Powered by Deep Web Technologies
Note: This page contains sample records for the topic "thermal solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Solar Thermal/PV | OpenEI  

Open Energy Info (EERE)

Thermal/PV Thermal/PV Dataset Summary Description Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption biodiesel Biofuels biomass energy use by sector ethanol geothermal Hydroelectric Conventional Landfill Gas MSW Biogenic Other Biomass renewable energy Solar Thermal/PV Waste wind Wood and Derived Fuels Data application/vnd.ms-excel icon RE Consumption by Energy Use Sector, Excel file (xls, 32.8 KiB)

2

Pv-Thermal Solar Power Assembly  

DOE Patents [OSTI]

A flexible solar power assembly includes a flexible photovoltaic device attached to a flexible thermal solar collector. The solar power assembly can be rolled up for transport and then unrolled for installation on a surface, such as the roof or side wall of a building or other structure, by use of adhesive and/or other types of fasteners.

Ansley, Jeffrey H. (El Cerrito, CA); Botkin, Jonathan D. (El Cerrito, CA); Dinwoodie, Thomas L. (Piedmont, CA)

2001-10-02T23:59:59.000Z

3

Energy 101: Solar PV  

ScienceCinema (OSTI)

Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

None

2013-05-29T23:59:59.000Z

4

Distributed and Steady Modeling of the Pv Evaporator in a Pv/T Solar Assisted Heat Pump  

Science Journals Connector (OSTI)

A specially designed direct-expansion evaporator (PV evaporator), which is laminated with PV cells on the front surface is adopted in a photovoltaic/thermal solar assisted heat pump (PV/T SAHP) to obtain both the...

Jie Ji; Hanfeng He; Wei He; Gang Pei…

2009-01-01T23:59:59.000Z

5

Solar PV Incentive Programs | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

PV Incentive Programs Solar PV Incentive Programs This presentation summarizes the information discussed by NYSERDA during the Best Practices in the Design of Utility Solar...

6

Beijing Sunpu Solar PV Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Municipality, China Zip: 100083 Sector: Solar Product: Manufacturers of PV-powered street lights, inverters and other solar PV systems. References: Beijing Sunpu Solar PV...

7

Integrating Solar PV in Utility System Operations  

E-Print Network [OSTI]

PV into Utility System Operations System Scheduling APSSolar PV into Utility System Operations and occurs at 5 p.m.Solar PV in Utility System Operations A. Mills 1 , A.

Mills, A.

2014-01-01T23:59:59.000Z

8

Solar Energy International Solar PV 101 Training  

Office of Energy Efficiency and Renewable Energy (EERE)

Solar Energy International is offering a five-day training that provides an overview of the three basic PV system applications, primarily focusing on grid-direct systems. The goal of the course is...

9

Energy 101: Solar PV | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar PV Solar PV Energy 101: Solar PV Addthis Below is the text version for the Energy 101: Solar PV video. The video opens with "Energy 101: Solar PV." This is followed by a timelapse shot of a city skyline as day turns to night. All right, we all know that the sun's energy creates heat and light, but it can also be converted to make electricity...and lots of it. The video shows images of building roofs, with and without solar photovoltaic panels. The words "Solar Photovoltaics (PV) appear onscreen over an image of a photovoltaic panel. One technology is called solar photovoltaics, or PV for short. Various images of solar panels appear onscreen, followed by images of photovoltaic manufacturing processes. You've probably seen PV panels around for years... but recent advancements

10

Solar Works! In Seattle: Introduction to Solar Electric (PV)  

Broader source: Energy.gov [DOE]

Presentation slides from residential PV workshop. Also covers general solar resource assessment, siting and financial incentives.

11

Solar Resource and PV Systems Performance  

E-Print Network [OSTI]

Solar Resource and PV Systems Performance at Selected Test Sites Prepared for the U.S. Department Subtask 11.1 Deliverables 2 and 4: Report on Solar Resource and PV Systems Performance at Selected Test agency thereof. #12;1 Solar Resource and PV Systems Performance at Selected Test Sites Contents 1

12

Sandia National Laboratories: European PV Solar Energy Conference...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

European PV Solar Energy Conference and Exhibition Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) On December 15, 2014, in...

13

EROI of Solar PV  

Science Journals Connector (OSTI)

For example, there has been around a 32 % increase in Germany’s generation capacity over the past 10 years, much of it wind and solar, along with a significant scaling up of...2013). Therefore, the cumulative emb...

Graham Palmer

2014-01-01T23:59:59.000Z

14

solar PV | OpenEI  

Open Energy Info (EERE)

PV PV Dataset Summary Description This dataset highlights trends in financing terms for U.S. renewable energy projects that closed financing between Q3 2009 and Q3 2010. Information tracked includes debt interest rates, equity returns, financial structure applied, PPA duration, and other information. NREL's Renewable Energy Finance Tracking Initiative (REFTI) tracks renewable energy project financing terms by technology and project size. The intelligence gathered is intended to reveal industry trends and to inform input assumptions for models. Source NREL Date Released March 27th, 2011 (3 years ago) Date Updated Unknown Keywords biomass financial geothermal project finance solar PV wind onshore Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon RE Project Finance Trends Q3 2009 - Q3 2010 (xlsx, 309.2 KiB)

15

Energy 101: Solar PV | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar PV Solar PV Energy 101: Solar PV Addthis Description Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses. Duration 2:01 Topic Solar Energy Economy Credit Energy Department Video MR. : All right, we all know that the sun's energy creates heat and light. But it can also be converted to make electricity, and lots of it. One technology is called solar photovoltaics or PV for short. You've probably seen PV panels around for years, but recent advancements have greatly improved their efficiency and electrical output. Enough energy from the sun hits the earth every hour to power the planet for an

16

CPS Energy- Solar PV Rebate Program  

Broader source: Energy.gov [DOE]

CPS Energy, San Antonio's municipal utility, offers rebates to customers who install solar photovoltaic (PV) systems on their homes, schools, or businesses. There are four rebate "tiers" available...

17

Integrating Solar PV into Energy Services Performance Contracts...  

Energy Savers [EERE]

Integrating Solar PV into Energy Services Performance Contracts: Options for Local Governments Nationwide Integrating Solar PV into Energy Services Performance Contracts: Options...

18

Jiangxi Solar PV Corp JSPV aka Solar PV Corporation | Open Energy  

Open Energy Info (EERE)

Solar PV Corp JSPV aka Solar PV Corporation Solar PV Corp JSPV aka Solar PV Corporation Jump to: navigation, search Name Jiangxi Solar PV Corp (JSPV, aka Solar PV Corporation ) Place Xinyu, Jiangxi Province, China Zip 338004 Sector Solar Product Xinyu-based producer of solar cells Coordinates 27.804001°, 114.923317° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.804001,"lon":114.923317,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

19

A solar concentrating photovoltaic/thermal collector .  

E-Print Network [OSTI]

??This thesis discusses aspects of a novel solar concentrating photovoltaic / thermal (PV/T) collector that has been designed to produce both electricity and hot water.… (more)

Coventry, Joseph S

2008-01-01T23:59:59.000Z

20

Impact of Solar PV Laminate Membrane Systems on Roofs | Department...  

Office of Environmental Management (EM)

Information Resources Impact of Solar PV Laminate Membrane Systems on Roofs Impact of Solar PV Laminate Membrane Systems on Roofs In 2008, CH2M HILL performed a solar site...

Note: This page contains sample records for the topic "thermal solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Integrating Solar PV in Utility System Operations  

SciTech Connect (OSTI)

This study develops a systematic framework for estimating the increase in operating costs due to uncertainty and variability in renewable resources, uses the framework to quantify the integration costs associated with sub-hourly solar power variability and uncertainty, and shows how changes in system operations may affect these costs. Toward this end, we present a statistical method for estimating the required balancing reserves to maintain system reliability along with a model for commitment and dispatch of the portfolio of thermal and renewable resources at different stages of system operations. We estimate the costs of sub-hourly solar variability, short-term forecast errors, and day-ahead (DA) forecast errors as the difference in production costs between a case with “realistic” PV (i.e., subhourly solar variability and uncertainty are fully included in the modeling) and a case with “well behaved” PV (i.e., PV is assumed to have no sub-hourly variability and can be perfectly forecasted). In addition, we highlight current practices that allow utilities to compensate for the issues encountered at the sub-hourly time frame with increased levels of PV penetration. In this analysis we use the analytical framework to simulate utility operations with increasing deployment of PV in a case study of Arizona Public Service Company (APS), a utility in the southwestern United States. In our analysis, we focus on three processes that are important in understanding the management of PV variability and uncertainty in power system operations. First, we represent the decisions made the day before the operating day through a DA commitment model that relies on imperfect DA forecasts of load and wind as well as PV generation. Second, we represent the decisions made by schedulers in the operating day through hour-ahead (HA) scheduling. Peaking units can be committed or decommitted in the HA schedules and online units can be redispatched using forecasts that are improved relative to DA forecasts, but still imperfect. Finally, we represent decisions within the operating hour by schedulers and transmission system operators as real-time (RT) balancing. We simulate the DA and HA scheduling processes with a detailed unit-commitment (UC) and economic dispatch (ED) optimization model. This model creates a least-cost dispatch and commitment plan for the conventional generating units using forecasts and reserve requirements as inputs. We consider only the generation units and load of the utility in this analysis; we do not consider opportunities to trade power with neighboring utilities. We also do not consider provision of reserves from renewables or from demand-side options. We estimate dynamic reserve requirements in order to meet reliability requirements in the RT operations, considering the uncertainty and variability in load, solar PV, and wind resources. Balancing reserve requirements are based on the 2.5th and 97.5th percentile of 1-min deviations from the HA schedule in a previous year. We then simulate RT deployment of balancing reserves using a separate minute-by-minute simulation of deviations from the HA schedules in the operating year. In the simulations we assume that balancing reserves can be fully deployed in 10 min. The minute-by-minute deviations account for HA forecasting errors and the actual variability of the load, wind, and solar generation. Using these minute-by-minute deviations and deployment of balancing reserves, we evaluate the impact of PV on system reliability through the calculation of the standard reliability metric called Control Performance Standard 2 (CPS2). Broadly speaking, the CPS2 score measures the percentage of 10-min periods in which a balancing area is able to balance supply and demand within a specific threshold. Compliance with the North American Electric Reliability Corporation (NERC) reliability standards requires that the CPS2 score must exceed 90% (i.e., the balancing area must maintain adequate balance for 90% of the 10-min periods). The combination of representing DA forecast errors in the

Mills, A.; Botterud, A.; Wu, J.; Zhou, Z.; Hodge, B-M.; Heany, M.

2013-10-31T23:59:59.000Z

22

Emissions through solar PV systems - a review  

Science Journals Connector (OSTI)

Photovoltaic (PV) system has been quoted for wide range of green house gas (GHG) emissions through life cycle assessment (LCA) studies. There are a variety of solar cell materials available, which vary in conversion efficiency and emission of CO2. This paper is based on the LCA analysis of PV system which starts from the production of these solar cells and goes through the stages known as transportation, installation, operational period to their disposal or recycling and tried to find out the GHG emission in all the stages separately and the environmental impact of this emission. In this paper, different improvement techniques were also suggested to reduce the impact of GHG through solar PV system.

Mohammad Ziaur Rahman

2014-01-01T23:59:59.000Z

23

All Solar PV | Open Energy Information  

Open Energy Info (EERE)

All Solar PV All Solar PV Jump to: navigation, search Logo: All Solar PV Name All Solar PV Address 1407-4-105 Century East,Daliushu Road Place Beijing, China Sector Solar Product Solar Energy Products Year founded 2004 Phone number 86-010-52006592 Website http://www.allsolarpv.com/ Coordinates 39.904667°, 116.408198° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.904667,"lon":116.408198,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

24

PV Solar Planet | Open Energy Information  

Open Energy Info (EERE)

Planet Planet Jump to: navigation, search Logo: PV Solar Planet Name PV Solar Planet Address 5856 S. Garland Way Place Littleton, Colorado Zip 80123 Sector Solar Product Sales of solar laminate Website http://www.pvsolarplanet.com/ Coordinates 39.610743°, -105.105245° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.610743,"lon":-105.105245,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

25

PV Solar Site Assessment (Milwaukee High School)  

Broader source: Energy.gov [DOE]

The purpose of this assessment is to provide site-specific information on how a solar electric (also referred to as a photovoltaic, or PV) system would perform at your location, including information on estimated physical size, rated output, energy production, costs, financial incentives and mounting options. Site assessors are required to present unbiased information and may not recommend contractors or products.

26

Gulf Power - Solar PV Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gulf Power - Solar PV Program Gulf Power - Solar PV Program Gulf Power - Solar PV Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $10,000/installation Program Info State Florida Program Type Utility Rebate Program Rebate Amount $2/watt Provider Energy Efficiency '''''All funding has currently been reserved and new applications are no longer being accepted. See Gulf Power's [http://www.gulfpower.com/renewable/solarElectricity.asp Solar PV] web site for more information.''''' Gulf Power offers a Solar PV rebate to residential and commercial customers. Gulf Power will provide a $2/watt rebate with a $10,000 per system maximum. In addition, Gulf Power has a Solar for Schools program, providing capital funding for PV systems. Gulf Power has worked with the Florida Solar Energy

27

Financing Solar PV at Government Sites with PPAs and Public Debt...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar PV at Government Sites with PPAs and Public Debt Financing Solar PV at Government Sites with PPAs and Public Debt Overview of financing solar photovoltaics at government...

28

Novel Control and Harmonics Impact of PV Solar Farms.  

E-Print Network [OSTI]

??This thesis presents a novel application of Photovoltaic (PV) solar system inverter, both during night and day, as a dynamic reactive power compensator STATCOM. This… (more)

Das, Byomakesh

2012-01-01T23:59:59.000Z

29

Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Program Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $5,000 Program Info Start Date 10/1/2010 State Florida Program Type Utility Rebate Program Rebate Amount Solar window of 80% or more: $1.00/watt Provider Gainesville Regional Utilities '''''NOTE: Application targets for fiscal year 2013 have been met for the GRU Solar PV Rebate Program. The next round of applications are scheduled to open on October 1, 2013 pending approval of the GRU budget by the Gainesville City Commission.''''' Gainesville Regional Utilities (GRU) offers its customers a rebate to install photovoltaic (PV) systems. Systems with solar windows of 80% or

30

Sandia National Laboratories: solar thermal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) EC Top Publications Design and Analysis...

31

Analyzing and simulating the variability of solar irradiance and solar PV powerplants  

E-Print Network [OSTI]

solar photovoltaics (PV) in traditional electric power systems, Energy Policy,solar, and renewable electricity generators: Technical barrier or rhetorical excuse? , Utilities Policy,

Lave, Matthew S.

2012-01-01T23:59:59.000Z

32

NREL: Jobs and Economic Competitiveness - Solar PV Manufacturing Cost  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar PV Manufacturing Cost Analysis Solar PV Manufacturing Cost Analysis Between 2000 and 2010 global shipments of PV cells/modules grew 53% (compound annual growth rate [CAGR]). At the same time, the U.S. market share has slipped from 30% to 7% (30% CAGR) while China/Taiwan has grown from <2% to 54% (115% CAGR) to become the leader in global production. NREL's manufacturing cost analysis has focused on understanding the regional competitiveness of solar PV manufacturing specifically: What factors have led to China's dramatic growth in PV? Is it sustainable? Can the US compete? NREL's manufacturing cost analysis studies show that: U.S. incentives to strengthen access to capital for investment in innovative solar technologies could offset China's current advantage U.S. incentives are dwarfed by the scale of Chinese incentives

33

AEP Texas Central Company - SMART Source Solar PV Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Central Company - SMART Source Solar PV Rebate Program Central Company - SMART Source Solar PV Rebate Program AEP Texas Central Company - SMART Source Solar PV Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Tribal Government Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $15,000 Non-residential: $31,2500 Program Info Start Date 08/01/2009 State Texas Program Type Utility Rebate Program Rebate Amount Residential: $1.50/W DC Non-residential: $1.25/W DC Provider Smart Source PV Program American Electric Power Texas Central Company (AEP-TCC) offers rebates to customers that install photovoltaic (PV) systems on homes or other buildings. Customers of all rate classes are eligible to participate in the

34

AEP SWEPCO - SMART Source Solar PV Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AEP SWEPCO - SMART Source Solar PV Program AEP SWEPCO - SMART Source Solar PV Program AEP SWEPCO - SMART Source Solar PV Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $15,000 Non-residential: $30,000 Program Info Start Date 08/01/2009 State Texas Program Type Utility Rebate Program Rebate Amount Residential: $1.50/watt DC Non-residential: $1.20/watt DC Provider Smart Source PV Program Southwestern Electric Power Company (SWEPCO) offers rebates to customers that install photovoltaic (PV) systems on homes. Rebates may be assigned to the customer, a service provider, or a third party. Rebates are offered at a rate of $1.50 per watt (DC) for residential installations and $1.20 per watt (DC) for non-residential installations. The maximum per project and per customer rebate for residential systems is

35

Maricopa Assn. of Governments - PV and Solar Domestic Water Heating  

Broader source: Energy.gov (indexed) [DOE]

Maricopa Assn. of Governments - PV and Solar Domestic Water Heating Maricopa Assn. of Governments - PV and Solar Domestic Water Heating Permitting Standards Maricopa Assn. of Governments - PV and Solar Domestic Water Heating Permitting Standards < Back Eligibility Commercial Construction Installer/Contractor Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Program Info State Arizona Program Type Solar/Wind Permitting Standards Provider Maricopa Association of Governments In an effort to promote uniformity, the Maricopa Association of Governments (MAG) approved standard procedures for securing necessary electrical/building permits for residential (single-family) and commercial PV systems. These procedures are a part of the MAG Building Code Standards. The standards address requirements for the solar installation, plans,

36

PV vs. Solar Water Heating- Simple Solar Payback  

Broader source: Energy.gov [DOE]

Solar energy systems hang their hats on payback. Financial payback is as tangible as money in your bank account, while other types of payback—like environmental externalities—are not usually calculated in dollars. There’s no doubt that photovoltaic (PV) and solar hot water (SHW) systems will pay you back. Maybe not as quickly as you’d like, but all systems will significantly offset their cost over their lifetimes. Here we’ll try to answer: Which system will give the quickest return on investment (ROI)?

37

PV Crystalox Solar AG formerly PV Silicon AG | Open Energy Information  

Open Energy Info (EERE)

PV Crystalox Solar AG formerly PV Silicon AG PV Crystalox Solar AG formerly PV Silicon AG Jump to: navigation, search Name PV Crystalox Solar AG (formerly PV Silicon AG) Place Abingdon, England, United Kingdom Zip OX14 4SE Sector Solar Product UK-based manufacturer of multicrystalline ingots and wafers to the solar industry; as of early 2009, to output solar-grade polysilicon. Coordinates 36.71049°, -81.975194° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.71049,"lon":-81.975194,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

38

Tucson's Solar Experience: Developing PV with RFPs and PPAs  

Broader source: Energy.gov (indexed) [DOE]

Tucson's Solar Experience: Tucson's Solar Experience: Developing PV with RFPs and PPAs Bruce Plenk Solar Coordinator City of Tucson Office of Conservation and Sustainable Development DOE EERE- January 15, 2013 Developing PV Projects with RFPs and PPAs Tucson's Solar Investment (1999- 2008) * $960,000 cumulative solar investment with City general funds. * Over $200,000 leveraged from solar grants & utility rebates. * Bus shelter solar funded through advertising. * System size range: 3 kW- 64 kW (plus some solar hot water systems). * 220 kW total installed on 8 City sites. DOE EERE- January 15, 2013 Developing PV Projects with RFPs and PPAs Pre-RFP Decisions: site selection Plan A * Property owner selects sites; vendor determines details and

39

solar thermal | OpenEI  

Open Energy Info (EERE)

thermal thermal Dataset Summary Description This dataset presents summary information related to world solar energy. It is part of a supporting dataset for the book World On the Edge: How to Prevent Environmental and Economic Collapse by Lester R. Source Earth Policy Institute Date Released January 12th, 2011 (3 years ago) Date Updated Unknown Keywords EU solar solar PV solar thermal world Data application/vnd.ms-excel icon Excel spreadsheet, summary solar energy data on multiple tabs (xls, 145.9 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Attribution License Comment "Reuse of our data is permitted. We merely ask that wherever it is listed, it be appropriately cited"

40

Massachusetts Middle School Goes Local for PV Solar Energy System |  

Broader source: Energy.gov (indexed) [DOE]

Middle School Goes Local for PV Solar Energy System Middle School Goes Local for PV Solar Energy System Massachusetts Middle School Goes Local for PV Solar Energy System August 13, 2010 - 11:00am Addthis New 26 kW solar energy system to be part of curriculum at Norton Middle School. | Photo courtesy of Norton Public Schools New 26 kW solar energy system to be part of curriculum at Norton Middle School. | Photo courtesy of Norton Public Schools Lindsay Gsell What are the key facts? Using Recovery Act Funding, Norton Middle School installed a 126 panel solar system. The school expects to save $6,000 in energy costs each year. Materials for solar system came from local Massachusetts companies. When the school buses pull up to Norton Middle School this year, students will see more than just their friends and teachers, they'll get a view of

Note: This page contains sample records for the topic "thermal solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Massachusetts Middle School Goes Local for PV Solar Energy System |  

Broader source: Energy.gov (indexed) [DOE]

Massachusetts Middle School Goes Local for PV Solar Energy System Massachusetts Middle School Goes Local for PV Solar Energy System Massachusetts Middle School Goes Local for PV Solar Energy System August 13, 2010 - 11:00am Addthis New 26 kW solar energy system to be part of curriculum at Norton Middle School. | Photo courtesy of Norton Public Schools New 26 kW solar energy system to be part of curriculum at Norton Middle School. | Photo courtesy of Norton Public Schools Lindsay Gsell What are the key facts? Using Recovery Act Funding, Norton Middle School installed a 126 panel solar system. The school expects to save $6,000 in energy costs each year. Materials for solar system came from local Massachusetts companies. When the school buses pull up to Norton Middle School this year, students will see more than just their friends and teachers, they'll get a view of

42

Tucson's Solar Experience: Developing PV with RFPs and PPAs  

Office of Energy Efficiency and Renewable Energy (EERE)

This presentation was given January 15, 2013, by Bruce Plenk, Solar Coordinator for the City of Tucson, Arizona, as part of the CommRE Developing PV Projects With RFPs and PPAs webinar.

43

Solar PV Jobs and Economic Development Impact Model Webinar  

Broader source: Energy.gov [DOE]

Join the DOE SunShot Initiative, in conjunction with the National Renewable Energy Laboratory, for a webinar on August 21, 2013, at 2-3 p.m. EST highlighting the Scenario Solar PV Jobs and Economic...

44

Solar  

Science Journals Connector (OSTI)

With sharp drop in costs for photovoltaic and solar thermal processes, solar energy has become more attractive alternative ... Almost half the total was earmarked for PV and solar thermal projects. ...

WARD WORTHY

1991-06-17T23:59:59.000Z

45

Utility Scale Solar PV Cost Steven SimmonsSteven Simmons  

E-Print Network [OSTI]

Nuclear Generating Station. 4 #12;6/19/2013 3 EVEN MORE SUNNY HEADLINES New solar panels glisten6/19/2013 1 Utility Scale Solar PV Cost Steven SimmonsSteven Simmons Northwest Power Cost Forecast 5. Levelized Costs 1 SOLAR POWER SYSTEM HAS BRIGHT FUTURE 1. Modest environmental impacts

46

Integrating Solar PV in Utility System Operations  

E-Print Network [OSTI]

of Renewable Energy Note that total costs increasedemand and renewable energy to minimize production cost. TheCost of PV . 54 Renewable Energy

Mills, A.

2014-01-01T23:59:59.000Z

47

Solar Keymark Testing of Solar Thermal Products  

Science Journals Connector (OSTI)

The Solar Keymark is the official CEN certification scheme for thermal solar collectors and factory made thermal solar systems. The Solar Keymark requires that the products fulfil the...

Harald Drück; Stephan Fischer…

2009-01-01T23:59:59.000Z

48

Solar Thermal Processes  

Science Journals Connector (OSTI)

The use of solar energy for desalination purposes was one of ... The process is based on the use of solar thermal energy to evaporate water, thus separating pure ... brine. In this chapter an overview of solar thermal

M.T. Chaibi; Ali M. El-Nashar

2009-01-01T23:59:59.000Z

49

Analyzing and simulating the variability of solar irradiance and solar PV powerplants  

E-Print Network [OSTI]

T.L. Gibson, Improved photovoltaic energy output for cloudyphotovoltaic panels in Sanliurfa, Turkey, Renewable Energy,to substantial energy production. Solar photovoltaic (PV)

Lave, Matthew S.

2012-01-01T23:59:59.000Z

50

CPS Energy - Solar PV Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

CPS Energy - Solar PV Rebate Program CPS Energy - Solar PV Rebate Program CPS Energy - Solar PV Rebate Program < Back Eligibility Commercial Industrial Institutional Multi-Family Residential Nonprofit Residential Schools Savings Category Solar Buying & Making Electricity Maximum Rebate $25,000 for Residential $80,000 for Schools and Commercial using local installer $100,000 for Commercial not using local installer Program Info Expiration Date STEP extends through 2020, annual program year expiration dates may apply State Texas Program Type Utility Rebate Program Rebate Amount Schools (public and private): $2.00/W for first 25 kW; $1.30/W for any additional capacity Residential using local installer: $1.60/W for first 25 kW Residential not using local installer:$1.30/W for first 25 kW Commercial using local installer: $1.60/W for first 25 kW; $1.30/W for any

51

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network [OSTI]

54  Solar photovoltaic Distributed Energy Resources (DER) Clearly, solar energy is a sustainable resource, with energyof distributed energy resources such as solar PV, treating

Hill, Steven Craig

2013-01-01T23:59:59.000Z

52

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network [OSTI]

adopted a program- the California Solar Initiative (CSI) -of the impact of the California Solar Initiative (CSI), andissues with rooftop solar PV in California are: 1) Utility

Hill, Steven Craig

2013-01-01T23:59:59.000Z

53

Analyzing and simulating the variability of solar irradiance and solar PV powerplants  

E-Print Network [OSTI]

dispersion of solar energy production sites could mitigatesolar radiation can lead to substantial energy production.production of 100 grid connected PV systems distributed over the area of Germany, Solar Energy,

Lave, Matthew S.

2012-01-01T23:59:59.000Z

54

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network [OSTI]

the DC electric energy from the solar panels or modules intosolar energy available is subject to change with irradiance, temperature, and aging of PV panelsrooftop solar panels. While the renewable energy PV

Hill, Steven Craig

2013-01-01T23:59:59.000Z

55

Can Solar PV Rebates Be Funded with Utility Cost Savings? | Department...  

Broader source: Energy.gov (indexed) [DOE]

Can Solar PV Rebates Be Funded with Utility Cost Savings? Can Solar PV Rebates Be Funded with Utility Cost Savings? This presentation was given by Jan Aceti of Concord Light at the...

56

High Temperature InGaN Topping Cells for Hybrid Photovoltaic/Concentrating Solar Thermal Systems  

Science Journals Connector (OSTI)

Hybrid PV/CSP systems offer the potential of higher solar to grid efficiency, with the benefits of dispatchable electricity from thermal storage. Here we present an implementation...

Honsberg, Christiana; Gleckman, Philip; Doolittle, William A; Ponce, Fernando; Arena, Chantal; Vasileska, Dragica; Goodnick, Stephen M

57

Optimum Operating Conditions for Alkaline Water Electrolysis Coupled with Solar PV Energy System  

Science Journals Connector (OSTI)

This paper investigates theoretically and experimentally the optimum operating conditions for alkaline water electrolysis coupled with a solar photovoltaic (PV)...

Ashraf Balabel; Mohamed S. Zaky; Ismail Sakr

2014-05-01T23:59:59.000Z

58

Sandia National Laboratories: solar thermal electric technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) EC Top Publications Design and Analysis...

59

The following contribution was presented at the 28. European PV Solar Energy Conference and Exhibition  

E-Print Network [OSTI]

The following contribution was presented at the 28. European PV Solar Energy Conference in photovoltaic (PV) modules [1, 2]. This cell cracking may reduce the reliability of the solar modules [3, 4 for the cracking of solar cells in a PV module. Subsequently we create a test to simulate the transport stress

60

INTEGRATION OF HELIOCLIM-1 DATABASE INTO PV-GIS TO ESTIMATE SOLAR ELECTRICITY POTENTIAL IN AFRICA  

E-Print Network [OSTI]

INTEGRATION OF HELIOCLIM-1 DATABASE INTO PV-GIS TO ESTIMATE SOLAR ELECTRICITY POTENTIAL IN AFRICA T, the proper configuration of a PV system depends on the knowledge of solar resource, which, although generally service. The PV-GIS approach makes it possible to enhance the spatial resolution of the solar radiation

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "thermal solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Rural electrification cooperative model (Solar-PV) in Madhya Pradesh  

Science Journals Connector (OSTI)

In order to speed up the development of energy supply, involving the local population can be one of the main drivers for the success story of rural electrification. The local community involvement could be crystallised in the form of a cooperative model, ... Keywords: cooperative, electrification, model, renewable energy sources, rural, solar-PV, town

Najib Altawell; Tariq Muneer

2011-12-01T23:59:59.000Z

62

Novel Controls of Photovoltaic (PV) Solar Farms.  

E-Print Network [OSTI]

??Solar Farms are absolutely idle in the night and even during daytime operate below capacity in early mornings and late afternoons. Thus, the entire expensive… (more)

Rahman, Shah Arifur

2012-01-01T23:59:59.000Z

63

Potential of Securitization in Solar PV Finance  

SciTech Connect (OSTI)

This report aims to demonstrate, hypothetically and at a high level, what volumes of solar deployment could be supported given solar industry access to the capital markets in the form of security issuance. Securitization is not anticipated to replace tax equity in the near- to mid-term, but it could provide an additional source of funds that would be comparatively inexpensive and could reduce the weighted average cost of capital for a given solar project or portfolio. Thus, the potential to securitize solar assets and seek financing in the capital markets could help to sustain the solar industry when the investment tax credit (ITC) -- one of the federal incentives that has leveraged billions of dollars of private capital in the solar industry -- drops from 30% to 10% at the close of 2016. The report offers analysis on the size of the U.S. third-party financed solar market, as well as on the volumes (in MW) of solar asset origination possible through a $100 million securitization fund (assuming no overcollateralization). It also provides data on the size of the relevant securities markets and how the solar asset class may fit into these markets.

Lowder, T.; Mendelsohn, M.

2013-12-01T23:59:59.000Z

64

Property Taxes and Solar PV Systems: Policies,  

E-Print Network [OSTI]

of the SunShot Solar Outreach Partnership: ICLEI-Local Governments for Sustainability; International City: Josh Huneycutt, Monica Andrews, and Ammar Qusaibaty, U.S. Department of Energy SunShot Initiative

65

Going Solar in Record Time with Plug-and-Play PV | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Going Solar in Record Time with Plug-and-Play PV Going Solar in Record Time with Plug-and-Play PV Going Solar in Record Time with Plug-and-Play PV April 24, 2012 - 6:10pm Addthis A plug-and-play PV system is envisioned as a consumer friendly solar technology that uses an automatic detection system to initiate communication between the solar energy system and the utility when plugged into a PV-ready circuit. | Photo by iStock. A plug-and-play PV system is envisioned as a consumer friendly solar technology that uses an automatic detection system to initiate communication between the solar energy system and the utility when plugged into a PV-ready circuit. | Photo by iStock. Kevin Lynn Systems Integration Lead, SunShot Initiative What does this project do? The Energy Department is investing up to $5 million this year to

66

PNM - Performance-Based Solar PV Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

PNM - Performance-Based Solar PV Program PNM - Performance-Based Solar PV Program PNM - Performance-Based Solar PV Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate None specified Program Info Start Date 3/1/2006 State New Mexico Program Type Performance-Based Incentive Rebate Amount ''These prices will step down over time as certain MW goals are met Prices below are current as of 09/19/2012; see program website for current prices'' Systems up to 10 kW: $0.04/kWh for RECs >10 kW up to 100 kW: $0.05/kWh for RECs >100 kW up to 1 MW: $0.02/kWh for RECs 1 MW+: Fully subscribed Provider PNM In March 2006, PNM initiated a renewable energy credit (REC) purchase program as part of its plan to comply with [http://www.dsireusa.org/library/includes/incentive2.cfm?Incentive_Code=N...

67

The Solar PV Market Today and the Need for Non-polluting Solar Energy  

Science Journals Connector (OSTI)

In Chap.  1 , it was noted that installed solar PV systems prices have now dropped to approximately $4 per W in the US. What does that mean in terms of cents per kWh and h...

Lewis M. Fraas

2014-01-01T23:59:59.000Z

68

Solel och solvärme ur LCC-perspektiv för ett passiv-flerbostadshus; PV and solar thermal for a multiple dwelling passive house under a LCC-perspective.  

E-Print Network [OSTI]

?? This master’s degree project concerns the combination of a multi dwelling passive house with solar energy for the generation of electricity and domestic hot… (more)

Böhme Florén, Simon

2008-01-01T23:59:59.000Z

69

Solar thermal aircraft  

DOE Patents [OSTI]

A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2007-09-18T23:59:59.000Z

70

Modeling and Simulation of Solar PV Arrays under Changing Illumination Conditions  

E-Print Network [OSTI]

the amount of electric power that may be generated from the solar panel at time of use. To be specificModeling and Simulation of Solar PV Arrays under Changing Illumination Conditions Dzung D Nguyen shadows (a passing cloud) on the output power of solar PV arrays. Each solar array is composed of a matrix

Lehman, Brad

71

Kauai, Hawaii: Solar Resource Analysis and High Penetration PV Potential  

SciTech Connect (OSTI)

Overview of the solar resource assessment conducted by the National Renewable Energy Laboratory (NREL) in cooperation with Kauai Island Utility Cooperative (KIUC) in Hawaii to determine the technical feasibility of increasing the contribution of solar renewable energy generation on the island of Kauaii through the use of photovoltaic (PV) arrays. The analysis, which was performed using a custom version of NREL's In My Back Yard (IMBY) software tool, showed that there is potential to generate enough energy to cover the peak load as reported for Kauai in 2007.

Helm, C.; Burman, K.

2010-04-01T23:59:59.000Z

72

Geothermal, Energy Efficiency, and Solar PV Opportunities at Nissan USE  

E-Print Network [OSTI]

Geothermal, Energy Efficiency, and Solar PV Opportunities at Nissan USA May 21st, 2014 Robinson Ford Justin Ong Jake Reeder Vikram Sridar Rica Zhang ESL-IE-14-05-04 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New... Orleans, LA. May 20-23, 2014 Carbon Goal is Driving Innovation ESL-IE-14-05-04 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 Research Areas Geothermal Solar Photovoltaics EE Verification ESL...

Ford, R.; Ong, J.; Reeder, J.; Sridar, V.; Zhang, R.

2014-01-01T23:59:59.000Z

73

Junction Evolution During Fabrication of CdS/CdTe Thin-film PV Solar Cells (Presentation)  

SciTech Connect (OSTI)

Discussion of the formation of CdTe thin-film PV junctions and optimization of CdTe thin-film PV solar cells.

Gessert, T. A.

2010-09-01T23:59:59.000Z

74

Analytical model for solar PV and CSP electricity costs: Present LCOE values and their future evolution  

Science Journals Connector (OSTI)

In this paper we first make a review of the past annual production of electricity and the cumulative installed capacity for photovoltaic (PV) and concentrating solar power (CSP) technologies. This together with the annual costs of PV modules and CSP systems allows us the determination of the experience curves and the corresponding learning rates. Then, we go over a rigorous exposition of the methodology employed for the calculation of the value of the levelized cost of electricity (LCOE) for PV and CSP. Based on this knowledge, we proceed to establish a mathematical model which yields closed-form analytical expressions for the present value of the LCOE, as well as its future evolution (2010–2050) based on the International Energy Agency roadmaps for the cumulative installed capacity. Next, we explain in detail how specific values are assigned to the twelve independent variables which enter the LCOE formula: solar resource, discount and learning rates, initial cost and lifetime of the system, operational and maintenance costs, etc. With all this background, and making use of a simple computer simulation program, we can generate the following: sensitivity analysis curves, graphs on the evolution of the LCOE in the period 2010–2050, and calculations of the years at which grid parities will be reached. These representations prove to be very useful in energy planning policies, like tariff-in schemes, tax exemptions, etc., and in making investment decisions, since they allow, for a given location, to directly compare the costs of PV vs CSP power generation technologies for the period 2010–2050. Among solar technologies, PV seems always more appropriate for areas located in middle to high latitudes of the Earth, while CSP systems, preferably with thermal storage incorporated, yield their best performance in arid areas located at relatively low latitudes.

J. Hernández-Moro; J.M. Martínez-Duart

2013-01-01T23:59:59.000Z

75

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network [OSTI]

FERC) and the National Electrical Regulatory Corporation (Of Solar PV and CPV Onto The Electrical Grid By Steven Craig24  Electrical, Controls & 

Hill, Steven Craig

2013-01-01T23:59:59.000Z

76

Distributed Solar PV for Electricity System Resiliency: Policy and Regulatory Considerations (Brochure)  

SciTech Connect (OSTI)

Distributed Solar PV systems have the potential of increasing the grid's resiliency to unforeseen events, such as extreme weather events and attacks. This paper presents the role that distributed PV can play in electric grid resiliency, introduces basic system design requirements and options, and discusses the regulatory and policy options for supporting the use of distributed PV for the purpose of increased electricity resiliency.

Not Available

2014-11-01T23:59:59.000Z

77

Solar2 | Open Energy Information  

Open Energy Info (EERE)

Solar2 Jump to: navigation, search Name: Solar2 Place: Cuxhaven, Germany Zip: 27472 Sector: Solar Product: Sells and installs PV, solar thermal and wood pellet powered heating...

78

Apex Solar | Open Energy Information  

Open Energy Info (EERE)

Name: Apex Solar Place: Sofia, Bulgaria Zip: 1616 Sector: Solar Product: Bulgarian PV and solar thermal project developer and installer. References: Apex Solar1 This article is a...

79

Scattering Solar Thermal Concentrators  

Broader source: Energy.gov [DOE]

"This fact sheet describes a scattering solar thermal concentrators project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Pennsylvania State University, is working to demonstrate a new, scattering-based approach to concentrating sunlight that aims to improve the overall performance and reliability of the collector field. The research team aims to show that scattering solar thermal collectors are capable of achieving optical performance equal to state-of-the-art parabolic trough systems, but with the added benefits of immunity to wind-load tracking error, more efficient land use, and utilization of stationary receivers."

80

El Paso Electric Company - Solar PV Pilot Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

El Paso Electric Company - Solar PV Pilot Program El Paso Electric Company - Solar PV Pilot Program El Paso Electric Company - Solar PV Pilot Program < Back Eligibility Commercial Construction Fed. Government Industrial Installer/Contractor Local Government Multi-Family Residential Nonprofit Residential Schools State Government Tribal Government Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $7,500 Non-Residential: $50,000 Per Customer with Multiple Projects: 25% of 2013 incentive budget Per Service Provider with Multiple Projects: 50% of 2013 incentive budget in each category Program Info Start Date March 2010 State Texas Program Type Utility Rebate Program Rebate Amount Residential: $0.75/W DC Non-Residential: $1.00/W DC Provider El Paso Electric Solar PV Pilot Program '''''El Paso Electric's 2013 Solar PV Rebate program will reopen at 12:00

Note: This page contains sample records for the topic "thermal solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Measurement and Modeling of Solar and PV Output Variability: Preprint  

Broader source: Energy.gov (indexed) [DOE]

Measurement and Modeling of Measurement and Modeling of Solar and PV Output Variability Preprint M. Sengupta To be presented at SOLAR 2011 Raleigh, North Carolina May 17-21, 2011 Conference Paper NREL/CP-5500-51105 April 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty,

82

PV Basics  

Science Journals Connector (OSTI)

PV systems work by converting sunlight directly into electricity. The conversion process takes place in a solar or PV cell, usually made of silicon, although new materials are being developed. PV cells need to...

2009-01-01T23:59:59.000Z

83

Performance of Solar Assisted Heat Pump Using Pv Evaporator Under ` Different Compressor Frequency  

Science Journals Connector (OSTI)

A novel photovoltaic solar assisted heat pump (PV-SAHP) system was ... -collector plate. So a portion of the solar energy received was converted to electricity and ... pump was also substantially improved because...

Gang Pei; Jie Ji; Chongwei Han; Wen Fan

2009-01-01T23:59:59.000Z

84

SOLAR ENERGY (conditionally accepted 1/2010) QUANTIFYING PV POWER OUTPUT VARIABILITY  

E-Print Network [OSTI]

SOLAR ENERGY (conditionally accepted 1/2010) QUANTIFYING PV POWER OUTPUT VARIABILITY Thomas E create major problems that will require major mitigation efforts. #12;SOLAR ENERGY (conditionally industry believe it could constrain the penetration of gridconnected PV. The U.S. Department of Energy

Perez, Richard R.

85

Passive Solar Building Design and Solar Thermal Space Heating...  

Broader source: Energy.gov (indexed) [DOE]

Passive Solar Building Design and Solar Thermal Space Heating Webinar Passive Solar Building Design and Solar Thermal Space Heating Webinar Watch a recording of National Renewable...

86

Pallets of PV: Communities Purchase Solar and Drive Down Costs Together |  

Open Energy Info (EERE)

Pallets of PV: Communities Purchase Solar and Drive Down Costs Together Pallets of PV: Communities Purchase Solar and Drive Down Costs Together Home > Groups > OpenEI Community Central Graham7781's picture Submitted by Graham7781(2002) Super contributor 5 July, 2012 - 13:20 imported OpenEI Article originally published at NREL's Renewable Energy Project Finance website Think of it like Costco or Sam's Club for purchasing solar photovolatics (PV). Some savvy folks in Oregon thought it would be a great idea to buy PV in bulk for their neighborhood to get a big volume discount and share the savings with neighbors. So they created the Solarize campaign, which over the last three years has helped Portland add "[more than] 1.7 MW of distributed PV and [establish] a strong, steady solar installation economy" [1]. In fact, so successful was the Portland model that several other

87

An empirical model for ramp analysis of utility-scale solar PV power  

Science Journals Connector (OSTI)

Abstract Short-term variability in the power generated by utility-scale solar photovoltaic (PV) plants is a cause for concern for power system operators. Without quantitative insights into such variability, system operators will have difficulty in exploiting grid integrated solar power without negatively impacting power quality and grid reliability. In this paper, we describe a statistical method to empirically model the ramping behavior of utility-scale solar PV power output for short time-scales. The general validity of the model is confirmed through the analysis of power output data from a MW-scale solar PV plant located in the state of Karnataka, India. The empirical parameters of the model are investigated for different time-intervals and solar datasets. The proposed model is able to satisfactorily approximate the actual distribution of PV ramp events and can be an effective tool in smartly planning additional resources for PV ramp control.

Bishal Madhab Mazumdar; Mohd. Saquib; Abhik Kumar Das

2014-01-01T23:59:59.000Z

88

Sunerg Solar srl | Open Energy Information  

Open Energy Info (EERE)

navigation, search Name: Sunerg Solar srl Place: Italy Sector: Solar Product: Focused on solar thermal and PV system integration. References: Sunerg Solar srl1 This article is a...

89

AEP Texas North Company - SMART Source Solar PV Rebate Program | Department  

Broader source: Energy.gov (indexed) [DOE]

North Company - SMART Source Solar PV Rebate Program North Company - SMART Source Solar PV Rebate Program AEP Texas North Company - SMART Source Solar PV Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Tribal Government Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $15,000 Non-residential: $30,000 Program Info Start Date 08/01/2009 State Texas Program Type Utility Rebate Program Rebate Amount Residential: $1.50/watt DC Non-residential: $1.20/watt DC Provider Smart Source PV Program American Electric Power Texas North Company (AEP-TNC) offers rebates to customers that install photovoltaic (PV) systems on homes or other buildings. Customers of all rate classes (e.g., residential, commercial)

90

The California Solar Initiative: Cost Trends in Customer-Sited PV  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The California Solar Initiative: Cost Trends in Customer-Sited PV The California Solar Initiative: Cost Trends in Customer-Sited PV Installations and the Impact of Retail Rate Design on the Economics of PV Systems Speaker(s): Ryan Wiser Date: January 9, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Anita Estner California's new solar initiative will dedicate over $3 billion of public funds to support the installation of customer-sited solar installations in the state over the next 10 years, principally in the form of residential and commercial photovoltaic (PV) systems. These efforts build from historical programs that have made California the third largest PV market in the world, behind Germany and Japan. This talk will summarize recent efforts at Berkeley Lab to advise the state's energy agencies in the design

91

New GE Plant to Produce Thin Film PV Solar Panels Based on NREL Technology  

Broader source: Energy.gov (indexed) [DOE]

New GE Plant to Produce Thin Film PV Solar Panels Based on NREL New GE Plant to Produce Thin Film PV Solar Panels Based on NREL Technology New GE Plant to Produce Thin Film PV Solar Panels Based on NREL Technology April 22, 2011 - 10:17am Addthis Photo courtesy of General Electric Photo courtesy of General Electric Minh Le Minh Le Program Manager, Solar Program Earlier this month, General Electric announced plans to enter the global marketplace for solar photovoltaic (PV) panels in a big way - and to do it, they will be using technology pioneered at the Department of Energy's National Renewable Energy Lab (NREL). The record-breaking Cadmium-Telluride (CdTe) thin film photovoltaic technology GE has chosen for its solar panels was originally developed more than a decade ago by a team of scientists led by NREL's Xuanzhi Wu, and

92

Thermal Storage of Solar Energy  

Science Journals Connector (OSTI)

Thermal storage is needed to improve the efficiency and usefulness of solar thermal systems. The paper indicates the main storage ... which would greatly increase the practical use of solar energy — is more diffi...

H. Tabor

1984-01-01T23:59:59.000Z

93

Thermal Solar Power Plants Experience  

Science Journals Connector (OSTI)

In parallel with rising interest in solar power generation, several solar thermal facilities of different configuration and size were ... were designed as modest-size experimental or prototype solar power plants ...

W. Grasse; H. P. Hertlein; C.-J. Winter; G. W. Braun

1991-01-01T23:59:59.000Z

94

Analysis of off-grid hybrid wind turbine/solar PV water pumping systems  

Science Journals Connector (OSTI)

While many remote water pumping systems exist (e.g. mechanical windmills, solar photovoltaic, wind-electric, diesel powered), few combine both the wind and solar energy resources to possibly improve the reliability and the performance of the system. In this paper, off-grid wind turbine (WT) and solar photovoltaic (PV) array water pumping systems were analyzed individually and combined as a hybrid system. The objectives were to determine: (1) advantages or disadvantages of using a hybrid system over using a WT or a solar PV array alone; (2) if the WT or solar PV array interfered with the output of the other; and (3) which hybrid system was the most efficient for the location. The WT used in the analysis was rated at 900 W alternating current (AC). There were three different solar PV arrays analyzed, and they were rated at 320, 480, and 640 W direct current (DC). A rectifier converted the 3-phase variable voltage AC output from the WT to DC before combining it with the solar PV array DC output. The combined renewable energies powered a single helical pump. The independent variable used in the hybrid WT/PV array analysis was in units of W/m2. The peak pump efficiency of the hybrid systems at Bushland, TX occurred for the 900 W WT combined with the 640 W PV array. The peak pump efficiencies at a 75 m pumping depth of the hybrid systems were: 47% (WT/320 W PV array), 51% (WT/480 W PV array), and 55% (WT/640 W PV array). Interference occurred between the WT and the different PV arrays (likely due to voltage mismatch between WT and PV array), but the least interference occurred for the WT/320 W PV array. This hybrid system pumped 28% more water during the greatest water demand month than the WT and PV systems would have pumped individually. An additional controller with a buck/boost converter is discussed at end of paper for improvement of the hybrid WT/PV array water pumping system.

Brian D. Vick; Byron A. Neal

2012-01-01T23:59:59.000Z

95

A 20-SUN HYBRID PV-THERMAL LINEAR MICRO-CONCENTRATOR SYSTEM FOR URBAN ROOFTOP APPLICATIONS  

E-Print Network [OSTI]

A 20-SUN HYBRID PV-THERMAL LINEAR MICRO-CONCENTRATOR SYSTEM FOR URBAN ROOFTOP APPLICATIONS D Walter-mounted system couples the benefits of distributed PV electricity generation with the on-site generation of thermal energy in a temperature range of 60 to 220 ºC. This is ideal for applications ranging from

96

Wind and Solar-Electric (PV) Systems Exemption | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Wind and Solar-Electric (PV) Systems Exemption Wind and Solar-Electric (PV) Systems Exemption < Back Eligibility Commercial Industrial Residential Savings Category Solar Buying & Making Electricity Wind Maximum Rebate None Program Info State Minnesota Program Type Property Tax Incentive Rebate Amount Solar: 100% exemption from real property taxes Wind: 100% exemption from real and personal property taxes Provider Minnesota Department of Commerce Minnesota excludes the value added by solar-electric (PV) systems installed after January 1, 1992 from real property taxation. In addition all real and personal property of wind-energy systems is exempt from the state's property tax.* However, the land on which a PV or wind system is located remains taxable.

97

Loan Guarantees for Three California PV Solar Plants Expected to Create  

Broader source: Energy.gov (indexed) [DOE]

Loan Guarantees for Three California PV Solar Plants Expected to Loan Guarantees for Three California PV Solar Plants Expected to Create 1,400 Jobs Loan Guarantees for Three California PV Solar Plants Expected to Create 1,400 Jobs June 30, 2011 - 2:29pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs What will these projects produce? These projects are expected to create 1,400 jobs in California and hundreds along the PV module supply chain across the country. Combined, the projects will produce 1330 Megawatts of installed solar power -- enough electricity to power about 275,000 homes. Building on the momentum of our SunShot Initiative, Secretary Chu announced nearly $4.5 billion in conditional loan guarantees to three California photovoltaic solar power plants today. These projects are expected to

98

Loan Guarantees for Three California PV Solar Plants Expected to Create  

Broader source: Energy.gov (indexed) [DOE]

Loan Guarantees for Three California PV Solar Plants Expected to Loan Guarantees for Three California PV Solar Plants Expected to Create 1,400 Jobs Loan Guarantees for Three California PV Solar Plants Expected to Create 1,400 Jobs June 30, 2011 - 2:29pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs What will these projects produce? These projects are expected to create 1,400 jobs in California and hundreds along the PV module supply chain across the country. Combined, the projects will produce 1330 Megawatts of installed solar power -- enough electricity to power about 275,000 homes. Building on the momentum of our SunShot Initiative, Secretary Chu announced nearly $4.5 billion in conditional loan guarantees to three California photovoltaic solar power plants today. These projects are expected to

99

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) EC Top Publications Design and Analysis...

100

ESPEE Solar | Open Energy Information  

Open Energy Info (EERE)

Place: Bangalore, Karnataka, India Zip: 560 091 Sector: Solar Product: Distributor of solar thermal water heating systems and PV lights. References: ESPEE Solar1 This article...

Note: This page contains sample records for the topic "thermal solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

ePOWER Seminar AC solar cells: A new breed of PV power generation  

E-Print Network [OSTI]

ePOWER Seminar AC solar cells: A new breed of PV power generation Professor Faisal Khan Assistant dc output which needs to be processed and inverted for ac applications. Using a modern manufacturing facility, PV panels could be mass produced without any apparent issues. Unfortunately, power converters

Abolmaesumi, Purang

102

Solar Real-Time Pricing: Is Real-Time Electricity Pricing Beneficial to Solar PV in New York City?  

Broader source: Energy.gov [DOE]

The goal of this study is to evaluate the validity of the following statement: “the coincidence of high electric energy prices and peak solar electric photovoltaic (PV) output can improve the economics of PV installations, and can also facilitate the wider use of hourly pricing.” The study is focused on Con Edison electric service territory in New York City.

103

Technical and economical system comparison of photovoltaic and concentrating solar thermal power systems depending on annual global irradiation  

Science Journals Connector (OSTI)

Concentrating solar thermal power and photovoltaics are two major technologies for converting sunlight to electricity. Variations of the annual solar irradiation depending on the site influence their annual efficiency, specific output and electricity generation cost. Detailed technical and economical analyses performed with computer simulations point out differences of solar thermal parabolic trough power plants, non-tracked and two-axis-tracked PV systems. Therefore, 61 sites in Europe and North Africa covering a global annual irradiation range from 923 to 2438 kW h/m2 a have been examined. Simulation results are usable irradiation by the systems, specific annual system output and levelled electricity cost. Cost assumptions are made for today's cost and expected cost in 10 years considering different progress ratios. This will lead to a cost reduction by 50% for PV systems and by 40% for solar thermal power plants. The simulation results show where are optimal regions for installing solar thermal trough and tracked PV systems in comparison to non-tracked PV. For low irradiation values the annual output of solar thermal systems is much lower than of PV systems. On the other hand, for high irradiations solar thermal systems provide the best-cost solution even when considering higher cost reduction factors for PV in the next decade. Electricity generation cost much below 10 Eurocents per kW h for solar thermal systems and about 12 Eurocents/kW h for PV can be expected in 10 years in North Africa.

Volker Quaschning

2004-01-01T23:59:59.000Z

104

Sundance, Skiing and Solar: Park City to Install New PV System | Department  

Broader source: Energy.gov (indexed) [DOE]

Sundance, Skiing and Solar: Park City to Install New PV System Sundance, Skiing and Solar: Park City to Install New PV System Sundance, Skiing and Solar: Park City to Install New PV System October 25, 2010 - 10:49am Addthis Park City, UT has completed several green projects recently. The town is installing a solar energy system on top of the Marsac Building at the end of the month. | Photo courtesy of Park City | Park City, UT has completed several green projects recently. The town is installing a solar energy system on top of the Marsac Building at the end of the month. | Photo courtesy of Park City | Paul Lester Communications Specialist for the Office of Energy Efficiency and Renewable Energy What does this project do? 80-panel solar energy system to be installed at Park City's Marsac Building. Recovery Act-funded system to generate up to 15% of the building's

105

Sandia National Laboratories: help U.S. PV industry expand  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

help U.S. PV industry expand Photovoltaic (PV) Regional Test Center (RTC) Website Goes Live On February 26, 2013, in Energy, National Solar Thermal Test Facility, News, News &...

106

Flat Plate PV Module Eligibility Listing Procedure Updated 6/2/14 Senate Bill 1 (SB1) defines the solar incentive programs for California, and flat plate PV  

E-Print Network [OSTI]

programs for investor owned utility (IOU) territories, the California Solar Initiative (CSI) and the New the solar incentive programs for California, and flat plate PV modules 1 must be listed on the SB1 Solar Homes Partnership (NSHP), as well as solar incentive programs administered by publicly owned

107

Xcel Energy - Solar*Rewards Program and MN Made PV Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Xcel Energy - Solar*Rewards Program and MN Made PV Rebate Program Xcel Energy - Solar*Rewards Program and MN Made PV Rebate Program Xcel Energy - Solar*Rewards Program and MN Made PV Rebate Program < Back Eligibility Commercial Local Government Nonprofit Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $90,000 (as determined by the incentive level and maximum system size) Program Info Start Date 03/01/2010 State Minnesota Program Type Utility Rebate Program Rebate Amount REC Rebate Program 2010-2012:$2.25/W DC REC Rebate Program 2013:$1.50/W DC Minnesota Made Bonus 2010-2012:Up to an additional $2.75/W DC (paired with REC Rebate) Provider Xcel Energy '''''Note: All 2012 funding for the Solar*Rewards program and Minnesota Made Bonus has been reserved as of July 11, 2012. On October 1, 2012, the

108

NREL's PV Incubator: Where Solar Photovoltaic Records Go to be Broken |  

Broader source: Energy.gov (indexed) [DOE]

NREL's PV Incubator: Where Solar Photovoltaic Records Go to be NREL's PV Incubator: Where Solar Photovoltaic Records Go to be Broken NREL's PV Incubator: Where Solar Photovoltaic Records Go to be Broken June 28, 2011 - 11:44am Addthis NREL Principal Engineer Keith Emery prepares to load three-junction concentrator cells into NREL's
 High-Intensity Pulse Solar Simulator to test for efficiency. | Department of Energy Photo | Courtesy of National Renewable Energy Laboratory | Photo by Dennis Schroeder | Public Domain | NREL Principal Engineer Keith Emery prepares to load three-junction concentrator cells into NREL's
 High-Intensity Pulse Solar Simulator to test for efficiency. | Department of Energy Photo | Courtesy of National Renewable Energy Laboratory | Photo by Dennis Schroeder | Public Domain | Minh Le Minh Le

109

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network [OSTI]

and solar thermal collectors; electrical storage, flowis disallowed; 5. a low storage, PV, and solar thermal priceand heat storage; heat exchangers for application of solar

Stadler, Michael

2008-01-01T23:59:59.000Z

110

ZEN Eaga Solar Ltd | Open Energy Information  

Open Energy Info (EERE)

Newcastle upon Tyne, United Kingdom Zip: NE2 1DB Sector: Solar Product: Distributes solar thermal water heating and PV products. References: ZEN Eaga Solar Ltd1 This...

111

Loan Guarantees for Three California PV Solar Plants Expected...  

Broader source: Energy.gov (indexed) [DOE]

Abound Solar -- who are about to get more than 1,000 new colleagues -- make a thin-film solar panel. | Photo courtesy of Abound Solar Former Chrysler Plant Changes Gears to Solar...

112

Minnesota Power - Solar-Electric (PV) Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Minnesota Power - Solar-Electric (PV) Rebate Program Minnesota Power - Solar-Electric (PV) Rebate Program Minnesota Power - Solar-Electric (PV) Rebate Program < Back Eligibility Commercial Industrial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $20,000 or 60% of installed costs, including Minnesota Made, NABCEP, and Nonprofit bonuses Energy Efficiency Bonus: $5,000 or or 15% of installed costs One rebate per customer per year Program Info Start Date 2004 Expiration Date 12/31/2013 State Minnesota Program Type Utility Rebate Program Rebate Amount Base Rebate: $1,000/kilowatt DC Minnesota Made Bonus: $800/kilowatt NABCEP Bonus: $800/kilowatt Nonprofit Bonus: $500/kilowatt Energy Efficiency Bonus: $800/kilowatt Provider Minnesota Power Minnesota Power offers a rebate of $1,000 per kilowatt (kW) DC for

113

Impact of increased penetration of wind and PV solar resources on the  

E-Print Network [OSTI]

Impact of increased penetration of wind and PV solar resources on the bulk power system Vijay the impact of increased penetration of wind and solar resources on the bulk energy system (BES) · The BES Vittal Ira A. Fulton Chair Professor School of Electrical, Computer and Energy Engineering Arizona State

114

Novel Control of PV Solar and Wind Farm Inverters as STATCOM for Increasing Connectivity of Distributed Generators.  

E-Print Network [OSTI]

??The integration of distributed generators (DGs) such as wind farms and PV solar farms in distribution networks is getting severely constrained due to problems of… (more)

AC, Mahendra

2013-01-01T23:59:59.000Z

115

Status of Solar Thermal Conversion in China  

Science Journals Connector (OSTI)

China has an abundant solar energy resource. Solar thermal conversion systems have been studied for more than 25 years and solar thermal industry has been developing since 1990’s....2 solar collectors were sold a...

Yin Zhiqiang

2009-01-01T23:59:59.000Z

116

Solar Thermal Process Heat | Open Energy Information  

Open Energy Info (EERE)

Solar Thermal Process Heat Incentives Retrieved from "http:en.openei.orgwindex.php?titleSolarThermalProcessHeat&oldid267198" Category: Articles with outstanding TODO tasks...

117

Laser Texturing for Solar Thermal Systems  

Science Journals Connector (OSTI)

High solar absorptance and low thermal emittance is desired for absorber surface in solar thermal systems. Molybdenum surface was textured by pulsed fiber laser and...

Shah, Ankit; Gupta, Mool

118

Artificial neural network based models for forecasting electricity generation of grid connected solar PV power plant  

Science Journals Connector (OSTI)

This paper presents an artificial neural network (ANN) approach for forecasting the performance of electric energy generated output from a working 25-kWp grid connected solar PV system and a 100-kWp grid connected PV system installed at Minicoy Island of Union Territory of Lakshadweep Islands. The ANN interpolates among the solar PV generation output and relevant parameters such as solar radiation, module temperature and clearness index. In this study, three ANN models are implemented and validated with reasonable accuracy on real electric energy generation output data. The first model is univariate based on solar radiation and the output values. The second model is a multivariate model based on module temperature along with solar radiation. The third model is also a multivariate model based on module temperature, solar radiation and clearness index. A forecasting performance measure such as percentage root mean square error has been presented for each model. The second model, which gives the most accurate results, has been used in forecasting the generation output for another PV system with similar accuracy.

Imtiaz Ashraf; A. Chandra

2004-01-01T23:59:59.000Z

119

CALIFORNIA SOLAR INITIATIVE-THERMAL PROGRAMHANDBOOK  

E-Print Network [OSTI]

CALIFORNIA SOLAR INITIATIVE-THERMAL PROGRAMHANDBOOK CALIFORNIA PUBLIC UTILITIES California Solar Initiative Thermal Program Handbook i 1. Introduction to CSI-Thermal Program ..........................................................................3 2.1 Participants in the CSI-Thermal Program

120

Sunshine PV | Open Energy Information  

Open Energy Info (EERE)

PV Jump to: navigation, search Name: Sunshine PV Place: Taiwan Sector: Solar Product: Taiwan-based subsidiary of Solartech Energy and thin-film PV module supplier. References:...

Note: This page contains sample records for the topic "thermal solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Integrating Solar Thermal and Photovoltaic Systems in Whole Building Energy Simulation  

E-Print Network [OSTI]

INTEGRATING SOLAR THERMAL AND PHOTOVOLTAIC SYSTEMS IN WHOLE BUILDING ENERGY SIMULATION Soolyeon Cho1 and Jeff S. Haberl2 1The Catholic University of America, Washington, DC 2Texas A&M University, College Station, TX ABSTRACT... This paper introduces methodologies on how the renewable energy generated by the solar thermal and solar photovoltaic (PV) systems installed on site can be integrated in the whole building simulation analyses, which then can be available to analyze...

Cho, S.; Haberl, J.

122

Impact of Ageing on Thermal Efficiency of Solar Thermal Collectors  

Science Journals Connector (OSTI)

Today it is common practice to calculate the performance of solar thermal systems or solar collectors based on the results of a thermal performance test carried out with a new solar collector. However, for an int...

Elke Streicher; Stephan Fischer…

2009-01-01T23:59:59.000Z

123

November 21, 2000 PV Lesson Plan 2 Solar Electric Arrays  

E-Print Network [OSTI]

and the concept of the photovoltaic IV curve. They will learn how modules are put together to generate the desired electric system A solar cell is a semicondutor device designed to turn solar irradiance into electricity such as lamps can also be used by solar cells to generate electricity if the energy of the photons is high

Oregon, University of

124

City of Knoxville, Tennessee City Council Resolution for solar PV system  

Office of Energy Efficiency and Renewable Energy (EERE)

This document is a scan of the resolution, dated July 26, 2011, for the approval of the City of Knoxville, Tennessee to use $250,000 of EECBG funding for finding innovative financing mechanisms for a planned installation of a 90-kW solar PV system.

125

2008 European PV Conference, Valencia, Spain COMPARISON OF SOLAR RADIATION FORECASTS FOR THE USA  

E-Print Network [OSTI]

2008 European PV Conference, Valencia, Spain COMPARISON OF SOLAR RADIATION FORECASTS FOR THE USA J, The University at Albany, 251 Fuller Rd, Albany, NY 12203, USA 3 University of Oldenburg, Institute of Physics for a half year period (summer 2007) at three different climates in the USA. ECMWF shows the best results

Perez, Richard R.

126

Indirect Benefits (Increased Roof Life and HVAC Savings) from a Solar PV System at the San José Convention Center  

Broader source: Energy.gov [DOE]

The City of San José is considering the installation of a solar photovoltaic (PV) system on the roof of the San José Convention Center. The installation would be on a lower section of the roof covering approximately 21,000 ft2. To assist city staff in making a decision on the PV installation, the Department of Energy Tiger Team has investigated potential indirect benefits of installing a solar PV system on the Convention Center roof. The indirect benefits include potential increase in roof life, as well as potential reduced heating and cooling load in the building due to roof shading from the PV system.

127

Sandia National Laboratories: PV  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sandia's solar photovoltaic (PV) work is focused on developing cost-effective, reliable photovoltaic energy systems and accelerating the integration of PV technology in the...

128

Scattering Solar Thermal Concentrators  

Broader source: Energy.gov (indexed) [DOE]

is a rendering of a scattering solar concentrator. Light collected by a cylindrical Fresnel lens is focused within a curved glass "guide" sheet, where it is redirected into...

129

Polymer solar cell as an emerging PV technology  

Science Journals Connector (OSTI)

In the presentation, I will present progresses in polymer solar cell in recent years. Advances in material, device structure, morphology are the focus of the talk. ...

Li, Gang

130

Study of hydrogen production system by using PV solar energy and PEM electrolyser in Algeria  

Science Journals Connector (OSTI)

Hydrogen fuel can be produced by using solar electric energy from photovoltaic (PV) modules for the electrolysis of water without emitting carbon dioxide or requiring fossil fuels. In this paper, an assessment of the technical potential for producing hydrogen from the PV/proton exchange membrane (PEM) electrolyser system is investigated. The present study estimates the amount of hydrogen produced by this system in six locations using hourly global solar irradiations on horizontal plane and ambient temperature. The system studied in this work is composed of 60 W PV module connected with a commercial 50 W PEM electrolyser via DC/DC converter equipped with a maximum power point tracking. The primary objective is to develop a mathematical model of hydrogen production system, including PV module and PEM electrolyser to analyze the system performance. The secondary aim is to compare the system performance in terms of hydrogen production at seven locations situated in different regions of Algeria. The amount of hydrogen produced is estimated at seven locations situated in different regions. In terms of hydrogen production, the results show that the southern region of Algeria (Adrar, Ghardaia, Bechar and Tamanrasset) is found to have the relatively highest hydrogen production. The total annual production of hydrogen is estimated to be around 20–29 m3 at these sites. The hydrogen production at various sites has been found to vary according to the solar radiation.

Djamila Ghribi; Abdellah Khelifa; Said Diaf; Maïouf Belhamel

2013-01-01T23:59:59.000Z

131

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

ENERGY STORAGE FOR CONCENTRATING SOLAR POWER PLANTS,”Thermal Energy Storage in Concentrated Solar Thermal PowerThermal Energy Storage in Concentrated Solar Thermal Power

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

132

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

CHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLAR POWERfor Thermal Energy Storage in Concentrated Solar Thermalfor Thermal Energy Storage in Concentrated Solar Thermal

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

133

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

and Background Solar thermal energy collection is anCHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLAR POWERfor Thermal Energy Storage in Concentrated Solar Thermal

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

134

Optimization of a stand?alone Solar PV?Wind?DG Hybrid System for Distributed Power Generation at Sagar Island  

Science Journals Connector (OSTI)

An estimation of a stand?alone solar PV and wind hybrid system for distributed power generation has been made based on the resources available at Sagar island a remote area distant to grid operation. Optimization and sensitivity analysis has been made to evaluate the feasibility and size of the power generation unit. A comparison of the different modes of hybrid system has been studied. It has been estimated that Solar PV?Wind?DG hybrid system provides lesser per unit electricity cost. Capital investment is observed to be lesser when the system run with Wind?DG compared to Solar PV?DG.

P. C. Roy; A. Majumder; N. Chakraborty

2010-01-01T23:59:59.000Z

135

Distributed Solar PV for Electricity System Resiliency: Policy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

supply. Members of the community installed a total of 700 kW of distributed rooftop solar capacity. CES units were added at the substation and distribution circuits, along with...

136

The Potential of Securitization in Solar PV Finance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

editorial guidance. The authors would also like to express their gratitude to Brian Danielewicz of U.S. Renewables Group, Albert Luu of SolarCity, and Mary Rottman of...

137

Solar Energy Initiatives Inc | Open Energy Information  

Open Energy Info (EERE)

US-based PV and solar thermal and PV project developer and installer. References: Solar Energy Initiatives Inc1 This article is a stub. You can help OpenEI by expanding...

138

Concentrating Photovoltaics: Collaborative Opportunities within DOEs CSP and PV Programs; Preprint  

SciTech Connect (OSTI)

Presented at the 2001 NCPV Program Review Meeting: DOEs Concentrating Solar Power program is investigating the viability of concentrating PV converters as an alternative to thermal conversion devices.

Mehos, M.; Lewandowski, A.; Symko-Davies, M.; Kurtz, S.

2001-10-01T23:59:59.000Z

139

Sandia National Laboratories: solar thermal storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sandia Workers Received Entrepreneurial Spirit Awards On April 3, 2013, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

140

Sandia National Laboratories: solar thermal energy storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

thermal energy storage Sandia Solar Energy Test System Cited in National Engineering Competition On May 16, 2013, in Concentrating Solar Power, Energy, Energy Storage, Facilities,...

Note: This page contains sample records for the topic "thermal solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

NREL: Climate Neutral Research Campuses - Solar Thermal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cooling system in 2006. Back to Top Technology Basics The following resources explain the fundamentals of solar thermal technologies: NREL Solar Energy Basics: Descriptive overview...

142

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT Thomas F.CENTRAL RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE progressCorporation, RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE I,

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

143

Performance analysis of PV system for maximum utilization of solar radiation  

Science Journals Connector (OSTI)

A detailed analysis of a photovolatic (PV) stand-alone system using a novel battery voltage regulator to maximize the utilization of solar radiation is presented. The basic idea of the novel battery voltage regulator is discussed in a previously published work. The proposed system disconnects the battery rather than the PV array when the battery is fully charged. When the battery is disconnected, the load is supplied through a chopper. Hence, instead of losing available solar energy-by disconnecting the array-the energy is supplied to the load. The analysis presented here shows that the PV array may be disconnected for a variable period, ranging between 4 and 5 h per day during the summer season. This result indicates that a significant energy loss, up to 50% of the available solar energy, may occur during the summer. An elaborate analysis for the chopper circuit is given in this work. The analysis showed that the chopper keeps the load voltage almost constant if the chopper parameters are carefully designed. The novel system preserves the battery charge during periods of high solar insolation, thus the battery state of charge is kept high for long periods during the year. Consequently, the battery lifetime is prolonged. In this work, the climatic conditions of Cairo, the Egyptian capital, are considered. The effects of cloudy days on the system performance were taken into consideration.

Wagdy R. Anis; M.Abdul-Sadek Nour

1994-01-01T23:59:59.000Z

144

Solar Thermal Energy Storage  

Science Journals Connector (OSTI)

Various types of thermal energy storage systems are introduced and their importance and desired characteristics are outlined. Sensible heat storage, which is one of the most commonly used storage systems in pract...

E. Paykoç; S. Kakaç

1987-01-01T23:59:59.000Z

145

2013 ISES Solar World Congress Review of satellite-based surface solar irradiation databases for  

E-Print Network [OSTI]

, either photovoltaic (PV) or thermal solar. This paper focuses on PV but can surely be extended to thermal solar technology such as concentrating solar power (CSP). PV project developers first need to identify. For that purpose, simulation software such as PVSyst (www.pvsyst.com) considers the behavior of the whole system

Recanati, Catherine

146

High-Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

Thermal Array for Next Generation Solar Thermal Power Production Award Number: DE-EE00025828 Report Date: March 15, 2013 PI: Stephen Obrey * Technical approach is focused on...

147

Solar For Schools: A Case Study in Identifying and Implementing Solar Photovoltaic (PV) Projects in Three California School Districts: Preprint  

SciTech Connect (OSTI)

The Department of Energy's (DOE) Solar America Showcase program seeks to accelerate demand for solar technologies among key end use market sectors. As part of this activity the DOE provides Technical Assistance through its national laboratories to large-scale, high-visibility solar installation projects. The Solar Schools Assessment and Implementation Project (SSAIP) in the San Francisco Bay area was selected for a 2009 DOE Solar American Showcase award. SSAIP was formed through the efforts of the nonprofit Sequoia Foundation and includes three school districts: Berkeley, West Contra Costa, and Oakland Unified School Districts. This paper summarizes the technical assistance efforts that resulted from this technical assistance support. It serves as a case study and reference document detailing the steps and processes that could be used to successfully identify, fund, and implement solar PV projects in school districts across the country.

Kandt, A.

2011-04-01T23:59:59.000Z

148

Experience Curves and Solar PV Fred Heutte, Senior Policy Associate  

E-Print Network [OSTI]

of evidence suggests staying with the consensus experience curve estimate ­ a Learning Rate of 20% for solar Market Penetration and Cost Numerous approaches have been tried over time to project changes in market penetration, price and time for technology-oriented products (Junginger 2006). Among them are: · cost per

149

"EMM Region","PC","IGCC","PC","Conv. CT","Adv. CT","Conv. CC","Adv. CC","Adv. CC w/CCS","Fuel Cell","Nuclear","Biomass","MSW","On-shore Wind","Off-shore Wind","Solar Thermal","Solar PV"  

U.S. Energy Information Administration (EIA) Indexed Site

Regional cost adjustments for technologies modeled by NEMS by Electric Market Modul (EMM) region 10,11" Regional cost adjustments for technologies modeled by NEMS by Electric Market Modul (EMM) region 10,11" "EMM Region","PC","IGCC","PC","Conv. CT","Adv. CT","Conv. CC","Adv. CC","Adv. CC w/CCS","Fuel Cell","Nuclear","Biomass","MSW","On-shore Wind","Off-shore Wind","Solar Thermal","Solar PV" ,,,"w/CCS" "1 (ERCT)",0.91,0.92,0.92,0.93,0.95,0.91,0.92,0.9,0.96,0.96,0.93,0.93,0.95,0.92,0.86,0.87 "2 (FRCC)",0.92,0.93,0.94,0.93,0.93,0.91,0.92,0.92,0.97,0.97,0.94,0.94,"N/A","N/A",0.89,0.9 "3 (MROE)",1.01,1.01,0.99,0.99,1.01,0.99,0.99,0.97,0.99,1.01,0.99,0.98,0.99,0.97,"N/A",0.96

150

Solar PV Project Financing: Regulatory and Legislative Challenges for Third-Party PPA System Owners (Revised)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

23 23 Revised February 2010 Solar PV Project Financing: Regulatory and Legislative Challenges for Third-Party PPA System Owners Katharine Kollins Duke University Bethany Speer and Karlynn Cory National Renewable Energy Laboratory National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-46723 Revised February 2010 Solar PV Project Financing: Regulatory and Legislative Challenges for Third-Party PPA System Owners Katharine Kollins Duke University Bethany Speer and Karlynn Cory

151

Supply Curves for Rooftop Solar PV-Generated Electricity for the United States  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A0-44073 A0-44073 November 2008 Supply Curves for Rooftop Solar PV-Generated Electricity for the United States Paul Denholm and Robert Margolis Supply Curves for Rooftop Solar PV-Generated Electricity for the United States Paul Denholm and Robert Margolis Prepared under Task No. PVB7.6301 Technical Report NREL/TP-6A0-44073 November 2008 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

152

Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential  

Broader source: Energy.gov (indexed) [DOE]

956 956 April 2010 Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential Chris Helm and Kari Burman National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-7A2-47956 April 2010 Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential Chris Helm and Kari Burman Prepared under Task No. IDHW.9170 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

153

Practical Solar Thermal Chilled Water  

E-Print Network [OSTI]

the potential to impact America's use of non-renewable energy beyond its own design capacity by applying it to the optimization of an existing building's system. Solar-thermal chilling systems are not new. However, few of them can be described as a practical...

Leavell, B.

2010-01-01T23:59:59.000Z

154

Solar Thermal Reactor Materials Characterization  

SciTech Connect (OSTI)

Current research into hydrogen production through high temperature metal oxide water splitting cycles has created a need for robust high temperature materials. Such cycles are further enhanced by the use of concentrated solar energy as a power source. However, samples subjected to concentrated solar radiation exhibited lifetimes much shorter than expected. Characterization of the power and flux distributions representative of the High Flux Solar Furnace(HFSF) at the National Renewable Energy Laboratory(NREL) were compared to ray trace modeling of the facility. In addition, samples of candidate reactor materials were thermally cycled at the HFSF and tensile failure testing was performed to quantify material degradation. Thermal cycling tests have been completed on super alloy Haynes 214 samples and results indicate that maximum temperature plays a significant role in reduction of strength. The number of cycles was too small to establish long term failure trends for this material due to the high ductility of the material.

Lichty, P. R.; Scott, A. M.; Perkins, C. M.; Bingham, C.; Weimer, A. W.

2008-03-01T23:59:59.000Z

155

Solar Survey of PV System Owners: San Diego  

Broader source: Energy.gov [DOE]

The purpose of the survey was to understand the motivation, challenges and benefits perceived by individuals who decided to install solar systems in the City of San Diego. Approximately 2000 surveys were sent, and 641 surveys were completed. The primary response was from the residential sector. Individuals had the option to reply electronically, using Survey Monkey, or to complete a paper survey. All responses were combined and checked to ensure that there were no duplicates.

156

Analysis of the Potential Applications of Solar Termal and Photovoltaic Systems for Northwest Vista College  

E-Print Network [OSTI]

the following RE technologies as viable: ground source heat pump (GSHP) systems, closed loop solar thermal system and photovoltaic (PV)....

Ugursal, A.; Martinez, J.; Baltazar, J. C.; Zilbershtein, G.

2013-01-01T23:59:59.000Z

157

Research Program - Center for Solar and Thermal Energy Conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In the Inorganic PV thrust, we develop nanostructured materials architectures for solar energy conversion by engineering absorption and transport properties not available in the...

158

Collector Field Maintenance: Distributed Solar Thermal Systems  

Science Journals Connector (OSTI)

This paper reports on recent operation and maintenance experiences with distributed solar thermal systems. Although some information on system-...

E. C. Boes; E. C. Cameron; E. L. Harley

1986-01-01T23:59:59.000Z

159

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network [OSTI]

significant challenge for solar thermal energy generation issolar thermal, cogeneration of electrical and thermal energy,for efficient energy production. Solar thermal plants, such

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

160

California Solar Initiative - Solar Thermal Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

California Solar Initiative - Solar Thermal Program California Solar Initiative - Solar Thermal Program California Solar Initiative - Solar Thermal Program < Back Eligibility Commercial Fed. Government Industrial Local Government Low-Income Residential Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Heating & Cooling Solar Swimming Pool Heaters Water Heating Maximum Rebate Step 1 Incentive Limits (contact utility to determine current incentive limits): Single-family residential systems that displace natural gas: $2,719 Single-family residential systems that displace electricity or propane: $1,834 Commercial and multifamily residential systems that displace natural gas: $500,000 Commercial and multifamily residential systems that displace electricity or propane: $250,000

Note: This page contains sample records for the topic "thermal solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Thermal management and overall performance of a high concentration PV  

Science Journals Connector (OSTI)

An advanced thermal management approach for HCPV systems is demonstrated in this manuscript proposing the concept of efficient heat recovery at ultra high concentration ratios by collecting the heat on a high temperature level. With the availability of this low grade heat the efficiency of the HCPV system is increased further as the 'waste' heat is supplied to different thermal consumers engaging in thermal desalination or adsorption cooling processes. To asses the value of the concept we have estimated the economic value of heat with regard to its consumer and observed that this differs from its thermodynamic value. This valuable input is was used to determine the overall generated value of a dual output system as a function of the operation temperature where we have actively demonstrated a superior performance of the HCPVT.

Werner Escher; Stephan Paredes; Severin Zimmermann; Chin Lee Ong

2012-01-01T23:59:59.000Z

162

A Wavelet-Based Variability Model (WVM) for Solar PV Power Plants  

E-Print Network [OSTI]

power fluctuations: the pv plant as a low pass filter,"point sensor to the entire PV plant at each timescale isWVM Inputs WVM Outputs PV Plant Footprint Density of PV

Lave, Matthew; Kleissl, Jan; Stein, Joshua S

2013-01-01T23:59:59.000Z

163

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network [OSTI]

in the design of larger PV plants. Chapter 2 will discussEdison central station PV plant at Hesperia, California,PV components. When a PV plant or installation is proposed

Hill, Steven Craig

2013-01-01T23:59:59.000Z

164

Rooftop Solar Potential Distributed Solar Power in NW  

E-Print Network [OSTI]

6/19/2013 1 Rooftop Solar Potential Distributed Solar Power in NW Massoud Jourabchi June 2013 1 in 2012 4 #12;6/19/2013 3 Regional Growth In Solar Energy Consumption Solar consumption both Thermal and PV h b t d i i lhas been on steady increase since early 1990s. From 2000-2010 Solar PV grow

165

An optimization-based approach to scheduling residential battery storage with solar PV: Assessing customer benefit  

Science Journals Connector (OSTI)

Abstract Several studies have suggested that battery storage co-located with solar photovoltaics (PV) benefits electricity distributors in maintaining system voltages within acceptable limits. However, without careful coordination, these potential benefits might not be realized. In this paper we propose an optimization-based algorithm for the scheduling of residential battery storage co-located with solar PV, in the context of PV incentives such as feed-in tariffs. Our objective is to maximize the daily operational savings that accrue to customers, while penalizing large voltage swings stemming from reverse power flow and peak load. To achieve this objective we present a quadratic program (QP)-based algorithm. To complete our assessment of the customer benefit, the QP-based scheduling algorithm is applied to measured load and generation data from 145 residential customers located in an Australian distribution network. The results of this case study confirm the QP-based scheduling algorithm significantly penalizes reverse power flow and peak loads corresponding to peak time-of-use billing. In the context of feed-in tariffs, the majority of customers exhibited operational savings when QP energy-shifting.

Elizabeth L. Ratnam; Steven R. Weller; Christopher M. Kellett

2015-01-01T23:59:59.000Z

166

Review of combined photovoltaic/thermal collector: solar assisted heat pump system options  

SciTech Connect (OSTI)

The advantages of using photovoltaic (PV) and combined photovoltaic/thermal (PV/T) collectors in conjunction with residential heat pumps are examined. The thermal and electrical power requirements of similar residences in New York City and Fort Worth are the loads under consideration. The TRNSYS energy balance program is used to simulate the operations of parallel, series, and cascade solar assisted heat pump systems. Similar work involving exclusively thermal collectors is reviewed, and the distinctions between thermal and PV/T systems are emphasized. Provided the defrost problem can be satisfactorily controlled, lifecycle cost analyses show that at both locations the optimum collector area is less than 50 m/sup 2/ and that the parallel system is preferred.

Sheldon, D.B.; Russell, M.C.

1980-01-01T23:59:59.000Z

167

Analyzing and simulating the variability of solar irradiance and solar PV powerplants  

E-Print Network [OSTI]

tracking solar panel. 44and azimuth angles for solar panels were calculated for aannual azimuth for a solar panel, and can be combined with

Lave, Matthew S.

2012-01-01T23:59:59.000Z

168

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network [OSTI]

13 2.2.2. Solar Thermal Versus Photovoltaic ..…………..…………doi:10.1038/nmat2090. 17. Solar Thermal Technology on anFigure 2.5: An eSolar solar thermal system in Burbank,

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

169

Photovoltaic Performance and Reliability Database: A Gateway to Experimental Data Monitoring Projects for PV at the Florida Solar Energy Center  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This site is the gateway to experimental data monitoring projects for photovoltaic (PV) at the Florida Solar Energy Center. The website and the database were designed to facilitate and standardize the processes for archiving, analyzing and accessing data collected from dozens of operational PV systems and test facilities monitored by FSEC's Photovoltaics and Distributed Generation Division. [copied from http://www.fsec.ucf.edu/en/research/photovoltaics/data_monitoring/index.htm

170

Solar energy thermalization and storage device  

DOE Patents [OSTI]

A passive solar thermalization and thermal energy storage assembly which is visually transparent. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

McClelland, John F. (Ames, IA)

1981-09-01T23:59:59.000Z

171

Bionics in textiles: flexible and translucent thermal insulations for solar thermal applications  

Science Journals Connector (OSTI)

...translucent thermal insulations for solar thermal applications Thomas Stegmaier...Denkendorf73770 Denkendorf, Germany Solar thermal collectors used at present consist...transparent thermal insulation|solar thermal collector| 1. Introduction...

2009-01-01T23:59:59.000Z

172

Sandia National Laboratories: PV Workshops  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) EC Top Publications Reference Model 5...

173

The Status of Solar Thermal Electric Technology  

Science Journals Connector (OSTI)

Solar thermal electric technology was evaluated as a future source of power for United States utilities. The technology status was developed using an ... configuration was selected for each of the major solar col...

Richard J. Holl; Edgar A. DeMeo

1990-01-01T23:59:59.000Z

174

Chapter 10 - Solar Thermal Power Systems  

Science Journals Connector (OSTI)

Abstract Chapter 10 deals with solar thermal power systems. Initially, the general design considerations are given followed by the presentation of the three basic technologies. These include the parabolic trough collector system, which includes a description of the PTC power plant and outlook of the technology; the power tower systems and the dish systems. This is followed by the thermal analysis of the basic cycles of solar thermal power plants. Subsequently, solar updraft tower systems are examined, which include the initial steps and first demonstration, and the thermal analysis. Finally, solar ponds are examined, which is a form of large solar collector and storage system that can be used for solar power generation and include practical design considerations, salty water transmission estimation, methods of heat extraction, description of two large experimental solar ponds, and applications of solar ponds.

Soteris A. Kalogirou

2014-01-01T23:59:59.000Z

175

Modeling of Thermal Storage Systems in MILP Distributed Energy Resource Models  

E-Print Network [OSTI]

HP Abs. Chiller PV Solar Thermal Annual CO 2 Emissionsfrom CHP [kW] heat from solar thermal [kW] heat from naturalof micro-CHP units, solar thermal units and heat pumps (

Steen, David

2014-01-01T23:59:59.000Z

176

Solar Thermal Incentive Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar Thermal Incentive Program Solar Thermal Incentive Program Solar Thermal Incentive Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate 50% of the project cost Program Info Funding Source Public Benefits Fund State Connecticut Program Type State Rebate Program Rebate Amount Calculated: $70 multiplied by the SRCC "C" rating multiplied by the number of collectors multiplied by the Shading Factor Provider Clean Energy Finance and Investment Authority Note: This program is not currently accepting applications. Check the program web site for information regarding future financing programs. To participate in the residential solar hot water rebate, homeowners must first complete an energy assessment. Then, they must work with CEFIA

177

High-Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

3 Q1 High-Temperature Thermal Array for Next Generation Solar Thermal Power Production - FY13 Q1 This document summarizes the progress of this Los Alamos National Laboratory...

178

Feasibility Study of Economics and Performance of Solar PV at the Atlas Industrial Park in Duluth, Minnesota  

SciTech Connect (OSTI)

The U.S. Environmental Protection Agency (EPA) Region 5, in accordance with the RE-Powering America's Land initiative, selected the Atlas Industrial Park in Duluth, Minnesota, for a feasibility study of renewable energy production. The EPA provided funding to the National Renewable Energy Laboratory (NREL) to support a feasibility study of solar renewable energy generation at the Atlas Industrial Park. NREL provided technical assistance for this project but did not assess environmental conditions at the site beyond those related to the performance of a photovoltaic (PV) system. The purpose of this study is to assess the site for a possible PV installation and estimate the cost, performance, and site impacts of different PV configurations. In addition, the study evaluates financing options that could assist in the implementation of a PV system at the site.

Steen, M.; Lisell, L.; Mosey, G.

2013-01-01T23:59:59.000Z

179

Analyzing and simulating the variability of solar irradiance and solar PV powerplants  

E-Print Network [OSTI]

Mexico, and along the Pacific Coastline. A due south azimuth would suggest that equal amounts of solar

Lave, Matthew S.

2012-01-01T23:59:59.000Z

180

Thermal Management of Solar Cells  

E-Print Network [OSTI]

a better thermal conductance and when ceramic particles areor ceramic fillers that enhances thermal conductivity. Solid

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

for concentrating solar-thermal energy use a large number ofBoth solar power plants absorb thermal energy in high-of a solar power plant that converts thermal energy into

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

182

A NEW SOLAR THERMAL RECEIVER UTILIZING SMALL PARTICLES  

E-Print Network [OSTI]

iuision, Ext. 6782 A New Solar Thermal Receiver UtilizingI \\D \\. }J F--' A NEW SOLAR THERMAL RECEIVER UTILIZING SMALL94720 ABSTRACT A new type of solar thermal receiver is being

Hunt, Arlon J.

2011-01-01T23:59:59.000Z

183

GWU Solar GmbH | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name: GWU Solar GmbH Place: Germany Sector: Solar Product: Solar PV and thermal system manufacturers. References: GWU Solar GmbH1 This article is a...

184

SolarCraft Services Inc | Open Energy Information  

Open Energy Info (EERE)

Name: SolarCraft Services Inc Place: Novato, California Zip: 94949 Sector: Solar Product: Solar thermal and PV system installer. References: SolarCraft Services Inc1 This article...

185

Project Profile: National Solar Thermal Test Facility  

Broader source: Energy.gov [DOE]

The first solar receivers ever tested in the world were tested at the National Solar Thermal Test Facility (NSTTF). The receivers were each rated up to 5 megawatts thermal (MWt). Receivers with various working fluids have been tested here over the years, including air, water-steam, molten salt, liquid sodium, and solid particles. The NSTTF has also been used for a large variety of other tests, including materials tests, simulation of thermal nuclear pulses and aerodynamic heating, and ablator testing for NASA.

186

Results of I-V Curves and Visual Inspection of PV Modules Deployed at TEP Solar Test Yard (Poster)  

SciTech Connect (OSTI)

The purpose of the PV Service Life Prediction project is to examine and report on how solar modules are holding up after being in the field for 5 or more years. This poster presents the common problems crystalline-silicon and thin-film modules exhibit, including details of modules from three manufactures that were tested January 13-16, 2014.

McNutt, P.; Wohlgemuth, J.; Miller, D.; Stoltenberg, B.

2014-02-01T23:59:59.000Z

187

Sandia National Laboratories: Sandia-AREVA Commission Solar Thermal...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateECResearch & CapabilitiesCapabilitiesSandia-AREVA Commission Solar ThermalMolten Salt Energy-Storage Demonstration Sandia-AREVA Commission Solar ThermalMolten Salt...

188

Preliminary Investigation into Solar Thermal Combi-system Performance.  

E-Print Network [OSTI]

??Solar thermal combi-systems use solar energy to provide thermal energy for space heating and domestic hot water. These systems come in many different designs and… (more)

Lee, Elizabeth

2014-01-01T23:59:59.000Z

189

Analyzing and simulating the variability of solar irradiance and solar PV powerplants  

E-Print Network [OSTI]

in spatially dispersed wind turbine systems, Solar energy. ,Smoothing effects of distributed wind turbines. Part 2.power output of distant wind turbines, Wind Energy, 7 (2004)

Lave, Matthew S.

2012-01-01T23:59:59.000Z

190

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Power Technical Management Position On July 12, 2012, in Concentrating Solar Power, Energy, Facilities, Job Listing, National Solar Thermal Test Facility, News,...

191

Americans for Solar Power PV Manufacturers Alliance ASPv PVMA | Open Energy  

Open Energy Info (EERE)

Manufacturers Alliance ASPv PVMA Manufacturers Alliance ASPv PVMA Jump to: navigation, search Name Americans for Solar Power-PV Manufacturers Alliance ((ASPv-PVMA) Place Tempe, Arizona Zip 85282 Sector Solar Product A non-profit research and education body aimed at creating the right market structures and programs to enable residential, commercial, governmental and industrial electricity consumers to have solar power options. Coordinates 33.42551°, -111.937419° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.42551,"lon":-111.937419,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

192

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network [OSTI]

PV on WWT plant ponds can be a valuable energy efficiencyPV application for Waste Water Treatment (WWT) plants and its potential role in meeting California’s RPS and energy efficiency

Hill, Steven Craig

2013-01-01T23:59:59.000Z

193

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network [OSTI]

with the growth of wind power and PV. TenneT is one ofApril 2011 has shown that wind power alone would extend thethe actual combination of wind power and PV has doubled the

Hill, Steven Craig

2013-01-01T23:59:59.000Z

194

Preliminary requirements for thermal storage subsystems in solar thermal applications  

SciTech Connect (OSTI)

Methodologies for the analysis of value and comparing thermal storage concepts are presented. Value is a measure of worth and is determined by the cost of conventional fuel systems. Value data for thermal storage in large solar thermal electric power applications are presented. Thermal storage concepts must be compared when all are performing the same mission. A method for doing that analysis, called the ranking index, is derived. Necessary data to use the methodology are included.

Copeland, R.J.

1980-04-01T23:59:59.000Z

195

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network [OSTI]

for Storage of Solar Thermal Energy,” Solar Energy, 18 (3),Toward Molecular Solar-Thermal Energy Storage,” Angewandtescale molecular solar thermal energy storage system, in

Coso, Dusan

2013-01-01T23:59:59.000Z

196

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network [OSTI]

S. a. , 2004, “Solar Thermal Collectors and Applications,”86] Schnatbaum L. , 2009, “Solar Thermal Power Plants,” Thefor Storage of Solar Thermal Energy,” Solar Energy, 18 (3),

Coso, Dusan

2013-01-01T23:59:59.000Z

197

Analyzing and simulating the variability of solar irradiance and solar PV powerplants  

E-Print Network [OSTI]

http://www1.eere.energy.gov/solar/sunshot/vision_study.html,Demand in Puerto Rico, SunShot Initiative High PenetrationNature, 443 (2006) [2] SunShot Vision Study, United States

Lave, Matthew S.

2012-01-01T23:59:59.000Z

198

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network [OSTI]

increasing levels of renewable energy production will resultpanels. While the renewable energy PV production that is on

Hill, Steven Craig

2013-01-01T23:59:59.000Z

199

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,Storage in Concentrated Solar Thermal Power Plants A ThesisStorage in Concentrated Solar Thermal Power Plants by Corey

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

200

Sandia National Laboratories: PV  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

Note: This page contains sample records for the topic "thermal solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

FPGA Based Sinusoidal Pulse Width Modulated Waveform Generation for Solar (PV) Rural Home Power Inverter  

E-Print Network [OSTI]

With the increasing concern about global environmental protection and energy demand due to rapid growth of population in developing countries and the diminishing trend of resources of conventional grid supply, the need to produce freely available pollution free natural energy such as solar/wind energy has been drawing increasing interest in every corner of the world. In an effort to utilize these energies effectively through Power converter, a great deal of research is being carried out by different researchers / scientist and engineers at different places in the world to meet the increasing demand of load. The study presents methodology to integrate solar (PV) energy (which is freely available in every corner of the world) with grid source and supplement the existing grid power in rural houses during its cut off or restricted supply period. In order to get consistency in supply a DG is also added as a standby source in the proposed integration of network. The software using novel Direct PWM modulation strate...

Singh, S N

2010-01-01T23:59:59.000Z

202

Low-cost distributed solar-thermal-electric power generation  

E-Print Network [OSTI]

Low-cost distributed solar-thermal-electric power generation A. Der Minassians, K. H. Aschenbach and feasibility study of a low-cost solar thermal electricity generation technology, suitable for distributed: Solar Thermal Collectors, Solar Thermal Electricity, Stirling Engine 1. INTRODUCTION In this paper, we

Sanders, Seth

203

Thermal Insulation in Solar Thermal Devices  

Science Journals Connector (OSTI)

Thermal Insulation is a device or a practice which is used in a system for minimising heat losses caused due to transfer of heat from hotter to colder regions. It is one of the cheapest methods of energy conse...

B. C. Raychaudhuri

1986-01-01T23:59:59.000Z

204

Project Profile: Low-Cost Solar Thermal Collector | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Thermal Collector Project Profile: Low-Cost Solar Thermal Collector SunTrough Energy logo SunTrough, under the Baseload CSP FOA, is developing a new class of solar...

205

Optical and Thermal Characterization of High Reflective Surface with Applications in Thermal-Solar Technology  

Science Journals Connector (OSTI)

Selective solar absorbing coating consists of a high thermal reflectance layer and high solar absorbance layer deposited over a substrate. In this work optical and thermal properties...

Macias, Juan Daniel; Ramirez Rincon, Jorge Andres; Lizama Tzec, Francisco Ivan; Ares Muzio, Oscar Eduardo; Oskam, Gerko; De Coss Gomez, Romeo; Alvarado Gil, Juan José

206

Optical and Thermal Characterization of High Reflection Surfaces with Applcations in Thermal-Solar Technology  

Science Journals Connector (OSTI)

Selective solar absorbing coating consists of a high thermal reflectance layer and a high solar absorbance layer deposited over a substrate. In this work optical and thermal properties...

Macias, Juan Daniel; Ramirez Rincon, Jorge Andres; Lizama Tzec, Francisco Ivan; Ares Muzio, Oscar Eduardo; Oskam, Gerko; De Coss Gomez, Romeo; Alvarado Gil, Juan José

207

Solar thermal propulsion status and future  

SciTech Connect (OSTI)

The status of solar absorber/thruster research is reviewed, and potential future applications and advanced solar thermal propulsion concepts are discussed. Emphasis is placed on two concepts, the windowless heat exchanger cavity and the porous material absorption concepts. Mission studies demonstrate greater than 50 percent increase in payload compared to chemical propulsion for a LEO-to-GEO mission. Alternative missions that have been considered for this concept include the Thousand Astronomical Unit mission, LEO-to-lunar orbit, and other SEI missions. It is pointed out that solar thermal propulsion is inherently simple and capable of moderate-to-high engine performance at moderate-to-low thrust levels. 15 refs.

Shoji, J.M.; Frye, P.E.; Mcclanahan, J.A. (Rockwell International Corp., Rocketdyne Div., Canoga Park, CA (United States))

1992-03-01T23:59:59.000Z

208

Thermal metastabilities in the solar core  

E-Print Network [OSTI]

Linear stability analysis indicates that solar core is thermally stable for infinitesimal internal perturbations. For the first time, thermal metastabilities are found in the solar core when outer perturbations with significant amplitude are present. The obtained results show that hot bubbles generated by outer perturbations may travel a significant distance in the body of the Sun. These deep-origin hot bubbles have mass, energy, and chemical composition that may be related to solar flares. The results obtained may have remarkable relations to activity cycles in planets like Jupiter and also in extrasolar planetary systems.

Attila Grandpierre; Gabor Agoston

2002-01-18T23:59:59.000Z

209

Thermal Management of Solar Cells  

E-Print Network [OSTI]

D. Mills, "Cooling of photovoltaic cells under concentratedelectric performance of a photovoltaic cells by cooling andSolar Cell A photovoltaic cell is a semiconductor that

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

210

Thermal Management of Solar Cells.  

E-Print Network [OSTI]

??The focus on solar cells as a source of photovoltaic energy is rapidly increasing nowadays. The amount of sun's energy entering earth surface in one… (more)

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

211

Utilizing Solar Thermal Energy in Textile Processing Units  

Science Journals Connector (OSTI)

This chapter presents the prospects of solar thermal energy utilization in the textile processing units in Pakistan. Various solar thermal technologies suitable for thermal energy production and their application...

Asad Mahmood; Khanji Harijan

2012-01-01T23:59:59.000Z

212

Solar PV Manufacturing Cost Analysis: U.S. Competitiveness in a Global Industry (Presentation), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar PV Manufacturing Cost Analysis: Solar PV Manufacturing Cost Analysis: U.S. Competitiveness in a Global Industry Stanford University: Precourt Institute for Energy Alan Goodrich † , Ted James † , and Michael Woodhouse October 10, 2011 † Corresponding authors: alan.goodrich@nrel.gov, ted.james@nrel.gov NREL/PR-6A20-53938 2 Analysis Disclaimer DISCLAIMER AGREEMENT These manufacturing cost model results ("Data") are provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy LLC ("Alliance") for the U.S. Department of Energy (the "DOE"). It is recognized that disclosure of these Data is provided under the following conditions and warnings: (1) these Data have been prepared for reference purposes only; (2) these Data consist of forecasts, estimates or assumptions made on a best-

213

Off-grid Solar PV Power for Humanitarian Action: From Emergency Communications to Refugee Camp Micro-grids  

Science Journals Connector (OSTI)

Abstract The need for new innovative technologies to support humanitarian action is evident today. Efficient and economic technologies properly deployed and integrated should mitigate some of the potential negative social effects of poor refugee camp infrastructure engineering. The body of the paper identifies off-grid solar Photovoltaic (PV) and solar PV hybrid packaged systems that are applicable to emergency relief activities, refugee camp activities and micro-grid development. The paper's concentration on off-grid power, the description of these engineered systems by humanitarian activity and the identification of the different engineered packaged solutions is aimed at stimulating a discussion to help scale more appropriate technologies for humanitarian action. The paper concludes with a discussion of present and future private sector business strategies to support scalability of this new and growing market.

Joseph Franceschi; Jaron Rothkop; Gabriel Miller

2014-01-01T23:59:59.000Z

214

List of Solar Thermal Process Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Process Heat Incentives Process Heat Incentives Jump to: navigation, search The following contains the list of 204 Solar Thermal Process Heat Incentives. CSV (rows 1 - 204) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat

215

OpenEI - solar thermal  

Open Energy Info (EERE)

Summary World Solar Summary World Solar Energy Data (from World on the Edge) http://en.openei.org/datasets/node/460 This dataset presents summary information related to world solar energy. It is part of a supporting dataset for the book World On the Edge: How to Prevent Environmental and Economic Collapse by Lester R.

License
216

Modelling PV Deployment: A Tool Developed at CEEP to  

E-Print Network [OSTI]

..............................................................................................................................2 3. CEEP's Solar PV Diffusion Model Overview ..............................................................................................................12 4. Comparison of the CEEP's Solar PV Diffusion Model with Other Models ..................................................................................................................................................18 i #12;List of Figures Figure 1: Overview of CEEP's Bottom-Up Solar PV Diffusion Model

Delaware, University of

217

Solar Thermal Incentive Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Thermal Incentive Program Thermal Incentive Program Solar Thermal Incentive Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Residential: $4,000 per site/meter Non-residential: $25,000 per site/meter Incentive also capped at 80% of calculated existing thermal load Program Info Funding Source RPS surcharge Start Date 12/10/2010 Expiration Date 12/31/2015 State New York Program Type State Rebate Program Rebate Amount $1.50 per kWh displaced annually, for displacement of up to 80% of calculated existing thermal load Provider New York State Energy Research and Development Authority The New York State Energy Research and Development Authority (NYSERDA)

218

SunShot Initiative: Low-Cost Solar Thermal Collector  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low-Cost Solar Thermal Collector Low-Cost Solar Thermal Collector to someone by E-mail Share SunShot Initiative: Low-Cost Solar Thermal Collector on Facebook Tweet about SunShot Initiative: Low-Cost Solar Thermal Collector on Twitter Bookmark SunShot Initiative: Low-Cost Solar Thermal Collector on Google Bookmark SunShot Initiative: Low-Cost Solar Thermal Collector on Delicious Rank SunShot Initiative: Low-Cost Solar Thermal Collector on Digg Find More places to share SunShot Initiative: Low-Cost Solar Thermal Collector on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment National Laboratory Research & Development

219

SunShot Initiative: Scattering Solar Thermal Concentrators  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scattering Solar Thermal Scattering Solar Thermal Concentrators to someone by E-mail Share SunShot Initiative: Scattering Solar Thermal Concentrators on Facebook Tweet about SunShot Initiative: Scattering Solar Thermal Concentrators on Twitter Bookmark SunShot Initiative: Scattering Solar Thermal Concentrators on Google Bookmark SunShot Initiative: Scattering Solar Thermal Concentrators on Delicious Rank SunShot Initiative: Scattering Solar Thermal Concentrators on Digg Find More places to share SunShot Initiative: Scattering Solar Thermal Concentrators on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment

220

Solar thermal electric power information user study  

SciTech Connect (OSTI)

The results of a series of telephone interviews with groups of users of information on solar thermal electric power are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from five solar thermal electric power groups of respondents are analyzed: DOE-Funded Researchers, Non-DOE-Funded Researchers, Representatives of Utilities, Electric Power Engineers, and Educators. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

1981-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Chapter III-2: Standards, Calibration and Testing of PV Modules and Solar Cells  

SciTech Connect (OSTI)

This chapter covers common PV measurement techniques and shows how potential problems and sources of error are minimized through the development and use of common standards. Measurement uncertainty, however, remains a problem for some types of PV cells, and tests continue to be developed to address these issues.

Osterwald, C. R.

2012-01-01T23:59:59.000Z

222

Energy modeling of photovoltaic thermal systems with corrugated unglazed transpired solar collectors – Part 2: Performance analysis  

Science Journals Connector (OSTI)

Abstract This paper is the second of two companion papers focused on energy modeling and performance analysis of building-integrated photovoltaic thermal (PV/T) systems with corrugated unglazed transpired solar collectors (UTCs). In Part 1, energy models are presented for two configurations: UTC only and UTC with PV panels. The models predict the energy output of the system for different weather and system design conditions and are validated using measured data from an outdoor test facility. In this paper (Part 2), the system performance is evaluated based on data drawn from the literature and simulations with Computational Fluid Dynamics (CFD) and energy models. The analysis includes parameters that are unique for this system, such as the corrugation geometry and the collector orientation. Validated, high resolution CFD simulations are used to study the impact of plate orientation and incident turbulence intensity, based on the comparison of exterior and interior Nusselt (Nu) number and the cavity exit air temperature, as well as the PV surface temperature when \\{UTCs\\} are integrated with PV panels. It is found that for configurations with UTC only, both exterior and interior convective heat transfer is enhanced in the ‘vertical’ installation, while similar results were obtained for increased incident turbulence intensity levels. However, only minor influences from these two parameters are observed for \\{UTCs\\} with PV panels. The energy model is used to investigate the optimal geometry for both configurations. It is found that parameters such as slope length and corrugation wavelength have the most significant impact on UTC performance while the wavelength and PV panel height have the largest effect for \\{UTCs\\} with PV panels.

Siwei Li; Panagiota Karava

2014-01-01T23:59:59.000Z

223

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

224

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network [OSTI]

for efficient energy production. Solar thermal plants, suchenergy production. It would require a substantial amount of land usage to install enough solar

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

225

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Visit to NSTTF On September 10, 2012, in Concentrating Solar Power, EC, National Solar Thermal Test Facility, Renewable Energy Dr. David Danielson visited Sandia National...

226

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Test Facility Air Force Research Laboratory Testing On August 17, 2012, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, Renewable...

227

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sandia Wins Three R&D100 Awards On July 24, 2013, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News & Events, Photovoltaic,...

228

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

229

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better Sandia Capabilities to Support Power Industry On January 8, 2013, in Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

230

Optics and Photonics in Solar Thermal Energy Technologies  

Science Journals Connector (OSTI)

The complex optical diagnostics employed in the development and application of solar thermal and wind energy technologies are reviewed, with application in particle receivers, solar...

Nathan, G J 'Gus'; Alwahabi, Zeyad; Dally, Bassam B; Medwell, Paul R; Arjomandi, Maziar; Sun, Zhiwei; Lau, Timothy C; van Eyk, Philip

231

City of Dubuque - Solar Thermal Licensing Requirement | Department of  

Broader source: Energy.gov (indexed) [DOE]

City of Dubuque - Solar Thermal Licensing Requirement City of Dubuque - Solar Thermal Licensing Requirement City of Dubuque - Solar Thermal Licensing Requirement < Back Eligibility Construction Installer/Contractor Savings Category Heating & Cooling Solar Water Heating Program Info State Iowa Program Type Solar/Wind Contractor Licensing Provider City of Dubuque The City of Dubuque requires a Solar Thermal License in order for a person to install a solar thermal project on a home or business. The requirement does not apply to solar photovoltaics. The licensing requirement can be met one of two ways. An installer may be Solar Thermal Certified by the North American Board of Certified Energy Practitioners (NABCEP) or An installer may complete the Northeast Iowa Community College Solar Thermal Training Installers are also required to obtain a permit before altering or

232

PV PLANNER A DESIGN AND  

E-Print Network [OSTI]

PV PLANNER A DESIGN AND ANALYSIS TOOL FOR BUILDING INTEGRATED SOLAR ELECTRIC SYSTEMS FINAL PLANNER A DESIGN AND ANALYSIS TOOL FOR BUILDING INTEGRATED SOLAR ELECTRIC SYSTEMS Final Report A Renewable............................................................................................................................................26 3. ILLUSTRATIVE OUTPUTS FROM PV PLANNER FOR A BUILDING INTEGRATED (BIPV) PV APPLICATION

Delaware, University of

233

Sandia National Laboratories: Sandia Will Host PV Bankability...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ateECEnergyComputational Modeling & SimulationSandia Will Host PV Bankability Workshop at Solar Power International (SPI) 2013 Sandia Will Host PV Bankability Workshop at Solar...

234

Solar Hot Water Heater Augmented with PV-TEM Heat Pump.  

E-Print Network [OSTI]

??Solar assisted heat pumps (SAHPs) can provide higher collector efficiencies and solar fractions when compared against standard solar hot water heaters. Vapour compression (VC) heat… (more)

PRESTON, NATHANIEL

235

Thermal and non-thermal energies in solar flares  

E-Print Network [OSTI]

The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same magnitude. This surprising result may be interpreted by an efficient conversion of non-thermal energy to hot flare plasma.

Pascal Saint-Hilaire; Arnold O. Benz

2005-03-03T23:59:59.000Z

236

Development of an economical model to determine an appropriate feed-in tariff for grid-connected solar PV electricity in all states of Australia  

Science Journals Connector (OSTI)

Australia is a country with a vast amount of natural resources including sun and wind. Australia lies between latitude of 10–45°S and longitude of 112–152°E, with a daily solar exposure of between less than 3 MJ/(m2 day) in winter and more than 30 MJ/(m2 day) in summer. Global solar radiation in Australia varies between minimum of 3285 MJ/(m2 year) in Hobart to 8760 MJ/(m2 year) in Northern Territory. As a result of this wide range of radiation level there will be a big difference between costs of solar PV electricity in different locations. A study we have recently conducted on the solar PV electricity price in all states of Australia. For this purpose we have developed an economical model and a computer simulation to determine the accurate unit price of grid-connected roof-top solar photovoltaic (PV) electricity in A$/kWh for all state of Australia. The benefit of this computer simulation is that we can accurately determine the most appropriate feed-in tariff of grid-connected solar PV energy system. The main objective of this paper is to present the results of this study. A further objective of this paper is to present the details of the unit price of solar PV electricity in the state of Victoria in each month and then to compare with electricity price from conventional power systems, which is currently applied to this state. The state Victoria is located south of Australia and in terms of sun radiation is second lowest compared with the other Australian states. The computer simulation developed for this study makes it possible to determine the cost of grid-connected solar PV electricity at any location in any country based on availability of average daily solar exposure of each month as well as economical factors of the country.

A. Zahedi

2009-01-01T23:59:59.000Z

237

Integration of solar thermal energy into processes with heat demand  

Science Journals Connector (OSTI)

An integration of solar thermal energy can reduce the utility cost and the environmental impact. A proper integration of solar thermal energy is required in order to achieve ... objective of this study is to maxi...

Andreja Nemet; Zdravko Kravanja…

2012-06-01T23:59:59.000Z

238

Tuning energy transport in solar thermal systems using nanostructured materials  

E-Print Network [OSTI]

Solar thermal energy conversion can harness the entire solar spectrum and theoretically achieve very high efficiencies while interfacing with thermal storage or back-up systems for dispatchable power generation. Nanostructured ...

Lenert, Andrej

2014-01-01T23:59:59.000Z

239

List of Solar Thermal Electric Incentives | Open Energy Information  

Open Energy Info (EERE)

Electric Incentives Electric Incentives Jump to: navigation, search The following contains the list of 548 Solar Thermal Electric Incentives. CSV (rows 1-500) CSV (rows 501-548) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Net Metering (Arizona) Net Metering Arizona Commercial Industrial Residential Nonprofit Schools Local Government State Government Fed. Government Agricultural Institutional Solar Thermal Electric Photovoltaics Wind energy Biomass No Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional

240

Thermal effects testing at the National Solar Thermal Test Facility  

SciTech Connect (OSTI)

The National Solar Thermal Test Facility is operated by Sandia National Laboratories and located on Kirkland Air Force Base in Albuquerque, New Mexico. The permanent features of the facility include a heliostat field and associated receiver tower, two solar furnaces, two point-focus parabolic concentrators, and Engine Test Facility. The heliostat field contains 220 computer-controlled mirrors, which reflect concentrated solar energy to test stations on a 61-m tower. The field produces a peak flux density of 250 W/cm{sup 2} that is uniform over a 15-cm diameter with a total beam power of over 5 MW{sub t}. The solar beam has been used to simulate aerodynamic heating for several customers. Thermal nuclear blasts have also been simulated using a high-speed shutter in combination with heliostat control. The shutter can accommodate samples up to 1 m {times} 1 m and it has been used by several US and Canadian agencies. A glass-windowed wind tunnel is also available in the Solar Tower. It provides simultaneous exposure to the thermal flux and air flow. Each solar furnace at the facility includes a heliostat, an attenuator, and a parabolic concentrator. One solar furnace produces flux levels of 270 W/cm{sup 2} over and delivers a 6-mm diameter and total power of 16 kW{sub t}. A second furnace produces flux levels up to 1000 W/cm{sup 2} over a 4 cm diameter and total power of 60 kW{sub t}. Both furnaces include shutters and attenuators that can provide square or shaped pulses. The two 11 m diameter tracking parabolic point-focusing concentrators at the facility can each produce peak flux levels of 1500 W/cm{sup 2} over a 2.5 cm diameter and total power of 75 kW{sub t}. High-speed shutters have been used to produce square pulses.

Ralph, M.E.; Cameron, C.P. [Sandia National Labs., Albuquerque, NM (United States); Ghanbari, C.M. [Technadyne Engineering Consultants, Inc., Albuquerque, NM (United States)

1992-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "thermal solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Thermal effects testing at the National Solar Thermal Test Facility  

SciTech Connect (OSTI)

The National Solar Thermal Test Facility is operated by Sandia National Laboratories and located on Kirkland Air Force Base in Albuquerque, New Mexico. The permanent features of the facility include a heliostat field and associated receiver tower, two solar furnaces, two point-focus parabolic concentrators, and Engine Test Facility. The heliostat field contains 220 computer-controlled mirrors, which reflect concentrated solar energy to test stations on a 61-m tower. The field produces a peak flux density of 250 W/cm[sup 2] that is uniform over a 15-cm diameter with a total beam power of over 5 MW[sub t]. The solar beam has been used to simulate aerodynamic heating for several customers. Thermal nuclear blasts have also been simulated using a high-speed shutter in combination with heliostat control. The shutter can accommodate samples up to 1 m [times] 1 m and it has been used by several US and Canadian agencies. A glass-windowed wind tunnel is also available in the Solar Tower. It provides simultaneous exposure to the thermal flux and air flow. Each solar furnace at the facility includes a heliostat, an attenuator, and a parabolic concentrator. One solar furnace produces flux levels of 270 W/cm[sup 2] over and delivers a 6-mm diameter and total power of 16 kW[sub t]. A second furnace produces flux levels up to 1000 W/cm[sup 2] over a 4 cm diameter and total power of 60 kW[sub t]. Both furnaces include shutters and attenuators that can provide square or shaped pulses. The two 11 m diameter tracking parabolic point-focusing concentrators at the facility can each produce peak flux levels of 1500 W/cm[sup 2] over a 2.5 cm diameter and total power of 75 kW[sub t]. High-speed shutters have been used to produce square pulses.

Ralph, M.E.; Cameron, C.P. (Sandia National Labs., Albuquerque, NM (United States)); Ghanbari, C.M. (Technadyne Engineering Consultants, Inc., Albuquerque, NM (United States))

1992-01-01T23:59:59.000Z

242

Solar wind electron temperature and density measurements on the Solar Orbiter with thermal noise spectroscopy  

E-Print Network [OSTI]

Solar wind electron temperature and density measurements on the Solar Orbiter with thermal noise of the plasma thermal noise analysis for the Solar Orbiter, in order to get accurate measurements of the total of their small mass and therefore large thermal speed, the solar wind electrons are expected to play a major role

California at Berkeley, University of

243

10 MWe Solar Thermal Central Receiver Pilot Plant — Heliostat Evaluation  

Science Journals Connector (OSTI)

Sandia is responsible for evaluating the heliostats at the 10 MWe Solar Thermal Central Receiver Pilot Plant in Barstow, California...

C. L. Mavis; J. J. Bartel

1986-01-01T23:59:59.000Z

244

Summary World Solar Energy Data (from World on the Edge) | OpenEI  

Open Energy Info (EERE)

Solar Energy Data (from World on the Edge) Solar Energy Data (from World on the Edge) Dataset Summary Description This dataset presents summary information related to world solar energy. It is part of a supporting dataset for the book World On the Edge: How to Prevent Environmental and Economic Collapse by Lester R. Brown, available from the Earth Policy Institute. This solar energy dataset includes the following: World solar PV production (1975 - 2009); Annual solar PV production by country (1995 - 2009); Solar PV production in the US (1976 - 2009); World cumulative solar PV installations (1998 - 2009); Annual solar PV installations in selected countries and the world (1998 - 2009); Cumulative solar PV installations in the US (1998 - 2009) and EU (1998 - 2009); World installed concentrating solar thermal power capacity (1980 - 2009); solar water and space heating area in selected countries (2008) and top ten countries (2008).

245

Thermal and non-thermal energies in solar flares  

E-Print Network [OSTI]

The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same m...

Saint-Hilaire, P; Saint-Hilaire, Pascal; Benz, Arnold O.

2005-01-01T23:59:59.000Z

246

Flexible thermal cycle test equipment for concentrator solar cells  

DOE Patents [OSTI]

A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.

Hebert, Peter H. (Glendale, CA); Brandt, Randolph J. (Palmdale, CA)

2012-06-19T23:59:59.000Z

247

SUBMITTED TO GRL 1 Thermal Anisotropies in the Solar Wind  

E-Print Network [OSTI]

SUBMITTED TO GRL 1 E Thermal Anisotropies in the Solar Wind: vidence of Heating by Interstellar cyclotron instabilit s generated by newly created pickup ions and heats the thermal solar wind protons TO GRL 2 T Introduction he thermal anisotropy of the solar wind is the ratio between the temperatures p

Richardson, John

248

A solar concentrating photovoltaic / thermal collector J.S. Coventry  

E-Print Network [OSTI]

A solar concentrating photovoltaic / thermal collector J.S. Coventry Centre for Sustainable Energy solar concentrating photovoltaic / thermal collector Coventry "Photovoltaic and Wind Power for Urban of both photovoltaic and solar thermal power generation. Some of the recent projects in Australia

249

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ECISEnergyRenewable EnergySolar EnergyConcentrating Solar Power ECISEnergyRenewable EnergySolar EnergyConcentrating Solar Power (CSP)National Solar Thermal Test Facility National Solar Thermal Test Facility NSTTF Interactive Tour National Solar Thermal Test Facility (NSTTF) Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility of this type in the United States. The NSTTF's primary goal is to provide experimental engineering data for the design, construction, and operation of unique components and systems in proposed solar thermal electrical plants planned for large-scale power generation. In addition, the site was built and instrumented to provide test facilities for a variety of solar and nonsolar applications. The facility can provide

250

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network [OSTI]

the 20 th European Photovoltaic Solar Energy Conference and54  Solar photovoltaic Distributed Energy Resources (DER) M. International Energy Agency Photovoltaic Power Systems

Hill, Steven Craig

2013-01-01T23:59:59.000Z

251

Small solar (thermal) water-pumping system  

SciTech Connect (OSTI)

A small solar (thermal) water pump phototype was tested. The pump works on an organic Rankine cycle using refrigerant R113. The design of the pump is described. Detailed temperature and pressure measurements of the working fluid for different operating conditions are performed. The behaviour of the cycle is analysed to get a clear picture of the thermodynamic process. Power-characteristic curves are obtained by a systematic variation of water temperature, pumping head and heat input. 10 refs., 13 figs., 2 tabs.

Spindler, K.; Hahne, E. [Universitaet Stuttgart (Germany)] [Universitaet Stuttgart (Germany); Chandwalker, K. [Stiletto Engineers, Hyderabad (India)] [Stiletto Engineers, Hyderabad (India)

1996-07-01T23:59:59.000Z

252

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants.  

E-Print Network [OSTI]

??Experimental studies are presented that aim to utilize phase change materials (PCM's) to enhance thermal energy storage systems for concentrated solar thermal power (CSP) systems.… (more)

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

253

Is Germany?s energy transition a case of successful green industrial policy? Contrasting wind and solar PV  

Science Journals Connector (OSTI)

Abstract In this paper, we address the challenge of Germany?s energy transition (Energiewende) as the centrepiece of the country?s green industrial policy. In addition to contributing to global climate change objectives, the Energiewende is intended to create a leading position for German industry in renewable energy technologies, boost innovative capabilities and create employment opportunities in future growth markets at the least possible cost. The success in reaching these aims, and indeed the future of the entire concept, is hotly debated. The paper aims to provide an up-to-date assessment of what has become a fierce controversy by comparing solar photovoltaic (PV) and wind energy along five policy objectives: (1) competitiveness, (2) innovation, (3) job creation, (4) climate change mitigation, and (5) cost. We find mixed evidence that Germany reaches its green industrial policy aims at reasonable costs. Wind energy seems to perform better against all policy objectives, while the solar PV sector has come under intense pressure from international competition. However, this is only a snapshot of current performance, and the long term and systemic perspective required for the energy sector transformation suggests a need for a balanced mix of a variety of clean energy sources.

Anna Pegels; Wilfried Lütkenhorst

2014-01-01T23:59:59.000Z

254

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

Solar thermal energy collection is an exciting technology for the replacement of non-renewable energy production.

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

255

Sandia National Laboratories: PV Value  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

256

Sandia National Laboratories: PV evaluation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

257

Gulf Power - Solar Thermal Water Heating Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gulf Power - Solar Thermal Water Heating Program Gulf Power - Solar Thermal Water Heating Program Gulf Power - Solar Thermal Water Heating Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $1,000 Program Info State Florida Program Type Utility Rebate Program Provider Energy Efficiency '''''This program reopened on October 3, 2011 for 2012 applications. Funding is limited and must be reserved through online application before the installation of qualifying solar water heating systems. See Gulf Power's [http://www.gulfpower.com/renewable/solarThermal.asp Solar Water Heating] web site for more information.''''' Gulf Power offers a Solar Thermal Water Heating rebate to customers who install water heaters. This program started after the original pilot

258

Unique Solar Thermal Laboratory Gets an Upgrade | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Unique Solar Thermal Laboratory Gets an Upgrade Unique Solar Thermal Laboratory Gets an Upgrade Unique Solar Thermal Laboratory Gets an Upgrade September 10, 2010 - 2:54pm Addthis This “power tower” is part of the National Solar Thermal Test Facility in Albuquerque, which is getting upgrades through Recovery Act funding. | Photo Courtesy of Sandia National Laboratories This "power tower" is part of the National Solar Thermal Test Facility in Albuquerque, which is getting upgrades through Recovery Act funding. | Photo Courtesy of Sandia National Laboratories Lorelei Laird Writer, Energy Empowers The National Solar Thermal Test Facility at Sandia National Laboratories is unique - and in demand. The Facility has been instrumental in NASA tests, national defense programs and concentrated solar technology development.

259

Camera-based reflectivity measurement for solar thermal applications  

E-Print Network [OSTI]

Tubular receivers for solar thermal power plants, specifically tower plants, are in common use, in plantsCamera-based reflectivity measurement for solar thermal applications John D. Pye1 , Clifford K. Ho2 of the solar-weighted reflectivity of the receiver component in CSP systems. Such reflectivity measurement

260

Sorption thermal storage for solar energy  

Science Journals Connector (OSTI)

Abstract Sorption technologies, which are considered mainly for solar cooling and heat pumping before, have gained a lot of interests for heat storage of solar energy in recent years, due to their high energy densities and long-term preservation ability for thermal energy. The aim of this review is to provide an insight into the basic knowledge and the current state of the art of research on sorption thermal storage technologies. The first section is concerned with the terminology and classification for sorption processes to give a clear scope of discussion in this paper. Sorption thermal storage is suggested to cover four technologies: liquid absorption, solid adsorption, chemical reaction and composite materials. Then the storage mechanisms and descriptions of basic closed and open cycles are given. The progress of sorption materials, cycles, and systems are also reviewed. Besides the well-known sorbents like silica gels and zeolites, some new materials, including aluminophosphates (AlPOs), silico-aluminophosphates (SAPOs) and metal-organic frameworks (MOFs), are proposed for heat storage. As energy density is a key criterion, emphais is given to the comparison of storage densities and charging tempertures for different materials. Ongoing research and development studies show that the challenges of the technology focus on the aspects of different types of sorption materials, the configurations of absorption cycles and advanced adsorption reactors. Booming progress illustrates that sorption thermal storage is a realistic and sustainable option for storing solar energy, especially for long-term applications. To bring the sorption storage solution into market, more intensive studies in fields of evaluation of advanced materials and development of efficient and compact prototypes are still required.

N. Yu; R.Z. Wang; L.W. Wang

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Comparing solar PV (photovoltaic) with coal-fired electricity production in the centralized network of South Africa  

Science Journals Connector (OSTI)

Abstract South Africa has a highly centralized network, in which almost all electricity is produced in Mpumalanga and transmitted throughout South Africa. In the case of the Western Cape, electricity has to be transmitted over 800–1370 km. This generates losses and entails high transmission costs. Investments in additional production and transmission capacity are needed to cope with the growing demand. Although there is a large potential for solar energy in South Africa, investments are lacking while large investments in new coal-fired power plants are being executed. These coal power plants do not only increase the need for heavier transmission infrastructure, but also have a higher CO2 emission level and a higher pressure on water reserves. This paper performs a more comprehensive cost-analysis between solar energy production and coal production facilities, to make a more elaborate picture of which technologies are more plausible to foresee in the growing demand of electricity. The current centralized electricity infrastructure makes the investment in large production facilities more likely. However, it should be questioned if the investment in large centralized solar parks will be more beneficial than the investments by consumers in smaller solar PV facilities on site.

R.A.F. de Groot; V.G. van der Veen; A.B. Sebitosi

2013-01-01T23:59:59.000Z

262

A current and future state of art development of hybrid energy system using wind and PV-solar: A review  

Science Journals Connector (OSTI)

The wind and solar energy are omnipresent, freely available, and environmental friendly. The wind energy systems may not be technically viable at all sites because of low wind speeds and being more unpredictable than solar energy. The combined utilization of these renewable energy sources are therefore becoming increasingly attractive and are being widely used as alternative of oil-produced energy. Economic aspects of these renewable energy technologies are sufficiently promising to include them for rising power generation capability in developing countries. A renewable hybrid energy system consists of two or more energy sources, a power conditioning equipment, a controller and an optional energy storage system. These hybrid energy systems are becoming popular in remote area power generation applications due to advancements in renewable energy technologies and substantial rise in prices of petroleum products. Research and development efforts in solar, wind, and other renewable energy technologies are required to continue for, improving their performance, establishing techniques for accurately predicting their output and reliably integrating them with other conventional generating sources. The aim of this paper is to review the current state of the design, operation and control requirement of the stand-alone PV solar–wind hybrid energy systems with conventional backup source i.e. diesel or grid. This Paper also highlights the future developments, which have the potential to increase the economic attractiveness of such systems and their acceptance by the user.

Pragya Nema; R.K. Nema; Saroj Rangnekar

2009-01-01T23:59:59.000Z

263

Review Article Solar-Thermal Powered Desalination: Its Significant  

E-Print Network [OSTI]

1 Review Article Solar-Thermal Powered Desalination: Its Significant Challenges and Potential John@kau.edu.sa Abstract Solar-desalination systems are desalination systems that are powered by solar energy. With the goal of identifying the key technical challenges and potential opportunities solar-desalination, we

Reif, John H.

264

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network [OSTI]

problems are encountered. There are utility concerns that a high penetration of inverter-based solar energyproblem with a non-imaging 2D Fresnel concentrator. Lorenzo (1981) evaluated chromatic aberrations in solar energy

Hill, Steven Craig

2013-01-01T23:59:59.000Z

265

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network [OSTI]

solar having a combined 15,000 Gigawatts of potential capacity [1,2]. For the past 30 years, California

Hill, Steven Craig

2013-01-01T23:59:59.000Z

266

Solarize Guidebook: A Community Guide to Collective Purchasing of Residential PV Systems (Book)  

SciTech Connect (OSTI)

This guidebook is intended as a road map for project planners and solar advocates who want to convert 'interest' into 'action,' to break through market barriers and permanently transform the market for residential solar installations in their communities. It describes the key elements of the Solarize campaigns in Portland, and offers several program refinements from projects beyond Portland. The guidebook provides lessons, considerations, and step-by-step plans for project organizers to replicate the success of Solarize Portland.

Not Available

2012-05-01T23:59:59.000Z

267

Augmentation of thermal power stations with solar energy  

Science Journals Connector (OSTI)

A new concept of integration of a solar concentrator field with a modern thermal power station is proposed. Such a configuration ... and infrastructure as a base load facility and solar energy to reduce the fuel ...

BR Pai

1991-06-01T23:59:59.000Z

268

Thermal model of solar absorption HVAC systems  

SciTech Connect (OSTI)

This paper presents a thermal model that describes the performance of solar absorption HVAC systems. The model considers the collector array, the building cooling and heating loads, the absorption chiller and the high temperature storage. Heat losses from the storage tank and piping are included in the model. All of the results presented in the paper are for an array of flat plate solar collectors with black chrome (selective surface) absorber plates. The collector efficiency equation is used to calculate the useful heat output from the array. The storage is modeled as a non-stratified tank with polyurethane foam insulation. The system is assumed to operate continuously providing air conditioning during the cooling season, space heating during the winter and hot water throughout the year. The amount of heat required to drive the chiller is determined from the coefficient of performance of the absorption cycle. Results are presented for a typical COP of 0.7. The cooling capacity of the chiller is a function of storage (generator) temperature. The nominal value is 190 F (88 C) and the range of values considered is 180 F (82 C) to 210 F (99 C). Typical building cooling and heating loads are determined as a function of ambient conditions. Performance results are presented for Sacramento, CA and Washington, D.C. The model described in the paper makes use of National Solar Radiation Data Base (NSRDB) data and results are presented for these two locations. The uncertainties in the NSRDB are estimated to be in a range of 6% to 9%. This is a significant improvement over previously available data. The model makes it possible to predict the performance of solar HVAC systems and calculate quantities such as solar fraction, storage temperature, heat losses and parasitic power for every hour of the period for which data are available.

Bergquam, J.B.; Brezner, J.M. [California State Univ., Sacramento, CA (United States). Dept. of Mechanical Engineering; [Bergquam Energy Systems, Sacramento, CA (United States)

1995-11-01T23:59:59.000Z

269

A 40KW ROOF MOUNTED PV THERMAL CONCENTRATOR SYSTEM J.F.H. Smeltink1  

E-Print Network [OSTI]

during 2003-4. The system comprises eight 24 metre long single axis tracking reflective solar collectors and hydronic in-slab floor heating. Equipment associated with the solar collection system was installed during

270

Energy Balance and Thermal Comfort in Passive Solar Housing  

Science Journals Connector (OSTI)

To evaluate the performance of different passive solar dwellings it is necessary to consider not only the thermal performance but also the “comfort performance” of the system.

K. Alder; Ch. Eriksson; A. Faist; N. Morel

1984-01-01T23:59:59.000Z

271

Parabolic Trough Solar Thermal Electric Power Plants (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides an overview of the potential for parabolic trough solar thermal electric power plants, especially in the Southwestern U.S.

Not Available

2006-07-01T23:59:59.000Z

272

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration.  

E-Print Network [OSTI]

??A solar tracker and concentrator was designed and assembled for the purpose of cogeneration of thermal power and electrical power using thermoelectric technology. A BiTe… (more)

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

273

Colored solar-thermal absorbing coatings with high absorptance  

Science Journals Connector (OSTI)

It's difficult to obtain different color appearance and keep high absorptance simultaneously. We introduced AR films into solar-thermal absorbing coatings to tune the color appearance...

Wang, Shao-Wei; Chen, Feiliang; Liu, Xingxing; Wang, Xiaofang; Yu, Liming; Lu, Wei

274

The Value Proposition for High Lifetime (p-type) and Thin Silicon Materials in Solar PV Applications: Preprint  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Proposition for High Proposition for High Lifetime (p-type) and Thin Silicon Materials in Solar PV Applications Preprint Alan Goodrich, Michael Woodhouse, and Peter Hacke Presented at the 2012 IEEE Photovoltaic Specialists Conference Austin, Texas June 3-8, 2012 Conference Paper NREL/CP-6A20-55477 June 2012 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

275

The economic effect of electricity net-metering with solar PV: Consequences for network cost recovery, cross subsidies and policy objectives  

Science Journals Connector (OSTI)

Abstract Net-metering is commonly known as a practice by which owners of distributed generation (DG) units may offset their electricity consumption from the grid with local generation. The increasing number of prosumers (consumers that both produce and consume electricity) with solar photovoltaic (PV) generation combined with net-metering results in reduced incomes for many network utilities worldwide. Consequently, this pushes utilities to increase charges per kW h in order to recover costs. For non-PV owners, this could result into inequality issues due to the fact that also non-PV owners have to pay higher chargers for their electricity consumed to make up for netted costs of PV-owners. In order to provide insight in those inequality issues caused by net-metering, this study presents the effects on cross-subsidies, cost recovery and policy objectives evolving from different applied netmetering and tariff designs for a residential consumer. Eventually this paper provides recommendations regarding tariffs and metering that will result in more explicit incentives for PV, instead of the current implicit incentives which are present to PV owners due to net-metering.

Cherrelle Eid; Javier Reneses Guillén; Pablo Frías Marín; Rudi Hakvoort

2014-01-01T23:59:59.000Z

276

Solar Thermal Energy Storage Device: Hybrid Nanostructures for High-Energy-Density Solar Thermal Fuels  

SciTech Connect (OSTI)

HEATS Project: MIT is developing a thermal energy storage device that captures energy from the sun; this energy can be stored and released at a later time when it is needed most. Within the device, the absorption of sunlight causes the solar thermal fuel’s photoactive molecules to change shape, which allows energy to be stored within their chemical bonds. A trigger is applied to release the stored energy as heat, where it can be converted into electricity or used directly as heat. The molecules would then revert to their original shape, and can be recharged using sunlight to begin the process anew. MIT’s technology would be 100% renewable, rechargeable like a battery, and emissions-free. Devices using these solar thermal fuels—called Hybrisol—can also be used without a grid infrastructure for applications such as de-icing, heating, cooking, and water purification.

None

2012-01-09T23:59:59.000Z

277

Financing Solar PV at Government Sites with PPAs and Public Debt...  

Broader source: Energy.gov (indexed) [DOE]

for goods and services may be structured. Analysis of Replicability in 10 Key Solar Markets The replicability of the hybrid model was evaluated in 10 states: Arizona,...

278

Japan's Solar Photovoltaic (PV) Market: An Analysis of Residential System Prices (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes market and policy factors influencing residential solar photovoltaic system prices in Japan, and compares these factors to related developments in the United States.

James, T.

2014-03-01T23:59:59.000Z

279

Full Steam Ahead for PV in US Homes?  

E-Print Network [OSTI]

state, local, and utility rebate programs targeting solar –implications for PV rebate program administrators, PV systemReduce the Size of the Rebates They Provide Without

Bolinger, Mark A

2009-01-01T23:59:59.000Z

280

Sandia National Laboratories: PV bankability  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regional Testing Center (PV RTC), Renewable Energy, Solar, Solar Newsletter, SunShot U.S. Senator Bernie Sanders (I-VT) joined representatives of Sandia, IBM, and the DOE...

Note: This page contains sample records for the topic "thermal solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Comparison of Pyranometers vs. PV Reference Cells for Evaluation of PV Array Performance  

SciTech Connect (OSTI)

As the photovoltaics (PV) industry has grown, the need for accurately monitoring the solar resource of PV power plants has increased. Historically, the PV industry has relied on thermopile pyranometers for irradiance measurements, and a large body of historical irradiance data taken with pyranometers exists. However, interest in PV reference devices is increasing. In this paper, we discuss why PV reference devices are better suited for PV applications, and estimate the typical uncertainties in irradiance measurements made with both pyranometers and PV reference devices. We assert that the quantity of interest in monitoring a PV power plant is the equivalent irradiance under the IEC 60904-3 reference solar spectrum that would produce the same electrical response in the PV array as the incident solar radiation. For PV-plant monitoring applications, we find the uncertainties in irradiance measurements of this type to be on the order of +/-5% for thermopile pyranometers and +/-2.4% for PV reference devices.

Dunn, L.; Gostein, M.; Emery, K.

2012-09-01T23:59:59.000Z

282

Estimating Solar PV Output Using Modern Space/Time Geostatistics (Presentation)  

SciTech Connect (OSTI)

This presentation describes a project that uses mapping techniques to predict solar output at subhourly resolution at any spatial point, develop a methodology that is applicable to natural resources in general, and demonstrate capability of geostatistical techniques to predict the output of a potential solar plant.

Lee, S. J.; George, R.; Bush, B.

2009-04-29T23:59:59.000Z

283

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network [OSTI]

thermal absorption solar photo- storage chiller thermalbetween solar thermal collection and storage systems and CHPimpact of solar thermal and heat storage on CO 2 emissions

Marnay, Chris

2010-01-01T23:59:59.000Z

284

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network [OSTI]

Environmental Value of Solar Thermal Systems in MicrogridsEnvironmental Value of Solar Thermal Systems in Microgridsa) ABSTRACT The addition of solar thermal and heat storage

Marnay, Chris

2010-01-01T23:59:59.000Z

285

Solar wind electron density and temperature over solar cycle 23: Thermal noise measurements on Wind  

E-Print Network [OSTI]

Solar wind electron density and temperature over solar cycle 23: Thermal noise measurements on Wind; received in revised form 6 April 2005; accepted 25 April 2005 Abstract We present the solar wind plasma parameters obtained from the Wind spacecraft during more than nine years, encompassing almost the whole solar

California at Berkeley, University of

286

Energy management in solar thermal power plants with double thermal storage system and subdivided solar field  

Science Journals Connector (OSTI)

In the paper, two systems for solar thermal power plants (STPPs) are devised for improving the overall performance of the plant. Each one attempts to reduce losses coming from two respective sources. The systems are simulated and compared to a reference STPP. They consists on: (a) a double thermal energy storage (DTS) with different functionalities for each storage and (b) the subdivision of the solar collector field (SSF) into specialised sectors, so that each sector is designed to meet a thermal requirement, usually through an intermediate heat exchanger. This subdivision reduces the losses in the solar field by means of a decrease of the temperature of the heat transfer fluid (HTF). Double thermal energy storage is intended for keeping the plant working at nominal level for many hours a day, including post-sunset hours. One of the storages gathers a fluid which is heated up to temperatures above the nominal one. In order to make it work, the solar field must be able to overheat the fluid at peak hours. The second storage is the classical one. The combination of both allows the manager of the plant to keep the nominal of the plant for longer periods than in the case of classical thermal energy storage. To the authors’ knowledge, it is the first time that both configurations are presented and simulated for the case of parabolic through STPP with HTF technology. The results show that, if compared to the reference STPP, both configurations may raise the annual electricity generation (up to 1.7% for the DTS case and 3.9% for the SSF case).

Antonio Rovira; María José Montes; Manuel Valdes; José María Martínez-Val

2011-01-01T23:59:59.000Z

287

Proceedings of the 1998 American Solar Energy Society annual conference  

SciTech Connect (OSTI)

The 91 papers in these proceedings are arranged under the following topical sections: Renewable energy in Latin America; PV research and development; PV systems and applications; PV array performance; Wind energy; Grid connection and net metering; PV utility issues; Rural and remote electrification; Concentrators and thermal power; Solar water heating systems; Solar water heating programs and evaluation; New concepts in collectors; Water treatment and distillation; Cooling and refrigeration; Cooking and drying; Solar chemistry and alternative fuels; Transportation; Measurement of solar radiation; Government and institutional programs; and Government issues of policy and finance. Papers have been processed separately for inclusion on the data base.

Campbell-Howe, R.; Cortez, T.; Wilkins-Crowder, B. (eds.)

1998-01-01T23:59:59.000Z

288

Thermal behaviour of new crystalline semitransparent solar cell structure  

Science Journals Connector (OSTI)

This paper presents the structure of a novel semitransparent solar cell and its thermal behaviour, which cell can be used for building integrated applications. The crystalline self-made test cells can be manufactured using basic semiconductor technological ... Keywords: Building integrated photovoltaics, Semitransparent solar cell and thermal characteristics

Enik Bándy; Márta Rencz,

2013-11-01T23:59:59.000Z

289

Spectrally Solar Selective Coatings for Colored Flat Plate Solar Thermal Collectors  

Science Journals Connector (OSTI)

The paper is a review on the state-of-the-art on colored materials (absorbers and glazings) for solar thermal flat plate collectors obtained world-wide. The ... input for novel, market-acceptable flat plate solar

Luminita Isac; Alexandru Enesca…

2014-01-01T23:59:59.000Z

290

Rankline-Brayton engine powered solar thermal aircraft  

DOE Patents [OSTI]

A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2012-03-13T23:59:59.000Z

291

Rankine-Brayton engine powered solar thermal aircraft  

DOE Patents [OSTI]

A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2009-12-29T23:59:59.000Z

292

Planning for PV: The Value and Cost of Solar Electricity (Fact Sheet)  

SciTech Connect (OSTI)

This is a brochure developed specifically for residential home builders. It provides information on basic financial factors and additional resources to consider when incorporating solar technologies into building plans.

Not Available

2008-01-01T23:59:59.000Z

293

Japans Solar Photovoltaic (PV) Market: An Analysis of Residential...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

David Feldman, and Robert Margolis DOE - Solar Program Washington, D.C. October 23, 2013 Contract No. 25814 NRELPR-6A20-60419 2 Disclaimer DISCLAIMER AGREEMENT These...

294

EECBG Success Story: Massachusetts Middle School Goes Local for PV Solar Energy System  

Broader source: Energy.gov [DOE]

When the school buses pull up to Norton Middle School this year, students will see more than just their friends and teachers, they'll get a view of new - 126 solar panels on the school's roof. Learn more.

295

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network [OSTI]

Workshop on Renewable Energy Costs for the 2012 Integrated renewable portfolio standards (RPS) and energy efficiency goals in a costcost of installing rooftop solar panels. While the renewable energy

Hill, Steven Craig

2013-01-01T23:59:59.000Z

296

Waverly Light and Power - Residential Solar Thermal Rebates | Department of  

Broader source: Energy.gov (indexed) [DOE]

Solar Thermal Rebates Solar Thermal Rebates Waverly Light and Power - Residential Solar Thermal Rebates < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $3,500 Program Info Start Date 07/01/2009 State Iowa Program Type Utility Rebate Program Rebate Amount 30/sq. foot of collector area Provider Waverly Light and Power Waverly Light and Power (WL&P) offers rebates for solar hot water heating systems to its residential customers. All purchases must be pre-approved through WL&P's solar water heater application process. In addition, residential customers must obtain a county-issued permit prior to installing a solar water heating system. There is a limit of one rebate per address. Funding is available until the rebate fund is exhausted.

297

Development of a Web-based Emissions Reduction Calculator for Solar Thermal and Solar Photovoltaic Installations  

E-Print Network [OSTI]

DEVELOPMENT OF A WEB-BASED EMISSIONS REDUCTION CALCULATOR FOR SOLAR THERMAL AND SOLAR PHOTOVOLTAIC INSTALLATIONS Juan-Carlos Baltazar Research Associate Jeff S. Haberl, Ph.D., P.E. Professor/Associate Director Don R. Gilman, P.E. Senior... the potential emission reductions due to the electricity savings from the application of some of the most common solar thermal and solar photovoltaic systems. The methodology to estimate the potential NOx emission reduction integrates legacy analysis tools...

Baltazar-Cervantes, J. C.; Gilman, D.; Haberl, J. S.; Culp, C.

2005-01-01T23:59:59.000Z

298

A NEW SOLAR THERMAL RECEIVER UTILIZING A SMALL PARTICLE HEAT EXCHANGER  

E-Print Network [OSTI]

Report LBL 8520. ) A NEW SOLAR THERMAL RECEIVER UTILIZING Aenergy. A new type of solar thermal receiver based on thisThe success of the solar thermal electric power program

Hunt, Arlon J.

2011-01-01T23:59:59.000Z

299

Development of Non?Tracking Solar Thermal Technology  

Science Journals Connector (OSTI)

The aims of this research is to develop high temperature solar thermal collectors that do not require complex solar tracking devices to maintain optimal performance. The collector technology developed through these efforts uses non?imaging optics and is referred to as an external compound parabolic concentrator. It is able to operate with a solar thermal efficiency of approximately 50% at a temperature of 200?°?C and can be readily manufactured at a cost between $15 and $18 per square foot.

2011-01-01T23:59:59.000Z

300

Examining System-Wide Impacts of Solar PV Control Systems with a Power Hardware-in-the-Loop Platform  

SciTech Connect (OSTI)

High penetration levels of distributed solar PV power generation can lead to adverse power quality impacts such as excessive voltage rise, voltage flicker, and reactive power values that result in unacceptable voltage levels. Advanced inverter control schemes have been proposed that have the potential to mitigate many power quality concerns. However, closed-loop control may lead to unintended behavior in deployed systems as complex interactions can occur between numerous operating devices. In order to enable the study of the performance of advanced control schemes in a detailed distribution system environment, a Hardware-in-the-Loop (HIL) platform has been developed. In the HIL system, GridLAB-D, a distribution system simulation tool, runs in real-time mode at the Pacific Northwest National Laboratory (PNNL) and supplies power system parameters at a point of common coupling to hardware located at the National Renewable Energy Laboratory (NREL). Hardware inverters interact with grid and PV simulators emulating an operational distribution system and power output from the inverters is measured and sent to PNNL to update the real-time distribution system simulation. The platform is described and initial test cases are presented. The platform is used to study the system-wide impacts and the interactions of controls applied to inverters that are integrated into a simulation of the IEEE 8500-node test feeder, with inverters in either constant power factor control or active volt/VAR control. We demonstrate that this HIL platform is well-suited to the study of advanced inverter controls and their impacts on the power quality of a distribution feeder. Additionally, the results from HIL are used to validate GridLAB-D simulations of advanced inverter controls. ?

Williams, Tess L.; Fuller, Jason C.; Schneider, Kevin P.; Palmintier, Bryan; Lundstrom, Blake; Chakraborty, Sudipta

2014-10-11T23:59:59.000Z

Note: This page contains sample records for the topic "thermal solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Solar Keymark-Experiences with the European Solar Thermal Quality Label  

Science Journals Connector (OSTI)

Many aspects come to mind when thinking and talking about technically reliable and long-time durable solar thermal products. The following paper tries to answer...

Korbinian Kramer; Matthias Rommel…

2009-01-01T23:59:59.000Z

302

Minimizing the Lead-Acid Battery Bank Capacity through a Solar PV - Wind Turbine Hybrid System for a high-altitude village in the Nepal Himalayas  

Science Journals Connector (OSTI)

Abstract Of the estimated 1.6-2 billion people who lacked access to electricity at the end of the last millennium, millions have gained access to basic indoor lighting through off grid solar PV home systems with lead acid battery storage over the last decade. In Nepal, through government subsidy programs and INGO/NGO projects, around 350,000 solar PV home systems have been installed since 2001, mainly in remote, high altitude Himalayan communities. The author's field experience shows that within 6-24 months, 50-70% of the solar PV home systems are either not properly functioning, or not working at all. This is mainly due to substandard equipment, lack of user awareness, inability to maintain their systems, as well as the nonexistence of after sales services. Thus, an estimated 250,000 “dead”, flooded lead-acid batteries are either unsafely disposed of or lying around, posing huge potential hazards for people and the unique yet fragile Himalayan ecosystem. The research conducted demonstrates that by tapping into more than one renewable energy resource, converting the local available solar and wind resources into electricity through a solar PV - wind turbine hybrid RAPS (Remote Area Power Supply) system, the lead-acid battery bank capacity can be minimized by 57%, compared to an equivalent energy generating solar PV RAPS system, without jeopardizing, or reducing the village's load demands. This project shows that wind and solar resources are complimentary to each other over several hours in an average day. Thus, by utilizing both of the local wind and solar resources and converting them into electricity to meet the loads directly or to store into the lead-acid battery bank, it allows an average of 3-4 hours longer electricity generation per day. This enables the design of smaller battery bank capacities for hybrid RAPS systems without limiting the end users’ energy services. Hence, long-term health risks to the people, as well as environmental damage to the delicate and exceptional Himalayan flora and fauna through disposed “dead” lead-acid batteries, is reduced.

Zahnd Alex; Angel Clark; Wendy Cheung; Linda Zou; Jan Kleissl

2014-01-01T23:59:59.000Z

303

Sandia National Laboratories: National Solar Thermal Testing...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beam Profiling On November 2, 2012, in Concentrating Solar Power, News, Renewable Energy, Solar On Thursday, June 7, we began beam profiling the NSTTF field heliostat beam....

304

Hybrid solar thermal-photovoltaic systems demonstration, Phase I and II. Final technical progress report, July 5, 1979-December 1982  

SciTech Connect (OSTI)

The purpose of the project is to investigate a system based on combined photovoltaic/thermal (PV/T) panels to supply the energy needs of a small single family residence. The system finally selected and constructed uses PV/T panels which utilize air as the heat transfer medium. Optimization of thermal performance was accomplished by attaching metal fins to the back surface of each cell which significantly increased the heat transfer coefficient from the solar cells to the air stream. The other major components of the selected system are an air-to-air heat pump, a rock bin thermal energy storage bin, a synchronous dc-to-ac converter, a microprocessor to control the system, a heat exchanger for the domestic hot water system and of course the building itself which is a one story, well insulated structure having a floor area of 1200 ft/sup 2/. A prototype collector was constructed and tested. Based on this experience, twenty collectors, containing 2860 four inch diameter solar cells, were constructed and installed on the building. Performance of the system was simulated using a TRNSYS-derived program, modified to accommodate PV/T panels and to include the particular components included in the selected system. Simulation of the performance showed that about 65 percent of the total annual energy needs of the building would be provided by the PV/T system. Of this total, about one half is produced at a time when it can be used in the building and one half must be sold back to the utility.

Loferski, J.J. (ed.)

1983-12-01T23:59:59.000Z

305

In-Situ Preparation and thermal shock resistance of mullite-cordierite heat tube material for solar thermal power  

Science Journals Connector (OSTI)

In order to improve the thermal shock resistance of solar thermal heat transfer tube material, the mullite-cordierite composite ceramic as solar thermal heat transfer tube material were fabricated by...?-Al2O3......

Xiaohong Xu ???; Xionghua Ma; Jianfeng Wu…

2013-06-01T23:59:59.000Z

306

Minnesota Power - Solar-Thermal Water Heating Rebate Program | Department  

Broader source: Energy.gov (indexed) [DOE]

Minnesota Power - Solar-Thermal Water Heating Rebate Program Minnesota Power - Solar-Thermal Water Heating Rebate Program Minnesota Power - Solar-Thermal Water Heating Rebate Program < Back Eligibility Commercial Industrial Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Single-family unit: $2,000 Two- to three-family units: $4,000 Multi-family units (four or more): $10,000 Businesses: $25,000 Program Info Start Date 03/2010 Expiration Date 12/31/2013 State Minnesota Program Type Utility Rebate Program Rebate Amount 25% of costs Provider Minnesota Power Minnesota Power offers a 25% rebate for qualifying solar thermal water heating systems. The maximum award for single-family customers is $2,000 per customer; $4,000 for 2-3 family unit buildings; $10,000 for buildings

307

Made in Minnesota Solar Thermal Rebate | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Made in Minnesota Solar Thermal Rebate Made in Minnesota Solar Thermal Rebate Made in Minnesota Solar Thermal Rebate < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Heating & Cooling Solar Swimming Pool Heaters Water Heating Buying & Making Electricity Commercial Heating & Cooling Maximum Rebate Single-Family Residential: $2,500 Multi-Family Residential: $5,000 Commercial: $25,000 Program Info Start Date 1/1/2014 Expiration Date 12/31/2023 State Minnesota Program Type State Rebate Program Rebate Amount 25% Provider Minnesota Department of Commerce Beginning in 2014, the Department of Commerce will offer a Made in Minnesota Solar Thermal Rebate program. Rebates are 25% of installed costs, with a $2,500 maximum for residential systems, $5,000 maximum for multi-family residential systems, and $25,000 for commercial systems.

308

November 21, 2000 PV Lesson Plan 3 PV Array Generating Electricity  

E-Print Network [OSTI]

November 21, 2000 PV Lesson Plan 3 ­ PV Array Generating Electricity Prepared for the Oregon in Arrays: Solar Cells Generating Electricity Lesson Plan Content: In this lesson, students will learn about electricity. Objectives: Students will learn to use a tool called PV WATTS to calculate the output of PV

Oregon, University of

309

The Solarize Guidebook: A community guide to collective purchasing of residential PV systems (Book), SunShot, U.S. Department of Energy (DOE)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SOLARIZE GUIDEBOOK: SOLARIZE GUIDEBOOK: A community guide to collective purchasing of residential PV systems 1 ACKNOWLEDGEMENTS This guide is an updated version of the original The Solarize Guidebook, published in February 2011 (see www.nrel.gov/docs/fy11osti/50440.pdf), which was developed for the National Renewable Energy Laboratory and the City of Portland. The original Solarize campaigns were initiated and replicated by Portland's Neighborhood Coalition network with help from the Energy Trust of Oregon, City of Portland, and Solar Oregon. AUTHORS Linda Irvine, Alexandra Sawyer and Jennifer Grove, Northwest Sustainable Energy for Economic Development (Northwest SEED). Northwest SEED is solely responsible for errors and omissions. CONTRIBUTORS Lee Rahr, Portland Bureau of Planning and Sustainability

310

Concentrating Solar Power Thermal Storage System Basics | Department of  

Broader source: Energy.gov (indexed) [DOE]

Thermal Storage System Basics Thermal Storage System Basics Concentrating Solar Power Thermal Storage System Basics August 21, 2013 - 10:33am Addthis One challenge facing the widespread use of solar energy is reduced or curtailed energy production when the sun sets or is blocked by clouds. Thermal energy storage provides a workable solution to this challenge. In a concentrating solar power (CSP) system, the sun's rays are reflected onto a receiver, which creates heat that is used to generate electricity. If the receiver contains oil or molten salt as the heat-transfer medium, then the thermal energy can be stored for later use. This enables CSP systems to be cost-competitive options for providing clean, renewable energy. Several thermal energy storage technologies have been tested and

311

Residential solar-absorption chiller thermal dynamics  

SciTech Connect (OSTI)

Research is reported on the transient performance of a commercial residential 3 ton lithium bromide-water absorption chiller designed for solar firing. Emphasis was placed on separating the chiller response from that of the entire test facility so that its transient response could solely be observed and quantified. It was found that the entire system time response and thermal capacitance has a major impact on performance degradation due to transient operation. Tests run to ascertain computer algorithms which simulate system isolated chiller performance, revealed processes hitherto undocumented. Transient operation is simulated by three distinct algorithms associated with the three phases of chiller operation. The first phase is start up time. It was revealed during testing that the time required to reach steady state performance values, when the chiller was turned on, was a linear function of steady state water supply temperatures. The second phase is quasi steady state performance. Test facility's performance compared favorably with the manufacturer's published data. The third phase is the extra capacity produced during spin down. Spin down occurs when the hot water supply pump is turned off while the other system pumps remain operating for a few minutes, thus allowing extra chiller capacity to be realized. The computer algorithms were used to generate plots which show the operational surface of an isolated absorption chiller subjected to off design and transient operation.

Guertin, J.M.; Wood, B.D.; McNeill, B.W.

1981-03-01T23:59:59.000Z

312

Commercial Solar Thermal Incentive Program (Connecticut) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Solar Thermal Incentive Program (Connecticut) Solar Thermal Incentive Program (Connecticut) Commercial Solar Thermal Incentive Program (Connecticut) < Back Eligibility Commercial Industrial Institutional Local Government Low-Income Residential Multi-Family Residential Nonprofit Schools Tribal Government Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $150,000 Program Info Funding Source Public Benefits Fund Start Date 03/15/2013 State Connecticut Program Type State Grant Program Provider Clean Energy Finance and Investment Authority '''''Note: This program is not currently accepting applications. Check the program web site for information regarding future financing programs. ''''' The Clean Energy Finance and Investment Authority is offering grants and loans to non-residential entities for solar hot water installations. Only

313

Solar thermal power plants for the Spanish electricity market  

Science Journals Connector (OSTI)

Solar thermal power plants are at present the cheapest technology for solar electricity production. At good sites Levelised Electricity Costs (LEC) of 11 Ct/kWh have been achieved in commercially operated power plants. Economy of scale and further technical improvements will reduce the LEC for future projects. On the 27th of March 2004 in Spain the existing feed-in-law has been modified in order to support the erection of solar thermal power plants and thus make use of the huge solar potential of Spain. A payment of approx. 21 Ct/kWh, guaranteed for the first 25 years of operation, makes the erection and operation of solar thermal power plants very profitable for possible investors on the Spanish peninsula. This paper will present the present situation in Spain and the planned power plant projects. For one specific project the set-up is presented in more detail.

M. Eck; F. Rueda; S. Kronshage; C. Schillings; F. Trieb; E. Zarza

2007-01-01T23:59:59.000Z

314

Optimal solar-PV tilt angle and azimuth: An Ontario (Canada) case-study  

Science Journals Connector (OSTI)

The purpose of this article is to determine the tilt angle and azimuth for a photovoltaic panel in Ontario (Canada) at which revenue is maximised. Measured and modelled solar radiation data, simulated photovoltaic panel performance, hourly electricity market data and details regarding pricing regimes from 2003 to 2008 are used to study two different locations. In all instances, the desired tilt angle is slightly less than latitude (depending upon the particular pricing regime, between 36° and 38° for Ottawa, which is at a latitude of 45°N, and between 32° and 35° for Toronto, which is at a latitude of 44°N), and the desired azimuth is close to due south (depending upon the particular pricing regime, between 4° west of due south and 6° east of due south for Ottawa, and between 1° west of due south and 2° east of due south for Toronto). In conclusion, the importance of solar electricity – particularly valuable because of when it is produced and where it can be produced – is highlighted, as are future priorities for research.

Ian H. Rowlands; Briana Paige Kemery; Ian Beausoleil-Morrison

2011-01-01T23:59:59.000Z

315

Managing solar-PV variability with geographical dispersion: An Ontario (Canada) case-study  

Science Journals Connector (OSTI)

Abstract The purpose of this article is to determine whether the geographic dispersion of solar-photovoltaic panels reduces variability in energy production. Following this, three questions are posed: 1) If geographic dispersion reduces variability, how dispersed should the panels be?; 2) What happens during peak price periods?; and 3) How are these insights affected by consideration of system-wide demand? Using measured and modelled weather data on an hourly basis from 16 locations across Ontario (Canada), hourly energy production figures for 1000 kW of solar-photovoltaic panels are generated for 2003, 2004, and 2005. Geographical dispersion of panels across multiple locations (as compared to the deployment of all panels in one location, namely, Toronto, Ontario) leads to, in particular instances, energy production profiles that have lower variability, greater total energy production, and a higher correlation value with the Ontario-wide system. Further research is needed both to isolate particularly-advantageous combinations and to broaden the investigation to consider alternative performance metrics, additional analytical techniques and land-use implications.

Ian H. Rowlands; Briana Paige Kemery; Ian Beausoleil-Morrison

2014-01-01T23:59:59.000Z

316

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Test Facility (NSTTF) Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

317

Photoswitchable Molecular Rings for Solar-Thermal Energy Storage  

Science Journals Connector (OSTI)

Photoswitchable Molecular Rings for Solar-Thermal Energy Storage ... Ground-state energy barriers along the NN torsional coordinates were also computed, along with excitation energies and intensities for the species that can contribute to the photostationary state. ...

E. Durgun; Jeffrey C. Grossman

2013-03-04T23:59:59.000Z

318

The Exchange-Value of Solar Thermal Energy  

Science Journals Connector (OSTI)

In Sweden there is a tendency that alternative energy will develop on market premises. In this ... I suggest that the low exergy value of solar thermal heat limits the technique“s commodification, i ... . By appl...

Johan Leidi

2009-01-01T23:59:59.000Z

319

Marshall Municipal Utilities- Solar Thermal Water Heater Rebate Program  

Broader source: Energy.gov [DOE]

Marshall Municipal Utilities (MMU) offers residential customers rebates for installing a ENERGY STAR Solar Thermal Water Heater. Rebates are based on the size of the system; MMU offers $20 per...

320

Materials selection for thermal comfort in passive solar buildings  

Science Journals Connector (OSTI)

This paper presents the results of a combined analytical, computational, and experimental study of the key parameters for selecting affordable materials and designing for thermal comfort in passive solar build...

J. M. Thomas; S. Algohary; F. Hammad; W. O. Soboyejo

2006-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Sandia National Laboratories: Solar Resource Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tagged with: Energy * photovoltaic * Photovoltaics * PV * Renewable Energy * solar * Solar Energy * Solar Research * Solar Resource Assessment Comments are closed. Renewable...

322

Software-as-a-Service Optimised Scheduling of a Solar-Assisted HVAC System with Thermal Storage  

E-Print Network [OSTI]

1980, but its thermal solar and storage systems received achiller. A 30 m heat storage tank solar decouples heatfacility with thermal storage and solar- assisted HVAC for

Mammoli, Andrea

2014-01-01T23:59:59.000Z

323

PERFORMANCE OF A CONCENTRATING PHOTOVOLTAIC/THERMAL SOLAR COLLECTOR  

E-Print Network [OSTI]

increased solar energy conversion and potential cost benefits (Fujisawa and Tani, 1997, 2001, Huang et alPERFORMANCE OF A CONCENTRATING PHOTOVOLTAIC/THERMAL SOLAR COLLECTOR Joe S Coventry Centre for Sustainable Energy Systems, Australian National University, Canberra, 0200, Australia +612 6125 3976, +612

324

Thermal efficiency of single-pass solar air collector  

SciTech Connect (OSTI)

Efficiency of a finned single-pass solar air collector was studied. This paper presents the experimental study to investigate the effect of solar radiation and mass flow rate on efficiency. The fins attached at the back of absorbing plate to improve the thermal efficiency of the system. The results show that the efficiency is increased proportional to solar radiation and mass flow rate. Efficiency of the collector archived steady state when reach to certain value or can be said the maximum performance.

Ibrahim, Zamry; Ibarahim, Zahari; Yatim, Baharudin [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan (Malaysia); Ruslan, Mohd Hafidz [Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan (Malaysia)

2013-11-27T23:59:59.000Z

325

10 MWe Solar Thermal Central Receiver Pilot Plant Total Capital Cost  

Science Journals Connector (OSTI)

A cost analysis of the 10MWe Solar One Thermal Central Receiver Plant near Barstow, California, ... is presented to help predict costs of future solar thermal central receiver plants. In this paper, the Solar One...

H. F. Norris

1985-01-01T23:59:59.000Z

326

Thermal storage module for solar dynamic receivers  

DOE Patents [OSTI]

A thermal energy storage system comprising a germanium phase change material and a graphite container.

Beatty, Ronald L. (Farragut, TN); Lauf, Robert J. (Oak Ridge, TN)

1991-01-01T23:59:59.000Z

327

High-Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

outstanding technical challenges focused on applicability to heat pipes to Concentrated Solar Power production. These include * Counter gravity physics * Counter gravity...

328

Sandia National Laboratories: flexible PV substrate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Partnership, Photovoltaic, Renewable Energy, Research & Capabilities, Solar, SunShot Sandia scientists have developed glitter-sized photovoltaic (PV) cells that have the...

329

Sandia National Laboratories: integrate PV into clothing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Partnership, Photovoltaic, Renewable Energy, Research & Capabilities, Solar, SunShot Sandia scientists have developed glitter-sized photovoltaic (PV) cells that have the...

330

Energy-Dependent Timing of Thermal Emission in Solar Flares  

Science Journals Connector (OSTI)

We report solar flare plasma to be multi-thermal in nature based on the theoretical model and study of the energy-dependent timing of thermal emission in ten M-class flares. We ... observed by the Si detector of ...

Rajmal Jain; Arun Kumar Awasthi; Arvind Singh Rajpurohit…

2011-05-01T23:59:59.000Z

331

Design of a solar thermal collector simulator.  

E-Print Network [OSTI]

??The recent increased interest in renewable energy has created a need for research in the area of solar technology. This has brought about many new… (more)

Bolton, Kirk G.

2009-01-01T23:59:59.000Z

332

Solar thermal organic rankine cycle for micro-generation  

Science Journals Connector (OSTI)

The conceptual design of an Organic Rankine Cycle (ORC) driven by solar thermal energy is developed for the decentralized production of electricity of up to 50 kW. Conventional Rankine Cycle uses water as the working fluid whereas ORC uses organic compound as the working fluid and it is particularly suitable for low temperature applications. The ORC and the solar collector will be sized according to the solar flux distribution in the Republic of Yemen for the required power output of 50 kW. This will be a micro power generation system that consists of two cycles the solar thermal cycle that harness solar energy and the power cycle which is the ORC that generates electricity. As for the solar thermal cycle heat transfer fluid (HTF) circulates the cycle while absorbing thermal energy from the sun through a parabolic trough collector and then storing it in a thermal storage to increase system efficiency and maintains system operation during low radiation. The heat is then transferred to the organic fluid in the ORC via a heat exchanger. The organic fluids to be used and analyzed in the ORC are hydrocarbons R600a and R290.

2012-01-01T23:59:59.000Z

333

Modeling and Simulation of Solar Chimney Power Plant with and without the Effect of Thermal Energy Storage Systems.  

E-Print Network [OSTI]

??A solar updraft tower power plant – sometimes also called 'solar chimney' or just ‘solar tower’ – is a solar thermal power plant utilizing a… (more)

Daba, Robera

2011-01-01T23:59:59.000Z

334

Modeling The Potential For Thermal Concentrating Solar Power Technologies  

SciTech Connect (OSTI)

In this paper we explore the tradeoffs between thermal storage capacity, cost, and other system parameters in order to examine possible evolutionary pathways for thermal Concen-trating Solar Power (CSP) technologies. A representation of CSP performance that is suit-able for incorporation into economic modeling tools is developed. We find that, as the fraction of electricity supplied by CSP technologies grows, the application of thermal CSP technologies might progress from current hybrid plants, to plants with a modest amount of thermal storage, and potentially even to plants with sufficient thermal storage to provide base load generation capacity. The representation of CSP cost and performance developed here was implemented in the ObjECTS MiniCAM long-term integrated assessment model. Datasets for global solar resource characteristics as applied to CSP technology were also developed. The regional and global potential of thermal CSP technologies is examined.

Zhang, Yabei; Smith, Steven J.; Kyle, G. Page; Stackhouse, Jr., Paul W.

2010-10-25T23:59:59.000Z

335

Use of Renewable Energy in Buildings: Experiences With Solar Thermal Utilization  

E-Print Network [OSTI]

Solar energy is receiving much more attention in building energy systems in recent years. Solar thermal utilization should be based on the integration of solar collectors into buildings. The facades of buildings can be important solar collectors...

Wang, R.; Zhai, X.

2006-01-01T23:59:59.000Z

336

Thermal instability in planar solar coronal structures  

Science Journals Connector (OSTI)

Prominentes and filaments are thought to arise as a consequence of a magnetized plasma undergoing thermal instability. Therefore the thermal stability of a magnetized plasma is investigated under coronal condi...

R. A. M. Van der Linden; M. Goossens

1990-01-01T23:59:59.000Z

337

Project Profile: Scattering Solar Thermal Concentrators  

Broader source: Energy.gov [DOE]

Pennsylvania State University, under the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is designing and testing a novel solar collector system that relies on stationary optics, avoiding the need for mirror movement. The system is capable of achieving optical performance equal to state-of-the-art parabolic trough systems, but at a lower cost.

338

Results from measurements on the PV-VENT systems  

E-Print Network [OSTI]

Results from measurements on the PV-VENT systems at Lundebjerg Solar Energy Centre Denmark Danish from measurements on the PV-VENT systems at Lundebjerg Søren �stergaard Jensen Solar Energy Centre with (Jensen, 2000a) Solar Energy Centre Denmark's (Danish Technological Institute) measuring work in the PV

339

Optimisation of Solar Collector Area for Solar Thermal Systems  

Science Journals Connector (OSTI)

Invariably solar energy systems are provided with an auxiliary energy source to meet the energy requirements of a system operating at a constant temperature. A technoeconomic analysis has been developed in thi...

N. K. Bansal; Aman Dang

1984-01-01T23:59:59.000Z

340

A New Solar Carbon Capture Process: Solar Thermal Electrochemical Photo (STEP) Carbon Capture  

Science Journals Connector (OSTI)

A New Solar Carbon Capture Process: Solar Thermal Electrochemical Photo (STEP) Carbon Capture ... CO2 can be captured from 34% to over 50% solar energy efficiency (depending on the level of solar heat inclusion), as solid carbon and stored, or used as carbon monoxide to be available for a feedstock to synthesize (with STEP generated hydrogen) solar diesel fuel, synthetic jet fuel, or chemical production. ... STEP Iron, a Chemistry of Iron Formation without CO2 Emission: Molten Carbonate Solubility and Electrochemistry of Iron Ore Impurities ...

Stuart Licht; Baohui Wang; Susanta Ghosh; Hina Ayub; Dianlu Jiang; Jason Ganley

2010-07-14T23:59:59.000Z

Note: This page contains sample records for the topic "thermal solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Thermal layering: a passive solar design strategy  

SciTech Connect (OSTI)

SOLARGREEN was the author's entry into the US Department of Housing and Urban Development's Passive Solar Residential Design Competition. The objective of the design was to develop a low-cost, innovative passive solar heating and cooling system as part of a marketable, aesthetically pleasing dwelling that could be easily constructed using existing building practices. The basic design is a three-bedroom, two-story, 1600 square foot home with a solarium that serves as both a solar collector and a food-producing greenhouse. The entry received a design award and five construction awards in the competition.

Moore, F.

1980-01-01T23:59:59.000Z

342

High Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

A 10% increase in shaft work is directly attributable to modified thermal heat capacity Engineering HTF Specific heat yields modified power output. 27 127 227 327 427 527...

343

Thermal Energy Transport in the Solar Wind  

Science Journals Connector (OSTI)

This paper is intended to summarize the present status of measurements of heat flux in the solar wind and to provide a comparison of these measurements with the theory for collision-dominated heat transport in...

Michael D. Montgomery

1972-01-01T23:59:59.000Z

344

Thermal Modernisation Through Utilisation of Solar Energy  

Science Journals Connector (OSTI)

The paper presents idea of modernization of energy system in buildings through implementation of traditional energy efficiency measures and introduction of modern options of utilization of solar energy systems...

Dorota Chwieduk

2009-01-01T23:59:59.000Z

345

Azobenzene-Functionalized Carbon Nanotubes As High-Energy Density Solar Thermal Fuels  

Science Journals Connector (OSTI)

Azobenzene-Functionalized Carbon Nanotubes As High-Energy Density Solar Thermal Fuels ... Solar thermal fuels, which reversibly store solar energy in molecular bonds, are a tantalizing prospect for clean, renewable, and transportable energy conversion/storage. ... Here we present a novel solar thermal fuel, composed of azobenzene-functionalized carbon nanotubes, with the volumetric energy density of Li-ion batteries. ...

Alexie M. Kolpak; Jeffrey C. Grossman

2011-06-20T23:59:59.000Z

346

EXPERIENCES ON PID TESTING OF PV MODULES IN 2012 | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Glass Potential Induced Degradation (PID) Tests for Commercially Available PV Modules Characterization of Dynamic Loads on Solar Modules with Respect to Fracture of Solar Cells...

347

Inner Mongolia Dunan PV power | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search Name: Inner Mongolia Dunan PV power Place: Inner Mongolia Autonomous Region, China Sector: Solar Product: Inner Mongolia-based solar project developer...

348

Combined Solar and Wind Energy Systems  

Science Journals Connector (OSTI)

In this paper we present the new concept of combined solar and wind energy systems for buildings applications. Photovoltaics (PV) and small wind turbines (WTs) can be install on buildings in case of sufficient wind potential providing the building with electricity. PVs can be combined with thermal collectors to form the hybrid photovoltaic/thermal (PV/T) systems. The PVs (or the PV/Ts) and WT subsystems can supplement each other to cover building electrical load. In case of using PV/T collectors the surplus of electricity if not used or stored in batteries can increase the temperature of the thermal storage tank of the solar thermal unit. The description of the experimental set?up of the suggested PV/T/WT system and experimental results are presented. In PV/T/WT systems the output from the solar part depends on the sunshine time and the output of the wind turbine part depends on the wind speed and is obtained any time of day or night. The use of the three subsystems can cover a great part of building energy load contributing to conventional energy saving and environment protection. The PV/T/WT systems are considered suitable in rural and remote areas with electricity supply from stand?alone units or mini?grid connection. PV/T/WT systems can also be used in typical grid connected applications.

Y. Tripanagnostopoulos; M. Souliotis; Th. Makris

2010-01-01T23:59:59.000Z

349

AN EVALUATION OF SOLAR VALUATION METHODS USED IN UTILITY PLANNING AND PROCUREMENT PROCESSES  

E-Print Network [OSTI]

thermal storage or natural gas augmentation with CSP plants, one study considered PV coupled with a lead- acid battery,battery Trough Trough Trough Trough Power tower Solar chimney Natural gas firing in boiler N/A N/A PV Integrated thermal

Mills, Andrew D.

2014-01-01T23:59:59.000Z

350

Thermal performance evaluation of a solar air heater with and without thermal energy storage  

Science Journals Connector (OSTI)

This communication presents the experimental study and performance analysis of a solar air heater with and without phase change ... found that the output temperature in case with thermal energy storage (TES) is h...

V. V. Tyagi; A. K. Pandey; S. C. Kaushik…

2012-03-01T23:59:59.000Z

351

Non-thermal solar wind heating by supra-thermal ions  

Science Journals Connector (OSTI)

The effect of a new energy source due to energies transferred from supra-thermal secondary ions on the temperature profile of the solar wind has been considered. For this purpose ... solution of a tri-fluid model...

H. J. Fahr

1973-05-01T23:59:59.000Z

352

Experiments on solar absorption using a greenhouse-effect gas in a thermal solar collector  

Science Journals Connector (OSTI)

This paper investigates an augmentation to the thermal solar absorption of solar collectors by introducing a greenhouse gas between the glazing and the absorber part of the solar collector. Experiments are designed and conducted to compare the effect of adding the gas on the efficiency of the collector without that addition. The maximum temperature rise of the absorber the time of heat retention before reaching room temperature and the energy conversion efficiency in heating up water for domestic use were all studied.

Abdul Hai M. B. Alami

2010-01-01T23:59:59.000Z

353

An analysis of feed’in tariffs for solar PV in six representative countries of the European Union  

Science Journals Connector (OSTI)

Abstract In this paper, after a brief review on the main support policies for Photovoltaic (PV) systems in Europe, the specific situations of six representative countries (France, Germany, Greece, Italy, Spain and the U.K.) are examined, with the purpose of highlighting the main differences in the implementation of the feed’in tariff (FiT) support policies adopted for PV systems. In particular, a comparison based on the calculation of economic indexes, as the Discounted Cash Flows (DCF), the Pay-Back-Period (PBP), the Net Present Value (NPV) and the Internal Rate of Return (IRR), for different sized PV systems shows that a specific FiT can sometimes be inconvenient for the producer and that the different ways of implementing FiT support policies in the various countries can lead to significantly different results. The analysis carried out in this paper could help to assess the impact of PV energy policies in the main European markets, to make a prediction of how PV market could evolve in the selected EU member states, to gain an insight into the future of possible energy policies.

A. Campoccia; L. Dusonchet; E. Telaretti; G. Zizzo

2014-01-01T23:59:59.000Z

354

Off-peak summer performance enhancement for rows of fixed solar thermal collectors using reflective surfaces.  

E-Print Network [OSTI]

??The possibility of increasing the efficiency of fixed solar thermal collectors without greatly adding to the cost or complexity of the overall solar collection system… (more)

Armenta, Casiano

2011-01-01T23:59:59.000Z

355

Sandia National Laboratories: Solar Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Energy On February 3, 2011, in Solar Programs Photovoltaics Concentrating Solar Power Sunshine to Petrol Solar Publications Recent Solar Highlights Photovoltaics (PV)...

356

Solar thermal energy contract list, fiscal year 1990  

SciTech Connect (OSTI)

The federal government has conducted the national Solar Thermal Technology Program since 1975. Its purpose is to provide focus, direction, and funding for the development of solar thermal technology as an energy option for the United States. This year's document is more concise than the summaries of previous years. The FY 1990 contract overview comprises a list of all subcontracts begun, ongoing, or completed during FY 1990 (October 1, 1989, through September 30, 1990). Under each managing laboratory projects are listed alphabetically by project area and then by subcontractor name. Amount of funding milestones are listed.

Not Available

1991-09-01T23:59:59.000Z

357

Residential Solar Tax Credit | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar Tax Credit Solar Tax Credit Residential Solar Tax Credit < Back Eligibility Multi-Family Residential Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Maximum Rebate 5,000 for solar-energy systems Program Info Start Date 01/01/1998 (solar electric); 01/01/2006 (solar thermal) State New York Program Type Personal Tax Credit Rebate Amount 25% for solar-electric (PV) and solar-thermal systems; for third-party owned systems this is in reference to the aggregate amount owed under the contract rather than the amount owed in any single year Provider New York State Department of Taxation and Finance Enacted in August 1997, this personal income tax credit originally applied to expenditures on solar-electric (PV) equipment used on residential

358

Technical assessment of solar thermal energy storage technologies  

Science Journals Connector (OSTI)

Solar energy is recognized as one of the most promising alternative energy options. On sunny days, solar energy systems generally collect more energy than necessary for direct use. Therefore, the design and development of solar energy storage systems, is of vital importance and nowadays one of the greatest efforts in solar research. These systems, being part of a complete solar installation, provide an optimum tuning between heat demand and heat supply. This paper reviews the basic concepts, systems design, and the latest developments in (sensible and latent heat) thermal energy storage. Parameters influencing the storage system selection, the advantages and disadvantages of each system, and the problems encountered during the systems operation are highlighted.

Hassan E.S. Fath

1998-01-01T23:59:59.000Z

359

Potential solar thermal integration in Spanish combined cycle gas turbines  

Science Journals Connector (OSTI)

Abstract Combined cycle gas turbines (CCGTs) are volumetric machines, which means that their net power output decreases at air temperatures above the design point. Such temperatures generally occur during periods of high solar irradiation. Many countries where these conditions occur, including Spain, have installed a significant number of \\{CCGTs\\} in recent years, with the subsequent yield losses in the summer. This implies enormous potential for solar hybridization, increasing production in peak hours and overall efficiency and reducing CO2 emissions. This paper analyzes the overall potential for solar thermal integration in 51 CCGTS (25,340 MW) in mainland Spain under different operating scenarios based on increasing yield, solar fraction and the hourly operational range adapted to the Spanish electricity market, considering actual meteorological conditions. A production model for integrating solar energy into combined cycles is proposed and described and the code in R is freely released so that the assessment can be replicated.

J. Antonanzas; E. Jimenez; J. Blanco; F. Antonanzas-Torres

2014-01-01T23:59:59.000Z

360

Thermal characteristics of a classical solar telescope primary mirror  

E-Print Network [OSTI]

We present a detailed thermal and structural analysis of a 2m class solar telescope mirror which is subjected to a varying heat load at an observatory site. A 3-dimensional heat transfer model of the mirror takes into account the heating caused by a smooth and gradual increase of the solar flux during the day-time observations and cooling resulting from the exponentially decaying ambient temperature at night. The thermal and structural response of two competing materials for optical telescopes, namely Silicon Carbide -best known for excellent heat conductivity and Zerodur -preferred for its extremely low coefficient of thermal expansion, is investigated in detail. The insight gained from these simulations will provide a valuable input for devising an efficient and stable thermal control system for the primary mirror.

Banyal, Ravinder K

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Semi-transparent solar energy thermal storage device  

DOE Patents [OSTI]

A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls. Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

McClelland, John F. (Ames, IA)

1986-04-08T23:59:59.000Z

362

Semi-transparent solar energy thermal storage device  

DOE Patents [OSTI]

A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls, Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

McClelland, John F. (Ames, IA)

1985-06-18T23:59:59.000Z

363

Grid integrated distributed PV (GridPV).  

SciTech Connect (OSTI)

This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function in the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

Reno, Matthew J.; Coogan, Kyle [Georgia Institute of Technology, Atlanta, GA

2013-08-01T23:59:59.000Z

364

Solar Thermal Group Research School of Engineering  

E-Print Network [OSTI]

DEVELOPMENT OF COMPLEX OXIDE-BASED MATERIALS FOR HYBRID SOLAR THERMOELECTRIC GENERATOR Speaker: Dr Ruoming- and n- type thermoelectric materials. A number of strategies for enhancing the material efficiency were interests are in the development of oxide-based thermoelectric materials via ad- vanced synthesis

365

Draft Transcript on Municipal PV Systems  

Broader source: Energy.gov [DOE]

Webinar on navigating the legal, tax, and finance issues associated with the installation of Municipal PV Systems. The following agenda was developed based on Pat Boylston's experience assisting municipalities with their PV projects and the requests for information that the Solar America City technical team leads have received from many of the 25 Solar America Cities since the April 2008 meeting in Tucson.

366

Analysis of International Policies In The Solar Electricity Sector: Lessons for India  

E-Print Network [OSTI]

of solar cells and PV systems, as well as future technology.solar PV installation and PV cell production Figure 8: Electricity generation by technology

Deshmukh, Ranjit

2011-01-01T23:59:59.000Z

367

Electricity Rate Structures and the Economics of Solar PV: Could Mandatory Time-of-Use Rates Undermine California’s Solar Photovoltaic Subsidies?  

E-Print Network [OSTI]

D I. Introduction The California Solar Initiative (CSI) wasnal cost. First, the California Solar Initiative o?ers aActually Undermine the California Solar Initiative? The

Borenstein, Severin

2007-01-01T23:59:59.000Z

368

Energy modeling of photovoltaic thermal systems with corrugated unglazed transpired solar collectors – Part 1: Model development and validation  

Science Journals Connector (OSTI)

Abstract Building-integrated photovoltaic–thermal (BIPV/T) systems with unglazed transpired solar collectors (UTCs) can provide a key solution for on-site electricity and thermal energy generation. Although the energy saving potential of this technology is significant, no systematic thermal analysis model has been developed for optimal system design and integration with building operation. This paper is the first of two companion papers focused on modeling and performance analysis of BIPV/T systems with UTC. In Part 1, energy models are presented for two configurations: UTC only and UTC with PV panels, to predict the cavity exit air temperature and plate surface temperature with weather (incident solar radiation, ambient air temperature, dew point temperature and wind speed) and design (airflow rate or suction velocity and geometry) parameters used as inputs. Nusselt number and effectiveness correlations, representing both the exterior and interior convective heat transfer processes, have been obtained from experimentally validated, three-dimensional, Reynolds-Averaged Navier–Stokes (RANS), Computational Fluid Dynamics (CFD) simulations, using high resolution grids and the ReNormalization Group Methods k–? (RNG k–?) turbulence closure model. The energy models were validated with measurements in an outdoor test-facility. Good agreement was observed between the model prediction and the experimental data, with the root mean square error (RMSE) being within 1 °C for the UTC-only model and within 2 °C for the model of UTC with PV modules. In the companion paper, Part 2, the effects of important parameters on system performance are demonstrated based on information from the literature and simulations using CFD and energy models. The optimal geometry is investigated for both configurations and the performance curves, under different levels of solar radiation, wind speed and suction velocity, are presented to provide guidelines for system design.

Siwei Li; Panagiota Karava; Sam Currie; William E. Lin; Eric Savory

2014-01-01T23:59:59.000Z

369

End-users' experiences with electricity supply from stand-alone mini-grid solar PV power stations in rural areas of western China  

Science Journals Connector (OSTI)

Abstract The aim of this study is to understand electricity supply from stand-alone mini-grid solar PV power stations in remote rural areas of western China from the perspective of ‘end-users’ including: their satisfaction, evaluation of sufficiency of electricity supply, positive experiences, negative experiences, behaviors, and needs. The methodology used for this study adopts the approach of an in-depth case study with field research. Two townships, Saierlong Township in Qinghai Province and Namcuo Township in Tibet Autonomous Region (AR), were selected for the case studies. The methods for collecting data are interviews and household surveys in the field. Based on end-users' experiences, the households in both investigated townships were not satisfied with the electricity service. The main concerns were the insufficiency of electricity supply and unreliable electricity service. The insufficiency of the electricity supply was due to lack of information about local household electricity needs. As for the issue of unreliable electricity service, electricity was not regularly supplied on a daily basis. The duration of daily electricity supply was also not stable. The households were unable to predict the starting and ending times of daily electricity supply. Hence, when planning rural electrification with stand-alone mini-grid solar PV power stations, end-users' electricity demand approach should be taken into consideration, instead of only electricity supply approach.

Chian-Woei Shyu

2013-01-01T23:59:59.000Z

370

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network [OSTI]

solar thermal and heat storage on CO 2 emissions and annual energyenergy costs, heat storage does not directly support solar thermal /energy costs. This paper focuses on analysis of the optimal interaction of solar thermal

Marnay, Chris

2010-01-01T23:59:59.000Z

371

Software-as-a-Service Optimised Scheduling of a Solar-Assisted HVAC System with Thermal Storage  

E-Print Network [OSTI]

of a solar-thermal- assisted hvac system. Energy andsolar thermal collectors using flat reflective surfaces. Solar Energy,of a solar-assisted HVAC system with thermal storage. Energy

Mammoli, Andrea

2014-01-01T23:59:59.000Z

372

Software-as-a-Service Optimised Scheduling of a Solar-Assisted HVAC System with Thermal Storage  

E-Print Network [OSTI]

performance of a solar-thermal- assisted hvac system. Energyfor rows of fixed solar thermal collectors using flatassisted by a 232 m solar thermal array providing heat to a

Mammoli, Andrea

2014-01-01T23:59:59.000Z

373

Desert Sunlight is Shining Example of How DOE Loan Guarantees Helped Launch Utility-scale PV Solar Market  

Broader source: Energy.gov [DOE]

LPO helped finance the first five utility-scale PV projects larger than 100 MW in the U.S. With Desert Sunlight now fully operational, all five projects are online, generating clean electricity and repaying loans. The initial investments made by LPO helped build a market that subsequently financed an additional 17 projects larger than 100 MW without help from the Department.

374

E-Print Network 3.0 - advanced solar thermal Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

..) - residential and commercial. (A. Athienitis) 2. Solar thermal systems for heating and cooling (DHW... and optimization tool. THEME 1 Integration THEME 2 Thermal THEME...

375

Two-tank indirect thermal storage designs for solar parabolic trough power plants.  

E-Print Network [OSTI]

??The performance of a solar thermal parabolic trough plant with thermal storage is dependent upon the arrangement of the heat exchangers that ultimately transfer energy… (more)

Kopp, Joseph E.

2009-01-01T23:59:59.000Z

376

Solar thermal power generation: a bibliography with abstracts. Quarterly update, October-December 1979  

SciTech Connect (OSTI)

This annotated bibliography contains the following subjects: energy overviews, solar overviews, energy conservation, economics and law, solar thermal power, thermionic and thermoelectric, ocean thermal energy conversion, biomass and photochemical energy, and large-scale photovoltaics. (MHR)

Not Available

1980-04-01T23:59:59.000Z

377

Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion...  

Broader source: Energy.gov (indexed) [DOE]

Research Center of the DOE Office of Basic Energy Sciences SOLID-STATE SOLAR-THERMAL ENERGY CONVERSION CENTER Progress from DOE EFRC: Solid-State Solar-Thermal Energy...

378

Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion...  

Broader source: Energy.gov (indexed) [DOE]

Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC ) Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC )...

379

Outdoor and Indoor Testing to Increase the Efficiency and Durability of Flat Plate Solar Thermal Collectors  

Science Journals Connector (OSTI)

This paper presents the test performed on the solar thermal flat plate collector and the effect of saline aerosol on the solar thermal conversion; an assembly of testing rigs developed ... presented; the rigs all...

Daniela Ciobanu; Ion Visa; Anca Duta…

2014-01-01T23:59:59.000Z

380

Transient-heat-transfer and stress analysis of a thermal-storage solar cooker module  

E-Print Network [OSTI]

This paper details the analysis carried out in Solidworks to determine the best material and configuration of a thermal-storage solar cooker module.The thermal-storage solar cooker utilizes the high-latent-heat lithium ...

Zengeni, Hazel C

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Cogenerating Photovoltaic and Thermal Solar Collector  

E-Print Network [OSTI]

cell, 25% max ­ Steam power plant, 50% max · Data Centers in the U.S. ­ Demand increases as internet.2% of the nations electricity consumption · Load equivalent to 5 1000 MW power plants · Over 2.2 billion dollars applications #12;First Prototype Spring 2008 #12;#12;Experimental Results · Thermal power generated ­ 1.4 KW

Su, Xiao

382

pv land use | OpenEI Community  

Open Energy Info (EERE)

pv land use pv land use Home Rosborne318's picture Submitted by Rosborne318(5) Member 2 December, 2013 - 11:06 Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 pv land use Solar solar land use Solar Power The Shreveport Airport Authority intends to issue a Request for Proposal (RFP) at some future time for renewable energy generation opportunities on Shreveport Airport property. Files: application/pdf icon solar_rfi_complete.pdf Sfomail's picture Submitted by Sfomail(48) Member 25 June, 2013 - 12:10 Solar Land Use Data on OpenEI acres csp land use how much land land requirements pv land use solar land use square miles I'm happy to announce that a new report on Solar+Land+Use was just released by the National+Renewable+Energy+Laboratory. You can find a brief summary

383

Kenmos PV | Open Energy Information  

Open Energy Info (EERE)

Kenmos PV Kenmos PV Jump to: navigation, search Name Kenmos PV Place Tainan, Taiwan Sector Solar Product Solar business unit of Kenmos Technology which was set up in Sep 2007, to produce thin film PV cells. Coordinates 22.99721°, 120.180862° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.99721,"lon":120.180862,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

384

Performance contracting for parabolic trough solar thermal systems  

SciTech Connect (OSTI)

Several applications of solar energy have proven viable in the energy marketplace, due to competitive technology and economic performance. One example is the parabolic trough solar collectors, which use focused solar energy to maximize efficiency and reduce material use in construction. Technical improvements are complemented by new business practices to make parabolic trough solar thermal systems technically and economically viable in an ever widening range of applications. Technical developments in materials and fabrication techniques reduce production cost and expand applications from swimming pool heating and service hot water, to higher-temperature applications such as absorption cooling and process steam. Simultaneously, new financing mechanisms such as a recently awarded US Department of Energy (DOE) Federal Energy Management Program (FEMP) indefinite quantity Energy Savings Performance Contract (Super ESPC) facilitate and streamline implementation of the technology in federal facilities such as prisons and military bases.

Brown, H.; Hewett, R.; Walker, A. [National Renewable Energy Lab., Golden, CO (United States); Gee, R.; May, K. [Industrial Solar Technology, Golden, CO (United States)

1997-12-31T23:59:59.000Z

385

Quality assurance of solar thermal systems with the ISFH-Input/Output-Procedure  

E-Print Network [OSTI]

. Supplementary sensors may be necessary for some special solar systems (e. g. solar systems with several storagesQuality assurance of solar thermal systems with the ISFH- Input/Output-Procedure Peter Paerisch/Output-Controllers for in situ and automatic function control of solar thermal systems that were developed within the research

386

Genetic algorithms used for the optimization of light-emitting diodes and solar thermal collectors  

E-Print Network [OSTI]

Genetic algorithms used for the optimization of light-emitting diodes and solar thermal collectors developed for the optimization of light-emitting diodes (LED) and solar thermal collectors. The surface a light-extraction efficiency of only 3.7%). The solar thermal collector we considered consists

Mayer, Alexandre

387

Solar Thermal Policy in the U.S.: A Review of Best Practices  

E-Print Network [OSTI]

Solar Thermal Policy in the U.S.: A Review of Best Practices in Leading States Renewable Energy are supported at the master's and doctoral levels. #12;Solar Thermal Policy in the U.S.: A Review of Best · Julie Bellino ­ Renewable Energy Vermont · Front Page Top Picture ­ Solar Thermal Array at Kent County

Delaware, University of

388

Thermal and Magnetic Parameters in Solar Flares Derived from GOES X-Ray Light Curves  

Science Journals Connector (OSTI)

......6110 6190 6220 6310 Thermal and Magnetic Parameters in Solar Flares Derived from...impulsive phase of 20 solar flares and to estimate the thermal and magnetic parameters...parameters and the thermal ones, have been applied not only to solar flares, but also......

Tetsuya T. Yamamoto; Takashi Sakurai

2010-06-25T23:59:59.000Z

389

Stirling Engines for Low-Temperature Solar-Thermal-Electric Power Generation  

E-Print Network [OSTI]

Stirling Engines for Low-Temperature Solar-Thermal- Electric Power Generation Artin Der Minassians-Temperature Solar-Thermal-Electric Power Generation by Artin Der Minassians Karshenasi (Amirkabir University-Temperature Solar-Thermal-Electric Power Generation Copyright c 2007 by Artin Der Minassians #12;1 Abstract Stirling

Sanders, Seth

390

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network [OSTI]

in crystalline silicon solar technologies have occurred overthe current solar PV technology, even after adjusting forde?cit of the current solar PV technology with the potential

Borenstein, Severin

2008-01-01T23:59:59.000Z

391

Designing PV Incentive Programs to Promote System Performance: A Review of Current Practice  

E-Print Network [OSTI]

of PV Energy Production System Conversion Solar EnergySolar & Small Wind Incentive Program Washington Renewable Energy Productionof actual energy production. Two programs, LADWP’s Solar

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

392

The Economic Value of PV and Net Metering to Residential Customers in California  

E-Print Network [OSTI]

incentives under the California Solar Initiative takeRates Undermine California’s Solar Photovoltaic Subsidies? ”Solar PV and Retail Rate Design”, Unpublished draft report for the California

Darghouth, Naim

2010-01-01T23:59:59.000Z

393

Shaking Up the Residential PV Market: Implications of Recent Changes to the ITC  

E-Print Network [OSTI]

changes in federal solar policy and, if financing programsto the new federal solar policy landscape, PV programchanges in federal solar policy: • Most obviously, program

Bolinger, Mark

2008-01-01T23:59:59.000Z

394

Enhanced regeneration of degraded polymer solar cells by thermal annealing  

SciTech Connect (OSTI)

The degradation and thermal regeneration of poly(3-hexylethiophene) (P3HT):[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) and P3HT:indene-C{sub 60} bisadduct (ICBA) polymer solar cells, with Ca/Al and Ca/Ag cathodes and indium tin oxide/poly(ethylene-dioxythiophene):polystyrene sulfonate anode have been investigated. Degradation occurs via a combination of three primary pathways: (1) cathodic oxidation, (2) active layer phase segregation, and (3) anodic diffusion. Fully degraded devices were subjected to thermal annealing under inert atmosphere. Degraded solar cells possessing Ca/Ag electrodes were observed to regenerate their performance, whereas solar cells having Ca/Al electrodes exhibited no significant regeneration of device characteristics after thermal annealing. Moreover, the solar cells with a P3HT:ICBA active layer exhibited enhanced regeneration compared to P3HT:PCBM active layer devices as a result of reduced changes to the active layer morphology. Devices combining a Ca/Ag cathode and P3HT:ICBA active layer demonstrated ?50% performance restoration over several degradation/regeneration cycles.

Kumar, Pankaj, E-mail: pankaj@mail.nplindia.ernet.in [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); Bilen, Chhinder; Zhou, Xiaojing; Belcher, Warwick J.; Dastoor, Paul C., E-mail: Paul.Dastoor@newcastle.edu.au [Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); Feron, Krishna [Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); CSIRO Energy Technology, P. O. Box 330, Newcastle NSW 2300 (Australia)

2014-05-12T23:59:59.000Z

395

Sandia National Laboratories: solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) EC Top Publications Design and Analysis...

396

Orlando Utilities Commission - Solar Programs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Orlando Utilities Commission - Solar Programs Orlando Utilities Commission - Solar Programs Orlando Utilities Commission - Solar Programs < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate No maximum specified Program Info State Florida Program Type Performance-Based Incentive Rebate Amount Solar Thermal (Commercial): 0.03/kWh PV (Commercial and Residential): 0.05/kWh Provider Orlando Utilities Commission (OUC) The Orlando Utilities Commission (OUC), through its Solar Program, offers to purchase the environmental attributes or renewable energy credits (RECs) from customers who install a photovoltaic (PV) and/or solar thermal energy system on their property. Incentive payments are equal to $0.05 per killowatt-hour (kWh) for commercial and residential PV systems and

397

Exergetic optimization of solar collector and thermal energy storage system  

Science Journals Connector (OSTI)

This paper deals with the exergetic optimization of a solar thermal energy system. This consists of a solar collector (SC) and a rectangular water storage tank (ST) that contains a phase change material (PCM) distributed in an assembly of slabs. The study takes into account both conduction and convection heat transfer mode for water in the SC, and also the phase change process for the PCM in the ST. An analytical solution for the melting process in the PCM is also presented. The results of the study are compared with previous experimental data, confirming the accuracy of the model. Results of a numerical case study are presented and discussed.

F. Aghbalou; F. Badia; J. Illa

2006-01-01T23:59:59.000Z

398

Mobile-mirror concentrators for solar thermal power plants  

SciTech Connect (OSTI)

Seven central-receiver, solar-thermal power plants with heliostat concentrators have been built around the world in the last two decades. This technology has proven to be much too expensive for commercial power plants and efforts to reduce the cost have reached an impasse. It is the nature of the solar concentrators which makes it so expensive. There are two types of concentrators: those, called heliostats, with mirrors on stationary supports, and those with mirrors on mobile supports. Mobile mirrors are potentially much cheaper than heliostats.

Ratliff, G. [Ratliff (George), Pittsburgh, PA (United States)

1999-11-01T23:59:59.000Z

399

Boosting CSP Production with Thermal Energy Storage  

SciTech Connect (OSTI)

Combining concentrating solar power (CSP) with thermal energy storage shows promise for increasing grid flexibility by providing firm system capacity with a high ramp rate and acceptable part-load operation. When backed by energy storage capability, CSP can supplement photovoltaics by adding generation from solar resources during periods of low solar insolation. The falling cost of solar photovoltaic (PV) - generated electricity has led to a rapid increase in the deployment of PV and projections that PV could play a significant role in the future U.S. electric sector. The solar resource itself is virtually unlimited; however, the actual contribution of PV electricity is limited by several factors related to the current grid. The first is the limited coincidence between the solar resource and normal electricity demand patterns. The second is the limited flexibility of conventional generators to accommodate this highly variable generation resource. At high penetration of solar generation, increased grid flexibility will be needed to fully utilize the variable and uncertain output from PV generation and to shift energy production to periods of high demand or reduced solar output. Energy storage is one way to increase grid flexibility, and many storage options are available or under development. In this article, however, we consider a technology already beginning to be used at scale - thermal energy storage (TES) deployed with concentrating solar power (CSP). PV and CSP are both deployable in areas of high direct normal irradiance such as the U.S. Southwest. The role of these two technologies is dependent on their costs and relative value, including how their value to the grid changes as a function of what percentage of total generation they contribute to the grid, and how they may actually work together to increase overall usefulness of the solar resource. Both PV and CSP use solar energy to generate electricity. A key difference is the ability of CSP to utilize high-efficiency TES, which turns CSP into a partially dispatchable resource. The addition of TES produces additional value by shifting the delivery of solar energy to periods of peak demand, providing firm capacity and ancillary services, and reducing integration challenges. Given the dispatchability of CSP enabled by TES, it is possible that PV and CSP are at least partially complementary. The dispatchability of CSP with TES can enable higher overall penetration of the grid by solar energy by providing solar-generated electricity during periods of cloudy weather or at night, when PV-generated power is unavailable. Such systems also have the potential to improve grid flexibility, thereby enabling greater penetration of PV energy (and other variable generation sources such as wind) than if PV were deployed without CSP.

Denholm, P.; Mehos, M.

2012-06-01T23:59:59.000Z

400

Electricity Rate Structures and the Economics of Solar PV: Could Mandatory Time-of-Use Rates Undermine California’s Solar Photovoltaic Subsidies?  

E-Print Network [OSTI]

into e?ect for solar-rebate recipients. By June, CaliforniaTOU mandate makes the solar rebate program less attractive ?of California’s solar rebate databases indicates that there

Borenstein, Severin

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Review and perspectives on Life Cycle Analysis of solar technologies with emphasis on building-integrated solar thermal systems  

Science Journals Connector (OSTI)

Abstract Building-Integrated (BI) solar thermal are systems which are integrated into the building, are a new tendency in the building sector and they provide multiple advantages in comparison with the Building-Added (BA) solar thermal configurations. The present investigation is a critical review about Life Cycle Analysis (LCA) studies of solar systems. Emphasis is given on the BI solar thermal installations. Studies about BA configurations and systems which produce electrical (or electrical/thermal) energy are also presented in order to provide a more complete overview of the literature. The influence of the BI solar thermal systems on building environmental profile is also examined. Critical issues such as ongoing standardization and environmental indicators are discussed. The results reveal that there is a gap in the field of LCA about real BI solar thermal (and solar thermal/electrical) installations. Thus, there is a need for more LCA studies which examine the BI solar thermal system itself and/or in conjunction with the building. Active systems which could provide energy for the building would be interesting to be studied. Investigations about the influence of the BI solar thermal systems on building life-cycle performance could also provide useful information in the frame of a more sustainable built environment.

Chr. Lamnatou; D. Chemisana; R. Mateus; M.G. Almeida; S.M. Silva

2015-01-01T23:59:59.000Z

402

A study of PV/T collector with honeycomb heat exchanger  

Science Journals Connector (OSTI)

This paper present a study of a single pass photovoltaic/thermal (PV/T) solar collector combined with honeycomb heat exchanger. A PV/T system is a combination of photovoltaic panel and solar thermal components in one integrated system. In order to enhance the performance of the system a honeycomb heat exchanger is installed horizontally into the channel located under the PV module. Air is used as the heat remover medium. The system is tested with and without the honeycomb at irradiance of 828 W/m2 and mass flow rate spanning from 0.02 kg/s to 0.13 kg/s. It is observed that the aluminum honeycomb is capable of enhancing the thermal efficiency of the system efficiently. At mass flow rate of 0.11 kg/s the thermal efficiency of the system without honeycomb is 27% and with honeycomb is 87 %. Throughout the range of the mass flow rate the electrical efficiency of the PV module improved by 0.1 %. The improved design is suitable to be further investigated as solar drying system and space heating.

F. Hussain; M. Y. H. Othman; B. Yatim; H. Ruslan; K. Sopian; Z. Ibarahim

2013-01-01T23:59:59.000Z

403

Living on PV power in comfort and style  

SciTech Connect (OSTI)

The Solectrogen House near San Francisco was conceived, designed and built by Solar Depot as an off-grid renewable energy house. It is powered by a Solectrogen Hybrid Power System consisting of a 3 kW PV array, two 1 kW wind powered generators, a 50 kWh storage battery bank and a 6.5 kW LP-fueled engine generator for back-up. Two 4kW sinewave DC to AC inverters are utilized, with 24 VDC input and 120/240 VAC 60 Hz output. The inverters are equipped with built-in battery chargers and microprocessors for controlling the engine generator operation. The water supply of the house is a well pumped by a PV powered submersible DC pump. The swimming pool filtration system utilizes a 3/4 HP DC pump powered by a separate dedicated PV array of 640 Watts at 90 V. Energy efficient lighting and refrigeration used in the house minimize the power requirements of the house. The house also utilizes a solar thermal system consisting of 640 sq. ft. of glazed solar collectors and a 500 gallon storage tank. The thermal system is utilized for heating water year round, for space heating in the winter and for swimming pool heating in the summer.

Mizany, A. [Solar Depot Inc., San Rafael, CA (United States)

1994-12-31T23:59:59.000Z

404

The Role of Subtropical Irreversible PV Mixing in the Zonal Mean Circulation Response to Global Warming-like Thermal Forcing  

SciTech Connect (OSTI)

The atmospheric circulation response to the global warming-like tropical upper tropospheric heating is revisited using a dry atmospheric general circulation model (AGCM) in light of a new diagnostics based on the concept of finite-amplitude wave activity (FAWA) on equivalent latitude. For a given tropical heating profile, the linear Wentzel-Kramers-Brillouin (WKB) wave refraction analysis sometimes gives a very different and even opposite prediction of the eddy momentum flux response to that of the actual full model simulation, exposing the limitation of the traditional linear approach in understanding the full dynamics of the atmospheric response under global warming. The implementation of the FAWA diagnostics reveals that in response to the upper tropospheric heating, effective diffusivity, a measure of the mixing efficiency, increases and advances upward and poleward in the subtropics and the resultant enhancement and the poleward encroachment of eddy potential vorticity mixing leads to a poleward displaced potential vorticity (PV) gradient peak in the upper troposphere. The anomalous eddy PV flux, in balance with the PV dissipation, gives rise to a poleward shift in the eddy-driven jet and eddy-driven mean meridional circulation. Sensitivity experiments show that these irreversible dissipation processes in the upper troposphere are robust, regardless of the width of the tropical heating.

Lu, Jian; Sun, Lantao; Wu, Yutian; Chen, Gang

2014-03-15T23:59:59.000Z

405

An investigation of the efficiency of the receiver of a solar thermal cooker with thermal energy storage.  

E-Print Network [OSTI]

??A small scale solar concentrator cooker with a thermal energy storage system was designed, constructed and tested on the roof of the Physics building at… (more)

Heilgendorff, Heiko Martin.

2015-01-01T23:59:59.000Z

406

Soiling losses for solar photovoltaic systems in California  

E-Print Network [OSTI]

n efficiency and daily rainfall for a 554 kW dc PV plant inPV sites demonstrated how soiling decreases the efficiency of solar PV plants.

Mejia, Felipe A; Kleissl, Jan

2013-01-01T23:59:59.000Z

407

Novel Thermal Storage Technologies for Concentrating Solar Power Generation  

SciTech Connect (OSTI)

The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300oC and 850oC using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

2013-06-20T23:59:59.000Z

408

SolarOil Project, Phase I preliminary design report. [Solar Thermal Enhanced Oil Recovery project  

SciTech Connect (OSTI)

The preliminary design of the Solar Thermal Enhanced Oil Recovery (SolarOil) Plant is described in this document. This plant is designed to demonstrate that using solar thermal energy is technically feasible and economically viable in enhanced oil recovery (EOR). The SolarOil Plant uses the fixed mirror solar concentrator (FMSC) to heat high thermal capacity oil (MCS-2046) to 322/sup 0/C (611/sup 0/F). The hot fluid is pumped from a hot oil storage tank (20 min capacity) through a once-through steam generator which produces 4.8 MPa (700 psi) steam at 80% quality. The plant net output, averaged over 24 hr/day for 365 days/yr, is equivalent to that of a 2.4 MW (8.33 x 10/sup 6/ Btu/hr) oil-fired steam generator having an 86% availability. The net plant efficiency is 57.3% at equinox noon, a 30%/yr average. The plant will be demonstrated at an oilfield site near Oildale, California.

Baccaglini, G.; Bass, J.; Neill, J.; Nicolayeff, V.; Openshaw, F.

1980-03-01T23:59:59.000Z

409

Baoding Solar Thermal Equipment Company | Open Energy Information  

Open Energy Info (EERE)

Equipment Company Equipment Company Jump to: navigation, search Name Baoding Solar Thermal Equipment Company Place Baoding, Hebei Province, China Sector Solar Product Solar water heating system manufacturer. Coordinates 38.855011°, 115.480217° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.855011,"lon":115.480217,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

410

Technical and economical evaluation of solar thermal power generation  

Science Journals Connector (OSTI)

This article presents a feasibilty on a solar power system based on the Stirling dish (SD) technology, reviews and compares the available Stirling engines in the perspective of a solar Stirling system. The system is evaluated, as a parameter to alleviate the energy system of the Cretan island while taking care of the CO2 emissions. In the results a sensitivity analysis was implemented, as well as a comparison with conventional power systems. In the long-term, solar thermal power stations based on a SD can become a competitive option on the electricity market, if a concerted programme capable of building the forces of industry, finance, insurance and other decision makers will support the market extension for this promising technology.

Theocharis Tsoutsos; Vasilis Gekas; Katerina Marketaki

2003-01-01T23:59:59.000Z

411

Thermal insulation with paper honeycombs with solar gain  

SciTech Connect (OSTI)

In this contribution the authors describe the concept and the model for the heat flux and the effective U-value of paper honeycombs (PHC) used as efficient and cheap transparent insulation material. With this thermal-insulation-material static U-values of U = 0.25 W/(m{sup 2}K) are obtained due to the very low thermal conduction value {lambda} = 0.04 W/(mK), which is comparable to thermal insulators as PU-foam or mineral wool. Contrary to conventional insulation materials PHC also gathers solar radiation due to its geometry, thereby providing heat flux into the interior of the building. Because the angle of incidence of the sun in wintertime is low, the direct solar radiation is absorbed approximately within the outermost 3 centimeters of the PHC. Even at ambient temperatures below 0 C, this region is warmed up to 60 C. By conduction the heat is brought to the brick wall underneath, which acts as reservoir and gets to temperatures between 15 and 30 C. Calculated across the full heating period, it is shown, that effective U values of 0.14 W/(m{sup 2}K) are reached by using PHC, reducing the brick wall U value by a factor of 3/4. Contrary to other transparent thermal insulation systems, e.g. developed by the Fraunhofer Institute for Solar Energy Systems, this system does not overheat during summertime, because the capillary structure is shielding the solar rays. A Windows based program solves the heat conduction equation with finite element methods.

Hingerl, K.; Baumgartner, G.; Aschauer, H.

1996-12-31T23:59:59.000Z

412

NREL: Technology Deployment - Portland, Oregon Grassroots Solarize...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

30% News Watch a video on the Solarize movement Pallets of PV: Communities Purchase Solar and Drive Down Costs Together Solarize Portland Solarize New York Solarize...

413

Solar Wind | Open Energy Information  

Open Energy Info (EERE)

Place: Krasnodar, Romania Zip: 350000 Sector: Solar, Wind energy Product: Russia-based PV product manufacturer. Solar Wind manufactures solar modules and cells. References: Solar...

414

Geometric Modularity in the Thermal Modeling of Solar Steam Turbines  

Science Journals Connector (OSTI)

Abstract To optimize the start-up schedules of steam turbines operating in concentrating solar power plants, accurate predictions of the temperatures within the turbine are required. In previous work by the authors, thermal models of steam turbines have been developed and validated for parabolic trough solar power plant applications. Building on these results, there is an interest to increase the adaptability of the models with respect to different turbine geometries due to the growing trend of having larger steam turbines in parabolic trough and solar tower power plants. In this work, a modular geometric approach has been developed and compared against both the previous modeling approach and 96 h of measured data from an operational parabolic trough power plant. Results show a large degree of agreement with respect to the measured data in spite of the different detail levels. The new model allows for simple and fast prediction of the thermal behavior of different steam turbine sizes and geometries, which is expected to be of significant importance for future concentrating solar power plants.

M. Topel; J. Spelling; M. Jöcker; B. Laumert

2014-01-01T23:59:59.000Z

415

Far-IR and radio thermal continua in solar flares  

E-Print Network [OSTI]

With the invention of new far-infrared (FIR) and radio mm and sub-mm instruments (DESIR on SMESE satellite, ESO-ALMA), there is a growing interest in observations and analysis of solar flares in this so far unexplored wavelength region. Two principal radiation mechanisms play a role: the synchrotron emission due to accelerated particle beams moving in the magnetic field and the thermal emission due to the energy deposit in the lower atmospheric layers. In this contribution we explore the time-dependent effects of beams on thermal FIR and radio continua. We show how and where these continua are formed in the presence of time dependent beam heating and non-thermal excitation/ionisation of the chromospheric hydrogen plasma.

Kašparová, J; Karlický, M; Moravec, Z; Varady, M

2009-01-01T23:59:59.000Z

416

Potential Impact of ZT = 4 Thermoelectric Materials on Solar Thermal Energy Conversion Technologies  

Science Journals Connector (OSTI)

Photovoltaic and solar-thermal are two conversion technologies receiving a great deal of attention. ... Solar-thermal conversion uses the full solar spectrum and generates electricity by conventional electromagnetic induction methods. ... Resource and environmental impact considerations will play an increasingly important role in reaching decisions concerning the practicality of thermoelectric power generation systems. ...

Ming Xie; Dieter M. Gruen

2010-03-02T23:59:59.000Z

417

Flexible Hybrid Energy Cell for Simultaneously Harvesting Thermal, Mechanical, and Solar Energies  

Science Journals Connector (OSTI)

Flexible Hybrid Energy Cell for Simultaneously Harvesting Thermal, Mechanical, and Solar Energies ... We report the first flexible hybrid energy cell that is capable of simultaneously or individually harvesting thermal, mechanical, and solar energies to power some electronic devices. ... By integrating the NGs and the solar cells, a hybrid energy cell was fabricated to simultaneously harvest three different types of energies. ...

Ya Yang; Hulin Zhang; Guang Zhu; Sangmin Lee; Zong-Hong Lin; Zhong Lin Wang

2012-12-03T23:59:59.000Z

418

Corrigenda for Solar Engineering of Thermal Processes, Fourth Ed. J. A. Duffie and W. A. Beckman  

E-Print Network [OSTI]

Corrigenda for Solar Engineering of Thermal Processes, Fourth Ed. J. A. Duffie and W. A. Beckman 2 Last Eqn on page Second Ti should be Ti-1 #12;Corrigenda for Solar Engineering of Thermal Processes "radiation on" to "radiation at solar noon on" Second equation Change G to Gb + Gd Six lines from bottom

Wisconsin at Madison, University of

419

Propagation of three--dimensional Alfv'en waves in a stratified, thermally conducting solar wind  

E-Print Network [OSTI]

Propagation of three--dimensional Alfv'en waves in a stratified, thermally conducting solar wind S to the well--known thermal expansion of the solar corona [Parker, 1958, 1963, 1991]. In particular Alfv'en waves in the solar atmosphere and wind, taking into account relevant physical effects

420

SCHOTT Solar GmbH formerly RWE Schott Solar GmbH | Open Energy Information  

Open Energy Info (EERE)

Solar GmbH formerly RWE Schott Solar GmbH Solar GmbH formerly RWE Schott Solar GmbH Jump to: navigation, search Name SCHOTT Solar GmbH (formerly RWE Schott Solar GmbH) Place Alzenau, Germany Zip 63755 Sector Solar Product German integrated PV manufacturer who also makes receivers for Solar Thermal Electricity Generation (STEG) projects. References SCHOTT Solar GmbH (formerly RWE Schott Solar GmbH)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. SCHOTT Solar GmbH (formerly RWE Schott Solar GmbH) is a company located in Alzenau, Germany . References ↑ "SCHOTT Solar GmbH (formerly RWE Schott Solar GmbH)" Retrieved from "http://en.openei.org/w/index.php?title=SCHOTT_Solar_GmbH_formerly_RWE_Schott_Solar_GmbH&oldid=3506

Note: This page contains sample records for the topic "thermal solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

NREL: Photovoltaics Research - PV News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PV News PV News The National Renewable Energy Laboratory Photovoltaic (PV) Research Program highlights latest research and news accomplishments from the laboratory on this page. Subscribe to the RSS feed RSS . Learn about RSS. November 8, 2013 New Solar Cell Is More Efficient, Less Costly Innovation by NREL and First Solar acquisition TetraSun wins a 2013 R&D 100 Award. November 6, 2013 NREL's Energy Systems Integration Facility Garners LEED® Platinum The Energy Systems Integration Facility (ESIF) on the campus of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in Golden, Colo., has earned a LEED® Platinum designation for new construction from the U.S. Green Building Council (USGBC), a non-profit organization dedicated to sustainable building design and construction.

422

Project Profile: High-Temperature Thermal Array for Next-Generation Solar Thermal Power Production  

Broader source: Energy.gov [DOE]

The Los Alamos National Laboratory (ORNL), under the National Laboratory R&D competitive funding opportunity, is developing a megawatt-scale heat pipe–based technology designed to bridge the heliostat reflector field and the power cycle by replacing both the solar receiver and the heat transfer fluid (HTF) system used in concentrating solar power (CSP) systems. The technology, called the high-temperature thermal array, aims to achieve the SunShot Initiative's goals by addressing technical challenges, reducing capital and operating expenses, and increasing net photon-to-electricity conversion efficiency.

423

Optimized Designs and Materials for Nanostructure Based Solar Cells  

E-Print Network [OSTI]

photovoltaic (PV) solar cell technology. It is defined asWEIGHT SOLAR CELLS Current solar array technologies provide

Shao, Qinghui

2009-01-01T23:59:59.000Z

424

Thermal Efficiency of Solar Collector Made from Thermoplastics  

Science Journals Connector (OSTI)

Abstract Thermoplastics solar collectors have been used to replace a typical metal collector because their mechanical and physical properties make the volume production of lightweight, low cost and corrosion resistance. Effect of thermal conductivity and collector area was observed for four type of themoplastics based i.e PVC-B (PVC: Polyvinyl Chloride-Blue), PB (PB: Polybutene), PP-R (PP-R: Polypropylene Random Copolymer) and PVC-CB: (Polyvinyl Chloride-Carbon Black). The collector area of 2 m2 were prepared as for solar collector. The position of collector panel to south orientation and angle of 140 to the horizontal, which was the collector slope obtaining highest annual efficiency in Thailand, were implemented. Data was collected by data logger from 9.00-16.00 am throughout the day in which temperature reached a sufficient level according to standard test method of ASHRAE 93 77. The mass flow rate of water in collector was 0.02 (kg.s-1). The results of the differing thermal conductivity materials have indicated that there is no different of the materials on collector thermal efficiency. The collector efficiency was depends on the areas of the panel. This suggestion that one material should not only be chosen over another in term of its ability to transfer heat to the liquid within the panel but also collector area.

Warunee Ariyawiriyanan; Tawatchai Meekaew; Manop Yamphang; Pongpitch Tuenpusa; Jakrawan Boonwan; Nukul Euaphantasate; Pongphisanu Muangchareon; Supachat Chungpaibulpatana

2013-01-01T23:59:59.000Z

425

Thermal Load based Adaptive Tracking for Flat Plate Solar Collectors  

Science Journals Connector (OSTI)

Abstract The energy output of solar-thermal systems using flat plate collectors can be improved by tracking. Tracking is well known as a path for increasing the amount of solar radiation received by the collector; additionally the paper proposes a new concept that considers the inverse tracking as a viable option for protecting the collectors against overheating. An analysis of the thermal energy output and conversion efficiency is done considering forward tracking in three different days with different radiation profile (cloudy, sunny and mixed days), followed by an analysis of the inverse tracking concept. The in-field data show that there is a limiting angle below which inverse tracking is not effective and this value is estimated at 40° as compared with the optimal orientation. A logical scheme is proposed based on four different programs for forward tracking, inverse tracking, maximum inverse tracking or fixing the collector; this decisional scheme covers a broad range of functional situations having as central concept the production of thermal energy only when needed, for satisfying the demand, decreasing the energy consumption for forced circulation and supporting the systems reliability and safety.

Mircea Neagoe; Ion Visa; Bogdan G. Burduhos; Macedon D. Moldovan

2014-01-01T23:59:59.000Z

426

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network [OSTI]

constrained load pockets, solar PV policies seldom if everFor a broad-based solar PV policy, the relevant question isexogenous to the solar PV subsidy policy, then it is more

Borenstein, Severin

2008-01-01T23:59:59.000Z

427

Fifth parabolic dish solar thermal power program annual review: proceedings  

SciTech Connect (OSTI)

The primary objective of the Review was to present the results of activities within the Parabolic Dish Technology and Module/Systems Development element of the Department of Energy's Solar Thermal Energy Systems Program. The Review consisted of nine technical sessions covering overall Project and Program aspects, Stirling and Brayton module development, concentrator and engine/receiver development, and associated hardware and test results to date; distributed systems operating experience; international dish development activities; and non-DOE-sponsored domestic dish activities. A panel discussion concerning business views of solar electric generation was held. These Proceedings contain the texts of presentations made at the Review, as submitted by their authors at the beginning of the Review; therefore, they may vary slightly from the actual presentations in the technical sessions.

None

1984-03-01T23:59:59.000Z

428

NREL: Performance and Reliability R&D - PV Module Reliability...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reliability R and D Printable Version PV Module Reliability Workshop NREL hosts an annual Photovoltaic Module Reliability Workshop (PVMRW) so that solar technology experts can...

429

Sandia National Laboratories: Sandian Presents on PV Failure...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) On December 15, 2014, in Computational Modeling & Simulation, Energy, Facilities, News, News & Events,...

430

Different Models for Determination of Thermal Stratification in A Solar Storage Tank  

Science Journals Connector (OSTI)

In this work two different models are shown for describing the thermal stratification in the solar storage tank of the solar water heating system. The first model was ... hour from the average hourly data of the

P. Géczy-Víg; I. Farkas

2009-01-01T23:59:59.000Z

431

Thermal and Magnetic Parameters in Solar Flares Derived from GOES X-Ray Light Curves  

Science Journals Connector (OSTI)

......released amount of energy in a solar flare, and there...the derived thermal energy with the magnetic free energy. It is found that...Japan and Nobeyama Solar Radio Observatory...is a collaborative project involving the NRL......

Tetsuya T. Yamamoto; Takashi Sakurai

2010-06-25T23:59:59.000Z

432

Attraction of carbon investments to implement the solar energy thermal utilization projects  

Science Journals Connector (OSTI)

The possibilities for attracting investments of carbon funds to implement solar energy thermal projects using solar collectors under the Clean Development Mechanism are ... about 10% of the funds required for project

R. A. Zakhidov

2007-10-01T23:59:59.000Z

433

Solar-Thermal Processing of Methane to Produce Hydrogen and Syngas  

Science Journals Connector (OSTI)

A solar-thermal aerosol flow reactor has been constructed, installed, and tested with the High-Flux Solar Furnace (HFSF) at the National Renewable Energy Laboratory (NREL). Experiments were successfully carried out for the dissociation of methane to ...

Jaimee K. Dahl; Joseph Tamburini; Alan W. Weimer; Allan Lewandowski; Roland Pitts; Carl Bingham

2001-07-27T23:59:59.000Z

434

Thermal lens effect in solar-pumped high-power solid-state lasers  

Science Journals Connector (OSTI)

The thermal lens effect in the Nd:YAG laser rods pumped with a concentrated solar flux of the Big Solar Furnace of the NPO Fizika-Solntse of...

S. A. Bakhramov; Sh. D. Paiziev; Sh. I. Klychev; A. K. Kasimov…

2007-09-01T23:59:59.000Z

435

Distributed PV Permitting and Inspection Processes  

Broader source: Energy.gov [DOE]

This presentation summarizes case studies of the time and cost involved in the distributed PV permitting and inspection process in three Solar America Cities, Austin, Portland, and Salt Lake City.

436

Solar-thermal-energy collection/storage-pond system  

DOE Patents [OSTI]

A solar thermal energy collection and storage system is disclosed. Water is contained, and the water surface is exposed directly to the sun. The central part of an impermeable membrane is positioned below the water's surface and above its bottom with a first side of the membrane pointing generally upward in its central portion. The perimeter part of the membrane is placed to create a watertight boundary separating the water into a first volume which is directly exposable to the sun and which touches the membranes first side, and a second volumn which touches the membranes second side. A salt is dissolved in the first water volume.

Blahnik, D.E.

1982-03-25T23:59:59.000Z

437

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

E-Print Network [OSTI]

net metering, and policies for supporting solar deployment.net metering, and policies for supporting solar deployment.Energy Policy, 36: MRW & Associates. 2007. Solar PV and

Darghouth, Naim

2010-01-01T23:59:59.000Z

438

Sandia National Laboratories: Solar Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) EC Top Publications Design and Analysis...

439

Sandia National Laboratories: Solar Mirrors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) EC Top Publications Design and Analysis...

440

Sandia National Laboratories: Solar Tower  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) EC Top Publications Design and Analysis...

Note: This page contains sample records for the topic "thermal solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Sandia National Laboratories: Solar Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(PV) Photovoltaics (PV) is a method of generating electrical power by converting solar light into electricity. Sandia photovoltaic work is centered on developing...

442

Definition: PV array | Open Energy Information  

Open Energy Info (EERE)

PV array PV array Jump to: navigation, search Dictionary.png PV array An interconnected system of PV modules that function as a single electricity-producing unit. In smaller systems, an array can consist of a single module.[1][2] View on Wikipedia Wikipedia Definition A Photovoltaic system (informally, PV system) is an arrangement of components designed to supply usable electric power for a variety of purposes, using the Sun (or, less commonly, other light sources) as the power source. PV systems may be built in various configurations: Off-grid without battery (Array-direct) Off-grid with battery storage for DC-only appliances Off-grid with battery storage for AC & DC appliances Grid-tie without battery Grid-tie with battery storage A photovoltaic array (also called a solar array) consists of multiple photovoltaic modules, casually

443

Toward a Low-CarMunicipal Financing for Energy Efficiency and Solar Power  

E-Print Network [OSTI]

Toward a Low-CarMunicipal Financing for Energy Efficiency and Solar Power By Merrian C. Fuller of the Inter- governmental Panel on Climate Change (IPCC). Thus far much of the effort has been focused, such as improving energy efficiency and add- ing solar photovoltaics (PV) and solar thermal systems to buildings

Kammen, Daniel M.

444

Analysis of the rigid porous manifold as an effevtive device to stratify solar thermal storage tanks.  

E-Print Network [OSTI]

??One of the most effective and simplest methods to maintain thermal stratification of solar hot water storage tanks during charge and discharge is the use… (more)

Ghosh, Vivekananda

2011-01-01T23:59:59.000Z

445

Residential building solar thermal analysis| A case study on Sophia Gordon Hall.  

E-Print Network [OSTI]

?? Solar thermal technologies, such as residential hot water heating and space conditioning, have potential for reducing green house gas emissions and fossil fuel consumption.… (more)

Trethewey, Ross M.

2010-01-01T23:59:59.000Z

446

Optimization of central receiver concentrated solar thermal : site selection, heliostat layout & canting .  

E-Print Network [OSTI]

??In this thesis, two new models are introduced for the purposes of (i) locating sites in hillside terrain suitable for central receiver solar thermal plants… (more)

Noone, Corey J. (Corey James)

2011-01-01T23:59:59.000Z

447

Pioneer Valley Photovoltaics Cooperative aka PV Squared | Open Energy  

Open Energy Info (EERE)

Photovoltaics Cooperative aka PV Squared Photovoltaics Cooperative aka PV Squared Jump to: navigation, search Name Pioneer Valley Photovoltaics Cooperative (aka PV Squared) Place New Britain, Connecticut Zip 6051 Sector Solar Product Solar PV system installer. References Pioneer Valley Photovoltaics Cooperative (aka PV Squared)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Pioneer Valley Photovoltaics Cooperative (aka PV Squared) is a company located in New Britain, Connecticut . References ↑ "Pioneer Valley Photovoltaics Cooperative (aka PV Squared)" Retrieved from "http://en.openei.org/w/index.php?title=Pioneer_Valley_Photovoltaics_Cooperative_aka_PV_Squared&oldid=349764"

448

Ris Energy Report 5 Solar thermal 41 by the end of 2004 about 110 million m2  

E-Print Network [OSTI]

Risø Energy Report 5 Solar thermal 41 6.3.2 by the end of 2004 about 110 million m2 of solar ther be within the competence of the existing solar thermal industry. Solar thermal PETER AHM, PA ENERgy LTD- mal collectors were installed worldwide. Figure 24 il- lustrates the energy contribution from

449

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

with Sensible- Heat Storage Solar Power Plant with Sulfurof the Solar Power Plant Storage-Vessel Design, . . . . .System for Chemical Storage of Solar Energy. UC Berkeley,

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

450

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Concentrating Solar Power, Customers & Partners, Energy, News, Partnership, Renewable Energy, Solar Areva Solar is collaborating with Sandia National Laboratories on a new...

451

Design and Implementation of Tracking System for Dish Solar Thermal Energy Based on Embedded System  

Science Journals Connector (OSTI)

Solar thermal energy has lots of advantages compare with photovoltage ... and stability can’t satisfy the requirements of thermal energy system. This paper gives a design and implementation of tracking system for...

Jian Kuang; Wei Zhang

2012-01-01T23:59:59.000Z

452

Potential of thermal insulation and solar thermal energy in domestic hot water and space heating and cooling sectors in Lebanon in the period 2010 - 2030.  

E-Print Network [OSTI]

??The potential of thermal insulation and solar thermal energy in domestic water heating, space heating and cooling in residential and commercial buildings Lebanon is studied… (more)

Zaatari, Z.A.R.

2012-01-01T23:59:59.000Z

453

21 - Thermal energy storage systems for concentrating solar power (CSP) technology  

Science Journals Connector (OSTI)

Abstract The option to supply electricity on demand is a key advantage of solar thermal power plants with integrated thermal storage. Diurnal storage systems providing thermal power in the multi-MW range for several hours are required here, the temperature range being between 250 °C and 700 °C. This chapter describes the state of the art in commercial storage systems used in solar thermal power generation. An overview of alternative and innovative storage concepts for this application area is given.

W.-D. Steinmann

2015-01-01T23:59:59.000Z

454

SUSTAINABLE AND HOLISTIC INTEGRATION OF ENERGY STORAGE AND SOLAR...  

Office of Environmental Management (EM)

SUSTAINABLE AND HOLISTIC INTEGRATION OF ENERGY STORAGE AND SOLAR PV (SHINES) SUSTAINABLE AND HOLISTIC INTEGRATION OF ENERGY STORAGE AND SOLAR PV (SHINES) Funding Number:...

455

Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC)  

Broader source: Energy.gov [DOE]

Introduction to the solid-state solar-thermal energy conversion center plus discussion on phonon transport and solar thermoelectric energy conversion

456

Simulation and experimental study on honeycomb-ceramic thermal energy storage for solar thermal systems  

Science Journals Connector (OSTI)

Abstract A honeycomb-ceramic thermal energy storage (TES) was proposed for thermal utilization of concentrating solar energy. A numerical model was developed to simulate the thermal performances, and TES experiments were carried out to demonstrate and improve the model. The outlet temperature difference between simulation and experimental results was within 5% at the end of a charging period, indicating the simulation model was reasonable. The simulation model was applied to predict the effects of geometric, thermo-physical parameters and flow fluxes on TES performances. The temperature dropped more quickly and decreased to a lower temperature in discharging period when the conductivity was smaller. The storage capacity increased with the growth of volumetric heat capacity. As to a TES with big channels and thin walls, the outlet temperature increased quickly and greatly in a charging process and dropped sharply in a discharging process.

Zhongyang Luo; Cheng Wang; Gang Xiao; Mingjiang Ni; Kefa Cen

2014-01-01T23:59:59.000Z

457

Palo Alto Solar | Open Energy Information  

Open Energy Info (EERE)

Solar Jump to: navigation, search Name: Palo Alto Solar Place: California Sector: Solar Product: PV system installer acquired by SolarCity in Semptember 2006. References: Palo Alto...

458

Scheuten Solar USA Inc | Open Energy Information  

Open Energy Info (EERE)

Scheuten Solar USA, Inc. Place: Rancho Santa Margarita, California Zip: 92688 Sector: Solar Product: Manufacturer of Solar PV systems References: Scheuten Solar USA, Inc.1 This...

459

Solar Depot Inc | Open Energy Information  

Open Energy Info (EERE)

Solar Depot Inc Place: Petaluma, California Zip: 94954 Sector: Solar Product: US-based PV and solar passive system integrator and distributor. References: Solar Depot Inc1 This...

460

Anhui Paiya Solar Energy | Open Energy Information  

Open Energy Info (EERE)

Product: Anhui Paiya Solar Energy's products include PV module, solar power system, and solar light systems. References: Anhui Paiya Solar Energy1 This article is a stub. You...

Note: This page contains sample records for the topic "thermal solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Definition: PV module | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: PV module Jump to: navigation, search Dictionary.png PV module A unit comprised of several PV cells, and the principal unit of a PV array; it is intended to generate direct current power under un-concentrated sunlight.[1][2] View on Wikipedia Wikipedia Definition A solar panel is a set of solar photovoltaic modules electrically connected and mounted on a supporting structure. A photovoltaic module is a packaged, connected assembly of photovoltaic cells. The solar module can be used as a component of a larger photovoltaic system to generate and supply electricity in commercial and residential applications. Each module is rated by its DC output power under standard test conditions (STC), and

462

Research & Development Needs for Building-Integrated Solar Technologies  

Broader source: Energy.gov [DOE]

Building Integrated Solar Technologies (BIST) can help achieve the Building Technologies Office goal of reducing energy consumption in residential and commercial buildings by 50% by the year 2030. BIST include technologies for space heating and cooling, water heating, hybrid photovoltaic-thermal systems (PV/T), active solar lighting, and building-integrated photovoltaics (BIPV).

463

CUTTING SOLAR RED TAPECUTTING SOLAR RED TAPE Evergreen State Solar PartnershipEvergreen State Solar Partnership  

E-Print Network [OSTI]

CUTTING SOLAR RED TAPECUTTING SOLAR RED TAPE Evergreen State Solar PartnershipEvergreen State Solar Partnership Rooftop Solar Challenge 1 Sunshot #12;WASHINGTON PV CONTEXTWASHINGTON PV CONTEXT 285 cities, 39 Installations happen where process is easier #12;EVERGREEN STATE SOLAR PARTNERSHIP Commerce NWSEEDEdmonds

464

The Solar Power Tower Jülich — A Solar Thermal Power Plant for Test and Demonstration of Air Receiver Technology  

Science Journals Connector (OSTI)

The open volumetric receiver technology allows the use of air as heat transfer medium at high temperatures in solar thermal power tower plants. It combines porous ceramic ... a strictly modular receiver design. H...

K. Hennecke; P. Schwarzbözl; G. Koll…

2009-01-01T23:59:59.000Z

465

Solar Monkey | Open Energy Information  

Open Energy Info (EERE)

Monkey Jump to: navigation, search Name: Solar Monkey Place: Irvine, California Zip: 92618 Sector: Solar Product: Solar Monkey installs PV systems for commercial and industrial...

466

Design and global optimization of high-efficiency solar thermal systems  

E-Print Network [OSTI]

, Massachusetts 02139, USA bermel@mit.edu Abstract: Solar thermal, thermoelectric, and thermophotovoltaic (TPVDesign and global optimization of high-efficiency solar thermal systems with tungsten cermets DavidDepartment of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts

Soljaèiæ, Marin

467

Rapid Solar-thermal Dissociation of Natural Gas in an Aerosol Flow Reactor  

E-Print Network [OSTI]

/or hydrogen powered fuel cell vehicles could help to mitigate the energy supply and environmental problems black production. For solar-thermal processing, where carbon black is sold, fossil energy usageRapid Solar-thermal Dissociation of Natural Gas in an Aerosol Flow Reactor Jaimee Dahl a , Karen

468

Solar thermal power generation: a bibliography with abstracts. Quarterly update, July-September 1979  

SciTech Connect (OSTI)

This annotated bibliography covers the following subjects: energy overviews, solar overviews, energy conservation, economics and law, solar thermal power, thermionic and thermoelectric, ocean thermal energy conversion, wind power, biomass and photochemical energy, and large scale photovoltaics. An author index and a keyword index are included. (MHR)

Not Available

1980-02-01T23:59:59.000Z

469

Solar thermal power generation: a bibliography with abstracts. Quarterly update, April-June 1980  

SciTech Connect (OSTI)

This annotated bibliography covers the following subjects: energy overviews; solar overviews; energy conservation; environment, law, and policy; total energy systems; solar thermal power and energy storage; thermoelectric, thermionic, and thermolysis; Ocean Thermal Energy Conversion; wind energy; biomass; bioconversion, and photochemical; satellite power systems; and photovoltaic applications. (MHR)

Sparkman, T.; Bozman, W.R. (eds.)

1980-08-01T23:59:59.000Z

470

Solar thermal power generation: a bibliography with abstracts. Quarterly update, January-March 1980  

SciTech Connect (OSTI)

This annotated bibliography contains the following: energy overviews, solar overviews, energy conservation, economics and law, total energy systems, solar thermal power, thermionic and thermoelectric, ocean thermal energy conversion, wind power, biomass and photochemical energy, satellite power stations, and large-scale photovoltaics. (MHR)

Not Available

1980-06-01T23:59:59.000Z

471

The Thermal Control of the New Solar Telescope at Big Bear Observatory  

E-Print Network [OSTI]

The Thermal Control of the New Solar Telescope at Big Bear Observatory Angelo P. Verdonia and Carsten Denkera aNew Jersey Institute of Technology, Center for Solar-Terrestrial Research, 323 Martin Luther King Blvd, Newark, NJ 07102, US ABSTRACT We present the basic design of the THermal Control System

472

Solar Energy.  

E-Print Network [OSTI]

??This thesis is about Photovoltaic (PV) cells and its stresses in various directions by calculating the power generated using solar cells under different conditions to… (more)

Bafana, Ramzi

2014-01-01T23:59:59.000Z

473

Sustainable solar thermal power generation (STPG) technologies in Indian context  

SciTech Connect (OSTI)

India is a fast developing country. Some of the factors like population growth, industrialization, liberalization in economic policies, green revolution and awareness toward the environment, are increasing the electricity demand rapidly. As per the 14th Power Survey Report, an energy deficit of (+) 9% and peak demand deficit of (+) 18% have been estimated. Keeping in view the liberalization in economic policies, this deficit may be higher by the year 2000 AD. An estimation indicates that India is blessed with solar energy to the tune of 5 x 10{sup 15} kWh/yr. Being clean and inexhaustible source of energy, it can be used for large-scale power generation in the country. Keeping in view the present state-of-art technologies for STPG in MW range, best possible efforts are required to be made by all the concerned, to develop sustainable STPG technology of the future, specially for tropical regions. Standardization of vital equipment is an important aspect. There are a few required criteria like simple and robust technology, its transfer and adaptation in tropical climate conditions; high plant load factor without fossil-fired backup; availability of plant during evening peak and night hours; least use of fragile components, and capacity optimization for MW plants as per solar irradiance and environmental factors. In this paper, efforts have been made to compare the different STPG technologies. On the basis, of literature surveyed and studies carried out by the author, it may be stated that Central Receiver System technologies using molten salt and volumetric air receiver, along with molten salt and ceramic thermal storage respectively seems to be suitable and comparable in Indian context. Performance of SOLAR-TWO and PHOEBUS plants may be decisive.

Sharma, R.S. [Ministry of Non-Conventional Energy Sources, New Delhi (India). Solar Energy Centre

1996-12-31T23:59:59.000Z

474

Software-as-a-Service Optimised Scheduling of a Solar-Assisted HVAC System with Thermal Storage  

E-Print Network [OSTI]

solar energy available would result in overcharging of the hot storage.of a solar-assisted HVAC system with thermal storage. Energystorage and solar- assisted HVAC for the purpose of optimizing its energy

Mammoli, Andrea

2014-01-01T23:59:59.000Z

475

Application of thermal treatment procedure for concrete with the help of solar energy to construction engineering practice  

Science Journals Connector (OSTI)

The experience of solar energy usage for concreting with the help of different solar radiation devices in Russian regions and in ... reported. Information about the cost efficiency of solar energy usage for thermal

N. I. Podgornov; D. D. Koroteev

2007-10-01T23:59:59.000Z

476

Improving Solar Dryers’ Performances Using Design and Thermal Heat Storage  

Science Journals Connector (OSTI)

Solar drying is one of the most important ... , at the same time as using free solar energy permits to reduce the cost of ... face or to limit the intermittent character of solar energy, storage is proposed as a ...

Lyes Bennamoun

2013-12-01T23:59:59.000Z

477

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

provide solar power plant energy storage for a reasonablefor Chemical Storage of Solar Energy. UC Berkeley, M.S.for a solar power plant without energy storage for nighttime

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

478

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Power Plant Solar Power Ideal Gas Turbine Topping Braytonefficiency of a solar power plant with gas-turbine toppingfor a solar power plant with Brayton-cycle gas turbine

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

479

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Design. Propofied Solar Cooling Tower Type Wet-Cooled Powerdry-cooling tower was used in the proposed solar power plantTower • Power-Generation Subsystem Summary An Overall Summary of the Proposed Solar

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

480

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Power Plant Solar Power Ideal Gas Turbine Topping Braytonwill require higher parasitic power for gas circulation. Theefficiency of a solar power plant with gas-turbine topping

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Sandia National Laboratories: National Solar Thermal Test Facility...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plant Reliability Workshop Sandia Wind Energy in the News Wind & Water Power Newsletter Solar Energy Solar Newsletter Photovoltaics Advanced Research & Development Microsystems...

482

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Salt Initial Flow Testing is a Tremendous Success On November 2, 2012, in Concentrating Solar Power, News, Renewable Energy, Solar The Molten Salt Test Loop (MSTL ) system at...

483

Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar  

E-Print Network [OSTI]

and moist air for thermal storage of solar energy: global performance Benoit Michela, *, Nathalie Mazeta-gas reaction, hydration, thermal storage, seasonal storage, solar energy * Corresponding author: E-mail: mazet in solar energy. Solar energy is widely affordable and has the capability to meet household demand over

Paris-Sud XI, Université de

484

Quality assurance with the ISFH-Input/Output-Procedure 6-year-experience with 14 solar thermal systems  

E-Print Network [OSTI]

sensors into a solar system with buffer storage tank and direct discharging. Figure 1 shows the sensorsQuality assurance with the ISFH-Input/Output-Procedure 6-year-experience with 14 solar thermal of standard solar thermal systems usually don't recognise failures affecting the solar yield, because

485

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

ADVANCED THERMAL ENERGY STORAGE CONCEPT DEFINITION STUDY FORSchilling. F. E. , Thermal Energy Storage Using PrestressedNo ~cumulate thermal energy storage. Estimate ESTrof2(

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

486

Holographic technology could increase solar efficiency | Department of  

Broader source: Energy.gov (indexed) [DOE]

Holographic technology could increase solar efficiency Holographic technology could increase solar efficiency Holographic technology could increase solar efficiency October 12, 2010 - 1:00pm Addthis Luminit's co-generation technology could combine photovoltaics (shown in this file photo) and solar thermal energy. | File photo Luminit's co-generation technology could combine photovoltaics (shown in this file photo) and solar thermal energy. | File photo Lorelei Laird Writer, Energy Empowers Co-generation technology could combine photovoltaics and solar thermal Luminit's technology bends and redirects sunlight to produce energy Research funded by Small Business Innovation Research grant There are two major technologies in solar energy: photovoltaics and solar thermal. Most people are more familiar with photovoltaics (PV) - the flat solar

487

Subsidizing Global Solar Power.  

E-Print Network [OSTI]

?? With national cuts on solar PV subsidies and the current “oversupply” of panels, the global solar market is clearly threatened by a contraction. Yet,… (more)

Arnesson, Daniel

2013-01-01T23:59:59.000Z

488

Design of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation  

E-Print Network [OSTI]

Design of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation Mike He on the design of a Stirling engine for distributed solar thermal ap- plications. In particular, we design renewable energy applications. A key advantage of a solar thermal system is that they can incorporate

Sanders, Seth

489

Solar Policy Environment: Madison  

Broader source: Energy.gov [DOE]

The City of Madison’s Solar America Cities project, “MadiSUN”, will coordinate and galvanize substantial local and state resources to showcase how a U.S. Midwest city can dramatically increase the use of solar energy. Madison’s approach includes a comprehensive review of zoning and land use planning, streamlining the permitting processes, development of the local workforce, and assessment of city-owned buildings for solar PV and thermal applications. The City of Madison objective is to make Madison a green capital city and a national leader in energy efficiency and renewable energy.

490

Green Energy Ohio - GEO Solar Thermal Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ohio - GEO Solar Thermal Rebate Program Ohio - GEO Solar Thermal Rebate Program Green Energy Ohio - GEO Solar Thermal Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info Start Date 04/01/2009 State Ohio Program Type Non-Profit Rebate Program Provider Green Energy Ohio With funding from The Sierra Club, Green Energy Ohio (GEO) is offering rebates on residential properties in Ohio for solar water heating systems purchased after April 1, 2009. The rebates are based on the projected energy output from the solar collectors and are calculated at $30 per kBtu/day (based on SRCC rating for "Clear Day/C Interval"). The maximum amount is $2,400 per applicant. There are two parts to the application. PART I of the application collects

491

Oscillating Magnetic Trap and Non-Thermal Emission from Solar Flares  

Science Journals Connector (OSTI)

......connected with the electron thermal conductivity and ion viscosity...1, ed. Galeev A. A., Sudan R. N. (North-Holland Physics...Oscillating Magnetic Trap and Non-Thermal Emission from Solar Flares...scattering of trapped non-thermal electrons (Aschwanden et al......

Yuri Tsap; Yulia Kopylova; Tatiana Goldvarg; Alexander Stepanov

2013-12-05T23:59:59.000Z

492

New Directions in Low Temperature Solar Thermal Storage  

Science Journals Connector (OSTI)

Comprehensive overviews of energy storage techhologies for solar applications are already available [1,2,3...

C. J. Swet

1987-01-01T23:59:59.000Z

493

SOLAR 97 CONFERENCE: MANUSCRIPT PREPARATION INSTRUCTIONS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

area. PV output datasets generated for 2007 in southern Nevada are being used for a Solar PV Grid Integration Study to estimate the integration costs associated with various...

494

Sandia National Laboratories: Solar Electric Propulsion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) EC Top Publications Design and Analysis...

495

HyperSolar Inc | Open Energy Information  

Open Energy Info (EERE)

Zip: 93117 Product: California-based concentrator PV startup which uses flat optical layers to concentrate sunlight onto strips of PV cells. References: HyperSolar Inc1...

496

Efficient solar cooling: first ever non-tracking solar collectors powering a double effect absorption chiller  

E-Print Network [OSTI]

solar thermal technologies. ..Advances in solar thermal electricity technology”. Solar107 1. Introduction Solar thermal technologies have been

Poiry, Heather Marie

2011-01-01T23:59:59.000Z

497

Simulation and analysis of a solar assisted heat pump system with two different storage types for high levels of PV electricity self-consumption  

Science Journals Connector (OSTI)

Abstract The incentives for PV-systems in Europe is being gradually lowered or ended. This makes a higher level of self-consumption interesting for owners of PV-systems. Sweden has an incentive of 35% of the investment cost for PV-systems. Unfortunately not all consumers can get this incentive. Therefore a high level of self-consumption will be necessary if the PV-systems are to be profitable in Sweden. A reference system with two different energy storage technologies is investigated in this paper. One system with 48 kW h of batteries and one system with a hot water storage tank where the electricity is stored as heat. The research questions in this paper are: Which storage system gives the highest level of PV electricity self-consumption? Are the storage systems profitable with the assumptions made in this paper? What are the levelized costs of electricity (LCOE) for the reference system with different storage system? The system with batteries has a self-consumption of 89% of the annual PV-electricity output and the system with a hot water storage tank has 88%. The system with batteries has a levelized cost of electricity two times higher than the system with a hot water storage tank.

Richard Thygesen; Björn Karlsson

2014-01-01T23:59:59.000Z

498

Achieving Rapid Transformation of Utility Resource Portfolios by Developing Markets for Utility Strategic PV  

Science Journals Connector (OSTI)

When solar PV is strategically deployed by utilities, considering issues of location, scale, orientation ... PV can play a key role in driving utilities to design strong, mixed resource portfolios, ... s potentia...

Jill K. Cliburn

2009-01-01T23:59:59.000Z

499

Experimental study of a photovoltaic solar-assisted heat-pump/heat-pipe system  

Science Journals Connector (OSTI)

A practical design for a heat pump with heat-pipe photovoltaic/thermal (PV/T) collectors is presented. The hybrid system is called the photovoltaic solar-assisted heat-pump/heat-pipe (PV-SAHP/HP) system. To focus on both actual demand and energy savings, the PV-SAHP/HP system was designed to be capable of operating in three different modes, namely, the heat-pipe, solar-assisted heat pump, and air-source heat-pump modes. Based on solar radiation, the system operates in an optimal mode. A series of experiments were conducted in Hong Kong to study the performance of the system when operating in the heat-pipe and the solar-assisted heat-pump modes. Moreover, energy and exergy analyses were used to investigate the total PV/T performance of the system.

H.D. Fu; G. Pei; J. Ji; H. Long; T. Zhang; T.T. Chow

2012-01-01T23:59:59.000Z

500

Collisional Thermalization of Hydrogen and Helium in Solar Wind Plasma  

E-Print Network [OSTI]

In situ observations of the solar wind frequently show the temperature of $\\alpha$-particles (fully ionized helium), $T_\\alpha$, to significantly differ from that of protons (ionized hydrogen), $T_p$. Many heating processes in the plasma act preferentially on $\\alpha$-particles, even as collisions among ions act to gradually establish thermal equilibrium. Measurements from the $\\textit{Wind}$ spacecraft's Faraday cups reveal that, at $r=1.0\\ \\textrm{AU}$ from the Sun, the observed values of the $\\alpha$-proton temperature ratio, $\\theta_{\\alpha p} \\equiv T_\\alpha\\,/\\,T_p$ has a complex, bimodal distribution. This study applied a simple model for the radial evolution of $\\theta_{\\alpha p}$ to these data to compute expected values of $\\theta_{\\alpha p}$ at $r=0.1\\ \\textrm{AU}$. These inferred $\\theta_{\\alpha p}$-values have no trace of the bimodality seen in the $\\theta_{\\alpha p}$-values measured at $r=1.0\\ \\textrm{AU}$ but are instead consistent with the actions of the known mechanisms for $\\alpha$-particle p...

Maruca, Bennett A; Sorriso-Valvo, Luca; Kasper, Justin C; Stevens, Michael L

2013-01-01T23:59:59.000Z