Powered by Deep Web Technologies
Note: This page contains sample records for the topic "thermal storage solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Thermal Storage of Solar Energy  

Science Journals Connector (OSTI)

Thermal storage is needed to improve the efficiency and usefulness of solar thermal systems. The paper indicates the main storage ... which would greatly increase the practical use of solar energy — is more diffi...

H. Tabor

1984-01-01T23:59:59.000Z

2

Solar Thermal Energy Storage  

Science Journals Connector (OSTI)

Various types of thermal energy storage systems are introduced and their importance and desired characteristics are outlined. Sensible heat storage, which is one of the most commonly used storage systems in pract...

E. Paykoç; S. Kakaç

1987-01-01T23:59:59.000Z

3

Sandia National Laboratories: solar thermal energy storage  

NLE Websites -- All DOE Office Websites (Extended Search)

thermal energy storage Sandia Solar Energy Test System Cited in National Engineering Competition On May 16, 2013, in Concentrating Solar Power, Energy, Energy Storage, Facilities,...

4

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network (OSTI)

ENERGY STORAGE FOR CONCENTRATING SOLAR POWER PLANTS,”Thermal Energy Storage in Concentrated Solar Thermal PowerThermal Energy Storage in Concentrated Solar Thermal Power

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

5

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network (OSTI)

CHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLAR POWERfor Thermal Energy Storage in Concentrated Solar Thermalfor Thermal Energy Storage in Concentrated Solar Thermal

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

6

Solar energy thermalization and storage device  

DOE Patents (OSTI)

A passive solar thermalization and thermal energy storage assembly which is visually transparent. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

McClelland, John F. (Ames, IA)

1981-09-01T23:59:59.000Z

7

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network (OSTI)

HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT Thomas F.CENTRAL RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE progressCorporation, RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE I,

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

8

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network (OSTI)

and Background Solar thermal energy collection is anCHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLAR POWERfor Thermal Energy Storage in Concentrated Solar Thermal

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

9

Preliminary requirements for thermal storage subsystems in solar thermal applications  

SciTech Connect

Methodologies for the analysis of value and comparing thermal storage concepts are presented. Value is a measure of worth and is determined by the cost of conventional fuel systems. Value data for thermal storage in large solar thermal electric power applications are presented. Thermal storage concepts must be compared when all are performing the same mission. A method for doing that analysis, called the ranking index, is derived. Necessary data to use the methodology are included.

Copeland, R.J.

1980-04-01T23:59:59.000Z

10

Sorption thermal storage for solar energy  

Science Journals Connector (OSTI)

Abstract Sorption technologies, which are considered mainly for solar cooling and heat pumping before, have gained a lot of interests for heat storage of solar energy in recent years, due to their high energy densities and long-term preservation ability for thermal energy. The aim of this review is to provide an insight into the basic knowledge and the current state of the art of research on sorption thermal storage technologies. The first section is concerned with the terminology and classification for sorption processes to give a clear scope of discussion in this paper. Sorption thermal storage is suggested to cover four technologies: liquid absorption, solid adsorption, chemical reaction and composite materials. Then the storage mechanisms and descriptions of basic closed and open cycles are given. The progress of sorption materials, cycles, and systems are also reviewed. Besides the well-known sorbents like silica gels and zeolites, some new materials, including aluminophosphates (AlPOs), silico-aluminophosphates (SAPOs) and metal-organic frameworks (MOFs), are proposed for heat storage. As energy density is a key criterion, emphais is given to the comparison of storage densities and charging tempertures for different materials. Ongoing research and development studies show that the challenges of the technology focus on the aspects of different types of sorption materials, the configurations of absorption cycles and advanced adsorption reactors. Booming progress illustrates that sorption thermal storage is a realistic and sustainable option for storing solar energy, especially for long-term applications. To bring the sorption storage solution into market, more intensive studies in fields of evaluation of advanced materials and development of efficient and compact prototypes are still required.

N. Yu; R.Z. Wang; L.W. Wang

2013-01-01T23:59:59.000Z

11

Thermal storage module for solar dynamic receivers  

DOE Patents (OSTI)

A thermal energy storage system comprising a germanium phase change material and a graphite container.

Beatty, Ronald L. (Farragut, TN); Lauf, Robert J. (Oak Ridge, TN)

1991-01-01T23:59:59.000Z

12

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network (OSTI)

COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,Storage in Concentrated Solar Thermal Power Plants A ThesisStorage in Concentrated Solar Thermal Power Plants by Corey

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

13

Sandia National Laboratories: solar thermal storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Sandia Workers Received Entrepreneurial Spirit Awards On April 3, 2013, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

14

Concentrating Solar Power Thermal Storage System Basics | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Storage System Basics Thermal Storage System Basics Concentrating Solar Power Thermal Storage System Basics August 21, 2013 - 10:33am Addthis One challenge facing the widespread use of solar energy is reduced or curtailed energy production when the sun sets or is blocked by clouds. Thermal energy storage provides a workable solution to this challenge. In a concentrating solar power (CSP) system, the sun's rays are reflected onto a receiver, which creates heat that is used to generate electricity. If the receiver contains oil or molten salt as the heat-transfer medium, then the thermal energy can be stored for later use. This enables CSP systems to be cost-competitive options for providing clean, renewable energy. Several thermal energy storage technologies have been tested and

15

Software-as-a-Service Optimised Scheduling of a Solar-Assisted HVAC System with Thermal Storage  

E-Print Network (OSTI)

1980, but its thermal solar and storage systems received achiller. A 30 m heat storage tank solar decouples heatfacility with thermal storage and solar- assisted HVAC for

Mammoli, Andrea

2014-01-01T23:59:59.000Z

16

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants.  

E-Print Network (OSTI)

??Experimental studies are presented that aim to utilize phase change materials (PCM's) to enhance thermal energy storage systems for concentrated solar thermal power (CSP) systems.… (more)

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

17

Photoswitchable Molecular Rings for Solar-Thermal Energy Storage  

Science Journals Connector (OSTI)

Photoswitchable Molecular Rings for Solar-Thermal Energy Storage ... Ground-state energy barriers along the NN torsional coordinates were also computed, along with excitation energies and intensities for the species that can contribute to the photostationary state. ...

E. Durgun; Jeffrey C. Grossman

2013-03-04T23:59:59.000Z

18

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network (OSTI)

with Sensible- Heat Storage Solar Power Plant with Sulfurof the Solar Power Plant Storage-Vessel Design, . . . . .System for Chemical Storage of Solar Energy. UC Berkeley,

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

19

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network (OSTI)

ADVANCED THERMAL ENERGY STORAGE CONCEPT DEFINITION STUDY FORSchilling. F. E. , Thermal Energy Storage Using PrestressedNo ~cumulate thermal energy storage. Estimate ESTrof2(

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

20

Semi-transparent solar energy thermal storage device  

DOE Patents (OSTI)

A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls. Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

McClelland, John F. (Ames, IA)

1986-04-08T23:59:59.000Z

Note: This page contains sample records for the topic "thermal storage solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Semi-transparent solar energy thermal storage device  

DOE Patents (OSTI)

A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls, Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

McClelland, John F. (Ames, IA)

1985-06-18T23:59:59.000Z

22

Technical assessment of solar thermal energy storage technologies  

Science Journals Connector (OSTI)

Solar energy is recognized as one of the most promising alternative energy options. On sunny days, solar energy systems generally collect more energy than necessary for direct use. Therefore, the design and development of solar energy storage systems, is of vital importance and nowadays one of the greatest efforts in solar research. These systems, being part of a complete solar installation, provide an optimum tuning between heat demand and heat supply. This paper reviews the basic concepts, systems design, and the latest developments in (sensible and latent heat) thermal energy storage. Parameters influencing the storage system selection, the advantages and disadvantages of each system, and the problems encountered during the systems operation are highlighted.

Hassan E.S. Fath

1998-01-01T23:59:59.000Z

23

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network (OSTI)

provide solar power plant energy storage for a reasonablefor Chemical Storage of Solar Energy. UC Berkeley, M.S.for a solar power plant without energy storage for nighttime

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

24

Energy management in solar thermal power plants with double thermal storage system and subdivided solar field  

Science Journals Connector (OSTI)

In the paper, two systems for solar thermal power plants (STPPs) are devised for improving the overall performance of the plant. Each one attempts to reduce losses coming from two respective sources. The systems are simulated and compared to a reference STPP. They consists on: (a) a double thermal energy storage (DTS) with different functionalities for each storage and (b) the subdivision of the solar collector field (SSF) into specialised sectors, so that each sector is designed to meet a thermal requirement, usually through an intermediate heat exchanger. This subdivision reduces the losses in the solar field by means of a decrease of the temperature of the heat transfer fluid (HTF). Double thermal energy storage is intended for keeping the plant working at nominal level for many hours a day, including post-sunset hours. One of the storages gathers a fluid which is heated up to temperatures above the nominal one. In order to make it work, the solar field must be able to overheat the fluid at peak hours. The second storage is the classical one. The combination of both allows the manager of the plant to keep the nominal of the plant for longer periods than in the case of classical thermal energy storage. To the authors’ knowledge, it is the first time that both configurations are presented and simulated for the case of parabolic through STPP with HTF technology. The results show that, if compared to the reference STPP, both configurations may raise the annual electricity generation (up to 1.7% for the DTS case and 3.9% for the SSF case).

Antonio Rovira; María José Montes; Manuel Valdes; José María Martínez-Val

2011-01-01T23:59:59.000Z

25

Transient-heat-transfer and stress analysis of a thermal-storage solar cooker module  

E-Print Network (OSTI)

This paper details the analysis carried out in Solidworks to determine the best material and configuration of a thermal-storage solar cooker module.The thermal-storage solar cooker utilizes the high-latent-heat lithium ...

Zengeni, Hazel C

2014-01-01T23:59:59.000Z

26

New Directions in Low Temperature Solar Thermal Storage  

Science Journals Connector (OSTI)

Comprehensive overviews of energy storage techhologies for solar applications are already available [1,2,3...

C. J. Swet

1987-01-01T23:59:59.000Z

27

Novel Thermal Storage Technologies for Concentrating Solar Power Generation  

SciTech Connect

The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300oC and 850oC using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

2013-06-20T23:59:59.000Z

28

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network (OSTI)

for concentrating solar-thermal energy use a large number ofBoth solar power plants absorb thermal energy in high-of a solar power plant that converts thermal energy into

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

29

Two-tank indirect thermal storage designs for solar parabolic trough power plants.  

E-Print Network (OSTI)

??The performance of a solar thermal parabolic trough plant with thermal storage is dependent upon the arrangement of the heat exchangers that ultimately transfer energy… (more)

Kopp, Joseph E.

2009-01-01T23:59:59.000Z

30

Solar Thermal Energy Storage Device: Hybrid Nanostructures for High-Energy-Density Solar Thermal Fuels  

SciTech Connect

HEATS Project: MIT is developing a thermal energy storage device that captures energy from the sun; this energy can be stored and released at a later time when it is needed most. Within the device, the absorption of sunlight causes the solar thermal fuel’s photoactive molecules to change shape, which allows energy to be stored within their chemical bonds. A trigger is applied to release the stored energy as heat, where it can be converted into electricity or used directly as heat. The molecules would then revert to their original shape, and can be recharged using sunlight to begin the process anew. MIT’s technology would be 100% renewable, rechargeable like a battery, and emissions-free. Devices using these solar thermal fuels—called Hybrisol—can also be used without a grid infrastructure for applications such as de-icing, heating, cooking, and water purification.

None

2012-01-09T23:59:59.000Z

31

Thermal performance evaluation of a solar air heater with and without thermal energy storage  

Science Journals Connector (OSTI)

This communication presents the experimental study and performance analysis of a solar air heater with and without phase change ... found that the output temperature in case with thermal energy storage (TES) is h...

V. V. Tyagi; A. K. Pandey; S. C. Kaushik…

2012-03-01T23:59:59.000Z

32

Exergetic optimization of solar collector and thermal energy storage system  

Science Journals Connector (OSTI)

This paper deals with the exergetic optimization of a solar thermal energy system. This consists of a solar collector (SC) and a rectangular water storage tank (ST) that contains a phase change material (PCM) distributed in an assembly of slabs. The study takes into account both conduction and convection heat transfer mode for water in the SC, and also the phase change process for the PCM in the ST. An analytical solution for the melting process in the PCM is also presented. The results of the study are compared with previous experimental data, confirming the accuracy of the model. Results of a numerical case study are presented and discussed.

F. Aghbalou; F. Badia; J. Illa

2006-01-01T23:59:59.000Z

33

Improving Solar Dryers’ Performances Using Design and Thermal Heat Storage  

Science Journals Connector (OSTI)

Solar drying is one of the most important ... , at the same time as using free solar energy permits to reduce the cost of ... face or to limit the intermittent character of solar energy, storage is proposed as a ...

Lyes Bennamoun

2013-12-01T23:59:59.000Z

34

21 - Thermal energy storage systems for concentrating solar power (CSP) technology  

Science Journals Connector (OSTI)

Abstract The option to supply electricity on demand is a key advantage of solar thermal power plants with integrated thermal storage. Diurnal storage systems providing thermal power in the multi-MW range for several hours are required here, the temperature range being between 250 °C and 700 °C. This chapter describes the state of the art in commercial storage systems used in solar thermal power generation. An overview of alternative and innovative storage concepts for this application area is given.

W.-D. Steinmann

2015-01-01T23:59:59.000Z

35

Solar-thermal-energy collection/storage-pond system  

DOE Patents (OSTI)

A solar thermal energy collection and storage system is disclosed. Water is contained, and the water surface is exposed directly to the sun. The central part of an impermeable membrane is positioned below the water's surface and above its bottom with a first side of the membrane pointing generally upward in its central portion. The perimeter part of the membrane is placed to create a watertight boundary separating the water into a first volume which is directly exposable to the sun and which touches the membranes first side, and a second volumn which touches the membranes second side. A salt is dissolved in the first water volume.

Blahnik, D.E.

1982-03-25T23:59:59.000Z

36

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network (OSTI)

PHASE CHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLARChange Materials for Thermal Energy Storage in ConcentratedChange Materials for Thermal Energy Storage in Concentrated

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

37

Analysis of the rigid porous manifold as an effevtive device to stratify solar thermal storage tanks.  

E-Print Network (OSTI)

??One of the most effective and simplest methods to maintain thermal stratification of solar hot water storage tanks during charge and discharge is the use… (more)

Ghosh, Vivekananda

2011-01-01T23:59:59.000Z

38

Concrete as a thermal energy storage medium for thermocline solar energy storage systems  

Science Journals Connector (OSTI)

Abstract Rising energy costs and the adverse effect on the environment caused by the burning of fossil fuels have triggered extensive research into alternative sources of energy. Harnessing the abundance of solar energy has been one of the most attractive energy alternatives. However, the development of an efficient and economical solar energy storage system is of major concern. According to the Department of Energy (DOE), the cost per kilowatt hour electric from current technologies which utilize solar energy is high, estimated at approximately $0.15–$0.20/kW helectric, while the unit cost to store the thermal energy is approximately $30.00/kW hthermal. Based on traditional means of producing electricity (through burning fossil fuels), the unit cost of electricity is $0.05–$0.06/kW h. Clearly, current solar energy technologies cannot compete with traditional forms of electricity generation. In response, the DOE has established a goal of reducing the cost of solar generated electricity to $0.05–$0.07/kW helectric and achieving thermal storage costs below $15.00/kW hthermal. Reduction in the cost of the storage medium is one step in achieving the stated goal. In this research program economical concrete mixtures were developed that resisted temperatures up to 600 °C. This temperature level represents a 50% increase over the operating temperature of current systems, which is approximately 400 °C. However, long-term testing of concrete is required to validate its use. At this temperature, the unit cost of energy stored in concrete (the thermal energy storage medium) is estimated at $0.88–$1.00/kW hthermal. These concrete mixtures, used as a thermal energy storage medium, can potentially change solar electric power output allowing production through periods of low to no insolation at lower unit costs.

Emerson John; Micah Hale; Panneer Selvam

2013-01-01T23:59:59.000Z

39

An investigation of the efficiency of the receiver of a solar thermal cooker with thermal energy storage.  

E-Print Network (OSTI)

??A small scale solar concentrator cooker with a thermal energy storage system was designed, constructed and tested on the roof of the Physics building at… (more)

Heilgendorff, Heiko Martin.

2015-01-01T23:59:59.000Z

40

Software-as-a-Service Optimised Scheduling of a Solar-Assisted HVAC System with Thermal Storage  

E-Print Network (OSTI)

of a solar-thermal- assisted hvac system. Energy andsolar thermal collectors using flat reflective surfaces. Solar Energy,of a solar-assisted HVAC system with thermal storage. Energy

Mammoli, Andrea

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal storage solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Different Models for Determination of Thermal Stratification in A Solar Storage Tank  

Science Journals Connector (OSTI)

In this work two different models are shown for describing the thermal stratification in the solar storage tank of the solar water heating system. The first model was ... hour from the average hourly data of the

P. Géczy-Víg; I. Farkas

2009-01-01T23:59:59.000Z

42

Software-as-a-Service Optimised Scheduling of a Solar-Assisted HVAC System with Thermal Storage  

E-Print Network (OSTI)

solar energy available would result in overcharging of the hot storage.of a solar-assisted HVAC system with thermal storage. Energystorage and solar- assisted HVAC for the purpose of optimizing its energy

Mammoli, Andrea

2014-01-01T23:59:59.000Z

43

Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar  

E-Print Network (OSTI)

and moist air for thermal storage of solar energy: global performance Benoit Michela, *, Nathalie Mazeta-gas reaction, hydration, thermal storage, seasonal storage, solar energy * Corresponding author: E-mail: mazet in solar energy. Solar energy is widely affordable and has the capability to meet household demand over

Paris-Sud XI, Université de

44

Thermal energy storage  

Science Journals Connector (OSTI)

Various types of thermal stares for solar systems are surveyed which include: long-term water stores for solar systems; ground storage using soil as an interseasonal energy store; ground-water aquifers; pebble or rock bed storage; phase change storage; solar ponds; high temperature storage; and cold stores for solar air conditioning system. The use of mathematical models for analysis of the storage systems is considered

W.E.J. Neal

1981-01-01T23:59:59.000Z

45

Research and Development for Novel Thermal Energy Storage Systems (TES) for Concentrating Solar Power (CSP)  

SciTech Connect

The overall objective was to develop innovative heat transfer devices and methodologies for novel thermal energy storage systems for concentrating solar power generation involving phase change materials (PCMs). Specific objectives included embedding thermosyphons and/or heat pipes (TS/HPs) within appropriate phase change materials to significantly reduce thermal resistances within the thermal energy storage system of a large-scale concentrating solar power plant and, in turn, improve performance of the plant. Experimental, system level and detailed comprehensive modeling approaches were taken to investigate the effect of adding TS/HPs on the performance of latent heat thermal energy storage (LHTES) systems.

Faghri, Amir; Bergman, Theodore L; Pitchumani, Ranga

2013-09-26T23:59:59.000Z

46

Storage of solar energy  

Science Journals Connector (OSTI)

A framework is presented for identifying appropriate systems for storage of electrical, mechanical, chemical, and thermal energy in solar energy supply systems. Classification categories include the nature ... su...

Theodore B. Taylor

1979-09-01T23:59:59.000Z

47

Analysis of a solar dish–Stirling system with hybridization and thermal storage  

Science Journals Connector (OSTI)

A high potential of thermosolar power generation systems is the use of thermal storage and/or hybridization to overcome dependability of solar resource availability. The incorporation of these technologies ... on...

Carlos Monné; Yolanda Bravo…

2014-07-01T23:59:59.000Z

48

Simulation and experimental study on honeycomb-ceramic thermal energy storage for solar thermal systems  

Science Journals Connector (OSTI)

Abstract A honeycomb-ceramic thermal energy storage (TES) was proposed for thermal utilization of concentrating solar energy. A numerical model was developed to simulate the thermal performances, and TES experiments were carried out to demonstrate and improve the model. The outlet temperature difference between simulation and experimental results was within 5% at the end of a charging period, indicating the simulation model was reasonable. The simulation model was applied to predict the effects of geometric, thermo-physical parameters and flow fluxes on TES performances. The temperature dropped more quickly and decreased to a lower temperature in discharging period when the conductivity was smaller. The storage capacity increased with the growth of volumetric heat capacity. As to a TES with big channels and thin walls, the outlet temperature increased quickly and greatly in a charging process and dropped sharply in a discharging process.

Zhongyang Luo; Cheng Wang; Gang Xiao; Mingjiang Ni; Kefa Cen

2014-01-01T23:59:59.000Z

49

Solar Energy Storage  

Science Journals Connector (OSTI)

The intermittent nature of the solar energy supply makes the provision of adequate energy storage essential for the majority of practical applications. Thermal storage is needed for both low-temperature and high-...

Brian Norton BSc; MSc; PhD; F Inst E; C Eng

1992-01-01T23:59:59.000Z

50

Thermal energy storage technologies and systems for concentrating solar power plants  

Science Journals Connector (OSTI)

This paper presents a review of thermal energy storage system design methodologies and the factors to be considered at different hierarchical levels for concentrating solar power (CSP) plants. Thermal energy storage forms a key component of a power plant for improvement of its dispatchability. Though there have been many reviews of storage media, there are not many that focus on storage system design along with its integration into the power plant. This paper discusses the thermal energy storage system designs presented in the literature along with thermal and exergy efficiency analyses of various thermal energy storage systems integrated into the power plant. Economic aspects of these systems and the relevant publications in literature are also summarized in this effort.

Sarada Kuravi; Jamie Trahan; D. Yogi Goswami; Muhammad M. Rahman; Elias K. Stefanakos

2013-01-01T23:59:59.000Z

51

Performance comparison of thermal energy storage oils for solar cookers during charging  

Science Journals Connector (OSTI)

Abstract Charging experiments to evaluate the thermal performance of three thermal energy storage oils for solar cookers are presented. An experimental setup using an insulated 20 L storage tank is used to perform the experiments. The three thermal oils evaluated are Sunflower Oil, Shell Thermia C and Shell Thermia B. Energy and exergy based thermal performance parameters are evaluated. A new parameter, the exergy factor, is proposed which evaluates the ratio of the exergy content to the energy content. Sunflower Oil performs better than the other thermal oils under high power charging. Thermal performances of the oils are comparable under low power charging.

Ashmore Mawire; Abigail Phori; Simeon Taole

2014-01-01T23:59:59.000Z

52

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network (OSTI)

Solar thermal energy collection is an exciting technology for the replacement of non-renewable energy production.

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

53

Thermal and economical analysis of a central solar heating system with underground seasonal storage in Turkey  

Science Journals Connector (OSTI)

Thermal performance and economic feasibility of two types of central solar heating system with seasonal storage under four climatically different Turkey locations are investigated. The effects of storage volume and collector area on the thermal performance and cost are studied for three load sizes. The simulation model of the system consisting of flat plate solar collectors, a heat pump, under ground storage tank and heating load based on a finite element analysis and finite element code ANSYS™ is chosen as a convenient tool. In this study, the lowest solar fraction value for Trabzon (41°N) and the highest solar fraction value for Adana (37°N) are obtained. Based on the economic analysis, the payback period of system is found to be about 25–35 years for Turkey.

A. Ucar; M. Inalli

2005-01-01T23:59:59.000Z

54

A review of thermal energy storage technologies and control approaches for solar cooling  

Science Journals Connector (OSTI)

Abstract This paper presents a review of thermal storage media and system design options suitable for solar cooling applications. The review covers solar cooling applications with heat input in the range of 60–250 °C. Special attention is given to high temperature (>100 °C) high efficiency cooling applications that have been largely ignored in existing reviews. Sensible and latent heat storage materials have been tabulated according to their suitability for double effect and triple effect chillers. A summary of system designs for water storage (sensible heat), and phase change material storage (latent heat) has been provided. The article summarizes literature related to solar thermal air-conditioning systems from a material level as well as plant level considerations. This includes evaluating various control strategies for managing the thermal store, that aid in optimal functioning of a solar air conditioning plant. Modeling approaches are reviewed for sizing the solar thermal store, highlighting the large difference seen in specific storage size when applied in different applications.

Sergio Pintaldi; Cristian Perfumo; Subbu Sethuvenkatraman; Stephen White; Gary Rosengarten

2015-01-01T23:59:59.000Z

55

Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems  

Office of Scientific and Technical Information (OSTI)

Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Final Report March 31, 2012 Michael Schuller, Frank Little, Darren Malik, Matt Betts, Qian Shao, Jun Luo, Wan Zhong, Sandhya Shankar, Ashwin Padmanaban The Space Engineering Research Center Texas Engineering Experiment Station Texas A&M University Abstract We demonstrated that adding nanoparticles to a molten salt would increase its utility as a thermal energy storage medium for a concentrating solar power system. Specifically, we demonstrated that we could increase the specific heat of nitrate and carbonate salts containing 1% or less of alumina nanoparticles. We fabricated the composite materials using both evaporative and air drying methods. We tested several thermophysical properties of the composite materials,

56

HEATS: Thermal Energy Storage  

SciTech Connect

HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

57

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

Scale Thermal Energy Storage for Cogeneration and Solarsolar captors, thermal effluents, low cost energy duringSeale Thermal Energy Storage for Cogeneration and Solar

Authors, Various

2011-01-01T23:59:59.000Z

58

Cost and performance analysis of concentrating solar power systems with integrated latent thermal energy storage  

Science Journals Connector (OSTI)

Abstract Integrating TES (thermal energy storage) in a CSP (concentrating solar power) plant allows for continuous operation even during times when solar irradiation is not available, thus providing a reliable output to the grid. In the present study, the cost and performance models of an EPCM-TES (encapsulated phase change material thermal energy storage) system and HP-TES (latent thermal storage system with embedded heat pipes) are integrated with a CSP power tower system model utilizing Rankine and s-CO2 (supercritical carbon-dioxide) power conversion cycles, to investigate the dynamic TES-integrated plant performance. The influence of design parameters of the storage system on the performance of a 200 MWe capacity power tower CSP plant is studied to establish design envelopes that satisfy the U.S. Department of Energy SunShot Initiative requirements, which include a round-trip annualized exergetic efficiency greater than 95%, storage cost less than $15/kWht and LCE (levelized cost of electricity) less than 6 ˘/kWh. From the design windows, optimum designs of the storage system based on minimum LCE, maximum exergetic efficiency, and maximum capacity factor are reported and compared with the results of two-tank molten salt storage system. Overall, the study presents the first effort to construct and analyze LTES (latent thermal energy storage) integrated CSP plant performance that can help assess the impact, cost and performance of LTES systems on power generation from molten salt power tower CSP plant.

K. Nithyanandam; R. Pitchumani

2014-01-01T23:59:59.000Z

59

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network (OSTI)

Power Plant Solar Power Ideal Gas Turbine Topping Braytonefficiency of a solar power plant with gas-turbine toppingfor a solar power plant with Brayton-cycle gas turbine

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

60

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network (OSTI)

Design. Propofied Solar Cooling Tower Type Wet-Cooled Powerdry-cooling tower was used in the proposed solar power plantTower • Power-Generation Subsystem Summary An Overall Summary of the Proposed Solar

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal storage solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network (OSTI)

Power Plant Solar Power Ideal Gas Turbine Topping Braytonwill require higher parasitic power for gas circulation. Theefficiency of a solar power plant with gas-turbine topping

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

62

Evaluation of distributed building thermal energy storage in conjunction with wind and solar electric power generation  

Science Journals Connector (OSTI)

Abstract Energy storage is often seen as necessary for the electric utility systems with large amounts of solar or wind power generation to compensate for the inability to schedule these facilities to match power demand. This study looks at the potential to use building thermal energy storage as a load shifting technology rather than traditional electric energy storage. Analyses are conducted using hourly electric load, temperature, wind speed, and solar radiation data for a 5-state central U.S. region in conjunction with simple computer simulations and economic models to evaluate the economic benefit of distributed building thermal energy storage (TES). The value of the TES is investigated as wind and solar power generation penetration increases. In addition, building side and smart grid enabled utility side storage management strategies are explored and compared. For a relative point of comparison, batteries are simulated and compared to TES. It is found that cooling TES value remains approximately constant as wind penetration increases, but generally decreases with increasing solar penetration. It is also clearly shown that the storage management strategy is vitally important to the economic value of TES; utility side operating methods perform with at least 75% greater value as compared to building side management strategies. In addition, TES compares fairly well against batteries, obtaining nearly 90% of the battery value in the base case; this result is significant considering TES can only impact building thermal loads, whereas batteries can impact any electrical load. Surprisingly, the value of energy storage does not increase substantially with increased wind and solar penetration and in some cases it decreases. This result is true for both TES and batteries and suggests that the tie between load shifting energy storage and renewable electric power generation may not be nearly as strong as typically thought.

Byron W. Jones; Robert Powell

2015-01-01T23:59:59.000Z

63

DRAIN-BACK PROTECTED LOW-FLOW SOLAR HEATING SYSTEM WITH DISTRIBUTED ELEVATED THERMALLY STRATIFIED STORAGE  

Science Journals Connector (OSTI)

ABSTRACT Design considerations concerning a drain-back freeze and overheat protection system are given with emphasis on nitrogen management and thermal stratification of an elevated distributed storage. The actual system of GNT in Berg, Federal Republic of Germany is described. KEYWORDS Solar Heating; Freeze Protection; Overheat Protection; Drain-Back System;

W.B. VELTKAMP; J. VAN BERKEL; A.T. KEESMAN

1990-01-01T23:59:59.000Z

64

Design and optimization of solid thermal energy storage modules for solar thermal power plant applications  

Science Journals Connector (OSTI)

Abstract Solid sensible heat storage is an attractive option for high-temperature storage applications in terms of investment and maintenance costs. Typical solid thermal energy storage systems use a heat transfer fluid to exchange heat as the fluid flows through a tubular heat exchanger embedded in the solid storage material. The modified lumped capacitance method is used with an effective heat transfer coefficient in a simplified analysis of the heat transfer in solid thermal energy storage systems for a solid cylindrical heat storage unit. The analytical solution was found using the Laplace transform method. The solution was then used to develop an optimization method for designing solid storage modules which uses the system requirements (released energy and fluid outlet temperature) as the constraint conditions and the storage module cost as the objective function for the optimization. Optimized results are then given for many kinds of system configurations.

Yongfang Jian; Quentin Falcoz; Pierre Neveu; Fengwu Bai; Yan Wang; Zhifeng Wang

2015-01-01T23:59:59.000Z

65

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network (OSTI)

ollection subsystem uses heliostats and a central receiverhr Installed Cost of the Heliostats* - Installed Cost of thein Chapter 4. Table 2-4. Heliostats Reference Solar Power

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

66

Rock bed thermal storage for concentrating solar power plants.  

E-Print Network (OSTI)

??ENGLISH ABSTRACT: Concentrating solar power plants are a promising means of generating electricity. However, they are dependent on the sun as a source of energy,… (more)

Allen, Kenneth Guy

2014-01-01T23:59:59.000Z

67

Modeling the heating of the Green Energy Lab in Shanghai by the geothermal heat pump combined with the solar thermal energy and ground energy storage.  

E-Print Network (OSTI)

?? This work involves the study of heating systems that combine solar collectors, geothermal heat pumps and thermal energy storage in the ground. Solar collectors… (more)

Yu, Candice Yau May

2012-01-01T23:59:59.000Z

68

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network (OSTI)

Cecil. E. A. , Research on Dry-Type Cooling _T_o_w_e_r~s~f~oTower Type Wet-Cooled Power Plant Solar-Power Plant Dry-Cool

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

69

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

for Storage of Solar Thermal Energy,” Solar Energy, 18 (3),Toward Molecular Solar-Thermal Energy Storage,” Angewandtescale molecular solar thermal energy storage system, in

Coso, Dusan

2013-01-01T23:59:59.000Z

70

Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Concentrating Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario Paul Denholm, Yih-Huei Wan, Marissa Hummon, and Mark Mehos Technical Report NREL/TP-6A20-58186 March 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 An Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario Paul Denholm, Yih-Huei Wan, Marissa Hummon, and Mark Mehos Prepared under Task No. CP08.8301

71

Project Profile: Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation  

Energy.gov (U.S. Department of Energy (DOE))

The University of Alabama, under the Thermal Storage FOA, is developing thermal energy storage (TES) media consisting of low melting point (LMP) molten salt with high TES density for sensible heat storage systems.

72

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

73

List of Publications A Numerical Study of Transient Mixed Convection Flows in a Thermal Storage Tank, J. Solar  

E-Print Network (OSTI)

List of Publications A Numerical Study of Transient Mixed Convection Flows in a Thermal Storage Tank, J. Solar Energy Eng. 105, 246­253 (1983) (with A.M.C. Chan & D. Giusti) An Approximate Analytical

Smereka, Peter

74

Neural network modelling of thermal stratification in a solar DHW storage  

SciTech Connect

In this study an artificial neural network (ANN) model is introduced for modelling the layer temperatures in a storage tank of a solar thermal system. The model is based on the measured data of a domestic hot water system. The temperatures distribution in the storage tank divided in 8 equal parts in vertical direction were calculated every 5 min using the average 5 min data of solar radiation, ambient temperature, mass flow rate of collector loop, load and the temperature of the layers in previous time steps. The introduced ANN model consists of two parts describing the load periods and the periods between the loads. The identified model gives acceptable results inside the training interval as the average deviation was 0.22 C during the training and 0.24 C during the validation. (author)

Geczy-Vig, P.; Farkas, I. [Department of Physics and Process Control, Szent Istvan University, Pater K. u. 1., H-2103 Goedoello (Hungary)

2010-05-15T23:59:59.000Z

75

Project Profile: Innovative Thermal Energy Storage for Baseload...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Energy Storage for Baseload Solar Power Generation Project Profile: Innovative Thermal Energy Storage for Baseload Solar Power Generation University of South Florida logo...

76

Project Profile: Reducing the Cost of Thermal Energy Storage...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants Project Profile: Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power...

77

Project Profile: Novel Molten Salts Thermal Energy Storage for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation Project Profile: Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power...

78

Project Profile: Novel Thermal Energy Storage Systems for Concentrating Solar Power  

Energy.gov (U.S. Department of Energy (DOE))

The University of Connecticut, under the Thermal Storage FOA, is developing innovative heat transfer devices and methodologies for novel thermal energy storage (TES) systems for CSP involving phase change materials (PCMs).

79

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

and Zakhidov, 1971. "Storage of Solar Energy in a Sandy-Aquifer Storage of Hot Water from Solar Energy Collectors,"with solar energy systems, aquifer energy storage provides a

Tsang, C.-F.

2011-01-01T23:59:59.000Z

80

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

Zakhidov, 1971. "Storage of Solar Energy in a Sandy-Gravelwith solar energy systems, aquifer energy storage provides aAquifer Storage of Hot Water from Solar Energy Collectors,"

Tsang, C.-F.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal storage solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

and solar thermal collectors; electrical storage, flowis disallowed; 5. a low storage, PV, and solar thermal priceand heat storage; heat exchangers for application of solar

Stadler, Michael

2008-01-01T23:59:59.000Z

82

Modelling Concentrating Solar Power with Thermal Energy Storage for Integration Studies (Presentation)  

SciTech Connect

Concentrating solar power with thermal energy storage (CSP-TES) can provide multiple benefits to the grid, including low marginal cost energy and the ability to levelize load, provide operating reserves, and provide firm capacity. It is challenging to properly value the integration of CSP because of the complicated nature of this technology. Unlike completely dispatchable fossil sources, CSP is a limited energy resource, depending on the hourly and daily supply of solar energy. To optimize the use of this limited energy, CSP-TES must be implemented in a production cost model with multiple decision variables for the operation of the CSP-TES plant. We develop and implement a CSP-TES plant in a production cost model that accurately characterizes the three main components of the plant: solar field, storage tank, and power block. We show the effect of various modelling simplifications on the value of CSP, including: scheduled versus optimized dispatch from the storage tank and energy-only operation versus co-optimization with ancillary services.

Hummon, M.; Jorgenson, J.; Denholm, P.; Mehos, M.

2013-10-01T23:59:59.000Z

83

Modelling Concentrating Solar Power with Thermal Energy Storage for Integration Studies: Preprint  

SciTech Connect

Concentrating solar power with thermal energy storage (CSP-TES) can provide multiple benefits to the grid, including low marginal cost energy and the ability to levelize load, provide operating reserves, and provide firm capacity. It is challenging to properly value the integration of CSP because of the complicated nature of this technology. Unlike completely dispatchable fossil sources, CSP is a limited energy resource, depending on the hourly and daily supply of solar energy. To optimize the use of this limited energy, CSP-TES must be implemented in a production cost model with multiple decision variables for the operation of the CSP-TES plant. We develop and implement a CSP-TES plant in a production cost model that accurately characterizes the three main components of the plant: solar field, storage tank, and power block. We show the effect of various modelling simplifications on the value of CSP, including: scheduled versus optimized dispatch from the storage tank and energy-only operation versus co-optimization with ancillary services.

Hummon, M.; Denholm, P.; Jorgenson, J.; Mehos, M.

2013-10-01T23:59:59.000Z

84

Multi-Criteria Decision Analysis of Concentrated Solar Power with Thermal Energy Storage and Dry Cooling  

Science Journals Connector (OSTI)

For comparison, the ratio of life cycle GHG emissions to LCOE for pulverized coal (PC), integrated gasification combined cycle (IGCC), natural gas combined cycle (NGCC), PC with carbon capture and storage (CCS), IGCC with CCS, and NGCC with CCS are 31, 19, 12, 3, 2, and 2 kgCO2eq/$, respectively (Supporting Information Table S4, p S10). ... Poullikkas, A.Economic analysis of power generation from parabolic trough solar thermal plants for the Mediterranean region—A case study for the island of Cyprus Renewable Sustainable Energy Rev. 2009, 13 ( 9) 2474– 2484 ...

Sharon J. W. Klein

2013-11-18T23:59:59.000Z

85

Simulating the Value of Concentrating Solar Power with Thermal Energy Storage in a Production Cost Model  

SciTech Connect

Concentrating solar power (CSP) deployed with thermal energy storage (TES) provides a dispatchable source of renewable energy. The value of CSP with TES, as with other potential generation resources, needs to be established using traditional utility planning tools. Production cost models, which simulate the operation of grid, are often used to estimate the operational value of different generation mixes. CSP with TES has historically had limited analysis in commercial production simulations. This document describes the implementation of CSP with TES in a commercial production cost model. It also describes the simulation of grid operations with CSP in a test system consisting of two balancing areas located primarily in Colorado.

Denholm, P.; Hummon, M.

2012-11-01T23:59:59.000Z

86

Physical Properties of Solid Particle Thermal Energy Storage Media for Concentrating Solar Power Applications  

Science Journals Connector (OSTI)

Abstract Solid ceramic particles have proven to be an effective heat transfer and thermal storage media for central receiver power production for a heat input temperature up to 1000 °C. In the directly illuminated solid particle receiver, a cascade of ?0.1-1 mm diameter particles is directly heated within a receiver cavity by concentrated solar energy. The efficiency of this approach, with respect to the energy balance on the receiver itself, is dependent on the physical properties of the particles. In this work, the radiative properties, solar weighted absorptance and thermal emittance, have been measured for several commercially available particle candidates both in the as-received state and after thermal exposure to simulate extended operation at elevated temperature in air between 700?C-1000?C. Heating the particles is shown to significantly reduce the solar weighted absorptance of as-received particles within 24 hours of exposure to air at 1000 °C, while heating at 700 °C in air has relatively little effect. In the as-received state, solar weighted absorptance can be as high as 93%, dropping to 84% after 192 hours at 1000?C. Particle stability is better at 700?C, and the solar absorptance remains above 92% after 192 hours of exposure. Analysis using x-ray diffraction (XRD) shows evidence of multiple chemical transformations in the sintered bauxite particle materials, which contain oxides of aluminum, silicon, titanium, and iron, following heating in air. However, the XRD spectra show only small differences between as-received and heat treated particles leaving open the possibility that the observed change in radiative properties results from a change in oxidation state without a concomitant phase change. Regardless of the specific degradation mechanism, t he solar weighted absorptance of the particles can be increased beyond the as-received condition by chemically reducing the particles in forming gas (5%H2 in N2 or Ar) above 700 °C, providing a possible means of periodically rejuvenating degraded particles in situ.

N. Siegel; M. Gross; C. Ho; T. Phan; J. Yuan

2014-01-01T23:59:59.000Z

87

Molten Salt Nanomaterials for Thermal Energy Storage and Concentrated Solar Power Applications  

E-Print Network (OSTI)

thermal efficiency from 54 percent to 63 percent. However, very few thermal storage materials are compatible for these high temperatures. Molten salts are thermally stable up to 600 degrees C and beyond. Using the molten salts as the TES materials...

Shin, Donghyun

2012-10-19T23:59:59.000Z

88

Evaluation of annual efficiencies of high temperature central receiver concentrated solar power plants with thermal energy storage.  

SciTech Connect

The current study has examined four cases of a central receiver concentrated solar power plant with thermal energy storage using the DELSOL and SOLERGY computer codes. The current state-of-the-art base case was compared with a theoretical high temperature case which was based on the scaling of some input parameters and the estimation of other parameters based on performance targets from the Department of Energy SunShot Initiative. This comparison was done for both current and high temperature cases in two configurations: a surround field with an external cylindrical receiver and a north field with a single cavity receiver. There is a fairly dramatic difference between the design point and annual average performance, especially in the solar field and receiver subsystems, and also in energy losses due to the thermal energy storage being full to capacity. Additionally, there are relatively small differences (<2%) in annual average efficiencies between the Base and High Temperature cases, despite an increase in thermal to electric conversion efficiency of over 8%. This is due the increased thermal losses at higher temperature and operational losses due to subsystem start-up and shut-down. Thermal energy storage can mitigate some of these losses by utilizing larger thermal energy storage to ensure that the electric power production system does not need to stop and re-start as often, but solar energy is inherently transient. Economic and cost considerations were not considered here, but will have a significant impact on solar thermal electric power production strategy and sizing.

Ehrhart, Brian David; Gill, David Dennis

2013-07-01T23:59:59.000Z

89

Latent Heat Based High Temperature Solar Thermal Energy Storage for Power Generation  

Science Journals Connector (OSTI)

Abstract The design of a phase change material based high temperature solar thermal energy storage device is presented. Said unit will be used as an energy reserve for a 1 kWe domestic CCHP system using a Stirling engine to produce electric power. The thermal energy storage is conducted by means of the exploitation of the latent heat of fusion of the material contained inside the tank. This method was chosen because a great energy density is obtained and, at the same time, it is possible to extract the stored energy with very small variations on the temperature, which is a favorable feature for its intended purpose. The selection of the phase change material is discussed and the design of the different components of the proposed storage model is described. It is analyzed, as well, the insulating solution applied that minimizes heat losses. Finally, a comparison between experimental results of the tests performed on the first built to scale prototype and the data obtained from computer simulations is shown.

Bruno Cárdenas; Noel León

2014-01-01T23:59:59.000Z

90

Experimental Investigation into a Packed Bed Thermal Storage Solution for Solar Gas Turbine Systems  

Science Journals Connector (OSTI)

Abstract High temperature thermal storage in randomly packed beds of ceramic particles is proposed as an effective storage solution for Solar Gas Turbine (SGT) cycles in the near term. Numerical modelling of these systems allows for optimised thermal storage designs, but such models must be validated against experimental data. In this work an experimental test programme was conducted to generate high temperature heat transfer data for a packed bed operating over the temperature ranges 350-900 °C and 600-900 °C. These are representative of two potential SGT cycles. Flue gas from a 45 kW LPG burner was used to heat a packed bed of Denstone ceramic pebbles and the testing procedure involved preheating the system to achieve the desired temperature ranges. The fluid and solid temperature profiles in the packed bed were measured in the axial and radial dimensions and are compared to a numerical model with reasonable agreement. Potential modifications to the test facility are described and future testing plans outlined.

P. Klein; T.H. Roos; T.J. Sheer

2014-01-01T23:59:59.000Z

91

Comparison of the Thermal Performance of a Solar Heating System with Open and Closed Solid Sorption Storage  

Science Journals Connector (OSTI)

Abstract The aim of this paper is to compare two solar heating systems with different solid sorption storage concepts; an open storage concept with material transport and external reactor and a closed sorption storage concept with the material reservoir as reactor. Both storage concepts are part of system concepts that have been investigated during national projects for a period of more than 3 years each. A TRNSYS model has been developed for each concept and the corresponding mathematical model is described. An emphasis is given on the model simplifications and thus its up- and downscaling possibilities. TRNSYS simulation studies were performed using similar boundary conditions. Hence the simulation results can be compared directly, thus the advantages and disadvantages of both concepts under investigation can be elaborated and assessed. TRNSYS simulations have been performed for each system concept using the properties of two different thermochemical storage materials (TCM). It is shown that the type of TCM has a significant influence on the systems fractional thermal energy savings. Using silica gel as TCM, both system concepts’ performances are only slightly better compared to a standard water-filled storage tank of the same size. The TCM zeolite 13 XBF, a binder free 13 X zeolite, leads to significantly better fractional thermal energy savings. Although the two systems under investigation behave differently, the fractional thermal energy savings are similar. High solar thermal fractions up to a complete solar coverage can be achieved for both storage concepts with moderate collector array and store sizes.

Florian Bertsch; Dagmar Jaehnig; Sebastian Asenbeck; Henner Kerskes; Harald Drueck; Waldemar Wagner; Werner Weiss

2014-01-01T23:59:59.000Z

92

Seasonal thermal energy storage  

SciTech Connect

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

93

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network (OSTI)

OF CALIFORNIA RIVERSIDE Phase Change Materials for ThermalOF THE THESIS Phase Change Materials for Thermal Energyto utilize phase change materials (PCM’s) to enhance thermal

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

94

Thermal storage of solar energy as sensible heat at medium temperatures  

Science Journals Connector (OSTI)

A model has been solved in order to determine the thermal losses of a storage tank, where thermal energy is stored as sensible heat of a diathermic fluid at medium temperatures. A parametric analysis has been ...

C. Bellecci; A. Bonanno; M. Camarca; M. Conti; L. La Rotonda…

95

Influence of Hydraulics and Control of Thermal Storage in Solar Assisted Heat Pump Combisystems  

Science Journals Connector (OSTI)

Abstract This paper studies the influence of hydraulics and control of thermal storage in systems combined with solar thermal and heat pump for the production of warm water and space heating in dwellings. A reference air source heat pump system with flat plate collectors connected to a combistore was defined and modeled together with the IEA SHC Task 44/HPP Annex 38 (T44A38) “Solar and Heat Pump Systems” boundary conditions of Strasbourg climate and SFH45 building. Three and four pipe connections as well as use of internal and external heat exchangers for DHW preparation were investigated as well as sensor height for charging of the DHW zone in the store. The temperature in this zone was varied to ensure the same DHW comfort was achieved in all cases. The results show that the four pipe connection results in 9% improvement in SPF compared to three pipe and that the external heat exchanger for DHW preparation leads to a 2% improvement compared to the reference case. Additionally the sensor height for charging the DHW zone of the store should not be too low, otherwise system performance is adversely affected.

Stefano Poppi; Chris Bales

2014-01-01T23:59:59.000Z

96

Economic analysis of community solar heating systems that use annual cycle thermal energy storage  

SciTech Connect

The economics of community-scale solar systems that incorporate a centralized annual cycle thermal energy storage (ACTES) coupled to a distribution system is examined. Systems were sized for three housing configurations: single-unit dwellings, 10-unit, and 200-unit apartment complexes in 50-, 200-, 400-, and 1000-unit communities in 10 geographic locations in the United States. Thermal energy is stored in large, constructed, underground tanks. Costs were assigned to each component of every system in order to allow calculation of total costs. Results are presented as normalized system costs per unit of heat delivered per building unit. These methods allow: (1) identification of the relative importance of each system component in the overall cost; and (2) identification of the key variables that determine the optimum sizing of a district solar heating system. In more northerly locations, collectors are a larger component of cost. In southern locations, distribution networks are a larger proportion of total cost. Larger, more compact buildings are, in general, less expensive to heat. For the two smaller-scale building configurations, a broad minima in total costs versus system size is often observed.

Baylin, F.; Monte, R.; Sillman, S.; Hooper, F.C.; McClenahan, J.D.

1981-02-01T23:59:59.000Z

97

Solar thermal upper stage technology demonstrator liquid hydrogen storage and feed system test program  

Science Journals Connector (OSTI)

The Solar Thermal Upper Stage Technology Demonstrator (STUSTD) Liquid Hydrogen Storage and Feed System (LHSFS) Test Program is described. The test program consists of two principal phases. First an engineering characterization phase includes tests performed to demonstrate and understand the expected tank performance. This includes fill and drain; baseline heat leak; active Thermodynamic Vent System (TVS); and flow tests. After the LHSFS performance is understood and performance characteristics are determined a 30 day mission simulation test will be conducted. This test will simulate a 30 day transfer mission from low earth orbit (LEO) to geosynchronous equatorial orbit (GEO). Mission performance predictions based on the results of the engineering characterization tests will be used to correlate the results of the 30 day mission simulation.

E. C. Cady

1997-01-01T23:59:59.000Z

98

Project Profile: Novel Thermal Storage Technologies for Concentrating Solar Power Generation  

Energy.gov (U.S. Department of Energy (DOE))

Lehigh University, under the Thermal Storage FOA, is working to establish the technical feasibility of using phase change materials (PCM) at elevated temperatures and to acquire engineering results that will lead to the demonstration of large-scale thermal storage systems.

99

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network (OSTI)

thermal absorption solar photo- storage chiller thermalbetween solar thermal collection and storage systems and CHPimpact of solar thermal and heat storage on CO 2 emissions

Marnay, Chris

2010-01-01T23:59:59.000Z

100

Design and Simulation for a Solar House with Building Integrated Photovoltaic-Thermal System and Thermal Storage  

Science Journals Connector (OSTI)

Building integrated photovoltaic-thermal systems (BIPV/T) that pre-heat ambient air may be used in combination with ventilated concrete slabs for thermal storage purposes. This is one of many feasible ways to ...

YuXiang Chen; A. K. Athienitis; K. E. Galal…

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal storage solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Modeling and Simulation of Solar Chimney Power Plant with and without the Effect of Thermal Energy Storage Systems.  

E-Print Network (OSTI)

??A solar updraft tower power plant – sometimes also called 'solar chimney' or just ‘solar tower’ – is a solar thermal power plant utilizing a… (more)

Daba, Robera

2011-01-01T23:59:59.000Z

102

Assessing thermal energy storage technologies of concentrating solar plants for the direct coupling with chemical processes. The case of solar-driven biomass gasification  

Science Journals Connector (OSTI)

Abstract Dynamic simulation, design improvements and control issues in solar power plants might compete with special considerations on energy storing techniques. In order to provide the stability in production of power or chemical commodities in spite of discontinuity in the source of energy, i.e., sun, overall concerns in the details of solar power plant, competition and comparison of common storing technologies should be taken into account to ensure the effectiveness and continuity of the supply. This research activity is aimed at extending the study from the power generation purpose to the solar-supplied chemical commodities production, highlighting the limitations of certain well-established thermal energy storage techniques when concentrating solar is directly coupled with chemical processes. The (intrinsically dynamic and closed-loop) simulation of solar power plants and direct thermal energy storage technologies is performed for the direct thermal energy storage technologies and, only for the case of thermocline, it is coupled with computational fluid-dynamic (CFD) studies for the proper assessment of molten salt and steam temperature trends. To investigate benefits/restrictions of the storage technologies, the solar steam generation is integrated with the gasification of biomasses for syngas production. Also, first-principles dynamic model for the biomass gasifier is provided.

Flavio Manenti; Andres R. Leon-Garzon; Zohreh Ravaghi-Ardebili; Carlo Pirola

2014-01-01T23:59:59.000Z

103

Dish Stirling High Performance Thermal Storage | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stirling High Performance Thermal Storage Dish Stirling High Performance Thermal Storage This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program...

104

Project Profile: Novel Thermal Energy Storage Systems for Concentratin...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Power Project Profile: Novel Thermal Energy Storage Systems for Concentrating Solar Power University of Connecticut logo The University of Connecticut, under the Thermal...

105

Thermal response of a series- and parallel-connected solar energy storage to multi-day charge sequences  

SciTech Connect

The thermal response of a multi-tank thermal storage was studied under variable charge conditions. Tests were conducted on an experimental apparatus that simulated the thermal charging of the storage system by a solar collector over predetermined (prescribed) daylong periods. The storage was assembled from three standard 270 L hot-water storage tanks each charged through coupled, side-arm, natural convection heat exchangers which were connected in either a series- or parallel-flow configuration. Both energy storage rates and tank temperature profiles were experimentally measured during charge periods representative of two consecutive clear days or combinations of a clear and overcast day. During this time, no draw-offs were conducted. Of particular interest was the effect of rising and falling charge-loop temperatures and collector-loop flow rate on storage tank stratification levels. Results of this study show that the series-connected thermal storage reached high levels of temperature stratification in the storage tanks during periods of rising charge temperatures and also limited destratification during periods of falling charge temperature. This feature is a consequence of the series-connected configuration that allowed sequential stratification to occur in the component tanks and energy to be distributed according to temperature level. This effect was not observed in the parallel charge configuration. A further aspect of the study investigated the effect of increasing charge-loop flow rate on the temperature distribution within the series-connected storage and showed that, at high flow rates, the temperature distributions were found to be similar to those obtained during parallel charging. A disadvantage of both the high-flow series-connected and parallel-connected multi-tank storage is that falling charge-loop temperatures, which normally occur in the afternoon, tend to mix and destratify the storage tanks. (author)

Cruickshank, Cynthia A.; Harrison, Stephen J. [Department of Mechanical and Materials Engineering, Queen's University, Kingston, Ontario (Canada)

2011-01-15T23:59:59.000Z

106

Project Profile: High-Efficiency Thermal Storage System for Solar Plants  

Energy.gov (U.S. Department of Energy (DOE))

SENER, under the Baseload CSP FOA, aims to develop a highly efficient, low-maintenance and economical thermal energy storage (TES) system using solid graphite modular blocks for CSP plants.

107

Evaluation of Annual Efficiencies of High Temperature Central Receiver Concentrated Solar Power Plants with Thermal Energy Storage  

Science Journals Connector (OSTI)

Abstract The current study has examined four cases of a central receiver concentrated solar power plant with thermal energy storage using the DELSOL3 and SOLERGY computer codes. The current state-of-the-art base case was compared with a theoretical high temperature case, which was based on the scaling of some input parameters and the estimation of other parameters based on performance targets from the Department of Energy SunShot Initiative. This comparison was done for both current and high temperature cases in two configurations: a surround field with an external cylindrical receiver and a north field with a single cavity receiver. The optical designs for all four cases were done using the DELSOL3 computer code; the results were then passed to the SOLERGY computer code, which uses historical typical meteorological year (TMY) data to estimate the plant performance over the course of one year of operation. Each of the four cases was sized to produce 100 \\{MWe\\} of gross electric power, have sensible liquid thermal storage capacity to generate electric power at full rated production level for 6 hours, and have a solar multiple of 1.8. There is a fairly dramatic difference between the design point and annual average performance. The largest differences are in the solar field and receiver subsystems, and also in energy losses due to the thermal energy storage being full to capacity. Another notable finding in the current study is the relatively small difference in annual average efficiencies between the Base and High Temperature cases. For both the Surround Field and North Field cases, the increase in annual solar to electric efficiency is <2%, despite an increase in thermal to electric conversion efficiency of over 8%. The reasons for this include the increased thermal losses due to higher temperature operation and operational losses due to start-up and shut-down of plant sub-systems. Thermal energy storage can mitigate some of these losses by utilizing larger thermal energy storage to ensure that the electric power production system does not need to stop and re-start as often, but solar energy is inherently transient. Economic and cost considerations were not considered here, but will have a significant impact on solar thermal electric power production strategy and sizing.

B. Ehrhart; D. Gill

2014-01-01T23:59:59.000Z

108

Software-as-a-Service Optimised Scheduling of a Solar-Assisted HVAC System with Thermal Storage  

E-Print Network (OSTI)

performance of a solar-thermal- assisted hvac system. Energyfor rows of fixed solar thermal collectors using flatassisted by a 232 m solar thermal array providing heat to a

Mammoli, Andrea

2014-01-01T23:59:59.000Z

109

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

S. a. , 2004, “Solar Thermal Collectors and Applications,”86] Schnatbaum L. , 2009, “Solar Thermal Power Plants,” Thefor Storage of Solar Thermal Energy,” Solar Energy, 18 (3),

Coso, Dusan

2013-01-01T23:59:59.000Z

110

Energy Efficient Integration of Heat Pumps into Solar District Heating Systems with Seasonal Thermal Energy Storage  

Science Journals Connector (OSTI)

Abstract Solar district heating (SDH) with seasonal thermal energy storage (STES) is a technology to provide heat for space heating and domestic hot water preparation with a high fraction of renewable energy. In order to improve the efficiency of such systems heat pumps can be integrated. By preliminary studies it was discovered, that the integration of a heat pump does not always lead to improvements from an overall energy perspective, although the operation of the heat pump increases the efficiency of other components of the system e. g. the STES or the solar collectors. Thus the integration of heat pumps in SDH systems was investigated in detail. Usually, the heat pumps are integrated in such a way, that the STES is used as low temperature heat source. No other heat sources from the ambience are used and only that amount of energy consumed by the heat pump is additionally fed into the system. In the case of an electric driven heat pump, this is highly questionable concerning economic and CO2-emission aspects. Despite that fact the operation of the heat pump influences positively the performance of other components in the system e. g. the STES and makes them more efficient. If the primary energy consumption of the heat pump is lower than the energetic benefits of all other components, the integration makes sense from an energetic point of view. A detailed assessment has been carried out to evaluate the most promising system configurations for the integration of a heat pump. Based on this approach a system concept was developed in which the integration of the heat pump is energetically further improved compared to realised systems. By means of transient system simulations this concept was optimised with regard to the primary energy consumption. A parameter study of this new concept has been performed to identify the most sensitive parameters of the system. The main result and conclusion are that higher solar fractions and also higher primary energy savings can be achieved by SDH systems using heat pumps compared systems without heat pumps.

Roman Marx; Dan Bauer; Harald Drueck

2014-01-01T23:59:59.000Z

111

Characterization of Intermediate Phases Formed Between Solid Nickel and Liquid Zinc During Use as an Encapsulated Phase Change Material in Solar Thermal Energy Storage Systems  

Science Journals Connector (OSTI)

Of the new material systems under investigation for use in higher temperature phase change material-based solar thermal energy storage (TES) ... it is possible that the formation of intermediate phases could impe...

J. C. Sabol; W. Z. Misiolek; A. Oztekin…

2012-10-01T23:59:59.000Z

112

Mechanism of Thermal Reversal of the (Fulvalene)tetracarbonyldiruthenium Photoisomerization: Toward Molecular Solar-Thermal Energy Storage  

SciTech Connect

In the currently intensifying quest to harness solar energy for the powering of our planet, most efforts are centered around photoinduced generic charge separation, such as in photovoltaics, water splitting, other small molecule activation, and biologically inspired photosynthetic systems. In contrast, direct collection of heat from sunlight has received much less diversified attention, its bulk devoted to the development of concentrating solar thermal power plants, in which mirrors are used to focus the sun beam on an appropriate heat transfer material. An attractive alternative strategy would be to trap solar energy in the form of chemical bonds, ideally through the photoconversion of a suitable molecule to a higher energy isomer, which, in turn, would release the stored energy by thermal reversal. Such a system would encompass the essential elements of a rechargeable heat battery, with its inherent advantages of storage, transportability, and use on demand. The underlying concept has been explored extensively with organic molecules (such as the norbornadiene-quadricyclane cycle), often in the context of developing photoswitches. On the other hand, organometallic complexes have remained relatively obscure in this capacity, despite a number of advantages, including expanded structural tunability and generally favorable electronic absorption regimes. A highly promising organometallic system is the previously reported, robust photo-thermal fulvalene (Fv) diruthenium couple 1 {l_reversible} 2 (Scheme 1). However, although reversible and moderately efficient, lack of a full, detailed atom-scale understanding of its key conversion and storage mechanisms have limited our ability to improve on its performance or identify optimal variants, such as substituents on the Fv, ligands other than CO, and alternative metals. Here we present a theoretical investigation, in conjunction with corroborating experiments, of the mechanism for the heat releasing step of 2 {yields} 1 and its Fe (4) and Os (6) relatives. The results of the combined study has enabled a rigorous interpretation of earlier and new experimental measurements and paint a surprising picture. First-principles calculations were employed based on spin unrestricted density functional theory (DFT) with a non-empirical gradient corrected exchange-correlation functional. Ultrasoft pseudopotentials were used to describe the valence-core interactions of electrons, including scalar relativistic effects of the core. Wavefunctions and charge densities were expanded in plane waves with kinetic energies up to 25 and 200 Rydberg, respectively. Reaction pathways were delineated with the string method, as implemented within the Car-Parrinello approach. This method allows for the efficient determination of the minimum energy path (MEP) of atomistic transitions and thus also saddle points (transition states, TSs), which are the energy maxima along the MEP. All geometries were optimized until all forces on the atoms were less than 0.02 eV/{angstrom}. The calculated structures of 1 and 2 were in good agreement with their experimental counterparts.

Kanai, Y; Srinivasan, V; Meier, S K; Vollhardt, K P; Grossman, J C

2010-02-18T23:59:59.000Z

113

Development of Solid Particle Thermal Energy Storage for Concentrating Solar Power Plants that Use Fluidized Bed Technology  

Science Journals Connector (OSTI)

Abstract The National Renewable Energy Laboratory is developing a thermal energy storage (TES) system that uses solid particles as the storage medium for a concentrating solar power plant. This paper focuses on the particle-TES performance in terms of three efficiency metrics: first-law efficiency, second-law efficiency, and storage effectiveness. The paper presents the derivation of the efficiency expression and their application in assessing the particle-TES performance and design. The particle-TES system uses low-cost stable materials that withstand high temperature at a fraction of the cost of the salt and metal containment vessels for high-temperature TES. Cost analysis indicates that particle TES costs less than $10/kWhth, which is less than half the cost of the current molten-salt-based TES and just a fraction of liquid heat transfer fluid storage at a similar high temperature of >700 °C, due to its low cost of storage medium and containment. The fluidized-bed TES can hold hot particles of > 800 °C with >95% exergetic efficiency, storage effectiveness, and thermal efficiency.

Z. Ma; G.C. Glatzmaier; M. Mehos

2014-01-01T23:59:59.000Z

114

Project Profile: Innovative Thermal Energy Storage for Baseload Solar Power Generation  

Energy.gov (U.S. Department of Energy (DOE))

The University of South Florida, under the Baseload CSP FOA, is researching and developing a thermal energy storage system based on encapsulated phase change materials (PCM) that can meet the utility-scale baseload CSP plant requirements at significantly lower system costs.

115

Modeling of the rock bed thermal energy storage system of a combined cycle solar thermal power plant in South Africa  

Science Journals Connector (OSTI)

Abstract A thermocline-based rock bed thermal energy storage system potentially offers a cheap and simple way of achieving dispatchability in an air-cooled central receiver CSP plant. In order to efficiently match heliostat field size, storage dimensions, back-up fuel consumption and turbine sizes for non-stop power generation and economic feasibility, year-long power plant simulations have to be run. This paper focuses on the storage as the center of in- and outgoing thermal energy. The derived storage model has one spatial dimension which is justified by the high tube-to-particle diameter ratio and because yearly aggregated – and not momentary – values are of interest. A validation of the correlations with data from the literature shows acceptable agreement. Sensitivity analyses indicate that, due to low costs of the storage system, above certain minimum storage dimensions, the influence on energetic and monetary performance indicators is marginal. The calculated LCOE is in the range of 0.11–0.18 EUR/kW h and in agreement with other studies on combined cycle CSP plants.

Lukas Heller; Paul Gauché

2013-01-01T23:59:59.000Z

116

Advanced Heat Transfer Fluids and Novel Thermal Storage Concepts...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Lehigh University: Novel Thermal Storage Technologies for Concentrating Solar Power Generation Terrafore: Heat Transfer and Latent Heat Storage in Inorganic Molten...

117

Sandia National Laboratories: Sandia-AREVA Commission Solar Thermal...  

NLE Websites -- All DOE Office Websites (Extended Search)

ClimateECResearch & CapabilitiesCapabilitiesSandia-AREVA Commission Solar ThermalMolten Salt Energy-Storage Demonstration Sandia-AREVA Commission Solar ThermalMolten Salt...

118

Norbornadiene-quadricyclane system in the photochemical conversion and storage of solar energy  

Science Journals Connector (OSTI)

Norbornadiene-quadricyclane system in the photochemical conversion and storage of solar energy ... Photoswitchable Molecular Rings for Solar-Thermal Energy Storage ... Photoswitchable Molecular Rings for Solar-Thermal Energy Storage ...

Constantine Philippopoulos; Dimitrios Economou; Constantine Economou; John Marangozis

1983-12-01T23:59:59.000Z

119

Summary of: Simulating the Value of Concentrating Solar Power with Thermal Energy Storage in a Production Cost Model (Presentation)  

SciTech Connect

Concentrating solar power (CSP) deployed with thermal energy storage (TES) provides a dispatchable source of renewable energy. The value of CSP with TES, as with other potential generation resources, needs to be established using traditional utility planning tools. Production cost models, which simulate the operation of grid, are often used to estimate the operational value of different generation mixes. CSP with TES has historically had limited analysis in commercial production simulations. This document describes the implementation of CSP with TES in a commercial production cost model. It also describes the simulation of grid operations with CSP in a test system consisting of two balancing areas located primarily in Colorado.

Denholm, P.; Hummon, M.

2013-02-01T23:59:59.000Z

120

High-temperature Thermal Storage System for Solar Tower Power Plants with Open-volumetric Air Receiver Simulation and Energy Balancing of a Discretized Model  

Science Journals Connector (OSTI)

Abstract This paper describes the modeling of a high-temperature storage system for an existing solar tower power plant with open volumetric receiver technology, which uses air as heat transfer medium (HTF). The storage system model has been developed in the simulation environment Matlab/Simulink®. The storage type under investigation is a packed bed thermal energy storage system which has the characteristics of a regenerator. Thermal energy can be stored and discharged as required via the HTF air. The air mass flow distribution is controlled by valves, and the mass flow by two blowers. The thermal storage operation strategy has a direct and significant impact on the energetic and economic efficiency of the solar tower power plants.

Valentina Kronhardt; Spiros Alexopoulos; Martin Reißel; Johannes Sattler; Bernhard Hoffschmidt; Matthias Hänel; Till Doerbeck

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal storage solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Solar Keymark Testing of Solar Thermal Products  

Science Journals Connector (OSTI)

The Solar Keymark is the official CEN certification scheme for thermal solar collectors and factory made thermal solar systems. The Solar Keymark requires that the products fulfil the...

Harald Drück; Stephan Fischer…

2009-01-01T23:59:59.000Z

122

Solar Thermal Processes  

Science Journals Connector (OSTI)

The use of solar energy for desalination purposes was one of ... The process is based on the use of solar thermal energy to evaporate water, thus separating pure ... brine. In this chapter an overview of solar thermal

M.T. Chaibi; Ali M. El-Nashar

2009-01-01T23:59:59.000Z

123

NREL: Energy Storage - Energy Storage Thermal Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Thermal Management Infrared image of rectangular battery cell. Infrared thermal image of a lithium-ion battery cell with poor terminal design. Graph of relative...

124

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

1974. Geothermal Storage of Solar Energy, in "Governors1976. "Geothermal Storage of Solar Energy for Electric PowerUnderground Longterm Storage of Solar Energy - An Overview,"

Authors, Various

2011-01-01T23:59:59.000Z

125

Performance investigation of thermal energy storage system with Phase Change Material (PCM) for solar water heating application  

Science Journals Connector (OSTI)

Abstract In order to harvest solar energy, thermal energy storage (TES) system with Phase Change Material (PCM) has been receiving greater attention because of its large energy storage capacity and isothermal behavior during charging and discharging processes. In the present experimental study, shell and tube TES system using paraffin wax was used in a water heating system to analyze its performance for solar water heating application. Energy and exergy including their cost analyses for the TES system were performed. Accordingly, total life cycle cost was calculated for different flow rates of the Heat Transfer Fluid (HTF). With 0.033 kg/min and 0.167 kg/min flow rates of water as HTF, energy efficiencies experienced were 63.88% and 77.41%, respectively, but in exergy analysis, efficiencies were observed to be about 9.58% and 6.02%, respectively. Besides, the total life cycle cost was predicted to be $ 654.61 for 0.033 kg/min flow rate, which could be reduced to $ 609.22 by increasing the flow rate to 0.167 kg/min. Therefore it can be summarized that total life cycle cost decreases with the increase of flow rate.

M.H. Mahfuz; M.R. Anisur; M.A. Kibria; R. Saidur; I.H.S.C. Metselaar

2014-01-01T23:59:59.000Z

126

Heat Transfer Behaviors of Thermal Energy Storages for High Temperature Solar Systems  

Science Journals Connector (OSTI)

Solar energy is an important alternative energy source that will likely be utilized in ... One main limiting factor in the application of solar energy is its cyclic time dependence. Therefore, solar systems requi...

A. Andreozzi; B. Buonomo; O. Manca…

2013-01-01T23:59:59.000Z

127

Development of solar air heaters & thermal energy storage system for drying applications in food processing industries.  

E-Print Network (OSTI)

??In the present work, the author has designed and developed all types of solar air heaters called porous and nonporous collectors. The developed solar air… (more)

Sreekumar, A

2007-01-01T23:59:59.000Z

128

Passive cooling of concentrated solar cells using phase change material thermal storage.  

E-Print Network (OSTI)

??High solar cell temperature has always been a major concern when designing a concentrated solar power (CSP) system. Exceeding the operational cell temperature can result… (more)

Tan, L

2013-01-01T23:59:59.000Z

129

The Water Wall: A Passive Solar Collection and Thermal Storage Device for Supplementary Radiant Heating.  

E-Print Network (OSTI)

??Through the implementation of passive solar building systems, suburbia could take a fresh new step forward toward a progressively more sustainable direction. Making passive solar… (more)

Noseck, Rhett Roman

2013-01-01T23:59:59.000Z

130

Solar Energy Storage Methods  

Science Journals Connector (OSTI)

Solar Energy Storage Methods ... Conducting polymers have superior specific energies to the carbon-based supercapacitors and have greater power capability, compared to inorganic battery material. ... The question of load redistribution for better energetic usage is of vital importance since these new renewable energy sources are often intermittent. ...

Yu Hou; Ruxandra Vidu; Pieter Stroeve

2011-06-09T23:59:59.000Z

131

An Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario (Report Summary) (Presentation), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

An Analysis of Concentrating Solar Power An Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario (Report Summary) Paul Denholm, Yih-Huei Wan, Marissa Hummon, Mark Mehos March 2013 NREL/PR-6A20-58470 2 Motivation * Implement concentrating solar power (CSP) with thermal energy storage (TES) in a commercial production cost model o Develop approaches that can be used by utilities and system planners to incorporate CSP in standard planning tools * Evaluate the optimal dispatch of CSP with TES o How would a plant actually be used to minimize system production cost? * Quantify the value of adding storage to CSP in a high renewable energy (RE) scenario in California

132

Testing thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems used in parabolic trough solar power plants.  

SciTech Connect

Parabolic trough power systems that utilize concentrated solar energy to generate electricity are a proven technology. Industry and laboratory research efforts are now focusing on integration of thermal energy storage as a viable means to enhance dispatchability of concentrated solar energy. One option to significantly reduce costs is to use thermocline storage systems, low-cost filler materials as the primary thermal storage medium, and molten nitrate salts as the direct heat transfer fluid. Prior thermocline evaluations and thermal cycling tests at the Sandia National Laboratories' National Solar Thermal Test Facility identified quartzite rock and silica sand as potential filler materials. An expanded series of isothermal and thermal cycling experiments were planned and implemented to extend those studies in order to demonstrate the durability of these filler materials in molten nitrate salts over a range of operating temperatures for extended timeframes. Upon test completion, careful analyses of filler material samples, as well as the molten salt, were conducted to assess long-term durability and degradation mechanisms in these test conditions. Analysis results demonstrate that the quartzite rock and silica sand appear able to withstand the molten salt environment quite well. No significant deterioration that would impact the performance or operability of a thermocline thermal energy storage system was evident. Therefore, additional studies of the thermocline concept can continue armed with confidence that appropriate filler materials have been identified for the intended application.

Kelly, Michael James; Hlava, Paul Frank; Brosseau, Douglas A.

2004-07-01T23:59:59.000Z

133

Sandia National Laboratories: National Solar Thermal Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

134

Sandia National Laboratories: National Solar Thermal Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Sandia Capabilities to Support Power Industry On January 8, 2013, in Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

135

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network (OSTI)

Environmental Value of Solar Thermal Systems in MicrogridsEnvironmental Value of Solar Thermal Systems in Microgridsa) ABSTRACT The addition of solar thermal and heat storage

Marnay, Chris

2010-01-01T23:59:59.000Z

136

Thermal storage for solar cooling using paired ammoniated salt reactors. Final report  

SciTech Connect

The objectives of the program were to investigate the feasibility of using various solid and liquid ammoniates in heat pump/thermal storage systems for space heating and cooling. The study included corrosion testing of selected metallic and non-metallic specimens in the ammoniates, subscale testing of the candidate ammoniates singly and in pairs, trade studies and conceptual design of a residential system, prototype testing, and ammoniation/deammoniation cyclic testing of manganese chloride. Results of the corrosion testing showed that problems exist with manganese and magnesium chloride ammoniates, except with the teflon which displayed excellent resistance in all environments. Also, all liquid ammoniates are unsuitable for use with uncoated carbon steel. Cycling of the manganese chloride between the high and low ammoniates does not affect its properties. However, the density change between the high and low ammoniates could cause packing problems in a reactor which constrains the salt volume. Subscale tests with solid ammoniates indicated that the heat transfer coefficient in a fixed bed reactor is low (approx. 1 Btu/h-ft/sup 2/-/sup 0/F). Therefore solid ammoniates are not practical because of the high heat exchanger cost requirement. Forced ammonia recirculation was tested as a means of increasing heat transfer rate in the fixed bed reactor with solid salts, but was not successful. Conversely, the subscale testing with liquid ammoniates produced heat transfer coefficients of 40 to 45 Btu/h-ft/sup 2/-/sup 0/F. Thus, the residential design was based on a liquid ammoniate/ammonia system using ammonium nitrate as the salt.

Not Available

1981-09-01T23:59:59.000Z

137

EXERGETIC ANALYSIS OF A STEAM-FLASHING THERMAL STORAGE SYSTEM  

E-Print Network (OSTI)

cost benefits are still evident. Currently, there are many solar power plants that have been announced Abstract Thermal energy storage is attractive in the design of concentrator solar thermal systems because, power output from a solar field. At the right cost, a storage system can improve overall economics

138

Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation  

Energy.gov (U.S. Department of Energy (DOE))

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

139

Analysis and optimization of a solar thermal collector with integrated storage.  

E-Print Network (OSTI)

??Solar energy, a topic popular in the United States during the oil embargo of the 1970?'s, has become a relevant topic once more with the… (more)

Bonadies, Monica

2010-01-01T23:59:59.000Z

140

Experimentation of a High Temperature Thermal Energy Storage Prototype Using Phase Change Materials for the Thermal Protection of a Pressurized Air Solar Receiver  

Science Journals Connector (OSTI)

Abstract The work addresses the issue of fast variations of temperature of a central solar receiver under cloud covering. A specific attention is paid to the situation of Hybrid Solar Gas Turbine (HSGT) systems using pressurized air as Heat Transfer Fluid (HTF), as it is considered in the Pegase project (France). A Thermal Energy Storage (TES) unit integrated in the receiver is proposed for smoothing the variation of temperature. The technology is based on the utilization of both Phase Change Material (PCM) and metallic fins in order to enhance charge and discharge capability of the storage unit. A test-bench is designed with copper fins and is experienced with paraffin wax and with Li2CO3 successively as PCMs. In the same time, the test unit is modeled and the charging and discharging modes are simulated. The results show that the full charging is achieved in about 4 hours starting from 700 °C when the receiver is maintained at 900 °C, whereas the discharge from 900 °C to 700 °C is achieved in 2.5 hours.

D. Verdier; A. Ferričre; Q. Falcoz; F. Siros; R. Couturier

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal storage solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Project Profile: Development and Performance Evaluation of High Temperature Concrete for Thermal Energy Storage for Solar Power Generation  

Energy.gov (U.S. Department of Energy (DOE))

The University of Arkansas, under the Thermal Storage FOA, is developing a novel concrete material that can withstand operating temperatures of 500°C or more and is measuring the concrete properties.

142

Performances of a thermal-storage module in a solar-energy power production perspective: A numerical assessment  

Science Journals Connector (OSTI)

A theoretical model has been developed to describe the cyclic behaviour of a latent-heat thermal-storage module. Attention has been focused on power production applications, where stability of the heat supply ...

C. Bellecci; M. Conti

143

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

Survey of Thermal Energy Storage in Aquifers Coupled withLow Temperature Thermal Energy Storage Program of Oak Ridgefor Seasonal Thermal Energy Storage: An Overview of the DOE-

Authors, Various

2011-01-01T23:59:59.000Z

144

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

Survey of Thermal Energy Storage in Aquifers Coupled withconcept of thermal energy storage in aquifers was suggestedAnnual Thermal Energy Storage Contractors' Information

Authors, Various

2011-01-01T23:59:59.000Z

145

Thermal performance of phase change material energy storage floor for active solar water-heating system  

Science Journals Connector (OSTI)

The conventional active solar water-heating floor system contains a big water tank to store energy in the day time for heating at night, which takes much building space and is very heavy. In order to reduce the w...

Ruolang Zeng; Xin Wang; Wei Xiao…

2010-06-01T23:59:59.000Z

146

Some Basic Aspects on Solar Chemistry and Storage  

Science Journals Connector (OSTI)

It is shown that concentrated solar radiation is relatively cheap at power levels...th...and higher. This forms the basis to look into solar thermal chemistry for storage and transportation. R + D-areas of...

P. Kesselring

1985-01-01T23:59:59.000Z

147

Solar thermal aircraft  

DOE Patents (OSTI)

A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2007-09-18T23:59:59.000Z

148

Techno-economic assessment of substituting natural gas based heater with thermal energy storage system in parabolic trough concentrated solar power plant  

Science Journals Connector (OSTI)

Abstract Parabolic-trough (PT) concentrated solar power (CSP) plants are very vulnerable to daily fluctuations in solar radiation. This dependence can be mitigated through a hybridization of solar energy with natural gas based heaters that supply thermal energy during the night or whenever solar irradiance level is dimmed. However, there is more sustainable way for CSP plants to avoid power-generation-outages caused by transient weather conditions, i.e. installation of thermal energy storage (TES). Such a system stores surplus thermal energy provided by solar field during sunny hours and discharges it when the sun is not available. Shams-1 PT plant in Madinat-Zayed, United-Arab-Emirates (UAE) has two natural gas based components, i.e. steam-booster heater and heat transfer fluid (HTF) heater. In the current study, model of Shams-1 was developed and analyzed in the System Advisor Model (SAM) software. It has been attempted to replace the HTF heater with TES. A parametric study has been conducted to determine the size of the TES as well as the solar field such that the specified power target demand would be satisfied. The results of the parametric analysis showed that TES can't completely replace the HTF heater, within reasonable sizes. Nevertheless, consequent simulations depicts that TES increases the capacity factor on one hand and decreases fuel consumption on the other hand.

V. Poghosyan; Mohamed I. Hassan

2015-01-01T23:59:59.000Z

149

Tuning energy transport in solar thermal systems using nanostructured materials  

E-Print Network (OSTI)

Solar thermal energy conversion can harness the entire solar spectrum and theoretically achieve very high efficiencies while interfacing with thermal storage or back-up systems for dispatchable power generation. Nanostructured ...

Lenert, Andrej

2014-01-01T23:59:59.000Z

150

Solar energy storage: A demonstration experiment  

Science Journals Connector (OSTI)

Solar energy storage: A demonstration experiment ... A demonstration of a phase transition that can be used for heat storage. ...

Howard S. Kimmel; Reginald P. T. Tomkins

1979-01-01T23:59:59.000Z

151

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network (OSTI)

Zakhidov, R. A. 8 1971, Storage of solar energy in a sandy-aquifers for heat storage, solar captors for heat productionthermal energy storage for cogeneration and solar systems,

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

152

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

and R.A. Zakhidov, "Storage of Solar Energy in a Sandy-Heat as Related to the Storage of Solar Energy. Sharing the1974. Geothermal Storage of Solar Energy, in "Governors

Authors, Various

2011-01-01T23:59:59.000Z

153

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network (OSTI)

R. A. 8 1971, Storage of solar energy in a sandy-gravelthermal energy storage for cogeneration and solar systems,storage, solar captors for heat production 9 and heat pumps for energy

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

154

Storage in Solar Process Heat Applications  

Science Journals Connector (OSTI)

Abstract The subject of this paper is the integration of solar energy into industrial heat supply systems – focusing on the use of solar tanks. Within the framework of the project “Solar Process Heat Standards” funded by the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) load profiles of electroplating processes were measured, a typical load profile was described and simulations were done regarding the dimensioning of the solar tank volume. Depending on the load profile and process temperature, either a large tank volume or a tank-less system leads to the highest solar yields. Furthermore, a new concept of hydraulic tank integration is presented. It facilitates the quick supply of high solar temperatures which are often demanded for solar process heat applications. State of the art tank integration makes the solar system thermally inert, while simulations and measurements have already proven a considerable advantage of the new alternative. Moreover four solar process heat applications are analyzed; three belong to the electroplating industry while the fourth uses solar energy for heating water in the food industry (193 – 570 m2). Especially two of the four solar process heat plants presented severe operating errors and a high optimizing potential. One solar plant was improved in order to facilitate the new storage concept. This modification ensures the possibility of shifting between the conventional storage integration and the innovative approach for a comparative evaluation.

Sebastian Schramm; Mario Adam

2014-01-01T23:59:59.000Z

155

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network (OSTI)

solar thermal and heat storage on CO 2 emissions and annual energyenergy costs, heat storage does not directly support solar thermal /energy costs. This paper focuses on analysis of the optimal interaction of solar thermal

Marnay, Chris

2010-01-01T23:59:59.000Z

156

Chapter 10 - Solar Thermal Power Systems  

Science Journals Connector (OSTI)

Abstract Chapter 10 deals with solar thermal power systems. Initially, the general design considerations are given followed by the presentation of the three basic technologies. These include the parabolic trough collector system, which includes a description of the PTC power plant and outlook of the technology; the power tower systems and the dish systems. This is followed by the thermal analysis of the basic cycles of solar thermal power plants. Subsequently, solar updraft tower systems are examined, which include the initial steps and first demonstration, and the thermal analysis. Finally, solar ponds are examined, which is a form of large solar collector and storage system that can be used for solar power generation and include practical design considerations, salty water transmission estimation, methods of heat extraction, description of two large experimental solar ponds, and applications of solar ponds.

Soteris A. Kalogirou

2014-01-01T23:59:59.000Z

157

Steam reforming of methane using double-walled reformer tubes containing high-temperature thermal storage Na2CO3/MgO composites for solar fuel production  

Science Journals Connector (OSTI)

Abstract Double-walled reactor tubes containing thermal storage materials based on the molten carbonate salts—100 wt% Na2CO3 molten salt, 90 wt% Na2CO3/10 wt% MgO and 80 wt% Na2CO3/20 wt% MgO composite materials—were studied for the performances of the reactor during the heat charging mode, while those of methane reforming with steam during heat discharging mode for solar steam reforming. The variations in the temperatures of the catalyst and storage material, methane conversion, duration of reforming for obtaining high levels of methane conversion (>90%), higher heating value (HHV) power of reformed gas and efficiency of the reactor tubes were evaluated for the double-walled reactor tubes and a single-wall reactor tube without the thermal storage. The results for the heat charging mode indicated that the composite thermal storage could successfully store the heat transferred from the exterior wall of the reactor in comparison to the pure molten-salt. The double-walled reactor tubes with the 90 wt% Na2CO3/10 wt% MgO composite material was the most desirable for steam reforming of methane to realize large HHV amounts of reformed gas and higher efficiencies during heat-discharging mode.

Nobuyuki Gokon; Shohei Nakamura; Tsuyoshi Hatamachi; Tatsuya Kodama

2014-01-01T23:59:59.000Z

158

Storage of Solar Energy  

Science Journals Connector (OSTI)

Energy storage provides a means for improving the performance and efficiency of a wide range of energy systems. It also plays an important role in energy conservation. Typically, energy storage is used when there...

H. P. Garg

1987-01-01T23:59:59.000Z

159

Molten Glass for Thermal Storage: Advanced Molten Glass for Heat Transfer and Thermal Energy Storage  

SciTech Connect

HEATS Project: Halotechnics is developing a high-temperature thermal energy storage system using a new thermal-storage and heat-transfer material: earth-abundant and low-melting-point molten glass. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Halotechnics new thermal storage material targets a price that is potentially cheaper than the molten salt used in most commercial solar thermal storage systems today. It is also extremely stable at temperatures up to 1200°C—hundreds of degrees hotter than the highest temperature molten salt can handle. Being able to function at high temperatures will significantly increase the efficiency of turning heat into electricity. Halotechnics is developing a scalable system to pump, heat, store, and discharge the molten glass. The company is leveraging technology used in the modern glass industry, which has decades of experience handling molten glass.

None

2012-01-01T23:59:59.000Z

160

Boosting CSP Production with Thermal Energy Storage  

SciTech Connect

Combining concentrating solar power (CSP) with thermal energy storage shows promise for increasing grid flexibility by providing firm system capacity with a high ramp rate and acceptable part-load operation. When backed by energy storage capability, CSP can supplement photovoltaics by adding generation from solar resources during periods of low solar insolation. The falling cost of solar photovoltaic (PV) - generated electricity has led to a rapid increase in the deployment of PV and projections that PV could play a significant role in the future U.S. electric sector. The solar resource itself is virtually unlimited; however, the actual contribution of PV electricity is limited by several factors related to the current grid. The first is the limited coincidence between the solar resource and normal electricity demand patterns. The second is the limited flexibility of conventional generators to accommodate this highly variable generation resource. At high penetration of solar generation, increased grid flexibility will be needed to fully utilize the variable and uncertain output from PV generation and to shift energy production to periods of high demand or reduced solar output. Energy storage is one way to increase grid flexibility, and many storage options are available or under development. In this article, however, we consider a technology already beginning to be used at scale - thermal energy storage (TES) deployed with concentrating solar power (CSP). PV and CSP are both deployable in areas of high direct normal irradiance such as the U.S. Southwest. The role of these two technologies is dependent on their costs and relative value, including how their value to the grid changes as a function of what percentage of total generation they contribute to the grid, and how they may actually work together to increase overall usefulness of the solar resource. Both PV and CSP use solar energy to generate electricity. A key difference is the ability of CSP to utilize high-efficiency TES, which turns CSP into a partially dispatchable resource. The addition of TES produces additional value by shifting the delivery of solar energy to periods of peak demand, providing firm capacity and ancillary services, and reducing integration challenges. Given the dispatchability of CSP enabled by TES, it is possible that PV and CSP are at least partially complementary. The dispatchability of CSP with TES can enable higher overall penetration of the grid by solar energy by providing solar-generated electricity during periods of cloudy weather or at night, when PV-generated power is unavailable. Such systems also have the potential to improve grid flexibility, thereby enabling greater penetration of PV energy (and other variable generation sources such as wind) than if PV were deployed without CSP.

Denholm, P.; Mehos, M.

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal storage solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Scattering Solar Thermal Concentrators  

Energy.gov (U.S. Department of Energy (DOE))

"This fact sheet describes a scattering solar thermal concentrators project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Pennsylvania State University, is working to demonstrate a new, scattering-based approach to concentrating sunlight that aims to improve the overall performance and reliability of the collector field. The research team aims to show that scattering solar thermal collectors are capable of achieving optical performance equal to state-of-the-art parabolic trough systems, but with the added benefits of immunity to wind-load tracking error, more efficient land use, and utilization of stationary receivers."

162

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

and J. Schwarz, Survey of Thermal Energy Storage in AquifersLow Temperature Thermal Energy Storage Program of Oak RidgeAquifers for Seasonal Thermal Energy Storage: An Overview of

Authors, Various

2011-01-01T23:59:59.000Z

163

Passive Solar Building Design and Solar Thermal Space Heating...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Passive Solar Building Design and Solar Thermal Space Heating Webinar Passive Solar Building Design and Solar Thermal Space Heating Webinar Watch a recording of National Renewable...

164

SunShot Initiative: Low-Cost Solar Thermal Collector  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Cost Solar Thermal Collector Low-Cost Solar Thermal Collector to someone by E-mail Share SunShot Initiative: Low-Cost Solar Thermal Collector on Facebook Tweet about SunShot Initiative: Low-Cost Solar Thermal Collector on Twitter Bookmark SunShot Initiative: Low-Cost Solar Thermal Collector on Google Bookmark SunShot Initiative: Low-Cost Solar Thermal Collector on Delicious Rank SunShot Initiative: Low-Cost Solar Thermal Collector on Digg Find More places to share SunShot Initiative: Low-Cost Solar Thermal Collector on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment National Laboratory Research & Development

165

SunShot Initiative: Scattering Solar Thermal Concentrators  

NLE Websites -- All DOE Office Websites (Extended Search)

Scattering Solar Thermal Scattering Solar Thermal Concentrators to someone by E-mail Share SunShot Initiative: Scattering Solar Thermal Concentrators on Facebook Tweet about SunShot Initiative: Scattering Solar Thermal Concentrators on Twitter Bookmark SunShot Initiative: Scattering Solar Thermal Concentrators on Google Bookmark SunShot Initiative: Scattering Solar Thermal Concentrators on Delicious Rank SunShot Initiative: Scattering Solar Thermal Concentrators on Digg Find More places to share SunShot Initiative: Scattering Solar Thermal Concentrators on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment

166

Project Profile: Indirect, Dual-Media, Phase Changing Material Modular Thermal Energy Storage System  

Energy.gov (U.S. Department of Energy (DOE))

Acciona Solar, under the Thermal Storage FOA, plans to design and validate a prototype and demonstrate a full-size (800 MWth) thermal energy storage (TES) system based on phase change materials (PCMs).

167

Project Profile: Sensible Heat, Direct, Dual-Media Thermal Energy Storage Module  

Energy.gov (U.S. Department of Energy (DOE))

Acciona Solar, under the Thermal Storage FOA, plans to develop a prototype thermal energy storage (TES) module with high efficiency. This project is looking at a packed or structured bed TES tank with molten salt flowing through it.

168

Concerted Action European Solar Storage Testing Group  

Science Journals Connector (OSTI)

The European Solar Storage Testing Group has been established by the ... to draw up recommendations for test-procedures for solar storage systems. The working group programme is discussed...

E. van Galen

1983-01-01T23:59:59.000Z

169

Photochemical conversion and storage of solar energy  

Science Journals Connector (OSTI)

Photochemical conversion and storage of solar energy ... In this article, the author considers the use of inorganic photochemical reactions for the conversion and storage of solar energy. ... HOMO?LUMO energy difference values compared ... ...

Charles Kutal

1983-01-01T23:59:59.000Z

170

Dish Sterling High Performance Thermal Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A., "Heat transfer and exergy analysis of cascaded latent heat storage with gravity-assisted heat pipes for concentrating solar power applications," Solar Energy 86 (3)...

171

Thermal Solar Power Plants Experience  

Science Journals Connector (OSTI)

In parallel with rising interest in solar power generation, several solar thermal facilities of different configuration and size were ... were designed as modest-size experimental or prototype solar power plants ...

W. Grasse; H. P. Hertlein; C.-J. Winter; G. W. Braun

1991-01-01T23:59:59.000Z

172

Exergy analysis of a rock bed thermal storage system  

Science Journals Connector (OSTI)

In this paper, a thermodynamic procedure is presented to analyse energy and exergy balances of a rock bed thermal storage system. The thermal behaviour is described by means of a control volume that includes three subsystems: the solar collectors, the fluid distribution system and the storage chamber. Solar-to-thermal energy conversion was obtained by means of a solar collector at a fixed airflow rate. The final purpose of the method is to determine how well the thermodynamic modelling fits the real data obtained experimentally from the prototype under normal operating conditions.

J.J. Navarrete-Gonzalez; J.G. Cervantes-de Gortari; E. Torres-Reyes

2008-01-01T23:59:59.000Z

173

Software-as-a-Service Optimised Scheduling of a Solar-Assisted HVAC System with Thermal Storage  

E-Print Network (OSTI)

Optimised Scheduling of a Solar-Assisted HVAC System withA. Mammoli. Modeling of a solar-assisted HVAC system withOPTIMISED SCHEDULING OF A SOLAR-ASSISTED HVAC SYSTEM WITH

Mammoli, Andrea

2014-01-01T23:59:59.000Z

174

Solar Energy Storage in Packed Beds  

Science Journals Connector (OSTI)

Solar heating of buildingsand grain drying for example, requires the accumulation and storage of solar energy to provide heating for the night ... available on clear and partly cloudy days. Solar heating is a pro...

Wen-Jei Yang

1989-01-01T23:59:59.000Z

175

Salt Gradient Solar Pond for Solar Heat Collection and Lang Term Storage  

Science Journals Connector (OSTI)

Work is described concerning the instrumentation, thermal modelling and laboratory tests on a salt gradient solar pond to be used for heat collection and storage. A densitameter capable of measuring the salinity....

V. Phillips; P. J. Unsworth; N. A. Al-Saleh

1983-01-01T23:59:59.000Z

176

Metal Hydride Thermal Storage: Reversible Metal Hydride Thermal Storage for High-Temperature Power Generation Systems  

SciTech Connect

HEATS Project: PNNL is developing a thermal energy storage system based on a Reversible Metal Hydride Thermochemical (RMHT) system, which uses metal hydride as a heat storage material. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. PNNL’s metal hydride material can reversibly store heat as hydrogen cycles in and out of the material. In a RHMT system, metal hydrides remain stable in high temperatures (600- 800°C). A high-temperature tank in PNNL’s storage system releases heat as hydrogen is absorbed, and a low-temperature tank stores the heat until it is needed. The low-cost material and simplicity of PNNL’s thermal energy storage system is expected to keep costs down. The system has the potential to significantly increase energy density.

None

2011-12-05T23:59:59.000Z

177

Encapsulation of High Temperature Phase Change Materials for Thermal Energy Storage.  

E-Print Network (OSTI)

??Thermal energy storage is a major contributor to bridge the gap between energy demand (consumption) and energy production (supply) by concentrating solar power. The utilization… (more)

Nath, Rupa

2012-01-01T23:59:59.000Z

178

Performance evaluation of thermal energy storage systems;.  

E-Print Network (OSTI)

??Solar thermal technologies are promising, given the fact that solar newlineenergy is the cheapest and most widely available of all renewable energy newlinetechnologies. The recent… (more)

Ramana A S

2014-01-01T23:59:59.000Z

179

Thermal Energy Storage for Cooling of Commercial Buildings  

E-Print Network (OSTI)

of Commercial Building Thermal Energy _Storage in ASEANGas Electric Company, "Thermal Energy Storage for Cooling,"LBL--25393 DE91 ,THERMAL ENERGY STORAGE FOR COOLING OF

Akbari, H.

2010-01-01T23:59:59.000Z

180

Successfully Marketing Thermal Storage in Commercial Buildings  

E-Print Network (OSTI)

This paper first reviews the key hurdles to thermal energy storage. Next, case studies of three electric utility thermal storage marketing programs are reviewed. The results of these case studies. as well as advice and experiences from other...

McDonald, C.

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal storage solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish Engine Solar Power Generation  

Energy.gov (U.S. Department of Energy (DOE))

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

182

Modeling of thermal energy storage in groundwater aquifers  

E-Print Network (OSTI)

MODELING OF THERMAL ENERGY STORAGE IN GROUNDWATER AQUIFERS A Thesis by DAVID BRYAN REED Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1979... ABSTRACT Modeling of Thermal Energy Storage in Groundwater Aquifers. (December 1979) David Bryan Reed, B. S. , Texas A&M University Chairman of Advisory Committee: Dr. Donald L. Reddell Solar energy is a promising alternate energy source for space heat...

Reed, David Bryan

2012-06-07T23:59:59.000Z

183

Microwavable thermal energy storage material  

DOE Patents (OSTI)

A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

Salyer, Ival O. (Dayton, OH)

1998-09-08T23:59:59.000Z

184

Microwavable thermal energy storage material  

DOE Patents (OSTI)

A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

Salyer, I.O.

1998-09-08T23:59:59.000Z

185

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

of Thermal Energy Energy Sources o Solar Heat o Winter Coldusual Solar Energy System which uses only a heat source andsources and heat sinks not found anywhere else. Furthermore even where Solar energy

Authors, Various

2011-01-01T23:59:59.000Z

186

Electric thermal storage demonstration program  

SciTech Connect

In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and one affiliate in Rhode Island, responded to a Department of Energy request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. In this progress report, cost savings at Bolyston light department is discussed. (JL)

Not Available

1992-02-01T23:59:59.000Z

187

Electric thermal storage demonstration program  

SciTech Connect

In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and one affiliate in Rhode Island, responded to a Department of Energy request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. In this progress report, cost savings at Bolyston light department is discussed. (JL)

Not Available

1992-01-01T23:59:59.000Z

188

Electric thermal storage demonstration program  

SciTech Connect

In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and on affiliate in Rhode Island, responded to a DOE request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. This report discusses the demonstration of ETS equipment at four member light departments.

Not Available

1992-01-01T23:59:59.000Z

189

Electric thermal storage demonstration program  

SciTech Connect

In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and on affiliate in Rhode Island, responded to a DOE request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. This report discusses the demonstration of ETS equipment at four member light departments.

Not Available

1992-02-01T23:59:59.000Z

190

Status of Solar Thermal Conversion in China  

Science Journals Connector (OSTI)

China has an abundant solar energy resource. Solar thermal conversion systems have been studied for more than 25 years and solar thermal industry has been developing since 1990’s....2 solar collectors were sold a...

Yin Zhiqiang

2009-01-01T23:59:59.000Z

191

Azobenzene-Functionalized Carbon Nanotubes As High-Energy Density Solar Thermal Fuels  

Science Journals Connector (OSTI)

Azobenzene-Functionalized Carbon Nanotubes As High-Energy Density Solar Thermal Fuels ... Solar thermal fuels, which reversibly store solar energy in molecular bonds, are a tantalizing prospect for clean, renewable, and transportable energy conversion/storage. ... Here we present a novel solar thermal fuel, composed of azobenzene-functionalized carbon nanotubes, with the volumetric energy density of Li-ion batteries. ...

Alexie M. Kolpak; Jeffrey C. Grossman

2011-06-20T23:59:59.000Z

192

Solar Thermal Process Heat | Open Energy Information  

Open Energy Info (EERE)

Solar Thermal Process Heat Incentives Retrieved from "http:en.openei.orgwindex.php?titleSolarThermalProcessHeat&oldid267198" Category: Articles with outstanding TODO tasks...

193

Laser Texturing for Solar Thermal Systems  

Science Journals Connector (OSTI)

High solar absorptance and low thermal emittance is desired for absorber surface in solar thermal systems. Molybdenum surface was textured by pulsed fiber laser and...

Shah, Ankit; Gupta, Mool

194

SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Efficiency Thermal Energy High-Efficiency Thermal Energy Storage System for CSP to someone by E-mail Share SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Facebook Tweet about SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Twitter Bookmark SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Google Bookmark SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Delicious Rank SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Digg Find More places to share SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act

195

SUSTAINABLE AND HOLISTIC INTEGRATION OF ENERGY STORAGE AND SOLAR...  

Office of Environmental Management (EM)

SUSTAINABLE AND HOLISTIC INTEGRATION OF ENERGY STORAGE AND SOLAR PV (SHINES) SUSTAINABLE AND HOLISTIC INTEGRATION OF ENERGY STORAGE AND SOLAR PV (SHINES) Funding Number:...

196

CALIFORNIA SOLAR INITIATIVE-THERMAL PROGRAMHANDBOOK  

E-Print Network (OSTI)

CALIFORNIA SOLAR INITIATIVE-THERMAL PROGRAMHANDBOOK CALIFORNIA PUBLIC UTILITIES California Solar Initiative Thermal Program Handbook i 1. Introduction to CSI-Thermal Program ..........................................................................3 2.1 Participants in the CSI-Thermal Program

197

Thermal Storage with Ice Harvesting Systems  

E-Print Network (OSTI)

Application of Harvesting Ice Storage Systems. Thermal storage systems are becoming widely accepted techniques for utility load management. This paper discusses the principles of ice harvesting equipment and their application to the multi...

Knebel, D. E.

1986-01-01T23:59:59.000Z

198

Design and installation manual for thermal energy storage  

SciTech Connect

The purpose of this manual is to provide information on the design and installation of thermal energy storage in active solar systems. It is intended for contractors, installers, solar system designers, engineers, architects, and manufacturers who intend to enter the solar energy business. The reader should have general knowledge of how solar heating and cooling systems operate and knowledge of construction methods and building codes. Knowledge of solar analysis methods such as f-Chart, SOLCOST, DOE-1, or TRNSYS would be helpful. The information contained in the manual includes sizing storage, choosing a location for the storage device, and insulation requirements. Both air-based and liquid-based systems are covered with topics on designing rock beds, tank types, pump and fan selection, installation, costs, and operation and maintenance. Topics relevant to latent heat storage include properties of phase-change materials, sizing the storage unit, insulating the storage unit, available systems, and cost. Topics relevant to heating domestic water include safety, single- and dual-tank systems, domestic water heating with air- and liquid-based space heating systems, and stand alone domestics hot water systems. Several appendices present common problems with storage systems and their solutions, heat transfer fluid properties, economic insulation thickness, heat exchanger sizing, and sample specifications for heat exchangers, wooden rock bins, steel tanks, concrete tanks, and fiberglass-reinforced plastic tanks.

Cole, R L; Nield, K J; Rohde, R R; Wolosewicz, R M

1980-01-01T23:59:59.000Z

199

PCM energy storage during defective thermal cycling:.  

E-Print Network (OSTI)

??Incomplete thermal cycling affects storage capacities of phase change materials (PCMs). Existing PCM measuring methods are presented with their drawbacks. A new device named “the… (more)

Koekenbier, S.F.

2011-01-01T23:59:59.000Z

200

Thermal Energy Storage:Analysis and Application.  

E-Print Network (OSTI)

??The purpose of this paper is to analyze and determine the feasibility of a cold thermal storage system in manufacturing Industries. Cooling loads and actual… (more)

Ogunkoya, Dolanimi Olugbenga

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal storage solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

High Temperature InGaN Topping Cells for Hybrid Photovoltaic/Concentrating Solar Thermal Systems  

Science Journals Connector (OSTI)

Hybrid PV/CSP systems offer the potential of higher solar to grid efficiency, with the benefits of dispatchable electricity from thermal storage. Here we present an implementation...

Honsberg, Christiana; Gleckman, Philip; Doolittle, William A; Ponce, Fernando; Arena, Chantal; Vasileska, Dragica; Goodnick, Stephen M

202

Thermal Storage Materials Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory), Energy Systems Integration Facility (ESIF)  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Materials Storage Materials Laboratory may include: * CSP technology developers * Utilities * Certification laboratories * Government agencies * Universities * Other National laboratories Contact Us If you are interested in working with NREL's Thermal Storage Materials Laboratory, please contact: ESIF Manager Carolyn Elam Carolyn.Elam@nrel.gov 303-275-4311 Thermal Storage Materials Laboratory The Thermal Storage Materials Laboratory at NREL's Energy Systems Integration Facility (ESIF) investigates materials that can be used as high-temperature heat transfer fluids or thermal energy storage media in concentrating solar power (CSP) plants. Research objectives include the discovery and evaluation of

203

solar thermal | OpenEI  

Open Energy Info (EERE)

thermal thermal Dataset Summary Description This dataset presents summary information related to world solar energy. It is part of a supporting dataset for the book World On the Edge: How to Prevent Environmental and Economic Collapse by Lester R. Source Earth Policy Institute Date Released January 12th, 2011 (3 years ago) Date Updated Unknown Keywords EU solar solar PV solar thermal world Data application/vnd.ms-excel icon Excel spreadsheet, summary solar energy data on multiple tabs (xls, 145.9 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Attribution License Comment "Reuse of our data is permitted. We merely ask that wherever it is listed, it be appropriately cited"

204

SOLAR ENERGY PROGRAM: CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1979  

E-Print Network (OSTI)

Hunt . . . Sensible Heat Storage for a Solar Thermal Powerthrough Solar Geothermal, Electric, and Storage Systems (A. Foss, "Sensible heat storage for a solar thermal power

Authors, Various

2010-01-01T23:59:59.000Z

205

Final Report-- A Novel Storage Method for Concentrating Solar Power Plants Allowing Storage at High Temperature  

SciTech Connect

The main objective of the proposed work was the development and testing of a storage method that has the potential to fundamentally change the solar thermal industry. The development of a mathematical model that describes the phenomena involved in the heat storage and recovery was also a main objective of this work. Therefore, the goal was to prepare a design package allowing reliable scale-up and optimization of design.

Morris, Jeffrey F.

2014-09-29T23:59:59.000Z

206

Impact of Ageing on Thermal Efficiency of Solar Thermal Collectors  

Science Journals Connector (OSTI)

Today it is common practice to calculate the performance of solar thermal systems or solar collectors based on the results of a thermal performance test carried out with a new solar collector. However, for an int...

Elke Streicher; Stephan Fischer…

2009-01-01T23:59:59.000Z

207

Thermal model of solar absorption HVAC systems  

SciTech Connect

This paper presents a thermal model that describes the performance of solar absorption HVAC systems. The model considers the collector array, the building cooling and heating loads, the absorption chiller and the high temperature storage. Heat losses from the storage tank and piping are included in the model. All of the results presented in the paper are for an array of flat plate solar collectors with black chrome (selective surface) absorber plates. The collector efficiency equation is used to calculate the useful heat output from the array. The storage is modeled as a non-stratified tank with polyurethane foam insulation. The system is assumed to operate continuously providing air conditioning during the cooling season, space heating during the winter and hot water throughout the year. The amount of heat required to drive the chiller is determined from the coefficient of performance of the absorption cycle. Results are presented for a typical COP of 0.7. The cooling capacity of the chiller is a function of storage (generator) temperature. The nominal value is 190 F (88 C) and the range of values considered is 180 F (82 C) to 210 F (99 C). Typical building cooling and heating loads are determined as a function of ambient conditions. Performance results are presented for Sacramento, CA and Washington, D.C. The model described in the paper makes use of National Solar Radiation Data Base (NSRDB) data and results are presented for these two locations. The uncertainties in the NSRDB are estimated to be in a range of 6% to 9%. This is a significant improvement over previously available data. The model makes it possible to predict the performance of solar HVAC systems and calculate quantities such as solar fraction, storage temperature, heat losses and parasitic power for every hour of the period for which data are available.

Bergquam, J.B.; Brezner, J.M. [California State Univ., Sacramento, CA (United States). Dept. of Mechanical Engineering; [Bergquam Energy Systems, Sacramento, CA (United States)

1995-11-01T23:59:59.000Z

208

Scattering Solar Thermal Concentrators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is a rendering of a scattering solar concentrator. Light collected by a cylindrical Fresnel lens is focused within a curved glass "guide" sheet, where it is redirected into...

209

Quality assurance of solar thermal systems with the ISFH-Input/Output-Procedure  

E-Print Network (OSTI)

. Supplementary sensors may be necessary for some special solar systems (e. g. solar systems with several storagesQuality assurance of solar thermal systems with the ISFH- Input/Output-Procedure Peter Paerisch/Output-Controllers for in situ and automatic function control of solar thermal systems that were developed within the research

210

Modeling The Potential For Thermal Concentrating Solar Power Technologies  

SciTech Connect

In this paper we explore the tradeoffs between thermal storage capacity, cost, and other system parameters in order to examine possible evolutionary pathways for thermal Concen-trating Solar Power (CSP) technologies. A representation of CSP performance that is suit-able for incorporation into economic modeling tools is developed. We find that, as the fraction of electricity supplied by CSP technologies grows, the application of thermal CSP technologies might progress from current hybrid plants, to plants with a modest amount of thermal storage, and potentially even to plants with sufficient thermal storage to provide base load generation capacity. The representation of CSP cost and performance developed here was implemented in the ObjECTS MiniCAM long-term integrated assessment model. Datasets for global solar resource characteristics as applied to CSP technology were also developed. The regional and global potential of thermal CSP technologies is examined.

Zhang, Yabei; Smith, Steven J.; Kyle, G. Page; Stackhouse, Jr., Paul W.

2010-10-25T23:59:59.000Z

211

Storage Systems for Solar Steam  

Science Journals Connector (OSTI)

Three different basic concepts (encapsulation, composite material and fins) for isothermal energy storage systems using phase change materials in the ... the most promising concept for the design of storage syste...

Wolf-Dieter Steinmann; Doerte Laing…

2009-01-01T23:59:59.000Z

212

Scenario Analysis of Peak Demand Savings for Commercial Buildings with Thermal Mass in California  

E-Print Network (OSTI)

by utilizing thermal energy storage such as ice storage orThermal Storage Utilization. ” Journal of Solar Energy

Yin, Rongxin

2010-01-01T23:59:59.000Z

213

Storage of Solar Thermal Energy  

Science Journals Connector (OSTI)

It is estimated that, at the present rate of consumption of (readily available stored energy in) fossil fuels, the world’s ... world are in search of new and renewable energy sources. Developing efficient and ine...

S. Kakaç; E. Paykoç; Y. Yener

1989-01-01T23:59:59.000Z

214

EXPERIMENTAL AND THEORETICAL STUDIES OF THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network (OSTI)

In Proceed- ings of Thermal Energy Storage in Aquifers Work-Mathematical Modeling of Thermal Energy storage in Aquifers.In Proceed- ings of Thermal Energy Storage in Aquifers Work-

Tsang, Chin Fu

2011-01-01T23:59:59.000Z

215

DOE Funds 15 New Projects to Develop Solar Power Storage and Heat Transfer  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funds 15 New Projects to Develop Solar Power Storage and Heat Funds 15 New Projects to Develop Solar Power Storage and Heat Transfer Projects For Up to $67.6 Million DOE Funds 15 New Projects to Develop Solar Power Storage and Heat Transfer Projects For Up to $67.6 Million September 19, 2008 - 3:43pm Addthis WASHINGTON - U.S. Department of Energy (DOE) today announced selections for negotiations of award under the Funding Opportunity Announcement (FOA), Advanced Heat Transfer Fluids and Novel Thermal Storage Concepts for Concentrating Solar Power Generation. These 15 new projects, for up to approximately $67.6 million, will facilitate the development of lower-cost energy storage for concentrating solar power (CSP) technology. These projects support President Bush's Solar America Initiative, which aims to make solar energy cost-competitive with conventional forms of electricity

216

NREL: Climate Neutral Research Campuses - Solar Thermal  

NLE Websites -- All DOE Office Websites (Extended Search)

cooling system in 2006. Back to Top Technology Basics The following resources explain the fundamentals of solar thermal technologies: NREL Solar Energy Basics: Descriptive overview...

217

Project Profile: Innovative Phase Change Thermal Energy Storage...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Phase Change Thermal Energy Storage Solution for Baseload Power Project Profile: Innovative Phase Change Thermal Energy Storage Solution for Baseload Power Infinia logo Infinia,...

218

Project Profile: Molten Salt-Carbon Nanotube Thermal Storage  

Energy.gov (U.S. Department of Energy (DOE))

Texas Engineering Experiment Station (TEES), under the Thermal Storage FOA, created a composite thermal energy storage material by embedding nanoparticles in a molten salt base material.

219

Experimental study of a thermosyphon solar water heater coupled to a fibre-reinforced plastic (FRP) storage tank  

Science Journals Connector (OSTI)

The thermal performance of the thermosyphon solar water heater was analyzed to show its ... %. Also, an analysis of the temperature storage characteristics of a novel fibre-reinforced plastic (FRP) storage tank w...

P. N. Nwosu; O. U. Oparaku; W. I. Okonkwo; G. O. Unachukwu…

2011-09-01T23:59:59.000Z

220

A Continuous Solar Thermochemical Hydrogen Production Plant Design  

E-Print Network (OSTI)

change thermal-storage systems, and solar fields. Chapter 3Storage System . 21 2.5 Solarchange thermal-storage system and the solar field were not

Luc, Wesley Wai

Note: This page contains sample records for the topic "thermal storage solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Design of Coil Heat Exchanger for Remote-Storage Solar Water Heating System  

Science Journals Connector (OSTI)

A coil heat exchanger for hot water thermal storage was presented including the choice of the ... calculation of flow resistance. In this design, solar collector contour aperture area is 4.26...2, the volume of w...

Lv Cuiping; He Duanlian; Dou Jianqing

2009-01-01T23:59:59.000Z

222

High-Temperature Thermal Array for Next Generation Solar Thermal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Array for Next Generation Solar Thermal Power Production Award Number: DE-EE00025828 Report Date: March 15, 2013 PI: Stephen Obrey * Technical approach is focused on...

223

EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT  

E-Print Network (OSTI)

between alternative solar storage system designs; almost allThe behavior of the storage solar receiver-reactor is baseddaytime (charging) storage process Boeing solar receiver [5J

Dayan, J.

2011-01-01T23:59:59.000Z

224

Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches  

E-Print Network (OSTI)

D ISSERTATION Solar Energy Storage through the Homogeneousthe development of solar energy storage via liquid fuels isis an attractive solar energy storage solution. The great

Sathrum, Aaron John

2011-01-01T23:59:59.000Z

225

Solar Storage Company | Open Energy Information  

Open Energy Info (EERE)

Storage Company Storage Company Jump to: navigation, search Name Solar Storage Company Place Palo Alto, California Zip 94301 Sector Solar Product Distibuted On-Demand Solar Year founded 2009 Coordinates 37.4457966°, -122.1575745° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.4457966,"lon":-122.1575745,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

226

Thermal Storage with Conventional Cooling Systems  

E-Print Network (OSTI)

The newly opened Pennsylvania Convention Center in Philadelphia, PA; Exxon's Computer Facility at Florham Park, NJ; The Center Square Building in Philadelphia, are success stories for demand shifting through thermal storage. These buildings employ a...

Kieninger, R. T.

1994-01-01T23:59:59.000Z

227

Practical Solar Thermal Chilled Water  

E-Print Network (OSTI)

the potential to impact America's use of non-renewable energy beyond its own design capacity by applying it to the optimization of an existing building's system. Solar-thermal chilling systems are not new. However, few of them can be described as a practical...

Leavell, B.

2010-01-01T23:59:59.000Z

228

Solar Thermal Reactor Materials Characterization  

SciTech Connect

Current research into hydrogen production through high temperature metal oxide water splitting cycles has created a need for robust high temperature materials. Such cycles are further enhanced by the use of concentrated solar energy as a power source. However, samples subjected to concentrated solar radiation exhibited lifetimes much shorter than expected. Characterization of the power and flux distributions representative of the High Flux Solar Furnace(HFSF) at the National Renewable Energy Laboratory(NREL) were compared to ray trace modeling of the facility. In addition, samples of candidate reactor materials were thermally cycled at the HFSF and tensile failure testing was performed to quantify material degradation. Thermal cycling tests have been completed on super alloy Haynes 214 samples and results indicate that maximum temperature plays a significant role in reduction of strength. The number of cycles was too small to establish long term failure trends for this material due to the high ductility of the material.

Lichty, P. R.; Scott, A. M.; Perkins, C. M.; Bingham, C.; Weimer, A. W.

2008-03-01T23:59:59.000Z

229

Thermal Energy Storage for Vacuum Precoolers  

E-Print Network (OSTI)

radically creating high peak demands and low load factors. An ice bank thermal energy storage (TES) and ice water vapor condenser were installed. The existing equipment and TES system were computer monitored to determine energy consumption and potential... efficiency at night. The ice bank thermal energy storage system has a 4.4 year simple payback. While building ice, the refrigeration system operated at a 6.26 Coefficient of Performance (COP). The refrigeration system operated more efficiently at night...

Nugent, D. M.

230

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network (OSTI)

storage, thermal storage, solar thermal collectors, PVs, andis disallowed; 5. a low storage, PV, and solar thermal priceW run 4 force low storage / PV and solar thermal results run

Stadler, Michael

2009-01-01T23:59:59.000Z

231

Collector Field Maintenance: Distributed Solar Thermal Systems  

Science Journals Connector (OSTI)

This paper reports on recent operation and maintenance experiences with distributed solar thermal systems. Although some information on system-...

E. C. Boes; E. C. Cameron; E. L. Harley

1986-01-01T23:59:59.000Z

232

Cool Storage for Solar and Conventional Air Conditioning  

Science Journals Connector (OSTI)

The term thermal energy storage can apply to any storage function for which the principal inputs and outputs are thermal energy, whether as “hotness” or as “coolness”. Generally, hotness storage technologies h...

C. J. Swet

1989-01-01T23:59:59.000Z

233

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network (OSTI)

significant challenge for solar thermal energy generation issolar thermal, cogeneration of electrical and thermal energy,for efficient energy production. Solar thermal plants, such

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

234

California Solar Initiative - Solar Thermal Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California Solar Initiative - Solar Thermal Program California Solar Initiative - Solar Thermal Program California Solar Initiative - Solar Thermal Program < Back Eligibility Commercial Fed. Government Industrial Local Government Low-Income Residential Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Heating & Cooling Solar Swimming Pool Heaters Water Heating Maximum Rebate Step 1 Incentive Limits (contact utility to determine current incentive limits): Single-family residential systems that displace natural gas: $2,719 Single-family residential systems that displace electricity or propane: $1,834 Commercial and multifamily residential systems that displace natural gas: $500,000 Commercial and multifamily residential systems that displace electricity or propane: $250,000

235

Integrated Building Energy Systems Design Considering Storage Technologies  

E-Print Network (OSTI)

among PV, solar thermal, and storage systems can be complex,and solar thermal collectors; electrical storage, flow8, huge PV, solar thermal as well as storage systems will be

Stadler, Michael

2009-01-01T23:59:59.000Z

236

Thermal energy storage technical progress report, April 1992--March 1993  

SciTech Connect

The Department of Energy (DOE) is supporting development of thermal energy storage (TES) as a means of efficiently coupling energy supplies to variable heating or cooling demands. Uses of TES include electrical demand-side management in buildings and industry, extending the utilization of renewable energy resources such as solar, and recovery of waste heat from periodic industrial processes. Technical progress to develop TES for specific diurnal and industrial applications under the Oak Ridge National Laboratory`s TES program from April 1992 to March 1993 is reported and covers research in the areas of low temperature sorption, thermal energy storage water heater, latent heat storage wallboard and latent/sensible heat regenerator technology development.

Olszewski, M.

1993-05-01T23:59:59.000Z

237

Experimental study of integrated collector storage solar water heaters  

Science Journals Connector (OSTI)

Three Integrated Collector Storage Solar Water Heaters (ICSSWH) have been designed, constructed and experimentally studied in comparison to a Flat Plate Thermosiphonic Unit (FPTU). Each of the ICS experimental models consists of one cylindrical tank horizontally mounted in a stationary symmetrical Compound Parabolic Concentrating (CPC) reflector trough. The main objective is the design and construction of low cost solar water heaters with improved thermal performance and lower possible depths. The experimental models can be mounted on horizontal as well as on inclined roofs by adopting the lowest possible depth. The results show that these solar devices perform more than effectively all year long. This could contribute significantly on the development of ICS type solar water heaters.

M. Souliotis; D. Chemisana; Y.G. Caouris; Y. Tripanagnostopoulos

2013-01-01T23:59:59.000Z

238

Thermal energy storage technical progress report, April 1990--March 1991  

SciTech Connect

The Department of Energy (DOE) is supporting development of thermal energy storage (TES) as a means of efficiently coupling energy supplies to variable heating or cooling demands. Uses of TES include electrical demand-side management in buildings and industry, extending the utilization of renewable energy resources such as solar, and recovery of waste heat from periodic industrial processes. Technical progress to develop TES for specific diurnal and industrial applications under Oak Ridge National Laboratory's TES program from April 1990 to March 1992 is reported and covers research in the areas of low temperature sorption, direct contact ice making, latent heat storage plasterboard and latent/sensible heat regenerator technology development.

Tomlinson, J.J.

1992-03-01T23:59:59.000Z

239

Thermal energy storage technical progress report, April 1990--March 1991  

SciTech Connect

The Department of Energy (DOE) is supporting development of thermal energy storage (TES) as a means of efficiently coupling energy supplies to variable heating or cooling demands. Uses of TES include electrical demand-side management in buildings and industry, extending the utilization of renewable energy resources such as solar, and recovery of waste heat from periodic industrial processes. Technical progress to develop TES for specific diurnal and industrial applications under Oak Ridge National Laboratory`s TES program from April 1990 to March 1992 is reported and covers research in the areas of low temperature sorption, direct contact ice making, latent heat storage plasterboard and latent/sensible heat regenerator technology development.

Tomlinson, J.J.

1992-03-01T23:59:59.000Z

240

Integrated solar energy harvesting and storage  

Science Journals Connector (OSTI)

To explore integrated solar energy harvesting as a power source for low power systems, an array of energy scavenging photodiodes based on a passive-pixel architecture for CMOS imagers has been fabricated together with storage capacitors implemented using ... Keywords: energy harvesting, low-power design, photodiodes

Nathaniel J. Guilar; Travis J. Kleeburg; Albert Chen; Diego R. Yankelevich; Rajeevan Amirtharajah

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal storage solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Dish/Stirling High-Performance Thermal Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A., "Heat transfer and exergy analysis of cascaded latent heat storage with gravity-assisted heat pipes for concentrating solar power applications," Solar Energy 86 (3)...

242

Quantifying the Value of CSP with Thermal Energy Storage  

Energy.gov (U.S. Department of Energy (DOE))

This PowerPoint slide deck was originally presented at the SunShot Concentrating Solar Power Program Review by Paul Denholm and Mark Mehos of NREL on April 23, 2013. Entitled "Quantifying the Value of CSP with Thermal Energy Storage," the presenters seek to answer the question, "What is the addition of TES to a CSP plant actually worth?" Ultimately they conclude that CSP with TES can actually complement other variable generation sources including solar PV and act as an enabling technology to achieve higher overall penetration of renewable energy.

243

Sandia National Laboratories: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Molten Salt Energy-Storage Demonstration On May 21, 2014, in Capabilities, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

244

Project Profile: Sensible Heat, Direct, Dual-Media Thermal Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sensible Heat, Direct, Dual-Media Thermal Energy Storage Module Acciona logo Acciona Solar, under the Thermal Storage FOA, plans to develop a prototype thermal energy storage...

245

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network (OSTI)

13 2.2.2. Solar Thermal Versus Photovoltaic ..…………..…………doi:10.1038/nmat2090. 17. Solar Thermal Technology on anFigure 2.5: An eSolar solar thermal system in Burbank,

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

246

Thermal storage studies for solar heating and cooling: applications using chemical heat pumps. Final report, September 15, 1979-April 15, 1980  

SciTech Connect

TRNSYS-compatible subroutines for the simulation of chemical heat pumps have been written, and simulations (including heating, cooling, and domestic hot water) have been performed for Washington, DC and Ft. Worth, Texas. Direct weekly comparisons of the H/sub 2/SO/sub 4//H/sub 2/O and CaCl/sub 2//CH/sub 3/OH cycles have been carried out. Projected performance of the NH/sub 4/NO/sub 3//NH/sub 3/ cycle has also been investigated, and found to be essentially identical to H/sub 2/SO/sub 4//H/sub 2/O. In all cases simulated, the solar collector is a fixed evacuated tube system, which is necessary because chemical heat pumps operate at higher solar collector temperatures (> 100/sup 0/C) than conventional solar systems. With standard residential loads, the chemical heat pumps performed surprisingly well. In the Ft. Worth climate, less than 45 m/sup 2/ of collectors were required to meet over 90% of the heating and cooling loads. In Washington, DC, the area required to meet the cooling load was smaller (as little as 20 m/sup 2/, depending on window shading), but was sufficient to meet only 50 to 60% of the heating load. However, gas-fired backup via the heat pump was quite effective in reducing fossil fuel consumption: the thermal COPs in the heating mode were in the range 1.6 to 1.7. Since chemical heat pumps are designed to reject heat at relatively high temperatures, they were also effective in providing domestic hot water, supplying ca. 70% of the DHW in summer, ca. 50% in winter, and nearly 100% in spring and fall.

Offenhartz, P O.D.

1981-04-01T23:59:59.000Z

247

THE PASSIVE SOLAR DESIGN PROCESS FOR A SMALL OFFICE/LABORATORY BUILDING  

E-Print Network (OSTI)

and underground thermal storage), the passive solar redesignCollec- tion, storage, and distribution of solar energy in

Andersson, Brandt

2011-01-01T23:59:59.000Z

248

Quality assurance with the ISFH-Input/Output-Procedure 6-year-experience with 14 solar thermal systems  

E-Print Network (OSTI)

sensors into a solar system with buffer storage tank and direct discharging. Figure 1 shows the sensorsQuality assurance with the ISFH-Input/Output-Procedure 6-year-experience with 14 solar thermal of standard solar thermal systems usually don't recognise failures affecting the solar yield, because

249

Thermal Energy Storage Technology for Transportation and Other...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Storage Technology for Transportation and Other Applications D. Bank, M. Maurer, J. Penkala, K. Sehanobish, A. Soukhojak Thermal Energy Storage Technology for Transportation...

250

Macroencapsulation of Phase Change Materials for Thermal Energy Storage.  

E-Print Network (OSTI)

??The use of a latent heat storage system using phase change materials (PCMs) is an effective way of storing thermal energy. Latent heat storage enables… (more)

Pendyala, Swetha

2012-01-01T23:59:59.000Z

251

Could Solar Energy Storage be Key for Residential Solar? | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Could Solar Energy Storage be Key for Residential Solar? Could Solar Energy Storage be Key for Residential Solar? Could Solar Energy Storage be Key for Residential Solar? October 26, 2010 - 4:52pm Addthis This is the silent power storage device the Sacramento Municipal Utility District intends to install in residential homes as part of its distributed solar power storage study. | Photo Courtesy of the Sacramento Municipal Utility District This is the silent power storage device the Sacramento Municipal Utility District intends to install in residential homes as part of its distributed solar power storage study. | Photo Courtesy of the Sacramento Municipal Utility District Lorelei Laird Writer, Energy Empowers What are the key facts? SolarSmart Homes storage pilot project gearing up in Sacramento. Pilot project is funded by a $4.3 million Recovery Act grant.

252

Bionics in textiles: flexible and translucent thermal insulations for solar thermal applications  

Science Journals Connector (OSTI)

...translucent thermal insulations for solar thermal applications Thomas Stegmaier...Denkendorf73770 Denkendorf, Germany Solar thermal collectors used at present consist...transparent thermal insulation|solar thermal collector| 1. Introduction...

2009-01-01T23:59:59.000Z

253

The Status of Solar Thermal Electric Technology  

Science Journals Connector (OSTI)

Solar thermal electric technology was evaluated as a future source of power for United States utilities. The technology status was developed using an ... configuration was selected for each of the major solar col...

Richard J. Holl; Edgar A. DeMeo

1990-01-01T23:59:59.000Z

254

Analysis of selected surface characteristics and latent heat storage for passive solar space heating  

SciTech Connect

Results are presented of an analysis of the value of various technical improvements in the solar collector and thermal storage subsystems of passive solar residential, agricultural, and industrial systems for two regions of the country. The evaluated improvements are: decreased emissivity and increased absorptivity of absorbing surfaces, decreased reflectivity, and decreased emissivity of glazing surface, and the substitution of sensible heat storage media with phase change materials. The value of each improvement is estimated by the additional energy savings resulting from the improvement.

Fthenakis, V.; Leigh, R.

1981-12-01T23:59:59.000Z

255

INORGANIC NANOPARTICLES AS PHASE-CHANGE MATERIALS FOR LARGE-SCALE THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

INORGANIC NANOPARTICLES AS PHASE-CHANGE MATERIALS FOR LARGE- SCALE THERMAL ENERGY STORAGE Miroslaw storage performance. The expected immediate outcome of this effort is the demonstration of high-energy generation at high efficiency could revolutionize the development of solar energy. Nanoparticle-based phase

Pennycook, Steve

256

Solar Thermal Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Thermal Incentive Program Solar Thermal Incentive Program Solar Thermal Incentive Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate 50% of the project cost Program Info Funding Source Public Benefits Fund State Connecticut Program Type State Rebate Program Rebate Amount Calculated: $70 multiplied by the SRCC "C" rating multiplied by the number of collectors multiplied by the Shading Factor Provider Clean Energy Finance and Investment Authority Note: This program is not currently accepting applications. Check the program web site for information regarding future financing programs. To participate in the residential solar hot water rebate, homeowners must first complete an energy assessment. Then, they must work with CEFIA

257

A solar concentrating photovoltaic/thermal collector .  

E-Print Network (OSTI)

??This thesis discusses aspects of a novel solar concentrating photovoltaic / thermal (PV/T) collector that has been designed to produce both electricity and hot water.… (more)

Coventry, Joseph S

2008-01-01T23:59:59.000Z

258

High-Temperature Thermal Array for Next Generation Solar Thermal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 Q1 High-Temperature Thermal Array for Next Generation Solar Thermal Power Production - FY13 Q1 This document summarizes the progress of this Los Alamos National Laboratory...

259

THEORETICAL STUDIES IN LONG-TERM THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network (OSTI)

Mathematical Modeling of Thermal Energy Storage in Aquifers.of Aquifer Thermal Energy Storage Workshop, LawrenceF.P. "Thermal Energy Storage in a Confined Aquifer- Second

Tsang, C.F.

2013-01-01T23:59:59.000Z

260

AQUIFER THERMAL ENERGY STORAGE. A NUMERICAL SIMULATION OF AUBURN UNIVERSITY FIELD EXPERIMENTS  

E-Print Network (OSTI)

Auburn University Thermal Energy Storage , LBL No. 10194.Mathematical modeling of thermal energy storage in aquifers,of Current Aquifer Thermal Energy Storage Programs (in

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal storage solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Optimal Deployment of Thermal Energy Storage under Diverse Economic and Climate Conditions  

E-Print Network (OSTI)

Deployment  of  Thermal  Energy   Storage  under  Diverse  Dincer I. On thermal energy storage systems and applicationsin research on cold thermal energy storage, International

DeForest, Nicolas

2014-01-01T23:59:59.000Z

262

Modeling of Thermal Storage Systems in MILP Distributed Energy Resource Models  

E-Print Network (OSTI)

potential materials for thermal energy storage in buildingcoupled with thermal energy storage," Applied Energy, vol.N. Fumo, "Benefits of thermal energy storage option combined

Steen, David

2014-01-01T23:59:59.000Z

263

THEORETICAL STUDIES IN LONG-TERM THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network (OSTI)

Mathematical Modeling of Thermal Energy Storage in Aquifers.of Aquifer Thermal Energy Storage Workshop, Lawrencewithin the Seasonal Thermal Energy Storage program managed

Tsang, C.F.

2013-01-01T23:59:59.000Z

264

SEASONAL THERMAL ENERGY STORAGE IN AQUIFERS-MATHEMATICAL MODELING STUDIES IN 1979  

E-Print Network (OSTI)

of Aquifer Thermal Energy Storage." Lawrence Berkeleythe Auburn University Thermal Energy Storage Experiment."LBL~l0208 SEASONAL THERMAL ENERGY STORAGE IN AQUIFERS~

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

265

Solar thermal power generation: a bibliography with abstracts. Quarterly update, April-June 1980  

SciTech Connect

This annotated bibliography covers the following subjects: energy overviews; solar overviews; energy conservation; environment, law, and policy; total energy systems; solar thermal power and energy storage; thermoelectric, thermionic, and thermolysis; Ocean Thermal Energy Conversion; wind energy; biomass; bioconversion, and photochemical; satellite power systems; and photovoltaic applications. (MHR)

Sparkman, T.; Bozman, W.R. (eds.)

1980-08-01T23:59:59.000Z

266

Rehabilitating A Thermal Storage System Through Commissioning  

E-Print Network (OSTI)

supplementary chiller (50 tons) was needed due to an under- sized storage tank and an under-sized chller. In 1995, the authors were asked to investigate the problems and provide possible solutions. The thermal storage system was subsequently rehabilitated... draws water from the bottom of the tank and sends the return water to the top of the tank. Valve V4 isolates the chiller from the building and the tank. In the charging mode (Figure 2b), valves V3 and V4 are open while valve V1 is 06 wcad closed...

Liu, M.; Veteto, B.; Claridge, D. E.

1998-01-01T23:59:59.000Z

267

Investigations in cool thermal storage: storage process optimization and glycol sensible storage enhancement  

E-Print Network (OSTI)

device in order to meet the utility's mandate. The first part of this study looks at the effects of adding propylene glycol to a static-water ice thermal storage tank, in the pursuit of increasing storage capacity. The effects of glycol addition...

Abraham, Michaela Marie

1993-01-01T23:59:59.000Z

268

Solar thermal organic rankine cycle for micro-generation  

Science Journals Connector (OSTI)

The conceptual design of an Organic Rankine Cycle (ORC) driven by solar thermal energy is developed for the decentralized production of electricity of up to 50 kW. Conventional Rankine Cycle uses water as the working fluid whereas ORC uses organic compound as the working fluid and it is particularly suitable for low temperature applications. The ORC and the solar collector will be sized according to the solar flux distribution in the Republic of Yemen for the required power output of 50 kW. This will be a micro power generation system that consists of two cycles the solar thermal cycle that harness solar energy and the power cycle which is the ORC that generates electricity. As for the solar thermal cycle heat transfer fluid (HTF) circulates the cycle while absorbing thermal energy from the sun through a parabolic trough collector and then storing it in a thermal storage to increase system efficiency and maintains system operation during low radiation. The heat is then transferred to the organic fluid in the ORC via a heat exchanger. The organic fluids to be used and analyzed in the ORC are hydrocarbons R600a and R290.

2012-01-01T23:59:59.000Z

269

Efficient Heat Storage Materials: Metallic Composites Phase-Change Materials for High-Temperature Thermal Energy Storage  

SciTech Connect

HEATS Project: MIT is developing efficient heat storage materials for use in solar and nuclear power plants. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun’s not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. MIT is designing nanostructured heat storage materials that can store a large amount of heat per unit mass and volume. To do this, MIT is using phase change materials, which absorb a large amount of latent heat to melt from solid to liquid. MIT’s heat storage materials are designed to melt at high temperatures and conduct heat well—this makes them efficient at storing and releasing heat and enhances the overall efficiency of the thermal storage and energy-generation process. MIT’s low-cost heat storage materials also have a long life cycle, which further enhances their efficiency.

None

2011-11-21T23:59:59.000Z

270

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

Organometallic Frames for Solar Energy Storage, Berkeley. [Nocera D. G. , 2010, “Solar Energy Supply and Storage forof Abiotic Photo-chemical Solar Energy Storage Systems,”

Coso, Dusan

2013-01-01T23:59:59.000Z

271

Baseload Solar Power for California? Ammonia-based Solar Energy Storage Using Trough Concentrators  

E-Print Network (OSTI)

Baseload Solar Power for California? Ammonia-based Solar Energy Storage Using Trough Concentrators to eventually optimise the reactor geometry for ammonia-based solar energy storage with troughs, which.1. Storing Solar Energy with Ammonia H2 / N2 gas liquid NH3 Heat Exchangers Power Generation (Steam Cycle

272

Pv-Thermal Solar Power Assembly  

DOE Patents (OSTI)

A flexible solar power assembly includes a flexible photovoltaic device attached to a flexible thermal solar collector. The solar power assembly can be rolled up for transport and then unrolled for installation on a surface, such as the roof or side wall of a building or other structure, by use of adhesive and/or other types of fasteners.

Ansley, Jeffrey H. (El Cerrito, CA); Botkin, Jonathan D. (El Cerrito, CA); Dinwoodie, Thomas L. (Piedmont, CA)

2001-10-02T23:59:59.000Z

273

Thermal Management of Solar Cells  

E-Print Network (OSTI)

a better thermal conductance and when ceramic particles areor ceramic fillers that enhances thermal conductivity. Solid

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

274

Dynamic simulation of integrated rock-bed thermocline storage for concentrated solar power  

Science Journals Connector (OSTI)

Abstract In contrast to wind and photovoltaic, concentrated solar power plants can be equipped with thermal energy storage in order to decouple intermittent energy supply and grid feed-in. The focus of this study is the technical evaluation of a cost-efficient storage concept for solar tower power plants. Consisting of a quartzite-rock bed that is charged with a hot air flow and discharged by cold air counter-flow, the storage essentially operates like a regenerator. For such systems, the discharge temperature typically declines with time. Furthermore, the use of a randomly packed bed results in considerable pressure loss. In order to describe the relevant flow and heat transfer mechanisms in rock beds used for thermal storage, a mathematical model written in the modelling language Modelica is developed and validated. Good agreement with experimental data from literature is obtained. With the aid of the validated model, a rock-bed thermal storage for application in a semi-industrial scale solar power plant (1.5 MWel) is designed and optimised with respect to electrical efficiency of the plant during the charge and discharge cycle. The storage capacity is equivalent to four hours of full-load operation. Results show that compressor work should be considered directly in the selection of packed-bed geometry in order to minimise the efficiency penalty of storage integration in the solar plant.

Nicolas Mertens; Falah Alobaid; Lorenz Frigge; Bernd Epple

2014-01-01T23:59:59.000Z

275

A NEW SOLAR THERMAL RECEIVER UTILIZING SMALL PARTICLES  

E-Print Network (OSTI)

iuision, Ext. 6782 A New Solar Thermal Receiver UtilizingI \\D \\. }J F--' A NEW SOLAR THERMAL RECEIVER UTILIZING SMALL94720 ABSTRACT A new type of solar thermal receiver is being

Hunt, Arlon J.

2011-01-01T23:59:59.000Z

276

Solar Heating with Annual Heat Storage — Modelling and Practice  

Science Journals Connector (OSTI)

Central solar heating systems with seasonal heat storage are recognized as one of the most potential forms of solar energy utilization at northern latitudes. Because of ... and energy flows of a full-scale distri...

P. D. Lund; S. S. Peltola

1984-01-01T23:59:59.000Z

277

Solar energy storage: A possible use of inclusion compounds  

Science Journals Connector (OSTI)

Valence isomerization of norbornadiene to quadricyclene has been studied under different experimental conditions in order to develop a suitable system for solar energy storage.

A. Guarino; E. Possagno; R. Bassanelli

1987-10-01T23:59:59.000Z

278

Application of Solar Distillation Systems with Phase Change Material Storage  

Science Journals Connector (OSTI)

This chapter presents the analysis of a solar distillation system with phase change material storage system. There is always a scarcity of...

S. K. Shukla

2014-01-01T23:59:59.000Z

279

Project Profile: National Solar Thermal Test Facility  

Energy.gov (U.S. Department of Energy (DOE))

The first solar receivers ever tested in the world were tested at the National Solar Thermal Test Facility (NSTTF). The receivers were each rated up to 5 megawatts thermal (MWt). Receivers with various working fluids have been tested here over the years, including air, water-steam, molten salt, liquid sodium, and solid particles. The NSTTF has also been used for a large variety of other tests, including materials tests, simulation of thermal nuclear pulses and aerodynamic heating, and ablator testing for NASA.

280

Preliminary Investigation into Solar Thermal Combi-system Performance.  

E-Print Network (OSTI)

??Solar thermal combi-systems use solar energy to provide thermal energy for space heating and domestic hot water. These systems come in many different designs and… (more)

Lee, Elizabeth

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal storage solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Sandia National Laboratories: National Solar Thermal Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Power Technical Management Position On July 12, 2012, in Concentrating Solar Power, Energy, Facilities, Job Listing, National Solar Thermal Test Facility, News,...

282

Survival of Microorganisms in a Rock Bed Under Conditions Simulating Solar Heat Storage  

Science Journals Connector (OSTI)

...Under Conditions Simulating Solar Heat Storage Andris Zervins 1 Michael Babcock...colonization of rock beds used for solar heat storage does not appear likely under...under conditions simulating solar heat storage. | A laboratory-scale unit...

Andris Zervins; Michael Babcock; Robert W. Stone

1981-05-01T23:59:59.000Z

283

EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT  

E-Print Network (OSTI)

Economical energy storage is essential if solar power plantsthis type of energy storage system into a solar power plant.all of the energy storage required for a solar power plant,

Dayan, J.

2011-01-01T23:59:59.000Z

284

SEASONAL THERMAL ENERGY STORAGE IN AQUIFERS-MATHEMATICAL MODELING STUDIES IN 1979  

E-Print Network (OSTI)

of Aquifer Thermal Energy Storage." Lawrence BerkeleyP, Andersen, "'rhermal Energy Storage in a Confined Aquifer~University Thermal Energy Storage Experiment." Lawrence

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

285

Thermal Characterization of Graphitic Carbon Foams for Use in Thermal Storage Applications.  

E-Print Network (OSTI)

?? Highly conductive graphitic foams are currently being studied for use as thermal conductivity enhancers (TCEs) in thermal energy storage (TES) systems. TES systems store… (more)

Drummond, Kevin P.

2012-01-01T23:59:59.000Z

286

Computational Study on Thermal Properties of HVAC System with Building Structure Thermal Storage  

E-Print Network (OSTI)

Building structure thermal storage (BSTS) HVAC systems can store heat during nighttime thermal storage operation (nighttime operation hours) by using off-peak electricity and release it in the daytime air-conditioning operation (daytime operation...

Sato, Y.; Sagara, N.; Ryu, Y.; Maehara, K.; Nagai, T.

2007-01-01T23:59:59.000Z

287

Low-cost distributed solar-thermal-electric power generation  

E-Print Network (OSTI)

Low-cost distributed solar-thermal-electric power generation A. Der Minassians, K. H. Aschenbach and feasibility study of a low-cost solar thermal electricity generation technology, suitable for distributed: Solar Thermal Collectors, Solar Thermal Electricity, Stirling Engine 1. INTRODUCTION In this paper, we

Sanders, Seth

288

Latent Heat or Phase Change Thermal Energy Storage  

Science Journals Connector (OSTI)

It has been explained in sections 1.6 and 1.6.2 how phase change materials (PCM) have considerably higher thermal energy storage densities compared to sensible heat storage materials and are able to absorb or rel...

H. P. Garg; S. C. Mullick; A. K. Bhargava

1985-01-01T23:59:59.000Z

289

An Evaluation of Thermal Storage at Two Industrial Plants  

E-Print Network (OSTI)

Thermal storage offers substantial energy cost savings potential in situations with favorable electrical rates and significant cooling demand. Full storage is usually restricted to facilities occupied only part of the day, but two industrial plants...

Brown, M. L.; Gurta, M. E.

290

Conceptual design selection and development of a latent-heat thermal-energy-storage subsystem for a saturated-steam solar receiver and load  

SciTech Connect

The following latent heat storage concepts are described and evaluated in comparison with each other and with an oil/rock sensible heat storage system: (1) passive tube intensive (shell-and-tube heat exchanger) with and without heat transfer enhanced by fins; (2) phase change material cans (or chubbs) with a biphenyl intermediate heat transfer fluid; (3) phase change material macroencapsulation in a containment tank full of tubes; (4) microencapsulation in a porous carrier; (5) direct contact heat exchange; and (6) systems using mechanical scrapers for removing solidified phase change material from container surfaces. A tube intensive system with heat transfer enhancement was selected, and the conceptual design and cost/performance estimates are given for it. A commercial scale unit is assessed, and design changes and corresponding costs are presented that would be required to make the system meet changed requirements. (LEW)

Not Available

1981-02-01T23:59:59.000Z

291

Thermal Insulation in Solar Thermal Devices  

Science Journals Connector (OSTI)

Thermal Insulation is a device or a practice which is used in a system for minimising heat losses caused due to transfer of heat from hotter to colder regions. It is one of the cheapest methods of energy conse...

B. C. Raychaudhuri

1986-01-01T23:59:59.000Z

292

Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches  

E-Print Network (OSTI)

and Solar-Energy - Progress, Promise and Problems. J.energy storage problem. Solar fuels are concentrated energy

Sathrum, Aaron John

2011-01-01T23:59:59.000Z

293

Project Profile: Low-Cost Solar Thermal Collector | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Thermal Collector Project Profile: Low-Cost Solar Thermal Collector SunTrough Energy logo SunTrough, under the Baseload CSP FOA, is developing a new class of solar...

294

Optical and Thermal Characterization of High Reflective Surface with Applications in Thermal-Solar Technology  

Science Journals Connector (OSTI)

Selective solar absorbing coating consists of a high thermal reflectance layer and high solar absorbance layer deposited over a substrate. In this work optical and thermal properties...

Macias, Juan Daniel; Ramirez Rincon, Jorge Andres; Lizama Tzec, Francisco Ivan; Ares Muzio, Oscar Eduardo; Oskam, Gerko; De Coss Gomez, Romeo; Alvarado Gil, Juan José

295

Optical and Thermal Characterization of High Reflection Surfaces with Applcations in Thermal-Solar Technology  

Science Journals Connector (OSTI)

Selective solar absorbing coating consists of a high thermal reflectance layer and a high solar absorbance layer deposited over a substrate. In this work optical and thermal properties...

Macias, Juan Daniel; Ramirez Rincon, Jorge Andres; Lizama Tzec, Francisco Ivan; Ares Muzio, Oscar Eduardo; Oskam, Gerko; De Coss Gomez, Romeo; Alvarado Gil, Juan José

296

Thermal Storage Applications for Commercial/Industrial Facilities  

E-Print Network (OSTI)

THERMAL STORAGE APPLICATIONS FOR COMMERCIAL/INDUSTRIAL FACILITIES Roger 1. Knipp, PE. Dallas Power & Light Company Dallas, Texas ABSTRACT Texas Utilities Electric Company has been actively encouraging installations of thermal storage... since 1981. Financial incentives and advantageous rates can make thermal storage an attractive cooling concept in Texas Utilities Electric Company service area. Currently, 14 million square feet of commercial building space in Dallas is either...

Knipp, R. L.

297

Molten Oxide Glass Materials for Thermal Energy Storage  

Science Journals Connector (OSTI)

Abstract Halotechnics, Inc. is developing an energy storage system utilizing a low melting point molten glass as the heat transfer and thermal storage material. This work is supported under a grant from the Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E). Advanced oxide glasses promise a potential breakthrough as a low cost, earth abundant, and stable thermal storage material. The system and new glass material will enable grid scale electricity storage at a fraction of the cost of batteries by integrating the thermal storage with a large heat pump device. Halotechnics is combining its proven expertise in combinatorial chemistry with advanced techniques for handling molten glass to design and build a two-tank thermal energy storage system. This system, operating at a high temperature of 1200 °C and a low temperature of 400 °C, will demonstrate sensible heat thermal energy storage using a uniquely formulated oxide glass. Our molten glass thermal storage material has the potential to significantly reduce thermal storage costs once developed and deployed at commercial scale. Thermal storage at the target temperature can be integrated with existing high temperature gas turbines that significantly increase efficiencies over today's steam turbine technology. This paper describes the development and selection of Halotechnics’ molten glass heat transfer fluids with some additional systems considerations.

B. Elkin; L. Finkelstein; T. Dyer; J. Raade

2014-01-01T23:59:59.000Z

298

Solar thermal propulsion status and future  

SciTech Connect

The status of solar absorber/thruster research is reviewed, and potential future applications and advanced solar thermal propulsion concepts are discussed. Emphasis is placed on two concepts, the windowless heat exchanger cavity and the porous material absorption concepts. Mission studies demonstrate greater than 50 percent increase in payload compared to chemical propulsion for a LEO-to-GEO mission. Alternative missions that have been considered for this concept include the Thousand Astronomical Unit mission, LEO-to-lunar orbit, and other SEI missions. It is pointed out that solar thermal propulsion is inherently simple and capable of moderate-to-high engine performance at moderate-to-low thrust levels. 15 refs.

Shoji, J.M.; Frye, P.E.; Mcclanahan, J.A. (Rockwell International Corp., Rocketdyne Div., Canoga Park, CA (United States))

1992-03-01T23:59:59.000Z

299

Thermal metastabilities in the solar core  

E-Print Network (OSTI)

Linear stability analysis indicates that solar core is thermally stable for infinitesimal internal perturbations. For the first time, thermal metastabilities are found in the solar core when outer perturbations with significant amplitude are present. The obtained results show that hot bubbles generated by outer perturbations may travel a significant distance in the body of the Sun. These deep-origin hot bubbles have mass, energy, and chemical composition that may be related to solar flares. The results obtained may have remarkable relations to activity cycles in planets like Jupiter and also in extrasolar planetary systems.

Attila Grandpierre; Gabor Agoston

2002-01-18T23:59:59.000Z

300

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

lead/acid battery, and thermal storage, capabilities, withhour electrical flow battery 8 thermal Not all constraintslifetime ( a) thermal storage 11 flow battery absorption

Stadler, Michael

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal storage solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Sandia National Laboratories: molten salt energy storage demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

molten salt energy storage demonstration Sandia-AREVA Commission Solar ThermalMolten Salt Energy-Storage Demonstration On May 21, 2014, in Capabilities, Concentrating Solar Power,...

302

Project Profile: CSP Energy Storage Solutions - Multiple Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

CSP Energy Storage Solutions - Multiple Technologies Compared US Solar Holdings logo US Solar Holdings, under the Thermal Storage FOA, is aiming to demonstrate commercial,...

303

Enhanced performance of high temperature aluminate cementitious materials incorporated with Cu powders for thermal energy storage  

Science Journals Connector (OSTI)

Abstract Cementitious materials have been extensively developed in thermal energy storage system of solar thermal power. This paper deals with the volume heat capacity, thermal conductivity, thermal expansion coefficient, and compressive strength of aluminate cementitious thermal energy storage materials with the addition of metal Cu powders. The specimens were subjected to heat-treatment at 105, 350, and 900 °C, respectively. In the heating process, Cu powders gradually oxidized to Cu2O and CuO, providing a so-called mass compensation mechanism for the composite paste. Meanwhile, it indicates that volume heat capacity and thermal conductivity both increase with increasing Cu powders content and decrease with the rising temperature. The optimum thermal properties were obtained at 15 wt% Cu powders loading. In addition, Calorimetric Test, XRD, TG–DSC, and MIP are performed for characterizing the hydration rates, the phases, the mass/heat evolution, and the pore distribution, respectively.

Huiwen Yuan; Yu Shi; Chunhua Lu; Zhongzi Xu; Yaru Ni; Xianghui Lan

2015-01-01T23:59:59.000Z

304

Carbon Foam Infused with Pentaglycerine for Thermal Energy Storage Applications.  

E-Print Network (OSTI)

??A thermal energy storage device that uses pentaglycerine as a phase change material was developed. This solid-state phase change material was embedded in a carbon… (more)

Johnson, Douglas James

2011-01-01T23:59:59.000Z

305

Performance investigation of various cold thermal energy storages.  

E-Print Network (OSTI)

??This study deals with solidification and melting of some typical encapsulated ice thermal energy storage geometries. Using ANSYS GAMBIT and FLUENT 6.0 software, HTF fluid… (more)

MacPhee, David

2008-01-01T23:59:59.000Z

306

Project Profile: High-Efficiency Thermal Energy Storage System...  

Office of Environmental Management (EM)

the National Laboratory R&D competitive funding opportunity, will design, develop, and test a prototype high-temperature and high-efficiency thermal energy storage (TES) system...

307

Project Profile: Novel Thermal Storage Technologies for Concentrating...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

feasibility of using phase change materials (PCM) at elevated temperatures and to acquire engineering results that will lead to the demonstration of large-scale thermal storage...

308

Thermal Management of Solar Cells  

E-Print Network (OSTI)

D. Mills, "Cooling of photovoltaic cells under concentratedelectric performance of a photovoltaic cells by cooling andSolar Cell A photovoltaic cell is a semiconductor that

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

309

Sandia National Laboratories: solar thermal  

NLE Websites -- All DOE Office Websites (Extended Search)

Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) EC Top Publications Design and Analysis...

310

Thermal Management of Solar Cells.  

E-Print Network (OSTI)

??The focus on solar cells as a source of photovoltaic energy is rapidly increasing nowadays. The amount of sun's energy entering earth surface in one… (more)

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

311

Utilizing Solar Thermal Energy in Textile Processing Units  

Science Journals Connector (OSTI)

This chapter presents the prospects of solar thermal energy utilization in the textile processing units in Pakistan. Various solar thermal technologies suitable for thermal energy production and their application...

Asad Mahmood; Khanji Harijan

2012-01-01T23:59:59.000Z

312

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

the International Solar Energy Society, Winnipeg, Canada. 8:Intern. Solar Energy Soc. , Winnipeg, Canada, August 15-20,

Authors, Various

2011-01-01T23:59:59.000Z

313

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network (OSTI)

source of energy, proceedings, International Solar Energybuilding and solar energy could be used as sources of heat

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

314

Thermal Storage and Advanced Heat Transfer Fluids (Fact Sheet)  

SciTech Connect

Fact sheet describing NREL CSP Program capabilities in the area of thermal storage and advanced heat transfer fluids: measuring thermophysical properties, measuring fluid flow and heat transfer, and simulating flow of thermal energy and fluid.

Not Available

2010-08-01T23:59:59.000Z

315

Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications  

E-Print Network (OSTI)

Proceedings on thermal energy storage and energy conversion;polymer microcomposites for thermal energy storage. SAE SocLow temperature thermal energy storage: a state of the art

Roshandell, Melina

2013-01-01T23:59:59.000Z

316

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

on Sustainable thermal Energy Storage Technologies, Part I:2009, “Review on Thermal Energy Storage with Phase Change2002, “Survey of Thermal Energy Storage for Parabolic Trough

Coso, Dusan

2013-01-01T23:59:59.000Z

317

List of Solar Thermal Process Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Process Heat Incentives Process Heat Incentives Jump to: navigation, search The following contains the list of 204 Solar Thermal Process Heat Incentives. CSV (rows 1 - 204) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat

318

Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage  

Energy.gov (U.S. Department of Energy (DOE))

The Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage (CSP: ELEMENTS) funding program supports the development of thermochemical energy storage (TCES) systems that can validate a cost of less than or equal to $15 per kilowatt-hour-thermal (kWht) and operate at temperatures greater than or equal to 650 degrees Celsius. TCES presents opportunities for storing the sun's energy at high densities in the form of chemical bonds for use in utility-scale concentrating solar power (CSP) electricity generation. The SunShot Initiative funds six awardees for $10 million total for ELEMENTS.

319

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

and Photovoltaic Solar Energy Converters,” American ChemicalNocera D. G. , 2010, “Solar Energy Supply and Storage forof Abiotic Photo-chemical Solar Energy Storage Systems,”

Coso, Dusan

2013-01-01T23:59:59.000Z

320

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

Nocera D. G. , 2010, “Solar Energy Supply and Storage forof Abiotic Photo-chemical Solar Energy Storage Systems,”Power Plants,” Journal of Solar Energy Engineering, 124 (2),

Coso, Dusan

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal storage solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

OpenEI - solar thermal  

Open Energy Info (EERE)

Summary World Solar Summary World Solar Energy Data (from World on the Edge) http://en.openei.org/datasets/node/460 This dataset presents summary information related to world solar energy. It is part of a supporting dataset for the book World On the Edge: How to Prevent Environmental and Economic Collapse by Lester R.

License
322

SunShot Initiative: Encapsulated Phase Change Material in Thermal Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Encapsulated Phase Change Material in Thermal Storage for Baseload CSP Plants Encapsulated Phase Change Material in Thermal Storage for Baseload CSP Plants Terrafore logo Photo of gray balls grouped together. 10 to 15 millimeter capsules provide high heat transfer surface. Terrafore, under the Baseload CSP FOA, is developing novel encapsulated phase change materials (PCM) for use in thermal storage applications to significantly reduce the LCOE for baseload CSP plants. Approach Terrafore is determining a cost-effective way to produce small 10 mm to 15 mm capsules containing phase change material (PCM salt) in a suitable shell material. Large numbers of these PCM capsules provide high-heat transfer surface and store heat as sensible and latent heat of fusion of salt. The capsules with different PCMs inside the shell are stacked inside a single tank to provide a cascaded storage to effectively use the latent heat of fusion of salts over the solar collection temperature range.

323

Composite materials for thermal energy storage  

DOE Patents (OSTI)

The present invention discloses composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These phase change materials do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions, such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

Benson, David K. (Golden, CO); Burrows, Richard W. (Conifer, CO); Shinton, Yvonne D. (Northglenn, CO)

1986-01-01T23:59:59.000Z

324

Solar Thermal Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Incentive Program Thermal Incentive Program Solar Thermal Incentive Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Residential: $4,000 per site/meter Non-residential: $25,000 per site/meter Incentive also capped at 80% of calculated existing thermal load Program Info Funding Source RPS surcharge Start Date 12/10/2010 Expiration Date 12/31/2015 State New York Program Type State Rebate Program Rebate Amount $1.50 per kWh displaced annually, for displacement of up to 80% of calculated existing thermal load Provider New York State Energy Research and Development Authority The New York State Energy Research and Development Authority (NYSERDA)

325

Solar Heating Test Design Facility for Bulk PCM Storage  

Science Journals Connector (OSTI)

This experimentation, conducted by the “Centre d’Energétique de l’ENSMP”, was designed to analyze the interest of bulk PCM storage centralized in a real water active solar heating system consisting of a low tempe...

P. Achard; B. Amann; D. Mayer

1984-01-01T23:59:59.000Z

326

Solar thermal electric power information user study  

SciTech Connect

The results of a series of telephone interviews with groups of users of information on solar thermal electric power are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from five solar thermal electric power groups of respondents are analyzed: DOE-Funded Researchers, Non-DOE-Funded Researchers, Representatives of Utilities, Electric Power Engineers, and Educators. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

1981-02-01T23:59:59.000Z

327

Eurotherm Seminar #99 Advances in Thermal Energy Storage  

E-Print Network (OSTI)

Eurotherm Seminar #99 Advances in Thermal Energy Storage 1 EUROTHERM99-01-103 Convection Energy Storage 2 Nussel number. This study shows that an increase in the convection coefficient leads in this paper consists in horizontal PCM plates separated by an air flow. This is a storage system dedicated

Boyer, Edmond

328

Optimization of Ice Thermal Storage Systems Design for HVAC Systems  

E-Print Network (OSTI)

Ice thermal storage is promising technology to reduce energy costs by shifting the cooling cost from on-peak to off-peak periods. The paper discusses the optimal design of ice thermal storage and its impact on energy consumption, demand, and total...

Nassif, N.; Hall, C.; Freelnad, D.

2013-01-01T23:59:59.000Z

329

Continuous Commissioning(SM) of a Thermal Storage System  

E-Print Network (OSTI)

shows that commissioning of the thermal storage system is not limited to the storage tank itself, but is closely related to successful commissioning of building air handling units (AHUs) and chilled water loops. The full benefit of a thermal storage... than a dozen major buildings. The storage system was installed after a campus-wide energy efficiency retrofit. It is designed to store 42?F chilled water with a return water temperature of 56?F. Total storage capacity is 7000 ton-hours. The tank...

Turner, W. D.; Liu, M.

2001-01-01T23:59:59.000Z

330

The Value of CSP with Thermal Energy Storage in Providing Grid Stability  

Science Journals Connector (OSTI)

Abstract CSP plants both with and without thermal energy storage are unique renewable resources that provide clean electric power and a range of operational capabilities to support continued reliability of electric power systems. Utilizing stored thermal energy storage to operate a conventional synchronous generator, CSP plants with thermal energy storage can support power and provide ancillary services including voltage support, frequency response, regulation and spinning reserves, and ramping serves – services that would otherwise be provided, at least in part, by conventional fossil-fuel generation. By being available during peak demand in sunlight hours and providing the capability to shift energy to other hours, the addition of thermal energy storage to CSP plants improves their contribution to resource adequacy, or capacity requirements, especially as solar penetration increases. This makes CSP an ideal complement to support greater adaption of intermittent resources such as wind and PV. To make procurement decisions that include a balance of both solar PV and CSP, utilities need to see reasonable estimates of quantifiable economic benefits. In simulations of the California power system, recent studies by the Lawrence Berkeley National Labs (LBNL) found that the comparative value of CSP with storage increases as the amount of solar on the grid increases. If CSP with six hours of storage and PV with no storage were each providing five percent of the grid's power, CSP power would have an additional value of $19/MWh (1.9˘/kWh). At grid penetrations of 10 percent each, CSP power would be worth an additional $35/MWh (3.5˘/kWh). The added value results from a calculation of grid integration costs and market benefits. The author will outline how CSP with storage provides grid stability and its corresponding value to utilities.

J. Forrester

2014-01-01T23:59:59.000Z

331

Solar Thermal/PV | OpenEI  

Open Energy Info (EERE)

Thermal/PV Thermal/PV Dataset Summary Description Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption biodiesel Biofuels biomass energy use by sector ethanol geothermal Hydroelectric Conventional Landfill Gas MSW Biogenic Other Biomass renewable energy Solar Thermal/PV Waste wind Wood and Derived Fuels Data application/vnd.ms-excel icon RE Consumption by Energy Use Sector, Excel file (xls, 32.8 KiB)

332

Sandia National Laboratories: National Solar Thermal Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

333

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network (OSTI)

for efficient energy production. Solar thermal plants, suchenergy production. It would require a substantial amount of land usage to install enough solar

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

334

Sandia National Laboratories: National Solar Thermal Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Visit to NSTTF On September 10, 2012, in Concentrating Solar Power, EC, National Solar Thermal Test Facility, Renewable Energy Dr. David Danielson visited Sandia National...

335

Sandia National Laboratories: National Solar Thermal Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Test Facility Air Force Research Laboratory Testing On August 17, 2012, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, Renewable...

336

Sandia National Laboratories: National Solar Thermal Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Sandia Wins Three R&D100 Awards On July 24, 2013, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News & Events, Photovoltaic,...

337

Optics and Photonics in Solar Thermal Energy Technologies  

Science Journals Connector (OSTI)

The complex optical diagnostics employed in the development and application of solar thermal and wind energy technologies are reviewed, with application in particle receivers, solar...

Nathan, G J 'Gus'; Alwahabi, Zeyad; Dally, Bassam B; Medwell, Paul R; Arjomandi, Maziar; Sun, Zhiwei; Lau, Timothy C; van Eyk, Philip

338

City of Dubuque - Solar Thermal Licensing Requirement | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Dubuque - Solar Thermal Licensing Requirement City of Dubuque - Solar Thermal Licensing Requirement City of Dubuque - Solar Thermal Licensing Requirement < Back Eligibility Construction Installer/Contractor Savings Category Heating & Cooling Solar Water Heating Program Info State Iowa Program Type Solar/Wind Contractor Licensing Provider City of Dubuque The City of Dubuque requires a Solar Thermal License in order for a person to install a solar thermal project on a home or business. The requirement does not apply to solar photovoltaics. The licensing requirement can be met one of two ways. An installer may be Solar Thermal Certified by the North American Board of Certified Energy Practitioners (NABCEP) or An installer may complete the Northeast Iowa Community College Solar Thermal Training Installers are also required to obtain a permit before altering or

339

SolarOil Project, Phase I preliminary design report. [Solar Thermal Enhanced Oil Recovery project  

SciTech Connect

The preliminary design of the Solar Thermal Enhanced Oil Recovery (SolarOil) Plant is described in this document. This plant is designed to demonstrate that using solar thermal energy is technically feasible and economically viable in enhanced oil recovery (EOR). The SolarOil Plant uses the fixed mirror solar concentrator (FMSC) to heat high thermal capacity oil (MCS-2046) to 322/sup 0/C (611/sup 0/F). The hot fluid is pumped from a hot oil storage tank (20 min capacity) through a once-through steam generator which produces 4.8 MPa (700 psi) steam at 80% quality. The plant net output, averaged over 24 hr/day for 365 days/yr, is equivalent to that of a 2.4 MW (8.33 x 10/sup 6/ Btu/hr) oil-fired steam generator having an 86% availability. The net plant efficiency is 57.3% at equinox noon, a 30%/yr average. The plant will be demonstrated at an oilfield site near Oildale, California.

Baccaglini, G.; Bass, J.; Neill, J.; Nicolayeff, V.; Openshaw, F.

1980-03-01T23:59:59.000Z

340

Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike  

E-Print Network (OSTI)

N ATIONAL L ABORATORY Thermal Energy Storage for Electricity20, 2012. I. Dincer, On thermal energy storage systems andin research on cold thermal energy storage, International

DeForest, Nicholas

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal storage solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

MULTIPLE WELL VARIABLE RATE WELL TEST ANALYSIS OF DATA FROM THE AUBURN UNIVERSITY THERMAL ENERGY STORAGE PROGRAM  

E-Print Network (OSTI)

experimental Thermal energy storage in confined aquifers. ©lAUBURN UNIVERSITY THERMAL ENERGY STORAGE PROGRM1 Christineseries of aquifer thermal energy storage field experiments.

Doughty, Christine

2012-01-01T23:59:59.000Z

342

A solar rechargeable battery based on polymeric charge storage electrodes  

Science Journals Connector (OSTI)

A solar rechargeable battery is constructed by use of a hybrid TiO2/poly(3,4-ethylenedioxythiophene, PEDOT) photo-anode and a ClO4? doped polypyrrole counter electrode. Here, the dye-sensitized TiO2/PEDOT photo-anode serves for positive charge storage and a p-doped \\{PPy\\} counter electrode acts for electron storage in LiClO4 electrolyte. The proposed device demonstrates a rapid photo-charge at light illumination and a stable electrochemical discharge in the dark, realizing an in situ solar-to-electric conversion and storage.

P. Liu; H.X. Yang; X.P. Ai; G.R. Li; X.P. Gao

2012-01-01T23:59:59.000Z

343

Thermal Storage Options for HVAC Systems  

E-Print Network (OSTI)

this method is based on the specific heat of water rather than the latent 'heat of fusion of ice as in ice storage, it requires about 4 times the storage capacity of an equivalent ice storage system. ? Salt Storage: This system utilizes eutectic salts... which freeze and melt around 47 o F. Exist ing chillers can be easily retrofitted for salt storage or chilled water storage. For ice stor age systems, a direct refrigerant system or glycol chillers are suitable. This paper discusses the details...

Weston, R. F.; Gidwani, B. N.

344

Thermal and non-thermal energies in solar flares  

E-Print Network (OSTI)

The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same magnitude. This surprising result may be interpreted by an efficient conversion of non-thermal energy to hot flare plasma.

Pascal Saint-Hilaire; Arnold O. Benz

2005-03-03T23:59:59.000Z

345

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

HAUSZ, W. , 1977. "Seasonal Storage in District Heating,"District Heating, July-August-September, 1977, pp. 5-11.aquifer storage for district heating and cooling. C. W.

Authors, Various

2011-01-01T23:59:59.000Z

346

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

FUTURE CONSIDERATIONS FOR CAVERN STORAGE Some of the topicsgravel or sand into the cavern in order to reduce the volumeAbove ground equipment for cavern storage opera- tions.

Authors, Various

2011-01-01T23:59:59.000Z

347

Integration of solar thermal energy into processes with heat demand  

Science Journals Connector (OSTI)

An integration of solar thermal energy can reduce the utility cost and the environmental impact. A proper integration of solar thermal energy is required in order to achieve ... objective of this study is to maxi...

Andreja Nemet; Zdravko Kravanja…

2012-06-01T23:59:59.000Z

348

List of Solar Thermal Electric Incentives | Open Energy Information  

Open Energy Info (EERE)

Electric Incentives Electric Incentives Jump to: navigation, search The following contains the list of 548 Solar Thermal Electric Incentives. CSV (rows 1-500) CSV (rows 501-548) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Net Metering (Arizona) Net Metering Arizona Commercial Industrial Residential Nonprofit Schools Local Government State Government Fed. Government Agricultural Institutional Solar Thermal Electric Photovoltaics Wind energy Biomass No Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional

349

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

seasonal storage in phase change material, by collecting andof incorporating phase-change materials (PCM) in con- crete

Authors, Various

2011-01-01T23:59:59.000Z

350

Thermal effects testing at the National Solar Thermal Test Facility  

SciTech Connect

The National Solar Thermal Test Facility is operated by Sandia National Laboratories and located on Kirkland Air Force Base in Albuquerque, New Mexico. The permanent features of the facility include a heliostat field and associated receiver tower, two solar furnaces, two point-focus parabolic concentrators, and Engine Test Facility. The heliostat field contains 220 computer-controlled mirrors, which reflect concentrated solar energy to test stations on a 61-m tower. The field produces a peak flux density of 250 W/cm{sup 2} that is uniform over a 15-cm diameter with a total beam power of over 5 MW{sub t}. The solar beam has been used to simulate aerodynamic heating for several customers. Thermal nuclear blasts have also been simulated using a high-speed shutter in combination with heliostat control. The shutter can accommodate samples up to 1 m {times} 1 m and it has been used by several US and Canadian agencies. A glass-windowed wind tunnel is also available in the Solar Tower. It provides simultaneous exposure to the thermal flux and air flow. Each solar furnace at the facility includes a heliostat, an attenuator, and a parabolic concentrator. One solar furnace produces flux levels of 270 W/cm{sup 2} over and delivers a 6-mm diameter and total power of 16 kW{sub t}. A second furnace produces flux levels up to 1000 W/cm{sup 2} over a 4 cm diameter and total power of 60 kW{sub t}. Both furnaces include shutters and attenuators that can provide square or shaped pulses. The two 11 m diameter tracking parabolic point-focusing concentrators at the facility can each produce peak flux levels of 1500 W/cm{sup 2} over a 2.5 cm diameter and total power of 75 kW{sub t}. High-speed shutters have been used to produce square pulses.

Ralph, M.E.; Cameron, C.P. [Sandia National Labs., Albuquerque, NM (United States); Ghanbari, C.M. [Technadyne Engineering Consultants, Inc., Albuquerque, NM (United States)

1992-12-31T23:59:59.000Z

351

Thermal effects testing at the National Solar Thermal Test Facility  

SciTech Connect

The National Solar Thermal Test Facility is operated by Sandia National Laboratories and located on Kirkland Air Force Base in Albuquerque, New Mexico. The permanent features of the facility include a heliostat field and associated receiver tower, two solar furnaces, two point-focus parabolic concentrators, and Engine Test Facility. The heliostat field contains 220 computer-controlled mirrors, which reflect concentrated solar energy to test stations on a 61-m tower. The field produces a peak flux density of 250 W/cm[sup 2] that is uniform over a 15-cm diameter with a total beam power of over 5 MW[sub t]. The solar beam has been used to simulate aerodynamic heating for several customers. Thermal nuclear blasts have also been simulated using a high-speed shutter in combination with heliostat control. The shutter can accommodate samples up to 1 m [times] 1 m and it has been used by several US and Canadian agencies. A glass-windowed wind tunnel is also available in the Solar Tower. It provides simultaneous exposure to the thermal flux and air flow. Each solar furnace at the facility includes a heliostat, an attenuator, and a parabolic concentrator. One solar furnace produces flux levels of 270 W/cm[sup 2] over and delivers a 6-mm diameter and total power of 16 kW[sub t]. A second furnace produces flux levels up to 1000 W/cm[sup 2] over a 4 cm diameter and total power of 60 kW[sub t]. Both furnaces include shutters and attenuators that can provide square or shaped pulses. The two 11 m diameter tracking parabolic point-focusing concentrators at the facility can each produce peak flux levels of 1500 W/cm[sup 2] over a 2.5 cm diameter and total power of 75 kW[sub t]. High-speed shutters have been used to produce square pulses.

Ralph, M.E.; Cameron, C.P. (Sandia National Labs., Albuquerque, NM (United States)); Ghanbari, C.M. (Technadyne Engineering Consultants, Inc., Albuquerque, NM (United States))

1992-01-01T23:59:59.000Z

352

Solar wind electron temperature and density measurements on the Solar Orbiter with thermal noise spectroscopy  

E-Print Network (OSTI)

Solar wind electron temperature and density measurements on the Solar Orbiter with thermal noise of the plasma thermal noise analysis for the Solar Orbiter, in order to get accurate measurements of the total of their small mass and therefore large thermal speed, the solar wind electrons are expected to play a major role

California at Berkeley, University of

353

Chemical Storage and Pumping of Solar Energy  

Science Journals Connector (OSTI)

Chemical heat storage is familiar to us, in the form of carbon compounds, which are the basis of our present energy economy (wood - coal - natural gas - oil).

A. Vialaron

1981-01-01T23:59:59.000Z

354

10 MWe Solar Thermal Central Receiver Pilot Plant — Heliostat Evaluation  

Science Journals Connector (OSTI)

Sandia is responsible for evaluating the heliostats at the 10 MWe Solar Thermal Central Receiver Pilot Plant in Barstow, California...

C. L. Mavis; J. J. Bartel

1986-01-01T23:59:59.000Z

355

Chapter 12 - Assessment of Thermal Energy Storage Systems  

Science Journals Connector (OSTI)

Abstract The foremost challenges of energy supply in meeting the energy demand apply to the development of energy efficient technologies to achieve energy security and environmental emissions. In the spectrum of energy-efficient technologies, thermal energy storage systems offer huge potential to bridge the mismatch between energy supply and energy demand. The overall operational performance of thermal storage systems depends on the quality of energy content and the energy degradation effects exhibited during the cyclic charging and discharging processes. The assessment pertaining to the exergy efficiency in addition to energy efficiency can have a pivotal role to enable thermal storage systems to outperform on a long-term basis.

S. Kalaiselvam; R. Parameshwaran

2014-01-01T23:59:59.000Z

356

Thermal and non-thermal energies in solar flares  

E-Print Network (OSTI)

The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same m...

Saint-Hilaire, P; Saint-Hilaire, Pascal; Benz, Arnold O.

2005-01-01T23:59:59.000Z

357

Flexible thermal cycle test equipment for concentrator solar cells  

DOE Patents (OSTI)

A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.

Hebert, Peter H. (Glendale, CA); Brandt, Randolph J. (Palmdale, CA)

2012-06-19T23:59:59.000Z

358

SUBMITTED TO GRL 1 Thermal Anisotropies in the Solar Wind  

E-Print Network (OSTI)

SUBMITTED TO GRL 1 E Thermal Anisotropies in the Solar Wind: vidence of Heating by Interstellar cyclotron instabilit s generated by newly created pickup ions and heats the thermal solar wind protons TO GRL 2 T Introduction he thermal anisotropy of the solar wind is the ratio between the temperatures p

Richardson, John

359

A solar concentrating photovoltaic / thermal collector J.S. Coventry  

E-Print Network (OSTI)

A solar concentrating photovoltaic / thermal collector J.S. Coventry Centre for Sustainable Energy solar concentrating photovoltaic / thermal collector Coventry "Photovoltaic and Wind Power for Urban of both photovoltaic and solar thermal power generation. Some of the recent projects in Australia

360

Phase-change thermal energy storage: Final subcontract report  

SciTech Connect

The research and development described in this document was conducted within the US Department of Energy's Solar Thermal Technology Program. The goal of this program is to advance the engineering and scientific understanding of solar thermal technology and to establish the technology base from which private industry can develop solar thermal power production options for introduction into the competitive energy market. Solar thermal technology concentrates the solar flux using tracking mirrors or lenses onto a receiver where the solar energy is absorbed as heat and converted into electricity or incorporated into products as process heat. The two primary solar thermal technologies, central receivers and distributed receivers, employ various point and line-focus optics to concentrate sunlight. Current central receiver systems use fields of heliostats (two-axes tracking mirrors) to focus the sun's radiant energy onto a single, tower-mounted receiver. Point focus concentrators up to 17 meters in diameter track the sun in two axes and use parabolic dish mirrors or Fresnel lenses to focus radiant energy onto a receiver. Troughs and bowls are line-focus tracking reflectors that concentrate sunlight onto receiver tubes along their focal lines. Concentrating collector modules can be used alone or in a multimodule system. The concentrated radiant energy absorbed by the solar thermal receiver is transported to the conversion process by a circulating working fluid. Receiver temperatures range from 100{degree}C in low-temperature troughs to over 1500{degree}C in dish and central receiver systems. 12 refs., 119 figs., 4 tabs.

Not Available

1989-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal storage solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Heat Storage for Vapour Based Solar Concentrators.  

E-Print Network (OSTI)

?? In a world where energy demand, population, and environmental concern are increasing by the day, the use of solar energy and other renewable energy… (more)

Hoff, Catharina

2012-01-01T23:59:59.000Z

362

Solar Heating and Air Conditioning  

Science Journals Connector (OSTI)

...given of the status of solar fired air conditioning...to an approach to cool storage in solar air conditioning systems...an assessment of cool storage for reducing peak electrical...rolling cylinder thermal energy storage device for compact...

1980-01-01T23:59:59.000Z

363

Modeling of Thermal Storage Systems in MILP Distributed Energy Resource Models  

E-Print Network (OSTI)

HP Abs. Chiller PV Solar Thermal Annual CO 2 Emissionsfrom CHP [kW] heat from solar thermal [kW] heat from naturalof micro-CHP units, solar thermal units and heat pumps (

Steen, David

2014-01-01T23:59:59.000Z

364

Sandia National Laboratories: National Solar Thermal Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

ECISEnergyRenewable EnergySolar EnergyConcentrating Solar Power ECISEnergyRenewable EnergySolar EnergyConcentrating Solar Power (CSP)National Solar Thermal Test Facility National Solar Thermal Test Facility NSTTF Interactive Tour National Solar Thermal Test Facility (NSTTF) Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility of this type in the United States. The NSTTF's primary goal is to provide experimental engineering data for the design, construction, and operation of unique components and systems in proposed solar thermal electrical plants planned for large-scale power generation. In addition, the site was built and instrumented to provide test facilities for a variety of solar and nonsolar applications. The facility can provide

365

Metallic phase-change materials for solar dynamic energy storage systems  

SciTech Connect

Solar (thermal) dynamic power systems for satellites require a heat storage system that is capable of operating the engine during eclipse. The conventional approach to this thermal storage problem is to use the latent heat of fluoride salts, which would melt during insolation and freeze during eclipse. Although candidate fluorides have large heats of fusion per unit mass, their poor thermal conductivity limits the rate at which energy can be transferred to and from the storage device. System performance is further limited by the high parasitic mass of the superalloy canisters needed to contain the salt. This report describes a new thermal storage system in which the phase-change material (PCM) is a metal (typically germanium) contained in modular graphite canisters. These modules exhibit good thermal conductivity and low parasitic mass, and they are physically and chemically stable. Prototype modules have survived over 600 melt/freeze cycles without degradation. Advanced concepts to further improve performance are described. These concepts include the selection of ternary eutectic alloys to provide a wider range of useful melting temperatures and the use of infiltration to control the location of liquid alloy and to compensate for differences in thermal expansion. 13 refs., 18 figs.

Lauf, R.J.; Hamby, C. Jr.

1990-12-01T23:59:59.000Z

366

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

Thermal Energy Storage,” Renewable and Sustainable EnergyReview on Sustainable thermal Energy Storage Technologies,Energy Storage Using Phase Change Materials,” Renewable and Sustainable Energy

Coso, Dusan

2013-01-01T23:59:59.000Z

367

High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques  

Science Journals Connector (OSTI)

Abstract A very common problem in solar power generation plants and various other industrial processes is the existing gap between the period of thermal energy availability and its period of usage. This situation creates the need for an effective method by which excess heat can be stored for later use. Latent heat thermal energy storage is one of the most efficient ways of storing thermal energy through which the disparity between energy production or availability and consumption can be corrected, thus avoiding wastage and increasing the process efficiency. This paper reviews a series of phase change materials, mainly inorganic salt compositions and metallic alloys, which could potentially be used as storage media in a high temperature (above 300 °C) latent heat storage system, seeking to serve the reader as a comprehensive thermophysical properties database to facilitate the material selection task for high temperature applications. Widespread utilization of latent heat storage systems has been held back by the poor thermal conductivity and some other inherent drawbacks of the use of PCMs; this paper reviews several heat transfer and performance enhancement techniques proposed in the literature and discusses a number of design considerations that must be taken into account aiming to provide a broad overview for the design of high temperature latent heat based thermal energy storage systems.

Bruno Cárdenas; Noel León

2013-01-01T23:59:59.000Z

368

An electric thermal storage marketing feasibility study  

SciTech Connect

The author presents a study undertaken to determine the market potential of a cooling storage rebate program in the Orange and Rockland service territory. The study was also designed to provide insight into which customer groups are the most likely candidates for cool storage. The information gained from this study is useful for both long term demand side planning and in focusing efforts cost effectively on future cool storage marketing programs.

Onofry, R. (Orange and Rockland Utilities (US))

1987-01-01T23:59:59.000Z

369

Thermal Energy Storage for Electricity Peakdemand Mitigation: A Solution in  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Energy Storage for Electricity Peakdemand Mitigation: A Solution in Thermal Energy Storage for Electricity Peakdemand Mitigation: A Solution in Developing and Developed World Alike Title Thermal Energy Storage for Electricity Peakdemand Mitigation: A Solution in Developing and Developed World Alike Publication Type Conference Proceedings Refereed Designation Refereed LBNL Report Number LBNL-6308E Year of Publication 2013 Authors DeForest, Nicholas, Gonçalo Mendes, Michael Stadler, Wei Feng, Judy Lai, and Chris Marnay Conference Name ECEEE 2013 Summer Study 3-8 June 2013, Belambra Les Criques, France Date Published 06/2013 Conference Location Belambra Les Criques, France Keywords electricity, energy storage, Energy System Planning & Grid Integration, peakdemand mitigation, thermal Abstract In much of the developed world, air-conditioning in buildings is the dominant driver of summer peak electricity

370

Thermal Energy Storage (TES): Past, Present and Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Energy Storage (TES): Past, Present and Future Thermal Energy Storage (TES): Past, Present and Future Speaker(s): Klaus Schiess Date: June 10, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Sila Kiliccote Thermal Energy Storage (TES) is a technology that stores "cooling" energy in a thermal storage mass. In the eighties and early nineties the utilities in California incentivised this technology to shift electrical on-peak power to off-peak. Thereafter, for various reasons TES became the most neglected permanent load shifting opportunity. It is only now with the challenges that the renewables provide that TES may have a come- back because it is basically the best and most economical AC battery available with a round trip efficiency of 100% or even better. This presentation gives some background to this development and shows the interdependence of

371

The Strong Case for Thermal Energy Storage and Utility Incentives  

E-Print Network (OSTI)

construction costs, more stringent regulations, and increasing environmental constraints regarding development of new generating facilities. As the thermal cooling storage technology has matured, more and more utilities are recognizing that widespread use...

McCannon, L. W.

372

Designing a Thermal Energy Storage Program for Electric Utilities  

E-Print Network (OSTI)

Electric utilities are looking at thermal energy storage technology as a viable demand side management (DSM) option. In order for this DSM measure to be effective, it must be incorporated into a workable, well-structured utility program. This paper...

Niehus, T. L.

1994-01-01T23:59:59.000Z

373

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

F. J. Molz. Subsurface Waste Heat Storage, Experimentalfor land disposal of waste heat and waste water. Inst. forfor land disposal of waste heat and waste water. Inst. for

Authors, Various

2011-01-01T23:59:59.000Z

374

THERMAL CONDUCTIVITY OF POWDER INSULATIONS FOR CRYOGENIC STORAGE  

E-Print Network (OSTI)

THERMAL CONDUCTIVITY OF POWDER INSULATIONS FOR CRYOGENIC STORAGE VESSELS Y. S. Choi1 '3 , M. N), powder insulation, and foam insulation, are used in the cryogenic storage vessels. Among CP823, Advances in Cjyogenie Engineering: Transactions of the Cryogenic Engineering Conference - CEC, Vol. 51, edited by J. G

Chang, Ho-Myung

375

Thermal Storage Commercial Plant Design Study for a 2-Tank Indirect Molten Salt System: Final Report, 13 May 2002 - 31 December 2004  

SciTech Connect

Subcontract report by Nexant, Inc., and Kearney and Associates regarding a study of a solar parabolic trough commercial plant design with 2-tank indirect molten salt thermal storage system.

Kelly, B.; Kearney, D.

2006-07-01T23:59:59.000Z

376

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

summer heat as by solar ponds or "heating towers"; some goodsolar cooking (third world) Relieve firewood depletion Year-round exploitation No cooling towers

Authors, Various

2011-01-01T23:59:59.000Z

377

Small solar (thermal) water-pumping system  

SciTech Connect

A small solar (thermal) water pump phototype was tested. The pump works on an organic Rankine cycle using refrigerant R113. The design of the pump is described. Detailed temperature and pressure measurements of the working fluid for different operating conditions are performed. The behaviour of the cycle is analysed to get a clear picture of the thermodynamic process. Power-characteristic curves are obtained by a systematic variation of water temperature, pumping head and heat input. 10 refs., 13 figs., 2 tabs.

Spindler, K.; Hahne, E. [Universitaet Stuttgart (Germany)] [Universitaet Stuttgart (Germany); Chandwalker, K. [Stiletto Engineers, Hyderabad (India)] [Stiletto Engineers, Hyderabad (India)

1996-07-01T23:59:59.000Z

378

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

III, "Man-made Geothermal Energy," presented at MiamiA.C.Meyers III; "Manmade Geothermal Energy", Proc. of Miamiin soils extraction of geothermal energy heat storage in the

Authors, Various

2011-01-01T23:59:59.000Z

379

Chemical storage of solar energy using an old color change demonstration  

Science Journals Connector (OSTI)

Chemical storage of solar energy using an old color change demonstration ... The results of a student research project that could be used as an experiment to illustrate the potential of hydrates salts for solar energy storage. ...

L. Gene Spears; Larry G. Spears

1984-01-01T23:59:59.000Z

380

DOE Funds 15 New Projects to Develop Solar Power Storage and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

15 New Projects to Develop Solar Power Storage and Heat Transfer Projects For Up to 67.6 Million DOE Funds 15 New Projects to Develop Solar Power Storage and Heat Transfer...

Note: This page contains sample records for the topic "thermal storage solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Sandia National Laboratories: dispatch solar energy night or...  

NLE Websites -- All DOE Office Websites (Extended Search)

dispatch solar energy night or day Sandia-AREVA Commission Solar ThermalMolten Salt Energy-Storage Demonstration On May 21, 2014, in Capabilities, Concentrating Solar Power,...

382

Aquifer thermal energy storage reference manual: seasonal thermal energy storage program  

SciTech Connect

This is the reference manual of the Seasonal Thermal Energy Storage (STES) Program, and is the primary document for the transfer of technical information of the STES Program. It has been issued in preliminary form and will be updated periodically to include more technical data and results of research. As the program progresses and new technical data become available, sections of the manual will be revised to incorporate these data. This primary document contains summaries of: the TRW, incorporated demonstration project at Behtel, Alaska, Dames and Moore demonstration project at Stony Brook, New York, and the University of Minnesota demonstration project at Minneapolis-St. Paul, Minnesota; the technical support programs including legal/institutional assessment; economic assessment; environmental assessment; field test facilities; a compendia of existing information; numerical simulation; and non-aquifer STES concepts. (LCL)

Prater, L.S.

1980-01-01T23:59:59.000Z

383

Gulf Power - Solar Thermal Water Heating Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gulf Power - Solar Thermal Water Heating Program Gulf Power - Solar Thermal Water Heating Program Gulf Power - Solar Thermal Water Heating Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $1,000 Program Info State Florida Program Type Utility Rebate Program Provider Energy Efficiency '''''This program reopened on October 3, 2011 for 2012 applications. Funding is limited and must be reserved through online application before the installation of qualifying solar water heating systems. See Gulf Power's [http://www.gulfpower.com/renewable/solarThermal.asp Solar Water Heating] web site for more information.''''' Gulf Power offers a Solar Thermal Water Heating rebate to customers who install water heaters. This program started after the original pilot

384

Unique Solar Thermal Laboratory Gets an Upgrade | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unique Solar Thermal Laboratory Gets an Upgrade Unique Solar Thermal Laboratory Gets an Upgrade Unique Solar Thermal Laboratory Gets an Upgrade September 10, 2010 - 2:54pm Addthis This “power tower” is part of the National Solar Thermal Test Facility in Albuquerque, which is getting upgrades through Recovery Act funding. | Photo Courtesy of Sandia National Laboratories This "power tower" is part of the National Solar Thermal Test Facility in Albuquerque, which is getting upgrades through Recovery Act funding. | Photo Courtesy of Sandia National Laboratories Lorelei Laird Writer, Energy Empowers The National Solar Thermal Test Facility at Sandia National Laboratories is unique - and in demand. The Facility has been instrumental in NASA tests, national defense programs and concentrated solar technology development.

385

Energy Storage and Solar Power: An Exaggerated Problem  

Science Journals Connector (OSTI)

...scale, that could reduce costs and dramatically...work to sub-tly reduce the storage problem...only when the consumption of oil falls significantly...By holding back water that would otherwise...solar sources make up a reasonably small...already available. Water tanks, rock beds...specially designed pools can be used for...

WILLIAM D. METZ

1978-06-30T23:59:59.000Z

386

Camera-based reflectivity measurement for solar thermal applications  

E-Print Network (OSTI)

Tubular receivers for solar thermal power plants, specifically tower plants, are in common use, in plantsCamera-based reflectivity measurement for solar thermal applications John D. Pye1 , Clifford K. Ho2 of the solar-weighted reflectivity of the receiver component in CSP systems. Such reflectivity measurement

387

Thermal Energy Storage in Adsorbent Beds .  

E-Print Network (OSTI)

??Total produced energy in the world is mostly consumed as thermal energy which is used for space or water heating. Currently, more than 85% of… (more)

Ugur, Burcu

2013-01-01T23:59:59.000Z

388

Parametric Investigation of the Performance of Solar Heating Systems with Rock Bed Storage  

Science Journals Connector (OSTI)

The performance of solar air collector domestic heating systems with rock bed storage, as obtained from theoretical analysis, is...

W. L. Dutre; J. Vanheelen

1981-01-01T23:59:59.000Z

389

Exploitation of solar energy storage systems. Valence isomerization between norbornadiene and quadricyclane derivatives  

Science Journals Connector (OSTI)

Exploitation of solar energy storage systems. ... Designing Copper(I) Photosensitizers for the Norbornadiene?Quadricyclane Transformation Using Visible Light:? An Improved Solar Energy Storage System ... Designing Copper(I) Photosensitizers for the Norbornadiene?Quadricyclane Transformation Using Visible Light:? An Improved Solar Energy Storage System ...

Kazuhiro Maruyama; Kazutoshi Terada; Yoshinori Yamamoto

1981-12-01T23:59:59.000Z

390

Preliminary survey and evaluation of nonaquifer thermal energy storage concepts for seasonal storage  

SciTech Connect

Thermal energy storage enables the capture and retention of heat energy (or cold) during one time period for use during another. Seasonal thermal energy storage (STES) involves a period of months between the input and recovery of energy. The purpose of this study was to make a preliminary investigation and evaluation of potential nonaquifer STES systems. Current literature was surveyed to determine the state of the art of thermal energy storage (TES) systems such as hot water pond storage, hot rock storage, cool ice storage, and other more sophisticated concepts which might have potential for future STES programs. The main energy sources for TES principally waste heat, and the main uses of the stored thermal energy, i.e., heating, cooling, and steam generation are described. This report reviews the development of sensible, latent, and thermochemical TES technologies, presents a preliminary evaluation of the TES methods most applicable to seasonal storage uses, outlines preliminary conclusions drawn from the review of current TES literature, and recommends further research based on these conclusions. A bibliography of the nonaquifer STES literature review, and examples of 53 different TES concepts drawn from the literature are provided. (LCL)

Blahnik, D.E.

1980-11-01T23:59:59.000Z

391

Review Article Solar-Thermal Powered Desalination: Its Significant  

E-Print Network (OSTI)

1 Review Article Solar-Thermal Powered Desalination: Its Significant Challenges and Potential John@kau.edu.sa Abstract Solar-desalination systems are desalination systems that are powered by solar energy. With the goal of identifying the key technical challenges and potential opportunities solar-desalination, we

Reif, John H.

392

Task 39 Exhibition – Assembly of Polymeric Components for a New Generation of Solar Thermal Energy Systems  

Science Journals Connector (OSTI)

Abstract IEA SHC Task 39 is dedicated to the development, optimization and deployment of materials and designs for polymer based solar thermal systems and components. To increase the confidence in polymeric solar thermal applications, Task 39 actively supports international research activities and seeks to promote successful applications and state-of-the-art products. For the SHC conference 2013, different polymeric components suitable for domestic hot water preparation and space heating were singled out for an exhibition. Promising polymeric collectors, air collectors, thermosiphons, storage tanks and other components from industrial partners all over the world were brought to Freiburg and assembled at the Fraunhofer-Institute for Solar Energy Systems ISE. The resulting SHC Task 39 Exhibition of polymeric components shows the feasibility of all-polymeric solar thermal systems and highlights their potential, especially as scalable and modular applications for building integration or as export products to sunny regions.

Michael Koehl; Sandrin Saile; Andreas Piekarczyk; Stephan Fischer

2014-01-01T23:59:59.000Z

393

Thermal Solar Energy Systems for Space Heating of Buildings  

E-Print Network (OSTI)

to compensate the deficit. In this case a traditional solar heating system having the same characteristics with regard to the solar collecting area and the volume of storage tank is used. It can be concluded that the space heating system using a solar energy...

Gomri, R.; Boulkamh, M.

2010-01-01T23:59:59.000Z

394

Augmentation of thermal power stations with solar energy  

Science Journals Connector (OSTI)

A new concept of integration of a solar concentrator field with a modern thermal power station is proposed. Such a configuration ... and infrastructure as a base load facility and solar energy to reduce the fuel ...

BR Pai

1991-06-01T23:59:59.000Z

395

Performance investigation of a solar heating system with underground seasonal energy storage for greenhouse application  

Science Journals Connector (OSTI)

Abstract This study reports the performance of a demonstrated 2304 m2 solar-heated greenhouse equipped with a seasonal thermal energy storage system in Shanghai, east China. This energy storage system utilises 4970 m3 of underground soil to store the heat captured by a 500 m2 solar collector in non-heating seasons through U-tube heat exchangers. During heating seasons, thermal energy is delivered by the heat exchange tubes placed on the plants shelves and the bare soil. The system can operate without a heat pump, which can save electricity consumption and further enhance the solar fraction. It was found that in the first operation year, 331.9 GJ was charged, and 208.9 GJ was later extracted for greenhouse space heating. No auxiliary heating equipment was installed so that solar energy covered all the heating loads directly or indirectly. It was demonstrated that this system was capable of maintaining an interior air temperature that was 13 °C higher than the ambient value when the latter temperature was ?2 °C at night. The ECOP (electrical coefficient of performance) of the first operation year was approximately 8.7, indicating a better performance than the common heat pump heating system.

J. Xu; Y. Li; R.Z. Wang; W. Liu

2014-01-01T23:59:59.000Z

396

Energy Balance and Thermal Comfort in Passive Solar Housing  

Science Journals Connector (OSTI)

To evaluate the performance of different passive solar dwellings it is necessary to consider not only the thermal performance but also the “comfort performance” of the system.

K. Alder; Ch. Eriksson; A. Faist; N. Morel

1984-01-01T23:59:59.000Z

397

Parabolic Trough Solar Thermal Electric Power Plants (Fact Sheet)  

SciTech Connect

This fact sheet provides an overview of the potential for parabolic trough solar thermal electric power plants, especially in the Southwestern U.S.

Not Available

2006-07-01T23:59:59.000Z

398

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration.  

E-Print Network (OSTI)

??A solar tracker and concentrator was designed and assembled for the purpose of cogeneration of thermal power and electrical power using thermoelectric technology. A BiTe… (more)

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

399

Colored solar-thermal absorbing coatings with high absorptance  

Science Journals Connector (OSTI)

It's difficult to obtain different color appearance and keep high absorptance simultaneously. We introduced AR films into solar-thermal absorbing coatings to tune the color appearance...

Wang, Shao-Wei; Chen, Feiliang; Liu, Xingxing; Wang, Xiaofang; Yu, Liming; Lu, Wei

400

Development of a Combined Hot Water and Sorption Store for Solar Thermal Systems  

Science Journals Connector (OSTI)

Abstract The motivation for the development of a combined hot water and sorption store is to complement the advantages and to reduce the disadvantages of the two particular storage technologies. Hot water stores offer high heat supply rates but are particularly suitable for short term storage due to heat losses whereas for a sorption store the power drain is low but it shows the advantage of a high storage density and long-term heat storage almost without losses. The combined hot water and sorption store has been developed using the example of a solar thermal system for domestic hot water preparation. The store consists of a radial stream adsorber integrated in a hot water store. Adsorption and desorption experiments in laboratory have been conducted with a prototype store in full-scale. A numerical model of the combined store has been developed and annual simulations of a solar thermal system including a combined hot water and sorption store have been conducted. The thermal performance has been compared to those of reference hot water stores. The results of the experimental and numerical investigations will be presented in this paper and the benefit of a combined hot water and sorption store applied for solar thermal systems will be discussed.

Rebecca Weber; Henner Kerskes; Harald Drück

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal storage solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Efficiency Thermal Energy Storage System for CSP High-Efficiency Thermal Energy Storage System for CSP ANL logo Photo of a black and white porous material magnified 50 times by a microscope. Microstructure of the highly thermal conductive foam that will be used for the prototype TES system. Image from ANL Argonne National Laboratory and project partner Ohio Aerospace Institute, under the National Laboratory R&D competitive funding opportunity, will design, develop, and test a prototype high-temperature and high-efficiency thermal energy storage (TES) system with rapid charging and discharging times. By increasing the efficiency of TES systems, this project aims to lower the capital costs of concentrating solar power (CSP) systems. Approach The research team is developing and evaluating a novel approach for TES at temperatures greater than 700ËšC for CSP systems. The approach uses high thermal conductivity and high-porosity graphite foams infiltrated with a phase change material (PCM) to provide TES in the form of latent heat.

402

Calibration and validation of a thermal energy storage model: Influence on simulation results  

Science Journals Connector (OSTI)

Abstract In this paper a 1-D model of a thermal energy storage (TES) was experimentally validated and calibrated. The experimental tests showed an overall heat transfer coefficient for heat losses four times higher than the theoretical value. This was due to the thermal bridges associated with the hydraulic and sensor connections. Moreover, the lack of thermal insulation at the bottom of the TES causes an increase in dissipation through thermal bridges. The experimental data enabled the evaluation of effective TES heat capacity, which differed from the theoretical value instead based on net storage tank volume. By means of an optimization tool, a fictitious value of the TES volume was calculated. In order to model the natural convection heat transfer coefficient of the heat exchanger immersed in the water storage tank, a Nusselt–Rayleigh correlation was experimentally calibrated. The data derived from tests conducted in a test facility of Universitŕ degli Studi del Sannio (Italy) were then compared with a computer simulation based on a calibrated TES model by means of commercial software. The validation procedure showed a satisfactory agreement between experimentally measured temperature values and those predicted by the model. Finally, different dynamic simulations of solar thermal heating systems are carried out in order to highlight the influence of the TES model and its calibration and validation on annual energy performance.

Giovanni Angrisani; Michele Canelli; Carlo Roselli; Maurizio Sasso

2014-01-01T23:59:59.000Z

403

Phase change thermal energy storage material  

DOE Patents (OSTI)

A thermal energy storge composition is disclosed. The composition comprises a non-chloride hydrate having a phase change transition temperature in the range of 70.degree.-95.degree. F. and a latent heat of transformation of at least about 35 calories/gram.

Benson, David K. (Golden, CO); Burrows, Richard W. (Conifer, CO)

1987-01-01T23:59:59.000Z

404

Project Profile: CSP Energy Storage Solutions — Multiple Technologies Compared  

Energy.gov (U.S. Department of Energy (DOE))

US Solar Holdings, under the Thermal Storage FOA, is aiming to demonstrate commercial, utility-scale thermal energy storage technologies and provide a path to cost-effective energy storage for CSP plants >50 MW.

405

Stochastic scenario-based model and investigating size of battery energy storage and thermal energy storage for micro-grid  

Science Journals Connector (OSTI)

Abstract Energy storage systems (ESS) are designed to accumulate energy when production exceeds demand and to make it available at the user’s request. They can help match energy supply and demand, exploit the variable production of renewable energy sources (e.g. solar and wind), increase the overall efficiency of the energy system and reduce CO2 emissions. This paper presents a unit commitment formulation for micro-grid that includes a significant number of grid parallel PEM-Fuel Cell Power Plants (PEM-FCPPs) with ramping rate and minimum up and down time constraints. The aim of this problem is to determine the optimum size of energy storage devices like hydrogen, thermal energy and battery energy storages in order to schedule the committed units’ output power while satisfying practical constraints and electrical/thermal load demand over one day with 15 min time step. In order to best use of multiple PEM-FCPPs, hydrogen storage management is carried out. Also, since the electrical and heat load demand are not synchronized, it could be useful to store the extra heat of PEM-FCPPs in the peak electrical load in order to satisfy delayed heat demands. Due to uncertainty nature of electrical/thermal load, photovoltaic and wind turbine output power and market price, a two-stage scenario-based stochastic programming model, where the first stage prescribes the here-and-now variables and the second stage determines the optima value of wait-and-see variables under cost minimization. Quantitative results show the usefulness and viability of the suggested approach.

Sirus Mohammadi; Ali Mohammadi

2014-01-01T23:59:59.000Z

406

Sandia National Laboratories: Molten-Salt Storage System  

NLE Websites -- All DOE Office Websites (Extended Search)

is collaborating with Sandia National Laboratories on a new concentrated solar power (CSP) installation with thermal energy storage. The CSP storage project combines Areva's...

407

MAXIMIZING MAGNETIC ENERGY STORAGE IN THE SOLAR CORONA  

SciTech Connect

The energy that drives solar eruptive events such as coronal mass ejections (CMEs) almost certainly originates in coronal magnetic fields. Such energy may build up gradually on timescales of days or longer before its sudden release in an eruptive event, and the presence of free magnetic energy capable of rapid release requires nonpotential magnetic fields and associated electric currents. For magnetic energy to power a CME, that energy must be sufficient to open the magnetic field to interplanetary space, to lift the ejecta against solar gravity, and to accelerate the material to speeds of typically several hundred km s{sup -1}. Although CMEs are large-scale structures, many originate from relatively compact active regions on the solar surface-suggesting that magnetic energy storage may be enhanced when it takes place in smaller magnetic structures. This paper builds on our earlier work exploring energy storage in large-scale dipolar and related bipolar magnetic fields. Here we consider two additional cases: quadrupolar fields and concentrated magnetic bipoles intended to simulate active regions. Our models yield stored energies whose excess over that of the corresponding open field state can be greater than 100% of the associated potential field energy; this contrasts with maximum excess energies of only about 20% for dipolar and symmetric bipolar configurations. As in our previous work, energy storage is enhanced when we surround a nonpotential field with a strong overlying potential field that acts to 'hold down' the nonpotential flux as its magnetic energy increases.

Wolfson, Richard; Drake, Christina; Kennedy, Max, E-mail: wolfson@middlebury.edu [Department of Physics, Middlebury College, Middlebury, VT 05753 (United States)

2012-05-01T23:59:59.000Z

408

Maximizing Magnetic Energy Storage in the Solar Corona  

Science Journals Connector (OSTI)

The energy that drives solar eruptive events such as coronal mass ejections (CMEs) almost certainly originates in coronal magnetic fields. Such energy may build up gradually on timescales of days or longer before its sudden release in an eruptive event, and the presence of free magnetic energy capable of rapid release requires nonpotential magnetic fields and associated electric currents. For magnetic energy to power a CME, that energy must be sufficient to open the magnetic field to interplanetary space, to lift the ejecta against solar gravity, and to accelerate the material to speeds of typically several hundred km s–1. Although CMEs are large-scale structures, many originate from relatively compact active regions on the solar surface—suggesting that magnetic energy storage may be enhanced when it takes place in smaller magnetic structures. This paper builds on our earlier work exploring energy storage in large-scale dipolar and related bipolar magnetic fields. Here we consider two additional cases: quadrupolar fields and concentrated magnetic bipoles intended to simulate active regions. Our models yield stored energies whose excess over that of the corresponding open field state can be greater than 100% of the associated potential field energy; this contrasts with maximum excess energies of only about 20% for dipolar and symmetric bipolar configurations. As in our previous work, energy storage is enhanced when we surround a nonpotential field with a strong overlying potential field that acts to "hold down" the nonpotential flux as its magnetic energy increases.

Richard Wolfson; Christina Drake; Max Kennedy

2012-01-01T23:59:59.000Z

409

Thermal Analysis of the SAFKEG Package for Long Term Storage  

SciTech Connect

Interim plutonium storage for up to 10 years in the K-reactor building is currently being planned at Savannah River Site (SRS). SAFKEG package could be used to store Pu metal and oxide (PuO2) in the K-reactor complex with other packagings like 9975. The SAFKEG is designed for carrying Type-B materials across the DOE complex and meets the 10CFR71 requirements. Thermal analyses were performed to ensure that the temperatures of the SAFKEG components will not exceed their temperature limits under the K-reactor storage conditions. Thermal analyses of the SAFKEG packaging with three content configurations using BNFL 3013 outer container (Rocky Flats, SRS bagless transfer cans, and BNFL inner containers) were performed for storage of PuO2 and plutonium metal

NARENDRA, GUPTA

2005-01-10T23:59:59.000Z

410

Solar wind electron density and temperature over solar cycle 23: Thermal noise measurements on Wind  

E-Print Network (OSTI)

Solar wind electron density and temperature over solar cycle 23: Thermal noise measurements on Wind; received in revised form 6 April 2005; accepted 25 April 2005 Abstract We present the solar wind plasma parameters obtained from the Wind spacecraft during more than nine years, encompassing almost the whole solar

California at Berkeley, University of

411

Exergy analysis of thermal energy storage in a district energy application  

Science Journals Connector (OSTI)

Abstract The role of thermal energy storage (TES) in district energy (DE) system is assessed. The Friedrichshafen DE system is considered as a case study and exergy analysis is utilized. The TES is designed to complement and to increase the effectiveness of the solar panels included in the district energy system. The TES stores the surplus solar energy until is needed by thermal energy users of the Friedrichshafen DE system. The results quantify the positive impact of the TES on the performance of the Friedrichshafen DE system, and demonstrate that the overall energy and exergy efficiencies of the TES are 60% and 19%, respectively. It is also shown over an annual period that the temperature, energy, exergy and energy efficiency of the TES exhibit similar trends and that the TES exergy accumulation and exergy efficiency exhibit similar trends.

Behnaz Rezaie; Bale V. Reddy; Marc A. Rosen

2015-01-01T23:59:59.000Z

412

Thermal behaviour of new crystalline semitransparent solar cell structure  

Science Journals Connector (OSTI)

This paper presents the structure of a novel semitransparent solar cell and its thermal behaviour, which cell can be used for building integrated applications. The crystalline self-made test cells can be manufactured using basic semiconductor technological ... Keywords: Building integrated photovoltaics, Semitransparent solar cell and thermal characteristics

Enik Bándy; Márta Rencz,

2013-11-01T23:59:59.000Z

413

Spectrally Solar Selective Coatings for Colored Flat Plate Solar Thermal Collectors  

Science Journals Connector (OSTI)

The paper is a review on the state-of-the-art on colored materials (absorbers and glazings) for solar thermal flat plate collectors obtained world-wide. The ... input for novel, market-acceptable flat plate solar

Luminita Isac; Alexandru Enesca…

2014-01-01T23:59:59.000Z

414

SOLAR ENERGY PROGRAM: CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1979  

E-Print Network (OSTI)

Particle Suspensions for Solar Energy Collection A.Sensible Heat Storage for a Solar Thermal Power Plant T.and A. Pfeiffhofer • . Solar Heated Gas Turbine Process

Authors, Various

2010-01-01T23:59:59.000Z

415

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network (OSTI)

Energy's Solar Total Energy lity Sandia Laboratories, Albuquerque. New Mexico,Mexico Solar Irrigation Project. REVI a thermal storage subsystem in a solar total energy

Viswanathan, R.

2011-01-01T23:59:59.000Z

416

Rules of thumb for passive solar heating  

SciTech Connect

Rules of thumb are given for passive solar systems for: (1) sizing solar glazing for 219 cities, (2) sizing thermal storage mass, and (3) building orientation.

Balcomb, J.D.

1980-01-01T23:59:59.000Z

417

Rankline-Brayton engine powered solar thermal aircraft  

DOE Patents (OSTI)

A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2012-03-13T23:59:59.000Z

418

Rankine-Brayton engine powered solar thermal aircraft  

DOE Patents (OSTI)

A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2009-12-29T23:59:59.000Z

419

Trade-off between collector area, storage volume, and building conservation in annual-storage solar-heating systems  

SciTech Connect

Annual storage is used with active solar heating systems to permit storage of summertime solar heat for winter use. The results of a comprehensive computer simulation study of the performance of active solar heating systems with long-term hot water storage are presented. A unique feature of this study is the investigation of systems used to supply backup heat to passive solar and energy-conserving buildings, as well as to meet standard heating and hot water loads. Findings show that system output increases linearly as storage volume increases, up to the point where the storage tank is large enough to store all heat collected in summer. This point, the point of unconstrained operation, is the likely economic optimum. Unlike diurnal storage systems, annual storage systems show only slightly diminished efficiency as system size increases. Annual storage systems providing nearly 100% solar space heat may cost the same or less per unit heat delivered as a 50% diurnal solar system. Also in contrast to diurnal systems, annual storage systems perform efficiently in meeting the load of a passive or energy-efficient building.

Sillman, S.

1981-04-01T23:59:59.000Z

420

Waverly Light and Power - Residential Solar Thermal Rebates | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Thermal Rebates Solar Thermal Rebates Waverly Light and Power - Residential Solar Thermal Rebates < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $3,500 Program Info Start Date 07/01/2009 State Iowa Program Type Utility Rebate Program Rebate Amount 30/sq. foot of collector area Provider Waverly Light and Power Waverly Light and Power (WL&P) offers rebates for solar hot water heating systems to its residential customers. All purchases must be pre-approved through WL&P's solar water heater application process. In addition, residential customers must obtain a county-issued permit prior to installing a solar water heating system. There is a limit of one rebate per address. Funding is available until the rebate fund is exhausted.

Note: This page contains sample records for the topic "thermal storage solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Development of a Web-based Emissions Reduction Calculator for Solar Thermal and Solar Photovoltaic Installations  

E-Print Network (OSTI)

DEVELOPMENT OF A WEB-BASED EMISSIONS REDUCTION CALCULATOR FOR SOLAR THERMAL AND SOLAR PHOTOVOLTAIC INSTALLATIONS Juan-Carlos Baltazar Research Associate Jeff S. Haberl, Ph.D., P.E. Professor/Associate Director Don R. Gilman, P.E. Senior... the potential emission reductions due to the electricity savings from the application of some of the most common solar thermal and solar photovoltaic systems. The methodology to estimate the potential NOx emission reduction integrates legacy analysis tools...

Baltazar-Cervantes, J. C.; Gilman, D.; Haberl, J. S.; Culp, C.

2005-01-01T23:59:59.000Z

422

A NEW SOLAR THERMAL RECEIVER UTILIZING A SMALL PARTICLE HEAT EXCHANGER  

E-Print Network (OSTI)

Report LBL 8520. ) A NEW SOLAR THERMAL RECEIVER UTILIZING Aenergy. A new type of solar thermal receiver based on thisThe success of the solar thermal electric power program

Hunt, Arlon J.

2011-01-01T23:59:59.000Z

423

Development of Non?Tracking Solar Thermal Technology  

Science Journals Connector (OSTI)

The aims of this research is to develop high temperature solar thermal collectors that do not require complex solar tracking devices to maintain optimal performance. The collector technology developed through these efforts uses non?imaging optics and is referred to as an external compound parabolic concentrator. It is able to operate with a solar thermal efficiency of approximately 50% at a temperature of 200?°?C and can be readily manufactured at a cost between $15 and $18 per square foot.

2011-01-01T23:59:59.000Z

424

Solar heat storages in district heating Klaus Ellehauge Thomas Engberg Pedersen  

E-Print Network (OSTI)

July 2007 . #12;#12;Solar heat storages in district heating networks July 2007 Klaus Ellehauge 97 22 11 tep@cowi.dk www.cowi.com #12;#12;Solar heat storages in district heating networks 5 in soil 28 5.3 Other experienced constructions: 30 6 Consequences of establishing solar heat in CHP areas

425

Solar Keymark-Experiences with the European Solar Thermal Quality Label  

Science Journals Connector (OSTI)

Many aspects come to mind when thinking and talking about technically reliable and long-time durable solar thermal products. The following paper tries to answer...

Korbinian Kramer; Matthias Rommel…

2009-01-01T23:59:59.000Z

426

Solar2010, the 48th AuSES Annual Conference 1-3 December 2010, Canberra, ACT, Australia  

E-Print Network (OSTI)

. The projects involve the storage of the heat produced by concentrating solar energy and the conversion. The thermal storage project Cost-effective thermal storage systems are required for solar thermal energy Solar Thermal Storage and Steam Programs at the CSIRO and ANU R. McNaughton 1 , R. Benito 1 , G Burgess

427

Thermal characterisation of an innovative quaternary molten nitrate mixture for energy storage in CSP plants  

Science Journals Connector (OSTI)

Abstract Enhancements to energy storage systems developed for solar thermoelectric technologies can yield considerable increases in efficiency for this type of renewable energy. Important improvements include the design of innovative storage fluids, such as molten salts possessing low melting points and high thermal stabilities. This research examines the design of an innovative quaternary molten nitrate mixture, with the goal of improving the solar salt used currently as an energy storage fluid in CSP plants. This quaternary salt, which contains different weight percentages of NaNO3, KNO3, LiNO3 and Ca(NO3)2, exhibits better physical and chemical properties than the binary solar salt (60% NaNO3+40% KNO3) currently used. The melting points, heat capacities and thermal stability of the quaternary mixtures were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). In addition to DSC and TGA tests, viscosity and electrical conductivity measurements were carried out for the quaternary mixtures at different temperatures. The new salt was designed by taking into consideration the risk of solid species formation at high temperatures when calcium nitrate is present (which requires that the wt% does not exceed 20%) and the costs of LiNO3. These boundaries set the maximum wt% of LiNO3 to values below 15%. Finally it was determined that the proposed quaternary mixture, when used as a heat transfer fluid (HTF) in parabolic trough solar power plants, is able to expand plants? operating range to temperatures between 132 and 580 °C.

A.G. Fernández; S. Ushak; H. Galleguillos; F.J. Pérez

2015-01-01T23:59:59.000Z

428

Sandia National Laboratories: National Solar Thermal Testing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Beam Profiling On November 2, 2012, in Concentrating Solar Power, News, Renewable Energy, Solar On Thursday, June 7, we began beam profiling the NSTTF field heliostat beam....

429

Performance of a Thermally Stable Polyaromatic Hydrocarbon in a Simulated Concentrating Solar Power Loop  

SciTech Connect

Polyaromatic hydrocarbon thermal fluids showing thermally stability to 600 C have been tested for solar thermal-power applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 C indicated that the fluid isomerized and degraded at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. So, as experienced in loop operation, eventually the internal channels of cooler components in trough solar electric generating systems, such as the waste heat rejection exchanger, may become coated or clogged affecting loop performance. Thus, pure 1-phenylnaphthalene, without addition of stabilizers, does not appear to be a fluid that would have a sufficiently long lifetime (years to decades) to be used in a loop at the temperatures greater than 500 C. The performance of a concentrating solar loop using high temperature fluids was modeled based on the National Renewable Laboratory Solar Advisory Model. It was determined that a solar-to-electricity efficiency of up to 30% and a capacity factor of near 60% could be achieved using a high efficiency collector and 12 h thermal energy storage.

McFarlane, Joanna [ORNL] [ORNL; Bell, Jason R [ORNL] [ORNL; Felde, David K [ORNL] [ORNL; Joseph III, Robert Anthony [ORNL] [ORNL; Qualls, A L [ORNL] [ORNL; Weaver, Samuel P [ORNL] [ORNL

2014-01-01T23:59:59.000Z

430

Electric Storage in California's Commercial Buildings  

E-Print Network (OSTI)

Distributed photovoltaic generation and energy storageenergy management in buildings and microgrids with e.g. installed Photovoltaic (energy storage, TS – thermal storage, FB – Flow Battery, AC – Absorption Chiller, ST – solar thermal system, PV – photovoltaic.

Stadler, Michael

2014-01-01T23:59:59.000Z

431

In-Situ Preparation and thermal shock resistance of mullite-cordierite heat tube material for solar thermal power  

Science Journals Connector (OSTI)

In order to improve the thermal shock resistance of solar thermal heat transfer tube material, the mullite-cordierite composite ceramic as solar thermal heat transfer tube material were fabricated by...?-Al2O3......

Xiaohong Xu ???; Xionghua Ma; Jianfeng Wu…

2013-06-01T23:59:59.000Z

432

Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy  

E-Print Network (OSTI)

chloride salt eutectics for solar thermal-energy storage applications Donghyun Shin, Debjyoti Banerjee for the anoma- lous enhancement of thermal conductivity over that of the neat solvent. Eastman et al. [5] reported thermal conductivity enhance- ment of 30% and 60% for water based nanofluids of Al2O3 and Cu

Banerjee, Debjyoti

433

Experimental analysis of a direct expansion solar assisted heat pump with integral storage tank for domestic water heating under zero solar radiation conditions  

Science Journals Connector (OSTI)

This paper deals with the experimental evaluation of the performance of a direct expansion solar assisted heat pump water heating (DX-SAHPWH) system working under zero solar radiation conditions at static heating operation mode of the storage tank. The DX-SAHPWH system includes two bare solar collectors as evaporator, a \\{R134a\\} rotary-type hermetic compressor, a thermostatic expansion valve and a helical coil condenser immersed in a 300 L water storage tank. The zero solar radiation and stable ambient air temperature working conditions were established by placing the solar collectors into a climate chamber. The analysis is based on experimental data taken from the DX-SAHPWH provided by the manufacturer and equipped with an appropriate data acquisition system. In the paper, the experimental facility, the data acquisition system and the experimental methodology are described. Performance parameters to evaluate the energy efficiency, such as COP and equivalent seasonal performance factors (SPFe) for the heating period, and the water thermal stratification in the storage tank are defined and obtained from the experimental data. Results from the experimental analysis under transient operating working conditions of the DX-SAHPWH system and its main components are shown and discussed. Lastly, the Huang and Lee DX-SAHPWH performance evaluation method was applied resulting in a characteristic COP of 3.23 for the DX-SAHPWH system evaluated under zero solar radiation condition.

José Fernández-Seara; Carolina Pińeiro; J. Alberto Dopazo; F. Fernandes; Paulo X.B. Sousa

2012-01-01T23:59:59.000Z

434

Minnesota Power - Solar-Thermal Water Heating Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minnesota Power - Solar-Thermal Water Heating Rebate Program Minnesota Power - Solar-Thermal Water Heating Rebate Program Minnesota Power - Solar-Thermal Water Heating Rebate Program < Back Eligibility Commercial Industrial Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Single-family unit: $2,000 Two- to three-family units: $4,000 Multi-family units (four or more): $10,000 Businesses: $25,000 Program Info Start Date 03/2010 Expiration Date 12/31/2013 State Minnesota Program Type Utility Rebate Program Rebate Amount 25% of costs Provider Minnesota Power Minnesota Power offers a 25% rebate for qualifying solar thermal water heating systems. The maximum award for single-family customers is $2,000 per customer; $4,000 for 2-3 family unit buildings; $10,000 for buildings

435

Made in Minnesota Solar Thermal Rebate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Made in Minnesota Solar Thermal Rebate Made in Minnesota Solar Thermal Rebate Made in Minnesota Solar Thermal Rebate < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Heating & Cooling Solar Swimming Pool Heaters Water Heating Buying & Making Electricity Commercial Heating & Cooling Maximum Rebate Single-Family Residential: $2,500 Multi-Family Residential: $5,000 Commercial: $25,000 Program Info Start Date 1/1/2014 Expiration Date 12/31/2023 State Minnesota Program Type State Rebate Program Rebate Amount 25% Provider Minnesota Department of Commerce Beginning in 2014, the Department of Commerce will offer a Made in Minnesota Solar Thermal Rebate program. Rebates are 25% of installed costs, with a $2,500 maximum for residential systems, $5,000 maximum for multi-family residential systems, and $25,000 for commercial systems.

436

Active charge/passive discharge solar heating systems: thermal analysis  

SciTech Connect

The performance of active charge/passive discharge solar space-heating systems is analyzed. This type of system combines liquid-cooled solar collector panels with a massive integral storage component that passively heats the building interior by radiation and free convection. The TRNSYS simulation program is used to evaluate system performance and to provide input for the development of a simplified analysis method. This method, which provides monthly calculations of delivered solar energy, is based on Klein's Phi-bar procedure and data from hourly TRNSYS simulations. The method can be applied to systems using a floor slab, a structural wall, or a water tank as the storage component. Important design parameters include collector area and orientation, building heat loss, collector and heat-exchanger efficiencies, storage capacity, and storage to room coupling.

Swisher, J.

1981-01-01T23:59:59.000Z

437

Studies of Perovskite Materials for High-Performance Storage Media, Piezoelectric, and Solar Energy Conversion Devices  

E-Print Network (OSTI)

Studies of Perovskite Materials for High-Performance Storage Media, Piezoelectric, and Solar Energy of applications, such as sensing, data storage, and energy conversion. For example, perovskite solid solutions

Rappe, Andrew M.

438

Read about Thermal Storage Research in OSTI Resources | OSTI, US Dept of  

Office of Scientific and Technical Information (OSTI)

Read about Thermal Storage Research in OSTI Resources Read about Thermal Storage Research in OSTI Resources From the DOE Press Release: "High Energy Advanced Thermal Storage (HEATS). More than 90% of energy technologies involve the transport and conversion of thermal energy. Therefore, advancements in thermal energy storage - both hot and cold - would dramatically improve performance for a variety of critical energy applications. ..." From the Databases Energy Citations Database Information Bridge DOE Green Energy WorldWideScience.org More information Secretary Chu announces $130 Million for Advanced Research Projects, April 20, 2011 From Zero to $180 Million in Five Days DOE Blog ARPA-E's High Density Thermal Storage Workshop, January 2011 Advanced Heat Transfer and Thermal Storage Fluids High Energy Advanced Thermal Storage Grant Synopsis

439

Nanofluid \\{PCMs\\} for thermal energy storage: Latent heat reduction mechanisms and a numerical study of effective thermal storage performance  

Science Journals Connector (OSTI)

Abstract The latent heat of fusion of paraffin-based nanofluids has been examined to investigate the use of enhanced phase change materials (PCMs) for thermal energy storage (TES) applications. The nanofluid approach has often been exploited to enhance thermal conductivity of PCMs, but the effects of particle addition on other thermal properties affecting TES are relatively ignored. An experimental study of paraffin-based nanofluids containing various particle sizes of multi-walled carbon nanotubes has been conducted to investigate the effect of nanoparticles on latent heat of fusion. Results demonstrated that the magnitude of nanofluid latent heat reduction increases for smaller diameter particles in suspension. Three possible mechanisms – interfacial liquid layering, Brownian motion, and particle clustering – were examined to explain further reduction in latent heat, through the weakening of molecular bond structures. Although additional research is required to explore detailed mechanisms, experimental evidence suggests that interfacial liquid layering and Brownian motion cannot explain the degree of latent heat reduction observed. A finite element model is also presented as a method of quantifying nanofluid PCM energy storage performance. Thermal properties based on modified effective medium theory and an empirical relation for latent heat of fusion were applied as model parameters to determine energy stored and extracted over a given period of time. The model results show that while micro-scale particle inclusions exhibit some performance enhancement, nanoparticles in \\{PCMs\\} provide no significant improvement in TES performance. With smaller particles, the enhancement in thermal conductivity is not significant enough to overcome the reduction in latent heat of fusion, and less energy is stored over the PCM charge period. Therefore, the nanofluid approach may not be justifiable for energy storage applications. However, since the model parameters are dependent on the material properties of the system observed, storage performance may vary for differing nanofluid materials.

Aitor Zabalegui; Dhananjay Lokapur; Hohyun Lee

2014-01-01T23:59:59.000Z

440

Investigation of thermal storage and steam generator issues  

SciTech Connect

A review and evaluation of steam generator and thermal storage tank designs for commercial nitrate salt technology showed that the potential exists to procure both on a competitive basis from a number of qualified vendors. The report outlines the criteria for review and the results of the review, which was intended only to assess the feasibility of each design, not to make a comparison or select the best concept.

Not Available

1993-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal storage solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Sustainable solar thermal power generation (STPG) technologies in Indian context  

SciTech Connect

India is a fast developing country. Some of the factors like population growth, industrialization, liberalization in economic policies, green revolution and awareness toward the environment, are increasing the electricity demand rapidly. As per the 14th Power Survey Report, an energy deficit of (+) 9% and peak demand deficit of (+) 18% have been estimated. Keeping in view the liberalization in economic policies, this deficit may be higher by the year 2000 AD. An estimation indicates that India is blessed with solar energy to the tune of 5 x 10{sup 15} kWh/yr. Being clean and inexhaustible source of energy, it can be used for large-scale power generation in the country. Keeping in view the present state-of-art technologies for STPG in MW range, best possible efforts are required to be made by all the concerned, to develop sustainable STPG technology of the future, specially for tropical regions. Standardization of vital equipment is an important aspect. There are a few required criteria like simple and robust technology, its transfer and adaptation in tropical climate conditions; high plant load factor without fossil-fired backup; availability of plant during evening peak and night hours; least use of fragile components, and capacity optimization for MW plants as per solar irradiance and environmental factors. In this paper, efforts have been made to compare the different STPG technologies. On the basis, of literature surveyed and studies carried out by the author, it may be stated that Central Receiver System technologies using molten salt and volumetric air receiver, along with molten salt and ceramic thermal storage respectively seems to be suitable and comparable in Indian context. Performance of SOLAR-TWO and PHOEBUS plants may be decisive.

Sharma, R.S. [Ministry of Non-Conventional Energy Sources, New Delhi (India). Solar Energy Centre

1996-12-31T23:59:59.000Z

442

Long Term Solar Heat Storage through Underground Water Tanks for the Heating of Housing  

Science Journals Connector (OSTI)

This project consists in the development of design methods of solar plants for heating of housing by means of the interseasonal storage of solar energy through water tanks located under or...

M. Cucumo; V. Marinelli; G. Oliveti; A. Sabato

1983-01-01T23:59:59.000Z

443

A Small Scale Solar Agricultural Dryer with Biomass Burner and Heat Storage Back-Up Heater  

Science Journals Connector (OSTI)

This paper describes a small scale solar agricultural dryer with a simple biomass burner and heat storage back-up heater. The key design features ... are the combination of direct and indirect type solar dryer, t...

Elieser Tarigan; Perapong Tekasakul

2009-01-01T23:59:59.000Z

444

Numerical simulation of Large Solar Hot Water system in storage tank.  

E-Print Network (OSTI)

??This research is aimed to study the storage tank design parameters effects on the efficiency of the large solar hot water system. Detailed CFD simulation… (more)

Shue, Nai-Shen

2012-01-01T23:59:59.000Z

445

Optimal Control Strategy of Solar Heating Systems Using a Long Term Heat Storage  

Science Journals Connector (OSTI)

...the estimation of the energy gain expected from optimizing the control of a given gas/solar heating system using a long term heat storage in the ground.

M. Boucher; M. Pottier; Y. Lenoir; R. Lidin…

1984-01-01T23:59:59.000Z

446

Aquifer thermal energy storage costs with a seasonal heat source.  

SciTech Connect

The cost of energy supplied by an aquifer thermal energy storage (ATES) system from a seasonal heat source was investigated. This investigation considers only the storage of energy from a seasonal heat source. Cost estimates are based upon the assumption that all of the energy is stored in the aquifer before delivery to the end user. Costs were estimated for point demand, residential development, and multidistrict city ATES systems using the computer code AQUASTOR which was developed specifically for the economic analysis of ATES systems. In this analysis the cost effect of varying a wide range of technical and economic parameters was examined. Those parameters exhibiting a substantial influence on ATES costs were: cost of purchased thermal energy; cost of capital; source temperature; system size; transmission distance; and aquifer efficiency. ATES-delivered energy costs are compared with the costs of hot water heated by using electric power or fuel-oils. ATES costs are shown as a function of purchased thermal energy. Both the potentially low delivered energy costs available from an ATES system and its strong cost dependence on the cost of purchased thermal energy are shown. Cost components for point demand and multi-district city ATES systems are shown. Capital and thermal energy costs dominate. Capital costs, as a percentage of total costs, increase for the multi-district city due to the addition of a large distribution system. The proportion of total cost attributable to thermal energy would change dramatically if the cost of purchased thermal energy were varied. It is concluded that ATES-delivered energy can be cost competitive with conventional energy sources under a number of economic and technical conditions. This investigation reports the cost of ATES under a wide range of assumptions concerning parameters important to ATES economics. (LCL)

Reilly, R.W.; Brown, D.R.; Huber, H.D.

1981-12-01T23:59:59.000Z

447

Residential solar-absorption chiller thermal dynamics  

SciTech Connect

Research is reported on the transient performance of a commercial residential 3 ton lithium bromide-water absorption chiller designed for solar firing. Emphasis was placed on separating the chiller response from that of the entire test facility so that its transient response could solely be observed and quantified. It was found that the entire system time response and thermal capacitance has a major impact on performance degradation due to transient operation. Tests run to ascertain computer algorithms which simulate system isolated chiller performance, revealed processes hitherto undocumented. Transient operation is simulated by three distinct algorithms associated with the three phases of chiller operation. The first phase is start up time. It was revealed during testing that the time required to reach steady state performance values, when the chiller was turned on, was a linear function of steady state water supply temperatures. The second phase is quasi steady state performance. Test facility's performance compared favorably with the manufacturer's published data. The third phase is the extra capacity produced during spin down. Spin down occurs when the hot water supply pump is turned off while the other system pumps remain operating for a few minutes, thus allowing extra chiller capacity to be realized. The computer algorithms were used to generate plots which show the operational surface of an isolated absorption chiller subjected to off design and transient operation.

Guertin, J.M.; Wood, B.D.; McNeill, B.W.

1981-03-01T23:59:59.000Z

448

SunShot Initiative: Encapsulated Phase Change Material in Thermal Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Encapsulated Phase Change Encapsulated Phase Change Material in Thermal Storage for Baseload CSP Plants to someone by E-mail Share SunShot Initiative: Encapsulated Phase Change Material in Thermal Storage for Baseload CSP Plants on Facebook Tweet about SunShot Initiative: Encapsulated Phase Change Material in Thermal Storage for Baseload CSP Plants on Twitter Bookmark SunShot Initiative: Encapsulated Phase Change Material in Thermal Storage for Baseload CSP Plants on Google Bookmark SunShot Initiative: Encapsulated Phase Change Material in Thermal Storage for Baseload CSP Plants on Delicious Rank SunShot Initiative: Encapsulated Phase Change Material in Thermal Storage for Baseload CSP Plants on Digg Find More places to share SunShot Initiative: Encapsulated Phase Change Material in Thermal Storage for Baseload CSP Plants on

449

Solar  

Science Journals Connector (OSTI)

With sharp drop in costs for photovoltaic and solar thermal processes, solar energy has become more attractive alternative ... Almost half the total was earmarked for PV and solar thermal projects. ...

WARD WORTHY

1991-06-17T23:59:59.000Z

450

Techno-economic evaluation of hybrid energy storage technologies for a solar–wind generation system  

Science Journals Connector (OSTI)

Huazhong University of Science and Technology is planning to establish a hybrid solar–wind generation dynamic simulation laboratory. Energy storage technologies will be vital to this system for load leveling, power quality control and stable output. In this paper, the technical feasibility of energy storage technologies for renewable intermittent sources like wind and solar generation is analyzed. Furthermore, the different combination modes of energy storage technologies are proposed. The involved energy storage technologies include superconducting magnetic energy storage systems (SMESs), flywheels (FWs), electrochemical super-capacitors (SCs) and redox flow batteries (RFBs). Based on that, the economic analysis of hybrid energy storage technologies is conducted.

L. Ren; Y. Tang; J. Shi; J. Dou; S. Zhou; T. Jin

2013-01-01T23:59:59.000Z

451

Commercial Solar Thermal Incentive Program (Connecticut) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Thermal Incentive Program (Connecticut) Solar Thermal Incentive Program (Connecticut) Commercial Solar Thermal Incentive Program (Connecticut) < Back Eligibility Commercial Industrial Institutional Local Government Low-Income Residential Multi-Family Residential Nonprofit Schools Tribal Government Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $150,000 Program Info Funding Source Public Benefits Fund Start Date 03/15/2013 State Connecticut Program Type State Grant Program Provider Clean Energy Finance and Investment Authority '''''Note: This program is not currently accepting applications. Check the program web site for information regarding future financing programs. ''''' The Clean Energy Finance and Investment Authority is offering grants and loans to non-residential entities for solar hot water installations. Only

452

Solar thermal power plants for the Spanish electricity market  

Science Journals Connector (OSTI)

Solar thermal power plants are at present the cheapest technology for solar electricity production. At good sites Levelised Electricity Costs (LEC) of 11 Ct/kWh have been achieved in commercially operated power plants. Economy of scale and further technical improvements will reduce the LEC for future projects. On the 27th of March 2004 in Spain the existing feed-in-law has been modified in order to support the erection of solar thermal power plants and thus make use of the huge solar potential of Spain. A payment of approx. 21 Ct/kWh, guaranteed for the first 25 years of operation, makes the erection and operation of solar thermal power plants very profitable for possible investors on the Spanish peninsula. This paper will present the present situation in Spain and the planned power plant projects. For one specific project the set-up is presented in more detail.

M. Eck; F. Rueda; S. Kronshage; C. Schillings; F. Trieb; E. Zarza

2007-01-01T23:59:59.000Z

453

Sandia National Laboratories: National Solar Thermal Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Test Facility (NSTTF) Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

454

The Exchange-Value of Solar Thermal Energy  

Science Journals Connector (OSTI)

In Sweden there is a tendency that alternative energy will develop on market premises. In this ... I suggest that the low exergy value of solar thermal heat limits the technique“s commodification, i ... . By appl...

Johan Leidi

2009-01-01T23:59:59.000Z

455

Marshall Municipal Utilities- Solar Thermal Water Heater Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Marshall Municipal Utilities (MMU) offers residential customers rebates for installing a ENERGY STAR Solar Thermal Water Heater. Rebates are based on the size of the system; MMU offers $20 per...

456

Materials selection for thermal comfort in passive solar buildings  

Science Journals Connector (OSTI)

This paper presents the results of a combined analytical, computational, and experimental study of the key parameters for selecting affordable materials and designing for thermal comfort in passive solar build...

J. M. Thomas; S. Algohary; F. Hammad; W. O. Soboyejo

2006-11-01T23:59:59.000Z

457

Development of a Technology Roadmap for Solar Thermal Cooling in Austria  

Science Journals Connector (OSTI)

Aim of the project was the development of a technology roadmap for solar thermal cooling in Austria involving the relevant market players. The main contents of the technology roadmap are the compilation of the initial position in terms of existing solar thermal cooling plants as well as relevant R&D results, identification of market potentials, technology development and the necessary measures for it. The technology developments are described in short term, medium term, and long term objectives as well as the connected market relevance for Austria and the economic development of this technology. Scenarios for a useful interaction with other sustainable thermal cooling technologies like cooling with district heating are analyzed to clarify the future position of solar thermal cooling in the Austrian energy supply. The market player of this technology reach from component manufactures (solar thermal collector, ab-/-adsorption chillers, ventilation systems, storages, control, etc.), business enterprises (hotels, breweries, laundries, supermarkets, etc.), building developers and consultancy engineers to research institutions, energy agencies and political decision makers. All of these groups were involved in the development of the technology roadmap by expert workshops and interviews.

Anita Preisler; Tim Selke; Hilbert Focke; Nicole Hartl; Georg Geissegger; Erich Podesser; Alexander Thür

2012-01-01T23:59:59.000Z

458

Encapsulation of copper-based phase change materials for high temperature thermal energy storage  

Science Journals Connector (OSTI)

Abstract Worldwide attention has been paid to high temperature phase change materials (PCMs) utilized in latent heat storage systems such as solar thermal power generation or industrial waste heat recovery. Current high temperature \\{PCMs\\} on basis of molten salts are suffering from inherent low thermal conductivity, which is detrimental to heat release rate and systematically thermal efficiency. Metal materials, always possessing ultrahigh thermal conductivity and satisfied heat fusion, are highly suitable as PCMs. However, the development of metal-based \\{PCMs\\} must overcome the package problem, namely, packing active, high temperature liquid metal into durable container. In this paper, copper capsules coated with refractory metallic shells were proposed as a novel metal PCM, which could work at temperature up to 1000 °C. Copper spheres with diameter of millimeters were encapsulated with a thick chromium–nickel bilayer by a novel chromium periodic-barrel electroplating method and nickel barrel-plating method. The latent heat density of as-prepared capsules is up to 75% of the theoretical value (about 71 J/g) at the melting temperature of 1077 °C and the thermal resistance of chromium–nickel layer is 8.27×10?6 m2 k/w. Particularly, copper capsules could endure 1000 charge–discharge thermal cycles from 1050 °C to 1150 °C without any leakage. The structure investigations reveal the excellent oxidation resistance of capsules and good stability between copper and chromium–nickel layer, even after long-term charge–discharge cycles. The results demonstrate that as-prepared copper capsules are applicable as high temperature \\{PCMs\\} which can facilitate high temperature thermal energy storage systems.

Guocai Zhang; Jianqiang Li; Yunfa Chen; Heng Xiang; Bingqian Ma; Zhe Xu; Xiaoguang Ma

2014-01-01T23:59:59.000Z

459

PERFORMANCE OF A CONCENTRATING PHOTOVOLTAIC/THERMAL SOLAR COLLECTOR  

E-Print Network (OSTI)

increased solar energy conversion and potential cost benefits (Fujisawa and Tani, 1997, 2001, Huang et alPERFORMANCE OF A CONCENTRATING PHOTOVOLTAIC/THERMAL SOLAR COLLECTOR Joe S Coventry Centre for Sustainable Energy Systems, Australian National University, Canberra, 0200, Australia +612 6125 3976, +612

460

Thermal efficiency of single-pass solar air collector  

SciTech Connect

Efficiency of a finned single-pass solar air collector was studied. This paper presents the experimental study to investigate the effect of solar radiation and mass flow rate on efficiency. The fins attached at the back of absorbing plate to improve the thermal efficiency of the system. The results show that the efficiency is increased proportional to solar radiation and mass flow rate. Efficiency of the collector archived steady state when reach to certain value or can be said the maximum performance.

Ibrahim, Zamry; Ibarahim, Zahari; Yatim, Baharudin [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan (Malaysia); Ruslan, Mohd Hafidz [Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan (Malaysia)

2013-11-27T23:59:59.000Z

Note: This page contains sample records for the topic "thermal storage solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

The Solar Heat Storage Twin-System of the Lübeck Solar House as an Example of a 2nd Generation Interseasonal Storage Concept  

Science Journals Connector (OSTI)

This was achieved by a heat pump assisted solar heating system centered around a twin storage consisting...3...tank, kept at 35 to 50°C, takes care of the heat demand of the low-temperature heating system, and a ...

H. Weik; J. Plagge

1984-01-01T23:59:59.000Z

462

10 MWe Solar Thermal Central Receiver Pilot Plant Total Capital Cost  

Science Journals Connector (OSTI)

A cost analysis of the 10MWe Solar One Thermal Central Receiver Plant near Barstow, California, ... is presented to help predict costs of future solar thermal central receiver plants. In this paper, the Solar One...

H. F. Norris

1985-01-01T23:59:59.000Z

463

National Laboratory Concentrating Solar Power Research and Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and performance improvements across all major concentrating solar power (CSP) subsystems-solar fields, power plants, receivers, and thermal storage-are necessary to achieve the...

464

Demonstration Experiment for Energy Storage and Rapid Charge System for the Solar Light Rail  

Science Journals Connector (OSTI)

Abstract An application of renewable energy is expected. However, renewable energy such as solar and wind is unstable. Therefore, thermal power plants are necessary to operate solar power plants and wind turbines on commercial power supply. In this paper, a rechargeable system for renewable energy application is proposed and a demonstration experiment using rideable model railroad is reported. The electric double layer capacitor (EDLC) unit of 17.5 V - 171.4 F is charged by solar panels, and another EDLC unit of 15.0 V - 100 F mounted on the railcar is charged rapidly from EDLC unit connected to solar panels. A railcar run by charged energy on 9 meters of strait rail. Although the experiment was carried out in January–only two weeks after of the winter solstice, rapid charge was carried out 56 times and railcar ran for 9 hours a day. It was confirmed that this method–using EDLC as energy storage device and rapid charge from EDLC to EDLC–is effective through a day.

Takaki Kameya; Jamal Uddin; Hiroshi Kezuka; Genji Suzuki; Hidetoshi Katsuma

2014-01-01T23:59:59.000Z

465

High-Temperature Thermal Array for Next Generation Solar Thermal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

outstanding technical challenges focused on applicability to heat pipes to Concentrated Solar Power production. These include * Counter gravity physics * Counter gravity...

466

Efficiency Limit of Molecular Solar Thermal Energy Collecting Devices  

Science Journals Connector (OSTI)

Maximum efficiencies and potential temperature gradients are estimated using a number of basic assumptions on desired storage lifetimes and energy losses. ... Snaith, H. J.Estimating the maximum attainable efficiency in dye-sensitized solar cells Adv. ... and optical losses in the dye-sensitized system are reviewed, and the main losses in potential from the conversion of an absorbed photon at the optical bandgap of the sensitizer to the open-circuit voltage generated by the solar cell are specifically highlighted. ...

Karl Börjesson; Anders Lennartson; Kasper Moth-Poulsen

2013-04-12T23:59:59.000Z

467

July 17 ESTAP Webinar: Resilient Solar-Storage Systems for Homes and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 17 ESTAP Webinar: Resilient Solar-Storage Systems for Homes July 17 ESTAP Webinar: Resilient Solar-Storage Systems for Homes and Commercial Facilities July 17 ESTAP Webinar: Resilient Solar-Storage Systems for Homes and Commercial Facilities July 12, 2013 - 10:40am Addthis On Wednesday, July 17 from 2 - 3 p.m. ET, Clean Energy States Alliance will host a webinar on resilient solar-storage systems for homes and commercial facilities. The webinar will be introduced by Dr. Imre Gyuk, Energy Storage Program Manager in the Office of Electricity Delivery and Energy Reliability. This webinar will include basic information on battery-backed PV systems that can continue to operate in islanded mode when the grid is down, supporting critical loads. Speaker Michael Kleinberg of DNV KEMA will discuss existing solutions and opportunities for solar PV systems with

468

Energy-Dependent Timing of Thermal Emission in Solar Flares  

Science Journals Connector (OSTI)

We report solar flare plasma to be multi-thermal in nature based on the theoretical model and study of the energy-dependent timing of thermal emission in ten M-class flares. We ... observed by the Si detector of ...

Rajmal Jain; Arun Kumar Awasthi; Arvind Singh Rajpurohit…

2011-05-01T23:59:59.000Z

469

Conceptual design and engineering studies of adiabatic compressed air energy storage (CAES) with thermal energy storage  

SciTech Connect

The objective of this study was to perform a conceptual engineering design and evaluation study and to develop a design for an adiabatic CAES system using water-compensated hard rock caverns for compressed air storage. The conceptual plant design was to feature underground containment for thermal energy storage and water-compensated hard rock caverns for high pressure air storage. Other design constraints included the selection of turbomachinery designs that would require little development and would therefore be available for near-term plant construction and demonstration. The design was to be based upon the DOE/EPRI/PEPCO-funded 231 MW/unit conventional CAES plant design prepared for a site in Maryland. This report summarizes the project, its findings, and the recommendations of the study team; presents the development and optimization of the plant heat cycle and the selection and thermal design of the thermal energy storage system; discusses the selection of turbomachinery and estimated plant performance and operational capability; describes the control system concept; and presents the conceptual design of the adiabatic CAES plant, the cost estimates and economic evaluation, and an assessment of technical and economic feasibility. Particular areas in the plant design requiring further development or investigation are discussed. It is concluded that the adiabatic concept appears to be the most attractive candidate for utility application in the near future. It is operationally viable, economically attractive compared with competing concerns, and will require relatively little development before the construction of a plant can be undertaken. It is estimated that a utility could start the design of a demonstration plant in 2 to 3 years if research regarding TES system design is undertaken in a timely manner. (LCL)

Hobson, M.J.

1981-11-01T23:59:59.000Z

470

Sandia National Laboratories: solar thermal electric technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) EC Top Publications Design and Analysis...

471

Design of a solar thermal collector simulator.  

E-Print Network (OSTI)

??The recent increased interest in renewable energy has created a need for research in the area of solar technology. This has brought about many new… (more)

Bolton, Kirk G.

2009-01-01T23:59:59.000Z

472

Literature review of market studies of thermal energy storage  

SciTech Connect

This report presents the results of a review of market studies of thermal energy storage (TES). This project was conducted by Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE). PNL staff reviewed and consolidated the findings of existing TES market studies conducted in the industrial, commercial, and residential sectors. The purpose of this project was to review and assess previous work and to use the information obtained to help provide direction for future technology transfer planning activities and to identify additional economic research needed within those three sectors. 37 refs.

Hattrup, M.P.

1988-02-01T23:59:59.000Z

473

Use of Renewable Energy in Buildings: Experiences With Solar Thermal Utilization  

E-Print Network (OSTI)

Solar energy is receiving much more attention in building energy systems in recent years. Solar thermal utilization should be based on the integration of solar collectors into buildings. The facades of buildings can be important solar collectors...

Wang, R.; Zhai, X.

2006-01-01T23:59:59.000Z

474

Thermal instability in planar solar coronal structures  

Science Journals Connector (OSTI)

Prominentes and filaments are thought to arise as a consequence of a magnetized plasma undergoing thermal instability. Therefore the thermal stability of a magnetized plasma is investigated under coronal condi...

R. A. M. Van der Linden; M. Goossens

1990-01-01T23:59:59.000Z

475

Thermal Energy Storage for Cooling of Commercial Buildings  

E-Print Network (OSTI)

For the ice storage system, during direct cooling, thethe building cooling load. In dynamic systems, ice is formedcooling/demand-limited storage / electric load management / full storage / ice

Akbari, H.

2010-01-01T23:59:59.000Z

476

Project Profile: Scattering Solar Thermal Concentrators  

Energy.gov (U.S. Department of Energy (DOE))

Pennsylvania State University, under the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is designing and testing a novel solar collector system that relies on stationary optics, avoiding the need for mirror movement. The system is capable of achieving optical performance equal to state-of-the-art parabolic trough systems, but at a lower cost.

477

Futurestock'2003 9 International Conference on Thermal Energy Storage, Warsaw, POLAND  

E-Print Network (OSTI)

381 Futurestock'2003 9 th International Conference on Thermal Energy Storage, Warsaw, POLAND is also needed when designing a BTES (Borehole Thermal Energy Storage) system. The ground thermal eight countries (Sweden, Canada, Germany, Netherlands, Norway, Turkey, United Kingdom, and USA) have

478

Optimisation of Solar Collector Area for Solar Thermal Systems  

Science Journals Connector (OSTI)

Invariably solar energy systems are provided with an auxiliary energy source to meet the energy requirements of a system operating at a constant temperature. A technoeconomic analysis has been developed in thi...

N. K. Bansal; Aman Dang

1984-01-01T23:59:59.000Z

479

Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications  

E-Print Network (OSTI)

Thermal energy storage for sustainable energy consumption –Sustainable Energy, Cambridge University Press, 65- Dermott A.M, Frysinger G.R, Storage

Roshandell, Melina

2013-01-01T23:59:59.000Z

480

A New Solar Carbon Capture Process: Solar Thermal Electrochemical Photo (STEP) Carbon Capture  

Science Journals Connector (OSTI)

A New Solar Carbon Capture Process: Solar Thermal Electrochemical Photo (STEP) Carbon Capture ... CO2 can be captured from 34% to over 50% solar energy efficiency (depending on the level of solar heat inclusion), as solid carbon and stored, or used as carbon monoxide to be available for a feedstock to synthesize (with STEP generated hydrogen) solar diesel fuel, synthetic jet fuel, or chemical production. ... STEP Iron, a Chemistry of Iron Formation without CO2 Emission: Molten Carbonate Solubility and Electrochemistry of Iron Ore Impurities ...

Stuart Licht; Baohui Wang; Susanta Ghosh; Hina Ayub; Dianlu Jiang; Jason Ganley

2010-07-14T23:59:59.000Z

Note: This page contains sample records for the topic "thermal storage solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

TRANSFORMATION AND STORAGE OF SOLAR ENERGY 780 CHIMIA 2007, 61, No. 12  

E-Print Network (OSTI)

TRANSFORMATION AND STORAGE OF SOLAR ENERGY 780 CHIMIA 2007, 61, No. 12 Chimia 61 (2007) 780, with a view to assess the potential of this attractive solar energy technology. The edge fluorescence collection efficiency Solar energy similar refractive index can be used to make up the collector, dividing

482

Thermal layering: a passive solar design strategy  

SciTech Connect

SOLARGREEN was the author's entry into the US Department of Housing and Urban Development's Passive Solar Residential Design Competition. The objective of the design was to develop a low-cost, innovative passive solar heating and cooling system as part of a marketable, aesthetically pleasing dwelling that could be easily constructed using existing building practices. The basic design is a three-bedroom, two-story, 1600 square foot home with a solarium that serves as both a solar collector and a food-producing greenhouse. The entry received a design award and five construction awards in the competition.

Moore, F.

1980-01-01T23:59:59.000Z

483

Efficient Phase-Change Materials: Development of a Low-Cost Thermal Energy Storage System Using Phase-Change Materials with Enhanced Radiation Heat Transfer  

SciTech Connect

HEATS Project: USF is developing low-cost, high-temperature phase-change materials (PCMs) for use in thermal energy storage systems. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Most PCMs do not conduct heat very well. Using an innovative, electroless encapsulation technique, USF is enhancing the heat transfer capability of its PCMs. The inner walls of the capsules will be lined with a corrosion-resistant, high-infrared emissivity coating, and the absorptivity of the PCM will be controlled with the addition of nano-sized particles. USF’s PCMs remain stable at temperatures from 600 to 1,000°C and can be used for solar thermal power storage, nuclear thermal power storage, and other applications.

None

2011-12-05T23:59:59.000Z

484

High Temperature Thermal Array for Next Generation Solar Thermal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A 10% increase in shaft work is directly attributable to modified thermal heat capacity Engineering HTF Specific heat yields modified power output. 27 127 227 327 427 527...

485

NREL: Concentrating Solar Power Research - NREL Forges Foundation...  

NLE Websites -- All DOE Office Websites (Extended Search)

targets with systems that can supply solar power on demand through the use of thermal energy storage. The thermal energy from the receiver can be stored and subsequently...

486

Thermal Energy Transport in the Solar Wind  

Science Journals Connector (OSTI)

This paper is intended to summarize the present status of measurements of heat flux in the solar wind and to provide a comparison of these measurements with the theory for collision-dominated heat transport in...

Michael D. Montgomery

1972-01-01T23:59:59.000Z

487

Thermal Modernisation Through Utilisation of Solar Energy  

Science Journals Connector (OSTI)

The paper presents idea of modernization of energy system in buildings through implementation of traditional energy efficiency measures and introduction of modern options of utilization of solar energy systems...

Dorota Chwieduk

2009-01-01T23:59:59.000Z

488

Non-thermal solar wind heating by supra-thermal ions  

Science Journals Connector (OSTI)

The effect of a new energy source due to energies transferred from supra-thermal secondary ions on the temperature profile of the solar wind has been considered. For this purpose ... solution of a tri-fluid model...

H. J. Fahr

1973-05-01T23:59:59.000Z

489

Solar radiation effects on evaporative losses of floating roof storage tanks  

Science Journals Connector (OSTI)

There are 40 storage tanks in the Khark Island for storing crude oil. Considering the hot summers of the island, light hydrocarbons vaporise and vented to the atmosphere. This process causes environmental pollution and also affects the quality of the crude oil besides the economic detriment. Therefore, crude oil evaporation loss associated with the storage tank is an important issue which should be carefully investigated to identify the potential means of its reduction. The aim of the present work is to determine the evaporative losses from external floating storage tanks and to study the absorptivity effects of their exterior surface paint on the losses due to the solar irradiation. The API standards along with the thermal analysis of the tank have been employed to evaluate the tank temperature variations and the evaporative losses of a typical tank based on the actual ambient conditions of the Khark Island. The results show that the paints with low absorptivity can reduce the evaporative losses significantly. Furthermore, experimental data has been provided to validate the calculated tank temperature variations, and reasonable agreements have been found. [Received: April 10, 2010; Accepted: May 31, 2010

Mahmood Farzaneh-Gord; Amin Nabati; Hamid Niazmand

2011-01-01T23:59:59.000Z

490

Experiments on solar absorption using a greenhouse-effect gas in a thermal solar collector  

Science Journals Connector (OSTI)

This paper investigates an augmentation to the thermal solar absorption of solar collectors by introducing a greenhouse gas between the glazing and the absorber part of the solar collector. Experiments are designed and conducted to compare the effect of adding the gas on the efficiency of the collector without that addition. The maximum temperature rise of the absorber the time of heat retention before reaching room temperature and the energy conversion efficiency in heating up water for domestic use were all studied.

Abdul Hai M. B. Alami

2010-01-01T23:59:59.000Z

491

Deactivation mechanisms of NOx storage materials arising from thermal aging and sulfur poisoning  

Energy.gov (U.S. Department of Energy (DOE))

Presents the reliationship between Pt particle size and NOx storage performance over model catalysts. Novel reaction protocol designed to decouple effects of thermal deactivation and incomplete desulfation.

492

Designing an Optimal Urban Community Mix for an Aquifer Thermal Energy Storage System.  

E-Print Network (OSTI)

??This research examined what mix of building types result in the most efficient use of a technology known as Aquifer Thermal Energy Storage (ATES). Hourly… (more)

Zizzo, Ryan

2010-01-01T23:59:59.000Z

493

Influence of nano-ZrO2 on the mechanical and thermal properties of high temperature cementitious thermal energy storage materials  

Science Journals Connector (OSTI)

Abstract The mechanical and thermal properties of high temperature aluminate cementitious thermal energy storage materials modified with nano-ZrO2 are investigated. The influence of nano-ZrO2 amounts on the performance, such as compressive strength, thermal conductivity, volume heat capacity, and thermal expansion coefficient, of hardened composite cement pastes were studied for future solar thermal energy materials with better performance. It is observed that before heating the pore structure and compressive strength are both optimized at the optimum nano-ZrO2 amount of 1 wt%. At the same time, thermal conductivity and volume heat capacity of the composite paste enriched with nano-ZrO2 improved after heating at 350 and 900 °C compared with that of pure paste, which is very favorable for high thermal storage materials application. XRD, TG–DSC, FTIR, and MIP were used to characterize the mineral phases, the hydration/dehydration evolution, the chemical bonding, and the pore structures of the hydration products, respectively.

Huiwen Yuan; Yu Shi; Zhongzi Xu; Chunhua Lu; Yaru Ni; Xianghui Lan

2013-01-01T23:59:59.000Z

494

Exergetic analysis of a steam-flashing thermal storage Paul T. O'Brien  

E-Print Network (OSTI)

conditions, although cost benefits are still evident. Currently, there are many solar power plants that have dispatchable, if not continuous, power output from a solar field. At the right cost, a storage system can improve overall economics of a solar energy system. Presented here is a simulation study

495

COUPLING SUPERCRITICAL AND SUPERHEATED DIRECT STEAM GENERATION WITH THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

salt. This a distinct advantage for minimising the amount of salt required for a given amount of energy the advantages of high temperature that are achievable from high-concentration solar collectors such as solar energy storage system, having been demonstrated on both troughs (SEGS I) and towers (Solar Two) [3

496

Feasibility of combined solar thermal and ground source heat pump systems in cold climate, Canada  

Science Journals Connector (OSTI)

This document presents a study for examining the viability of hybrid ground source heat pump (GSHP) systems that use solar thermal collectors as the supplemental component in heating dominated buildings. Loads for an actual house in the City of Milton near Toronto, Canada, were estimated. TRNSYS, a system simulation software tool, was used to model yearly performance of a conventional GSHP system as well as a proposed hybrid GSHP system. Actual yearly data collected from the site were examined against the simulation results. This study demonstrates that hybrid ground source heat pump system combined with solar thermal collectors is a feasible choice for space conditioning for heating dominated houses. It was shown that the solar thermal energy storage in the ground could reduce a large amount of ground heat exchanger (GHX) length. Combining three solar thermal collectors with a total area of 6.81 m2 to a GSHP system will reduce GHX length by 15%. Sensitivity analysis was carried out for different cities of Canada and resulted that Vancouver, with mildest climate compared to other cities, was the best candidate for the proposed solar hybrid GSHP system with a GHX length reduction to solar collector area ratio of 7.64 m/m2. Overall system economic viability was also evaluated using a 20-year life-cycle cost analysis. The analysis showed that there is small economic benefit in comparing to the conventional GSHP system. The net present value of the proposed hybrid system based on the 20-year life-cycle cost analysis was estimated to be in a range of 3.7%–7.6% (or $1500 to $3430 Canadian dollar) lower than the conventional GSHP system depending on the drilling cost.

Farzin M. Rad; Alan S. Fung; Wey H. Leong

2013-01-01T23:59:59.000Z

497

Concentrated solar power on demand .  

E-Print Network (OSTI)

??This thesis describes a new concentrating solar power central receiver system with integral thermal storage. Hillside mounted heliostats direct sunlight into a volumetric absorption molten… (more)

Codd, Daniel Shawn

2011-01-01T23:59:59.000Z

498

Environmental risk assessment for aquifer thermal energy storage  

SciTech Connect

This report has been prepared by Pacific Northwest Laboratory at the request of the International Energy Agency (IEA). The US Department of Energy represents the United States in the IEA for Annex IV, the IEA task for research and development in aquifer thermal energy storage (ATES). Installation and operation of an ATES system is necessarily intrusive to ground-water resources. Therefore, governmental authorities usually require an environmental risk assessment to be performed before permission to construct an ATES system is granted. Writing an accurate statement of risk presupposes a knowledge of aquifer and ground-water characteristics and that an engineering feasibility study has taken place. Effective and logical presentation of the results of the risk assessment can expedite the grant of approval. Introductory remarks should address questions regarding why the ATES project has been proposed, what it is expected to accomplish, and what the expected benefits are. Next, the system configuration, including the aquifer, ATES plant, and well field, should be described in terms of size and location, design components, and thermal and hydraulic capacity. The final element of system design, the predicted annual operating cycle, needs to be described in sufficient detail to allow the reviewer to appreciate the net hydraulic, thermal, and hydrochemical effects imposed on the aquifer. Risks may be environmental or legal. Only after a reviewer has been introduced to the proposed system's design, operation, and scale can risk issues can be identified and weighed against the benefits of the proposed ATES system.

Hall, S.H.

1993-01-01T23:59:59.000Z

499

Environmental risk assessment for aquifer thermal energy storage  

SciTech Connect

This report has been prepared by Pacific Northwest Laboratory at the request of the International Energy Agency (IEA). The US Department of Energy represents the United States in the IEA for Annex IV, the IEA task for research and development in aquifer thermal energy storage (ATES). Installation and operation of an ATES system is necessarily intrusive to ground-water resources. Therefore, governmental authorities usually require an environmental risk assessment to be performed before permission to construct an ATES system is granted. Writing an accurate statement of risk presupposes a knowledge of aquifer and ground-water characteristics and that an engineering feasibility study has taken place. Effective and logical presentation of the results of the risk assessment can expedite the grant of approval. Introductory remarks should address questions regarding why the ATES project has been proposed, what it is expected to accomplish, and what the expected benefits are. Next, the system configuration, including the aquifer, ATES plant, and well field, should be described in terms of size and location, design components, and thermal and hydraulic capacity. The final element of system design, the predicted annual operating cycle, needs to be described in sufficient detail to allow the reviewer to appreciate the net hydraulic, thermal, and hydrochemical effects imposed on the aquifer. Risks may be environmental or legal. Only after a reviewer has been introduced to the proposed system`s design, operation, and scale can risk issues can be identified and weighed against the benefits of the proposed ATES system.

Hall, S.H.

1993-01-01T23:59:59.000Z

500

Energy Storage R&D: Thermal Management Studies and Modeling (Presentation)  

SciTech Connect

Here we summarize NREL's FY09 energy storage R&D studies in the areas of 1. thermal characterization and analysis, 2. cost, life, and performance trade-off studies, and 3. thermal abuse modeling.

Pesaran, A. A.

2009-05-01T23:59:59.000Z