlled geothermal environment. The facility consists of a skid-mounted brine control module, a 160 foot below ground test well section, a hydraulic turbine for power recovery, a gantry-mounted hoist for pump handling and a 3-phase, 480 VAC, 1200 amp power supply to handle pump electric requirements. Geothermal brine is supplied to the EMPTF from one of the facility wells at East Mesa. The EMPTF is designed with a great amount of flexibility to attract the largest number of potential users. The 20-inch diameter test well can accommodate a wide variety of pumps. The controls are interactive and can be adjusted to obtain a full complement of pump operation data, or set to maintain constant conditions to allow long-term testing with a minimum of operator support. The hydraulic turbine allows the EMPTF user to recover approximately 46% of the input pump power to help defray the operating cost of the unit. The hoist is provided for material handling and pump servicing and reduces the equipment that the user must supply for pump installation, inspection and removal.

Olander, R.G.; Roberts, G.K.

1984-11-28T23:59:59.000Z

188

Fast Flux Test Facility Asbestos Location Tracking Program  

SciTech Connect

Procedure Number HNF-PRO-408, revision 0, paragraph 1.0, ''Purpose,'' and paragraph 2.0, ''Requirements for Facility Management of Asbestos,'' relate building inspection and requirements for documentation of existing asbestos-containing building material (ACBM) per each building assessment. This documentation shall be available to all personnel (including contractor personnel) entering the facility at their request. Corrective action was required by 400 Area Integrated Annual Appraisal/Audit for Fiscal Year 1992 (IAA-92-0007) to provide this notification documentation. No formal method had been developed to communicate the location and nature of ACBM to maintenance personnel in the Fast Flux Test Facility (FFTF) 400 Area. The scope of this Data Package Document is to locate and evaluate any ACBM found at FFTF which constitutes a baseline. This includes all buildings within the protected area. These findings are compiled from earlier reports, numerous work packages and engineering evaluations of employee findings.

REYNOLDS, J.A.

1999-04-13T23:59:59.000Z

189

Vibrational Stability of SRF Accelerator Test Facility at Fermilab  

Science Conference Proceedings (OSTI)

Recently developed, the Superconducting Radio Frequency (SRF) Accelerator Test Facilities at Fermilab support the International Linear Collider (ILC), High Intensity Neutrino Source (HINS), a new high intensity injector (Project X) and other future machines. These facilities; Meson Detector Building (MDB) and New Muon Lab (NML) have very different foundations, structures, relative elevations with respect to grade level and surrounding soil composition. Also, there are differences in the operating equipment and their proximity to the primary machine. All the future machines have stringent operational stability requirements. The present study examines both near-field and ambient vibration in order to develop an understanding of the potential contribution of near-field sources (e.g. compressors, ultra-high and standard vacuum equipment, klystrons, modulators, utility fans and pumps) and distant noise sources to the overall system displacements. Facility vibration measurement results and methods of possible isolation from noise sources are presented and discussed.

McGee, M.W.; Volk, J.T.; /Fermilab

2009-05-01T23:59:59.000Z

190

Liquefied Gaseous Fuels Spill Test Facility: Overview of STF capabilities  

SciTech Connect

The Liquefied Gaseous Fuels Spill Test Facility (STF) constructed at the Department of Energy`s Nevada Test Site is a basic research tool for studying the dynamics of accidental releases of various hazardous liquids. This Facility is designed to (1) discharge, at a controlled rate, a measured volume of hazardous test liquid on a prepared surface of a dry lake bed (Frenchman Lake); (2) monitor and record process operating data, close-in and downwind meteorological data, and downwind gaseous concentration levels; and (3) provide a means to control and monitor these functions from a remote location. The STF will accommodate large and small-scale testing of hazardous test fluid release rates up to 28,000 gallons per minute. Spill volumes up to 52,800 gallons are achievable. Generic categories of fluids that can be tested are cryogenics, isothermals, aerosol-forming materials, and chemically reactive. The phenomena that can be studied include source definition, dispersion, and pool fire/vapor burning. Other capabilities available at the STF include large-scale wind tunnel testing, a small test cell for exposing personnel protective clothing, and an area for developing mitigation techniques.

Gray, H.E.

1993-09-01T23:59:59.000Z

191

Single-Unit Unintentional Islanding Test Results at the DUIT Test Facility  

Science Conference Proceedings (OSTI)

This report describes the results of single-unit unintentional islanding tests performed at the DUIT Test Facility. These tests are the first tests to be performed in a comprehensive suite of tests to evaluate the impacts of distributed resources in a realistic test environment. The work described in this report has been sponsored by the California Energy Commission (CEC), and by the National Renewable Energy Laboratory (NREL) through the U.S. Department of Energy.

2004-10-21T23:59:59.000Z

192

The Advanced Test Reactor National Scientific User Facility  

Science Conference Proceedings (OSTI)

In 2007, the Advanced Test Reactor (ATR), located at Idaho National Laboratory (INL), was designated by the Department of Energy (DOE) as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by approved researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide those researchers with the best ideas access to the most advanced test capability, regardless of the proposer’s physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, obtained access to additional PIE equipment, taken steps to enable the most advanced post-irradiation analysis possible, and initiated an educational program and digital learning library to help potential users better understand the critical issues in reactor technology and how a test reactor facility could be used to address this critical research. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program invited universities to nominate their capability to become part of a broader user facility. Any university is eligible to self-nominate. Any nomination is then peer reviewed to ensure that the addition of the university facilities adds useful capability to the NSUF. Once added to the NSUF team, the university capability is then integral to the NSUF operations and is available to all users via the proposal process. So far, six universities have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these university capabilities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user’s technical needs. The current NSUF partners are shown in Figure 1. This article describes the ATR as well as the expanded capabilities, partnerships, and services that allow researchers to take full advantage of this national resource.

Todd R. Allen; Collin J. Knight; Jeff B. Benson; Frances M. Marshall; Mitchell K. Meyer; Mary Catherine Thelen

2011-08-01T23:59:59.000Z

193

ERDA Geothermal Component Test Facility (GCTF), East Mesa, Imperial Valley, California. Test operations management plan  

DOE Green Energy (OSTI)

Discussion of the operation of the Geothermal Component Test Facility (GCTF), established for testing heat extraction and energy conversion equipment and materials, is presented under the following section headings: purposes of the facility; operating policies: service, conflicts, safety and environmental, investigator activities, shops and equipment, and test certification; organization: chart; Lawrence Berkely Laboratory: organization, responsibilities, individual responsibilities, and funding; Bureau of Reclamation: organization, responsibilities, and funding; operations contractor: contract, qualifications, and personnel; Test Operations Advisory Board; experiment processing: test acceptance, scheduling and priorities, cost reimbursement, and activities flow chart.

Not Available

1976-01-01T23:59:59.000Z

194

Thermal Storage Materials Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory), Energy Systems Integration Facility (ESIF)  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Materials Storage Materials Laboratory may include: * CSP technology developers * Utilities * Certification laboratories * Government agencies * Universities * Other National laboratories Contact Us If you are interested in working with NREL's Thermal Storage Materials Laboratory, please contact: ESIF Manager Carolyn Elam Carolyn.Elam@nrel.gov 303-275-4311 Thermal Storage Materials Laboratory The Thermal Storage Materials Laboratory at NREL's Energy Systems Integration Facility (ESIF) investigates materials that can be used as high-temperature heat transfer fluids or thermal energy storage media in concentrating solar power (CSP) plants. Research objectives include the discovery and evaluation of

195

HALLAM NUCLEAR POWER FACILITY PREOPERATIONAL TEST COMPLETION REPORT, HOT SODIUM CIRCULATION TEST  

SciTech Connect

Tests were conducted to verify the adequacy of the design, construction, and components of the main heat transfer system of the Hallam Nuclear Power Facility (HNPF) for elevated-temperature and low-power operation. Tests revealed piping interferences, inoperative hangars, and valve difficulties. These discrepancies were rectified and rechecked. Detailed information concerning test results is included. (J.R.D.)

Shaw, P.F.; Johnson, L.L.

1962-07-01T23:59:59.000Z

196

Status of Centralized Environmental Creep Testing Facility Preparation and Upgrade  

SciTech Connect

Because the ASME Codes do not cover environmental issues that are crucial in the design and construction of VHTR system, investigation of long-term impure helium effects on metallurgical stability and properties becomes very important. The present report describes the development of centralized environmental creep testing facility, its close collaborations with the experiments in low velocity helium recirculation loop, important lessons learned, upgrades in system design in FY06, and current status of the development.

Ren, Weiju [ORNL; Battiste, Rick [ORNL

2006-10-01T23:59:59.000Z

197

Assembly and installation of the large coil test facility test stand  

SciTech Connect

The Large Coil Test Facility (LCTF) was built to test six tokamak-type superconducting coils, with three to be designed and built by US industrial teams and three provided by Japan, Switzerland, and Euratom under an international agreement. The facility is designed to test these coils in an environment which simulates that of a tokamak. The heart of this facility is the test stand, which is made up of four major assemblies: the Gravity Base Assembly, the Bucking Post Assembly, the Torque Ring Assembly, and the Pulse Coil Assembly. This paper provides a detailed review of the assembly and installation of the test stand components and the handling and installation of the first coil into the test stand.

Queen, C.C. Jr.

1983-01-01T23:59:59.000Z

198

LARGE SCALE PERMEABILITY TEST OF THE GRANITE IN THE STRIPA MINE AND THERMAL CONDUCTIVITY TEST  

E-Print Network (OSTI)

No.2 LARGE SCALE PERMEABILITY TEST OF THE GRANITE' IN THEMINE AND, THERMAL CONDUCTIVITY TEST Lars Lundstrom and HakanSUMMARY REPORT Background TEST SITE Layout of test places

Lundstrom, L.

2011-01-01T23:59:59.000Z

199

Design and operation of an outdoor microalgae test facility  

DOE Green Energy (OSTI)

The objective of the project covered in this report is to establish and operate a facility in the American Southwest to test the concept of producing microalgae on a large scale. This microalgae would then be used as a feedstock for producing liquid fuels. The site chosen for this project was an existing water research station in Roswell, New Mexico; the climate and water resources are representative of those in the Southwest. For this project, researchers tested specific designs, modes of operation, and strains of microalgae; proposed and evaluated modifications to technological concepts; and assessed the progress toward meeting cost objectives.

Weissman, J.C.; Tillett, D.M.; Goebel, R.P. (Microbial Products, Inc., Vacaville, CA (USA))

1989-10-01T23:59:59.000Z

200

Integrated Disposal Facility FY2011 Glass Testing Summary Report  

SciTech Connect

Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 x 10{sup 5} m{sup 3} of glass (Certa and Wells 2010). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 8.9 x 10{sup 14} Bq total activity) of long-lived radionuclides, principally {sup 99}Tc (t{sub 1/2} = 2.1 x 10{sup 5}), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2011 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses.

Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Westsik, Joseph H.

2011-09-29T23:59:59.000Z

Note: This page contains sample records for the topic "thermal test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Computer code input for thermal hydraulic analysis of Multi-Function Waste Tank Facility Title II design  

Science Conference Proceedings (OSTI)

The input files to the P/Thermal computer code are documented for the thermal hydraulic analysis of the Multi-Function Waste Tank Facility Title II design analysis.

Cramer, E.R.

1994-10-01T23:59:59.000Z

202

Vibrational measurement for commissioning SRF Accelerator Test Facility at Fermilab  

Science Conference Proceedings (OSTI)

The commissioning of two cryomodule components is underway at Fermilab's Superconducting Radio Frequency (SRF) Accelerator Test Facility. The research at this facility supports the next generation high intensity linear accelerators such as the International Linear Collider (ILC), a new high intensity injector (Project X) and other future machines. These components, Cryomodule No.1 (CM1) and Capture Cavity II (CC2), which contain 1.3 GHz cavities are connected in series in the beamline and through cryogenic plumbing. Studies regarding characterization of ground motion, technical and cultural noise continue. Mechanical transfer functions between the foundation and critical beamline components have been measured and overall system displacement characterized. Baseline motion measurements given initial operation of cryogenic, vacuum systems and other utilities are considered.

McGee, M.W.; Leibfritz, J.; Martinez, A.; Pischalnikov, Y.; Schappert, W.; /Fermilab

2011-03-01T23:59:59.000Z

203

Pyroprocessing of Fast Flux Test Facility Nuclear Fuel  

SciTech Connect

Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primary fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electrorefined uranium products exceeded 99%.

B.R. Westphal; G.L. Fredrickson; G.G. Galbreth; D. Vaden; M.D. Elliott; J.C. Price; E.M. Honeyfield; M.N. Patterson; L. A. Wurth

2013-10-01T23:59:59.000Z

204

Environmental Assessment for the LGF Spill Test Facility at Frenchman Flat, Nevada Test Site  

Science Conference Proceedings (OSTI)

The LGF Spill Test Facility at Frenchman Flat, Nevada Test Site, is being constructed by the United States Department of Energy (DOE). In this Environmental Assessment, environmental consequences of spilling hazardous materials in the Frenchman Flat basin are evaluated and mitigations and recommendations are stated in order to protect natural resources and reduce land-use impacts. Guidelines and restrictions concerning spill-test procedures will be determined by the LGF Test Facility Operations Manager and DOE based on toxicity documentation for the test material, provided by the user, and mitigations imposed by the Environmental Assessment. In addition to Spill Test Facility operational procedures, certain assumptions have been made in preparation of this document: no materials will be considered for testing that have cumulative, long-term persistence in the environment; spill tests will consist of releases of 15 min or less; and sufficient time will be allowed between tests for recovery of natural resources. Geographic limits to downwind concentrations of spill materials were primarily determined from meteorological data, human occupational exposure standards to hazardous materials and previous spill tests. These limits were established using maximum spill scenarios and environmental impacts are discussed as worst case scenarios; however, spill-test series will begin with smaller spills, gradually increasing in size after the impacts of the initial tests have been evaluated.

Patton, S.E.; Novo, M.G.; Shinn, J.H.

1986-04-01T23:59:59.000Z

205

NREL Develops Test Facility and Test Protocols for Hydrogen Sensor Performance (Fact Sheet), Hydrogen and Fuel Cell Technical Highlights (HFCTH)  

NLE Websites -- All DOE Office Websites (Extended Search)

8 * November 2010 8 * November 2010 The NREL hydrogen safety sensor test facility (Robert Burgess/NREL) PIX 18240 NREL Develops Test Facility and Test Protocols for Hydrogen Sensor Performance Team: Safety Codes & Standards Group, Hydrogen Technologies & Systems Center Accomplishment: The NREL Hydrogen Sensor Test Facility was recently commissioned for the quantitative assessment of hydrogen safety sensors (first reported in April 2010). Testing of sensors has started and is ongoing. Test Apparatus: The Test Facility was designed to test hydrogen sensors under precisely controlled conditions. The apparatus can simultaneously test multiple sensors and can handle all common electronic interfaces, including voltage, current, resistance,

206

Radiological design criteria for fusion power test facilities  

Science Conference Proceedings (OSTI)

The quest for fusion power and understanding of plasma physics has resulted in planning, design, and construction of several major fusion power test facilities, based largely on magnetic and inertial confinement concepts. We have considered radiological design aspects of the Joint European Torus (JET), Livermore Mirror and Inertial Fusion projects, and Princeton Tokamak. Our analyses on radiological design criteria cover acceptable exposure levels at the site boundary, man-rem doses for plant personnel and population at large, based upon experience gained for the fission reactors, and on considerations of cost-benefit analyses.

Singh, M.S.; Campbell, G.W.

1982-02-12T23:59:59.000Z

207

IN-PILE GAS-COOLED FUEL ELEMENT TEST FACILITY  

SciTech Connect

Paper presented at American Nuclear Society Meeting, June I8-21, 1962, Boston, Mass. Design and operating problems of unclad and ceramic gas-cooled reactor fuels in high temperature circulating gas systems will be studied using a test facility now nearing completion at the Oak Ridge Research Reactor. A shielded air-tight cell houses a closed circuit gas system equipped for dealing with fission products circulating in the gas. Experiments can be conducted on fuel element performance and stability, fission product deposition, gas clean up, activity levels, component and system performance and shielding, and decontamination and maintenance of system hardware. (auth)

Zasler, J.; Huntley, W.R.; Gnadt, P.A.; Kress, T.S.

1962-07-10T23:59:59.000Z

208

HiR Thermal Testing Results  

NLE Websites -- All DOE Office Websites (Extended Search)

1 (specimen 22 data from Test 19) position specimen specimen description (test conditions: cold side -18C, warm side 21C) date + time 100 mm from head TC center of glass TC...

209

Hot Gas Cleanup Test Facility for gasification and pressurized combustion. Quarterly report, October--December 1994  

Science Conference Proceedings (OSTI)

The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. The major emphasis during this reporting period was continuing the detailed design of the facility and integrating the particulate control devices (PCDs) into structural and process designs. Substantial progress in underground construction activities was achieved during the quarter. Delivery and construction of coal handling and process structural steel began during the quarter. Delivery and construction of coal handling and process structural steel began during the quarter. MWK equipment at the grade level and the first tier are being set in the structure.

NONE

1995-02-01T23:59:59.000Z

210

Preserving physics knowledge at the fast flux test facility  

SciTech Connect

One of the goals of the Dept. of Energy's Office of Nuclear Energy, initiated under the Fuel Cycle Research and Development Program (FCRD) and continued under the Advanced Reactor Concepts Program (ARC) is to preserve the knowledge that has been gained in the United States on Liquid Metal Reactors (LMRs) that could support the development of an environmentally and economically sound nuclear fuel cycle. The Fast Flux Test Facility (FFTF) is the most recent LMR to operate in the United States, from 1982 to 1992, and was designed as a fully instrumented test reactor with on-line, real time test control and performance monitoring of components and tests installed in the reactor. The 10 years of operation of the FFTF provided a very useful framework for testing the advances in LMR safety technology based on passive safety features that may be of increased importance to new designs after the events at Fukushima. Knowledge preservation at the FFTF is focused on the areas of design, construction, and startup of the reactor, as well as on preserving information obtained from 10 years of successful operating history and extensive irradiation testing of fuels and materials. In order to ensure protection of information at risk, the program to date has sequestered reports, files, tapes, and drawings to allow for secure retrieval. A disciplined and orderly approach has been developed to respond to client's requests for documents and data in order to minimize the search effort and ensure that future requests for this information can be readily accommodated. (authors)

Wootan, D.; Omberg, R. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352 (United States); Makenas, B. J. [Ares Corporation, M/S A3-06, 825 Jadwin Avenue, Richland, WA 99352 (United States); Nielsen, D. L.; Nelson, J. V. [Indian Eyes, LLC, 2815 Saint Andrews Loop, Pasco, WA 99301 (United States); Polzin, D. L. [CH2MHill Plateau Remediation Company, M/S S2-42, P.O. Box 1600, Richland, WA 99352 (United States)

2012-07-01T23:59:59.000Z

211

THE INTEGRATED EQUIPMENT TEST FACILITY AT OAK RIDGE AS A NONPROLIFERATION TEST LOOP  

Science Conference Proceedings (OSTI)

The apparent renaissance in nuclear power has resulted in a new focus on nonproliferation measures. There is a lot of activity in development of new measurement technologies and methodologies for nonproliferation assessment. A need that is evolving in the United States is for facilities and test loops for demonstration of new technologies. In the late 1970s, the Fuel Recycle Division at Oak Ridge National Laboratory (ORNL) was engaged in advanced reprocessing technology development. As part of the program, the Integrated Equipment Test (IET) facility was constructed as a test bed for advanced technology. The IET was a full-scale demonstration facility, operable on depleted uranium, with a throughput capacity for 0.5 Mt/d. At the front end, the facility had a feed surge vessel, input accountability tank, and feed vessel for the single cycle of solvent extraction. The basic solvent extraction system was configured to use centrifugal contactors for extraction and scrub and a full-size pulsed column for strip. A surge tank received the solvent extraction product solution and fed a continuous operating thermo-syphon-type product evaporator. Product receiving and accountability vessels were available. Feed material could be prepared using a continuous rotary dissolve or by recycling the product with adjustment as new feed. Continuous operations 24/7 could be realized with full chemical recovery and solvent recycle systems in operation. The facility was fully instrumented for process control and operation, and a full solution monitoring application had been implemented for safeguards demonstrations, including actual diversion tests for sensitivity evaluation. A significant effort for online instrument development was a part of the program at the time. The fuel recycle program at Oak Ridge ended in the early 1990s, and the IET facility was mothballed. However, the equipment and systems remain and could be returned to service to support nonproliferation demonstrations. This paper discusses the status of the facility and operations.

Ehinger, Michael H [ORNL

2010-01-01T23:59:59.000Z

212

Safety analysis of the 700-horsepower combustion test facility  

SciTech Connect

The objective of the program reported herein was to provide a Safety Analysis of the 700 h.p. Combustion Test Facility located in Building 93 at the Pittsburgh Energy Technology Center. Extensive safety related measures have been incorporated into the design, construction, and operation of the Combustion Test Facility. These include: nitrogen addition to the coal storage bin, slurry hopper, roller mill and pulverizer baghouse, use of low oxygen content combustion gas for coal conveying, an oxygen analyzer for the combustion gas, insulation on hot surfaces, proper classification of electrical equipment, process monitoring instrumentation and a planned remote television monitoring system. Analysis of the system considering these factors has resulted in the determination of overall probabilities of occurrence of hazards as shown in Table I. Implementation of the recommendations in this report will reduce these probabilities as indicated. The identified hazards include coal dust ignition by hot ductwork and equipment, loss of inerting within the coal conveying system leading to a coal dust fire, and ignition of hydrocarbon vapors or spilled oil, or slurry. The possibility of self-heating of coal was investigated. Implementation of the recommendations in this report will reduce the ignition probability to no more than 1 x 10/sup -6/ per event. In addition to fire and explosion hazards, there are potential exposures to materials which have been identified as hazardous to personal health, such as carbon monoxide, coal dust, hydrocarbon vapors, and oxygen deficient atmosphere, but past monitoring experience has not revealed any problem areas. The major environmental hazard is an oil spill. The facility has a comprehensive spill control plan.

Berkey, B.D.

1981-05-01T23:59:59.000Z

213

Fusion Nuclear Science Facility (FNSF) before Upgrade to Component Test Facility (CTF)  

SciTech Connect

The compact (R0~1.2-1.3m) Fusion Nuclear Science Facility (FNSF) is aimed at providing a fully integrated, continuously driven fusion nuclear environment of copious fusion neutrons. This facility would be used to test, discover, understand, and innovate scientific and technical solutions for the challenges facing DEMO, by addressing the multi-scale synergistic interactions involving fusion plasma material interactions, tritium fuel cycle, power extraction, and the nuclear effects on materials. Such a facility properly designed would provide, initially at the JET-level plasma pressure (~30%T2) and conditions (e.g., Hot-Ion H-Mode), an outboard fusion neutron flux of 0.25 MW/m2 while requiring a fusion power of 19 MW. If and when this research operation is successful, its performance can be extended to 1 MW/m2 and 76 MW by reaching for twice the JET plasma pressure and Q. High-safety factor q and moderate- plasmas would minimize plasma-induced disruptions, helping to deliver reliably a neutron fluence of 1 MW-yr/m2 and a duty factor of 10% presently anticipated for the FNS research. Success of this research will depend on achieving time-efficient installation and replacement of all components using extensive remote handling (RH). This in turn requires modular designs for all internal components, including the single-turn toroidal field coil center-post with RH-compatible bi-directional sliding joints. Such device goals would further dictate placement of support structures and vacuum seal welds behind the internal and shielding components. If these further goals could be achieved, the FNSF would provide a ready upgrade path to the Component Test Facility (CTF), which would aim to test, at higher neutron fluence and duty cycle, the demanding fusion nuclear engineering and technologies for DEMO. This FNSF-CTF strategy would be complementary to the ITER and the Broader Approach programs, and thereby help mitigate the risks of an aggressive world fusion DEMO R&D Program. The key physics and technology research needed in the next decade to manage the potential risks of this FNSF are identified.

Peng, Yueng Kay Martin [ORNL

2010-01-01T23:59:59.000Z

214

Thermal testing of packages for transport of radioactive wastes  

SciTech Connect

Shipping containers for radioactive materials must be shown capable of surviving tests specified by regulations such as Title 10, Code of Federal Regulations, Part 71 (called 10CFR71 in this paper) within the United States. Equivalent regulations hold for other countries such as Safety Series 6 issued by the International Atomic Energy Agency. The containers must be shown to be capable of surviving, in order, drop tests, puncture tests, and thermal tests. Immersion testing in water is also required, but must be demonstrated for undamaged packages. The thermal test is intended to simulate a 30 minute exposure to a fully engulfing pool fire that could occur if a transport accident involved the spill of large quantities of hydrocarbon fuels. Various qualification methods ranging from pure analysis to actual pool fire tests have been used to prove regulatory compliance. The purpose of this paper is to consider the alternatives for thermal testing, point out the strengths and weaknesses of each approach, and to provide the designer with the information necessary to make informed decisions on the proper test program for the particular shipping container under consideration. While thermal analysis is an alternative to physical testing, actual testing is often emphasized by regulators, and this report concentrates on these testing alternatives.

Koski, J.A.

1994-12-31T23:59:59.000Z

215

Experimental test facility for evaluation of solar control strategies  

DOE Green Energy (OSTI)

An experimental solar heating and cooling system has been constructed at LBL. It was designed to serve as a test system to check out the operation of an LBL-developed solar controller that looked promising in terms of its commercialization potential. Improvements were made in the experimental heating and cooling system to enable quantitative determination of the auxiliary energy savings made possible by using this type of controller. These improvements consisted of installation and calibration of accurate instrumentation, data acquisition capabilities, and development of simulated input and output devices that would allow repeated experiments using the same running conditions. In addition, the possibilities of further development of the heating and cooling system into an experimental test facility for a wide range of solar control strategies have been investigated.

Majteles, M.; Lee, H.; Wahlig, M.; Warren, M.

1978-08-15T23:59:59.000Z

216

PEROXIDE DESTRUCTION TESTING FOR THE 200 AREA EFFLUENT TREATMENT FACILITY  

Science Conference Proceedings (OSTI)

The hydrogen peroxide decomposer columns at the 200 Area Effluent Treatment Facility (ETF) have been taken out of service due to ongoing problems with particulate fines and poor destruction performance from the granular activated carbon (GAC) used in the columns. An alternative search was initiated and led to bench scale testing and then pilot scale testing. Based on the bench scale testing three manganese dioxide based catalysts were evaluated in the peroxide destruction pilot column installed at the 300 Area Treated Effluent Disposal Facility. The ten inch diameter, nine foot tall, clear polyvinyl chloride (PVC) column allowed for the same six foot catalyst bed depth as is in the existing ETF system. The flow rate to the column was controlled to evaluate the performance at the same superficial velocity (gpm/ft{sup 2}) as the full scale design flow and normal process flow. Each catalyst was evaluated on peroxide destruction performance and particulate fines capacity and carryover. Peroxide destruction was measured by hydrogen peroxide concentration analysis of samples taken before and after the column. The presence of fines in the column headspace and the discharge from carryover was generally assessed by visual observation. All three catalysts met the peroxide destruction criteria by achieving hydrogen peroxide discharge concentrations of less than 0.5 mg/L at the design flow with inlet peroxide concentrations greater than 100 mg/L. The Sud-Chemie T-2525 catalyst was markedly better in the minimization of fines and particle carryover. It is anticipated the T-2525 can be installed as a direct replacement for the GAC in the peroxide decomposer columns. Based on the results of the peroxide method development work the recommendation is to purchase the T-2525 catalyst and initially load one of the ETF decomposer columns for full scale testing.

HALGREN DL

2010-03-12T23:59:59.000Z

217

The OSU Hydro-Mechanical Fuel Test Facility: Standard Fuel Element Testing  

Science Conference Proceedings (OSTI)

Oregon State University (OSU) and the Idaho National Laboratory (INL) are currently collaborating on a test program which entails hydro-mechanical testing of a generic plate type fuel element, or standard fuel element (SFE), for the purpose of qualitatively demonstrating mechanical integrity of uranium-molybdenum monolithic plates as compared to that of uranium aluminum dispersion, and aluminum fuel plates due to hydraulic forces. This test program supports ongoing work conducted for/by the fuel development program and will take place at OSU in the Hydro-Mechanical Fuel Test Facility (HMFTF). Discussion of a preliminary test matrix, SFE design, measurement and instrumentation techniques, and facility description are detailed in this paper.

Wade R. Marcum; Brian G. Woods; Ann Marie Phillips; Richard G. Ambrosek; James D. Wiest; Daniel M. Wachs

2001-10-01T23:59:59.000Z

218

Facility design for cyclic testing of advanced solid desiccant dehumidifiers  

DOE Green Energy (OSTI)

The development of high performance components is required to reach the goal of desiccant cooling system cost-competitiveness with conventional vapor compensation air conditioning systems. SERI has designed a laminar flow, parallel passage dehumidifier that has this potential. The goal of SERI's desiccant cooling research program is to fully characterize experimentally the performance of the parallel passage dehumidifier under a wide range of operating conditions, investigate improvements in design, and verify existing models of dehumidifier performance against experimental results. This report documents the design of the SERI Desiccant Cooling Test Facility for performing the above testing. With slight modifications, the testing can be used for testing other desiccant cooling system components. The dehumidifier processes and the parameters and variables needed to control and characterize its performance are presented. The physical layout of the test loop and instrumentation for monitoring the operating conditions and dehumidifer performance and the controls for maintaining the operating conditions are specified. The computerized data acquisition system conversion equations and an error analysis of measurement variables are also presented.

Schlepp, D.; Schultz, K.; Zangrando, F.

1984-08-01T23:59:59.000Z

219

Power Systems Development Facility Gasification Test Run TC11  

Science Conference Proceedings (OSTI)

This report discusses Test Campaign TC11 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). Test run TC11 began on April 7, 2003, with startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until April 18, 2003, when a gasifier upset forced the termination of the test run. Over the course of the entire test run, gasifier temperatures varied between 1,650 and 1,800 F at pressures from 160 to 200 psig during air-blown operations and around 135 psig during enriched-air operations. Due to a restriction in the oxygen-fed lower mixing zone (LMZ), the majority of the test run featured air-blown operations.

Southern Company Services

2003-04-30T23:59:59.000Z

220

Knowledge Preservation at the Fast Flux Test Facility  

Science Conference Proceedings (OSTI)

One of the goals of the Department of Energy's Office of Nuclear Energy Fuel Cycle Research and Development Program (FCRD) is to preserve the knowledge that has been gained in the United States on Liquid Metal Reactors (LMRs) that could support the development of an environmentally and economically sound nuclear fuel cycle. The Fast Flux Test Facility (FFTF) is the most recent LMR to operate in the United States, from 1982 to 1992, and was designed as a fully instrumented test reactor with on-line, real time test control and performance monitoring of components and tests installed in the reactor. Knowledge preservation at the FFTF is focused on the areas of design, construction, and startup of the reactor, as well as on preserving information obtained from 10 years of successful operating history and extensive irradiation testing of fuels and materials. In order to ensure protection of information at risk, the program to date has sequestered reports, files, tapes, and drawings to allow for secure retrieval. A disciplined and orderly approach has been developed to respond to client's requests for documents and data in order to minimize the search effort and ensure that future requests for this information can be readily accommodated.

Wootan, David W.; Omberg, Ronald P.

2011-12-30T23:59:59.000Z

Note: This page contains sample records for the topic "thermal test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Zero-Release Mixed Waste Process Facility Design and Testing  

SciTech Connect

A zero-release offgas cleaning system for mixed-waste thermal treatment processes has been evaluated through experimental scoping tests and process modeling. The principles can possibly be adapted to a fluidized-bed calcination or stream reforming process, a waste melter, a rotarykiln process, and possibly other waste treatment thermal processes. The basic concept of a zero-release offgas cleaning system is to recycle the bulk of the offgas stream to the thermal treatment process. A slip stream is taken off the offgas recycle to separate and purge benign constituents that may build up in the gas, such as water vapor, argon, nitrogen, and CO2. Contaminants are separated from the slip stream and returned to the thermal unit for eventual destruction or incorporation into the waste immobilization media. In the current study, a standard packed-bed scrubber, followed by gas separation membranes, is proposed for removal of contaminants from the offgas recycle slipstream. The scrub solution is continuously regenerated by cooling and precipitating sulfate, nitrate, and other salts that reach a solubility limit in the scrub solution. Mercury is also separated by the scrubber. A miscible chemical oxidizing agent was shown to effectively oxidize mercury and also NO, thus increasing their removal efficiency. The current study indicates that the proposed process is a viable option for reducing offgas emissions. Consideration of the proposed closed-system offgas cleaning loop is warranted when emissions limits are stringent, or when a reduction in the total gas emissions volume is desired. Although the current closed-loop appears to be technically feasible, economical considerations must be also be evaluated on a case-by-case basis.

Richard D. Boardman; John A. Deldebbio; Robert J. Kirkham; Martin K. Clemens; Robert Geosits; Ping Wan

2004-02-01T23:59:59.000Z

222

Integrated Disposal Facility FY2010 Glass Testing Summary Report  

SciTech Connect

Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 × 105 m3 of glass (Puigh 1999). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 0.89 × 1018 Bq total activity) of long-lived radionuclides, principally 99Tc (t1/2 = 2.1 × 105), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessement (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2010 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses. The emphasis in FY2010 was the completing an evaluation of the most sensitive kinetic rate law parameters used to predict glass weathering, documented in Bacon and Pierce (2010), and transitioning from the use of the Subsurface Transport Over Reactive Multi-phases to Subsurface Transport Over Multiple Phases computer code for near-field calculations. The FY2010 activities also consisted of developing a Monte Carlo and Geochemical Modeling framework that links glass composition to alteration phase formation by 1) determining the structure of unreacted and reacted glasses for use as input information into Monte Carlo calculations, 2) compiling the solution data and alteration phases identified from accelerated weathering tests conducted with ILAW glass by PNNL and Viteous State Laboratory/Catholic University of America as well as other literature sources for use in geochemical modeling calculations, and 3) conducting several initial calculations on glasses that contain the four major components of ILAW-Al2O3, B2O3, Na2O, and SiO2.

Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Serne, R Jeffrey; Mattigod, Shas V.

2010-09-30T23:59:59.000Z

223

HiR Thermal Testing Results  

NLE Websites -- All DOE Office Websites (Extended Search)

3 position specimen specimen description (test conditions: cold side -18C, warm side 21C) date + time 100 mm from head TC center of glass TC 100 mm from sill TC upper IR line...

224

HiR Thermal Testing Results  

NLE Websites -- All DOE Office Websites (Extended Search)

1 position specimen specimen description (test conditions: cold side -18C, warm side 21C) date + time 100 mm from head TC center of glass TC 100 mm from sill TC upper IR line...

225

HiR Thermal Testing Results  

NLE Websites -- All DOE Office Websites (Extended Search)

0 position specimen specimen description (test conditions: cold side -18C, warm side 21C) date + time 100 mm from head TC center of glass TC 100 mm from sill TC upper IR line...

226

HiR Thermal Testing Results  

NLE Websites -- All DOE Office Websites (Extended Search)

position specimen specimen description (test conditions: cold side -18C, warm side 21C) date + time 100 mm from head TC center of glass TC 100 mm from sill TC upper IR line...

227

Testing Climate Models Using Thermal Infrared Spectra  

Science Conference Proceedings (OSTI)

An approach to test climate models with observations is presented. In this approach, it is possible to directly observe the longwave feedbacks of the climate system in time series of annual average outgoing longwave spectra. Tropospheric ...

Stephen Leroy; James Anderson; John Dykema; Richard Goody

2008-05-01T23:59:59.000Z

228

HiR Thermal Testing Results  

NLE Websites -- All DOE Office Websites (Extended Search)

8 position specimen specimen description (test conditions: cold side -18C, warm side 21C) date + time 100 mm from head TC center of glass TC 100 mm from sill TC upper IR line...

229

Thermal and optical performance test results for compound parabolic concentrators (CPCs)  

SciTech Connect

The primary objective of the present study was to evaluate the performance characteristics (thermal and optical) of a properly truncated CPC that could be used in two-stage solar thermal power generation systems. The CPCs selected for testing were the 5:1 cones with a 25{degree} acceptance angle and an untruncated concentration ratio of 5.6X. Experiments were carried out at the Advanced Components Test Facility of the Georgia Tech Research Institute. Several cones of the same dimensions but with different shell materials, reflector surfaces, and employing various heat removal methods were tested. It has been demonstrated experimentally for the first time that the CPCs with high reflectivity surfaces can have optical efficiencies in the range of 90% and above. In order to verify those results, a computer ray-trace analysis was also performed. These tests have shown that passive cooling alone is adequate for small-scale, low-power systems.

Suresh, D.; O'Gallagher, J.; Winston, R. (Univ. of Chicago, IL (USA))

1990-01-01T23:59:59.000Z

230

Power Systems Development Facility Gasification Test Campaing TC18  

SciTech Connect

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high pressure solids handling systems. This report details Test Campaign TC18 of the PSDF gasification process. Test campaign TC18 began on June 23, 2005, and ended on August 22, 2005, with the gasifier train accumulating 1,342 hours of operation using Powder River Basin (PRB) subbituminous coal. Some of the testing conducted included commissioning of a new recycle syngas compressor for gasifier aeration, evaluation of PCD filter elements and failsafes, testing of gas cleanup technologies, and further evaluation of solids handling equipment. At the conclusion of TC18, the PSDF gasification process had been operated for more than 7,750 hours.

Southern Company Services

2005-08-31T23:59:59.000Z

231

Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Environment Feature Stories Public Reading Room: Environmental Documents, Reports LANL Home Phonebook Calendar Video About Operational Excellence Facilities Facilities...

232

ERDA test facilities, East Mesa Test Site. Geothermal resource investigations, Imperial Valley, California  

DOE Green Energy (OSTI)

Detailed specifications which must be complied with in the construction of the ERDA Test Facilities at the East Mesa Site for geothermal resource investigations in Imperial Valley, California are presented for use by prospective bidders for the construction contract. The principle construction work includes a 700 gpm cooling tower with its associated supports and equipment, pipelines from wells, electrical equipment, and all earthwork. (LCL)

Not Available

1976-01-01T23:59:59.000Z

233

Preserving Physics Knowledge at the Fast Flux Test Facility  

Science Conference Proceedings (OSTI)

One of the goals of the Department of Energy’s Office of Nuclear Energy, initiated under the Fuel Cycle Research and Development Program (FCRD) and continued under the Advanced Reactor Concepts Program (ARC) is to preserve the knowledge that has been gained in the United States on Liquid Metal Reactors (LMRs) that could support the development of an environmentally and economically sound nuclear fuel cycle. The Fast Flux Test Facility (FFTF) is the most recent LMR to operate in the United States, from 1982 to 1992, and was designed as a fully instrumented test reactor with on-line, real time test control and performance monitoring of components and tests installed in the reactor. The 10 years of operation of the FFTF provided a very useful framework for testing the advances in LMR safety technology based on passive safety features that may be of increased importance to new designs after the events at Fukushima. Knowledge preservation at the FFTF is focused on the areas of design, construction, and startup of the reactor, as well as on preserving information obtained from 10 years of successful operating history and extensive irradiation testing of fuels and materials. In order to ensure protection of information at risk, the program to date has sequestered reports, files, tapes, and drawings to allow for secure retrieval. A disciplined and orderly approach has been developed to respond to client’s requests for documents and data in order to minimize the search effort and ensure that future requests for this information can be readily accommodated.

Wootan, David W.; Omberg, Ronald P.; Makenas, Bruce J.; Nielsen, Deborah L.; Nelson, Joseph V.; Polzin, David L.

2011-11-01T23:59:59.000Z

234

Thermal Analysis of a SHIELD Electromigration Test Structure  

Science Conference Proceedings (OSTI)

The steady state and transient thermal behavior of an electromigration test structure was analyzed. The test structure was a Sandia SHIELD (Self-stressing HIgh fregquency rELiability Device) electromigration test device manufactured by an outside vendor. This device has a high frequency oscillator circuit, a buffer circuit to isolate and drive the metal line to the tested (DUT), the DUT to be electromigrated itself, a metal resistance thermometry monitor, and a heater elment to temperature accelerate the electromigration effect.

Benson, David A.; Bowman, Duane J.; Mitchell, Robert T.

1999-05-01T23:59:59.000Z

235

Testing Promising Technologies: A Role for Federal Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

I S T R A T I O N I S T R A T I O N Testing Promising Technologies: A Role for Federal Facilities Presented to: Federal Utility Partnership Working Group April 18, 2011 Presented by: Jack Callahan, P.E., CEM, CMVP Emerging Technology Program Manager BPA Energy Efficiency B O N N E V I L L E P O W E R A D M I N I S T R A T I O N Overview of Presentation  Overview of BPA's efforts on emerging technologies (E3T)  Review some technologies  What BPA provides  How you can participate 2 B O N N E V I L L E P O W E R A D M I N I S T R A T I O N

236

Diagnostic development and support of MHD test facilities  

DOE Green Energy (OSTI)

The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU) is developing diagnostic instruments for Magnetohydrodynamics (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with DIAL's computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. DIAL personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs. 9 figs., 1 tab.

Not Available

1990-01-01T23:59:59.000Z

237

SHEAR STRENGTH MEASURING EQUIPMENT EVALUATION AT THE COLD TEST FACILITY  

SciTech Connect

Retrievals under current criteria require that approximately 2,000,000 gallons of double-shell tank (DST) waste storage space not be used to prevent creating new tanks that might be susceptible to buoyant displacement gas release events (BDGRE). New criteria are being evaluated, based on actual sludge properties, to potentially show that sludge wastes do not exhibit the same BDGRE risk. Implementation of the new criteria requires measurement of in situ waste shear strength. Cone penetrometers were judged the best equipment for measuring in situ shear strength and an A.P. van den berg Hyson 100 kN Light Weight Cone Penetrometer (CPT) was selected for evaluation. The CPT was procured and then evaluated at the Hanford Site Cold Test Facility. Evaluation demonstrated that the equipment with minor modification was suitable for use in Tank Farms.

MEACHAM JE

2009-09-09T23:59:59.000Z

238

Emittance Measurements of the SSRL Gun Test Facility  

Science Conference Proceedings (OSTI)

A photocathode RF gun test stand is under construction in the injector vault of the Stanford Synchrotron Radiation Laboratory at SLAC. The goal of this facility is to produce an electron beam with a normalized emittance of 1-3[mm-mr], a longitudinal bunch duration of the order of 10[ps] FWHM and approximately 1[nC] of charge per bunch. The beam will be generated from a laser driven copper photocathode RF gun developed in collaboration with BNL, LBL and UCLA. The 3-5[MeV] beam from the gun will be accelerated using a SLAC three meter S-band accelerator section. The emittance of the electron beam will be measured through the use of quadrupole scans with phosphor screens and also a wire scanner. The details of the experimental setup will be discussed, and first measurements will be presented and compared with results from PARMELA simulations.

Hernandez, Michael; Clendenin, James; Fisher, Alan; Miller, Roger; Palmer, Dennis; Park, Sam; Schmerge, John; Weaver, Jim; Wiedemann, Helmut; Winick, Herman; Yeremian, Dian; /SLAC; Meyerhofer, David; Reis, David; /Rochester U.

2011-09-01T23:59:59.000Z

239

Diagnostic development and support of MHD (magnetohydrodynamics) test facilities  

DOE Green Energy (OSTI)

Mississippi State University (MSU) is developing diagnostic instruments for Magnetohydrodynamics (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for HRSR support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with MHD Energy Center computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. MSU personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs.

Not Available

1989-07-01T23:59:59.000Z

240

Diagnostic development and support of MHD test facilities  

DOE Green Energy (OSTI)

The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU) is developing diagnostic instruments for MHD power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with DIAL's computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. DIAL personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs. 25 figs., 6 tabs.

Not Available

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Power Systems Development Facility Gasification Test Run TC07  

SciTech Connect

This report discusses Test Campaign TC07 of the Kellogg Brown & Root, Inc. (KBR) Transport Reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). The Transport Reactor was operated as a pressurized gasifier during TC07. Prior to TC07, the Transport Reactor was modified to allow operations as an oxygen-blown gasifier. Test Run TC07 was started on December 11, 2001, and the sand circulation tests (TC07A) were completed on December 14, 2001. The coal-feed tests (TC07B-D) were started on January 17, 2002 and completed on April 5, 2002. Due to operational difficulties with the reactor, the unit was taken offline several times. The reactor temperature was varied between 1,700 and 1,780 F at pressures from 200 to 240 psig. In TC07, 679 hours of solid circulation and 442 hours of coal feed, 398 hours with PRB coal and 44 hours with coal from the Calumet mine, and 33 hours of coke breeze feed were attained. Reactor operations were problematic due to instrumentation problems in the LMZ resulting in much higher than desired operating temperatures in the reactor. Both reactor and PCD operations were stable and the modifications to the lower part of the gasifier performed well while testing the gasifier with PRB coal feed.

Southern Company Services

2002-04-05T23:59:59.000Z

242

Power Systems Development Facility Gasification Test Campaign TC25  

DOE Green Energy (OSTI)

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC25, the second test campaign using a high moisture lignite coal from the Red Hills mine in Mississippi as the feedstock in the modified Transport Gasifier configuration. TC25 was conducted from July 4, 2008, through August 12, 2008. During TC25, the PSDF gasification process operated for 742 hours in air-blown gasification mode. Operation with the Mississippi lignite was significantly improved in TC25 compared to the previous test (TC22) with this fuel due to the addition of a fluid bed coal dryer. The new dryer was installed to dry coals with very high moisture contents for reliable coal feeding. The TC25 test campaign demonstrated steady operation with high carbon conversion and optimized performance of the coal handling and gasifier systems. Operation during TC25 provided the opportunity for further testing of instrumentation enhancements, hot gas filter materials, and advanced syngas cleanup technologies. The PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane with syngas from the Transport Gasifier.

Southern Company Services

2008-12-01T23:59:59.000Z

243

Interoperability requirements for a South African joint command and control test facility  

Science Conference Proceedings (OSTI)

The South African National Defence Force is in the process of establishing a Joint Command and Control Test Facility at a National Research Institute. The goal with this facility is to provide an integrated environment for Joint Command and Control doctrine ... Keywords: architectures, interoperability requirements, joint command & control, service-orientated architectures, test facility

Willem H. le Roux

2008-06-01T23:59:59.000Z

244

Thermally Induced Groundwater Flow Resulting from an Underground Nuclear Test  

SciTech Connect

The authors examine the transient residual thermal signal resulting from an underground nuclear test (buried below the water table) and its potential to affect local groundwater flow and radionuclide migration in a saturated, fractured, volcanic aquifer system. Thermal profiles measured in a drillback hole between 154 days and 6.5 years after the test have been used to calibrate a non-isothermal model of fluid flow. In this process, they have estimated the magnitude and relative changes in permeability, porosity and fracture density between different portions of the disturbed and undisturbed geologic medium surrounding the test location. The relative impacts of buoyancy forces (arising from the thermal residual of the test and the background geothermal gradient) and horizontal pressure gradients on the post-test flow system are better understood. A transient particle/streamline model of contaminant transport is used to visualize streamlines and streaklines of the flow field and to examine the migration of non-reactive radionuclides. Sensitivity analyses are performed to understand the effects of local and sub-regional geologic features, and the effects of fractured zones on the movement of groundwater and thermal energy. Conclusions regarding the overall effect of the thermal regime on the residence times and fluxes of radionuclides out of the system are drawn, and implications for more complicated, reactive contaminant transport are discussed.

Maxwell, R.M.; Tompson, A.F.B.; Rambo, J.T.; Carle, S.F.; Pawloski, G.A.

2000-12-16T23:59:59.000Z

245

State-of-the-Art Thermal Energy Storage Retrofit at a Large Manufacturing Facility  

E-Print Network (OSTI)

This paper will describe the existing conditions, strategic planning, feasibility study, economic analysis, design, specification, construction, and project management for the 2.9 megawatt “full shift” chilled water thermal energy storage retrofit project currently underway at Texas Instruments’ 1,142,000 square foot Electro-Optics manufacturing facility in Dallas, Texas. A subsequent paper will describe commissioning, operation, maintenance, and savings resulting from the project.

Fiorino, D.

1989-09-01T23:59:59.000Z

246

Power Systems Development Facility Gasification Test Campaign TC24  

DOE Green Energy (OSTI)

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC24, the first test campaign using a bituminous coal as the feedstock in the modified Transport Gasifier configuration. TC24 was conducted from February 16, 2008, through March 19, 2008. The PSDF gasification process operated for about 230 hours in air-blown gasification mode with about 225 tons of Utah bituminous coal feed. Operational challenges in gasifier operation were related to particle agglomeration, a large percentage of oversize coal particles, low overall gasifier solids collection efficiency, and refractory degradation in the gasifier solids collection unit. The carbon conversion and syngas heating values varied widely, with low values obtained during periods of low gasifier operating temperature. Despite the operating difficulties, several periods of steady state operation were achieved, which provided useful data for future testing. TC24 operation afforded the opportunity for testing of various types of technologies, including dry coal feeding with a developmental feeder, the Pressure Decoupled Advanced Coal (PDAC) feeder; evaluating a new hot gas filter element media configuration; and enhancing syngas cleanup with water-gas shift catalysts. During TC24, the PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane.

Southern Company Services

2008-03-30T23:59:59.000Z

247

Design and operation of a counter-rotating aspirated compressor blowdown test facility  

E-Print Network (OSTI)

A unique counter-rotating aspirated compressor was tested in a blowdown facility at the Gas Turbine Laboratory at MIT. The facility expanded on experience from previous blowdown turbine and blowdown compressor experiments. ...

Parker, David V. (David Vickery)

2005-01-01T23:59:59.000Z

248

HiR Thermal Testing Results  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 position specimen # specimen description (test conditions: cold side -18°C, warm side 21°C) date + time 100 mm from head TC center of glass TC 100 mm from sill TC upper IR line average lower IR line average complete IR line average left 6 triple, 2 sputtered low-e glass layers, uncoated acrylic center layer in grooved spacer, Kr 3/11/05 11:40 18.10 17.80 18.13 17.44 17.82 right 7 triple, 2 sputtered low-e glass layers, uncoated acrylic center layer top angled toward cold side, Kr 17.80 13.74 16.90 14.44 15.77 - Back to Summary - - Back to Summary - - Back to Summary - delta T line average delta T 100mm from head delta T center of glass delta T 100mm from sill ambient high ambient low ambient average six surface average

249

HiR Thermal Testing Results  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 position specimen # specimen description (test conditions: cold side -18°C, warm side 21°C) date + time 100 mm from head TC center of glass TC 100 mm from sill TC upper IR line average lower IR line average complete IR line average left 6 triple, 2 sputtered low-e glass layers, uncoated acrylic center layer in grooved spacer, Kr 3/15/05 13:40 18.08 17.75 17.91 16.84 17.43 right 8 triple/quad, 2 sputtered low-e layers, 2 layer teflon center insert clinging in center, Kr 18.26 17.58 18.05 17.23 17.67 - Back to Summary - - Back to Summary - - Back to Summary - delta T line average delta T 100mm from head delta T center of glass delta T 100mm from sill ambient high ambient low ambient average six surface average

250

Fast Flux Test Facility (FFTF) Briefing Book 1 Summary  

SciTech Connect

This report documents the results of evaluations preformed during 1997 to determine what, if an, future role the Fast Flux Test Facility (FFTF) might have in support of the Department of Energy’s tritium productions strategy. An evaluation was also conducted to assess the potential for the FFTF to produce medical isotopes. No safety, environmental, or technical issues associated with producing 1.5 kilograms of tritium per year in the FFTF have been identified that would change the previous evaluations by the Department of Energy, the JASON panel, or Putnam, Hayes & Bartlett. The FFTF can be refitted and restated by July 2002 for a total expenditure of $371 million, with an additional $64 million of startup expense necessary to incorporate the production of medical isotopes. Therapeutic and diagnostic applications of reactor-generated medical isotopes will increase dramatically over the next decade. Essential medical isotopes can be produced in the FFTF simultaneously with tritium production, and while a stand-alone medical isotope mission for the facility cannot be economically justified given current marker conditions, conservative estimates based on a report by Frost &Sullivan indicate that 60% of the annual operational costs (reactor and fuel supply) could be offset by revenues from medical isotope production within 10 yeas of restart. The recommendation of the report is for the Department of Energy to continue to maintain the FFTF in standby and proceed with preparation of appropriate Nations Environmental Policy Act documentation in full consultation with the public to consider the FFTF as an interim tritium production option (1.5 kilograms/year) with a secondary mission of producing medical isotopes.

WJ Apley

1997-12-01T23:59:59.000Z

251

HiR Thermal Testing Results  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 position specimen # specimen description (test conditions: cold side -18°C, warm side 21°C) date + time 100 mm from head TC center of glass TC 100 mm from sill TC upper IR line average lower IR line average complete IR line average left 6 triple, 2 sputtered low-e glass layers, uncoated acrylic center layer in grooved spacer (rebuilt), Kr 5/4/05 21:29 18.57 17.93 17.92 17.66 16.52 17.13 right 18 triple, 2 sputtered low-e glass layers, uncoated glass center layer in traditional broken spacer, Kr 18.54 18.38 17.67 17.81 16.85 17.37 - Back to Summary - - Back to Summary - - Back to Summary - delta T line average delta T 100mm from head delta T center of glass delta T 100mm from sill ambient high ambient low ambient average six surface average

252

HiR Thermal Testing Results  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 position specimen # specimen description (test conditions: cold side -18°C, warm side 21°C) date + time 100 mm from head TC center of glass TC 100 mm from sill TC upper IR line average lower IR line average complete IR line average left 23 triple, 2 sputtered low-e glass layers, 1/16" acrylic with gap at top only, Kr 6/28/06 23:48 18.39 17.74 17.53 17.48 16.45 17.00 right 22 triple, 2 sputtered low-e glass layers, 1/8" folded edge polycarbonate center layer, Kr 18.40 17.74 16.71 17.56 16.09 16.88 - Back to Summary - - Back to Summary - - Back to Summary - delta T line average delta T 100mm from head delta T center of glass delta T 100mm from sill ambient high ambient low ambient average six surface average

253

HiR Thermal Testing Results  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 position specimen # specimen description (test conditions: cold side -18°C, warm side 21°C) date + time 100 mm from head TC center of glass TC 100 mm from sill TC upper IR line average lower IR line average complete IR line average left 6 triple, 2 sputtered low-e glass layers, uncoated acrylic center layer in grooved spacer (rebuilt), Kr 4/29/05 16:09 18.54 17.98 17.98 17.85 16.77 17.34 right 17 triple, 2 sputtered low-e glass layers, uncoated acrylic center layer with 1/16" perimeter gap, Kr 18.88 16.14 16.08 17.71 14.41 16.15 - Back to Summary - - Back to Summary - - Back to Summary - delta T line average delta T 100mm from head delta T center of glass delta T 100mm from sill ambient high ambient low ambient average six surface average

254

HiR Thermal Testing Results  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 position specimen # specimen description (test conditions: cold side -18°C, warm side 21°C) date + time 100 mm from head TC center of glass TC 100 mm from sill TC upper IR line average lower IR line average complete IR line average left 6 triple, 2 sputtered low-e glass layers, uncoated acrylic center layer in grooved spacer (rebuilt), Kr 4/14/05 17:22 18.51 17.42 17.76 17.67 16.61 17.18 right 15 triple, 2 sputtered low-e glass layers, dense sun screen center layer, Kr 19.33 17.07 13.77 18.00 14.20 16.26 - Back to Summary - - Back to Summary - - Back to Summary - delta T line average delta T 100mm from head delta T center of glass delta T 100mm from sill ambient high ambient low ambient average six surface average

255

HiR Thermal Testing Results  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 position specimen # specimen description (test conditions: cold side -18°C, warm side 21°C) date + time 100 mm from head TC center of glass TC 100 mm from sill TC upper IR line average lower IR line average complete IR line average left 6 triple, 2 sputtered low-e glass layers, uncoated acrylic center layer in grooved spacer (rebuilt), Kr 1/31/06 16:22 17.15 15.06 16.46 15.32 13.91 14.68 right 22 triple, 2 sputtered low-e glass layers, 1/8" folded edge polycarbonate center layer, Kr 18.53 17.87 16.90 17.71 16.41 17.11 - Back to Summary - - Back to Summary - - Back to Summary - delta T line average delta T 100mm from head delta T center of glass delta T 100mm from sill ambient high ambient low ambient average six surface average

256

HiR Thermal Testing Results  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 position specimen # specimen description (test conditions: cold side -18°C, warm side 21°C) date + time 100 mm from head TC center of glass TC 100 mm from sill TC upper IR line average lower IR line average complete IR line average left 6 triple, 2 sputtered low-e glass layers, uncoated acrylic center layer in grooved spacer, Kr 3/24/05 12:40 17.51 17.52 17.63 16.30 17.03 right 9 triple, 2 sputtered low-e glass layers, 72% open insect screen center layer, Kr 17.12 13.05 17.65 13.84 15.91 - Back to Summary - - Back to Summary - - Back to Summary - delta T line average delta T 100mm from head delta T center of glass delta T 100mm from sill ambient high ambient low ambient average six surface average 1.12 0.00 0.39 4.47 21.36 20.68 21.02 20.8

257

HiR Thermal Testing Results  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 position specimen # specimen description (test conditions: cold side -18°C, warm side 21°C) date + time 100 mm from head TC center of glass TC 100 mm from sill TC upper IR line average lower IR line average complete IR line average left 6 triple, 2 sputtered low-e glass layers, uncoated acrylic center layer in grooved spacer (rebuilt), Kr 5/25/05 16:15 18.47 17.37 17.87 17.40 16.11 16.82 right 20 triple, 2 sputtered low-e glass layers, folded Lexan center layer, Kr 18.63 17.24 16.06 17.51 15.64 16.67 - Back to Summary - - Back to Summary - - Back to Summary - delta T line average delta T 100mm from head delta T center of glass delta T 100mm from sill ambient high ambient low ambient average six surface average

258

HiR Thermal Testing Results  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 position specimen # specimen description (test conditions: cold side -18°C, warm side 21°C) date + time 100 mm from head TC center of glass TC 100 mm from sill TC upper IR line average lower IR line average complete IR line average left 23 triple, 2 sputtered low-e glass layers, 1/16" acrylic with gap at bottom only, Kr 9/22/06 9:42 18.28 18.07 17.38 17.66 16.79 17.27 right 22 triple, 2 sputtered low-e glass layers, 1/8" folded edge polycarbonate center layer, Kr 18.34 17.70 16.83 17.57 16.28 16.98 - Back to Summary - - Back to Summary - - Back to Summary - delta T line average delta T 100mm from head delta T center of glass delta T 100mm from sill ambient high ambient low ambient average six surface average

259

HiR Thermal Testing Results  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 position specimen # specimen description (test conditions: cold side -18°C, warm side 21°C) date + time 100 mm from head TC center of glass TC 100 mm from sill TC upper IR line average lower IR line average complete IR line average left 6 triple, 2 sputtered low-e glass layers, uncoated acrylic center layer in grooved spacer (rebuilt), Kr 5/20/05 18:05 18.33 16.96 17.89 17.27 16.04 16.71 right 19 double, 1 sputtered low-e glass layer, 3/8" gap, Kr 15.73 15.53 14.97 14.51 13.65 14.13 - Back to Summary - - Back to Summary - - Back to Summary - delta T line average delta T 100mm from head delta T center of glass delta T 100mm from sill ambient high ambient low ambient average six surface average 2.59 2.60 1.43 2.92 21.54 20.61 21.08 20.85

260

Pretest Caluculations of Temperature Changes for Field Thermal Conductivity Tests  

Science Conference Proceedings (OSTI)

A large volume fraction of the potential monitored geologic repository at Yucca Mountain may reside in the Tptpll (Tertiary, Paintbrush Group, Topopah Spring Tuff, crystal poor, lower lithophysal) lithostratigraphic unit. This unit is characterized by voids, or lithophysae, which range in size from centimeters to meters. A series of thermal conductivity field tests are planned in the Enhanced Characterization of the Repository Block (ECRB) Cross Drift. The objective of the pretest calculation described in this document is to predict changes in temperatures in the surrounding rock for these tests for a given heater power and a set of thermal transport properties. The calculation can be extended, as described in this document, to obtain thermal conductivity, thermal capacitance (density x heat capacity, J {center_dot} m{sup -3} {center_dot} K{sup -1}), and thermal diffusivity from the field data. The work has been conducted under the ''Technical Work Plan For: Testing and Monitoring'' (BSC 2001). One of the outcomes of this analysis is to determine the initial output of the heater. This heater output must be sufficiently high that it will provide results in a reasonably short period of time (within several weeks or a month) and be sufficiently high that the heat increase is detectable by the instruments employed in the test. The test will be conducted in stages and heater output will be step increased as the test progresses. If the initial temperature is set too high, the experiment will not have as many steps and thus fewer thermal conductivity data points will result.

N.S. Brodsky

2002-07-17T23:59:59.000Z

Note: This page contains sample records for the topic "thermal test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Handling effluent from nuclear thermal propulsion system ground tests  

SciTech Connect

A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the different methods to handle effluent from nuclear thermal propulsion system ground tests.

Shipers, L.R.; Allen, G.C.

1992-09-09T23:59:59.000Z

262

Effluent treatment options for nuclear thermal propulsion system ground tests  

DOE Green Energy (OSTI)

A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests.

Shipers, L.R.; Brockmann, J.E.

1992-10-16T23:59:59.000Z

263

Feasibility of MHD submarine propulsion. Phase II, MHD propulsion: Testing in a two Tesla test facility  

DOE Green Energy (OSTI)

This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.

Doss, E.D. [ed.] [Argonne National Lab., IL (United States); Sikes, W.C. [ed.] [Newport News Shipbuilding and Dry Dock Co., VA (United States)

1992-09-01T23:59:59.000Z

264

USE AND CALIBRATION OF A GAS CHROMATOGRAPH FOR GAS ANALYSIS AT THE PROJECT ROVER TEST FACILITY  

DOE Green Energy (OSTI)

A gas-chromatograph system operated by test site personnel was used for over a year to monitor the purity of gases used at the Project Rover test facilities at the Nuclear Rocket Development Station. Information was obtained on the efficiency of gas line purges, total impurities of frozen air in a large liquid hydrogen dewar, and the quality of room inerting systems. Daily monitoring of several block and bleed systems, which prevent hydrogen gas from entering a system through a leaky valve, and periodic monitoring of all gas added to the 10/sup 6/ cubic feet gas storage bottles are required for safe facilities operation. In addition the chromatograph proved useful in special cases for leak detection in vacuum and high pressure systems. The calibration and operation of the chromatograph system using a column of Linde 5A Molecular Sieve for analysis of H/sub 2/, N/sub 2/, land O/sub 2/ is described. Observations of a thermal conductivity reversal in the binary mixture He--H/sub 2/ is presented. (auth)

Liebenberg, D.H.; Edeskuty, F.J.

1963-10-31T23:59:59.000Z

265

Power Systems Development Facility Gasification Test Campaign TC22  

SciTech Connect

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC22, the first test campaign using a high moisture lignite from Mississippi as the feedstock in the modified Transport Gasifier configuration. TC22 was conducted from March 24 to April 17, 2007. The gasification process was operated for 543 hours, increasing the total gasification operation at the PSDF to over 10,000 hours. The PSDF gasification process was operated in air-blown mode with a total of about 1,080 tons of coal. Coal feeder operation was challenging due to the high as-received moisture content of the lignite, but adjustments to the feeder operating parameters reduced the frequency of coal feeder trips. Gasifier operation was stable, and carbon conversions as high as 98.9 percent were demonstrated. Operation of the PCD and other support equipment such as the recycle gas compressor and ash removal systems operated reliably.

Southern Company Services

2008-11-01T23:59:59.000Z

266

Advanced Test Reactor National Scientific User Facility 2010 Annual Report  

Science Conference Proceedings (OSTI)

This is the 2010 ATR National Scientific User Facility Annual Report. This report provides an overview of the program for 2010, along with individual project reports from each of the university principal investigators. The report also describes the capabilities offered to university researchers here at INL and at the ATR NSUF partner facilities.

Mary Catherine Thelen; Todd R. Allen

2011-05-01T23:59:59.000Z

267

Rationale for a spallation neutron source target system test facility at the 1-MW Long-Pulse Spallation Source  

Science Conference Proceedings (OSTI)

The conceptual design study for a 1-MW Long-Pulse Spallation Source at the Los Alamos Neutron Science Center has shown the feasibility of including a spallation neutron test facility at a relatively low cost. This document presents a rationale for developing such a test bed. Currently, neutron scattering facilities operate at a maximum power of 0.2 MW. Proposed new designs call for power levels as high as 10 MW, and future transmutation activities may require as much as 200 MW. A test bed will allow assessment of target neutronics; thermal hydraulics; remote handling; mechanical structure; corrosion in aqueous, non-aqueous, liquid metal, and molten salt systems; thermal shock on systems and system components; and materials for target systems. Reliable data in these areas are crucial to the safe and reliable operation of new high-power facilities. These tests will provide data useful not only to spallation neutron sources proposed or under development, but also to other projects in accelerator-driven transmutation technologies such as the production of tritium.

Sommer, W.F.

1995-12-01T23:59:59.000Z

268

FIRST EXPERIMENTS WITH THE RF GUN BASED INJECTOR FOR THE TESLA TEST FACILITY LINAC  

E-Print Network (OSTI)

FIRST EXPERIMENTS WITH THE RF GUN BASED INJECTOR FOR THE TESLA TEST FACILITY LINAC S. Schreiber for the TESLA Collaboration, DESY, 22603 Hamburg, Germany Abstract During 1997 and 1998 a first accelerator module was tested successfully at the TESLA Test Facility Linac (TTFL) at DESY. Eight superconducting

269

Engineered Barrier Systems Thermal-Hydraulic-Chemical Column Test Report  

SciTech Connect

The Engineered Barrier System (EBS) Thermal-Hydraulic-Chemical (THC) Column Tests provide data needed for model validation. The EBS Degradation, Flow, and Transport Process Modeling Report (PMR) will be based on supporting models for in-drift THC coupled processes, and the in-drift physical and chemical environment. These models describe the complex chemical interaction of EBS materials, including granular materials, with the thermal and hydrologic conditions that will be present in the repository emplacement drifts. Of particular interest are the coupled processes that result in mineral and salt dissolution/precipitation in the EBS environment. Test data are needed for thermal, hydrologic, and geochemical model validation and to support selection of introduced materials (CRWMS M&O 1999c). These column tests evaluated granular crushed tuff as potential invert ballast or backfill material, under accelerated thermal and hydrologic environments. The objectives of the THC column testing are to: (1) Characterize THC coupled processes that could affect performance of EBS components, particularly the magnitude of permeability reduction (increases or decreases), the nature of minerals produced, and chemical fractionation (i.e., concentrative separation of salts and minerals due to boiling-point elevation). (2) Generate data for validating THC predictive models that will support the EBS Degradation, Flow, and Transport PMR, Rev. 01.

W.E. Lowry

2001-12-13T23:59:59.000Z

270

Thermal analysis of the FSP-1 fuel pin irradiation test  

SciTech Connect

Thermal analysis of a pin from the FSP-1 fuels irradiation test has been completed. The purpose of the analysis was to provide predictions of fuel pin temperatures, determine the flow regime within the lithium annulus of the test assembly, and provide a standardized model for a consistent basis of comparison between pins within the test assembly. The calculations have predicted that the pin is operating at slightly above the test design temperatures and that the flow regime within the lithium annulus is a laminar buoyancy driven flow. 7 refs., 5 figs.

Lyon, W.F. III.

1990-07-25T23:59:59.000Z

271

Securing Operating Data From Passive Safety Tests at the Fast Flux Test Facility  

Science Conference Proceedings (OSTI)

The Fast Flux Test Facility (FFTF) is the most recent Liquid Metal Reactor (LMR) to operate in the United States, from 1982 to 1992. The technologies employed in designing and constructing this reactor, along with information obtained from tests conducted during its operation, are currently being secured and archived by the Department of Energy’s Office of Nuclear Energy Fuel Cycle Research and Development Program. This report is one in a series documenting the overall project efforts to retrieve and preserve critical information related to advanced reactors. A previous report summarized the initial efforts to review, retrieve and preserve the most salient documents related to Passive Safety Testing (PST) in the FFTF. Efforts continue to locate, secure, and retrieve record copies of original plant data tapes for the series of passive safety tests conducted between 1986 and 1991.

Wootan, David W.; Omberg, Ronald P.; Makenas, Bruce J.; Nielsen, Deborah L.; Nelson, Joseph V.; Polzin, David L.

2011-06-01T23:59:59.000Z

272

Securing Operating Data From Passive Safety Tests at the Fast Flux Test Facility  

SciTech Connect

The Fast Flux Test Facility (FFTF) is the most recent Liquid Metal Reactor (LMR) to operate in the United States, from 1982 to 1992. The technologies employed in designing and constructing this reactor, along with information obtained from tests conducted during its operation, are currently being secured and archived by the Department of Energy's Office of Nuclear Energy Fuel Cycle Research and Development Program. This report is one in a series documenting the overall project efforts to retrieve and preserve critical information related to advanced reactors. A previous report summarized the initial efforts to review, retrieve and preserve the most salient documents related to Passive Safety Testing (PST) in the FFTF. Efforts continue to locate, secure, and retrieve record copies of original plant data tapes for the series of passive safety tests conducted between 1986 and 1991.

Wootan, David W.; Omberg, Ronald P.; Makenas, Bruce J.; Nielsen, Deborah L.; Nelson, Joseph V.; Polzin, David L.

2011-06-01T23:59:59.000Z

273

RF Test Results from Cryomodule 1 at the Fermilab SRF Beam Test Facility  

SciTech Connect

Powered operation of Cryomodule 1 (CM-1) at the Fermilab SRF Beam Test Facility began in late 2010. Since then a series of tests first on the eight individual cavities and then the full cryomodule have been performed. We report on the results of these tests and lessons learned which will have an impact on future module testing at Fermilab. Since November 2010 Cryomodule 1 has been operating at 2 Kelvin. After evaluating each of the eight cavities while individually powered, the entire module has recently been powered and peak operation determined as shown in Figure 4. Several more weeks of measurements are planned before the module is warmed up, removed and replaced with Cryomodule 2 now under assembly at Fermilab.

Harms, E.; Carlson, K.; Chase, B.; Cullerton, E.; Hocker, A.; Jensen, C.; Joireman, P.; Klebaner, A.; Kubicki, T.; Kucera, M.; Legan, A.; /Fermilab /DESY

2011-07-26T23:59:59.000Z

274

Calendar Year 2004 annual site environmental report : Tonopah Test Range, Nevada & Kauai Test Facility, Hawaii.  

Science Conference Proceedings (OSTI)

Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, manages TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2004. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2005) and DOE Order 231.1A, Environment, Safety, and Health Reporting (DOE 2004b).

Montoya, Amber L.; Wagner, Katrina; Goering, Teresa Lynn; Koss, Susan I.; Salinas, Stephanie A.

2005-09-01T23:59:59.000Z

275

Interface Control Document for the Interface between the Central Solenoid Insert Coil and the Test Facility  

SciTech Connect

This document provides the interface definition and interface control between the Central Solenoid Insert Coil and the Central Solenoid Model Coil Test Facility in Japan.

Smirnov, Alexandre [ORNL; Martovetsky, Nicolai N [ORNL; Nunoya, Yoshihiko [Japan Atomic Energy Agency (JAEA), Naka

2011-06-01T23:59:59.000Z

276

Modeling and analysis of a heat transport transient test facility for space nuclear systems.  

E-Print Network (OSTI)

??The purpose of this thesis is to design a robust test facility for a small space nuclear power system and model its physical behavior under… (more)

[No author

2013-01-01T23:59:59.000Z

277

EA-0993: Shutdown of the Fast Flux Testing Facility, Richland, Washington |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

93: Shutdown of the Fast Flux Testing Facility, Richland, 93: Shutdown of the Fast Flux Testing Facility, Richland, Washington EA-0993: Shutdown of the Fast Flux Testing Facility, Richland, Washington SUMMARY This EA evaluates the environmental impacts of the U.S. Department of Energy's Hanford Site's proposal to place the Fast Flux Test Facility (FFTF) in a radiologically and industrially safe shutdown condition, suitable for a long-term surveillance and maintenance phase prior to final decontamination and decommissioning. This EA addresses the actions associated with Phase I (Facility Transition) and Phase II (Surveillance and Maintenance). PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD May 1, 1995 EA-0993: Finding of No Significant Impact Shutdown of the Fast Flux Testing Facility

278

Fast Flux Test Facility, Sodium Storage Facility project-specific project management plan  

SciTech Connect

This Project-Specific Project Management Plan describes the project management methods and controls used by the WHC Projects Department to manage Project 03-F-031. The Sodium Storage Facility provides for storage of the 260,000 gallons of sodium presently in the FFTF Plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium.

Shank, D.R.

1994-12-29T23:59:59.000Z

279

Wind/hybrid power system test facilities in the United States and Canada  

SciTech Connect

By 1995, there will be four facilities available for testing of wind/hybrid power systems in the United States and Canada. This paper describes the mission, approach, capabilities, and status of activity at each of these facilities. These facilities have in common a focus on power systems for remote, off-grid locations that include wind energy. At the same time, these facilities have diverse, yet complimentary, missions that range from research to technology development to testing. The first facility is the test facility at the Institut de Recherche d`Hydro-Quebec (IREQ), Hydro-Quebec`s research institute near Montreal, Canada. This facility, not currently in operation, was used for initial experiments demonstrating the dynamic stability of a high penetration, no-storage wind/diesel (HPNSWD) concept. The second facility is located at the Atlantic Wind Test Site (AWTS) on Prince Edward Island, Canada, where testing of the HPNSWD concept developed by Hydro-Quebec is currently underway. The third is the Hybrid Power Test Facility planned for the National Wind Technology Center at the National Renewable Energy Laboratory (NREL) in Golden, Colorado, which will focus on testing commercially available hybrid power systems. The fourth is the US Department of Agriculture (USDA) Conservation and Production Research Laboratory in Bushland, Texas, where a test laboratory is being developed to study wind-energy penetration and control strategies for wind/hybrid systems. The authors recognize that this summary of test facilities is not all inclusive; for example, at least one US industrial facility is currently testing a hybrid power system. Our intent, though, is to describe four facilities owned by nonprofit or governmental institutions in North America that are or will be available for ongoing development of wind/hybrid power systems.

Green, H J [National Renewable Energy Lab., Golden, CO (United States); Clark, R N [USDA Conservation and Production Research Laboratory, Bushland, TX (United States); Brothers, C [Atlantic Wind Test Site, North Cape, PE (Canada); Saulnier, B [Institut de Recherche d`Hydro-Quebec, Varennes, PQ (Canada)

1994-05-01T23:59:59.000Z

280

Capabilities of the High Voltage Stress Test System at the Outdoor Test Facility  

DOE Green Energy (OSTI)

We illustrate the capabilities of the High Voltage Stress Test (HVST) which operates continuously in the array field east of the Outdoor Test Facility at the National Renewable Energy Laboratory. Because we know that photovoltaic (PV) modules generating electrical power in both residential and utility-scale array installations will develop high-voltage biases approaching 600 VDC and 1,000 VDC, respectively, we expect such high voltages will result in current leakage between cells and ground, typically through the frames or mounts. We know that inevitably such leakage currents are capable of producing electrochemical corrosion that adversely impacts long-term module performance. With the HVST, we stress or operate PV modules under high-voltage bias, to characterize their leakage currents under all prevailing ambient conditions and assess performance changes emanating from high-voltage stress. We perform this test both on single modules and an active array.

del Cueto, J. A.; Trudell, D.; Sekulic, W.

2005-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Thermal test procedure for a paraboloid concentrator solar cooker  

SciTech Connect

Suitable thermal tests have been identified for performance evaluation of a concentrating solar cooker. These tests provide parameters that characterize the performance of the solar cooker, and are more or less independent of the climatic variables. The overall heat loss factor is obtained from the cooling curve and the optical efficiency factor is determined from the heating curve - both under full load conditions. The performance characteristic curve for the solar cooker is obtained and discussed. The study indicates that the no load test, which is useful in the case of a box type solar cooker, is not appropriate in the case of concentrator type cookers.

Mullick, S.C.; Kandpal, T.C.; Kumar, S. (Indian Institute of Technology, New Delhi (India))

1991-01-01T23:59:59.000Z

282

VP 100: New Facility in Boston to Test Large-Scale Wind Blades | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VP 100: New Facility in Boston to Test Large-Scale Wind Blades VP 100: New Facility in Boston to Test Large-Scale Wind Blades VP 100: New Facility in Boston to Test Large-Scale Wind Blades July 23, 2010 - 1:19pm Addthis Boston's Wind Technology Testing Center, funded in part with Recovery Act funds, will be first in U.S. to test blades up to 300 feet long. | Photo Courtesy of Massachusetts Clean Energy Center Boston's Wind Technology Testing Center, funded in part with Recovery Act funds, will be first in U.S. to test blades up to 300 feet long. | Photo Courtesy of Massachusetts Clean Energy Center Stephen Graff Former Writer & editor for Energy Empowers, EERE America's first-of-its-kind wind blade testing facility - capable of testing a blade as long as a football field - almost never was. Because of funding woes, the Massachusetts Clean Energy Center (MassCEC),

283

DOE to Build Hydrogen Fuel Test Facility at West Virginia Airport |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE to Build Hydrogen Fuel Test Facility at West Virginia Airport DOE to Build Hydrogen Fuel Test Facility at West Virginia Airport DOE to Build Hydrogen Fuel Test Facility at West Virginia Airport March 25, 2009 - 1:00pm Addthis Washington, DC - The Office of Fossil Energy's National Energy Technology Laboratory (NETL) today announced plans to construct and operate a hydrogen fuel production plant and vehicle fueling station at the Yeager Airport in Charleston, W.Va. The facility will use grid electricity to split water to produce pure hydrogen fuel. The fuel will be used by the airport's operations and the 130th Air Wing of the West Virginia Air National Guard. NETL will begin operations at the Yeager Airport facility in August 2009 and plans to conduct two years of testing and evaluation. The facility will be designed using "open architecture," allowing the capability to add

284

Report of Survey of the Los Alamos Tritium Systems Test Assembly Facility |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Los Alamos Tritium Systems Test Assembly the Los Alamos Tritium Systems Test Assembly Facility Report of Survey of the Los Alamos Tritium Systems Test Assembly Facility The purpose of this document is to report the results of a survey conducted at the Los Alamos Tritium Systems Test Assembly (TSTA Facility). The survey was conducted during the week of 3/20/00. The primary purpose of the survey is to identify facility conditions and issues that need to be addressed to transfer responsibility for the facility from the Office of Science (SC) to the Office of Environmental Management (EM). The second purpose is to provide EM with insight regarding the facility's risks and liabilities, which may influence the management of eventual downstream life-cycle activities. The survey and this report are part of a process for implementing the

285

EA-1917: Wave Energy Test Facility Project, Newport, OR | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

17: Wave Energy Test Facility Project, Newport, OR 17: Wave Energy Test Facility Project, Newport, OR EA-1917: Wave Energy Test Facility Project, Newport, OR SUMMARY This EA evaluates the potential environmental impacts of a Wave Energy Test Facility that will be located near Newport, Oregon. The testing facility will be located within Oregon territorial waters, near the Hatfield Marine Science Center and close to onshore roads and marine support services. The site will not only allow testing of new wave energy technologies, but will also be used to help study any potential environmental impacts on sediments, invertebrates and fish. The project is being jointly funded by the State of Oregon and DOE. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 15, 2012 EA-1917: Mitigation Action Plan

286

EA-1917: Wave Energy Test Facility Project, Newport, OR | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

17: Wave Energy Test Facility Project, Newport, OR 17: Wave Energy Test Facility Project, Newport, OR EA-1917: Wave Energy Test Facility Project, Newport, OR SUMMARY This EA evaluates the potential environmental impacts of a Wave Energy Test Facility that will be located near Newport, Oregon. The testing facility will be located within Oregon territorial waters, near the Hatfield Marine Science Center and close to onshore roads and marine support services. The site will not only allow testing of new wave energy technologies, but will also be used to help study any potential environmental impacts on sediments, invertebrates and fish. The project is being jointly funded by the State of Oregon and DOE. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 15, 2012 EA-1917: Mitigation Action Plan

287

Facilities for testing desiccant materials and geometries of dehumidifiers for solar-regenerated desiccant cooling systems  

SciTech Connect

Four experimental test facilities for characterizing the performance of solid desiccant materials and dehumidifier matrices which have the potential to be used in solar-regenerated desiccant cooling systems are reviewed. The water equilibrium capacity and sorption rates of desiccant materials, depending on their form, can be either measured with a quartz crystal microbalance or a desiccant sorption test facility. Pressure drop, heat- and mass-transfer rates and transient equilibrium dehumidification capacity of a dehumidifier matrices are measured in a desiccant heat and mass transfer test facility. The performance and steady state dehumidification capabilities of prototype dehumidifier components under realistic conditions are measured in a desiccant cyclic test facility. The description of the test apparatus, experimental procedure, measurement errors, and typical results for the four test facilities are presented here. 15 refs., 9 figs., 1 tab.

Pesaran, A.A.; Bingham, C.E.

1988-12-01T23:59:59.000Z

288

Dynamic thermal testing of lead-acid batteries for the PREPA battery energy storage system  

DOE Green Energy (OSTI)

A test is being carried out to determine the thermal load that will be present in a 20 MW battery energy storage system (BESS) facility being built by the Puerto Rico Electric Power Authority (PREPA). Efforts were made to duplicate, on a smaller scale, the arrangement of the flooded lead-acid cells in the BESS and to generate ambient temperatures typical of Puerto Rico through use of an environmental chamber. A utility energy storage (UES) test cycle for the 12-cell series string was set up based on projected operating parameters scaled from the BESS for frequency regulation and spinning reserve operating modes. Battery temperatures were measured during UES cycling and fit to a thermal model for the system. Cell temperatures increased slowly over a week-long utility cycle and eventually were elevated by 13{degrees}C (23{degrees}F) in the most extreme case observed to date. Temperature increases are expected to be lower in the BESS facility due to a much higher air flow rate than in the test chamber.

Jungst, R.G.; Freese, J.M.; Rodriguez, G.P.; Dykhuizen, R.C.; Braithwaite, J.W.; Woods, C.

1993-08-01T23:59:59.000Z

289

Summary of seasonal thermal energy storage field test projects in the United States  

DOE Green Energy (OSTI)

Seasonal thermal energy storage (STES) involves storage of available heat or chill for distribution at a later time to meet thermal loads. STES can reduce energy consumption, peak energy demand, and emissions of carbon dioxide to the atmosphere over conventional systems. It is estimated that full-scale application of STES would provide 2% to 4% of total energy needs in the United States. One STES technology, aquifer thermal energy storage (ATES), has been determined to be the most cost-effective option in the United States when site conditions enable its use. ATES has been analyzed in the laboratory and investigated in the field in the United States since the program was established at Pacific Northwest Laboratory (PNL) in 1979. Two field test facilities (FTFs), one for heating ATES at the University of Minnesota and the other for cooling ATES at the University of Alabama, have been primary testing grounds for US ATES research. Computer models have been developed to analyze the complex thermal and fluid dynamics. Extensive monitoring of FTFs has provided verification of and refinements to the computer models. The areas of geochemistry and microbiology have been explored as they apply to the aquifer environment. In general, the two FTFs have been successful in demonstrating the steps needed to make an ATES system operational.

Johnson, B.K.

1989-07-01T23:59:59.000Z

290

Test Operation of Oxygen-Enriched Incinerator for Wastes From Nuclear Fuel Fabrication Facility  

SciTech Connect

The oxygen-enriched combustion concept, which can minimize off-gas production, has been applied to the incineration of combustible uranium-containing wastes from a nuclear fuel fabrication facility. A simulation for oxygen combustion shows the off-gas production can be reduced by a factor of 6.7 theoretically, compared with conventional air combustion. The laboratory-scale oxygen enriched incineration (OEI) process with a thermal capacity of 350 MJ/h is composed of an oxygen feeding and control system, a combustion chamber, a quencher, a ceramic filter, an induced draft fan, a condenser, a stack, an off-gas recycle path, and a measurement and control system. Test burning with cleaning paper and office paper in this OEI process shows that the thermal capacity is about 320 MJ/h, 90 % of design value and the off-gas reduces by a factor of 3.5, compared with air combustion. The CO concentration for oxygen combustion is lower than that of air combustion, while the O2 concentration in off-gas is kept above 25 vol % for a simple incineration process without any grate. The NOx concentration in an off-gas stream does not reduce significantly due to air incoming by leakage, and the volume and weight reduction factors are not changed significantly, which suggests a need for an improvement in sealing.

Kim, J.-G.; Yang, H.cC.; Park, G.-I.; Kim, I.-T.; Kim, J.-K.

2002-02-26T23:59:59.000Z

291

Thermal analysis and testing of a vacuum insulated catalytic converter  

DOE Green Energy (OSTI)

Based on a recent US Environmental Protection Agency (EPA) study, about 95% of all trips start after a cold-soak period of 16 hours or less. By preserving the heat in the catalyst between trips, exhaust gases could be processed without warm-up delay and without the usual cold-start emissions. Vacuum insulation and phase-change thermal storage have been incorporated into a catalytic converter design to enhance its heat-retention time. Laboratory testing of a bench-scale prototype showed that a ``light off`` temperature (above 350 C) could be maintained during a 10-hour cold soak. Design improvements currently being tested should increase this heat-retention time to more than 16 hours. The thermal conductance of the vacuum insulation will be made continuously variable to prevent overheating and excessive thermal cycling. This approach to thermal management may be more durable and less costly than quick-heat methods using electric or fuel-fired preheat catalysts.

Burch, S D; Potter, T F; Keyser, M A; Benson, D K

1994-11-01T23:59:59.000Z

292

PERFORMANCE STATUS OF THE RF-GUN BASED INJECTOR OF THE TESLA TEST FACILITY LINAC  

E-Print Network (OSTI)

PERFORMANCE STATUS OF THE RF-GUN BASED INJECTOR OF THE TESLA TEST FACILITY LINAC S. Schreiber£ for the TESLA Collaboration, DESY, 22603 Hamburg, Germany Abstract The TESLA Test Facility Linac (TTFL) at DESY uses two modules with 8 TESLA superconducting accelerat- ing structures each to accelerate an electron

293

OPERATIONAL EXPERIENCE WITH THE TEST FACILITIES FOR TESLA H. Weise, DESY, Hamburg, Germany  

E-Print Network (OSTI)

OPERATIONAL EXPERIENCE WITH THE TEST FACILITIES FOR TESLA H. Weise, DESY, Hamburg, Germany Abstract The TESLA superconducting electron-positron linear collider with an integrated X-ray laser laboratory government in matters of science. In preparation of this, the TESLA Test Facility was set up at DESY. More

294

TEST METHOD FOR COEFFICIENT OF LINEAR THERMAL EXPANSION OF CONCRETE  

E-Print Network (OSTI)

1.1 This method covers the determination of the coefficient of linear thermal expansion of concrete test specimens by determinations of length change due to temperature changes. Because the thermal coefficient of concrete varies with moisture condition, being a minimum when saturated or oven dry and a maximum at about 70 percent saturated, it is important to select the relevant moisture condition for the tests to be made. 2. Apparatus 2.1. The apparatus shall consist of: 2.1.1 Heating Bath- A water bath in which concrete specimens can be maintained at a temperature of 140 ± 2 F (60 ± 1.1 C) (Note 1) 2.1.2 Cooling Bath- A water bath in which

unknown authors

1981-01-01T23:59:59.000Z

295

Photo of the Week: The Mirror Fusion Test Facility | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Mirror Fusion Test Facility The Mirror Fusion Test Facility Photo of the Week: The Mirror Fusion Test Facility July 19, 2013 - 4:17pm Addthis This 1981 photo shows the Mirror Fusion Test Facility (MFTF), an experimental magnetic confinement fusion device built using a magnetic mirror at Lawrence Livermore National Laboratory (LLNL). The MFTF functioned as the primary research center for mirror fusion devices. The design consisted of a 64-meter-long vacuum vessel fitted with 26 coil magnets bonding the center of the vessel and two 400-ton yin-yang magnet mirrors at either end. The first magnet produced a magnetic field force equal to the weight of 30 jumbo jets hanging from the magnet coil. | Photo courtesy of Lawrence Livermore National Laboratory. This 1981 photo shows the Mirror Fusion Test Facility (MFTF), an

296

EA-1035: Relocation of the Weapons Component Testing Facility Los Alamos  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

35: Relocation of the Weapons Component Testing Facility Los 35: Relocation of the Weapons Component Testing Facility Los Alamos National Laboratory, Los Alamos, New Mexico EA-1035: Relocation of the Weapons Component Testing Facility Los Alamos National Laboratory, Los Alamos, New Mexico SUMMARY This EA evaluates the environmental impacts of the proposal to relocate the Weapons Component Testing Facility from Building 450 to Building 207, both within Technical Area 16, at the U.S. Department of Energy's Los Alamos National Laboratory. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD February 10, 1995 EA-1035: Finding of No Significant Impact Relocation of the Weapons Component Testing Facility Los Alamos National Laboratory, Los Alamos, New Mexico February 10, 1995 EA-1035: Final Environmental Assessment

297

From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference December 16, 2013 - 2:46pm Addthis The Integrated Biorefinery Research Facility at the National Renewable Energy Laboratory in Golden, Colorado enables partners to test conversion technologies on up to one ton of biomass material a day. | Photo by Dennis Schroeder, National Renewable Energy Laboratory The Integrated Biorefinery Research Facility at the National Renewable Energy Laboratory in Golden, Colorado enables partners to test conversion technologies on up to one ton of biomass material a day. | Photo by Dennis Schroeder, National Renewable Energy Laboratory Leslie Pezzullo

298

From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference December 16, 2013 - 2:46pm Addthis The Integrated Biorefinery Research Facility at the National Renewable Energy Laboratory in Golden, Colorado enables partners to test conversion technologies on up to one ton of biomass material a day. | Photo by Dennis Schroeder, National Renewable Energy Laboratory The Integrated Biorefinery Research Facility at the National Renewable Energy Laboratory in Golden, Colorado enables partners to test conversion technologies on up to one ton of biomass material a day. | Photo by Dennis Schroeder, National Renewable Energy Laboratory Leslie Pezzullo

299

THERMAL PERFORMANCE OF A FAST NEUTRON TEST CONCEPT FOR THE ADVANCED TEST REACTOR  

Science Conference Proceedings (OSTI)

Since 1967, the Advanced Test Reactor (ATR) located at Idaho National Laboratory (INL) has provided state-of-the-art experimental irradiation testing capability. A unique design is investigated herein for the purpose of providing a fast neutron flux test capability in the ATR. This new test capability could be brought on line in approximately 5 or 6 years, much sooner than a new test reactor could be built, to provide an interim fast-flux test capability in the timeframe before a fast-flux research reactor could be built. The proposed cost for this system is approximately $63M, much less than the cost of a new fast-flux test reactor. A concept has been developed to filter out a large portion of the thermal flux component by using a thermally conductive neutron absorber block. The objective of this study is to determine the feasibility of this experiment cooling concept.

Donna Post Guillen

2008-06-01T23:59:59.000Z

300

Evaluation of the advanced mixed oxide fuel test FO-2 irradiated in Fast Flux Test Facility  

SciTech Connect

The advanced mixed-oxide (UO/sub 2/-PuO/sub 2/) test assembly, FO-2, irradiated in the Fast Flux Test Facility (FFTF), is undergoing postirradiation examination (PIE). This is one of the first FFTF tests examined that used the advanced ferrite-martensite alloy, HT9, which is highly resistant to irradiation swelling. The FO-2 includes the first annular fueled pins irradiated in FFTF to undergo destructive examination. The FO-2 is a lead assembly for the ongoing FFTF Core Demonstration Experiment (CDE) (Leggett and Omberg 1987) and was designed to evaluate the effects of fuel design variables, such as pellet density, smeared density, and fuel form (annular or solid fuel), on advanced pin performance. The assembly contains a total of 169 fuel pins of twelve different types. The test was irradiated for 312 equivalent full power days (EFPD) in FFTF. It had a peak pin power of 13.7 kW/ft and reached a peak burnup of 65.2 MWd/kgM with a peak fast fluence of 9.9 /times/ 10/sup 22/ n/cm/sup 2/ (E > 0.1 MeV). This document discusses the test and its results. 6 refs., 19 figs., 4 tabs.

Gilpin, L.L.; Baker, R.B.; Chastain, S.A.

1989-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

UPDATE ON GASIFICATION TESTING AT THE POWER SYSTEMS DEVELOPMENT FACILITY  

E-Print Network (OSTI)

The Power Systems Development Facility (PSDF) located in Wilsonville, Alabama was established in 1995 to lead the United States ' effort to develop cost-competitive, environmentally acceptable, coal-based power plant technologies. The PSDF is an engineering scale demonstration of key components of an Integrated Gasification Combined Cycle (IGCC) power

Senior Engineer; Pannalal Vimalchand; Roxann Leonard; Robert C. Lambrecht

2008-01-01T23:59:59.000Z

302

Testing and evaluation of large-area heliostats for solar thermal applications  

DOE Green Energy (OSTI)

Two heliostats representing the state-of-the-art in glass-metal designs for central receiver (and photovoltaic tracking) applications were tested and evaluated at the National Solar Thermal Test Facility in Albuquerque, New Mexico from 1986 to 1992. These heliostats have collection areas of 148 and 200 m{sup 2} and represent low-cost designs for heliostats that employ glass-metal mirrors. The evaluation encompassed the performance and operational characteristics of the heliostats, and examined heliostat beam quality, the effect of elevated winds on beam quality, heliostat drives and controls, mirror module reflectance and durability, and the overall operational and maintenance characteristics of the two heliostats. A comprehensive presentation of the results of these and other tests is presented. The results are prefaced by a review of the development (in the United States) of heliostat technology.

Strachan, J.W.; Houser, R.M.

1993-02-01T23:59:59.000Z

303

Thermal desorption treatability test conducted with VAC*TRAX Unit  

SciTech Connect

In 1992, Congress passed the Federal Facilities Compliance Act, requiring the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with Resource Conservation and Recovery Act (RCRA) treatment standards. In response to the need for mixed-waste treatment capacity, where off-site commercial treatment facilities do not exist or cannot be used, the DOE Albuquerque Operations Office (DOE-AL) organized a Treatment Selection Team to match mixed waste with treatment options and develop a strategy for treatment of mixed waste. DOE-AL manages nine sites with mixed-waste inventories. The Treatment Selection Team determined a need to develop mobile treatment units (MTUs) to treat waste at the sites where the wastes are generated. Treatment processes used for mixed wastes must remove the hazardous component (i.e., meet RCRA treatment standards) and contain the radioactive component in a form that will protect the worker, public, and environment. On the basis of the recommendations of the Treatment Selection Team, DOE-AL assigned projects to the sites to bring mixed-waste treatment capacity on-line. The three technologies assigned to the DOE Grand Junction Projects Office (DOE-GJPO) include thermal desorption (TD), evaporative oxidation, and waste water evaporation.

1996-01-01T23:59:59.000Z

304

Powerline Conductor Accelerated Testing Facility (PCAT) The Powerline Conductor Accelerated Testing facility (PCAT) at Oak Ridge National  

E-Print Network (OSTI)

associated with electricity transmission reliability and security in the US. Figures 1 and 2 show a view). The facility consists of five 161kV-rated steel transmission poles, which have extensive support to ensure of Energy's (DOE) National Transmission Technology Research Center (NTTRC). PCAT is part of DOE's effort

305

Installation of a Devonian Shale Reservoir Testing Facility and acquisition of reservoir property measurements  

SciTech Connect

In October, a contract was awarded for the Installation of a Devonian Shale Reservoir Testing Facility and Acquisition of Reservoir Property measurements from wells in the Michigan, Illinois, and Appalachian Basins. Geologic and engineering data collected through this project will provide a better understanding of the mechanisms and conditions controlling shale gas production. This report summarizes the results obtained from the various testing procedures used at each wellsite and the activities conducted at the Reservoir Testing Facility.

Locke, C.D.; Salamy, S.P.

1991-09-01T23:59:59.000Z

306

Installation of a Devonian Shale Reservoir Testing Facility and acquisition of reservoir property measurements. Final report  

SciTech Connect

In October, a contract was awarded for the Installation of a Devonian Shale Reservoir Testing Facility and Acquisition of Reservoir Property measurements from wells in the Michigan, Illinois, and Appalachian Basins. Geologic and engineering data collected through this project will provide a better understanding of the mechanisms and conditions controlling shale gas production. This report summarizes the results obtained from the various testing procedures used at each wellsite and the activities conducted at the Reservoir Testing Facility.

Locke, C.D.; Salamy, S.P.

1991-09-01T23:59:59.000Z

307

THE COMPONENT TEST FACILITY – A NATIONAL USER FACILITY FOR TESTING OF HIGH TEMPERATURE GAS-COOLED REACTOR (HTGR) COMPONENTS AND SYSTEMS  

DOE Green Energy (OSTI)

The Next Generation Nuclear Plant (NGNP) and other High-Temperature Gas-cooled Reactor (HTGR) Projects require research, development, design, construction, and operation of a nuclear plant intended for both high-efficiency electricity production and high-temperature industrial applications, including hydrogen production. During the life cycle stages of an HTGR, plant systems, structures and components (SSCs) will be developed to support this reactor technology. To mitigate technical, schedule, and project risk associated with development of these SSCs, a large-scale test facility is required to support design verification and qualification prior to operational implementation. As a full-scale helium test facility, the Component Test facility (CTF) will provide prototype testing and qualification of heat transfer system components (e.g., Intermediate Heat Exchanger, valves, hot gas ducts), reactor internals, and hydrogen generation processing. It will perform confirmation tests for large-scale effects, validate component performance requirements, perform transient effects tests, and provide production demonstration of hydrogen and other high-temperature applications. Sponsored wholly or in part by the U.S. Department of Energy, the CTF will support NGNP and will also act as a National User Facility to support worldwide development of High-Temperature Gas-cooled Reactor technologies.

David S. Duncan; Vondell J. Balls; Stephanie L. Austad

2008-09-01T23:59:59.000Z

308

Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities Facilities LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 Some LANL facilities are available to researchers at other laboratories, universities, and industry. Unique facilities foster experimental science, support LANL's security mission DARHT accelerator DARHT's electron accelerators use large, circular aluminum structures to create magnetic fields that focus and steer a stream of electrons down the length of the accelerator. Tremendous electrical energy is added along the way. When the stream of high-speed electrons exits the accelerator it is

309

Beam dynamics simulations and measurements at the Project X Test Facility  

Science Conference Proceedings (OSTI)

Project X, under study at Fermilab, is a multitask high-power superconducting RF proton beam facility, aiming to provide high intensity protons for rare processes experiments and nuclear physics at low energy, and simultaneously for the production of neutrinos, as well as muon beams in the long term. A beam test facility - former known as High Intensity Neutrino Source (HINS) - is under commissioning for testing critical components of the project, e.g. dynamics and diagnostics at low beam energies, broadband beam chopping, RF power generation and distribution. In this paper we describe the layout of the test facility and present beam dynamics simulations and measurements.

Gianfelice-Wendt, E.; Scarpine, V.E.; Webber, R.C.; /Fermilab

2011-03-01T23:59:59.000Z

310

Status and Plans for an SRF Accelerator Test Facility at Fermilab  

SciTech Connect

A superconducting RF accelerator test facility is currently under construction at Fermilab. The accelerator will consist of an electron gun, 40 MeV injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, and multiple downstream beam lines for testing diagnostics and performing beam experiments. With 3 cryomodules installed this facility will initially be capable of generating an 810 MeV electron beam with ILC beam intensity. The facility can accommodate up to 6 cryomodules for a total beam energy of 1.5 GeV. This facility will be used to test SRF cryomodules under high intensity beam conditions, RF power equipment, instrumentation, and LLRF and controls systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

Church, M.; Leibfritz, J.; Nagaitsev, S.; /Fermilab

2011-07-29T23:59:59.000Z

311

Power Burst Facility (PBF) severe fuel damage test 1-4 test results report  

DOE Green Energy (OSTI)

A comprehensive evaluation of the Severe Fuel Damage (SFD) Test 1-4 performed in the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory is presented. Test SFD 1-4 was the fourth and final test in an internationally sponsored light water reactor severe accident research program, initiated by the US Nuclear Regulatory Commission. The overall technical objective of the test was to contribute to the understanding of fuel and control rod behavior, aerosol and hydrogen generation, and fission product release and transport during a high-temperature, severe fuel damage transient. A test bundle, comprised of 26 previously irradiated (36,000 MWd/MtU) pressurized water-reactor-type fuel rods, 2 fresh instrumented fuel rods, and 4 silver-indium-cadmium control rods, was surrounded by an insulating shroud and contained in a pressurized in-pile tube. The experiment consisted of a 1.3-h transient at a coolant pressure of 6.95 MPa in which the inlet coolant flow to the bundle was reduced to 0.6 g/s while the bundle fission power was gradually increased until dryout, heatup, cladding rupture, and oxidation occurred. With sustained fission power and heat from oxidation, temperatures continued to rise rapidly, resulting in zircaloy and control rod absorber alloy melting, fuel liquefaction, material relocation, and the release of hydrogen, aerosols, and fission products. The transient was terminated over a 2100-s time span by slowly reducing the reactor power and cooling the damaged bundle with argon gas. A description and evaluation of the major phenomena, based upon the response of on-line instrumentation, analysis of fission product and aerosol data, postirradiation examination of the fuel bundle, and calculations using the SCDAP/RELAP5 computer code, are presented. 40 refs., 160 figs., 31 tabs.

Petti, D.A.; Martinson, Z.R.; Hobbins, R.R.; Allison, C.M.; Carlson, E.R.; Hagrman, D.L.; Cheng, T.C.; Hartwell, J.K.; Vinjamuri, K.; Seifken, L.J.

1989-04-01T23:59:59.000Z

312

PBF (Power Burst Facility) severe fuel damage test 1--3 test results report  

Science Conference Proceedings (OSTI)

A comprehensive evaluation of the Severe Fuel Damage (SFD) Test 1--3 performed in the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory is presented. Test SFD 1--3 was the third test in an internationally sponsored light water reactor severe accident research program, initiated by the US Nuclear Regulatory Commission. The overall technical objective of the test was to contribute to the understanding of fuel rod behavior, hydrogen generation, and fission product release and transport during a high-temperature, severe fuel damage transient. A test bundle, comprised of 26 previously irradiated (38,000 MWd/tU) pressurized water reactor-type fuel rods, 2 fresh instrumented fuel rods, and 4 empty zircaloy guide tubes, was surrounded by an insulating shroud and contained in a pressurized in-pile tube. The experiment consisted of a 1-h transient at a nominal coolant pressure of 6.85 MPa in which the inlet coolant flow to the bundle was reduced to 0.6 g/s while the bundle fission power was gradually increased until dryout, heatup, cladding rupture, and oxidation occurred. With sustained fission power and heat from oxidation, temperatures continued to rise rapidly, resulting in zircaloy melting, fuel liquefaction, material relocation, and the release of hydrogen, aerosols, and fission products. The transient was terminated over a 1340-s time span by slowly reducing the reactor power and cooling the damaged bundle with argon gas. A description and evaluation of the major phenomena, based upon the response of online instrumentation, analysis of fission product data, postirradiation examination of the fuel bundle, and calculations using the SCDAP/RELAP5 computer code, are presented. 34 refs., 241 figs., 51 tabs.

Martinson, Z.R.; Gasparini, M.; Hobbins, R.R.; Petti, D.A.; Allison, C.M.; Hohorst, J.K.; Hagrman, D.L.; Vinjamuri, K. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1989-10-01T23:59:59.000Z

313

Battery Energy Storage Test (BEST) Facility: Summary report, 1976-1986: Final report  

SciTech Connect

This report summarizes the development, operations, and contributions of the Battery Energy Storage Test Facility. Providing direction for the nation's battery technology research, the facility has generated a better understanding of the work involved in operating energy storage systems and has been instrumental in demonstrating lead-acid battery applications for utilities worldwide.

Hyman, E.A.

1986-12-01T23:59:59.000Z

314

Operator awareness of system status during Fast Flux Test Facility transition to standby  

Science Conference Proceedings (OSTI)

A facility in transition, due to a change in its mission or its operating status, begins to depart from a previously well-defined normal mode of operation. The equipment becomes reconfigured or deactivated. In an environment of transition, the Fast Flux Test Facility (FFTF) has employed methods to enhance operator awareness of system status. These methods are described in this report.

Gibson, J.L.

1994-04-01T23:59:59.000Z

315

Elastic-plastic-creep analysis of thermal ratchetting in straight pipe and comparisons with test results  

SciTech Connect

From winter meeting of American Society of Mechanical Engineers; Detroit, Michigan, USA (11 Nov 1973). An experimental and analytical study of ratchetting in a simple structural component is described. A straight pipe from a wellcharacterized heat of Type 304 stainless steel was subjected to a series of thermal downshocks followed by sustained periods of high-temperature operation under internal pressure. The test was performed in a special sodium test facility built for the purpose. The inelastic analysis predictions were obtained using a one-dimensional finite-element procedure, and they were based on interim constitutive equations that have been recommended for use in design analyses of liquid-metal fast-breeder reactor components. The agreement between the measured and predicted ratchetting behavior is good. (8 references) (auth)

Corum, J.M.; Sartory, W.K.

1973-01-01T23:59:59.000Z

316

Hydrogen-burn survival: preliminary thermal model and test results  

DOE Green Energy (OSTI)

This report documents preliminary Hydrogen Burn Survival (HBS) Program experimental and analytical work conducted through February 1982. The effects of hydrogen deflagrations on safety-related equipment in nuclear power plant containment buildings are considered. Preliminary results from hydrogen deflagration experiments in the Sandia Variable Geometry Experimental System (VGES) are presented and analytical predictions for these tests are compared and discussed. Analytical estimates of component thermal responses to hydrogen deflagrations in the upper and lower compartments of an ice condenser, pressurized water reactor are also presented.

McCulloch, W.H.; Ratzel, A.C.; Kempka, S.N.; Furgal, D.T.; Aragon, J.J.

1982-08-01T23:59:59.000Z

317

A Cryogenic RF Material Testing Facility at SLAC  

SciTech Connect

The authors have developed an X-band SRF testing system using a high-Q copper cavity with an interchangeable flat bottom for the testing of different materials. By measuring the Q of the cavity, the system is capable to characterize the quenching magnetic field of the superconducting samples at different power level and temperature, as well as the surface resistivity. This paper presents the most recent development of the system and testing results.

Guo, Jiquan; Martin, David; Tantawi, Sami; Yoneda, Charles; /SLAC

2012-06-22T23:59:59.000Z

318

EXPERIMENTAL TEST FACILITY FOR EVALUATION OF CONTROLS AND CONTROL STRATEGIES  

E-Print Network (OSTI)

Sept. Proc. of 3rd Annual Solar Heating and Cooling Researchence Applications, Inc. SOLAR HEATING/ COOLING TEST FACILITYperformance of different solar heating control strategies

Warren, Mashuri L.

2013-01-01T23:59:59.000Z

319

NIST Hydrogen Fuel Materials Test Facility Starts Delivering ...  

Science Conference Proceedings (OSTI)

... microscope images of a test section of X100 alloy pipeline steel shows ... hydrogen gas combined with fatigue reduces the service life of pipelines. ...

2013-07-11T23:59:59.000Z

320

Testing Promising Technologies: A Role for Federal Facilities  

Energy.gov (U.S. Department of Energy (DOE))

Presentation covers the testing of promising technologies and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

Note: This page contains sample records for the topic "thermal test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The Advanced Test Reactor National Scientific User Facility  

Science Conference Proceedings (OSTI)

Symposium, Materials Solutions for the Nuclear Renaissance ... U.S. Department of Energy designated the Advanced Test Reactor (ATR) as a National Scientific ...

322

Technology Potential of Thermal Energy Storage (TES) Systems in Federal Facilities  

Science Conference Proceedings (OSTI)

Thermal energy storage reduces electric costs by shifting chilling activities to off-peak times. Water is chilled or ice is made during the night to either replace or augment operation of cooling equipment during the day. Off-peak demand and consumption rates produce significant dollar savings. TES requires favorable electric rate structures, available space to house the associated equipment, and either variation in buildings cooling loads or favorable climatic conditions. TES can be implemented anywhere cooling loads can be shifted to off-peak hours with the best applications being office buildings, hospitals, and schools. Most TES projects are implemented in conjunction with an existing cooling system expansion, replacement of older cooling equipment, or new construction, thus reducing energy costs, consumption, and demand. Various options are available for funding TES projects in Federal facilities, including direct agency funding, capital improvement funds, utility financing, and alternative financing. The Federal Energy Management Program (FEMP) should promote TES through demonstrations, success stories, and by distributing the FEMP Technology Alert (March 2000). Federal Facilities should, as standard practice, evaluate TES options whenever a chiller retrofit or replacement is performed.

Chvala, William D.

2002-01-01T23:59:59.000Z

323

Thermal and flow analyses of the Nuclear Materials Storage Facility Renovation Title I 60% design  

Science Conference Proceedings (OSTI)

The authors are continuing to use the computational fluid dynamics code CFX-4.2 to evaluate the steady-state thermal-hydraulic conditions in the Nuclear Material Storage Facility Renovation Title 1 60% Design. The analyses build on those performed for the 30% design. They have run an additional 9 cases to investigate both the performance of the passive vault and of an individual drywell. These cases investigated the effect of wind on the inlet tower, the importance of resolving boundary layers in the analyses, and modifications to the porous-medium approach used in the earlier analyses to represent better the temperature fields resulting from the detailed modeling of the boundary layers. The difference between maximum temperatures of the bulk air inside the vault for the two approaches is small. They continued the analyses of the wind effects around the inflector fixture, a canopy and cruciform device, on the inlet tower by running a case with the wind blowing diagonally across the inflector. The earlier analyses had investigated a wind that was blowing parallel to one set of vanes on the inflector. Several subcases for these analyses investigated coupling the analysis to the facility analysis and design changes for the inflector.

Knight, T.D.; Steinke, R.G.; Mueller, C.

1998-08-01T23:59:59.000Z

324

Development of a Test Technique to Determine the Thermal Conductivity of Large Refractory Ceramic Test Specimens  

SciTech Connect

A method has been developed to utilize the High Intensity Infrared lamp located at Oak Ridge National Laboratory for the measurement of thermal conductivity of bulk refractory materials at elevated temperatures. The applicability of standardized test methods to determine the thermal conductivity of refractory materials at elevated temperatures is limited to small sample sizes (laser flash) or older test methods (hot wire, guarded hot plate), which have their own inherent problems. A new method, based on the principle of the laser flash method, but capable of evaluating test specimens on the order of 200 x 250 x 50 mm has been developed. Tests have been performed to validate the method and preliminary results are presented in this paper.

Hemrick, James Gordon [ORNL; Dinwiddie, Ralph Barton [ORNL; Loveland, Erick R [ORNL; Prigmore, Andre L [ORNL

2012-01-01T23:59:59.000Z

325

Testing a Passive Autocatalytic Recombiner in the Surtsey Facility  

DOE Green Energy (OSTI)

Performance tests of a scaled passive autocatalytic recombine (PAR) were performed in the Surtsey test vessel at Sandia National Laboratories. Measured hydrogen depletion rate data were obtained and compared with previous work. Depletion rate is most likely proportional to PAR scale. PAR performance in steamy environments (with and without hydrophobic coating) was investigated. The tests determined that the PAR startup delay times decrease with increasing hydrogen concentrations in steamy environments. Tests with placement of the PAR near a wall (as opposed to a center location) yielded reduced depletion rates. Tests at low oxygen concentrations also showed a reduced recombination rate. The PAR repeatedly ignited hydrogen at about 6 mol% concentration with a catalyst temperature near 940 K. Velocity data at the PAR exhaust were used to calculate the volumetric flow rate through the PAR as a function of the vessel hydrogen concentration.

Blanchat, Thomas K.; Malliakos, Asimios

1999-07-01T23:59:59.000Z

326

Preliminary Feasibility, Design, and Hazard Analysis of a Boiling Water Test Loop Within the Idaho National Laboratory Advanced Test Reactor National Scientific User Facility  

Science Conference Proceedings (OSTI)

The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The ATR and its support facilities are located at the Idaho National Laboratory (INL). A Boiling Water Test Loop (BWTL) is being designed for one of the irradiation test positions within the. The objective of the new loop will be to simulate boiling water reactor (BWR) conditions to support clad corrosion and related reactor material testing. Further it will accommodate power ramping tests of candidate high burn-up fuels and fuel pins/rods for the commercial BWR utilities. The BWTL will be much like the pressurized water loops already in service in 5 of the 9 “flux traps” (region of enhanced neutron flux) in the ATR. The loop coolant will be isolated from the primary coolant system so that the loop’s temperature, pressure, flow rate, and water chemistry can be independently controlled. This paper presents the proposed general design of the in-core and auxiliary BWTL systems; the preliminary results of the neutronics and thermal hydraulics analyses; and the preliminary hazard analysis for safe normal and transient BWTL and ATR operation.

Douglas M. Gerstner

2009-05-01T23:59:59.000Z

327

Central receiver solar thermal power system: collector subsystem extended life test. Final report  

SciTech Connect

To evaluate long term durability and stability of heliostat reflector and enclosure materials an extended life test program was performed on Research Experiment Heliostats by Boeing Engineering and Construction. The reflectors and enclosures were periodically evaluated and analyzed for the effects of dirt, sunlight, wind and thermal cycling on the mechanical and optical properties of Tedlar and changes in the Mylar reflector tension and reflectivity. During testing the heliostats were maintained and semi-annualy evaluated for optical and mechanical stability. The heliostats tested were located at the Boeing Boardman, Oregon test facility. The purpose of the program was to obtain data through measurements and observation to aid in heliostat design improvement. Certain weather and time related information, most reliably acquired by real time exposure testing, was sought through performance of mechanical and optical testing of the Boardman heliostats. The key areas of technical concern were: (1) enclosure and reflector optical property retention; (2) enclosure and reflector mechanical property retention; and (3) reflector creep (or loss in membrane tension) using bonded joints. In-place optical measurements as well as laboratory optical measurements on coupons cut from a heliostat, mechanical measurements from heliostat coupons, reflector sag measurements, and observations of the air supply system pressure stability and filter condition were made during the initial and two semi-annual test samplings. Results are summarized and discussed. (WHK)

1979-05-18T23:59:59.000Z

328

Fluence thresholds for laser-induced damage of optical components in the injector laser of the SSRL gun test facility  

E-Print Network (OSTI)

Fluence thresholds for laser-induced damage of optical components in the injector laser of the SSRL gun test facility

Bolton, P

2001-01-01T23:59:59.000Z

329

Summary description of the Fast Flux Test Facility  

SciTech Connect

This document has been compiled and issued to provide an illustrated engineering summary description of the FFTF. The document is limited to a description of the plant and its functions, and does not cover the extensive associated programs that have been carried out in the fields of design, design analysis, safety analysis, fuels development, equipment development and testing, quality assurance, equipment fabrication, plant construction, acceptance testing, operations planning and training, and the like.

Cabell, C.P. (comp.)

1980-12-01T23:59:59.000Z

330

Status and Plans for a Superconducting RF Accelerator Test Facility at Fermilab  

Science Conference Proceedings (OSTI)

The Advanced Superconducting Test Accelerator (ASTA) is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beam lines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating a 750 MeV electron beam with ILC beam intensity. An expansion of this facility was recently completed that will provide the capability to upgrade the accelerator to a total beam energy of 1.5 GeV. Two new buildings were also constructed adjacent to the ASTA facility to house a new cryogenic plant and multiple superconducting RF (SRF) cryomodule test stands. In addition to testing accelerator components, this facility will be used to test RF power systems, instrumentation, and control systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

Leibfritz, J.; Andrews, R.; Baffes, C.M.; Carlson, K.; Chase, B.; Church, M.D.; Harms, E.R.; Klebaner, A.L.; Kucera, M.; Martinez, A.; Nagaitsev, S.; /Fermilab

2012-05-01T23:59:59.000Z

331

Experimental determination of magnetohydrodynamic seawater thruster performance in a two Tesla test facility  

DOE Green Energy (OSTI)

A two Tesla test facility was designed, built, and operated to investigate the performance of magnetohydrodynamic (MHD) seawater thrusters. The results of this investigation are used to validate MHD thruster performance computer models. The facility test loop, its components, and their design are presented in detail. Additionally, the test matrix and its rational are discussed. finally, representative experimental results of the test program are presented, and are compared to pretest computer model predictions. Good agreement between predicted and measured data has served to validate the thruster performance computer models.

Picologlou, B.; Doss, E.; Black, D. [Argonne National Lab., IL (United States); Sikes, W.C. [Newport News Shipbuilding and Dry Dock Co., VA (United States)

1992-09-01T23:59:59.000Z

332

Experimental determination of magnetohydrodynamic seawater thruster performance in a two Tesla test facility  

DOE Green Energy (OSTI)

A two Tesla test facility was designed, built, and operated to investigate the performance of magnetohydrodynamic (MHD) seawater thrusters. The results of this investigation are used to validate MHD thruster performance computer models. The facility test loop, its components, and their design are presented in detail. Additionally, the test matrix and its rational are discussed. finally, representative experimental results of the test program are presented, and are compared to pretest computer model predictions. Good agreement between predicted and measured data has served to validate the thruster performance computer models.

Picologlou, B.; Doss, E.; Black, D. (Argonne National Lab., IL (United States)); Sikes, W.C. (Newport News Shipbuilding and Dry Dock Co., VA (United States))

1992-01-01T23:59:59.000Z

333

K-Basin sludge treatment facility pump test report  

Science Conference Proceedings (OSTI)

Tests of a disc pump and a dual diaphragm pump are stymied by pumping a metal laden fluid. Auxiliary systems added to a diaphragm pump might enable the transfer of such fluids, but the additional system complexity is not desirable for remotely operated and maintained systems.

SQUIER, D.M.

1999-06-02T23:59:59.000Z

334

New Zero Net-Energy Facility: A Test Bed for Home Efficiency | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Zero Net-Energy Facility: A Test Bed for Home Efficiency Zero Net-Energy Facility: A Test Bed for Home Efficiency New Zero Net-Energy Facility: A Test Bed for Home Efficiency September 17, 2012 - 2:34pm Addthis Deputy Assistant Secretary for Energy Efficiency Kathleen Hogan joined representatives from the National Institute of Standards and Technology (NIST) and state and local elected officials to celebrate the opening of the new zero net-energy residential test laboratory. | Photo courtesy of NIST. Deputy Assistant Secretary for Energy Efficiency Kathleen Hogan joined representatives from the National Institute of Standards and Technology (NIST) and state and local elected officials to celebrate the opening of the new zero net-energy residential test laboratory. | Photo courtesy of NIST. David Lee Residential Program Supervisor, Building Technologies Program

335

Design Considerations and Operating Experience of the Sanford Com Test Facility  

E-Print Network (OSTI)

A 400 MW oil-fired boiler was fitted with new burner guns and accessories to burn coal/oil mixture (COM) for a 120 full-power burn-day demonstration. Coal unloading and storage, and COM preparation and storage facilities were installed adjacent to the power house. Modifications to the steam generator and firing systems were made as the test program progressed. Burn tests through 50 percent coal (by weight) were completed, and optimization and long term test programs with 40 percent coal were completed. This paper describes the reasons for the demonstration, the project schedule, and the test facility itself. Discussions are also included of the rationale for equipment and process selection, the test program, and some of the operating experience that should be considered in the design of future permanent facilities.

Causilla, H.; Kasprik, A. J.

1982-01-01T23:59:59.000Z

336

ESTB: A New Beam Test Facility at SLAC  

SciTech Connect

End Station A Test Beam (ESTB) is a beam line at SLAC using a small fraction of the bunches of the 13.6 GeV electron beam from the Linac Coherent Light Source (LCLS), restoring test beam capabilities in the large End Station A (ESA) experimental hall. ESTB will provide one of a kind test beam essential for developing accelerator instrumentation and accelerator R&D, performing particle and particle astrophysics detector research, linear collider machine and detector interface (MDI) R&D studies, development of radiation-hard detectors, and material damage studies with several distinctive features. In the past, 18 institutions participated in the ESA program at SLAC. In stage I, 4 new kicker magnets will be added to divert 5 Hz of the LCLS beam to the A-line. A new beam dump will be installed and a new Personnel Protection System (PPS) is being built in ESA. In stage II, a secondary hadron target will be installed, able to produce pions up to about 12 GeV/c at 1 particle/pulse.

Pivi, M.; Fieguth, T.; Hast, C.; Iverson, R.; Jaros, J.; Jobe, K.; Keller, L.; Walz, D.; Weathersby, S.; Woods, M.; /SLAC

2011-04-05T23:59:59.000Z

337

Thermal Testing of Tow-Placed Variable Stiffness Panels  

E-Print Network (OSTI)

Commercial systems for precise placement of pre-preg composite tows are enabling technology that allows fabrication of advanced composite structures in which the tows may be precisely laid down along curvilinear paths within a given ply. For laminates with curvilinear tow paths, the fiber orientation angle varies continuously throughout the laminate, and is not required to be straight and parallel in each ply as in conventional composite laminates. Hence, the stiffness properties vary as a function of location in the laminate, and the associated composite structure is called a Òvariable stiffnessÓ composite structure. Previous analytical studies indicate that variable stiffness structures have great potential for improving the structural performance of composite structures. In the present research, an experimental program has been conducted to evaluate the thermal performance of two variable stiffness panels fabricated using the Viper Fiber Placement System developed by Cincinnati Machine. These variable stiffness panels have the same layup, but one panel has overlapping tows and the other panel does not. Results of thermal tests of the variable stiffness panels are presented and com-

K. Chauncey Wu; Zafer Gÿrdal

2001-01-01T23:59:59.000Z

338

Aquifer thermal energy storage at Mid-Island postal facility: Phase 1 final report  

DOE Green Energy (OSTI)

The successful widespread commercialization of aquifer thermal energy storage (ATES) in the United States will depend on how experiences gained from early full-scale projects are used as guides in the design, installation, and operation of future projects. One early system, built in the mid-1980s, is the US Postal Service (USPS) Mid-Island Mail Processing Facility (MPF), in Melville, New York. The heating, ventilation, and air conditioning (HVAC) of the MPF's workroom is provided by an ATES system, which is operated year-round to provide a source for both heating and cooling, in combination with a triethylene glycol (TEG) liquid-desiccant system for humidity control. Because the facility affords a unique opportunity to study this innovative system, the US Department of Energy's (DOE) Pacific Northwest Laboratory (PNL) entered into agreements with the USPS, the US Geological Survey (USGS), and the New York State Energy Research and Development Authority (the Energy Authority) to assess the operation and performance of the system. Two essentially independent questions were to be addressed by the project. The first question was: How does the MPF ATES/TEG technology compare to conventional technologies '' The second was: What can be done to make operation of the USPS MPF more economical '' Modelling of the MPF ATES/TEG HVAC system and its loads helped to address both of these questions by showing how much energy is used by the different system components. This report is divided into six sections. Section 1 is an introduction. Section 2 provides system background. Section 3 describes PNL's technical performance assessment of the system. Section 4 discusses the life-cycle cost assessment. An operational assessment of the liquid-desiccant system is discussed in Section 5. Section 6 contains conclusions of this study.

Marseille, T.J.; Armstrong, P.R.; Brown, D.R.; Vail, L.W.; Kannberg, L.D.

1993-05-01T23:59:59.000Z

339

Aquifer thermal energy storage at Mid-Island postal facility: Phase 1 final report  

DOE Green Energy (OSTI)

The successful widespread commercialization of aquifer thermal energy storage (ATES) in the United States will depend on how experiences gained from early full-scale projects are used as guides in the design, installation, and operation of future projects. One early system, built in the mid-1980s, is the US Postal Service (USPS) Mid-Island Mail Processing Facility (MPF), in Melville, New York. The heating, ventilation, and air conditioning (HVAC) of the MPF`s workroom is provided by an ATES system, which is operated year-round to provide a source for both heating and cooling, in combination with a triethylene glycol (TEG) liquid-desiccant system for humidity control. Because the facility affords a unique opportunity to study this innovative system, the US Department of Energy`s (DOE) Pacific Northwest Laboratory (PNL) entered into agreements with the USPS, the US Geological Survey (USGS), and the New York State Energy Research and Development Authority (the Energy Authority) to assess the operation and performance of the system. Two essentially independent questions were to be addressed by the project. The first question was: ``How does the MPF ATES/TEG technology compare to conventional technologies?`` The second was: ``What can be done to make operation of the USPS MPF more economical?`` Modelling of the MPF ATES/TEG HVAC system and its loads helped to address both of these questions by showing how much energy is used by the different system components. This report is divided into six sections. Section 1 is an introduction. Section 2 provides system background. Section 3 describes PNL`s technical performance assessment of the system. Section 4 discusses the life-cycle cost assessment. An operational assessment of the liquid-desiccant system is discussed in Section 5. Section 6 contains conclusions of this study.

Marseille, T.J.; Armstrong, P.R.; Brown, D.R.; Vail, L.W.; Kannberg, L.D.

1993-05-01T23:59:59.000Z

340

Preliminary interpretation of thermal data from the Nevada Test Site  

DOE Green Energy (OSTI)

Analysis of data from 60 wells in and around the Nevada Test Site, including 16 in the Yucca Mountain area, indicates a thermal regime characterized by large vertical and lateral gradients in heat flow. Estimates of heat flow indicate considerable variation on both regional and local scales. The variations are attributable primarily to hydrologic processes involving interbasin flow with a vertical component of (seepage) velocity (volume flux) of a few mm/yr. Apart from indicating a general downward movement of water at a few mm/yr, the reults from Yucca Mountain are as yet inconclusive. The purpose of the study was to determine the suitability of the area for proposed repository sites.

Sass, J.H.; Lachenbruch, A.H.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Central Receiver Solar Thermal Power System. Hailstone simulation test report  

SciTech Connect

The purpose of the work described is to verify heliostat survival and evaluate material damage resultant from the impact of 1 inch hailstones traveling at terminal velocity (75 feet/second). Data obtained from the tests were also used to predict the loss in specular transmittance of the plastic heliostat enclosures due to hail damage possible at potential solar thermal power plant sites in southwestern United States. The approach taken was to subject several different typical enclosure materials as well as an existing enclosure at Boardman, Oregon, to hailstone bombardment and measure and analyze the effects on enclosure performance. Hailstorm frequency and severity data, although sparse and highly generalized, was found in the literature and used along with the experimental data to predict total accumulative damage after 15 years of exposure. (WHK)

1978-02-15T23:59:59.000Z

342

Diagnostics of the ITER neutral beam test facility  

SciTech Connect

The ITER heating neutral beam (HNB) injector, based on negative ions accelerated at 1 MV, will be tested and optimized in the SPIDER source and MITICA full injector prototypes, using a set of diagnostics not available on the ITER HNB. The RF source, where the H{sup -}/D{sup -} production is enhanced by cesium evaporation, will be monitored with thermocouples, electrostatic probes, optical emission spectroscopy, cavity ring down, and laser absorption spectroscopy. The beam is analyzed by cooling water calorimetry, a short pulse instrumented calorimeter, beam emission spectroscopy, visible tomography, and neutron imaging. Design of the diagnostic systems is presented.

Pasqualotto, R.; Serianni, G.; Agostini, M.; Brombin, M.; Dalla Palma, M.; Gazza, E.; Pomaro, N.; Rizzolo, A.; Spolaore, M.; Zaniol, B. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Sonato, P.; De Muri, M. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Dipartimento di Ingegneria Elettrica, Padova University (Italy); Croci, G. [Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, Milano (Italy); Gorini, G. [Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, Milano (Italy); CNISM, Dipartimento di Fisica, Universita degli Studi di Milano-Bicocca, Milano (Italy)

2012-02-15T23:59:59.000Z

343

SOLERAS - Solar-Powered Water Desalination Project at Yanbu: CBI Na-Con, Inc. Engineering Test Facility problem assessment and lessons learned  

Science Conference Proceedings (OSTI)

A Solar Energy Water Desalination Engineering Test Facility has been undergoing operation and testing in Yanbu, Saudi Arabia, as part of of the SOLERAS Program. The facility employs a field of point-focus, distributed receiver, solar thermal collectors operating at 388/degree/C (730/degree/F). Thermal energy is collected using a synthetic heat transfer fluid, stored in dual tank molten salt storage, and utilized on demand to generate steam, which provides both mechanical and thermal energy for refrigeration. The refrigeration drives a unique freeze desalination process in which ice is crystallized from concentrated seawater, pumped as a slurry of ice and brine, rinsed of brine in a countercurrent wash column, and melted to produce fresh water. The report presents an executive summary followed by an overview of the facility design and operation. The plant operation, from start-up in December, 1984 through mid-1986, is then briefly summarized. Key problem areas and areas of concern are identified and discussed; in addition to problems encountered, the discussion details problem causes, problem solutions, and in some cases problem avoidance which was accomplished through preventive measures employed during design and/or operation. The problems are grouped into areas corresponding to the facility's main subsystems: energy collection, energy storage, energy delivery, and desalination. 37 refs., 43 figs., 7 tabs.

Not Available

1987-04-01T23:59:59.000Z

344

Engineering development of selective agglomeration: Task 6, Operation of the Component Development Test Facility  

SciTech Connect

The objective of this report is to summarize the component development and laboratory binder test work at Wilsonville during Task 6. This Task included the construction and startup of the Component Development Test Facility (CDTF), coal procurement, evaluation of unit operation and dewatering performance, laboratory binder tests for diesel and heptane, production characterization, and vendor tests. Data evaluation, interpretation, and analysis are not included in this report, but will be discussed in the Task 7 report.

Not Available

1991-09-01T23:59:59.000Z

345

Ultra-Accelerated Natural Sunlight Exposure Testing Facilities  

DOE Patents (OSTI)

A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS onto a secondary reflector that delivers a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in a chamber that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

Lewandowski, Allan A. (Evergreen, CO); Jorgensen, Gary J. (Pine, CO)

2004-11-23T23:59:59.000Z

346

Preliminary design for hot dirty-gas control-valve test facility. Final report  

SciTech Connect

This report presents the results of a preliminary design and cost estimating effort for a facility for the testing of control valves in Hot Dirty Gas (HDGCV) service. This design was performed by Mittelhauser Corporation for the United States Department of Energy's Morgantown Energy Technology Center (METC). The objective of this effort was to provide METC with a feasible preliminary design for a test facility which could be used to evaluate valve designs under simulated service conditions and provide a technology data base for DOE and industry. In addition to the actual preliminary design of the test facility, final design/construction/operating schedules and a facility cost estimate were prepared to provide METC sufficient information with which to evaluate this design. The bases, assumptions, and limitations of this study effort are given. The tasks carried out were as follows: METC Facility Review, Environmental Control Study, Gas Generation Study, Metallurgy Review, Safety Review, Facility Process Design, Facility Conceptual Layout, Instrumentation Design, Cost Estimates, and Schedules. The report provides information regarding the methods of approach used in the various tasks involved in the completion of this study. Section 5.0 of this report presents the results of the study effort. The results obtained from the above-defined tasks are described briefly. The turnkey cost of the test facility is estimated to be $9,774,700 in fourth quarter 1979 dollars, and the annual operating cost is estimated to be $960,000 plus utilities costs which are not included because unit costs per utility were not available from METC.

Not Available

1980-01-01T23:59:59.000Z

347

Multi-Function Waste Tank Facility thermal hydraulic analysis for Title II design  

Science Conference Proceedings (OSTI)

The purpose of this work was to provide the thermal hydraulic analysis for the Multi-Function Waste Tank Facility (MWTF) Title II design. Temperature distributions throughout the tank structure were calculated for subsequent use in the structural analysis and in the safety evaluation. Calculated temperatures of critical areas were compared to design allowables. Expected operating parameters were calculated for use in the ventilation system design and in the environmental impact documentation. The design requirements were obtained from the MWTF Functional Design Criteria (FDC). The most restrictive temperature limit given in the FDC is the 200 limit for the haunch and dome steel and concrete. The temperature limit for the rest of the primary and secondary tanks and concrete base mat and supporting pad is 250 F. Also, the waste should not be allowed to boil. The tank geometry was taken from ICF Kaiser Engineers Hanford drawing ES-W236A-Z1, Revision 1, included here in Appendix B. Heat removal rates by evaporation from the waste surface were obtained from experimental data. It is concluded that the MWTF tank cooling system will meet the design temperature limits for the design heat load of 700,000 Btu/h, even if cooling flow is lost to the annulus region, and temperatures change very slowly during transients due to the high heat capacity of the tank structure and the waste. Accordingly, transients will not be a significant operational problem from the viewpoint of meeting the specified temperature limits.

Cramer, E.R.

1994-11-10T23:59:59.000Z

348

The simulation of a 1-inch break loss-of-coolant accident at the ROSA-IV/AP600 test facility using RELAP5/AP600 test facility using RELAP5/MOD3.2  

E-Print Network (OSTI)

During certification of the Advanced Passive 600 MWe Nuclear Reactor (AP600), the Nuclear Regulatory Commission (NRC) contracted with the Japan Atomic Energy Research Institute (JAERI) to conduct a series of confirmatory experiments at the Rig of Safety Assessment (ROSA-IV) Test Facility. The data from these experiments would provide: the response of the new AP600's passive safety systems and the data necessary to assess the ability of RELAP5/MOD3.2 thermal-hydraulic computer code to simulate the AP600 behavior during a small break loss-of-coolant accident. An experiment to simulate a I-inch break at the bottom of Loop B Cold Leg (APCL-03) was conducted. During the test thermal stratifications of 184' K and 123' K in Loop A and B Cold Legs, respectively, were observed. RELAP5/MOD3.2 is a one dimensional code is incapable of simulating this thermal stratification. To present this threedimensional phenomenon using RELAP5/MOD3.2 thermal-hydraulic code, a multi-stack noding approach was adopted. Two different nodalization techniques, split cold leg with cross-flow and split without cross-flow junctions, were performed. The nodalization patterns had little difference in calculating the temperatures in the cold legs. Split cold leg without cross-flow junctions nodalization was chosen for further study. The code predictions with the two-regions nodes produced thermal stratifications in Loop A and Loop B Cold Legs of 132' K and 74' K, respectively. This is approximately 50' K less than the maximum seen in AP-CL-03 measurement. This is due to only two regions being used. When the thermal interfaces do not lie along the centerline of the pipe, then an average of the temperatures above and below the interface are calculated. The most important information is the influence of the thermal stratification on the core collapsed liquid level. The nominal case showed a minimum value of 53% of the core covered, while with the other case a minimum value of 52% was obtained. With less than 1% difference, the splitting of the cold leg into a multi-stack nodes does not cause any significant deviations in estimating the collapsed liquid level of the core.

Piper, Robert Beverly

1995-01-01T23:59:59.000Z

349

Research Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

FLEX lab image, windows testing lab, scientist inside a lab, Research Facilities EETD maintains advanced research and test facilities for buildings, energy technologies, air...

350

Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall  

SciTech Connect

Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.

Michael Kruzic

2007-09-01T23:59:59.000Z

351

Facilities  

Science Conference Proceedings (OSTI)

... the gap for test data on advanced materials of ... in NCAL and Center for Theoretical and Computational Materials Science (CTCMS) cluster; ...

2013-02-22T23:59:59.000Z

352

Lawrence Berkeley laboratory neutral-beam engineering test facility power-supply system  

SciTech Connect

The Lawrence Berkeley Laboratory is upgrading the neutral beam source test facility (NBSTF) into a neutral beam engineering test facility (NBETF) with increased capabilities for the development of neutral beam systems. The NBETF will have an accel power supply capable of 170 kV, 70 A, 30 sec pulse length, 10% duty cycle; and the auxiliary power supplies required for the sources. This paper describes the major components, their ratings and capabilities, and the flexibility designed to accomodate the needs of source development.

Lutz, I.C.; Arthur, C.A.; deVries, G.J.; Owren, H.M.

1981-10-01T23:59:59.000Z

353

Developing Test Procedures for Measuring Stored Thermal Energy in Firefighter Protective Clothing.  

E-Print Network (OSTI)

??This research studied stored thermal energy in fire fighter's turnout systems. It developed a novel laboratory apparatus and test protocols for measuring the contribution of… (more)

Eni, Egbe Uchechi

2005-01-01T23:59:59.000Z

354

US/USSR cooperative program in open-cycle MHD electrical power gneration. Joint test report No. 2: tests in the U-25B facility; MHD generator test No. 3  

DOE Green Energy (OSTI)

The third joint test with a Soviet U-25B MHD generator and a US superconducting magnet system (SCMS) was conducted in the Soviet U-25B Facility. The primary objectives of the 3rd test were: (1) to operate the facility and MHD channel over a wider range of test parameters, and (2) to study the performance of all components and systems of the flow train at increased mass flow rates of combustion products (up to 4 kg/s), at high magnetic-field induction (up to 5 T), and high values of the electrical field in the MHD generator. The third test has demonstrated that all components and systems of the U-25B facility performed reliably. The electric power generated by the MHD generaor reached a maximum of 575 kW during this test. The MHD generator was operated under electrical loading conditions for 9 hours, and the combustor for a total of approximately 14 hours. Very high Hall fields (2.1 kV/m) were produced in the MHD channel, with a total Hall voltage of 4.24 kV. A detailed description is given of (1) performance of all components and systems of the U-25B facility, (2) analysis of the thermal, gasdynamic, and electrical characteristics of the MHD generator, (3) results of plasma diagnostic studies, (4) studies of vibrational characteristics of the flow train, (5) fluctuation of electrodynamic and gasdynamic parameters, (6) interaction of the MHD generator with the superconducting magnet, and (7) an operational problem, which terminated the test.

Tempelmeyer, K E; Sokolov, Y N [eds.

1979-04-01T23:59:59.000Z

355

REPORT OF SURVEY OF THE LOS ALAMOS TRITIUM SYSTEMS TEST ASSEMBLY FACILITY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

THE LOS ALAMOS TRITIUM THE LOS ALAMOS TRITIUM SYSTEMS TEST ASSEMBLY FACILITY U.S. Department of Energy Office of Environmental Management & Office of Science Report of Survey of the Los Alamos Tritium Systems Test Assembly Facility Rev. E (Final) October 3, 2000 Contents 1. Introduction 1.1 Purpose 1.2 Facility Description 1.3 Organization Representatives 1.4 Survey Participants 2. Summary, Conclusions & Recommendations 2.1 Comparison With LCAM Requirements 2.2 Transfer Considerations 2.3 Post-Transfer EM Path Forward & Management Risk 2.4 Post-Transfer S&M Reduction via Administrative Contamination Limit Revision 2.5 Stable Metal Tritides Consideration During D&D 3. Survey Results

356

Thermal testing of the STAR forward GEM tracker disks  

E-Print Network (OSTI)

In my thesis project, I worked on the Thermal Model for the FGT detector. The purpose of this thermal model is to simulate the cooling system for the electronics of the FGT. In this thesis report, I go over the construction ...

Santana, Rodolfo, S.B. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

357

Facility Closure Report for T-Tunnel (U12t), Area 12, Nevada Test Site, Nevada  

Science Conference Proceedings (OSTI)

This Facility Closure Report (FCR) has been prepared to document the actions taken to permanently close the remaining accessible areas of U12t-Tunnel (T-Tunnel) in Area 12 of the Nevada Test Site (NTS). The closure of T-Tunnel was a prerequisite to transfer facility ownership from the Defense Threat Reduction Agency (DTRA) to the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Closure of the facility was accomplished with the cooperation and concurrence of both NNSA/NSO and the Nevada Division of Environmental Protection (NDEP). The purpose of this FCR is to document that the closure of T-Tunnel complied with the closure requirements specified in the Facility Closure Plan for N- and T-Tunnels Area 12, Nevada Test Site (Appendix D) and that the facility is ready for transfer to NNSA/NSO. The Facility Closure Plan (FCP) is provided in Appendix D. T-Tunnel is located approximately 42 miles north of Mercury in Area 12 of the NTS (Figure 1). Between 1970 and 1987, T-Tunnel was used for six Nuclear Weapons Effects Tests (NWETs). The tunnel was excavated horizontally into the volcanic tuffs of Rainier Mesa. The T-Tunnel complex consists of a main access drift with two NWET containment structures, a Gas Seal Plug (GSP), and a Gas Seal Door (GSD) (Figure 2). The T-Tunnel complex was mothballed in 1993 to preserve the tunnel for resumption of testing, should it happen in the future, to stop the discharge of tunnel effluent, and to prevent unauthorized access. This was accomplished by sealing the main drift GSD.

NSTec Environmental Restoration

2008-08-01T23:59:59.000Z

358

Stability of CIS/CIGS Modules at the Outdoor Test Facility over Two Decades: Preprint  

DOE Green Energy (OSTI)

This paper discusses examining the status and question of long-term stability of copper indium diselenide (CIS) photovoltaic (PV) module performance for numerous modules that are deployed in the array field, or on the roof of, the outdoor test facility (OTF) at NREL, acquired from two manufacturers.

del Cueto, J. A.; Rummel, S.; Kroposki, B.; Osterwald, C.; Anderberg, A.

2008-05-01T23:59:59.000Z

359

Scoping assessment on medical isotope production at the Fast Flux Test Facility  

Science Conference Proceedings (OSTI)

The Scoping Assessment addresses the need for medical isotope production and the capability of the Fast Flux Test Facility to provide such isotopes. Included in the discussion are types of isotopes used in radiopharmaceuticals, which types of cancers are targets, and in what way isotopes provide treatment and/or pain relief for patients.

Scott, S.W.

1997-08-29T23:59:59.000Z

360

NREL Vehicle Testing and Integration Facility (VTIF): Rotating Shadowband Radiometer (RSR); Golden, Colorado (Data)  

DOE Data Explorer (OSTI)

This measurement station at NREL's Vehicle Testing and Integration Facility (VTIF) monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment.

Lustbader, J.; Andreas, A.

Note: This page contains sample records for the topic "thermal test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

NREL Vehicle Testing and Integration Facility (VTIF): Rotating Shadowband Radiometer (RSR); Golden, Colorado (Data)  

DOE Green Energy (OSTI)

This measurement station at NREL's Vehicle Testing and Integration Facility (VTIF) monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment.

Lustbader, J.; Andreas, A.

2012-04-01T23:59:59.000Z

362

The D9-4 experiment: Improving on the fast flux test facility driver pin  

SciTech Connect

The driver fuel system for the fast Flux Test Facility (FFTF) has proven to be a very robust and reliable spectrum liquid-metal reactor. A series of fuel assembly tests, has now been completed that incorporate unique improvements to extend the lifetime of the driver fuel design to increase the ease of fabrication, and to increase the breeding potential. The D9-4 test was a high-exposure fuel assembly in this series, and detailed examinations of this test have been completed. Commonalities with the standard FFTF driver fuel included dimensions and the use of uranium/plutonium mixed-oxide pellet fuel.

Chastain, S.A. (Westinghouse Hanford Company, Richland, WA (United States))

1993-01-01T23:59:59.000Z

363

Numerical prediction of basalt response for near-surface test facility heater tests No. 1 and No. 2  

SciTech Connect

This report details the numerical predictions undertaken by Dames and Moore for Rockwell Hanford Operations' Basalt Waste Isolation Project. Predictions are made for the temperatures, stresses, strains and displacements in the basalt around Full-Scale Heater Tests No. 1 and No. 2 at the Near-Surface Test Facility using the finite element code DAMSWEL. The rock around the main heaters was modeled using an axisymmetric idealization in which deformational properties were transversely isotropic with a bilinear stress/strain relationship which was independent of temperature. The selection of the input parameters represents an engineering assessment of their values based on the results of laboratory tests and in situ measurements. The predictive modeling analysis, using the best information available as of April 1980, was completed prior to test startup. Additional information on geology, geological characterization, rock-mass characterization, laboratory properties, and field properties of basalt is being acquired on a regular basis as part of the overall Near-Surface Test Facility test program. An assessment of the effect of additions to the data base upon the predictive modeling and test analysis shall be made on a periodic basis.

Hocking, G.; Williams, J.R.; Boonlualohr, P.; Mathews, I.; Mustoe, G.

1980-11-01T23:59:59.000Z

364

Modeling and testing of a thermal transient anemometer  

SciTech Connect

The Thermal Transient Anemometer (TTA) is a fluid mass flow measuring device which utilizes a thermocouple as a probe. The probe is periodically heated by an electric current pulse through the thermocouple junction, and the measured rate of cooling between pulses is related to the local mean flow velocity. The standard thermocouple sensor provides an inexpensive flow probe which is durable, rugged, and capable of satisfactory operation in hostile environments. The TTA was developed and patented in prototype form by Instrument Development for Applied Physics (IDAP), a small US company. IDAP has tested the TTA and shown that the measurement principle is valid. However, there is a need to refine the prototype so that the TTA becomes a commercially viable instrument. The main concern is to reduce the heating current to the TTA so that battery-powered operation is possible. To do this, a probe needs to be developed such that only the region local to the thermocouple junction is heated, rather than the entire length of the wire. There area number of ways that this might be done, and IDAP has worked with ARi Industries, a thermocouple manufacturer, to develop probe designs that would have this characteristic, and at the same time would retain the ruggedness and ease of manufacture of a standard thermocouple. The purpose of this CRADA was to investigate these designs with a view to their possible commercial development. The starting point was to develop a computer model of the TTA as it currently exists, i.e., the prototype configuration, and to compare the results with experimental data. Good agreement between model and data was obtained, thus allowing new designs to be analyzed with some confidence.

Page, R.J.

1996-10-01T23:59:59.000Z

365

SLUDGE TREATMENT PROJECT KOP DISPOSITION - THERMAL AND GAS ANALYSIS FOR THE COLD VACUUM DRYING FACILITY  

DOE Green Energy (OSTI)

The purpose of this document is to present conceptual design phase thermal process calculations that support the process design and process safety basis for the cold vacuum drying of K Basin KOP material. This document is intended to demonstrate that the conceptual approach: (1) Represents a workable process design that is suitable for development in preliminary design; and (2) Will support formal safety documentation to be prepared during the definitive design phase to establish an acceptable safety basis. The Sludge Treatment Project (STP) is responsible for the disposition of Knock Out Pot (KOP) sludge within the 105-K West (KW) Basin. KOP sludge consists of size segregated material (primarily canister particulate) from the fuel and scrap cleaning process used in the Spent Nuclear Fuel process at K Basin. The KOP sludge will be pre-treated to remove fines and some of the constituents containing chemically bound water, after which it is referred to as KOP material. The KOP material will then be loaded into a Multi-Canister Overpack (MCO), dried at the Cold Vacuum Drying Facility (CVDF) and stored in the Canister Storage Building (CSB). This process is patterned after the successful drying of 2100 metric tons of spent fuel, and uses the same facilities and much of the same equipment that was used for drying fuel and scrap. Table ES-l present similarities and differences between KOP material and fuel and between MCOs loaded with these materials. The potential content of bound water bearing constituents limits the mass ofKOP material in an MCO load to a fraction of that in an MCO containing fuel and scrap; however, the small particle size of the KOP material causes the surface area to be significantly higher. This relatively large reactive surface area represents an input to the KOP thermal calculations that is significantly different from the calculations for fuel MCOs. The conceptual design provides for a copper insert block that limits the volume available to receive KOP material, enhances heat conduction, and functions as a heat source and sink during drying operations. This use of the copper insert represents a significant change to the thermal model compared to that used for the fuel calculations. A number of cases were run representing a spectrum of normal and upset conditions for the drying process. Dozens of cases have been run on cold vacuum drying of fuel MCOs. Analysis of these previous calculations identified four cases that provide a solid basis for judgments on the behavior of MCO in drying operations. These four cases are: (1) Normal Process; (2) Degraded vacuum pumping; (3) Open MCO with loss of annulus water; and (4) Cool down after vacuum drying. The four cases were run for two sets of input parameters for KOP MCOs: (1) a set of parameters drawn from safety basis values from the technical data book and (2) a sensitivity set using parameters selected to evaluate the impact of lower void volume and smaller particle size on MCO behavior. Results of the calculations for the drying phase cases are shown in Table ES-2. Cases using data book safety basis values showed dry out in 9.7 hours and heat rejection sufficient to hold temperature rise to less than 25 C. Sensitivity cases which included unrealistically small particle sizes and corresponding high reactive surface area showed higher temperature increases that were limited by water consumption. In this document and in the attachment (Apthorpe, R. and M.G. Plys, 2010) cases using Technical Databook safety basis values are referred to as nominal cases. In future calculations such cases will be called safety basis cases. Also in these documents cases using parameters that are less favorable to acceptable performance than databook safety values are referred to as safety cases. In future calculations such cases will be called sensitivity cases or sensitivity evaluations Calculations to be performed in support of the detailed design and formal safety basis documentation will expand the calculations presented in this document to include: additional features of th

SWENSON JA; CROWE RD; APTHORPE R; PLYS MG

2010-03-09T23:59:59.000Z

366

Diagnostic development and support of MHD test facilities. Final progress report, March 1980--March 1994  

SciTech Connect

The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU), under U.S. Department of Energy (DOE) Contract No. DE-AC02-80ET-15601, Diagnostic Development and Support of MHD Test Facilities, developed diagnostic instruments for magnetohydrodynamic (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery (HRSR) support, were refined, and new systems to measure temperatures and gas-seed-slag stream characteristics were developed. To further data acquisition and analysis capabilities, the diagnostic systems were interfaced with DIAL`s computers. Technical support was provided for the diagnostic needs of the national MHD research effort. DIAL personnel also cooperated with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs. The initial contract, Testing and Evaluation of Heat Recovery/Seed Recovery, established a data base on heat transfer, slagging effects on heat transfer surfaces, metal durability, secondary combustor performance, secondary combustor design requirements, and other information pertinent to the design of HR/SR components at the Coal-Fired Flow Facility (CFFF). To accomplish these objectives, a combustion test stand was constructed that simulated MHD environments, and mathematical models were developed and evaluated for the heat transfer in hot-wall test sections. Two transitions occurred during the span of this contract. In May 1983, the objectives and title of the contract changed from Testing and Evaluation of Heat Recovery/Seed Recovery to Diagnostic Development and Support of MHD Test Facilities. In July 1988, the research laboratory`s name changed from the MHD Energy Center to the Diagnostic Instrumentation and Analysis Laboratory.

Not Available

1995-02-01T23:59:59.000Z

367

CLOSURE OF THE FAST FLUX TEST FACILITY (FFTF) CURRENT STATUS & FUTURE PLANS  

Science Conference Proceedings (OSTI)

Deactivation activities are currently in progress at the Fast Flux Test Facility. These deactivation activities are intended to remove most hazardous materials and prepare the facility for final disposition. The two major hazards to be removed are the nuclear fuel and the alkali metal (most sodium) coolant. The fuel and coolant removal activities are proceeding well and are expected to complete in 2006. Plant systems are being shut down as allowed by completion of various fuel and coolant removal actions. A Decommissioning Environmental Impact Statement is in progress to evaluate a range of potential final disposition end states.

BURKE, T.M.

2005-04-13T23:59:59.000Z

368

Aero-Thermal Performance Testing of Silicon Carbide Flexible TPS ...  

Science Conference Proceedings (OSTI)

... and gas-phase measurements including infrared pyrometry, cold-wall heat flux, total pressure, and ... A Review of Metallic Systems Used in Offshore, Sour Environments: The Effect of ... High-temperature Foam-reinforced Thermal Insulation.

369

HANFORD CONTAINERIZED CAST STONE FACILITY TASK 1 PROCESS TESTING & DEVELOPMENT FINAL TEST REPORT [SEC 1 & 2  

DOE Green Energy (OSTI)

Laboratory testing and technical evaluation activities on Containerized Cast Stone (CCS) were conducted under the Scope of Work (SOW) contained in CH2M HILL Hanford Group, Inc. (CHG) Contract No. 18548 (CHG 2003a). This report presents the results of testing and demonstration activities discussed in SOW Section 3.1, Task I--''Process Development Testing'', and described in greater detail in the ''Containerized Grout--Phase I Testing and Demonstration Plan'' (CHG, 2003b). CHG (2003b) divided the CCS testing and evaluation activities into six categories, as follows: (1) A short set of tests with simulant to select a preferred dry reagent formulation (DRF), determine allowable liquid addition levels, and confirm the Part 2 test matrix. (2) Waste form performance testing on cast stone made from the preferred DRF and a backup DRF, as selected in Part I, and using low activity waste (LAW) simulant. (3) Waste form performance testing on cast stone made from the preferred DRF using radioactive LAW. (4) Waste form validation testing on a selected nominal cast stone formulation using the preferred DRF and LAW simulant. (5) Engineering evaluations of explosive/toxic gas evolution, including hydrogen, from the cast stone product. (6) Technetium ''getter'' testing with cast stone made with LAW simulant and with radioactive LAW. In addition, nitrate leaching observations were drawn from nitrate leachability data obtained in the course of the Parts 2 and 3 waste form performance testing. The nitrate leachability index results are presented along with other data from the applicable activity categories.

LOCKREM, L.L.

2005-07-13T23:59:59.000Z

370

200 Area Treated Effluent Disposal Facility operational test specification. Revision 2  

Science Conference Proceedings (OSTI)

This document identifies the test specification and test requirements for the 200 Area Treated Effluent Disposal Facility (200 Area TEDF) operational testing activities. These operational testing activities, when completed, demonstrate the functional, operational and design requirements of the 200 Area TEDF have been met. The technical requirements for operational testing of the 200 Area TEDF are defined by the test requirements presented in Appendix A. These test requirements demonstrate the following: pump station No.1 and associated support equipment operate both automatically and manually; pump station No. 2 and associated support equipment operate both automatically and manually; water is transported through the collection and transfer lines to the disposal ponds with no detectable leakage; the disposal ponds accept flow from the transfer lines with all support equipment operating as designed; and the control systems operate and status the 200 Area TEDF including monitoring of appropriate generator discharge parameters.

Crane, A.F.

1995-02-09T23:59:59.000Z

371

Thermionic system evaluation test (TSET) facility construction: A United States and Russian effort  

DOE Green Energy (OSTI)

The Thermionic System Evaluation Test (TSET) is a ground test of an unfueled Russian TOPAZ-II in-core thermionic space reactor powered by electric heaters. The facility that will be used for testing of the TOPAZ-II systems is located at the New Mexico Engineering Research Institute (NMERI) complex in Albuquerque, NM. The reassembly of the Russian test equipment is the responsibility of International Scientific Products (ISP), a San Jose, CA, company and Inertek, a Russian corporation, with support provided by engineers and technicians from Phillips Laboratory (PL), Sandia National Laboratories (SNL), Los Alamos National Laboratory (LANL), and the University of New Mexico (UNM). This test is the first test to be performed under the New Mexico Strategic Alliance agreement. This alliance consist of the PL, SNL, LANL, and UNM. The testing is being funded by the Strategic Defense Initiative Organization (SDIO) with the PL responsible for project execution.

Wold, S.K.

1992-01-01T23:59:59.000Z

372

Operational Philosophy for the Advanced Test Reactor National Scientific User Facility  

SciTech Connect

In 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF). At its core, the ATR NSUF Program combines access to a portion of the available ATR radiation capability, the associated required examination and analysis facilities at the Idaho National Laboratory (INL), and INL staff expertise with novel ideas provided by external contributors (universities, laboratories, and industry). These collaborations define the cutting edge of nuclear technology research in high-temperature and radiation environments, contribute to improved industry performance of current and future light-water reactors (LWRs), and stimulate cooperative research between user groups conducting basic and applied research. To make possible the broadest access to key national capability, the ATR NSUF formed a partnership program that also makes available access to critical facilities outside of the INL. Finally, the ATR NSUF has established a sample library that allows access to pre-irradiated samples as needed by national research teams.

J. Benson; J. Cole; J. Jackson; F. Marshall; D. Ogden; J. Rempe; M. C. Thelen

2013-02-01T23:59:59.000Z

373

Sandia National Laboratories/New Mexico existing environmental analyses bounding environmental test facilities.  

Science Conference Proceedings (OSTI)

This report identifies current environmental operating parameters for the various test and support facilities at SNL/NM. The intent of this report is solely to provide the limits which bound the facilities' operations. Understanding environmental limits is important to maximizing the capabilities and working within the existing constraints of each facility, and supports the decision-making process in meeting customer requests, cost and schedule planning, modifications to processes, future commitments, and use of resources. Working within environmental limits ensures that mission objectives will be met in a manner that protects human health and the environment. It should be noted that, in addition to adhering to the established limits, other approvals and permits may be required for specific projects.

May, Rodney A.; Bailey-White, Brenda E. (Sandia Staffing Alliance, LLC, Albuquerque, NM); Cantwell, Amber (Sandia Staffing Alliance, LLC, Albuquerque, NM)

2009-06-01T23:59:59.000Z

374

Operation, modification, and maintenance of DOE/PETC 700 H. P. Combustion Test Facility. Quarterly activity report, January 1, 1979--April 1, 1979  

SciTech Connect

Number six fuel oil tests, 30% COM tests, and 40% COM tests were conducted. Operation, modification, and maintenance of the combustion test facility is described. (LTN)

1979-01-01T23:59:59.000Z

375

Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Recycling Partnership Plastics Separation Pilot Plant Vehicle Recycling Partnership Plastics Separation Pilot Plant Sam Jody and displays recycled plastics Bassam Jody displays plastics recovered from shredder residue by the Argonne separation process and successfully tested for making auto parts. The Challenge of Separating Plastic Waste Separating plastics at high concentrations from waste streams has been a challenge because many conventional separation methods depend on material density or employ organic solvents. Many plastics have overlapping densities and, therefore, could not be separated from each other based on density differences alone. Organic solvents pose environmental risks. Argonne's Froth-flotation Process Argonne has developed a process for separating individual polymers and groups of compatible polymers from various polymer rich waste streams. The

376

MELCOR modeling of the PBF (Power Burst Facility) Severe Fuel Damage Test 1-4  

DOE Green Energy (OSTI)

This paper describes a MELCOR Version 1.8 simulation of the Power Burst Facility (PBF) Severe Fuel Damage (SFD) Test 1--4. The input data for the analysis were obtained from the Test Results Report and from SCDAP/RELAP5 input. Results are presented for the transient liquid level in the test bundle, clad temperatures, shroud temperatures, clad oxidation and hydrogen generation, bundle geometry changes, fission product release, and heat transfer to the bypass flow. Comparisons are made with experimental data and with SCDAP/RELAP5 calculations. 10 refs., 7 figs.

Madni, I.K.

1990-01-01T23:59:59.000Z

377

Planning and design of additional East Mesa Geothermal Test Facilities. Phase 1B. Volume I. Final report  

DOE Green Energy (OSTI)

The planning and design of additions to the ERDA East Mesa Geothermal Component Test Facility are discussed. The ERDA East Mesa Geothermal Component Test Facility will provide moderate temperature/low salinity fluids to facilitate comprehensive testing of conversion systems and components under realistic field conditions. The project objectives included development of designs of new wells and modifications to existing wells to improve definitive reservoir evaluations and design of additional test facilities integrated with the limited-scale facilities to accommodate diverse commercial utilization technology experiments. A reservoir utilization evaluation was conducted to establish locations and design drilling programs for three new wells and modifications to existing wells to improve reservoir definition and provide a comprehensive inventory of geothermal well fluids for testing. Ten test facility additions were developed as individual procurement packages of specifications and drawings to facilitate near term construction activation.

Pearson, R.O.

1976-10-01T23:59:59.000Z

378

REVIEW OF FAST FLUX TEST FACILITY (FFTF) FUEL EXPERIMENTS FOR STORAGE IN INTERIM STORAGE CASKS (ISC)  

SciTech Connect

Appendix H, Section H.3.3.10.11 of the Final Safety Analysis Report (FSAR), provides the limits to be observed for fueled components authorized for storage in the Fast Flux Test Facility (FFTF) spent fuel storage system. Currently, the authorization basis allows standard driver fuel assemblies (DFA), as described in the FSAR Chapter 17, Section 17.5.3.1, to be stored provided decay power per assembly is {le} 250 watts, post-irradiation time is four years minimum, average assembly burn-up is 150,000 MWD/MTHM maximum and the pre-irradiation enrichment is 29.3% maximum (per H.3.3.10.11). In addition, driver evaluation (DE), core characterizer assemblies (CCA), and run-to-cladding-breach (RTCB) assemblies are included based on their similarities to a standard DFA. Ident-69 pin containers with fuel pins from these DFAs can also be stored. Section H.3.3.10.11 states that fuel types outside the specification criteria above will be addressed on a case-by-case basis. There are many different types of fuel and blanket experiments that were irradiated in the FFTF which now require offload to the spent fuel storage system. Two reviews were completed for a portion of these special type fuel components to determine if placement into the Core Component Container (CCC)/Interim Storage Cask (ISC) would require any special considerations or changes to the authorization basis. Project mission priorities coupled with availability of resources and analysts prevented these evaluations from being completed as a single effort. Areas of review have included radiological accident release consequences, radiological shielding adequacy, criticality safety, thermal limits, confinement, and stress. The results of these reviews are available in WHC-SD-FF-RPT-005, Rev. 0 and 1, ''Review of FFTF Fuel Experiments for Storage at ISA'', (Reference I), which subsequently allowed a large portion of these components to be included in the authorization basis (Table H.3.3-21). The report also identified additional components and actions in Section 3.0 and Table 3 that require further evaluation. The purpose of this report is to evaluate another portion of the remaining inventory (i.e., delayed neutron signal fuel, blanket assemblies, highly enriched assemblies, newly loaded Ident-69 pin containers, and returned fuel) to ensure it can be safely off loaded to the FFTF spent fuel storage system.

CHASTAIN, S.A.

2005-10-24T23:59:59.000Z

379

Comparison of constant-rate pumping test and slug interference test results at the Hanford Site B pond multilevel test facility  

SciTech Connect

Pacific Northwest Laboratory (PNL), as part of the Hanford Site Ground-Water Surveillance Project, is responsible for monitoring the movement and fate of contamination within the unconfined aquifer to ensure that public health and the environment are protected. To support the monitoring and assessment of contamination migration on the Hanford Site, a sitewide 3-dimensional groundwater flow model is being developed. Providing quantitative hydrologic property data is instrumental in development of the 3-dimensional model. Multilevel monitoring facilities have been installed to provide detailed, vertically distributed hydrologic characterization information for the Hanford Site unconfined aquifer. In previous reports, vertically distributed water-level and hydrochemical data obtained over time from these multi-level monitoring facilities have been evaluated and reported. This report describes the B pond facility in Section 2.0. It also provides analysis results for a constant-rate pumping test (Section 3.0) and slug interference test (Section 4.0) that were conducted at a multilevel test facility located near B Pond (see Figure 1. 1) in the central part of the Hanford Site. A hydraulic test summary (Section 5.0) that focuses on the comparison of hydraulic property estimates obtained using the two test methods is also presented. Reference materials are listed in Section 6.0.

Spane, F.A. Jr.; Thorne, P.D.

1995-10-01T23:59:59.000Z

380

Calendar year 2002 annual site environmental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii.  

SciTech Connect

Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, oversees TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2002. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 5400.1, General Environmental Protection Program (DOE 1990) and DOE Order 231.1, Environment, Safety, and Health Reporting (DOE 1996).

Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie; Koss, Susan I.; Salinas, Stephanie A.

2003-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Calendar year 2003 : annual site enviromental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii.  

SciTech Connect

Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, manages TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2003. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2003) and DOE Order 231.1 Chg 2., Environment, Safety, and Health Reporting (DOE 1996).

Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie; Koss, Susan I.; Salinas, Stephanie A.

2004-09-01T23:59:59.000Z

382

The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology  

Science Conference Proceedings (OSTI)

To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team projects and faculty/staff exchanges. In June of 2008, the first week-long ATR NSUF Summer Session was attended by 68 students, university faculty and industry representatives. The Summer Session featured presentations by 19 technical experts from across the country and covered topics including irradiation damage mechanisms, degradation of reactor materials, LWR and gas reactor fuels, and non-destructive evaluation. High impact research results from leveraging the entire research infrastructure, including universities, industry, small business, and the national laboratories. To increase overall research capability, ATR NSUF seeks to form strategic partnerships with university facilities that add significant nuclear research capability to the ATR NSUF and are accessible to all ATR NSUF users. Current partner facilities include the MIT Reactor, the University of Michigan Irradiated Materials Testing Laboratory, the University of Wisconsin Characterization Laboratory, and the University of Nevada, Las Vegas transmission Electron Microscope User Facility. Needs for irradiation of material specimens at tightly controlled temperatures are being met by dedication of a large in-pile pressurized water loop facility for use by ATR NSUF users. Several environmental mechanical testing systems are under construction to determine crack growth rates and fracture toughness on irradiated test systems.

T. R. Allen; J. B. Benson; J. A. Foster; F. M. Marshall; M. K. Meyer; M. C. Thelen

2009-05-01T23:59:59.000Z

383

SEARCH FOR UNDERGROUND OPENINGS FOR IN SITU TEST FACILITIES IN CRYSTALLINE ROCK  

E-Print Network (OSTI)

for a pumped-storage hydroelectric facility. As described byand tunnels several hydroelectric generation facilities.tors in ore location. Hydroelectric facilities incorporating

Wallenberg, H.A.

2010-01-01T23:59:59.000Z

384

LARGO hot water system long range thermal performance test report. Addendum  

DOE Green Energy (OSTI)

The test procedure used and the test results obtained during the long range thermal performance tests of the LARGO Solar Hot Water System under natural environmental conditions are presented. Objectives of these tests were to determine the amount of energy collected, the amount of power required for system operation, system efficiency temperature distribution and system performance degradation.

Not Available

1978-11-01T23:59:59.000Z

385

Test of a magnetic device for the amelioration of scale formation at Treatment Facility D  

SciTech Connect

A commercial device (Descal-A-Matic{reg_sign}, Norfolk, VA) designed to treat water by means of a magnetic field has been evaluated for its effect on the formation of calcite scale at LLNL Treatment Facility D. At this facility, volatile organic contaminants (VOCs) are removed by air stripping, which raises the water pH, causing the deposition of calcium carbonate as calcite scale downstream. To evaluate the magnetic treatment technique, the ground water was passed through the Descal-A-Matic{reg_sign} device before treatment by the air stripping unit, and the resulting scale formation and other water characteristics were compared with those found during a test with no water treatment and a test with chemical treatment with a polyphosphate additive. No beneficial effect was found when using the magnetic device. 6 refs., 6 figs., 4 tabs.

Krauter, P.W., Harrar, J.E., Orloff, S.P., Bahowick, S.M.

1996-12-01T23:59:59.000Z

386

Software architecture for the ORNL large coil test facility data system  

SciTech Connect

The VAX-based data acquisition system for the International Fusion Superconducting Magnet Test Facility (IFSMTF) at Oak Ridge National Laboratory (ORNL) is a second-generation system that evolved from a PDP-11/60-based system used during the initial phase of facility testing. The VAX-based software represents a layered implementation that provides integrated access to all of the data sources within the system, deoupling end-user data retrieval from various front-end data sources through a combination of software architecture and instrumentation data bases. Independent VAX processes manage the various front-end data sources, each being responsible for controlling, monitoring, acquiring and disposing data and control parameters for access from the data retrieval software. This paper describes the software architecture and the functionality incorporated into the various layers of the data system.

Blair, E.T.; Baylor, L.R.

1986-01-01T23:59:59.000Z

387

Development of a propulsion system and component test facility for advanced radioisotope powered Mars Hopper platforms  

DOE Green Energy (OSTI)

Verification and validation of design and modeling activities for radioisotope powered Mars Hopper platforms undertaken at the Center for Space Nuclear Research is essential for proof of concept. Previous research at the center has driven the selection of advanced material combinations; some of which require specialized handling capabilities. The development of a closed and contained test facility to forward this research is discussed within this paper.

Robert C. O'Brien; Nathan D. Jerred; Steven D. Howe

2011-02-01T23:59:59.000Z

388

Oxy-Combustion Burner and Integrated Pollutant Removal Research and Development Test Facility  

SciTech Connect

A high flame temperature oxy-combustion test facility consisting of a 5 MWe equivalent test boiler facility and 20 KWe equivalent IPR® was constructed at the Hammond, Indiana manufacturing site. The test facility was operated natural gas and coal fuels and parametric studies were performed to determine the optimal performance conditions and generated the necessary technical data required to demonstrate the technologies are viable for technical and economic scale-up. Flame temperatures between 4930-6120F were achieved with high flame temperature oxy-natural gas combustion depending on whether additional recirculated flue gases are added to balance the heat transfer. For high flame temperature oxy-coal combustion, flame temperatures in excess of 4500F were achieved and demonstrated to be consistent with computational fluid dynamic modeling of the burner system. The project demonstrated feasibility and effectiveness of the Jupiter Oxygen high flame temperature oxy-combustion process with Integrated Pollutant Removal process for CCS and CCUS. With these technologies total parasitic power requirements for both oxygen production and carbon capture currently are in the range of 20% of the gross power output. The Jupiter Oxygen high flame temperature oxy-combustion process has been demonstrated at a Technology Readiness Level of 6 and is ready for commencement of a demonstration project.

Mark Schoenfield; Manny Menendez; Thomas Ochs; Rigel Woodside; Danylo Oryshchyn

2012-09-30T23:59:59.000Z

389

Design of a Scaled-down DRACS Test Facility for an AHTR  

Science Conference Proceedings (OSTI)

A Direct Reactor Auxiliary Cooling System (DRACS) has been proposed for an Advanced-High Temperature Reactor (AHTR) that uses fluoride salt as the coolant. A study is being carried out to test its performance and provide experimental data for model validation. A detailed scaling analysis has been performed for the DRACS, as reported in a companion paper [1], in which a scaling methodology is developed. In this paper, scaling results for a protoltypic DRACS design are presented to design a scaled-down DRACs test facility.

Christensen, R. N. [Ohio State University; Lv, Q. NMN [Ohio State University; Subharwall, Piyush [Idaho National Laboratory (INL); Sun, X NMN [Ohio State University; Blue, T. E. [Ohio State University; Yoder Jr, Graydon L [ORNL; Wilson, Dane F [ORNL; Wang, X. NMN [Ohio State University

2011-01-01T23:59:59.000Z

390

MELCOR simulation of the PBF (Power Burst Facility) severe fuel damage test 1-1  

DOE Green Energy (OSTI)

This paper describes a MELCOR version 1.7.1 simulation of the Power Burst Facility (PBF) Severe Fuel Damage (SFD) 1-1 test. The input data for the simulation was obtained from the SFD 1-1 Test Results Report and from SCDAP input. Results are presented for the transient two-phase interface level in the core, fuel and clad temperatures at various elevations in the fuel bundle, clad oxidation, hydrogen generation, fission product release, and heat transfer to the surrounding structures. Comparisons are made with experimental data and predictions from STCP and the NRC's mechanistic code SCDAP (version 18). 6 refs., 12 figs.

Madni, I.K.

1989-01-01T23:59:59.000Z

391

Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research  

SciTech Connect

The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials with Particles and Components Testing (IMPACT) facility and the Pacific Northwest Nuclear Laboratory (PNNL) Radiochemistry Processing Laboratory (RPL) and PIE facilities were added. The ATR NSUF annually hosts a weeklong event called User’s Week in which students and faculty from universities as well as other interested parties from regulatory agencies or industry convene in Idaho Falls, Idaho to see presentations from ATR NSUF staff as well as select researchers from the materials research field. User’s week provides an overview of current materials research topics of interest and an opportunity for young researchers to understand the process of performing work through ATR NSUF. Additionally, to increase the number of researchers engaged in LWR materials issues, a series of workshops are in progress to introduce research staff to stress corrosion cracking, zirconium alloy degradation, and uranium dioxide degradation during in-reactor use.

John Jackson; Todd Allen; Frances Marshall; Jim Cole

2013-03-01T23:59:59.000Z

392

Testing thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems used in parabolic trough solar power plants.  

DOE Green Energy (OSTI)

Parabolic trough power systems that utilize concentrated solar energy to generate electricity are a proven technology. Industry and laboratory research efforts are now focusing on integration of thermal energy storage as a viable means to enhance dispatchability of concentrated solar energy. One option to significantly reduce costs is to use thermocline storage systems, low-cost filler materials as the primary thermal storage medium, and molten nitrate salts as the direct heat transfer fluid. Prior thermocline evaluations and thermal cycling tests at the Sandia National Laboratories' National Solar Thermal Test Facility identified quartzite rock and silica sand as potential filler materials. An expanded series of isothermal and thermal cycling experiments were planned and implemented to extend those studies in order to demonstrate the durability of these filler materials in molten nitrate salts over a range of operating temperatures for extended timeframes. Upon test completion, careful analyses of filler material samples, as well as the molten salt, were conducted to assess long-term durability and degradation mechanisms in these test conditions. Analysis results demonstrate that the quartzite rock and silica sand appear able to withstand the molten salt environment quite well. No significant deterioration that would impact the performance or operability of a thermocline thermal energy storage system was evident. Therefore, additional studies of the thermocline concept can continue armed with confidence that appropriate filler materials have been identified for the intended application.

Kelly, Michael James; Hlava, Paul Frank; Brosseau, Douglas A.

2004-07-01T23:59:59.000Z

393

THERMAL TESTING OF PROTOTYPE GENERAL PURPOSE FISSILE PACKAGES USING A FURNACE  

SciTech Connect

The 9977/9978 General Purpose Fissile Package (GPFP) was designed by SRNL to replace the DOT 6M Specification Package and ship Plutonium and Uranium metals and oxides. Urethane foam was used for the overpack to ensure the package would withstand the 10CFR71.73(c)(2) crush test, which is a severe test for drum-type packages. In addition, it was necessary to confirm that the urethane foam configuration provided adequate thermal protection for the containment vessel during the subsequent 10CFR71.73(c)(4) thermal test. Development tests were performed on early prototype test specimens of different diameter overpacks and a range of urethane foam densities. The thermal test was performed using an industrial furnace. Test results were used to optimize the selection of package diameter and foam density, and provided the basis for design enhancements incorporated into the final package design.

Smith, A; Lawrence Gelder, L; Paul Blanton, P

2007-02-16T23:59:59.000Z

394

Sustaining neutral beam power supply system for the Mirror Fusion Test Facility  

SciTech Connect

In late August 1978, a fixed price procurement contract for $25,000,000 was awarded to Aydin Energy Division, Palo Alto, California, for the design, manufacture, installation and acceptance testing of the Lawrence Livermore National Laboratory Mirror Fusion Test Facility (MFTF) Sustaining Neutral Beam Power Supply System (SNBPSS). This system of 24 power supply sets will provide the conditioned power for the 24 neutral beam source modules. Each set will provide the accel potential the arc power, the filament power, and the suppressor power for its associated neutral beam source module. The design and development of the SNBPSS has progressed through the final design phase and is now in production. Testing of the major sub-assembly power supply is proceeding at Aydin and the final acceptance testing of the first two power supplies at LLNL is expected to be completed this year.

Eckard, R.D.; Wilson, J.H.; Van Ness, H.W.

1980-01-01T23:59:59.000Z

395

Necessity and Requirements of a Collaborative Effort to Develop a Large Wind Turbine Blade Test Facility in North America  

DOE Green Energy (OSTI)

The wind power industry in North America has an immediate need for larger blade test facilities to ensure the survival of the industry. Blade testing is necessary to meet certification and investor requirements and is critical to achieving the reliability and blade life needed for the wind turbine industry to succeed. The U.S. Department of Energy's (DOE's) Wind Program is exploring options for collaborating with government, private, or academic entities in a partnership to build larger blade test facilities in North America capable of testing blades up to at least 70 m in length. The National Renewable Energy Laboratory (NREL) prepared this report for DOE to describe the immediate need to pursue larger blade test facilities in North America, categorize the numerous prospective partners for a North American collaboration, and document the requirements for a North American test facility.

Cotrell, J.; Musial, W.; Hughes, S.

2006-05-01T23:59:59.000Z

396

A CONCEPTUAL DESIGN OF A SHIELD TESTING AND MATERIALS IRRADIATION FACILITY  

SciTech Connect

A conceptual design is presented for a test reactor facility to be used for shielding experiments and component irradintions necessary for airframe development for the nuclear airplane program. To meet both requirements a modified swimming-pool reactor is used, with a dry irradintion cell of 320 cu ft of useful volume provided for component testing, while shielding experiments are performed in the pool in the usual manner. A BSR-type core is operated at 1 MW to provide a fest neutron flux in the irradiation cell of 10/sup 12/n/cm/sup 2/ sec at the core face and 10/sup 11/at a distance of 4 feet. The irradiation-cell facility is designed to avoid the need of remote operations in making up service connections to the experimental piece. The reactor is contained in a cylindrical building designed for 6 psi internal pressure to meet the conditions of the maximum credible accident. The estimated cost of the facility, including the reactor and the fabrication cost for an initial fuel charge, is 874,000. (auth)

Frankfort, J.H.

1956-11-20T23:59:59.000Z

397

Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC and its Radiological Considerations  

SciTech Connect

Facility for Advanced Accelerator Experimental Tests (FACET) in SLAC will be used to study plasma wakefield acceleration. FLUKA Monte Carlo code was used to design a maze wall to separate FACET project and LCLS project to allow persons working in FACET side during LCLS operation. Also FLUKA Monte Carlo code was used to design the shielding for FACET dump to get optimum design for shielding both prompt and residual doses, as well as reducing environmental impact. FACET will be an experimental facility that provides short, intense pulses of electrons and positrons to excite plasma wakefields and study a variety of critical issues associated with plasma wakefield acceleration [1]. This paper describes the FACET beam parameters, the lay-out and its radiological issues.

Mao, X.S.; Leitner, M.Santana; Vollaire, J.

2011-08-22T23:59:59.000Z

398

Search for underground openings for in situ test facilities in crystalline rock  

SciTech Connect

With a few exceptions, crystalline rocks in this study were limited to plutonic rocks and medium to high-grade metamorphic rocks. Nearly 1700 underground mines, possibly occurring in crystalline rock, were initially identified. Application of criteria resulted in the identification of 60 potential sites. Within this number, 26 mines and 4 civil works were identified as having potential in that they fulfilled the criteria. Thirty other mines may have similar potential. Most of the mines identified are near the contact between a pluton and older sedimentary, volcanic and metamorphic rocks. However, some mines and the civil works are well within plutonic or metamorphic rock masses. Civil works, notably underground galleries associated with pumped storage hydroelectric facilities, are generally located in tectonically stable regions, in relatively homogeneous crystalline rock bodies. A program is recommended which would identify one or more sites where a concordance exists between geologic setting, company amenability, accessibility and facilities to conduct in situ tests in crystalline rock.

Wollenberg, H.A.; Strisower, B.; Corrigan, D.J.; Graf, A.N.; O'Brien, M.T.; Pratt, H.; Board, M.; Hustrulid, W.

1980-01-01T23:59:59.000Z

399

Retrofit of waste-to-energy facilities equipped with electrostatic precipitators. Volume III: Test protocol  

DOE Green Energy (OSTI)

The American Society of Mechanical Engineers' [ASME] Center for Research and Technology Development [CRTD] has been awarded a subcontract by the National Renewable Energy Laboratory [NREL] to demonstrate the technical performance and viability of flue gas temperature control in combination with dry acid gas reagent and activated carbon injection at an existing electrostatic precipitator [ESP] equipped municipal waste combustor [MWC]. The objective of this proof-of-concept demonstration test is to economically and reliably meet 40 CFR 60 Subpart Cb Emissions Guidelines for MWC's at existing ESP equipped facilities. The effort is being directed by a Subcommittee of tile ASME Research Committee on Industrial and Municipal Wastes [RCIMW] chaired by Dave Hoecke. Mr. Greg Barthold of ASME/CRTD is the Project Manager. ASME/CRTD contracted with Rigo & Rigo Associates, Inc. in cooperation with A.J. Chandler & Associates, Ltd. to be the Principal Investigator for the project and manage the day-t o-day aspects of the program, conduct the testing reduce and interpret the data and prepare the report. Testing will be conducted at the 2 by 210 TPD, ESP equipped MWC at the Davis County Resource Recovery Facility in Layton, Utah. The test plan calls for duplicate metals (Cd, Pb and Hg), dioxin and acid gas runs.

Rigo, H.G. [Rigo & Rigo Associates, Inc., Berea, OH (US); Chandler, A.J. [A.J. Chandler & Associates, Inc., Toronto, Ontario (Canada)

1996-04-01T23:59:59.000Z

400

Building State-of-the-Art Wind Technology Testing Facilities (Fact Sheet)  

DOE Green Energy (OSTI)

The new Wind Technology Test Center is the only facility in the nation capable of testing wind turbine blades up to 90 meters in length. A critical factor to wind turbine design and development is the ability to test new designs, components, and materials. In addition, wind turbine blade manufacturers are required to test their blades as part of the turbine certification process. The National Renewable Energy Laboratory (NREL) partnered with the U.S. Department of Energy (DOE) Wind Program and the Massachusetts Clean Energy Center (MassCEC) to design, construct, and operate the Wind Technology Center (WTTC) in Boston, Massachusetts. The WTTC offers a full suite of certification tests for turbine blades up to 90 meters in length. NREL worked closely with MTS Systems Corporation to develop the novel large-scale test systems needed to conduct the static and fatigue tests required for certification. Static tests pull wind turbine blades horizontally and vertically to measure blade deflection and strains. Fatigue tests cycle the blades millions of times to simulate what a blade goes through in its lifetime on a wind turbine. For static testing, the WTTC is equipped with servo-hydraulic winches and cylinders that are connected to the blade through cables to apply up to an 84-mega Newton meter maximum static bending moment. For fatigue testing, MTS developed a commercial version of NREL's patented resonant excitation system with hydraulic cylinders that actuate linear moving masses on the blade at one or more locations. This system applies up to a 21-meter tip-to-tip fatigue test tip displacement to generate 20-plus years of cyclic field loads in a matter of months. NREL also developed and supplied the WTTC with an advanced data acquisition system capable of measuring and recording hundreds of data channels at very fast sampling rates while communicating with test control systems.

Not Available

2012-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Cold test plan for the Old Hydrofracture Facility tank contents removal project, Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect

This Old Hydrofracture Facility (OHF) Tanks Contents Removal Project Cold Test Plan describes the activities to be conducted during the cold test of the OHF sluicing and pumping system at the Tank Technology Cold Test Facility (TTCTF). The TTCTF is located at the Robotics and Process Systems Complex at the Oak Ridge National Laboratory (ORNL). The cold test will demonstrate performance of the pumping and sluicing system, fine-tune operating instructions, and train the personnel in the actual work to be performed. After completion of the cold test a Technical Memorandum will be prepared documenting completion of the cold test, and the equipment will be relocated to the OHF site.

1997-11-01T23:59:59.000Z

402

Topical report: Natural convection shutdown heat removal test facility (NSTF) evaluation for generating additional reactor cavity cooling system (RCCS) data.  

DOE Green Energy (OSTI)

As part of the Department of Energy (DOE) Generation IV roadmapping activity, the Very High Temperature gas cooled Reactor (VHTR) has been selected as the principal concept for hydrogen production and other process-heat applications such as district heating and potable water production. On this basis, the DOE has selected the VHTR for additional R&D with the ultimate goal of demonstrating emission-free electricity and hydrogen production with this advanced reactor concept. One of the key passive safety features of the VHTR is the potential for decay heat removal by natural circulation of air in a Reactor Cavity Cooling System (RCCS). The air-cooled RCCS concept is notably similar to the Reactor Vessel Auxiliary Cooling System (RVACS) that was developed for the General Electric PRISM sodium-cooled fast reactor. As part of the DOE R&D program that supported the development of this fast reactor concept, the Natural Convection Shutdown Heat Removal Test Facility (NSTF) was developed at ANL to provide proof-of-concept data for the RVACS under prototypic natural convection flow, temperature, and heat flux conditions. Due to the similarity between RVACS and the RCCS, current VHTR R&D plans call for the utilization of the NSTF to provide RCCS model development and validation data, in addition to supporting design validation and optimization activities. Both air-cooled and water-cooled RCCS designs are to be included. In support of this effort, ANL has been tasked with the development of an engineering plan for mechanical and instrumentation modifications to NSTF to ensure that sufficiently detailed temperature, heat flux, velocity and turbulence profiles are obtained to adequately qualify the codes under the expected range of air-cooled RCCS flow conditions. Next year, similar work will be carried out for the alternative option of a water-cooled RCCS design. Analysis activities carried out in support of this experiment planning task have shown that: (a) in the RCCS, strong 3-D effects result in large heat flux, temperature, and heat transfer variations around the tube wall; (b) there is a large difference in the heat transfer coefficient predicted by turbulence models and heat transfer correlations, and this underscores the need of experimental work to validate the thermal performance of the RCCS; and (c) tests at the NSTF would embody all important fluid flow and heat transfer phenomena in the RCCS, in addition to covering the entire parameter ranges that characterize these phenomena. Additional supporting scaling study results are available in Reference 2. The purpose of this work is to develop a high-level engineering plan for mechanical and instrumentation modifications to NSTF in order to meet the following two technical objectives: (1) provide CFD and system-level code development and validation data for the RCCS under prototypic (full-scale) natural convection flow conditions, and (2) support RCCS design validation and optimization. As background for this work, the report begins by providing a summary of the original NSTF design and operational capabilities. Since the facility has not been actively utilized since the early 1990's, the next step is to assess the current facility status. With this background material in place, the data needs and requirements for the facility are then defined on the basis of supporting analysis activities. With the requirements for the facility established, appropriate mechanical and instrumentation modifications to NSTF are then developed in order to meet the overall project objectives. A cost and schedule for modifying the facility to satisfy the RCCS data needs is then provided.

Farmer, M. T.; Kilsdonk, D. J.; Tzanos, C.P.; Lomperski, S.; Aeschlimann, R.W.; Pointer, D.; Nuclear Engineering Division

2005-09-01T23:59:59.000Z

403

Evaluation of the advanced mixed-oxide fuel test FO-2 irradiated in the FFTF (Fast Flux Test Facility)  

SciTech Connect

The advanced mixed-oxide (UO{sub 2}-PuO{sub 2}) test assembly, FO-2, irradiated in the Fast Flux Test Facility (FFTF) is undergoing postirradiation examination. This is one of the first FFTF tests examined that used the advanced ferrite-martensite alloy, HT9, which is highly resistant to irradiation swelling. The FO-2 includes the first annular fueled pins irradiated in FFTF to undergo destructive examination. The FO-2 is a lead assembly for the ongoing FFTF Core Demonstration Experiment (CDE) and was designed to evaluate the effects of fuel design variables, such as pellet density, smeared density, and fuel form (annular or solid fuel), on advanced pin performance. The assembly contains a total of 169 fuel pins of 12 different types. Two L (annular) fuel pins, GF02L04 (FFTF and transient tested) and GF02L09 (FFTF only), were destructively examined. Evaluation of the FO-2 fuel pins and assembly shows the excellent and predictable performance of the mixed-oxide fuels with HT9 structural material. This, combined with the robust behavior of the pins in transient tests, and the continued excellent performance of the CDE indicate this is a superior fuel system for liquid-metal reactors. It offers greatly reduced deformation during irradiation, while maintaining good operating characteristics.

Burley Gilpin, L.L.; Chastain, S.A.; Baker, R.B.

1989-01-01T23:59:59.000Z

404

NREL: TroughNet - Parabolic Trough System and Component Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

System and Component Testing System and Component Testing Here you'll find information about parabolic trough system and components testing, as well facilities and laboratories used for testing. Tests include those for: Concentrator thermal efficiency Receiver thermal performance Mirror contour and collector alignment Mirror reflectivity and durability Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Concentrator Thermal Efficiency Testing Researchers and industry use the following facilities for testing parabolic trough collectors. AZTRAK Rotating Platform At Sandia National Laboratories' National Solar Thermal Test Facility (NSTTF), the AZTRAK rotating platform has been used to test several parabolic trough modules and receivers. Initially, researchers tested a

405

Small Hybrid Systems and Applications Testing at NREL's Outdoor Test Facility  

DOE Green Energy (OSTI)

The PV International Program at the National Renewable Energy Laboratory recently installed a small hybrid solar and wind energy system that could produce enough electricity to power a cabin or provide electricity in a remote village, without being connected to a utility grid. The solar system can provide 1,400 watts of power, and the wind turbine is rated at 900 watts when the wind is blowing at 28 miles per hour. The 48-volt system has eight batteries for storage. When the batteries are fully charged, the control system slows down the wind turbine so as not to overcharge the batteries. The turbine is mounted on a tilt-down, guyless, 30-foot tower that allows one person to easily lower and raise the machine for maintenance. A data acquisition system is being designed to monitor the individual outputs from the solar system and the wind system. The small hybrid system is housed in an insulated shed, the PV International Program's Test Building (ITB). The ITB contains electrical loads found in the average home, including a refrigerator, lights, heaters, air coolers, computers, and a radio.

Roybal, L.

2005-01-01T23:59:59.000Z

406

Status of Proof-Of-Concept testing at the Coal-Fired-Flow Facility, 1993  

DOE Green Energy (OSTI)

Proof-of-concept (POC) testing, and collection and evaluation of data continued at the Coal-Fired-Flow Facility during the past year. Following four preliminary tests firing Rosebud coal in 1991 to establish base conditions for the Rosebud coal POC tests, three POC tests were run in 1992, and a fourth test early in 1993. Major equipment additions or modifications included installation of a wet electrostatic precipitator (ESP), which replaced a badly deteriorated venturi. This component also provides improved capability to meet Tennessee pollution regulations while operating the dry ESP and/or baghouse off design, or if one of these two control devices does not function properly. Improvements were also made to the dry ESP prior to the 1993 test, which appear to have improved the performance of this equipment. This paper will present an overview of the major results obtained during the Rosebud coal POC tests, including the performance of the dry and wet electrostatic precipitators. Differences between the Rosebud and Illinois coals will be described, but it is emphasized that these observations are based on incomplete results for the Rosebud coal.

Attig, R.C.; Chapman, J.N.; Johanson, N.R.

1993-06-01T23:59:59.000Z

407

Investigation of water accumulation in an offgas test facility HEPA housing  

SciTech Connect

The Consolidated Incineration Facility, at the Department of Energy`s Savannah River Site, is designed to treat solid and liquid RCRA hazardous and mixed wastes generated by site operations and clean-up activities. During CIF`s pretrial burn campaigns in 1995, an appreciable amount of water was recovered from the HEPA housings. Questions were immediately raised as to the source of the water, and the degree of wetness of the filters during operation. There are two primary issues involved: Water could reduce the life expectancy and performance of the HEPA filters, housing, and associated ducting, and wet HEPAs also present radiological concerns for personnel during filter change-out. A similar phenomenon was noted at the Offgas Components Test Facility (OCTF), a 1/10 scale pilot of CIF`s air pollution control system. Tests at OCTF indicated the water`s most likely origin to be vapor condensing out from the flue gas stream due to excessive air in-leakage at housing door seals, ducting flanges, and actual holes in the ducting. The rate of accumulation bears no statistical correlation to such process parameters as steam flow, reheater outlet temperature and offgas velocity in the duct. Test results also indicated that the HEPA filter media is moistened by the initial process flow while the facility is being brought on line. However, even when the HEPA filters were manually drenched prior to startup, they became completely dry within four hours of the time steam was introduced to the reheater. Finally, no demonstrable relationship was found between the degree of filter media wetness and filter dP.

Speed, D.L.; Burns, D.B.; Van Pelt, W.B.; Burns, H.H.

1997-06-01T23:59:59.000Z

408

THERMAL ANALYSIS OF A 9975 PACKAGE IN A FACILITY FIRE ACCIDENT  

SciTech Connect

Surplus plutonium bearing materials in the U.S. Department of Energy (DOE) complex are stored in the 3013 containers that are designed to meet the requirements of the DOE standard DOE-STD-3013. The 3013 containers are in turn packaged inside 9975 packages that are designed to meet the NRC 10 CFR Part 71 regulatory requirements for transporting the Type B fissile materials across the DOE complex. The design requirements for the hypothetical accident conditions (HAC) involving a fire are given in 10 CFR 71.73. The 9975 packages are stored at the DOE Savannah River Site in the K-Area Material Storage (KAMS) facility for long term of up to 50 years. The design requirements for safe storage in KAMS facility containing multiple sources of combustible materials are far more challenging than the HAC requirements in 10 CFR 71.73. While the 10 CFR 71.73 postulates an HAC fire of 1475 F and 30 minutes duration, the facility fire calls for a fire of 1500 F and 86 duration. This paper describes a methodology and the analysis results that meet the design limits of the 9975 component and demonstrate the robustness of the 9975 package.

Gupta, N.

2011-02-14T23:59:59.000Z

409

Design and Construction of a Guarded Hot Box Facility for Evaluating the Thermal Performance of Building Wall Materials  

E-Print Network (OSTI)

The focus of this study was to design and build a guarded hot box to test the R-Value of building materials. The Riverside Energy Efficiency Laboratory is looking to expand their testing capabilities by including this service. Eventually, the laboratory will become energy star certified. A guarded hot box facility consists of two boxes maintained at specific temperatures and a guard box around each one that is maintained at the same temperature as the box it surrounds. The ASTM C1363 standard was used as guide for the construction and testing of sample specimen. This standard called for an air velocity profile uniform within 10 percent of the average. Velocity tests were performed with various different configurations to give a uniform velocity. Although the velocity did not meet standards, the configuration chosen included a piece of 1/4" pegboard placed 2" away from the top and the bottom of the inner box. By using the known overall heat added and removed from the system, as well as all the heat losses the heat transferred through the specimen and its R-Value can be calculated. The uncertainty of the R-Value and the accuracy of the testing facility gave conflicting results. Future experiments will use improved testing methods that include differential thermocouples to obtain better uncertainty for the R-Value calculations.

Mero, Claire Renee

2012-05-01T23:59:59.000Z

410

US/USSR cooperative program in open-cycle MHD electrical power generation: joint test report No. 4. Tests in the U-25B facility: MHD generator tests No. 6 and 7  

DOE Green Energy (OSTI)

A description of the main results obtained during Tests No. 6 and 7 at the U-25B Facility using the new channel No. 2 is presented. The purpose of these tests was to operate the MHD generator at its design parameters. Described here are new plasma diagnostic devices: a traversing dual electrical probe for determining distribution of electron concentrations, and a traversing probe that includes a pitot tube for measuring total and static pressure, and a light detector for measuring plasma luminescence. Data are presented on heat flux distribution along the channel, the first data of this type obtained for an MHD facility of such size. Results are given of experimental studies of plasma characteristics, gasdynamic, thermal, and electrical MHD channel performance, and temporal and spatial nonuniformities. Typical modes of operation are analyzed by means of local electrical analyses. Computer models are used to obtain predictions for both localized and overall generator characteristics. These theoretical predictions agree closely with the results of the local analyses, as well as with measurements of the overall gasdynamic and electrical characteristics of the generator.

Picologlou, B F; Batenin, V M

1981-01-01T23:59:59.000Z

411

Planning and design of additional East Mesa Geothermal Test Facilities. Phase 1B. Volume II. Procurement package  

DOE Green Energy (OSTI)

Procurement packages of technical specifications and construction drawings for eleven test facility additions to the ERDA East Mesa Geothermal Component Test Facility are presented. Each of the specifications includes all of the technical requirements needed for procurement and construction starting with Division 2. The information is presented under the following subject headings: injection pump system: 52-2 injection pipeline; control and instrumentation spools; calibration test bench; test pad modifications; test pad piping headers; production and injection wells; well 5-2 modifications; well 8-1 down-hole pump; well 6-1 down-hole pump; and well 8-1 booster pump. (JGB)

Pearson, R.O.

1976-10-15T23:59:59.000Z

412

Advanced Test Reactor Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect

U.S. Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Advanced Test Reactor Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. U.S. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool to develop the radioactive waste management basis.

Lisa Harvego; Brion Bennett

2011-11-01T23:59:59.000Z

413

Superheater/intermediate temperature air heater tube corrosion tests in the MHD coal fired flow facility (Montana Rosebud POC tests)  

DOE Green Energy (OSTI)

Nineteen alloys have been exposed for approximately 1000 test hours as candidate superheater and intermediate temperature air heater tubes in a U.S. DOE facility dedicated to demonstrating Proof of Concept for the bottoming or heat and seed recovery portion of coal fired magnetohydrodynamic (MHD) electrical power generating plants. Corrosion data have been obtained from a test series utilizing a western United States sub-bituminous coal, Montana Rosebud. The test alloys included a broad range of compositions ranging from carbon steel to austenitic stainless steels to high chromium nickel-base alloys. The tubes, coated with K{sub 2}SO-containing deposits, developed principally, oxide scales by an oxidation/sulfidation mechanism. In addition to being generally porous, these scales were frequently spalled and/or non-compact due to a dispersed form of outward growth by oxide precipitation in the adjacent deposit. Austenitic alloys generally had internal penetration as trans Tranular and/or intergranular oxides and sulfides. While only two of the alloys had damage visible without magnification as a result of the relatively short exposure, there was some concern about Iona-term corrosion performance owing to the relatively poor quality scales formed. Comparison of data from these tests to those from a prior series of tests with Illinois No. 6, a high sulfur bituminous coal, showed less corrosion in the present test series with the lower sulfur coal. Although K{sub 2}SO{sub 4}was the principal corrosive agent as the supplier of sulfur, which acted to degrade alloy surface scales, tying up sulfur as K{sub 2}SO{sub 4} prevented the occurrence of complex alkali iron trisulfates responsible for severe or catastrophic corrosion in conventional power plants with certain coals and metal temperatures.

White, M.

1996-01-01T23:59:59.000Z

414

SNS Target Test Facility: Prototype Hg Operations and Remote Handling Tests P. T. Spampinato, T. W. Burgess, J. B. Chesser, V. B. Graves, and S.L. Schrock  

E-Print Network (OSTI)

SNS Target Test Facility: Prototype Hg Operations and Remote Handling Tests P. T. Spampinato, T. W remote handling techniques and tools for replacing target system components. During the past year seal configuration to assess leak tightness and remote handling features. In addition, testing

McDonald, Kirk

415

Particulate Control Device (PCD) Testing at the Power Systems Development Facility, Wilsonville, Alabama  

Science Conference Proceedings (OSTI)

One of the U.S. Department of Energy`s (DOE`s) objectives overseen by the Morgantown Energy Technology Center (METC) is to test systems and components for advanced coal-based power generation systems, including integrated gasification combined cycle (IGCC), pressurized fluidized-bed combustion (PFBC), and integrated gasification/fuel cell (IGFC) systems. Stringent particulate requirements for fuel gas for both combustion turbines and fuel cells that are integral to these systems. Particulates erode and chemically attack the blade surfaces in turbines, and cause blinding of the electrodes in fuel cells. Filtration of the hot, high-pressure, gasified coal is required to protect these units. Filtration can be accomplished by first cooling the gas, but the system efficiency is reduced. High-temperature, high-pressure, particulate control devices (PCDs) need to be developed to achieve high efficiency and to extend the lifetime of downstream components to acceptable levels. Demonstration of practical high-temperature PCDs is crucial to the evolution of advanced, high-efficiency, coal-based power generation systems. The intent at the Power Systems Development Facility (PSDF) is to establish a flexible test facility that can be used to (1) develop advanced power system components, such as high-temperature, high-pressure PCDs; (2) evaluate advanced power system configurations and (3) assess the integration and control issues of these advanced power systems.

Longanbach, J.R.

1995-12-01T23:59:59.000Z

416

METHOD OF TESTING THERMAL NEUTRON FISSIONABLE MATERIAL FOR PURITY  

DOE Patents (OSTI)

A process is given for determining the neutronic purity of fissionable material by the so-called shotgun test. The effect of a standard neutron absorber of known characteristics and amounts on a neutronic field also of known characteristics is measured and compared with the effect which the impurities derived from a known quantity of fissionable material has on the same neutronic field. The two readings are then made the basis of calculation from which the amount of impurities can be computed.

Fermi, E.; Anderson, H.L.

1961-01-24T23:59:59.000Z

417

Low-Conductivity Thermal Barrier Coating for Gas Turbines: Material Testing Status  

Science Conference Proceedings (OSTI)

Advanced gas turbines rely on air-cooled components protected by ceramic thermal barrier coatings to survive increasingly high operating temperatures. A new generation of coatings offers lower thermal conductivity, potentially further reducing component heat loading, which can improve durability, lower life cycle cost, and enable longer range efficiency gains. Testing improved coatings is a necessary step towards field demonstration.BackgroundAs gas turbine ...

2012-12-31T23:59:59.000Z

418

Standard Practice for Solar Simulation for Thermal Balance Testing of Spacecraft  

E-Print Network (OSTI)

1.1 Purpose: 1.1.1 The primary purpose of this practice is to provide guidance for making adequate thermal balance tests of spacecraft and components where solar simulation has been determined to be the applicable method. Careful adherence to this practice should ensure the adequate simulation of the radiation environment of space for thermal tests of space vehicles. 1.1.2 A corollary purpose is to provide the proper test environment for systems-integration tests of space vehicles. An accurate space-simulation test for thermal balance generally will provide a good environment for operating all electrical and mechanical systems in their various mission modes to determine interferences within the complete system. Although adherence to this practice will provide the correct thermal environment for this type of test, there is no discussion of the extensive electronic equipment and procedures required to support systems-integration testing. 1.2 Nonapplicability—This practice does not apply to or provide inco...

American Society for Testing and Materials. Philadelphia

1973-01-01T23:59:59.000Z

419

Combining a thermal-imaging diagnostic with an existing imaging VISAR diagnostic at the National Ignition Facility (NIF)  

Science Conference Proceedings (OSTI)

Optical diagnostics are currently being designed to analyze high-energy density physics experiments at the National Ignition Facility (NIF). Two independent line-imaging Velocity Interferometer System for Any Reflector (VISAR) interferometers have been fielded to measure shock velocities, breakout times, and emission of targets having sizes of 1-5 mm. An 8-inch-diameter, fused silica triplet lens collects light at f/3 inside the 30-foot-diameter NIF vacuum chamber. VISAR recordings use a 659.5-nm probe laser. By adding a specially coated beam splitter to the interferometer table, light at wavelengths from 540 to 645 nm is spilt into a thermal-imaging diagnostic. Because fused silica lenses are used in the first triplet relay, the intermediate image planes for different wavelengths separate by considerable distances. A corrector lens on the interferometer table reunites these separated wavelength planes to provide a good image. Thermal imaging collects light at f/5 from a 2-mm object placed at Target Chamber Center (TCC). Streak cameras perform VISAR and thermal-imaging recording. All optical lenses are on kinematic mounts so that pointing accuracy of the optical axis may be checked. Counter-propagating laser beams (orange and red) are used to align both diagnostics. The red alignment laser is selected to be at the 50 percent reflection point of the beam splitter. This alignment laser is introduced at the recording streak cameras for both diagnostics and passes through this special beam splitter on its way into the NIF vacuum chamber.

Malone, R; Celeste, J; Celliers, P; Frogget, B; Guyton, R L; Kaufman, M; Lee, T; MacGowan, B; Ng, E W; Reinbachs, I P; Robinson, R B; Seppala, L; Tunnell, T W; Watts, P

2005-07-07T23:59:59.000Z

420

Combining a thermal-imaging diagnostic with an existing imaging VISAR diagnostic at the National Ignition Facility (NIF)  

Science Conference Proceedings (OSTI)

Optical diagnostics are currently being designed to analyze high-energy density physics experiments at the National Ignition Facility (NIF). Two independent line-imaging Velocity Interferometer System for Any Reflector (VISAR) interferometers have been fielded to measure shock velocities, breakout times, and emission of targets having sizes of 1–5 mm. An 8-inch-diameter, fused silica triplet lens collects light at f/3 inside the 30-foot-diameter NIF vacuum chamber. VISAR recordings use a 659.5-nm probe laser. By adding a specially coated beam splitter to the interferometer table, light at wavelengths from 540 to 645 nm is spilt into a thermal-imaging diagnostic. Because fused silica lenses are used in the first triplet relay, the intermediate image planes for different wavelengths separate by considerable distances. A corrector lens on the interferometer table reunites these separated wavelength planes to provide a good image. Thermal imaging collects light at f/5 from a 2-mm object placed at Target Chamber Center (TCC). Streak cameras perform VISAR and thermal-imaging recording. All optical lenses are on kinematic mounts so that pointing accuracy of the optical axis may be checked. Counter-propagating laser beams (orange and red) are used to align both diagnostics. The red alignment laser is selected to be at the 50 percent reflection point of the beam splitter. This alignment laser is introduced at the recording streak cameras for both diagnostics and passes through this special beam splitter on its way into the NIF vacuum chamber.

Robert M. Malone; John R. Celesteb; Peter M. Celliers; Brent C. Froggeta; Robert L. Guyton; Morris I. Kaufman; Tony L. Lee; Brian J. MacGowan; Edmund W. Ng; Imants P. Reinbachs; Ronald B. Robinson; Lynn G. Seppala; Tom W. Tunnell; Phillip W. Watts

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Standard Test Method for Thermal Oxidative Resistance of Carbon Fibers  

E-Print Network (OSTI)

1.1 This test method covers the apparatus and procedure for the determination of the weight loss of carbon fibers, exposed to ambient hot air, as a means of characterizing their oxidative resistance. 1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units which are provided for information only and are not considered standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard information, see Section 8.

American Society for Testing and Materials. Philadelphia

1982-01-01T23:59:59.000Z

422

Technology Potential of Thermal Energy Storage (TES) Systems in Federal Facilities  

DOE Green Energy (OSTI)

Thermal energy storage (TES) reduces electric costs by shifting chilling activities to off-peak times. Water is chilled or ice is made during the night to either replace or augment operation of cooling equipment during the day. Off-peak demand and consumption rates produce significant dollar savings. TES requires favorable electric rate structures, available space to house the associated equipment, and either variation in buildings cooling loads or favorable climatic conditions. TES can be implemented anywhere cooling loads can be shifted to off-peak housrs with the best applications being office buildings, hospitals, and schools. Most TES projects are implemented inconjunction with an existing cooling system expansion, replacement of older cooling equipment, or new construction, thus reducing energy costs, consumption, and demand.

Chvala, William D.

2002-07-08T23:59:59.000Z

423

Initial data testing of ENDF/B-VI for thermal reactor benchmark analysis  

SciTech Connect

This paper summarizes some early data testing of ENDF/B-VI by members of the Cross Section Evaluation Working Group (CSEWG) Thermal Reactor Data Testing Subcommittee. Projections of ENDF/B-VI performance in thermal benchmark calculations are beginning to be available; and in some cases the calculations were performed with only a portion of the cross sections taken from version VI, the remainder taken from earlier data files. A factor delaying the thermal reactor data testing is that the final {sup 235}U evaluation has not yet been officially released--only an earlier evaluation with a constant low-energy eta value (like in version V) is currently available. The official version VI {sup 235}U evaluation (scheduled for release as Mod-1) gives a drooping eta variation at low energy; i.e., eta decreases with decreasing energy. This behavior was suggested by European studies to improve the calculation of temperature coefficients in LWRs.

Williams, M.L. [Louisiana State Univ., Baton Rouge, LA (United States). Nuclear Science Center; Kahler, A.C. [Bettis Atomic Power Lab., West Mifflin, PA (United States); MacFarlane, R.E. [Los Alamos National Lab., NM (United States); Milgram, M. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.; Wright, R.Q. [Oak Ridge National Lab., TN (United States)

1991-12-31T23:59:59.000Z

424

Scaling Studies for High Temperature Test Facility and Modular High Temperature Gas-Cooled Reactor  

SciTech Connect

The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5-year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) began their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant (NGNP) project. Because the NRC's interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC).

Richard R. Schult; Paul D. Bayless; Richard W. Johnson; James R. Wolf; Brian Woods

2012-02-01T23:59:59.000Z

425

Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly technical progress report, April 1--June 30, 1992  

SciTech Connect

This quarterly technical progress report summarizes work completed during the Seventh Quarter of the First Budget Period, April 1 through June 30, 1992, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion will include the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/Pressurized Circulating Fluidized Bed Gas Source; Hot Gas Cleanup Units to mate to all gas streams. Combustion Gas Turbine; Fuel Cell and associated gas treatment; and Externally Fired Gas Turbine/Water Augmented Gas Turbine. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

Not Available

1992-12-01T23:59:59.000Z

426

Nuclear Facilities Production Facilities  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration under contract DE-AC04-94AL85000. Sand 2011-4582P. ENERGY U.S. DEPARTMENT OF Gamma Irradiation Facility (GIF) The GIF provides test cells for...

427

DOE-STD-3026-99; DOE Standard Filter Test Facility Quality Program Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6-99 6-99 February 1999 Superseding DOE NE F 3-44 July 1986 DOE STANDARD FILTER TEST FACILITY QUALITY PROGRAM PLAN U.S. Department of Energy FSC 4460 Washington, D.C. 20585 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-STD-3026-99 iii FOREWORD This Department of Energy standard supercedes DOE NE F 3-44 and is approved for use by all DOE components and their contractors.

428

PFBC HGCU Test Facility. Technical progress report: Third Quarter, CY 1993  

SciTech Connect

This is the sixteenth Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC (pressurized fluidized-bed combustion) Hot Gas Clean Up Test Facility (HGCU). This report covers the period of work completed during the Third Quarter of CY 1993. During this quarter, the Advanced Particle Filter (APF) was operated for a total of 1295 hours. This represents 58% availability during July, August, September, and including June 30 of the previous quarter. The operating dates and times since initial operation are summarized. The APF operating temperatures and differential pressures are provided. Details of the APF runs during this quarter are included in this report.

Not Available

1993-10-01T23:59:59.000Z

429

Dimensional changes in FFTF (Fast Flux Test Facility) austenitic cladding and ducts  

SciTech Connect

As the standard cladding and duct material for the Fast Flux Test Facility driver fuel, 20% cold-worked 316 stainless steel has provided good service up to a fast fluence of 16 {times} 10{sup 22} n/cm{sup 2} in extreme cases. The titanium-stabilized variant of 316 SS, called D9, has extended the useful life of the austenitic alloys by increasing the incubation fluence necessary for the onset of volumetric swelling. Duct flat-to-flat, length and bow, pin bundle distortion, fuel pin diameter and length, as well as cladding volumetric swelling have been examined for high fluence components representing both alloys. These data emphasize the importance of the swelling process, the superiority of D9, and the interrelation between deformations in the duct, bundle, and individual pins. 8 refs., 10 figs.

Makenas, B.J.; Chastain, S.A.; Gneiting, B.C.

1990-11-01T23:59:59.000Z

430

Three-dimensional Fast Flux Test Facility plenum model turbulent flow prediction and data comparison  

Science Conference Proceedings (OSTI)

Two- and three-dimensional numerical simulations of turbulent flow in a scaled Fast Flux Test Facility (FFTF) upper plenum model were performed using the TEMPEST hydrothermal code. A standard k-element of model was used to describe turbulence through an effective viscosity. Comparisons with previously reported mean velocity and turbulence field data measured in the plenum model and two-dimensional numerical simulations using the TEACH code were made. Predicted horizontal and vertical mean velocities and turbulent kinetic energy are shown to be in good agreement with available experimental data when inlet conditions of the dissipation of turbulent kinetic energy are appropriately prescribed. The three-dimensional quarter-symmetry simulation predicts the turbulent kinetic energy field significantly better than the two-dimensional centerplane simulations. These results lead to conclusions concerning deficiencies in the experimental data and the turbulence model.

Eyler, L.L.; Sawdye, R.W.

1981-01-01T23:59:59.000Z

431

Diagnostic development and support of MHD Test Facilities. Technical progress report, October 1991--December 1991  

DOE Green Energy (OSTI)

The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU) is developing diagnostic instruments for magnetohydrodynamic (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery (HRSR) support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with DIAL`s computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. DIAL personnel also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs.

Not Available

1994-07-01T23:59:59.000Z

432

Fermilab PXIE Beam Diagnostics Development and Testing at the HINS Beam Facility  

Science Conference Proceedings (OSTI)

Fermilab is planning the construction of a prototype front end of the Project X linac. The Project X Injector Experiment (PXIE) is expected to accelerate 1 mA CW H- beam up to 30 MeV. Some of the major goals of the project are to test a CW RFQ and H- source, a broadband bunch-by-bunch beam chopper and a low-energy superconducting linac. The successful characterization and operation of such an accelerator place stringent requirements on beamline diagnostics. These crucial beam measurements include bunch currents, beam orbit, beam phase, bunch length, transverse profile and emittance and beam halo and tails, as well as the extinction performance of the broadband chopper. This paper presents PXIE beam measurement requirements and instrumentation development plans. Presented are plans to test key instruments at the Fermilab High Intensity Neutrino Source (HINS) beam facility. Since HINS is already an operational accelerator, utilizing HINS for instrumentation testing will allow for quicker development of the required PXIE diagnostics.

Lebedev, V.A.; Shemyakin, A.V.; Steimel, J.; Wendt, M.; /Fermilab; Hanna, B.M.; Prost, L.R.; Scarpine, V.E.; /Fermilab

2012-05-01T23:59:59.000Z

433

Dynamic system characterization of an integral test facility of an advanced PWR  

E-Print Network (OSTI)

This work characterizes the dynamic behavior for the modified Large Scale Test Facility (LSTF), which has been selected by the U.S. Nuclear Regulatory Commission for confirmatory testing of the Westinghouse AP600 design. The LSTF is performing a series of tests to generate data for code assessment against AP600 relevant phenomena. The AP600 design relies only on passive safety features such as gravity driven draining pressurized tanks, and battery power logic and actuators for its safety functions. The inclusion of Core Makeup Tanks and passive heat removal systems into the design increase its dynamic complexity well beyond that of any conventional pressurized water reactor, in which the safeties can be treated as imposed boundary conditions. The bond graph methodology was used to formulate the equations and their topology, as they are used to characterize such a complex system. This characterization was applied to one of the Rig of Safety Assessment (ROSA) program transients, the one-inch cold leg break (AP-CL-03), to construct a mathematical model of the system. The model's constitutive equations were linearized for a selected period of the transient that is of particular importance to the safety analysis. These equations were used for the linear analysis of the system.

Smith, Simon Gregory

1995-01-01T23:59:59.000Z

434

Fusion Nuclear Science Facility-AT: A Material and Component Testing Device  

Science Conference Proceedings (OSTI)

Fusion Technology Facilities / Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology

C. P. C. Wong; V. S. Chan; A. M. Garofalo; R. Stambaugh; M. E. Sawan; R. Kurtz; B. Merrill

435

ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER SYSTEMS AT THE IDAHO NATIONAL LABORATORY BETTER SIMULATES ENVIRONMENTAL CONDITIONS OF SPACE  

DOE Green Energy (OSTI)

The Idaho National Laboratory (INL) is preparing to fuel and test the Advanced Stirling Radioisotope Generator (ASRG), the next generation space power generator. The INL identified the thermal vacuum test chamber used to test past generators as inadequate. A second vacuum chamber was upgraded with a thermal shroud to process the unique needs and to test the full power capability of the new generator. The thermal vacuum test chamber is the first of its kind capable of testing a fueled power system to temperature that accurately simulate space. This paper outlines the new test and set up capabilities at the INL.

J. C. Giglio; A. A. Jackson

2012-03-01T23:59:59.000Z

436

Idaho National Laboratory Lead or Lead-Bismuth Eutectic (LBE) Test Facility - R&D Requirements, Design Criteria, Design Concept, and Concept Guidance  

SciTech Connect

The Idaho National Laboratory Lead-Bismuth Eutectic Test Facility will advance the state of nuclear technology relative to heavy-metal coolants (primarily Pb and Pb-Bi), thereby allowing the U.S. to maintain the pre-eminent position in overseas markets and a future domestic market. The end results will be a better qualitative understanding and quantitative measure of the thermal physics and chemistry conditions in the molten metal systems for varied flow conditions (single and multiphase), flow regime transitions, heat input methods, pumping requirements for varied conditions and geometries, and corrosion performance. Furthering INL knowledge in these areas is crucial to sustaining a competitive global position. This fundamental heavy-metal research supports the National Energy Policy Development Group’s stated need for energy systems to support electrical generation.1 The project will also assist the Department of Energy in achieving goals outlined in the Nuclear Energy Research Advisory Committee Long Term Nuclear Technology Research and Development Plan,2 the Generation IV Roadmap for Lead Fast Reactor development, and Advanced Fuel Cycle Initiative research and development. This multi-unit Lead-Bismuth Eutectic Test Facility with its flexible and reconfigurable apparatus will m