Powered by Deep Web Technologies
Note: This page contains sample records for the topic "thermal resistance measured" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Thermal contact resistance  

E-Print Network [OSTI]

This work deals with phenomena of thermal resistance for metallic surfaces in contact. The main concern of the work is to develop reliable and practical methods for prediction of the thermal contact resistance for various ...

Mikic, B. B.

1966-01-01T23:59:59.000Z

2

Improvements of the Variable Thermal Resistance  

E-Print Network [OSTI]

A flat mounting unit with electronically variable thermal resistance [1] has been presented in the last year [2]. The design was based on a Peltier cell and the appropriate control electronics and software. The device is devoted especially to the thermal characterization of packages, e.g. in dual cold plate arrangements. Although this design meets the requirements of the static measurement we are intended to improve its parameters as the settling time and dynamic thermal impedance and the range of realized thermal resistance. The new design applies the heat flux sensor developed by our team as well [3], making easier the control of the device. This development allows even the realization of negative thermal resistances.

Székely, V; Kollar, E

2008-01-01T23:59:59.000Z

3

Improvements of the Variable Thermal Resistance  

E-Print Network [OSTI]

A flat mounting unit with electronically variable thermal resistance [1] has been presented in the last year [2]. The design was based on a Peltier cell and the appropriate control electronics and software. The device is devoted especially to the thermal characterization of packages, e.g. in dual cold plate arrangements. Although this design meets the requirements of the static measurement we are intended to improve its parameters as the settling time and dynamic thermal impedance and the range of realized thermal resistance. The new design applies the heat flux sensor developed by our team as well [3], making easier the control of the device. This development allows even the realization of negative thermal resistances.

V. Szekely; S. Torok; E. Kollar

2008-01-07T23:59:59.000Z

4

AC resistance measuring instrument  

DOE Patents [OSTI]

An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

Hof, P.J.

1983-10-04T23:59:59.000Z

5

Thermal Shock-resistant Cement  

SciTech Connect (OSTI)

We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cement’s resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved cement, causing its volume to expand.

Sugama T.; Pyatina, T.; Gill, S.

2012-02-01T23:59:59.000Z

6

Thermal boundary resistance and diffusivity measurements on thin YBa2Cu307--x films with MgO and SrTi03 substrates using the transient  

E-Print Network [OSTI]

O and SrTiOs substrates. The anisotropic YBazCu30,-, thermal diffusivity constants and the thermal boundary, are performed to obtain information on thermal diffusivity and to demonstrate the applicability of the technique the thermal diffusivity con- stants and boundary resistance in thin films of YBCO on MgO crystalline

Fayer, Michael D.

7

Thermal conductivity measurements of Summit polycrystalline silicon.  

SciTech Connect (OSTI)

A capability for measuring the thermal conductivity of microelectromechanical systems (MEMS) materials using a steady state resistance technique was developed and used to measure the thermal conductivities of SUMMiT{trademark} V layers. Thermal conductivities were measured over two temperature ranges: 100K to 350K and 293K to 575K in order to generate two data sets. The steady state resistance technique uses surface micromachined bridge structures fabricated using the standard SUMMiT fabrication process. Electrical resistance and resistivity data are reported for poly1-poly2 laminate, poly2, poly3, and poly4 polysilicon structural layers in the SUMMiT process from 83K to 575K. Thermal conductivity measurements for these polysilicon layers demonstrate for the first time that the thermal conductivity is a function of the particular SUMMiT layer. Also, the poly2 layer has a different variation in thermal conductivity as the temperature is decreased than the poly1-poly2 laminate, poly3, and poly4 layers. As the temperature increases above room temperature, the difference in thermal conductivity between the layers decreases.

Clemens, Rebecca; Kuppers, Jaron D.; Phinney, Leslie Mary

2006-11-01T23:59:59.000Z

8

MINIMIZING THE BONDLINE THERMAL RESISTANCE IN THERMAL INTERFACE MATERIALS WITHOUT AFFECTING RELIABILITY  

E-Print Network [OSTI]

MINIMIZING THE BONDLINE THERMAL RESISTANCE IN THERMAL INTERFACE MATERIALS WITHOUT AFFECTING microstructure, and bondline thermal resistance with the tradeoffs between material systems, manufacturability of devices to heat sinks using existing commercial thermal interface materials (TIMs). The present study

Paris-Sud XI, Université de

9

Thermal barrier coating resistant to sintering  

DOE Patents [OSTI]

A device (10) having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10) and is not soluble with the underlying ceramic layer (16). For a YSZ ceramic layer (16) the sintering resistant layer (22) may preferably be aluminum oxide or yttrium aluminum oxide, deposited as a continuous layer or as nodules.

Subramanian, Ramesh (Orlando, FL); Sabol, Stephen M. (Orlando, FL)

2001-01-01T23:59:59.000Z

10

Thermal barrier coating resistant to sintering  

DOE Patents [OSTI]

A device (10) is made, having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10), is not soluble with the underlying ceramic layer (16) and is applied by a process that is not an electron beam physical vapor deposition process.

Subramanian, Ramesh; Seth, Brij B.

2004-06-29T23:59:59.000Z

11

Abstract --The influence on the thermal resistance of emitter design parameters like emitter area, aspect ratio, and distance to  

E-Print Network [OSTI]

Abstract -- The influence on the thermal resistance of emitter design parameters like emitter area-state) thermal resistance, but also in a faster thermal transient of the transistors. Accurate RC networks are extracted by measurements in order to model the thermal impedance transient of devices with or without Al

Technische Universiteit Delft

12

A new type of carbon resistance thermometer with excellent thermal contact at millikelvin temperatures  

E-Print Network [OSTI]

Using a new brand of commercially available carbon resistor we built a cryogenic thermometer with an extremely good thermal contact to its thermal environment. Because of its superior thermal contact the thermometer is insensitive to low levels of spurious radio frequency heating. We calibrated our thermometer down to 5mK using a quartz tuning fork He-3 viscometer and measured its thermal resistance and thermal response time.

Samkharadze, Nodar; Csáthy, Gábor A

2010-01-01T23:59:59.000Z

13

Delamination resistance of thermal barrier coatings containing embedded ductile layers  

E-Print Network [OSTI]

-tempera- ture exposure to oxygen, and an outer low thermal conduc- tivity ceramic coating, such as ytrriaDelamination resistance of thermal barrier coatings containing embedded ductile layers Matthew R layers upon thermal cycling delamination failure of thermal barrier coatings (TBCs) driven by thickening

Wadley, Haydn

14

Low thermal resistance power module assembly  

DOE Patents [OSTI]

A power module assembly with low thermal resistance and enhanced heat dissipation to a cooling medium. The assembly includes a heat sink or spreader plate with passageways or openings for coolant that extend through the plate from a lower surface to an upper surface. A circuit substrate is provided and positioned on the spreader plate to cover the coolant passageways. The circuit substrate includes a bonding layer configured to extend about the periphery of each of the coolant passageways and is made up of a substantially nonporous material. The bonding layer may be solder material which bonds to the upper surface of the plate to provide a continuous seal around the upper edge of each opening in the plate. The assembly includes power modules mounted on the circuit substrate on a surface opposite the bonding layer. The power modules are positioned over or proximal to the coolant passageways.

Hassani, Vahab (Denver, CO); Vlahinos, Andreas (Castle Rock, CO); Bharathan, Desikan (Arvada, CO)

2007-03-13T23:59:59.000Z

15

Thermal barrier coating resistant to sintering  

DOE Patents [OSTI]

A device (10) is made, having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10), is not soluble with the underlying ceramic layer (16) and is applied by a process that is not an electron beam physical vapor deposition process. The sintering inhibiting material (22) has a morphology adapted to improve the functionality of the sintering inhibiting material (22), characterized as continuous, nodule, rivulet, grain, crack, flake and combinations thereof and being disposed within at least some of the vertical and horizontal gaps.

Subramanian, Ramesh; Seth, Brig B.

2005-08-23T23:59:59.000Z

16

Thermal resistance gaps for solid breeder blankets using packed beds  

SciTech Connect (OSTI)

The main design features of a new concept for solid breeder blanket thermal resistance gaps are described and analysis is shown for the blanket thermal characteristics. The effective thermal conductivity of a helium-beryllium packed bed configuration is studied, including the effect of a purge stream. Possible applications of this concept to ITER blanket designs are stressed.

Gorbis, Z.R.; Raffray, A.R.; Tillack, M.S.; Abdou, M.A.

1989-03-01T23:59:59.000Z

17

Low thermal resistance power module assembly  

DOE Patents [OSTI]

A power module assembly (400) with low thermal resistance and enhanced heat dissipation to a cooling medium. The assembly includes a heat sink or spreader plate (410) with passageways or openings (414) for coolant that extend through the plate from a lower surface (411) to an upper surface (412). A circuit substrate (420) is provided and positioned on the spreader plate (410) to cover the coolant passageways. The circuit substrate (420) includes a bonding layer (422) configured to extend about the periphery of each of the coolant passageways and is made up of a substantially nonporous material. The bonding layer (422) may be solder material which bonds to the upper surface (412) of the plate to provide a continuous seal around the upper edge of each opening (414) in the plate. The assembly includes power modules (430) mounted on the circuit substrate (420) on a surface opposite the bonding layer (422). The power modules (430) are positioned over or proximal to the coolant passageways.

Hassani, Vahab (Denver, CO); Vlahinos, Andreas (Castle Rock, CO); Bharathan, Desikan (Arvada, CO)

2010-12-28T23:59:59.000Z

18

Characterization of the thermal dependence of bioengineered glufosinate resistance in cotton. Dawson, K.R.1,  

E-Print Network [OSTI]

Characterization of the thermal dependence of bioengineered glufosinate resistance in cotton isolated from glufosinate resistant cotton. The thermal dependencies of the Km of PAT for glufosinate the thermal dependence of the bioengineered glufosinate resistance in cotton will be determined. #12;

Mukhtar, Saqib

19

Measurements of thermal accommodation coefficients.  

SciTech Connect (OSTI)

A previously-developed experimental facility has been used to determine gas-surface thermal accommodation coefficients from the pressure dependence of the heat flux between parallel plates of similar material but different surface finish. Heat flux between the plates is inferred from measurements of temperature drop between the plate surface and an adjacent temperature-controlled water bath. Thermal accommodation measurements were determined from the pressure dependence of the heat flux for a fixed plate separation. Measurements of argon and nitrogen in contact with standard machined (lathed) or polished 304 stainless steel plates are indistinguishable within experimental uncertainty. Thus, the accommodation coefficient of 304 stainless steel with nitrogen and argon is estimated to be 0.80 {+-} 0.02 and 0.87 {+-} 0.02, respectively, independent of the surface roughness within the range likely to be encountered in engineering practice. Measurements of the accommodation of helium showed a slight variation with 304 stainless steel surface roughness: 0.36 {+-} 0.02 for a standard machine finish and 0.40 {+-} 0.02 for a polished finish. Planned tests with carbon-nanotube-coated plates will be performed when 304 stainless-steel blanks have been successfully coated.

Rader, Daniel John; Castaneda, Jaime N.; Torczynski, John Robert; Grasser, Thomas W.; Trott, Wayne Merle

2005-10-01T23:59:59.000Z

20

Influence of surface roughness and waviness upon thermal contact resistance  

E-Print Network [OSTI]

This work deals with the phenomenon of thermal resistance between contacting solids. Attention is directed towards contiguous solids possessing both surface roughness and waviness. When two such surfaces are brought together ...

Yovanovich, M. Michael

1967-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal resistance measured" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

1 000 000 "C/s thin film electrical heater: ln situ resistivity measurements of Al and Ti/Si thin films during ultra rapid thermal annealing  

E-Print Network [OSTI]

introduce a new technique for rapidly heating (10' "C/s) thin films using an electrical thermal annealing- ently, most commercial RTA systems use radiation-heating techniques via tungsten-halogen lamps. These systems typi- cally have a maximum heating rate of 100-300 "C/s. We introduce an alternative methodfor

Allen, Leslie H.

22

Measurements of the Thermal Neutron Scattering Kernel  

E-Print Network [OSTI]

Measurements of the Thermal Neutron Scattering Kernel Li (Emily) Liu, Yaron Danon, Bjorn Becker and discussions Problems and Future study Questions #12;3 M. Mattes and J. Keinert, Thermal Neutron Scattering experimental data used was from 1973-1974! M. Mattes and J. Keinert, Thermal Neutron Scattering Data

Danon, Yaron

23

Measuring Thermal Transport in Extreme Environments: Thermal Conductivity  

E-Print Network [OSTI]

Chen California Institute of Technology Jackie Li University of Michigan supported by CarnegieMeasuring Thermal Transport in Extreme Environments: Thermal Conductivity of Water Ice VII to 20 GPa David G. Cahill, Wen-Pin Hsieh, Dallas Trinkle, University of Illinois at Urbana-Champaign Bin

Braun, Paul

24

Thermal and mechanical properties of EPDM/PP + thermal shock-resistant ceramic composites  

E-Print Network [OSTI]

the polymer matrix. The brittleness, B, decreases upon surface modification of the ceramic. The highest valueThermal and mechanical properties of EPDM/PP + thermal shock-resistant ceramic composites Witold-scale ceramic powder. To overcome the difficulty of particles dispersion and adhe- sion, the filler was modified

North Texas, University of

25

Ultra low thermal expansion, highly thermal shock resistant ceramic  

DOE Patents [OSTI]

Three families of ceramic compositions having the given formula: .phi..sub.1+X Zr.sub.4 P.sub.6-2X Si.sub.2X O.sub.24, .phi..sub.1+X Zr.sub.4-2X Y.sub.2X P.sub.6 O.sub.24 and .phi..sub.1+X Zr.sub.4-X Y.sub.X P.sub.6-2X Si.sub.X O.sub.24 wherein .phi. is either Strontium or Barium and X has a value from about 0.2 to about 0.8 have been disclosed. Ceramics formed from these compositions exhibit very low, generally near neutral, thermal expansion over a wide range of elevated temperatures.

Limaye, Santosh Y. (1440 Sandpiper Cir. #38, Salt Lake City, UT 84117)

1996-01-01T23:59:59.000Z

26

Ultra low thermal expansion, highly thermal shock resistant ceramic  

DOE Patents [OSTI]

Three families of ceramic compositions having the given formula: {phi}{sub 1+X}Zr{sub 4}P{sub 6{minus}2X}Si{sub 2X}O{sub 24}, {phi}{sub 1+X}Zr{sub 4{minus}2X}Y{sub 2X}P{sub 6}O{sub 24} and {phi}{sub 1+X}Zr{sub 4{minus}X}Y{sub X}P{sub 6{minus}2X}Si{sub X}O{sub 24} wherein {phi} is either strontium or barium and X has a value from about 0.2 to about 0.8 have been disclosed. Ceramics formed from these compositions exhibit very low, generally near neutral, thermal expansion over a wide range of elevated temperatures. 7 figs.

Limaye, S.Y.

1996-01-30T23:59:59.000Z

27

MEMS test structure for measuring thermal conductivity of thin films L. La Spina, N. Nenadovi*, A. W. van Herwaarden**,  

E-Print Network [OSTI]

from handbook values for the corresponding bulk materials. This is because the thermal transport the one is patterned with the film-to- analyze (FTA). In this case, the thermal resistance can be regarded as a parallel between the thermal resistances of the supporting membrane and of the FTA. Thus, the measured

Technische Universiteit Delft

28

High sensitivity measurements of thermal properties of textile fabrics  

E-Print Network [OSTI]

A new testing apparatus is proposed to measure the thermal properties of fabrics made from polymeric materials. The calibration of the apparatus and the data acquisition procedure are considered in detail in order to measure thermal conductivity, resistance, absorption and diffusivity constants of the tested fabric samples. Differences between dry and wet fabrics have been carefully detected and analyzed. We have developed a new measurement protocol, the "ThermoTex" protocol, which agrees with the UNI EN 31092 standard and entails an accurate quantification of the experimental errors according to a standard statistical analysis, thus allowing a rigorous investigation of the physical behavior of the phenomena involved. As a consequence, our machinery exhibits great potentialities for optimizing the thermal comfort of fabrics, according to the market demand, thanks to the possible development of a predictive phenomenological theory of the effects involved.

Romeli, D; Esposito, S; Rosace, G; Salesi, G

2013-01-01T23:59:59.000Z

29

Creating Precise 3D Microstructures Using Laser Direct-write Bimetallic Thermal Resist Grayscale Photomasks  

E-Print Network [OSTI]

research demonstrated Sn/In and Bi/In bimetallic thermal resists are promising new materials for direct/In bimetallic thermal resists as a masking material, we used a modified form of interference lithographyCreating Precise 3D Microstructures Using Laser Direct-write Bimetallic Thermal Resist Grayscale

Chapman, Glenn H.

30

A NEW MEASUREMENT STRATEGY FOR in situ TESTING OF WALL THERMAL PERFORMANCE  

E-Print Network [OSTI]

conservation, Dynamic thermal envelope thermal performanceTHERHAL TEST UNIT The envelope thermal test unit (ETTU) is athe thermal resistance of building envelope systems through

Condon, P.E.

2011-01-01T23:59:59.000Z

31

Optical device with low electrical and thermal resistance bragg reflectors  

DOE Patents [OSTI]

A compound-semiconductor optical device and method. The optical device is provided with one or more asymmetrically-graded heterojunctions between compound semiconductor layers for forming a distributed Bragg reflector mirror having an improved electrical and thermal resistance. Efficient light-emitting devices such as light-emitting diodes, resonant-cavity light-emitting diodes, and vertical-cavity surface-emitting lasers may be formed according to the present invention, which may be applied to the formation of resonant-cavity photodetectors.

Lear, Kevin L. (Albuquerque, NM)

1996-01-01T23:59:59.000Z

32

Thermal rectification and negative differential thermal resistance in lattices with mass gradient Nuo Yang,1 Nianbei Li,1 Lei Wang,1 and Baowen Li1,2,  

E-Print Network [OSTI]

Thermal rectification and negative differential thermal resistance in lattices with mass gradient thermal resistance is observed. Possible applications in constructing thermal rectifiers and thermal properties, the thermal properties of graded materials have not yet been fully studied see the recent review

Li, Baowen

33

The effect of thermal contact resistance on heat management in the electronic packaging  

E-Print Network [OSTI]

The effect of thermal contact resistance on heat management in the electronic packaging M. Grujicic the role of thermal contact resistance on heat management within a simple central processing unit (CPU interface materials on the maximum temperature experienced by the CPU. Two classes of thermal interface

Grujicic, Mica

34

Controlling the thermal contact resistance of a carbon nanotube heat spreader  

E-Print Network [OSTI]

Controlling the thermal contact resistance of a carbon nanotube heat spreader Kamal H. Baloch,1 electron thermal microscopy shows that the thermal contact resistance of a nanotube weakly coupled to its Norvik Voskanian,2 and John Cumings2,a 1 Department of Materials Science and Engineering, Institute

Li, Teng

35

Thermal boundary resistance between single-walled carbon nanotubes and surrounding matrices  

E-Print Network [OSTI]

Thermal boundary resistance between single-walled carbon nanotubes and surrounding matrices Carl Keywords: carbon nanotube, thermal boundary resistance, molecular dynamics 1 #12;I. INTRODUCTION the thermal conductivity of insulating materials15,16 . The mechanical strength and light weight of polymers

Maruyama, Shigeo

36

Graphite having improved thermal stress resistance and method of preparation  

DOE Patents [OSTI]

An improved method for fabricating a graphite article comprises the steps of impregnating a coke article by first heating the coke article in contact with a thermoplastic pitch at a temperature within the range of 250.degree.-300.degree. C. at a pressure within the range of 200-2000 psig for at least 4-10 hours and then heating said article at a temperature within the range of 450.degree.-485.degree. C. at a pressure of 200-2000 psig for about 16-24 hours to provide an impregnated article; heating the impregnated article for sufficient time to carbonize the impregnant to provide a second coke article, and graphitizing the second coke article. A graphite having improved thermal stress resistance results when the coke to be impregnated contains 1-3 wt.% sulfur and no added puffing inhibitors. An additional improvement in thermal stress resistance is achieved when the second coke article is heated above about 1400.degree. C. at a rate of at least 10.degree. C./minute to a temperature above the puffing temperature.

Kennedy, Charles R. (Oak Ridge, TN)

1980-01-01T23:59:59.000Z

37

Thermal-wave resonator cavity design and measurements of the thermal diffusivity of liquids  

E-Print Network [OSTI]

Thermal-wave resonator cavity design and measurements of the thermal diffusivity of liquids J. A for the measurement of the thermal diffusivity of liquids. The thermal diffusivities of distilled water, glycerol the thermal diffusivity of gases, particularly air,8,9 and vapors10 to a high degree of precision. Although

Mandelis, Andreas

38

Thermal stability and oxidation resistance of TiCrAlYO coatings...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

stability and oxidation resistance of TiCrAlYO coatings on SS430 for solid oxide fuel cell interconnect applications. Thermal stability and oxidation resistance of TiCrAlYO...

39

Thermal conductivity, electrical resistivity, and permeability of saturated soils at various porosities  

E-Print Network [OSTI]

of Ottawa Sand . 4. Thermal Conductivity Data Analysis 5. Thermal Conductivity of Reference Materials 6. DC Resistivity Data with Plate Electrode System for Kaolinite at Porosity of 49% PAGE 48 52 54 66 71 AC Resistivity Data for Kaolinite... THERMAL CONDUCTIVITY, ELECTRICAL RESISTIVITY, AND PERMEABILITY OF SATURATED SOILS AT VARIOUS POROSITIES A Thesis by JAMES KEITH ENDERBY Submitted to the Graduate College of Texas ARM University in Partial fulfillment of the requirement...

Enderby, James Keith

2012-06-07T23:59:59.000Z

40

A multi-scale iterative approach for finite element modeling of thermal contact resistance  

E-Print Network [OSTI]

Surface topography has long been considered a key factor in the performance of many contact applications including thermal contact resistance. However, essentially all analytical and numerical models of thermal contact ...

Thompson, Mary Kathryn, 1980-

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal resistance measured" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Report on workshop on thermal property measurements  

SciTech Connect (OSTI)

Results of thermogravimetric analysis of basalt is discussed. Heat capacity, thermal conductivity and thermal expansion are specifically addressed. (CBS)

Robertson, E.C.

1987-01-01T23:59:59.000Z

42

Electrical resistance tomography from measurements inside a steel cased borehole  

DOE Patents [OSTI]

Electrical resistance tomography (ERT) produced from measurements taken inside a steel cased borehole. A tomographic inversion of electrical resistance measurements made within a steel casing was then made for the purpose of imaging the electrical resistivity distribution in the formation remotely from the borehole. The ERT method involves combining electrical resistance measurements made inside a steel casing of a borehole to determine the electrical resistivity in the formation adjacent to the borehole; and the inversion of electrical resistance measurements made from a borehole not cased with an electrically conducting casing to determine the electrical resistivity distribution remotely from a borehole. It has been demonstrated that by using these combined techniques, highly accurate current injection and voltage measurements, made at appropriate points within the casing, can be tomographically inverted to yield useful information outside the borehole casing.

Daily, William D. (Livermore, CA); Schenkel, Clifford (Walnut Creek, CA); Ramirez, Abelardo L. (Pleasanton, CA)

2000-01-01T23:59:59.000Z

43

Reduced thermal resistance of the silicon-synthetic diamond composite substrates at elevated temperatures  

E-Print Network [OSTI]

/Si sub- strates, depends on the polycrystalline-diamond grain size, diamond layer thicknessReduced thermal resistance of the silicon-synthetic diamond composite substrates at elevated of synthetic diamond-silicon composite substrates. Although composite substrates are more thermally resistive

44

Thermal resistance of bridged cracks in fiber-reinforced ceramic John Dryden  

E-Print Network [OSTI]

-reinforced ceramic composites obtain high toughness is through the de- velopment of multiple matrix cracksThermal resistance of bridged cracks in fiber-reinforced ceramic composites John Dryden Department November 2000; accepted for publication 16 January 2001 The thermal resistance of a bridged matrix crack

Zok, Frank

45

Thermal properties of carbon nanowall layers measured by a pulsed photothermal technique  

SciTech Connect (OSTI)

We report the thermal properties of carbon nanowall layers produced by expanding beam radio-frequency plasma. The thermal properties of carbon nanowalls, grown at 600 Degree-Sign C on aluminium nitride thin-film sputtered on fused silica, were measured with a pulsed photo-thermal technique. The apparent thermal conductivity of the carbon at room temperature was found to increase from 20 to 80 Wm{sup -1} K{sup -1} while the thickness varied from 700 to 4300 nm, respectively. The intrinsic thermal conductivity of the carbon nanowalls attained 300 Wm{sup -1} K{sup -1} while the boundary thermal resistance with the aluminium nitride was 3.6 Multiplication-Sign 10{sup -8} Km{sup 2} W{sup -1}. These results identify carbon nanowalls as promising material for thermal management applications.

Achour, A.; Belkerk, B. E.; Ait Aissa, K.; Gautron, E.; Carette, M.; Jouan, P.-Y.; Brizoual, L. Le; Scudeller, Y.; Djouadi, M.-A. [Institut des Materiaux Jean Rouxel, Universite de Nantes, CNRS, 2 rue de la Houssiniere, BP 32229, 44322 Nantes cedex 3 (France)] [Institut des Materiaux Jean Rouxel, Universite de Nantes, CNRS, 2 rue de la Houssiniere, BP 32229, 44322 Nantes cedex 3 (France); Vizireanu, S.; Dinescu, G. [National Institute for Laser, Plasma and Radiation Physics, Magurele MG-36, RO-077125 Bucharest (Romania)] [National Institute for Laser, Plasma and Radiation Physics, Magurele MG-36, RO-077125 Bucharest (Romania)

2013-02-11T23:59:59.000Z

46

Measurement of thermal conductivity P t BPart B  

E-Print Network [OSTI]

wave Take the Fourier transform of this frequency domain solution #12;For a low thermal conductivity thin filmFor a low thermal conductivity thin film on a high thermal conductivity substrate (Factor of 2Measurement of thermal conductivity Part A: P t BPart B: · Time domain thermoreflectance #12

Braun, Paul

47

Simple, accurate, and precise measurements of thermal diffusivity in liquids using a thermal-wave cavity  

E-Print Network [OSTI]

Simple, accurate, and precise measurements of thermal diffusivity in liquids using a thermal, and its application to the evaluation of the thermal diffusivity of liquids is described. The simplicity agreement was found with reported results in the literature. The accuracy of the thermal diffusivity

Mandelis, Andreas

48

Advancing Reactive Tracer Methods for Measuring Thermal Evolution...  

Open Energy Info (EERE)

Advancing Reactive Tracer Methods for Measuring Thermal Evolution in CO2- and Water-Based Geothermal Reservoirs Geothermal Lab Call Project Jump to: navigation, search Last...

49

Integrated thermal-microstructure model to predict the property gradients in resistance spot steel welds  

SciTech Connect (OSTI)

An integrated model approach was proposed for relating resistance welding parameters to weldment properties. An existing microstructure model was used to determine the microstructural and property gradients in resistance spot welds of plain carbon steel. The effect of these gradients on the weld integrity was evaluated with finite element analysis. Further modifications to this integrated thermal-microstructure model are discussed.

Babu, S.S.; Riemer, B.W.; Santella, M.L. [Oak Ridge National Lab., TN (United States); Feng, Z. [Edison Welding Inst., Columbus, OH (United States)

1998-11-01T23:59:59.000Z

50

Thermal decomposition and flammability of fire-resistant, UV/visible-sensitive polyarylates, copolymers and blends  

E-Print Network [OSTI]

Thermal decomposition and flammability of fire-resistant, UV/visible- sensitive polyarylates temperature, low notch sensitivity, and good electrical properties. Most of all, these materials show a high resistance to ignition and flame spreading without additives [6]. A high-temperature wholly aromatic poly

51

Sensing of buried wastes through resistivity measurements  

E-Print Network [OSTI]

electrodes to simulate a two-dimensional electric field distribution with tap water as the medium. Model boreholes were introduced into the tank, incorporating regularly spaced linear electrodes, which were used for electrical transmission and reception... of the half- space based on the electrode configuration chosen. It should be possible to generate contours of contaminant concentration based on electrical resistivity values across an entire site from only a few bore holes, representing a major economy...

Reddy, Bollam Muralidhar

1991-01-01T23:59:59.000Z

52

Resistivity measurements before and after injection Test 5 at...  

Open Energy Info (EERE)

measurements before and after injection Test 5 at Raft River KGRA, Idaho. Final report Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Resistivity...

53

Wavelength Invariant Bi/In Thermal Resist As A Si Anisotropic Etch Masking Layer And Direct Write Photomask Material  

E-Print Network [OSTI]

Wavelength Invariant Bi/In Thermal Resist As A Si Anisotropic Etch Masking Layer And Direct Write University, Burnaby, BC V5A 1S6, Canada ABSTRACT Bilayer Bi/In thin film thermal resists are Bi and In films which form an etch resistant material at ~7 mJ/cm2 laser exposures with near wavelength invariance from

Chapman, Glenn H.

54

Infrared Thermography Measurements of Window Thermal Test Specimen Surface Temperatures  

E-Print Network [OSTI]

Infrared Thermography Measurements of Window Thermal Test Specimen Surface Temperatures Brent T Temperatures of Window Specimens: Infrared Thermography Laboratory Measurements Brent T. Griffith1 , Howdy and cold sides, respectively. Surface temperature maps were compiled using an infrared thermographic system

55

Simulation of thermal reset transitions in resistive switching memories including quantum effects  

SciTech Connect (OSTI)

An in-depth study of reset processes in RRAMs (Resistive Random Access Memories) based on Ni/HfO{sub 2}/Si-n{sup +} structures has been performed. To do so, we have developed a physically based simulator where both ohmic and tunneling based conduction regimes are considered along with the thermal description of the devices. The devices under study have been successfully fabricated and measured. The experimental data are correctly reproduced with the simulator for devices with a single conductive filament as well as for devices including several conductive filaments. The contribution of each conduction regime has been explained as well as the operation regimes where these ohmic and tunneling conduction processes dominate.

Villena, M. A.; Jiménez-Molinos, F.; Roldán, J. B. [Departamento de Electrónica y Tecnología de Computadores, Universidad de Granada, Facultad de Ciencias, Avd. Fuentenueva s/n, 18071 Granada (Spain); González, M. B.; Campabadal, F. [Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Campus UAB, 08193 Bellaterra (Spain); Suñé, J.; Miranda, E. [Departament d'Enginyeria Electrònica, Universitat Autònoma de Barcelona, Bellaterra Cerdanyola del Vallès 08193 (Spain); Romera, E. [Departamento de Física Atómica, Molecular y Nuclear and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Avd. Fuentenueva s/n, 18071 Granada (Spain)

2014-06-07T23:59:59.000Z

56

Front surface thermal property measurements of air plasma spray coatings  

SciTech Connect (OSTI)

A front-surface measurement for determining the thermal properties of thermal barrier coatings has been applied to air plasma spray coatings. The measurement is used to determine all independent thermal properties of the coating simultaneously. Furthermore, with minimal requirements placed on the sample and zero sample preparation, measurements can be made under previously impossible conditions, such as on serviceable engine parts. Previous application of this technique was limited to relatively thin coatings, where a one-dimensional heat transfer model is applied. In this paper, the influence of heat spreading on the measurement of thicker coatings is investigated with the development of a two-dimensional heat transfer model.

Bennett, Ted; Kakuda, Tyler [University of California, Santa Barbara, California 93106-5070 (United States); Kulkarni, Anand [Siemens Energy, Orlando, Florida 32826-2399 (United States)

2009-04-15T23:59:59.000Z

57

Measuring the thermal diffusivity in a student laboratory  

E-Print Network [OSTI]

The paper describes a method for measuring the thermal diffusivity of materials having a high thermal conductivity. The apparatus is rather simple and low-cost, being therefore suitable in a laboratory for undergraduate students of engineering schools, where several set-ups are often required. A recurrence numerical approach solves the thermal field in the specimen, which is depending on the thermal diffusivity of its material. The numerical method requires the temperature data from two different positions in the specimen, measured by two thermocouples connected to a temperature logger.

Sparavigna, Amelia Carolina

2012-01-01T23:59:59.000Z

58

Thermal engineering of non-local resistance in lateral spin valves  

SciTech Connect (OSTI)

We study the non-local spin transport in Permalloy/Cu lateral spin valves (LSVs) fabricated on thermally oxidized Si and MgO substrates. While these LSVs show the same magnitude of spin signals, significant substrate dependence of the baseline resistance was observed. The baseline resistance shows much weaker dependence on the inter-electrode distance than that of the spin transport observed in the Cu wires. A simple analysis of voltage-current characteristics in the baseline resistance indicates the observed result can be explained by a combination of the Peltier and Seebeck effects at the injector and detector junctions, suggesting the usage of high thermal conductivity substrate (or under-layer) is effective to reduce the baseline resistance.

Kasai, S., E-mail: KASAI.Shinya@nims.go.jp; Takahashi, Y. K. [National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Hirayama, S.; Mitani, S.; Hono, K. [National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0006 (Japan); Adachi, H.; Ieda, J.; Maekawa, S. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai 319-1195 (Japan); CREST, Japan Science and Technology Agency, Sanbancho, Tokyo 102-0075 (Japan)

2014-04-21T23:59:59.000Z

59

Method for measuring thermal properties using a long-wavelength infrared thermal image  

DOE Patents [OSTI]

A method for estimating the thermal properties of surface materials using long-wavelength thermal imagery by exploiting the differential heating histories of ground points in the vicinity of shadows. The use of differential heating histories of different ground points of the same surface material allows the use of a single image acquisition step to provide the necessary variation in measured parameters for calculation of the thermal properties of surface materials.

Walker, Charles L. (Albuquerque, NM); Costin, Laurence S. (Albuquerque, NM); Smith, Jody L. (Albuquerque, NM); Moya, Mary M. (Albuquerque, NM); Mercier, Jeffrey A. (Albuquerque, NM)

2007-01-30T23:59:59.000Z

60

Study on the thermal resistance in secondary particles chain of silica aerogel by molecular dynamics simulation  

SciTech Connect (OSTI)

In this article, molecular dynamics simulation was performed to study the heat transport in secondary particles chain of silica aerogel. The two adjacent particles as the basic heat transport unit were modelled to characterize the heat transfer through the calculation of thermal resistance and vibrational density of states (VDOS). The total thermal resistance of two contact particles was predicted by non-equilibrium molecular dynamics simulations (NEMD). The defects were formed by deleting atoms in the system randomly first and performing heating and quenching process afterwards to achieve the DLCA (diffusive limited cluster-cluster aggregation) process. This kind of treatment showed a very reasonable prediction of thermal conductivity for the silica aerogels compared with the experimental values. The heat transport was great suppressed as the contact length increased or defect concentration increased. The constrain effect of heat transport was much significant when contact length fraction was in the small range (<0.5) or the defect concentration is in the high range (>0.5). Also, as the contact length increased, the role of joint thermal resistance played in the constraint of heat transport was increasing. However, the defect concentration did not affect the share of joint thermal resistance as the contact length did. VDOS of the system was calculated by numerical method to characterize the heat transport from atomic vibration view. The smaller contact length and greater defect concentration primarily affected the longitudinal acoustic modes, which ultimately influenced the heat transport between the adjacent particles.

Liu, M. [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing100190 (China); Department of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Qiu, L., E-mail: qiulin111@sina.com, E-mail: jzzhengxinghua@163.com; Zheng, X. H., E-mail: qiulin111@sina.com, E-mail: jzzhengxinghua@163.com; Zhu, J.; Tang, D. W. [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing100190 (China)

2014-09-07T23:59:59.000Z

Note: This page contains sample records for the topic "thermal resistance measured" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Thermal resistance of prototypical cellular plastic roof insulations  

SciTech Connect (OSTI)

A cooperative industry/government project was initiated in 1989 to evaluate the viability of alternative hydrochlorofluorocarbons (HCFCs) as blowing agents in polyisocyanurate (PIR) boardstock for roofing applications. Five sets of PIR boardstock were produced to industry specifications for current roof insulation technology. The boardstock allowed the performance of four alternative blowing agents (HCFC-123, HCFC-14lb, and two blends of HCFC-123 and HCFC-14lb) to compared to CFC-11. Laboratory and field tests show the relative thermal performance of the individual PIR boards. One set of laboratory tests show the thermal conductivity (k) from 0 to 50{degree}C (30 to 120{degree}F) of boards prior to installation and as a function of time after exposure to field conditions in the Roof Thermal Research Apparatus (0, 9, and 15 months). Another set of laboratory tests show k as a function of aging time 24{degree}C (75{degree}F) and 65{degree}C (150{degree}F) for full-thickness, half-thickness, and quarter-thickness specimens. These test results and modeling calculations show the value of thin specimen testing as an accelerated aging procedure. 24 refs., 5 figs., 7 tabs.

McElroy, D.L.; Graves, R.S.; Weaver, F.J.

1991-01-01T23:59:59.000Z

62

Electrical, Frequency and Thermal Measurement and Modelling of Supercapacitor Performance  

E-Print Network [OSTI]

Electrical, Frequency and Thermal Measurement and Modelling of Supercapacitor Performance Yasser--This paper presents an evaluation of commercial supercapacitors performance (ESR, C, self-discharge, Pmax, Emax, coulumbic efficiency, etc), under different conditions. Characterization of supercapacitor

Paris-Sud XI, Université de

63

Thermal emission microscopy measures the spa-tial distribution of temperature in a sample. Thermal  

E-Print Network [OSTI]

per unit area emitted by an object is proportional to its absolute temperature to the fourth powerThermal emission microscopy measures the spa- tial distribution of temperature in a sample. Thermal- cause the optical power emitted by the sample is a function of its local temperature. The optical power

64

Journal of Power Sources 161 (2006) 11061115 Direct measurement of through-plane thermal conductivity and  

E-Print Network [OSTI]

conductivity and contact resistance in fuel cell materials Manish Khandelwal, M.M. Mench Fuel Cell Dynamics, and the thermal contact resistance between diffusion media and a metal plate as a function of temperature® membrane; Diffusion media; Thermal contact resistance 1. Introduction Detailed knowledge of the internal

Mench, Matthew M.

65

G-Plus report to Owens Corning-thermal conductivity Measurements of Fiberglass  

SciTech Connect (OSTI)

Fiberglass made by Owens Corning is being used in noise reduction of automobile exhaust system. Specifically, the glass fibers are packed inside the muffler to achieve the desired acoustic effect. A secondary benefit of the fibers is to serve as a thermal insulation. Because of this insulating property, the glass fibers can serve to reduce the temperature of the muffler shell. This in turn reduces the need for heat shields around mufflers and reduces the amount of exterior temperature accelerated corrosion of the muffler shell, especially in the winter ''salt belts'' where large amounts of salt are placed on highways to minimize the safety impact of snow and ice. In addition, for some applications the use of the fiberglass could allow the use of lighter weight carbon based polymer composite materials in place of steel for muffler shells. However, in order to properly design exhaust systems without heat shields or to take advantage of new materials, the thermal conductivity of the fiberglass material at operating temperatures (for some applications above 750 C) must be known. We selected two types of Owens Corning glass fibers, 17 {micro}m and 24 {micro}m in diameter, for this study. There are some room temperature thermal conductivity data for the fiberglass, but high temperature data are not available. Based on the thermal radiation model, thermal conductivity should increase rapidly at high temperature, providing less thermal insulation. In addition, thermal conductivity depends on packing density of the glass fibers. We will study the effect of packing density on thermal conductivity. Another issue is that the glass fiber conducts heat better along the fiber, while the conduction across the fibers is poor, because thermal conduction from one fiber to another has to go through an interface with thermal resistance. In fiberglass, most fibers are not in good contact with the surrounding fibers, thus, most heat transfer is dependent on the thermal radiation effect. Among the many methods of measuring thermal conductivity, only a few can be used for glass fibers. The traditional heat flow meter is used in testing thermal insulations near room temperature. At higher temperatures this method cannot be used due to material and instrument limitations. Our plan is to use a transient plane source (TPS) method to measure thermal conductivity directly. The advantage of the TPS method is that measurements can be taken at over 700 C, and covers the temperature of the automobile exhausts. The following is a report for the G-Plus project conducted at ORNL to apply the TPS method to characterizing the thermal conductivity of two types of fiberglass and also the effect of packing density.

Wang, H

2003-04-15T23:59:59.000Z

66

Thermal imaging measurement of lateral thermal diffusivity in continuous fiber ceramic composites  

SciTech Connect (OSTI)

Infrared thermal imaging has become a common technique for nondestructive evaluation and measurement of thermal properties in ceramic specimens. Flash thermal imaging can be used to determine two-dimensional through-thickness thermal diffusivity in a planar specimen. In this study, the authors extended the method to determine lateral, or transverse, thermal diffusivity in the specimen. During the flash thermal imaging test, pulsed heat energy is applied to a specimen's back surface, which is partially shielded, and the change of temperature distribution on the front surface is monitored by an infrared thermal imaging system. The temperature distribution represents the effect of both the normal heat transfer through the specimen's thickness and the lateral heat transfer through the interface between the shielded and unshielded back-surface regions. Those temperature distributions are then fitted with a theoretical solution of the heat transfer process to determine the lateral thermal diffusivity at the interface. This technique has been applied to measure lateral thermal diffusivity in a steel plate and a continuous fiber ceramic composite specimen.

Sun, J. G.; Deemer, C.; Ellingson, W. A.

2000-02-18T23:59:59.000Z

67

Corrosion-resistant coating prepared by the thermal decomposition of lithium permanganate  

SciTech Connect (OSTI)

A ceramic, metal, or metal alloy surface is covered with lithium permanganate which is then thermally decomposed to produce a corrosion resistant coating on the surface. This coating serves as a primer coating which is preferably covered with an overcoat of a sealing paint.

Ferrando, W.A.

1999-09-01T23:59:59.000Z

68

Standard Test Method for Thermal Oxidative Resistance of Carbon Fibers  

E-Print Network [OSTI]

1.1 This test method covers the apparatus and procedure for the determination of the weight loss of carbon fibers, exposed to ambient hot air, as a means of characterizing their oxidative resistance. 1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units which are provided for information only and are not considered standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard information, see Section 8.

American Society for Testing and Materials. Philadelphia

1982-01-01T23:59:59.000Z

69

Temperature measurements using multicolor pyrometry in thermal radiation heating environments  

SciTech Connect (OSTI)

Temperature measurements are important for thermal-structural experiments in the thermal radiation heating environments such as used for thermal-structural stress analyses. This paper describes the use of multicolor pyrometry for the measurements of diffuse surfaces in thermal radiation environments that eliminates the effects of background radiation reflections and unknown emissivities based on a least-squares algorithm. The near-infrared multicolor pyrometer had a spectral range of 1100–2400 nm, spectrum resolution of 6 nm, maximum sampling frequency of 2 kHz, working distance of 0.6 m to infinity, temperature range of 700–1700 K. The pyrometer wavelength response, nonlinear intensity response, and spectral response were all calibrated. The temperature of a graphite sample irradiated by quartz lamps was then measured during heating and cooling using the least-squares algorithm based on the calibrated irradiation data. The experiments show that higher temperatures and longer wavelengths are more suitable for the thermal measurements in the quartz lamp radiation heating system. This analysis provides a valuable method for temperature measurements of diffuse surfaces in thermal radiation environments.

Fu, Tairan, E-mail: trfu@mail.tsinghua.edu.cn [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China) [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Beijing 100084 (China); Liu, Jiangfan; Duan, Minghao; Zong, Anzhou [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)] [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

2014-04-15T23:59:59.000Z

70

In-Pile Thermal Conductivity Measurement Method for Nuclear Fuels  

SciTech Connect (OSTI)

Thermophysical properties of advanced nuclear fuels and materials during irradiation must be known prior to their use in existing, advanced, or next generation reactors. Thermal conductivity is one of the most important properties for predicting fuel and material performance. A joint Utah State University (USU) / Idaho National Laboratory (INL) project, which is being conducted with assistance from the Institute for Energy Technology at the Norway Halden Reactor Project, is investigating in-pile fuel thermal conductivity measurement methods. This paper focuses on one of these methods – a multiple thermocouple method. This two-thermocouple method uses a surrogate fuel rod with Joule heating to simulate volumetric heat generation to gain insights about in-pile detection of thermal conductivity. Preliminary results indicated that this method can measure thermal conductivity over a specific temperature range. This paper reports the thermal conductivity values obtained by this technique and compares these values with thermal property data obtained from standard thermal property measurement techniques available at INL’s High Test Temperature Laboratory. Experimental results and material properties data are also compared to finite element analysis results.

Joy L. Rempe; Brandon Fox; Heng Ban; Joshua E. Daw; Darrell L. Knudson; Keith G. Condie

2009-08-01T23:59:59.000Z

71

Thermal diffusivity measurements in liquids using signal common-mode-rejection demodulation in a thermal-wave cavity  

E-Print Network [OSTI]

Thermal diffusivity measurements in liquids using signal common-mode- rejection demodulation Mandelis et al., Rev. Sci. Instrum. 71, 2440 2000 has been used to make direct absolute thermal diffusivity, yielding a high-resolution technique for thermal diffusivity measurements in liquids. The thermal

Mandelis, Andreas

72

Anomalous Viscosity, Resistivity, and Thermal Diffusivity of the Solar Wind Plasma  

E-Print Network [OSTI]

In this paper we have estimated typical anomalous viscosity, resistivity, and thermal difffusivity of the solar wind plasma. Since the solar wind is collsionless plasma, we have assumed that the dissipation in the solar wind occurs at proton gyro radius through wave-particle interactions. Using this dissipation length-scale and the dissipation rates calculated using MHD turbulence phenomenology [Verma et al., 1995a], we estimate the viscosity and proton thermal diffusivity. The resistivity and electron’s thermal diffusivity have also been estimated. We find that all our transport quantities are several orders of magnitude higher than those calculated earlier using classical transport theories of Braginskii. In this paper we have also estimated the eddy turbulent viscosity. 1 1

Mahendra K. Verma

2008-01-01T23:59:59.000Z

73

Anomalous Viscosity, Resistivity, and Thermal Diffusivity of the Solar Wind Plasma  

E-Print Network [OSTI]

In this paper we have estimated typical anomalous viscosity, resistivity, and thermal difffusivity of the solar wind plasma. Since the solar wind is collsionless plasma, we have assumed that the dissipation in the solar wind occurs at proton gyro radius through wave-particle interactions. Using this dissipation length-scale and the dissipation rates calculated using MHD turbulence phenomenology [{\\it Verma et al.}, 1995a], we estimate the viscosity and proton thermal diffusivity. The resistivity and electron's thermal diffusivity have also been estimated. We find that all our transport quantities are several orders of magnitude higher than those calculated earlier using classical transport theories of {\\it Braginskii}. In this paper we have also estimated the eddy turbulent viscosity.

Mahendra K. Verma

1995-09-05T23:59:59.000Z

74

Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof  

DOE Patents [OSTI]

An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications is disclosed. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al[sub x]N[sub y]O[sub z] layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al[sub x]N[sub y]O[sub z] layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.

Sarin, V.K.

1990-08-21T23:59:59.000Z

75

Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof  

DOE Patents [OSTI]

An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al.sub.x N.sub.y O.sub.z layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al.sub.x N.sub.y O.sub.z layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.

Sarin, Vinod K. (Lexington, MA)

1990-01-01T23:59:59.000Z

76

Thermal imaging measurement and correlation of thermal diffusivity in continuous fiber ceramic composites  

SciTech Connect (OSTI)

Continuous fiber ceramic matrix composites (CFCCs) are currently being developed for a variety of high-temperature applications, including use in advanced heat engines. For such composites, knowledge of porosity distribution and presence of defects is important for optimizing mechanical and thermal behavior of the components. The assessment of porosity and its distribution is also necessary during composite processing to ensure component uniformity. To determine the thermal properties of CFCC materials, and particularly for detecting defects and nonuniformities, the authors have developed an infrared thermal imaging method to provide a single-shot full-field measurement of thermal diffusivity distributions in large components. This method requires that the back surface of a specimen receives a thermal pulse of short duration and that the temperature of the front surface is monitored as a function of time. The system has been used to measure thermal diffusivities of several CFCC materials with known porosity or density values, including SYLRAMIC{trademark} SiC/SiNC composite samples from Dow Corning and SiC/SiC and enhanced SiC/SiC samples from DuPont Lanxide Composites, to determine the relationship of thermal diffusivity to component porosity or density.

Sun, J.G.; Deemer, C.; Ellingson, W.A. [Argonne National Lab., IL (United States). Energy Technology Div.; Easler, T.E.; Szweda, A. [Dow Corning Corp., Midland, MI (United States); Craig, P.A. [DuPont Lanxide Composites Inc., Newark, DE (United States)

1997-09-01T23:59:59.000Z

77

Surface-resistance measurements using superconducting stripline resonators  

SciTech Connect (OSTI)

We present a method to measure the absolute surface resistance of conductive samples at a set of GHz frequencies with superconducting lead stripline resonators at temperatures 1–6 K. The stripline structure can easily be applied for bulk samples and allows direct calculation of the surface resistance without the requirement of additional calibration measurements or sample reference points. We further describe a correction method to reduce experimental background on high-Q resonance modes by exploiting TEM-properties of the external cabling. We then show applications of this method to the reference materials gold, tantalum, and tin, which include the anomalous skin effect and conventional superconductivity. Furthermore, we extract the complex optical conductivity for an all-lead stripline resonator to find a coherence peak and the superconducting gap of lead.

Hafner, Daniel; Dressel, Martin; Scheffler, Marc, E-mail: scheffl@pi1.physik.uni-stuttgart.de [1. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart (Germany)] [1. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart (Germany)

2014-01-15T23:59:59.000Z

78

Thermal resistance of Yersinia pseudotuberculosis and Yersinia pestis in bovine milk with different fat levels. Drabyendra M. Neupane1, Susanne E. Keller2, Stuart Chirtel3  

E-Print Network [OSTI]

on thermal resistance. Materials and Methods Y. pseudotuberculosis (ATCC 6905), Y. enterocolitica (ATCC 51871Thermal resistance of Yersinia pseudotuberculosis and Yersinia pestis in bovine milk with different studies such as the examination of thermal resistance, the use of a suitable surrogate strain would

Heller, Barbara

79

Effect of cracks on the thermal resistance of aligned fiber composites Department of Mechanical and Materials Engineering, University of Western Ontario, London,  

E-Print Network [OSTI]

Effect of cracks on the thermal resistance of aligned fiber composites J. Dryden Department are bridged by the fibers, and this crack- ing causes an increase in the longitudinal thermal resistance of the matrix and the fiber, respectively. The thermal resistance of a pristine unit cell is R0 L b2 kz . 4

Zok, Frank

80

Abstract --The beneficial effect of AlN heat spreaders in terms of reduction of thermal resistance is tested on silicon-on-  

E-Print Network [OSTI]

Abstract -- The beneficial effect of AlN heat spreaders in terms of reduction of thermal resistance such as SiO2 and SiNx can also lead to a very high thermal resistance. This has been demonstrated it is shown that PVD AlN layers result in a significant reduction of thermal resistance in a single device

Technische Universiteit Delft

Note: This page contains sample records for the topic "thermal resistance measured" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

J. Phi-s-III l+once 7 (1997) 561-574 MARCH 1997, PAGE 561 A Method to Compare the Thermal Shock Resistances  

E-Print Network [OSTI]

: optical methods Abstract. The thermal shock behavior and resistance of brittle materials are mostly in Introduction The thermal shock resistance of brittle materials is most usually investigated by the determi, or indicator, of relative thermal shock resistance, or of the severities of quenching conditions

Boyer, Edmond

82

1981). Their basic solution is to find a suitable backfilling material to minimize the contact resistance and to maintain high ground thermal conductivity around the cable even under very  

E-Print Network [OSTI]

resistance and to maintain high ground thermal conductivity around the cable even under very dry ground#12;1981). Their basic solution is to find a suitable backfilling material to minimize the contact thermal conductivity for clay backfilling, measured 1/2 inch and 6 inches (1.3 and 15 cm) away from

Oak Ridge National Laboratory

83

Camera-based reflectivity measurement for solar thermal applications  

E-Print Network [OSTI]

of the solar-weighted reflectivity of the receiver component in CSP systems. Such reflectivity measurement Tubular receivers for solar thermal power plants, specifically tower plants, are in common use, in plants to be able to do conveniently in the field, possibly at intervals throughout the life of the plant

84

Spectral measurement of the thermal excitation of a superconducting qubit  

E-Print Network [OSTI]

Spectral measurement of the thermal excitation of a superconducting qubit A. Palacios-Laloy, F of a superconducting qubit 2 Superconducting qubits [1] are promising candidates for implementing a solid- state lying in their ground state. In most superconducting qubit experiments, the initialization is simply

Boyer, Edmond

85

Corrosion resistance of stainless steels during thermal cycling in alkali nitrate molten salts.  

SciTech Connect (OSTI)

The corrosion behavior of three austenitic stainless steels was evaluated during thermal cycling in molten salt mixtures consisting of NaNO{sub 3} and KNO{sub 3}. Corrosion tests were conducted with Types 316, 316L and 304 stainless steels for more than 4000 hours and 500 thermal cycles at a maximum temperature of 565 C. Corrosion rates were determined by chemically descaling coupons. Metal losses ranged from 5 to 16 microns and thermal cycling resulted in moderately higher corrosion rates compared to isothermal conditions. Type 316 SS was somewhat more corrosion resistant than Type 304 SS in these tests. The effect of carbon content on corrosion resistance was small, as 316L SS corroded only slightly slower than 316 SS. The corrosion rates increased as the dissolved chloride content of the molten salt mixtures increased. Chloride concentrations approximating 1 wt.%, coupled with thermal cycling, resulted in linear weight loss kinetics, rather than parabolic kinetics, which described corrosion rates for all other conditions. Optical microscopy and electron microprobe analysis revealed that the corrosion products consisted of iron-chromium spinel, magnetite, and sodium ferrite, organized as separate layers. Microanalysis of the elemental composition of the corrosion products further demonstrated that the chromium content of the iron-chromium spinel layer was relatively high for conditions in which parabolic kinetics were observed. However, linear kinetics were observed when the spinel layer contained relatively little chromium.

Bradshaw, Robert W.; Goods, Steven Howard

2001-09-01T23:59:59.000Z

86

Electrical resistance measurements of highly inhibited SiC coated carbon-carbon laminates  

E-Print Network [OSTI]

resistance values to the mass loss. In-situ electrical resistance measurements are taken at 900'C and shear modulus measurements are obtained at room temperature prior to and following oxidation. Initial oxidation damage is incurred preferentially along both...

Parker, Paul Albert

1998-01-01T23:59:59.000Z

87

VALIDATION OF A THERMAL CONDUCTIVITY MEASUREMENT SYSTEM FOR FUEL COMPACTS  

SciTech Connect (OSTI)

A high temperature guarded-comparative-longitudinal heat flow measurement system has been built to measure the thermal conductivity of a composite nuclear fuel compact. It is a steady-state measurement device designed to operate over a temperature range of 300 K to 1200 K. No existing apparatus is currently available for obtaining the thermal conductivity of the composite fuel in a non-destructive manner due to the compact’s unique geometry and composite nature. The current system design has been adapted from ASTM E 1225. As a way to simplify the design and operation of the system, it uses a unique radiative heat sink to conduct heat away from the sample column. A finite element analysis was performed on the measurement system to analyze the associated error for various operating conditions. Optimal operational conditions have been discovered through this analysis and results are presented. Several materials have been measured by the system and results are presented for stainless steel 304, inconel 625, and 99.95% pure iron covering a range of thermal conductivities of 10 W/m*K to 70 W/m*K. A comparison of the results has been made to data from existing literature.

Jeff Phillips; Colby Jensen; Changhu Xing; Heng Ban

2011-03-01T23:59:59.000Z

88

DIRECT MEASUREMENT OF HEAT FLUX FROM COOLING LAKE THERMAL IMAGERY  

SciTech Connect (OSTI)

Laboratory experiments show a linear relationship between the total heat flux from a water surface to air and the standard deviation of the surface temperature field, {sigma}, derived from thermal images of the water surface over a range of heat fluxes from 400 to 1800 Wm{sup -2}. Thermal imagery and surface data were collected at two power plant cooling lakes to determine if the laboratory relationship between heat flux and {sigma} exists in large heated bodies of water. The heat fluxes computed from the cooling lake data range from 200 to 1400 Wm{sup -2}. The linear relationship between {sigma} and Q is evident in the cooling lake data, but it is necessary to apply band pass filtering to the thermal imagery to remove camera artifacts and non-convective thermal gradients. The correlation between {sigma} and Q is improved if a correction to the measured {sigma} is made that accounts for wind speed effects on the thermal convection. Based on more than a thousand cooling lake images, the correlation coefficients between {sigma} and Q ranged from about 0.8 to 0.9.

Garrett, A; Eliel Villa-Aleman, E; Robert Kurzeja, R; Malcolm Pendergast, M; Timothy Brown, T; Saleem Salaymeh, S

2007-12-19T23:59:59.000Z

89

MEASUREMENT OF WIND SPEED FROM COOLING LAKE THERMAL IMAGERY  

SciTech Connect (OSTI)

The Savannah River National Laboratory (SRNL) collected thermal imagery and ground truth data at two commercial power plant cooling lakes to investigate the applicability of laboratory empirical correlations between surface heat flux and wind speed, and statistics derived from thermal imagery. SRNL demonstrated in a previous paper [1] that a linear relationship exists between the standard deviation of image temperature and surface heat flux. In this paper, SRNL will show that the skewness of the temperature distribution derived from cooling lake thermal images correlates with instantaneous wind speed measured at the same location. SRNL collected thermal imagery, surface meteorology and water temperatures from helicopters and boats at the Comanche Peak and H. B. Robinson nuclear power plant cooling lakes. SRNL found that decreasing skewness correlated with increasing wind speed, as was the case for the laboratory experiments. Simple linear and orthogonal regression models both explained about 50% of the variance in the skewness - wind speed plots. A nonlinear (logistic) regression model produced a better fit to the data, apparently because the thermal convection and resulting skewness are related to wind speed in a highly nonlinear way in nearly calm and in windy conditions.

Garrett, A; Robert Kurzeja, R; Eliel Villa-Aleman, E; Cary Tuckfield, C; Malcolm Pendergast, M

2009-01-20T23:59:59.000Z

90

DEVELOPMENT OF BYPASSED OIL RESERVES USING BEHIND CASING RESISTIVITY MEASUREMENTS  

SciTech Connect (OSTI)

Tubing and rods of the S.P. Pedro-Nepple No.1 well were pulled and the well was prepared for running of Schlumberger's Cased Hole Formation Resistivity Tool (CHFR) in selected intervals. The CHFR tool was successfully run and data was captured. The CHFR formation resistivity readings were compared to original open hole resistivity measurements. Separation between the original and CHFR resistivity curves indicate both swept and un-swept sand intervals. Both watered out sand intervals and those with higher remaining oil saturation have been identified. Due to the nature of these turbidite sands being stratigraphically continuous, both the swept and unswept layers have been correlated across to one of the four nearby offset shallow wells. As a result of the cased hole logging, one well was selected for a workover to recomplete and test suspected oil saturated shallow sand intervals. Well S.P. Pedro-Nepple No.2 was plugged back with cement excluding the previously existing production interval, squeeze cemented behind casing, selectively perforated in the shallower ''Bell'' zone and placed on production to develop potential new oil reserves and increase overall well productivity. Prior workover production averaged 3.0 BOPD for the previous six-months from the original ''Meyer'' completion interval. Post workover well production was increased to 5.3 BOPD on average for the following fifteen months. In December 2005, a bridge plug was installed above the ''Bell'' zone to test the ''Foix'' zone. Another cement squeeze was performed behind casing, selectively perforated in the shallower ''Foix'' zone and placed on production. The ''Foix'' test has produced water and a trace of oil for two months.

Michael G. Conner; Jeffrey A. Blesener

2006-04-02T23:59:59.000Z

91

Corrosion and wear resistance of tungsten carbide-cobalt and tungsten carbide-cobalt-chromium thermal spray coatings  

SciTech Connect (OSTI)

Tungsten carbide thermal spray coatings provide wear surfaces to new and overhauled components for various industries. Their wear resistance is obtained by incorporating small tungsten carbide particles into a metal matrix. This presentation will show what parameters influence their corrosion resistance in the ASTM B-117 Salt Spray Corrosion Test,

Quets, J.; Alford, J.R.

1999-07-01T23:59:59.000Z

92

Thermal resistance and acclimation at various salinities in the sheepshead minnow (Cyprinodon variegatus Lacepede  

E-Print Network [OSTI]

as to style snd content by: a rman o ommx ee ea o epar en em er May 1971 ABSTRACT Thermal Resistance and Acclimation at Various Salinities in the Sheepshead Minnow (CW ' d ~et 7 p d ). (Nap 1971) Herbert Benton Simmons, B. S. , Texas ~ University... of regression analysis between sur:ival time and the length and sex of the fish at four salinities 25 27 28 LlST OF TABLES (continued) 10. Results of retression analysis between survival ime arid the posit' on of the fj eh in the lethal tank at the time...

Simmons, Herbert Benton

1971-01-01T23:59:59.000Z

93

A simple solar cell series resistance measurement method J. Cabestany and L. Castaer  

E-Print Network [OSTI]

the series resistance of a solar cell is described. This procedure only needs dark I(V) measurements565 A simple solar cell series resistance measurement method J. Cabestany and L. Castañer E Physics Abstracts 73.40L The series resistance of a solar cell is a parameter of special interest because

Boyer, Edmond

94

Photothermal measurement of the thermal conductivity of supercooled water O. Benchikh, D. Fournier, A. C. Boccara  

E-Print Network [OSTI]

Thermal diffusivity measurements of supercooled water have been performed between + 40 °C and - 23 °C properties of supercooled water have been measured [1 ]. However, the thermal conduc- Article published

Boyer, Edmond

95

Oxidation-resistant, solution-processed plasmonic Ni nanochain-SiO{sub x} (x?thermal absorbers  

SciTech Connect (OSTI)

Metal oxidation at high temperatures has long been a challenge in cermet solar thermal absorbers, which impedes the development of atmospherically stable, high-temperature, high-performance concentrated solar power (CSP) systems. In this work, we demonstrate solution-processed Ni nanochain-SiO{sub x} (x?thermal absorbers that exhibit a strong anti-oxidation behavior up to 600?°C in air. The thermal stability is far superior to previously reported Ni nanoparticle-Al{sub 2}O{sub 3} selective solar thermal absorbers, which readily oxidize at 450?°C. The SiO{sub x} (x?resistant Ni nanochain-SiO{sub x} (x?measured at 300?°C. These results open the door towards atmospheric stable, high temperature, high-performance solar selective absorber coatings processed by low-cost solution-chemical methods for future generations of CSP systems.

Yu, Xiaobai; Wang, Xiaoxin; Liu, Jifeng, E-mail: Jifeng.Liu@dartmouth.edu [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755 (United States); Zhang, Qinglin [Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, Kentucky 40506 (United States); Li, Juchuan [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

2014-08-21T23:59:59.000Z

96

Design of a steady state thermal conductivity measurement device for CNT RET polymer composites  

E-Print Network [OSTI]

NY: Taylor & Francis. [10] Tritt, T. M. (2004). MeasurementBulk Materials. In T. M. Tritt, Thermal Conductivity Theory,

Louie, Brian Ming

2011-01-01T23:59:59.000Z

97

Laboratory test results on the thermal resistance of polyisocyanurate foamboard insulation blown with CFC-11 substitutes: A cooperative industry/government project  

SciTech Connect (OSTI)

The fully halogenated chlorofluorocarbon gases (CFC-11 and CFC-12) are used as blowing agents for foam insulations for building and appliance applications. The thermal resistance per unit thickness of these insulations is greater than that of other commercially available insulations. Mandated reductions in the production of these chemicals may lead to less efficient substitutes and increase US energy consumption by one quad or more. This report describes laboratory thermal and aging tests on a set of industry-produced, experimental polyisocyanurate (PIR) laminate boardstock to evaluate the viability of hydrochlorofluorocarbons (HCFSs) as alternative blowing agents to chlorofluorcarbon-11 (CFC-11). The PIR boards were blown with five gases: CFC-11, HCFC- 123, HCFC-141b, and 50/50 and 65/35 blends of HCFC-123/HCFC-141b. These HCFC gases have a lower ozone depletion potential than CFC-11 or CFC-12. Apparent thermal conductivity (k) was determined from 0 to 50{degrees}C. Results on the laminate boards provide an independent laboratory check on the increase in k observed for field exposure in the Roof Thermal Research Apparatus (RTRA). The measured laboratory increase in k was between 8 and 11% after a 240-d field exposure in the RTRA. Results are reported on a thin-specimen, aging procedure to establish the long-term thermal resistance of gas-filled foams. These thin specimens were planed from the industry-produced boardstock foams and aged at 75 and 150{degrees}F for up to 300 d. The resulting k-values were correlated with an exponential dependency on (diffusion coefficient {times} time){sup {1/2}}/thickness and provided diffusion coefficients for air components into, and blowing agent out of, the foam. This aging procedure was used to predict the five-year thermal resistivity of the foams. The thin-specimen aging procedure is supported with calculations by a computer model for aging of foams. 43 refs., 33 figs., 25 tabs.

McElroy, D.L.; Graves, R.S.; Yarbrough, D.W.; Weaver, F.J.

1991-09-01T23:59:59.000Z

98

Hyper-resistivity and electron thermal conductivity due to destroyed magnetic surfaces in axisymmetric plasma equilibria  

SciTech Connect (OSTI)

In order to model the effects of small-scale current-driven magnetic fluctuations in a mean-field theoretical description of a large-scale plasma magnetic field B(x,t), a space and time dependent hyper-resistivity {Lambda}(x,t) can be incorporated into the Ohm's law for the parallel electric field E Dot-Operator B. Using Boozer coordinates, a theoretical method is presented that allows for a determination of the hyper-resistivity {Lambda}({psi}) functional dependence on the toroidal magnetic flux {psi} for arbitrary experimental steady-state Grad-Shafranov axisymmetric plasma equilibria, if values are given for the parallel plasma resistivity {eta}({psi}) and the local distribution of any auxiliary plasma current. Heat transport in regions of plasma magnetic surfaces destroyed by resistive tearing modes can then be modeled by an electron thermal conductivity k{sub e}({psi})=({epsilon}{sub 0}{sup 2}m{sub e}/e{sup 2}){Lambda}({psi}), where e and m{sub e} are the electron charge and mass, respectively, while {epsilon}{sub 0} is the permittivity of free space. An important result obtained for axisymmetric plasma equilibria is that the {psi}{psi}-component of the metric tensor of Boozer coordinates is given by the relation g{sup {psi}{psi}}({psi}){identical_to}{nabla}{psi} Dot-Operator {nabla}{psi}=[{mu}{sub 0}G({psi})][{mu}{sub 0}I({psi})]/{iota}({psi}), with {mu}{sub 0} the permeability of free space, G({psi}) the poloidal current outside a magnetic surface, I({psi}) the toroidal current inside a magnetic surface, and {iota}({psi}) the rotational transform.

Weening, R. H. [Department of Radiologic Sciences, Thomas Jefferson University, 901 Walnut Street, Philadelphia, Pennsylvania 19107-5233 (United States)

2012-06-15T23:59:59.000Z

99

Lifetime Assessment for Thermal Barrier Coatings: Tests for Measuring Mixed Mode Delamination Toughness  

E-Print Network [OSTI]

the thermally grown oxide (TGO), and a porous ceramic topcoat which serves as the thermal insulation. DetailsLifetime Assessment for Thermal Barrier Coatings: Tests for Measuring Mixed Mode Delamination Mechanisms leading to degradation of the adherence of thermal barrier coatings (TBC) used in aircraft

Hutchinson, John W.

100

Self-normalized photothermal technique for accurate thermal diffusivity measurements in thin metal layers  

E-Print Network [OSTI]

Self-normalized photothermal technique for accurate thermal diffusivity measurements in thin metal method for measuring thermal diffusivity of thin metal layers has been implemented using two experimental of this method, simple experimental criteria have been developed to ascertain that a purely thermal-diffusion

Mandelis, Andreas

Note: This page contains sample records for the topic "thermal resistance measured" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Self-consistent photothermal techniques: Application for measuring thermal diffusivity in vegetable oils  

E-Print Network [OSTI]

Self-consistent photothermal techniques: Application for measuring thermal diffusivity in vegetable of vegetable oils. The thermal diffusivity of six commercial vegetable oils olive, corn, soybean, canola in terms of thermal diffusivity was shown. The high measurement precision of the TWRC highlights

Mandelis, Andreas

102

Measuring the Influence of Grain-Boundary Misorientation on Thermal Groove Geometry in Ceramic Polycrystals  

E-Print Network [OSTI]

Measuring the Influence of Grain-Boundary Misorientation on Thermal Groove Geometry in Ceramic. The width and depth of the thermal grooves formed by these same grain bound- aries were also measured of the grain-boundary misorientation and thermal groove ge- ometry leads to the observation that grain

Rohrer, Gregory S.

103

Solar wind electron temperature and density measurements on the Solar Orbiter with thermal noise spectroscopy  

E-Print Network [OSTI]

Solar wind electron temperature and density measurements on the Solar Orbiter with thermal noise of the plasma thermal noise analysis for the Solar Orbiter, in order to get accurate measurements of the total of their small mass and therefore large thermal speed, the solar wind electrons are expected to play a major role

California at Berkeley, University of

104

Ultra-sensitive and Wide Bandwidth Thermal Measurements of Graphene at Low Temperatures  

E-Print Network [OSTI]

exhibits one of the highest thermal conductivities of all measured materials[3, 4]. However at lowUltra-sensitive and Wide Bandwidth Thermal Measurements of Graphene at Low Temperatures K.C. Fong. This paper is organized as follows. We first present the thermal model of the electron gas of graphene at low

105

Solar wind electron density and temperature over solar cycle 23: Thermal noise measurements on Wind  

E-Print Network [OSTI]

upstream of the EarthÃ?s bow shock. The WIND/WAVES thermal noise receiver was specially designed to measureSolar wind electron density and temperature over solar cycle 23: Thermal noise measurements on Wind the in situ plasma thermal noise spectra, from which the electron density and temperature can be accurately

California at Berkeley, University of

106

Thermal-hydraulic development a small, simplified, proliferation-resistant reactor.  

SciTech Connect (OSTI)

This paper addresses thermal-hydraulics related criteria and preliminary concepts for a small (300 MWt), proliferation-resistant, liquid-metal-cooled reactor system. A main objective is to assess what extent of simplification is achievable in the concepts with the primary purpose of regaining economic competitiveness. The approach investigated features lead-bismuth eutectic (LBE) and a low power density core for ultra-long core lifetime (goal 15 years) with cartridge core replacement at end of life. This potentially introduces extensive simplifications resulting in capital cost and operating cost savings including: (1) compact, modular, pool-type configuration for factory fabrication, (2) 100+% natural circulation heat transport with the possibility of eliminating the main coolant pumps, (3) steam generator modules immersed directly in the primary coolant pool for elimination of the intermediate heat transport system, and (4) elimination of on-site fuel handling and storage provisions including rotating plug. Stage 1 natural circulation model and results are presented. Results suggest that 100+% natural circulation heat transport is readily achievable using LBE coolant and the long-life cartridge core approach; moreover, it is achievable in a compact pool configuration considerably smaller than PRISM A (for overland transportability) and with peak cladding temperature within the existing database range for ferritic steel with oxide layer surface passivation. Stage 2 analysis follows iteration with core designers. Other thermal hydraulic investigations are underway addressing passive, auxiliary heat removal by air cooling of the reactor vessel and the effects of steam generator tube rupture.

Farmer, M. T.; Hill, D. J.; Sienicki, J. J.; Spencer, B. W.; Wade, D. C.

1999-07-02T23:59:59.000Z

107

Spatially localized measurement of thermal conductivity using a hybrid photothermal technique  

SciTech Connect (OSTI)

A photothermal technique capable of measuring thermal conductivity with micrometer lateral resolution is presented. This technique involves measuring separately the thermal diffusivity, D, and thermal effusivity, e, to extract the thermal conductivity, k=(e2/D)1/2. To generalize this approach, sensitivity analysis was conducted for materials having a range of thermal conductivities. Experimental validation was sought using two substrate materials, SiO2 and CaF2, both coated with thin titanium films. The measured conductivities compare favorably with literature values.

David H Hurley; Marat Khafizov; Zilong Hua; Rory Kennedy; Heng Ban

2012-05-01T23:59:59.000Z

108

Resistance and spontaneous potential measurements over Heald Bank, Texas  

E-Print Network [OSTI]

anomalies over shell debris zones. Resistance is largely un1form across Heald Bank, with relative values depending on electrode separation, Absolute resistance and SP values are an average of all the sediments' propert1es to some unknown depth... debris sediment zones 2 SP record in shell debris, sand II, and muddy sand zones 66 3 SP record showing SP change between sand II and the shell debris zones 67 4 SP records including the Beaumont clay zone. 68 5 SP records indicating wide SP...

Ferebee, Thomas Wilson

1974-01-01T23:59:59.000Z

109

Simultaneous measurement of thermal lens and temperature map in ytterbium-doped fluoride crystals  

E-Print Network [OSTI]

characterization of temperature map and thermal lensing in Yb3+ :CaF2 and Yb3+ :SrF2 crystals under high-power with or without laser operation. We notice that all TL dioptric powers (Dth) are negative. Since the thermal lens focal length (fth) is inversely proportional to Dth, the measured thermal lenses are divergent for both

Paris-Sud XI, Université de

110

ENS'07 Paris, France, 3-4 December 2007 MEASUREMENTS OF THERMAL CONDUCTIVITY OF ALUMINUM NANOPOWDERS  

E-Print Network [OSTI]

ENS'07 Paris, France, 3-4 December 2007 MEASUREMENTS OF THERMAL CONDUCTIVITY OF ALUMINUM spectroscopy (PAS) as a powerful technique to estimate thermal properties of aluminum nanosized powders. Aluminum nanopowders are considered as effective constituents of energetic materials. Thermal conductivity

Paris-Sud XI, Université de

111

Pump-probe measurements of the thermal conductivity tensor for materials lacking in-plane symmetry  

E-Print Network [OSTI]

1 Pump-probe measurements of the thermal conductivity tensor for materials lacking in conductivity corresponding to the scanning direction. Also, we demonstrate Nb- V as a low thermal conductivity thermal conductivity tensor and the illuminating spots have arbitrary intensity profiles

Cahill, David G.

112

First Results of Scanning Thermal Diffusivity Microscope (STDM) Measurements on Irradiated Monolithic and Dispersion Fuel  

SciTech Connect (OSTI)

The thermal conductivity of the fuel material in a reactor before and during irradiation is a sensitive and fundamental parameter for thermal hydraulic calculations that are useds to correctly determine fuel heat fluxes and meat temperatures and to simulate performance of the fuel elements during operation. Several techniques have been developed to measure the thermal properties of fresh fuel to support these calculations, but it is crucial to also investigate the change of thermal properties during irradiation.

T. K. Huber; M. K. Figg; J. R. Kennedy; A. B. Robinson; D. M. Wachs

2012-07-01T23:59:59.000Z

113

Development of a Novel Contamination Resistant Ionchamber for Process Tritium Measurement and use in the JET First Trace Tritium Experiment  

E-Print Network [OSTI]

Development of a Novel Contamination Resistant Ionchamber for Process Tritium Measurement and use in the JET First Trace Tritium Experiment

114

A comparison between conventional hotothermal frequency scan and the lock-in rate window method in measuring thermal diffirsivity  

E-Print Network [OSTI]

that for thick materials with long thermal transport times across the sample where low-frequency measurements to measure thermal conductivity of materials by steady-state heat flow methods and thermal diffusivity for thermal diffusivity measurements of materials, is presented. In this comparison, a completely noncontact

Mandelis, Andreas

115

Accurate potential drop sheet resistance measurements of laser-doped areas in semiconductors  

SciTech Connect (OSTI)

It is investigated how potential drop sheet resistance measurements of areas formed by laser-assisted doping in crystalline Si wafers are affected by typically occurring experimental factors like sample size, inhomogeneities, surface roughness, or coatings. Measurements are obtained with a collinear four point probe setup and a modified transfer length measurement setup to measure sheet resistances of laser-doped lines. Inhomogeneities in doping depth are observed from scanning electron microscope images and electron beam induced current measurements. It is observed that influences from sample size, inhomogeneities, surface roughness, and coatings can be neglected if certain preconditions are met. Guidelines are given on how to obtain accurate potential drop sheet resistance measurements on laser-doped regions.

Heinrich, Martin, E-mail: mh.seris@gmail.com [Solar Energy Research Institute of Singapore, National University of Singapore, Singapore 117574 (Singapore); NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore 117456 (Singapore); Kluska, Sven; Binder, Sebastian [Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstrasse 2, D-79110 Freiburg (Germany); Hameiri, Ziv [The School of Photovoltaic and Renewable Energy Engineering, The University of New South Wales, Sydney NSW 2052 (Australia); Hoex, Bram [Solar Energy Research Institute of Singapore, National University of Singapore, Singapore 117574 (Singapore); Aberle, Armin G. [Solar Energy Research Institute of Singapore, National University of Singapore, Singapore 117574 (Singapore); NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore 117456 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117456 (Singapore)

2014-10-07T23:59:59.000Z

116

Characterization of Thermal Properties and Interface Development in Cu-In Liquid Phase  

E-Print Network [OSTI]

and thermal resistance in order to determine the relative importance of interfacial resistance and material number DMR-1062898 and Intel Corporation. ApparatusObjectives ·Measure the effective thermal resistance of next generation Copper-Indium composite thermal interface materials ·Adapt the ASTM D5470-06 standard

Collins, Gary S.

117

Thermal Transport Measurement of Silicon-Germanium Nanowires  

E-Print Network [OSTI]

to the enhanced boundary scattering. Among the nanoscale semiconductor materials, Silicon-Germanium(SiGe) alloy nanowire is a promising candidate for thermoelectric materials The thermal conductivities of SiGe core-shell nanowires with core diameters of 96nm, 129...

Gwak, Yunki

2010-10-12T23:59:59.000Z

118

The measurement of thermal conductivity of jelly from 25 to 95 C  

E-Print Network [OSTI]

line heat source method, the thermal con- ductivities of a jelly model (unflavored jelly), sugar solution and some commercial jelly products were measured. The studies were conducted in the temperature range from 25 to 95 'C. Thermal conductivity... were developed from experimental data for unflavored jelly and sugar solutions to predict the thermal conductivity of commercially available fruit jellies at various moisture contents. The predicted values obtained were statistically compared...

Chen, Yih-Rong

1985-01-01T23:59:59.000Z

119

Thermal Barrier Coatings Chemically and Mechanically Resistant to High Temperature Attack by Molten Ashes.  

E-Print Network [OSTI]

?? Thermal barrier coatings (TBCs) are ceramic coatings used on component in the hottest sections of gas turbine engines, used for power generation and aviation.… (more)

Gledhill, Andrew Dean

2011-01-01T23:59:59.000Z

120

Power Handling of the Bulk Tungsten Divertor Row at JET: First Measurements and Comparison to the GTM Thermal Model  

E-Print Network [OSTI]

Power Handling of the Bulk Tungsten Divertor Row at JET: First Measurements and Comparison to the GTM Thermal Model

Note: This page contains sample records for the topic "thermal resistance measured" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Development of a nanostructure thermal property measurement platform compatible with a transmission electron microscope  

E-Print Network [OSTI]

Measurements of the electrical and thermal transport properties of one-dimensional nanostructures (e.g., nanotubes and nanowires) typically are obtained without detailed knowledge of the specimen's atomicscale structure ...

Harris, C. Thomas (Charles Thomas)

2010-01-01T23:59:59.000Z

122

Effective thermal conductivity measurements relevant to deep borehole nuclear waste disposal  

E-Print Network [OSTI]

The objective of this work was to measure the effective thermal conductivity of a number of materials (particle beds, and fluids) proposed for use in and around canisters for disposal of high level nuclear waste in deep ...

Shaikh, Samina

2007-01-01T23:59:59.000Z

123

Reduction in the thermal resistance (R-value) of loose-fill insulation and fiberglass batts due to compression  

SciTech Connect (OSTI)

A method is presented for calculating the thickness reduction of loose-fill insulations and fiberglass batts that result from compressive forces exerted by additional insulation. The thickness reduction is accompanied by an increase in density and a reduction in the R value of the compressed layer. Calculations for thermal resistance of two layers of insulation are given. Information in 4 appendices includes: identification of products tested (products from 3 companies); experimental values for thickness as a function of loading; Fortran programs and output; and calculated R values for stacked insulations. (MCW)

Yarbrough, D.W.; Wright, J.H.

1981-04-01T23:59:59.000Z

124

Measuring transient high temperature thermal phenomena in hostile environment  

SciTech Connect (OSTI)

The design of equipment for measuring temperature and strain in a rapidly heated and pressurized cylinder of stainless steel is discussed. Simultaneous cinematography of the full circumference of the cylinder without interference with temperature and strain measurements is also illustrated. The integrated system uses a reflective chamber for the sample and requires careful consideration of the spectral energy distribution utilized by each instrument.

Brenden, B.B.; Hartman, J.S.; Reich, F.R.

1980-01-01T23:59:59.000Z

125

Impact of Columns and Beams on the Thermal Resistance of the Building Envelope  

E-Print Network [OSTI]

of the buildings envelope. Multi-dimensional heat transfer method was implemented to assess the magnitude of this effect and then to incorporate this in a whole building energy simulation program to assess the impact on the overall thermal performance...

Omar, E.

2002-01-01T23:59:59.000Z

126

Numerical Investigation of the Effect of Chirality of Carbon Nanotube on the Interfacial Thermal Resistance  

E-Print Network [OSTI]

temperatures, molten salts and their eutectics are used in conventional high temperature thermal energy storage (TES) systems and also as coolants for energy conversion, such as in power tower configurations that are typically used in CSP applications. A major...

Hu, Yuzhu

2014-06-05T23:59:59.000Z

127

Measurement of the thermal neutron capture cross section of {sup 180}W  

SciTech Connect (OSTI)

We measured the thermal neutron capture cross section for the {sup 180}W nucleus. There is only one previous measurement with regard to this cross section, and it yielded a value of 30 -100%+300% b. To determine whether {sup 181}W is an appropriate low energy neutrino source, the thermal neutron capture cross section should be measured more precisely to estimate the production rate of {sup 181}W inside a nuclear reactor. We measured the cross section of {sup 180}W using a natural tungsten foil and obtained a value of 22.6{+-}1.7 b.

Kang, W. G.; Kim, Y. D.; Lee, J. I.; Hahn, I. S.; Kim, A. R.; Kim, H. J. [Department of Physics, Sejong University, Seoul 143-747 (Korea, Republic of); Department of Science Education, Ewha Woman's University, Seoul 120-750 (Korea, Republic of); Physics Department, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

2007-12-15T23:59:59.000Z

128

The performance check between whole building thermal performance criteria and exterior wall measured clear wall R-value, thermal bridging, thermal mass, and airtightness  

SciTech Connect (OSTI)

At the last IEA Annex 32 meeting it was proposed that the annex develop the links between level 1 (the whole building performance) and level 2 (the envelope system). This paper provides a case study of just that type of connection. An exterior wall mockup is hot box tested and modeled in the laboratory. Measurements of the steady state and dynamic behavior of this mockup are used as the basis to define the thermal bridging, thermal mass benefit and air tightness of the whole wall system. These level two performance characteristics are related to the whole building performance. They can be analyzed by a finite difference modeling of the wall assembly. An equivalent wall theory is used to convert three dimensional heat flow to one dimensional terms that capture thermal mass effects, which in turn are used in a common whole building simulation model. This paper illustrates a performance check between the thermal performance of a Massive ICF (Insulating Concrete Form) wall system mocked up (level 2) and Whole Building Performance criteria (level 1) such as total space heating and cooling loads (thermal comfort).

Kosny, J.; Christian, J.E.; Desjarlais, A.O. [Oak Ridge National Lab., TN (United States). Buildings Technology Center; Kossecka, E. [Polish Academy of Sciences (Poland); Berrenberg, L. [American Polysteel Forms (United States)

1998-06-01T23:59:59.000Z

129

Te (R,t) Measurements using Electron Bernstein Wave Thermal Emission on NSTX  

SciTech Connect (OSTI)

The National Spherical Torus Experiment (NSTX) routinely studies overdense plasmas with ne of (1–5) X 1019 m-3 and total magnetic field of <0.6 T, so that the first several electron cyclotron harmonics are overdense. The electrostatic electron Bernstein wave (EBW) can propagate in overdense plasmas, exhibits strong absorption, and is thermally emitted at electron cyclotron harmonics. These properties allow thermal EBW emission to be used for local Te measurement. A significant upgrade to the previous NSTX EBW emission diagnostic to measure thermal EBW emission via the oblique B-X-O mode conversion process has been completed. The new EBW diagnostic consists of two remotely steerable, quad-ridged horn antennas, each of which is coupled to a dual channel radiometer. Fundamental (8–18 GHz) and second and third harmonic (18–40 GHz) thermal EBW emission and polarization measurements can be obtained simultaneously.

Diem, S J; Efthimion, P C; LeBlanc, B P; Carter, M; Caughman, J; Wilgen, J B; Harvey, R W; Preinhaelter, J; Urban, J

2006-06-09T23:59:59.000Z

130

Efficient finite-time measurements under thermal regimes  

E-Print Network [OSTI]

Contrary to conventional quantum mechanics, which treats measurement as instantaneous, here we explore a model for finite-time measurement. The main two-level system interacts with the measurement apparatus in a Markovian way described by the Lindblad equation, and with an environment, which does not include the measuring apparatus. To analyse the environmental effects on the final density operator, we use the Redfield approach, allowing us to consider a non-Markovian noise. In the present hybrid theory, to trace out the environmental degrees of freedom, we use a previously-developed analytic method based on superoperator algebra and Nakajima-Zwanzig superoperators. Here, we analyse two types of system-environment interaction, phase and amplitude damping, which allows us to conclude that, in general, a finite-time quantum measurement performed during a certain period is more efficient than an instantaneous measurement performed at the end of it, because the rate of change of the populations is attenuated by the system-measurement apparatus interaction.

Carlos Alexandre Brasil; Leonardo Andreta de Castro; Reginaldo de Jesus Napolitano

2014-07-11T23:59:59.000Z

131

Standard test method for measurement of soil resistivity using the two-electrode soil box method  

E-Print Network [OSTI]

1.1 This test method covers the equipment and a procedure for the measurement of soil resistivity, for samples removed from the ground, for use in the control of corrosion of buried structures. 1.2 Procedures allow for this test method to be used n the field or in the laboratory. 1.3 The test method procedures are for the resistivity measurement of soil samples in the saturated condition and in the as-received condition. 1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. Soil resistivity values are reported in ohm-centimeter. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and to determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

2005-01-01T23:59:59.000Z

132

The thermal conductivity of rock under hydrothermal conditions: measurements and applications  

SciTech Connect (OSTI)

The thermal conductivities of most major rock-forming minerals vary with both temperature and confining pressure, leading to substantial changes in the thermal properties of some rocks at the high temperatures characteristic of geothermal systems. In areas with large geothermal gradients, the successful use of near-surface heat flow measurements to predict temperatures at depth depends upon accurate corrections for varying thermal conductivity. Previous measurements of the thermal conductivity of dry rock samples as a function of temperature were inadequate for porous rocks and susceptible to thermal cracking effects in nonporous rocks. We have developed an instrument for measuring the thermal conductivity of water-saturated rocks at temperatures from 20 to 350 °C and confining pressures up to 100 MPa. A transient line-source of heat is applied through a needle probe centered within the rock sample, which in turn is enclosed within a heated pressure vessel with independent controls on pore and confining pressure. Application of this technique to samples of Franciscan graywacke from The Geysers reveals a significant change in thermal conductivity with temperature. At reservoir-equivalent temperatures of 250 °C, the conductivity of the graywacke decreases by approximately 25% relative to the room temperature value. Where heat flow is constant with depth within the caprock overlying the reservoir, this reduction in conductivity with temperature leads to a corresponding increase in the geothermal gradient. Consequently, reservoir temperature are encountered at depths significantly shallower than those predicted by assuming a constant temperature gradient with depth. We have derived general equations for estimating the thermal conductivity of most metamorphic and igneous rocks and some sedimentary rocks at elevated temperature from knowledge of the room temperature thermal conductivity. Application of these equations to geothermal exploration should improve estimates of subsurface temperatures derived from heat flow measurements.

Williams, Colin F.; Sass, John H.

1996-01-24T23:59:59.000Z

133

Low resistivity of Pt silicide nanowires measured using double-scanning-probe tunneling microscope  

E-Print Network [OSTI]

experimentally shown to be conductive.8­10 However, RE metal silicide NWs are easily oxidized, so that inert NWs similarly to RE metal silicide NWs.11 It is essential to study the electrical properties, especiallyLow resistivity of Pt silicide nanowires measured using double-scanning- probe tunneling microscope

Kim, Sehun

134

Sensitivity analysis for the appraisal of hydrofractures in horizontal wells with borehole resistivity measurements  

E-Print Network [OSTI]

estimate the length of long hydrofractures (up to 150 m) in open-hole wells. In the case of steel only during the stimulation phase of the fracture; occasionally, a posterior assessment may and Faivre (1985), where large resistive fractures were char- acterized using dual-laterolog measurements

Torres-Verdín, Carlos

135

Thermal conductivity measurements of insulators for fusion blankets  

SciTech Connect (OSTI)

Alumina-silica mat (8 lb/ft/sup 3/) varied in thermal conductivity in air and Ar from 0.06 W/m- K at 300/sup 0/C to 0.22 W/m- K at 1000/sup 0/C, but in He it increased to 0.24 W/m- K at 300/sup 0/C and 0.54 W/m- K at 1000/sup 0/C, while in steam it was about midway between these values. The carbon and graphite felts behaved similarly, but the rigid and denser (24 lb/ft/sup 3/) zirconia fiberboard exhibited superior insulating properties: 0.07 W/m- K at 300/sup 0/C and 0.14 W/m- K at 1000/sup 0/C in air and Ar, and 0.13 W/m- K at 300/sup 0/C and 0.17 W/m- K at 1000/sup 0/C in steam, but rising to 0.15 W/m- K at 300/sup 0/C and 0.49 W/m- K at 1000/sup 0/C in He. The lighter zirconia felt (14 lb/ft/sup 3/) in steam at 1000/sup 0/C was thought to be best at 0.23 W/m- K and only 0.40 W/m- K in He at 1000/sup 0/C.

Horn, F.L.; Fillo, J.A.; Powell, J.R.

1981-01-01T23:59:59.000Z

136

A Measurement Method of Actual Thermal Performance of Detached Houses  

E-Print Network [OSTI]

of residential houses based on field measurement (In Japanese), AIJ Report on Environmental engineering Vol.3, 1981 2) Martin Sandberg, J?rgen Eriksson: Commissioning of residential buildings in Sweden, IEA ECBCS Annex40 meetings held in Quebec, 2001/9, Doc...

Iwamae, A.; Nagai, H.; Miura, H.

2004-01-01T23:59:59.000Z

137

A robust and well shielded thermal conductivity device for low temperature measurements  

SciTech Connect (OSTI)

We present a compact mechanically robust thermal conductivity measurement apparatus for measurements at low temperatures (<1 K) and high magnetic fields on small high-purity single crystal samples. A high-conductivity copper box is used to enclose the sample and all the components. The box provides protection for the thermometers, heater, and most importantly the sample increasing the portability of the mount. In addition to physical protection, the copper box is also effective at shielding radio frequency electromagnetic interference and thermal radiation, which is essential for low temperature measurements. A printed circuit board in conjunction with a braided ribbon cable is used to organize the delicate wiring and provide mechanical robustness.

Toews, W. H.; Hill, R. W. [GWPI and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)] [GWPI and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

2014-04-15T23:59:59.000Z

138

Measurement on the thermal neutron capture cross section of w-180  

E-Print Network [OSTI]

We have measured the thermal neutron capture cross section for w-180 nucleus. There is only one previous data on this cross section with a value of 30 $^{+300%}_{-100%}$ barn. To consider w-181 as a low energy neutrino source, the thermal neutron capture cross section should be measured more precisely to estimate the production rate of w-181 inside a nuclear reactor. We measured the cross section of w-180 with a natural tungsten foil and obtained a new value of 21.9 $\\pm$ 2.5 barn

W. G. Kang; Y. D. Kim; J. I. Lee; I. S. Hahn; A. R. Kim; H. J. Kim

2007-04-24T23:59:59.000Z

139

COMBINED THERMAL MEASUREMENT AND SIMULATION FOR THE DETAILED ANALYSIS OF FOUR OCCUPIED LOW-ENERGY BUILDINGS  

E-Print Network [OSTI]

COMBINED THERMAL MEASUREMENT AND SIMULATION FOR THE DETAILED ANALYSIS OF FOUR OCCUPIED LOW-ENERGY BUILDINGS U.D.J. Gieseler, F.D. Heidt1 , W. Bier Division of Building Physics and Solar Energy, University energy and temperature measurements of occupied buildings very well. These buildings repre- sent small

Gieseler, Udo D. J.

140

Proposed experiment to measure {gamma}-rays from the thermal neutron capture of gadolinium  

SciTech Connect (OSTI)

Gadolinium-157 ({sup 157}Gd) has the largest thermal neutron capture cross section among any stable nuclei. The thermal neutron capture yields {gamma}-ray cascade with total energy of about 8 MeV. Because of these characteristics, Gd is applied for the recent neutrino detectors. Here, we propose an experiment to measure the multiplicity and the angular correlation of {gamma}-rays from the Gd neutron capture. With these information, we expect the improved identification of the Gd neutron capture.

Yano, Takatomi; Ou, I.; Izumi, T.; Yamaguchi, R.; Mori, T.; Sakuda, M. [Department of Physics, Okayama University, Okayama, 700-8530 (Japan)

2012-11-12T23:59:59.000Z

Note: This page contains sample records for the topic "thermal resistance measured" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

SHORT-TERM THERMAL RESISTANCE OF ZOEAE OF 10 SPECIES OF CRABS FROM PUGET SOUND, WASHINGTON  

E-Print Network [OSTI]

G. PA'ITEN1 ABSTRACT Zoeae of 10 crab species were subjected to tests that simulated thermal stress. In the State of Washington, for example, nuclear power plants are being planned for construction by municipali of power plant chemicals to aquatic life. Battelle Pac. Northwest Lab., Richland, Wash., WASH· 1249, U

142

Quantifying the Effect of Kerogen on Electrical Resistivity Measurements on Organic-rich Source Rocks  

E-Print Network [OSTI]

conductivity measurements (Rajeshwar et al., 1980) carried out on oil shale samples from the Green River oil shales illustrate the correlation between electrical behavior of organic matter and temperature. Researchers (Meng et al., 2012; Rajeshwar et al...., 1980) observed a pronounced effect of thermal maturity of organic matter and temperature on magnitude of measured electrical conductivity of the oil shale samples. The changes in kerogen network and structure, with increasing temperature and maturity...

Kethireddy, Nikhil Reddy

2013-12-04T23:59:59.000Z

143

Uncertainty Analysis on the Design of Thermal Conductivity Measurement by a Guarded Cut-Bar Technique  

SciTech Connect (OSTI)

A technique adapted from the guarded-comparative-longitudinal heat flow method was selected for the measurement of the thermal conductivity of a nuclear fuel compact over a temperature range characteristic of its usage. This technique fulfills the requirement for non-destructive measurement of the composite compact. Although numerous measurement systems have been created based on the guarded comparative method, comprehensive systematic (bias) and measurement (precision) uncertainty associated with this technique have not been fully analyzed. In addition to the geometric effect in the bias error, which has been analyzed previously, this paper studies the working condition which is another potential error source. Using finite element analysis, this study showed the effect of these two types of error sources in the thermal conductivity measurement process and the limitations in the design selection of various parameters by considering their effect on the precision error. The results and conclusions provide valuable reference for designing and operating an experimental measurement system using this technique.

Jeff Phillips; Changhu Xing; Colby Jensen; Heng Ban1

2011-07-01T23:59:59.000Z

144

Futurestock'2003 9 International Conference on Thermal Energy Storage, Warsaw, POLAND  

E-Print Network [OSTI]

is also needed when designing a BTES (Borehole Thermal Energy Storage) system. The ground thermal381 Futurestock'2003 9 th International Conference on Thermal Energy Storage, Warsaw, POLAND, BTES, TED-measurement ABSTRACT The thermal conductivity of the ground and thermal resistance

145

Bures distance as a measure of entanglement for two-mode squeezed thermal states  

SciTech Connect (OSTI)

We propose a reliable entanglement measure for a two-mode squeezed thermal state of the quantum electromagnetic field in terms of its Bures distance to the set of all separable states of the same kind. The requisite fidelity of a pair of two-mode squeezed thermal states is exactly evaluated. By applying the Peres-Simon criterion of separability, we find the closest separable state. This enables us to establish an insightful expression of the amount of entanglement. We also derive the relative entropy of a two-mode squeezed thermal state with respect to another one. This quantity is exploited in the pure-state case by undertaking a similar approximation for the entropic entanglement of a two-mode squeezed vacuum state. Comparison with previous work lends support to our approach that replaces the reference set of all separable Gaussian states by its subset consisting only of the squeezed thermal ones.

Marian, Paulina [Institute for Theoretical Atomic, Molecular and Optical Physics, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138 (United States); Department of Chemistry, University of Bucharest, Boulevard Regina Elisabeta 4-12, R-030018 Bucharest (Romania); Marian, Tudor A. [Institute for Theoretical Atomic, Molecular and Optical Physics, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138 (United States); Department of Physics, University of Bucharest, P.O. Box MG-11, R-077125 Bucharest-Magurele (Romania); Scutaru, Horia [Center for Advanced Studies in Physics of the Romanian Academy, Calea 13 Septembrie 13, R-050711 Bucharest (Romania)

2003-12-01T23:59:59.000Z

146

Determination of thermal accommodation coefficients from heat transfer measurements between parallel plates.  

SciTech Connect (OSTI)

Thermal accommodation coefficients have been derived for a variety of gas-surface combinations using an experimental apparatus developed to measure the pressure dependence of the conductive heat flux between parallel plates at unequal temperature separated by a gas-filled gap. The heat flux is inferred from temperature-difference measurements across the plates in a configuration where the plate temperatures are set with two carefully controlled thermal baths. Temperature-controlled shrouds provide for environmental isolation of the opposing test plates. Since the measured temperature differences in these experiments are very small (typically 0.3 C or less over the entire pressure range), high-precision thermistors are used to acquire the requisite temperature data. High-precision components have also been utilized on the other control and measurement subsystems in this apparatus, including system pressure, gas flow rate, plate alignment, and plate positions. The apparatus also includes the capability for in situ plasma cleaning of the installed test plates. Measured heat-flux results are used in a formula based on Direct Simulation Monte Carlo (DSMC) code calculations to determine the thermal accommodation coefficients. Thermal accommodation coefficients have been determined for three different gases (argon, nitrogen, helium) in contact with various surfaces. Materials include metals and alloys such as aluminum, gold, platinum, and 304 stainless steel. A number of materials important to fabrication of Micro Electro Mechanical Systems (MEMS) devices have also been examined. For most surfaces, coefficient values are near 0.95, 0.85, and 0.45 for argon, nitrogen, and helium, respectively. Only slight differences in accommodation as a function of surface roughness have been seen. Surface contamination appears to have a more significant effect: argon plasma treatment has been observed to reduce thermal accommodation by as much as 0.10 for helium. Mixtures of argon and helium have also been examined, and the results have been compared to DSMC simulations incorporating thermal-accommodation values from single-species experiments.

Gallis, Michail A.; Castaneda, Jaime N.; Rader, Daniel John; Torczynski, John Robert; Trott, Wayne Merle

2010-10-01T23:59:59.000Z

147

Pump-probe measurements of the thermal conductivity tensor for materials lacking in-plane symmetry  

SciTech Connect (OSTI)

We previously demonstrated an extension of time-domain thermoreflectance (TDTR) which utilizes offset pump and probe laser locations to measure in-plane thermal transport properties of multilayers. However, the technique was limited to systems of transversely isotropic materials studied using axisymmetric laser intensities. Here, we extend the mathematics so that data reduction can be performed on non-transversely isotropic systems. An analytic solution of the diffusion equation for an N-layer system is given, where each layer has a homogenous but otherwise arbitrary thermal conductivity tensor and the illuminating spots have arbitrary intensity profiles. As a demonstration, we use both TDTR and time-resolved magneto-optic Kerr effect measurements to obtain thermal conductivity tensor elements of <110> ?-SiO{sub 2}. We show that the out-of-phase beam offset sweep has full-width half-maxima that contains nearly independent sensitivity to the in-plane thermal conductivity corresponding to the scanning direction. Also, we demonstrate a Nb-V alloy as a low thermal conductivity TDTR transducer layer that helps improve the accuracy of in-plane measurements.

Feser, Joseph P. [Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716 (United States); Liu, Jun; Cahill, David G. [Department of Materials Science and Engineering, and Frederick-Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States)

2014-10-15T23:59:59.000Z

148

Measurement of volume resistivity/conductivity of metallic alloy in inhibited seawater by optical interferometry techniques  

SciTech Connect (OSTI)

Optical interferometry techniques were used for the first time to measure the volume resistivity/conductivity of carbon steel samples in seawater with different concentrations of a corrosion inhibitor. In this investigation, the real-time holographic interferometry was carried out to measure the thickness of anodic dissolved layer or the total thickness, U{sub total}, of formed oxide layer of carbon steel samples during the alternating current (ac) impedance of the samples in blank seawater and in 5-20 ppm TROS C-70 inhibited seawater, respectively. In addition, a mathematical model was derived in order to correlate between the ac impedance (resistance) and the surface (orthogonal) displacement of the surface of the samples in solutions. In other words, a proportionality constant [resistivity ({rho}) or conductivity ({sigma})= 1/{rho}] between the determined ac impedance [by electrochemical impedance spectroscopy (EIS) technique] and the orthogonal displacement (by the optical interferometry techniques) was obtained. The value of the resistivity of the carbon steel sample in the blank seawater was found similar to the value of the resistivity of the carbon steel sample air, around 1 x 10{sup -5}{Omega} cm. On the contrary, the measured values of the resistivity of the carbon steel samples were 1.85 x 10{sup 7}, 3.35 x 10{sup 7}, and 1.7 x 10{sup 7}{Omega} cm in 5, 10, and 20 ppm TROS C-70 inhibited seawater solutions, respectively. Furthermore, the determined value range of {rho} of the formed oxide layers, from 1.7 x 10{sup 7} to 3.35 x 10{sup 7}{Omega} cm, is found in a reasonable agreement with the one found in literature for the Fe oxide-hydroxides, i.e., goethite ({alpha}-FeOOH) and for the lepidocrocite ({gamma}-FeOOH), 1 x 10{sup 9}{Omega} cm. The {rho} value of the Fe oxide-hydroxides, 1 x 10{sup 9}{Omega} cm, was found slightly higher than the {rho} value range of the formed oxide layer of the present study. This is because the former value was determined by a dc method rather than by an electromagnetic method, i.e., holographic interferometry with applications of EIS, i.e., ac method. As a result, erroneous measurements were recorded due to the introduction of heat to Fe oxide-hydroxides.

Habib, K. [Materials Science Laboratory, Department of Advanced Systems KISR, P.O. Box 24885, SAFAT 13109 (Kuwait)

2011-03-15T23:59:59.000Z

149

Measurement of the electronic thermal conductance channels and heat capacity of graphene at low temperature  

E-Print Network [OSTI]

Measurement of the electronic thermal conductance channels and heat capacity of graphene at low, Gwf , test the Wiedemann-Franz (wf) law, and infer the electronic heat capacity, with a minimum value of a Coulomb-interacting electron-hole plasma may result in deviations from the Fermi-liquid values of the Mott

150

Thermal measurements of active semiconductor micro-structures acquired through the substrate using near IR thermoreflectance  

E-Print Network [OSTI]

, which precludes the use of typical surface thermal characterization techniques. A near infrared microscopy (SThM), or optical techniques such as infrared (IR) microscopy, or thermoreflectance to be able to measure the heating of devices in flip chip bonded integrated circuit's (IC) and other

151

The Calculated and Measured Resistance for Splices between Conductors in a MICE Superconducting Coil  

SciTech Connect (OSTI)

The resistance of superconducting joints within MICE coils is an important issue particularly for the coupling coils. The MICE tracker solenoids have only two superconducting joints in the three spectrometer set (end coil 1, the center coil and end coil 2). The AFC magnets may have only a single joint within the coil. The coupling coils may have as many as fifteen joints within the coil, due to relatively short piece lengths of the superconductor. LBNL and ICST looked at three types of coil joints. They are: (1) cold fusion butt joints, (2) side-by-side lap joints, and (3) up-down lap joints. A theoretical calculation of the joint resistance was done at LBNL and checked by ICST. After looking at the theoretical resistance of the three types of joints, it was decided that the cold welded butt joint was not an attractive alternative for joints within a MICE superconducting magnet coil. Side-by-side and up-down lap joints were fabricated at ICST using two types of soft solder between the conductors. These conductor joints were tested at LBNL at liquid helium temperatures over a range of magnetic fields. The joint resistance was compared with the theoretical calculations. Measurements of splice strength were also made at 300 K and 77 K.

Green, Michael A.; Dietderich, Dan; Higley, Hugh; Pan, Heng; Tam, Darren; Trillaud, Federic; Wang, Li; Wu, Hong; Xu, Feng Yu

2009-03-19T23:59:59.000Z

152

Temperature measurement method using temperature coefficient timing for resistive or capacitive sensors  

DOE Patents [OSTI]

A method and apparatus for temperature measurement especially suited for low cost, low power, moderate accuracy implementation. It uses a sensor whose resistance varies in a known manner, either linearly or nonlinearly, with temperature, and produces a digital output which is proportional to the temperature of the sensor. The method is based on performing a zero-crossing time measurement of a step input signal that is double differentiated using two differentiators functioning as respective first and second time constants; one temperature stable, and the other varying with the sensor temperature. 5 figs.

Britton, C.L. Jr.; Ericson, M.N.

1999-01-19T23:59:59.000Z

153

Method and apparatus for remote tube crevice detection by current and voltage probe resistance measurement  

DOE Patents [OSTI]

A method and apparatus for determining the extent of contact between an electrically conducting tube and an electrically conductive tubesheet surrounding the tube, based upon the electrical resistance of the tube and tubesheet. A constant current source is applied to the interior of the electrically conducting tube by probes and a voltmeter is connected between other probes to measure the voltage at the point of current injection, which is inversely proportional to the amount of contact between the tube and tubesheet. Namely, the higher the voltage measured by the voltmeter, the less contact between the tube and tubesheet. 4 figs.

Kikta, T.J.; Mitchell, R.D.

1992-11-24T23:59:59.000Z

154

Advanced Testing Techniques to Measure the PWSCC Resistance of Alloy 690 and its Weld Metals  

SciTech Connect (OSTI)

Wrought Alloy 600 and its weld metals (Alloy 182 and Alloy 82) were originally used in pressurized water reactors (PWRs) due to the material's inherent resistance to general corrosion in a number of aggressive environments and because of a coefficient of thermal expansion that is very close to that of low alloy and carbon steel. Over the last thirty years, stress corrosion cracking in PWR primary water (PWSCC) has been observed in numerous Alloy 600 component items and associated welds, sometimes after relatively long incubation times. The occurrence of PWSCC has been responsible for significant downtime and replacement power costs. As part of an ongoing, comprehensive program involving utilities, reactor vendors and engineering/research organizations, this report will help to ensure that corrosion degradation of nickel-base alloys does not limit service life and that full benefit can be obtained from improved designs for both replacement components and new reactors.

P.Andreson

2004-10-01T23:59:59.000Z

155

Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present  

DOE Patents [OSTI]

Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity are disclosed. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie`s Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation. 7 figs.

Vail, W.B. III

1997-05-27T23:59:59.000Z

156

Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present  

DOE Patents [OSTI]

Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity are disclosed. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie's Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation.

Vail, III, William B. (Bothell, WA)

1997-01-01T23:59:59.000Z

157

Method and apparatus for measuring properties of particle beams using thermo-resistive material properties  

DOE Patents [OSTI]

A beam position detector for measuring the properties of a charged particle beam, including the beam's position, size, shape, and intensity. One or more absorbers are constructed of thermo-resistive material and positioned to intercept and absorb a portion of the incoming beam power, thereby causing local heating of each absorber. The local temperature increase distribution across the absorber, or the distribution between different absorbers, will depend on the intensity, size, and position of the beam. The absorbers are constructed of a material having a strong dependence of electrical resistivity on temperature. The beam position detector has no moving parts in the vicinity of the beam and is especially suited to beam areas having high ionizing radiation dose rates or poor beam quality, including beams dispersed in the transverse direction and in their time radio frequency structure.

Degtiarenko, Pavel V. (Williamsburg, VA); Dotson, Danny Wayne (Gloucester, VA)

2007-10-09T23:59:59.000Z

158

Measurements of Electron Thermal Transport due to Electron Temperature Gradient Modes in a Basic Experiment  

SciTech Connect (OSTI)

Production and identification of electron temperature gradient modes have already been reported [X. Wei, V. Sokolov, and A. K. Sen, Phys. Plasmas 17, 042108 (2010)]. Now a measurement of electron thermal conductivity via a unique high frequency triple probe yielded a value of {chi}{sub perpendiculare} ranging between 2 and 10 m{sup 2}/s, which is of the order of a several gyrobohm diffusion coefficient. This experimental result appears to agree with a value of nonlocal thermal conductivity obtained from a rough theoretical estimation and not inconsistent with gyrokinetic simulation results for tokamaks. The first experimental scaling of the thermal conductivity versus the amplitude of the electron temperature gradient fluctuation is also obtained. It is approximately linear, indicating a strong turbulence signature.

Sokolov, V.; Sen, A. K. [Plasma Research Laboratory, Columbia University, New York, New York 10027 (United States)

2011-10-07T23:59:59.000Z

159

Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present  

DOE Patents [OSTI]

Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie's Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation. Resistivity measurements are obtained from within the cased well by conducting A.C. current from within the cased well to a remote electrode at a frequency that is within the frequency range of 0.1 Hz to 20 Hz.

Vail, III, William Banning (Bothell, WA)

2000-01-01T23:59:59.000Z

160

Measurement of total ultrasonic power using thermal expansion and change in buoyancy of an absorbing target  

SciTech Connect (OSTI)

The Radiation Force Balance (RFB) technique is well established and most widely used for the measurement of total ultrasonic power radiated by ultrasonic transducer. The technique is used as a primary standard for calibration of ultrasonic transducers with relatively fair uncertainty in the low power (below 1 W) regime. In this technique, uncertainty comparatively increases in the range of few watts wherein the effects such as thermal heating of the target, cavitations, and acoustic streaming dominate. In addition, error in the measurement of ultrasonic power is also caused due to movement of absorber at relatively high radiated force which occurs at high power level. In this article a new technique is proposed which does not measure the balance output during transducer energized state as done in RFB. It utilizes the change in buoyancy of the absorbing target due to local thermal heating. The linear thermal expansion of the target changes the apparent mass in water due to buoyancy change. This forms the basis for the measurement of ultrasonic power particularly in watts range. The proposed method comparatively reduces uncertainty caused by various ultrasonic effects that occur at high power such as overshoot due to momentum of target at higher radiated force. The functionality of the technique has been tested and compared with the existing internationally recommended RFB technique.

Dubey, P. K., E-mail: premkdubey@gmail.com; Kumar, Yudhisther; Gupta, Reeta; Jain, Anshul; Gohiya, Chandrashekhar [Acoustics, Ultrasonics, Vibration Standards and Electronics Instrumentation Cell, CSIR–National Physical Laboratory, New Delhi 110012 (India)

2014-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "thermal resistance measured" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Thermal transport in CO2 laser irradiated fused silica: in situ measurements and analysis  

SciTech Connect (OSTI)

In situ spatial and temporal temperature measurements of pristine fused silica surfaces heated with a 10.6 {micro}m CO{sub 2} laser were obtained using an infrared radiation thermometer based on a Mercury Cadmium Telluride (MCT) camera. Laser spot sizes ranged from 250 {micro}m to 1000 {micro}m diameter with peak axial irradiance levels of 0.13 to 16 kW/cm{sup 2}. For temperatures below 2800K, the measured steady-state surface temperature is observed to rise linearly with both increasing beam size and incident laser irradiance. The effective thermal conductivity estimated over this range was approximately 2W/mK, in good agreement with classical calculations based on phonon heat capacities. Similarly, time-dependent temperature measurements up to 2000K yielded thermal diffusivity values which were close to reported values of 7 x 10{sup -7} m{sup 2}/s. Above {approx}2800K, the fused silica surface temperature asymptotically approaches 3100K as laser power is further increased, consistent with the onset of evaporative heat losses near the silica boiling point. These results show that in the laser heating regime studied here, the T{sup 3} temperature dependent thermal conductivity due to radiation transport can be neglected, but at temperatures above 2800K heat transport due to evaporation must be considered. The thermal transport in fused silica up to 2800K, over a range of conditions, can then be adequately described by a linear diffusive heat equation assuming constant thermal properties.

Yang, S T; Matthews, M J; Elhadj, S; Draggoo, V G; Bisson, S E

2009-07-07T23:59:59.000Z

162

IN-SITU MEASUREMENT OF WALL THERMAL PERFORMANCE: DATA INTERPRETATION AND APPARATUS DESIGN RECOMMENDATIONS  

E-Print Network [OSTI]

Description: The Envelope Thermal Test Unit (submitted forCross-sectional view of Envelope Thermal Test Unit blanketmeasurement prototype, the Envelope Thermal Test Unit,12 and

Modera, M.P.; Sherman, M.H.; de Vinuesa, S.G.

2008-01-01T23:59:59.000Z

163

Thermal history sensors for non-destructive temperature measurements in harsh environments  

SciTech Connect (OSTI)

The operating temperature is a critical physical parameter in many engineering applications, however, can be very challenging to measure in certain environments, particularly when access is limited or on rotating components. A new quantitative non-destructive temperature measurement technique has been proposed which relies on thermally induced permanent changes in ceramic phosphors. This technique has several distinct advantages over current methods for many different applications. The robust ceramic material stores the temperature information allowing long term thermal exposures in harsh environment to be measured at a convenient time. Additionally, rare earth dopants make the ceramic phosphorescent so that the temperature information can be interpreted by automated interrogation of the phosphorescent light. This technique has been demonstrated by application of YAG doped with dysprosium and europium as coatings through the air-plasma spray process. Either material can be used to measure temperature over a wide range, namely between 300°C and 900°C. Furthermore, results show that the material records the peak exposure temperature and prolonged exposure at lower temperatures would have no effect on the temperature measurement. This indicates that these materials could be used to measure peak operating temperatures in long-term testing.

Pilgrim, C. C. [Mechanical Engineering, Imperial College London, London, SW7 2AZ, UK and Sensor Coating Systems, Imperial Incubator, Bessemer Building, Level 1 and 2, Imperial College London, London SW7 2AZ (United Kingdom); Heyes, A. L. [Energy Technology and Innovation Initiative, University of Leeds, Leeds, LS2 9JT (United Kingdom); Feist, J. P. [Sensor Coating Systems, Imperial Incubator, Bessemer Building, Level 1 and 2, Imperial College London, London SW7 2AZ (United Kingdom)

2014-02-18T23:59:59.000Z

164

Electrical voltages and resistances measured to inspect metallic cased wells and pipelines  

DOE Patents [OSTI]

A cased well in the earth is electrically energized with A.C. current. Voltages are measured from three voltage measurement electrodes in electrical contact with the interior of the casing while the casing is electrically energized. In a measurement mode, A.C. current is conducted from a first current carrying electrode within the cased well to a remote second current carrying electrode located on the surface of the earth. In a calibration mode, current is passed from the first current carrying electrode to a third current carrying electrode located vertically at a different position within the cased well, where the three voltage measurement electrodes are located vertically in between the first and third current carrying electrodes. Voltages along the casing and resistances along the casing are measured to determine wall thickness and the location of any casing collars present so as to electrically inspect the casing. Similar methods are employed to energize a pipeline to measure the wall thickness of the pipeline and the location of pipe joints to electrically inspect the pipeline.

Vail, III, William Banning (Bothell, WA); Momii, Steven Thomas (Seattle, WA)

2001-01-01T23:59:59.000Z

165

Electrical voltages and resistances measured to inspect metallic cased wells and pipelines  

DOE Patents [OSTI]

A cased well in the earth is electrically energized with A.C. current. Voltages are measured from three voltage measurement electrodes in electrical contact with the interior of the casing while the casing is electrically energized. In a measurement mode, A.C. current is conducted from a first current carrying electrode within the cased well to a remote second current carrying electrode located on the surface of the earth. In a calibration mode, current is passed from the first current carrying electrode to a third current carrying electrode located vertically at a different position within the cased well, where the three voltage measurement electrodes are located vertically in between the first and third current carrying electrodes. Voltages along the casing and resistances along the casing are measured to determine wall thickness and the location of any casing collars present so as to electrically inspect the casing. Similar methods are employed to energize a pipeline to measure the wall thickness of the pipeline and the location of pipe joints to electrically inspect the pipeline.

Vail, III, William Banning (Bothell, WA); Momii, Steven Thomas (Seattle, WA)

2000-01-01T23:59:59.000Z

166

The measurement of absolute thermal neutron flux using liquid scintillation counting techniques  

E-Print Network [OSTI]

was computed as the square root of the sum of the squares of the individual errors . The flux at the same location in the core and at the same reactor power level was measured by the conventional technique of gold foil 34 activation. This measurement... back to 1932 when the neutron was discovered by Chadwick. With the advent of the nuclear reactor in 1942 the problem of absolute neutron flux determination became increasingly important. Since the operating power of a thermal reactor is directly...

Walker, Jack Vernon

2012-06-07T23:59:59.000Z

167

Measurement of neutron capture on $^{48}$Ca at thermal and thermonuclear energies  

E-Print Network [OSTI]

At the Karlsruhe pulsed 3.75\\,MV Van de Graaff accelerator the thermonuclear $^{48}$Ca(n,$\\gamma$)$^{49}$Ca(8.72\\,min) cross section was measured by the fast cyclic activation technique via the 3084.5\\,keV $\\gamma$-ray line of the $^{49}$Ca-decay. Samples of CaCO$_3$ enriched in $^{48}$Ca by 77.87\\,\\% were irradiated between two gold foils which served as capture standards. The capture cross-section was measured at the neutron energies 25, 151, 176, and 218\\,keV, respectively. Additionally, the thermal capture cross-section was measured at the reactor BR1 in Mol, Belgium, via the prompt and decay $\\gamma$-ray lines using the same target material. The $^{48}$Ca(n,$\\gamma$)$^{49}$Ca cross-section in the thermonuclear and thermal energy range has been calculated using the direct-capture model combined with folding potentials. The potential strengths are adjusted to the scattering length and the binding energies of the final states in $^{49}$Ca. The small coherent elastic cross section of $^{48}$Ca+n is explained through the nuclear Ramsauer effect. Spectroscopic factors of $^{49}$Ca have been extracted from the thermal capture cross-section with better accuracy than from a recent (d,p) experiment. Within the uncertainties both results are in agreement. The non-resonant thermal and thermonuclear experimental data for this reaction can be reproduced using the direct-capture model. A possible interference with a resonant contribution is discussed. The neutron spectroscopic factors of $^{49}$Ca determined from shell-model calculations are compared with the values extracted from the experimental cross sections for $^{48}$Ca(d,p)$^{49}$Ca and $^{48}$Ca(n,$\\gamma$)$^{49}$Ca.

H. Beer; C. Coceva; P. V. Sedyshev; Yu. P. Popov; H. Herndl; R. Hofinger; P. Mohr; H. Oberhummer

1996-08-07T23:59:59.000Z

168

Measurement of the Equivalent Thermal Resistance of Rooftop Lawns in a Hot-Climate Wind Tunnel  

E-Print Network [OSTI]

rooftop lawn. A hot-climate wind tunnel experiment was carried out in order to obtain and analyze the heat and moisture transport in the rooftop lawn. Furthermore, a calculation with the energy conservation equation was carried out using the results...

Meng, Q.; Zhang, Y.; Zhang, L.

2006-01-01T23:59:59.000Z

169

New contactless method for thermal diffusivity measurements using modulated photothermal radiometry  

SciTech Connect (OSTI)

Modulated photothermal radiometry is a non-destructive and contactless technique for the characterization of materials. It has two major advantages: a good signal-to-noise ratio through a synchronous detection and a low dependence on the heating power and the optical properties of the sample surface. This paper presents a new method for characterizing the thermal diffusivity of a material when the phase shift between a modulated laser power signal and the thermal signal of a plate sample is known at different frequencies. The method is based on a three-dimensional analytical model which is used to determine the temperature amplitude and the phase in the laser heating of the plate. A new simple formula was developed through multi-parametric analysis to determine the thermal diffusivity of the plate with knowledge of the frequency at the minimum phase shift, the laser beam radius r{sub 0} and the sample thickness L. This method was developed to control the variation of the thermal diffusivity of nuclear components and it was first applied to determine the thermal diffusivity of different metals: 304 L stainless steel, nickel, titanium, tungsten, molybdenum, zinc, and iron. The experimental results were obtained with 5%–10% accuracy and corresponded well with the reference values. The present paper also demonstrates the limit of application of this method for plate with thickness r{sub 0}/100 ? L ? r{sub 0}/2. The technique is deemed interesting for the characterization of barely accessible components that require a contactless measurement.

Pham Tu Quoc, S., E-mail: sang.phamtuquoc@cea.fr; Cheymol, G.; Semerok, A. [French Alternative Energies and Atomic Energy Commission, Division of Nuclear Energy, DEN/DANS/DPC/SEARS/LISL, 91191 Gif/Yvette (France)] [French Alternative Energies and Atomic Energy Commission, Division of Nuclear Energy, DEN/DANS/DPC/SEARS/LISL, 91191 Gif/Yvette (France)

2014-05-15T23:59:59.000Z

170

Measurement of delayed-neutron yield from {sup 237}Np fission induced by thermal neutrons  

SciTech Connect (OSTI)

The delayed-neutron yield from thermal-neutron-induced fission of the {sup 237}Np nucleus was measured using a sample periodically exposed to a pulsed neutron beam with subsequent detection of neutrons during the time intervals between pulses. The experiment was realized on an Isomer-M setup mounted in the IBR-2 pulsed reactor channel equipped with a mirror neutron guide. The setup and the experimental procedure are described, the background sources are thoroughly analyzed, and the experimental data are presented. The total delayed-neutron yield from {sup 237}Np fission induced by thermal neutrons is {nu}{sub d} = 0.0110 {+-} 0.0009. This study was performed at the Frank Laboratory of Neutron Physics (JINR, Dubna)

Gundorin, N. A.; Zhdanova, K. V.; Zhuchko, V. E.; Pikelner, L. B., E-mail: plb@nf.jinr.ru; Rebrova, N. V.; Salamatin, I. M.; Smirnov, V. I.; Furman, V. I. [Joint Institute for Nuclear Research (Russian Federation)

2007-06-15T23:59:59.000Z

171

Inheritance of chlordane resistance in cockroaches, with knockdown time and time of kill as measures of individual resistance  

E-Print Network [OSTI]

The computation and analysis of dosage mortality data has been discussed in detail by BIiss (1935) and Finney (%52) o The other method of studying the genetics of resistance involves treatment of individuals in a population with a single xuxpreesly chosen.... In certain strains the susceptible individuals quickly show symptoms of poisoning and in a few minut . s fall on their backs, After several hours these flies begin an improvement that leads to complete recovery, 'Vith respect to knockdown these flies...

Hamilton, Robert William

1958-01-01T23:59:59.000Z

172

Thermophysical Properties of Heat Resistant Shielding Material  

SciTech Connect (OSTI)

This project was aimed at determining thermal conductivity, specific heat and thermal expansion of a heat resistant shielding material for neutron absorption applications. These data are critical in predicting the structural integrity of the shielding under thermal cycling and mechanical load. The measurements of thermal conductivity and specific heat were conducted in air at five different temperatures (-31 F, 73.4 F, 140 F, 212 F and 302 F). The transient plane source (TPS) method was used in the tests. Thermal expansion tests were conducted using push rod dilatometry over the continuous range from -40 F (-40 C) to 302 F (150 C).

Porter, W.D.

2004-12-15T23:59:59.000Z

173

An Information-Theoretic Measure of Uncertainty due to Quantum and Thermal Fluctuations  

E-Print Network [OSTI]

We study an information-theoretic measure of uncertainty for quantum systems. It is the Shannon information $I$ of the phase space probability distribution $\\la z | \\rho | z \\ra $, where $|z \\ra $ are coherent states, and $\\rho$ is the density matrix. The uncertainty principle is expressed in this measure as $I \\ge 1$. For a harmonic oscillator in a thermal state, $I$ coincides with von Neumann entropy, $- \\Tr(\\rho \\ln \\rho)$, in the high-temperature regime, but unlike entropy, it is non-zero at zero temperature. It therefore supplies a non-trivial measure of uncertainty due to both quantum and thermal fluctuations. We study $I$ as a function of time for a class of non-equilibrium quantum systems consisting of a distinguished system coupled to a heat bath. We derive an evolution equation for $I$. For the harmonic oscillator, in the Fokker-Planck regime, we show that $I$ increases monotonically. For more general Hamiltonians, $I$ settles down to monotonic increase in the long run, but may suffer an initial decrease for certain initial states that undergo ``reassembly'' (the opposite of quantum spreading). Our main result is to prove, for linear systems, that $I$ at each moment of time has a lower bound $I_t^{min}$, over all possible initial states. This bound is a generalization of the uncertainty principle to include thermal fluctuations in non-equilibrium systems, and represents the least amount of uncertainty the system must suffer after evolution in the presence of an environment for time $t$.

Arlen Anderson; Jonathan J. Halliwell

1993-04-28T23:59:59.000Z

174

MULTISCALE THERMAL-INFRARED MEASUREMENTS OF THE MAUNA LOA CALDERA, HAWAII  

SciTech Connect (OSTI)

Until recently, most thermal infrared measurements of natural scenes have been made at disparate scales, typically 10{sup {minus}3}-10{sup {minus}2} m (spectra) and 10{sup 2}-10{sup 3} m (satellite images), with occasional airborne images (10{sup 1} m) filling the gap. Temperature and emissivity fields are spatially heterogeneous over a similar range of scales, depending on scene composition. A common problem for the land surface, therefore, has been relating field spectral and temperature measurements to satellite data, yet in many cases this is necessary if satellite data are to be interpreted to yield meaningful information about the land surface. Recently, three new satellites with thermal imaging capability at the 10{sup 1}-10{sup 2} m scale have been launched: MTI, TERRA, and Landsat 7. MTI acquires multispectral images in the mid-infrared (3-5{micro}m) and longwave infrared (8-10{micro}m) with 20m resolution. ASTER and MODIS aboard TERRA acquire multispectral longwave images at 90m and 500-1000m, respectively, and MODIS also acquires multispectral mid-infrared images. Landsat 7 acquires broadband longwave images at 60m. As part of an experiment to validate the temperature and thermal emissivity values calculated from MTI and ASTER images, we have targeted the summit region of Mauna Loa for field characterization and near-simultaneous satellite imaging, both on daytime and nighttime overpasses, and compare the results to previously acquired 10{sup {minus}1} m airborne images, ground-level multispectral FLIR images, and the field spectra. Mauna Loa was chosen in large part because the 4x6km summit caldera, flooded with fresh basalt in 1984, appears to be spectrally homogeneous at scales between 10{sup {minus}1} and 10{sup 2} m, facilitating the comparison of sensed temperature. The validation results suggest that, with careful atmospheric compensation, it is possible to match ground measurements with measurements from space, and to use the Mauna Loa validation site for cross-comparison of thermal infrared sensors and temperature/emissivity extraction algorithms.

L. BALICK; A. GILLESPIE; ET AL

2001-03-01T23:59:59.000Z

175

A thermal method for measuring the rate of water movement in plants  

E-Print Network [OSTI]

L?BP A 8 V a L ?BPA8B8 op A THERMAL METHOD FOR MEASURING THE RATE OF WATER MOVEMENT IN PLANTS A Dissertation By Morris Elkins Bloodworth Vao Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in Partial... Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY May, 1958 TLX Major Subject: Soil Physics p ^i???pP ??^i?? ??? ??p?????? ^i? ?p^? ?? WATER MOVEMENT IN PLANTS A Dissertation By Morris Elkins Bloodworth Approved as to style...

Bloodworth, Morris Elkins

1958-01-01T23:59:59.000Z

176

The Envelope Thermal Test Unit (ETTU): Full Measurement of Wall Perform ance  

E-Print Network [OSTI]

March 30-April THE ENVELOPE THERMAL TEST UNIT (ETTU): FIELDFigure 1. Schematic of Envelope Thermal Test Unit (cross-the dvnami c thermal propert i es of envelope c~ponents. The

Sonderegger, R.C.; Sherman, M.H.; Adams, J.W.

2008-01-01T23:59:59.000Z

177

The Envelope Thermal Test Unit (ETTU): Full Measurement of Wall Perform ance  

E-Print Network [OSTI]

March 30-April THE ENVELOPE THERMAL TEST UNIT (ETTU): FIELDFigure 1. Schematic of Envelope Thermal Test Unit (cross-the dvnami c thermal propert i es of envelope c~ponents. The

Adams, J.W.

2010-01-01T23:59:59.000Z

178

Impact of parasitic thermal effects on thermoelectric property measurements by Harman method  

SciTech Connect (OSTI)

Harman method is a rapid and simple technique to measure thermoelectric properties. However, its validity has been often questioned due to the over-simplified assumptions that this method relies on. Here, we quantitatively investigate the influence of the previously ignored parasitic thermal effects on the Harman method and develop a method to determine an intrinsic ZT. We expand the original Harman relation with three extra terms: heat losses via both the lead wires and radiation, and Joule heating within the sample. Based on the expanded Harman relation, we use differential measurement of the sample geometry to measure the intrinsic ZT. To separately evaluate the parasitic terms, the measured ZTs with systematically varied sample geometries and the lead wire types are fitted to the expanded relation. A huge discrepancy (?28%) of the measured ZTs depending on the measurement configuration is observed. We are able to separately evaluate those parasitic terms. This work will help to evaluate the intrinsic thermoelectric property with Harman method by eliminating ambiguities coming from extrinsic effects.

Kwon, Beomjin, E-mail: bkwon@kist.re.kr; Baek, Seung-Hyub; Keun Kim, Seong; Kim, Jin-Sang, E-mail: jskim@kist.re.kr [Electronic Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of)] [Electronic Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of)

2014-04-15T23:59:59.000Z

179

High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings: SAM HPCRM Program ? FY04 Annual Report ? Rev. 0 - DARPA DSO & DOE OCRWM Co-Sponsored Advanced Materials Program  

SciTech Connect (OSTI)

The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent.

Farmer, J; Haslam, J; Wong, F; Ji, S; Day, S; Branagan, D; Marshall, M; Meacham, B; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Weaver, D; Aprigliano, L; Kohler, L; Bayles, R; Lemieux, E; Wolejsza, T; Martin, F; Yang, N; Lucadamo, G; Perepezko, J; Hildal, K; Kaufman, L; Heuer, A; Ernst, F; Michal, G; Kahn, H; Lavernia, E

2007-09-19T23:59:59.000Z

180

Thermal unobtainiums? The perfect thermal conductor and  

E-Print Network [OSTI]

contribute to thermal resistance · Isotopically pure diamond has highest thermal conductivity of any material materials: disordered layered crystals Conclude with some thoughts on promising, high-risk, research even in a computer model. #12;Thermal resistance is created by Umklapp scattering (U

Braun, Paul

Note: This page contains sample records for the topic "thermal resistance measured" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Sizing Thermally Activated Building Systems (TABS): A Brief Literature Review and Model Evaluation  

E-Print Network [OSTI]

m 2 /W Thermal resistance of the building envelope, K-m 2 /Wtemperature, envelope, slab and tubing thermal resistance,

Basu, Chandrayee; Schiavon, Stefano; Bauman, Fred

2012-01-01T23:59:59.000Z

182

Signal generation mechanisms, intracavity-gas thermal-diffusivity temperature dependence, and absolute infrared emissivity measurements  

E-Print Network [OSTI]

, Canada Received 22 September 1997; accepted for publication 8 October 1997 The operating thermal power dominance of thermal-wave radiation power transfer in the phase channel of the thermal-wave signal at large produces an ac electrical signal proportional to the energy of the standing thermal-wave pattern

Mandelis, Andreas

183

National Radio Astronomy Observatory Measurements of Copper Heat Straps Near 4 K  

E-Print Network [OSTI]

as OFHC. When annealed, these materials have very high thermal conductivity, with a maximum measurements of the thermal resistance of heat straps used in the ALMA Band 6 cartridges. The results suggest the contact area is large (~ 10 cm2 ) but that grease actually increases the thermal resistance when

Groppi, Christopher

184

Measurements of the apparent thermal conductivity of multi-layer insulation between 20 K and 90 K  

SciTech Connect (OSTI)

NASA has the need to efficiently store cryogenic propellants in space for long periods of time. One method to improve storage efficiency is to use multi-layer insulation (MLI), a technique that minimizes the boiling rate due to radiation heat transfer. Typically, the thermal performance of MLI is determined by measuring the rate of evaporation of liquid nitrogen from a calibrated cryostat. The main limitation with this method is that testing conditions are restricted by the boiling temperature of the LN{sub 2}, which may not match the requirements of the application. The Multi-Layer Insulation Thermal Conductivity Experiment (MIKE) at the National High Magnetic Field Laboratory is capable of measuring the effective thermal conductivity of MLI at variable boundary temperatures. MIKE uses cryo-refrigerators to control boundary temperatures in the calorimeter and a calibrated thermal link to measure the heat load. To make the measurements requested by NASA, MIKE needed to be recalibrated for the 20 K to 90 K range. Also, due to the expectation of a lower heat transfer rate, the heat load support rod material was changed to one with a lower thermal conductivity to ensure the temperature difference seen on the cold rod could be measurable at the estimated heat load. Presented are the alterations to MIKE including calibration data and heat load measurements on new load-bearing MLI supplied by NASA.

Hurd, Joseph A.; Van Sciver, Steven W. [National High Magnetic Field Laboratory Tallahassee, FL 32310 USA and FAMU-FSU College of Engineering, Department of M.E., Tallahassee, FL 32310 (United States)

2014-01-29T23:59:59.000Z

185

Resistance in cotyledons, leaves, stems and bolls conferred by several B genes in Gossypium hirsutum L. as measured by races of Xanthomonas Malvacearum (E.F.Sm) Dows  

E-Print Network [OSTI]

susceptibility; (I) intermediate resistance; (-) resistant. Table 9. The increase in resistance caused by the B genes individually and in combination, above that given by the BS minor genes for the various plant parts, in the presence of variant 6, Sm Plant... A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1967 Major Subject Genetics RESISTANCE IN COTYLEDONS & LEAVES, STEMS AND BULLS CONFERRED BY SEVERAL B GENES IN GOSSYPIUM HIRSUTUM L. AS MEASURED...

Tayel, Mohamed Aly Fathalla

1967-01-01T23:59:59.000Z

186

Strains in Thermally Growing Alumina Films Measured in-situ usingSynchrotron X-rays  

SciTech Connect (OSTI)

Strains in thermally grown oxides have been measured in-situ, as the oxides develop and evolve. Extensive data have been acquired from oxides grown in air at elevated temperatures on different model alloys that form Al{sub 2}O{sub 3}. Using synchrotron x-rays at the Advanced Photon Source (Beamline 12BM, Argonne National Laboratory), Debye-Scherrer diffraction patterns from the oxidizing specimen were recorded every 5 minutes during oxidation and subsequent cooling. The diffraction patterns were analyzed to determine strains in the oxides, as well as phase changes and the degree of texture. To study a specimen's response to stress perturbation, the oxidizing temperature was quickly cooled from 1100 to 950 C to impose a compressive thermal stress in the scale. This paper describes this new experimental approach and gives examples from oxidized {beta}-NiAl, Fe-20Cr-10Al, Fe-28Al-5Cr and H{sub 2}-annealed Fe-28Al-5Cr (all at. %) alloys to illustrate some current understanding of the development and relaxation of growth stresses in Al{sub 2}O{sub 3}.

Hou, P.Y.; Paulikas, A.P.; Veal, B.W.

2006-01-02T23:59:59.000Z

187

Measurement of Resistance and Strength of Conductor Splices in the MICE Coupling Magnets  

SciTech Connect (OSTI)

The superconducting magnets for the Muon Ionization Cooling Experiment [1] (MICE) use a copper based Nb-Ti conductor with un-insulated dimensions of 0.95 by 1.60 mm. There may be as many as twelve splices in one MICE superconducting coupling coil. These splices are to be wound in the coil. The conductor splices produce Joule heating, which may cause the magnet to quench. A technique of making conductor splices was developed by ICST. Two types of 1-meter long of soldered lap-joints have been tested. Side-by-side splices and up-down one splices were studied theoretically and experimentally using two types of soft solder made of eutectic tin-lead solder and tin-silver solder. The resistances of the splices made by ICST were tested at LBNL at liquid helium temperatures over a range of magnetic fields up to 5 T. The breaking strength of 250 mm long splices was also measured at room temperature and liquid nitrogen temperature.

Xu, Feng Yu; Pan, Heng; Wu, Hong; Lui, X. K.; Li, E.; Dietderich, Dan; Higley, Hugh; Tam, D. G.; Trillaud, Fredric; Wang, Li; Green, M.A.

2009-08-19T23:59:59.000Z

188

Secondary fusion coupled deuteron/triton transport simulation and thermal-to-fusion neutron convertor measurement  

SciTech Connect (OSTI)

A Monte Carlo tool RSMC (Reaction Sequence Monte Carlo) was developed to simulate deuteron/triton transportation and reaction coupled problem. The 'Forced particle production' variance reduction technique was used to improve the simulation speed, which made the secondary product play a major role. The mono-energy 14 MeV fusion neutron source was employed as a validation. Then the thermal-to-fusion neutron convertor was studied with our tool. Moreover, an in-core conversion efficiency measurement experiment was performed with {sup 6}LiD and {sup 6}LiH converters. Threshold activation foils was used to indicate the fast and fusion neutron flux. Besides, two other pivotal parameters were calculated theoretically. Finally, the conversion efficiency of {sup 6}LiD is obtained as 1.97x10{sup -4}, which matches well with the theoretical result. (authors)

Wang, G. B.; Wang, K. [Department of Engineering Physics, Tsinghua University, Beijing, 100084 (China); Liu, H. G.; Li, R. D. [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621900 (China)

2013-07-01T23:59:59.000Z

189

Thermal Conductivity Measurement of Xe-Implanted Uranium Dioxide Thick Films using Multilayer Laser Flash Analysis  

SciTech Connect (OSTI)

The Fuel Cycle Research and Development program's Advanced Fuels campaign is currently pursuing use of ion beam assisted deposition to produce uranium dioxide thick films containing xenon in various morphologies. To date, this technique has provided materials of interest for validation of predictive fuel performance codes and to provide insight into the behavior of xenon and other fission gasses under extreme conditions. In addition to the structural data provided by such thick films, it may be possible to couple these materials with multilayer laser flash analysis in order to measure the impact of xenon on thermal transport in uranium dioxide. A number of substrate materials (single crystal silicon carbide, molybdenum, and quartz) containing uranium dioxide films ranging from one to eight microns in thickness were evaluated using multilayer laser flash analysis in order to provide recommendations on the most promising substrates and geometries for further investigation. In general, the uranium dioxide films grown to date using ion beam assisted deposition were all found too thin for accurate measurement. Of the substrates tested, molybdenum performed the best and looks to be the best candidate for further development. Results obtained within this study suggest that the technique does possess the necessary resolution for measurement of uranium dioxide thick films, provided the films are grown in excess of fifty microns. This requirement is congruent with the material needs when viewed from a fundamental standpoint, as this length scale of material is required to adequately sample grain boundaries and possible second phases present in ceramic nuclear fuel.

Nelson, Andrew T. [Los Alamos National Laboratory

2012-08-30T23:59:59.000Z

190

Experimental Development and Demonstration of Ultrasonic Measurement Diagnostics for Sodium Fast Reactor Thermal-hydraulics  

SciTech Connect (OSTI)

This research project will address some of the principal technology issues related to sodium-cooled fast reactors (SFR), primarily the development and demonstration of ultrasonic measurement diagnostics linked to effective thermal convective sensing under normatl and off-normal conditions. Sodium is well-suited as a heat transfer medium for the SFR. However, because it is chemically reactive and optically opaque, it presents engineering accessibility constraints relative to operations and maintenance (O&M) and in-service inspection (ISI) technologies that are currently used for light water reactors. Thus, there are limited sensing options for conducting thermohydraulic measurements under normal conditions and off-normal events (maintenance, unanticipated events). Acoustic methods, primarily ultrasonics, are a key measurement technology with applications in non-destructive testing, component imaging, thermometry, and velocimetry. THis project would have yielded a better quantitative and qualitative understanding of the thermohydraulic condition of solium under varied flow conditions. THe scope of work will evaluate and demonstrate ultrasonic technologies and define instrumentation options for the SFR.

Tokuhiro, Akira; Jones, Byron

2013-09-13T23:59:59.000Z

191

Filtered Rayleigh scattering diagnostic for multi-parameter thermal-fluids measurements : LDRD final report.  

SciTech Connect (OSTI)

Simulation-based life-cycle-engineering and the ASCI program have resulted in models of unprecedented size and fidelity. The validation of these models requires high-resolution, multi-parameter diagnostics. Within the thermal-fluids disciplines, the need for detailed, high-fidelity measurements exceeds the limits of current engineering sciences capabilities and severely tests the state of the art. The focus of this LDRD is the development and application of filtered Rayleigh scattering (FRS) for high-resolution, nonintrusive measurement of gas-phase velocity and temperature. With FRS, the flow is laser-illuminated and Rayleigh scattering from naturally occurring sources is detected through a molecular filter. The filtered transmission may be interpreted to yield point or planar measurements of three-component velocities and/or thermodynamic state. Different experimental configurations may be employed to obtain compromises between spatial resolution, time resolution, and the quantity of simultaneously measured flow variables. In this report, we present the results of a three-year LDRD-funded effort to develop FRS combustion thermometry and Aerosciences velocity measurement systems. The working principles and details of our FRS opto-electronic system are presented in detail. For combustion thermometry we present 2-D, spatially correlated FRS results from nonsooting premixed and diffusion flames and from a sooting premixed flame. The FRS-measured temperatures are accurate to within {+-}50 K (3%) in a premixed CH4-air flame and within {+-}100 K for a vortex-strained diluted CH4-air diffusion flame where the FRS technique is severely tested by large variation in scattering cross section. In the diffusion flame work, FRS has been combined with Raman imaging of the CH4 fuel molecule to correct for the local light scattering properties of the combustion gases. To our knowledge, this is the first extension of FRS to nonpremixed combustion and the first use of joint FRS-Raman imaging. FRS has been applied to a sooting C2H4-air flame and combined with LII to assess the upper sooting limit where FRS may be utilized. The results from this sooting flame show FRS temperatures has potential for quantitative temperature imaging for soot volume fractions of order 0.1 ppm. FRS velocity measurements have been performed in a Mach 3.7 overexpanded nitrogen jet. The FRS results are in good agreement with expected velocities as predicted by inviscid analysis of the jet flowfield. We have constructed a second FRS opto-electronic system for measurements at Sandia's hypersonic wind tunnel. The details of this second FRS system are provided here. This facility is currently being used for velocity characterization of these production hypersonic facilities.

Beresh, Steven Jay; Grasser, Thomas W.; Kearney, Sean Patrick; Schefer, Robert W.

2004-01-01T23:59:59.000Z

192

New experimental methodology, setup and LabView program for accurate absolute thermoelectric power and electrical resistivity measurements between 25 and 1600 K: Application to pure copper, platinum, tungsten, and nickel at very high temperatures  

SciTech Connect (OSTI)

In this paper we describe an experimental setup designed to measure simultaneously and very accurately the resistivity and the absolute thermoelectric power, also called absolute thermopower or absolute Seebeck coefficient, of solid and liquid conductors/semiconductors over a wide range of temperatures (room temperature to 1600 K in present work). A careful analysis of the existing experimental data allowed us to extend the absolute thermoelectric power scale of platinum to the range 0-1800 K with two new polynomial expressions. The experimental device is controlled by a LabView program. A detailed description of the accurate dynamic measurement methodology is given in this paper. We measure the absolute thermoelectric power and the electrical resistivity and deduce with a good accuracy the thermal conductivity using the relations between the three electronic transport coefficients, going beyond the classical Wiedemann-Franz law. We use this experimental setup and methodology to give new very accurate results for pure copper, platinum, and nickel especially at very high temperatures. But resistivity and absolute thermopower measurement can be more than an objective in itself. Resistivity characterizes the bulk of a material while absolute thermoelectric power characterizes the material at the point where the electrical contact is established with a couple of metallic elements (forming a thermocouple). In a forthcoming paper we will show that the measurement of resistivity and absolute thermoelectric power characterizes advantageously the (change of) phase, probably as well as DSC (if not better), since the change of phases can be easily followed during several hours/days at constant temperature.

Abadlia, L.; Mayoufi, M. [Laboratoire de Chimie des Matériaux Inorganiques, Université Badji-Mokhtar Annaba, BP12, 23000 Annaba (Algeria); Gasser, F.; Khalouk, K.; Gasser, J. G., E-mail: jean-georges.gasser@univ-lorraine.fr [Laboratoire de Chimie et Physique - Approche Multi-échelle des Milieux Complexes (LCP-A2MC) Institut de Chimie, Physique et Matériaux, Université de Lorraine, 1 Boulevard Arago - 57078 Metz cedex 3 (France)

2014-09-15T23:59:59.000Z

193

Contamination of Cluster Radio Sources in the Measurement of the Thermal Sunyaev-Zel'dovich Angular Power Spectrum  

E-Print Network [OSTI]

We present a quantitative estimate of the confusion of cluster radio halos and galaxies in the measurement of the angular power spectrum of the thermal Sunyaev-Zel'dovich (SZ) effect. To achieve the goal, we use a purely analytic approach to both radio sources and dark matter of clusters by incorporating empirical models and observational facts together with some theoretical considerations. It is shown that the correction of cluster radio halos and galaxies to the measurement of the thermal SZ angular power spectrum is no more than 20% at $l>2000$ for observing frequencies $\

Wei Zhou; Xiang-Ping Wu

2003-09-26T23:59:59.000Z

194

Pre-resistance-welding resistance check  

DOE Patents [OSTI]

A preweld resistance check for resistance welding machines uses an open circuited measurement to determine the welding machine resistance, a closed circuit measurement to determine the parallel resistance of a workpiece set and the machine, and a calculation to determine the resistance of the workpiece set. Any variation in workpiece set or machine resistance is an indication that the weld may be different from a control weld.

Destefan, Dennis E. (Broomfield, CO); Stompro, David A. (Idaho Falls, ID)

1991-01-01T23:59:59.000Z

195

High-resolution thermal expansion measurements under helium-gas pressure  

SciTech Connect (OSTI)

We report on the realization of a capacitive dilatometer, designed for high-resolution measurements of length changes of a material for temperatures 1.4 K Less-Than-Or-Slanted-Equal-To T Less-Than-Or-Slanted-Equal-To 300 K and hydrostatic pressure P Less-Than-Or-Slanted-Equal-To 250 MPa. Helium ({sup 4}He) is used as a pressure-transmitting medium, ensuring hydrostatic-pressure conditions. Special emphasis has been given to guarantee, to a good approximation, constant-pressure conditions during temperature sweeps. The performance of the dilatometer is demonstrated by measurements of the coefficient of thermal expansion at pressures P Asymptotically-Equal-To 0.1 MPa (ambient pressure) and 104 MPa on a single crystal of azurite, Cu{sub 3}(CO{sub 3}){sub 2}(OH){sub 2}, a quasi-one-dimensional spin S = 1/2 Heisenberg antiferromagnet. The results indicate a strong effect of pressure on the magnetic interactions in this system.

Manna, Rudra Sekhar; Wolf, Bernd; Souza, Mariano de; Lang, Michael [Physics Institute, Goethe University Frankfurt(M), SFB/TR49, D-60438 Frankfurt am Main (Germany)

2012-08-15T23:59:59.000Z

196

Thermal Conductivity and Noise Attenuation in  

E-Print Network [OSTI]

.3.4 Corrosion-resistant and high-temperature filters 9 1.3.5 Acoustic Applications 9 2. THERMAL CONDUCTIVITY 2.1 THERMAL RESISTANCE 2.1.1 Thermal Conductors in Series 12 2.1.2 Thermal conductors in parallel 13 2 difference RTH Thermal resistance of conductor sb Stefan's constant T4 Temperature difference K* Total

Cambridge, University of

197

Compact Modeling and Analysis for Electronic and Thermal Effects of Nanometer Integrated and Packaged Systems  

E-Print Network [OSTI]

in terms of equivalent resistances and sources will be addedin terms of equivalent thermal resistance and independentand equivalent thermal capacitance and resistance to its

WANG, HAI

2012-01-01T23:59:59.000Z

198

Utility of transient testing to characterize thermal interface materials  

E-Print Network [OSTI]

This paper analyzes a transient method for the characterization of low-resistance thermal interfaces of microelectronic packages. The transient method can yield additional information about the package not available with traditional static methods at the cost of greater numerical complexity, hardware requirements, and sensitivity to noise. While the method is established for package-level thermal analysis of mounted and assembled parts, its ability to measure the relatively minor thermal impedance of thin thermal interface material (TIM) layers has not yet been fully studied. We combine the transient thermal test with displacement measurements of the bond line thickness to fully characterize the interface.

B. Smith; T. Brunschwiler; B. Michel

2008-01-07T23:59:59.000Z

199

Utility of transient testing to characterize thermal interface materials  

E-Print Network [OSTI]

This paper analyzes a transient method for the characterization of low-resistance thermal interfaces of microelectronic packages. The transient method can yield additional information about the package not available with traditional static methods at the cost of greater numerical complexity, hardware requirements, and sensitivity to noise. While the method is established for package-level thermal analysis of mounted and assembled parts, its ability to measure the relatively minor thermal impedance of thin thermal interface material (TIM) layers has not yet been fully studied. We combine the transient thermal test with displacement measurements of the bond line thickness to fully characterize the interface.

Smith, B; Michel, B

2008-01-01T23:59:59.000Z

200

Pressure contact probe for resistivity measurements in the temperature range 77 K/lt//ital T//lt/200 K  

SciTech Connect (OSTI)

We have designed and built a sample probe that is particularly well suited for measuring the resistivity and superconducting transition temperature /ital T//sub /ital c// of bulk high-/ital T//sub /ital c// materials of nonuniform shape, in the temperature range 77 K/lt//ital T//lt/200 K. The probe uses spring-loaded indium pressure contacts and allows electrical contact to be made without altering or contaminating the sample. The probe is relatively efficient because of its short turn-around time in mounting of samples and cylcing of temperature. The resistivity and /ital T//sub /ital c// of a bulk Y/sub 1/Ba/sub 2/Cu/sub 3/minus///sub /ital x//Ag/sub /ital x//O/sub 7/ sample was measured and the results compared with those from a more elaborate sample probe and Dewar system.

Tritt, T. M.; Ehrlich, A. C.; Davis, H. S.

1989-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal resistance measured" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Heat Loss Measurement Using Infrared Imaging  

E-Print Network [OSTI]

in various applications. Examples of two applications are presented. The first describes the development of heat balance data for a solvent refined coal processing unit. The second describes the measurement of heat loss and thermal resistance in a double...

Seeber, S. A.

1983-01-01T23:59:59.000Z

202

Use of recording resistance strain gage equipment in measuring dynamic force required to extract cotton locks from the burrs  

E-Print Network [OSTI]

USE OF RECORDING RESISTANCE STRAIN GAGE EQUIPMENT IN MEASURING DYNAMIC FORCE REQUIRED TO EXTRACT COTTON LOCKS FROM THE BURRS A Thesis By MOHAMMAD SHAHANSHA UDDIN CHOUDHURY Submitted to the Graduate School of the Agricultural and Mechanical... COTTON LOCKS FROM THE BURRS A Thesis By MOHAMMAD SHAHANSHA UDDIN CHOUDHURY Approved as to style and content by (Chairman of Committee) (Head of Department) August 1963 ACKNOWLEDGMENTS The writer gratefully acknowledges his indebtedness to Mr...

Choudhury, Mohammad Shahansha Uddin

1963-01-01T23:59:59.000Z

203

Thermal-fluid and electrochemical modeling and performance study of a planar solid oxide electrolysis cell : analysis on SOEC resistances, size, and inlet flow conditions.  

SciTech Connect (OSTI)

Argonne National Laboratory and Idaho National Laboratory researchers are analyzing the electrochemical and thermal-fluid behavior of solid oxide electrolysis cells (SOECs) for high temperature steam electrolysis using computational fluid dynamics (CFD) techniques. The major challenges facing commercialization of steam electrolysis technology are related to efficiency, cost, and durability of the SOECs. The goal of this effort is to guide the design and optimization of performance for high temperature electrolysis (HTE) systems. An SOEC module developed by FLUENT Inc. as part of their general CFD code was used for the SOEC analysis by INL. ANL has developed an independent SOEC model that combines the governing electrochemical mechanisms based on first principals to the heat transfer and fluid dynamics in the operation of SOECs. The ANL model was embedded into the commercial STAR-CD CFD software, and is being used for the analysis of SOECs by ANL. The FY06 analysis performed by ANL and reported here covered the influence of electrochemical properties, SOEC component resistances and their contributing factors, SOEC size and inlet flow conditions, and SOEC flow configurations on the efficiency and expected durability of these systems. Some of the important findings from the ANL analysis are: (1) Increasing the inlet mass flux while going to larger cells can be a compromise to overcome increasing thermal and current density gradients while increasing the cell size. This approach could be beneficial for the economics of the SOECs; (2) The presence of excess hydrogen at the SOEC inlet to avoid Ni degradation can result in a sizeable decrease in the process efficiency; (3) A parallel-flow geometry for SOEC operation (if such a thing be achieved without sealing problems) yields smaller temperature gradients and current density gradients across the cell, which is favorable for the durability of the cells; (4) Contact resistances can significantly influence the total cell resistance and cell temperatures over a large range of operating potentials. Thus it is important to identify and avoid SOEC stack conditions leading to such high resistances due to poor contacts.

Yildiz, B.; Smith, J.; Sofu, T.; Nuclear Engineering Division

2008-06-25T23:59:59.000Z

204

Resistivity measurements of iodine single crystals by an A.C. technique  

E-Print Network [OSTI]

are organic semi- conductors. Inokuchi and Akamatu and Garrett have investigated the electrical properties of several of these semiconductors and have also summarized the re- suits of much of the work that has been done on these materials up to 1961. Be... as the resistance increases, the accuracy is better than 10% in the resistance range of 10 ohms with a capacitance of 10 pF across the sample. If the capacitance is decreased by trimming the bridge before electrodes are con- nected to the sample to rule out all...

Intararithi, Thanom

1965-01-01T23:59:59.000Z

205

Design of bulk thermoelectric modules for integrated circuit thermal management  

E-Print Network [OSTI]

Index Terms—Contact resistance, equivalent circuit models,1-D equivalent circuit model. When the thermal resistance

Fukutani, K; Shakouri, A

2006-01-01T23:59:59.000Z

206

Measurement of Thermal Conductivity of PbTe Nanocrystal Coated Glass Fibers by the 3 Method  

E-Print Network [OSTI]

and high aspect ratio result in a significant thermal radiation effect. We simulate the experiment using such as automobile exhaust pipes, power plant steam pipes, manufacturing industry cooling pipes, and so forth. Our the radiation effect and extract the thermal conductivity at the single fiber level. Our simulation method

Ruan, Xiulin

207

Carbon Nanostructures As Thermal Interface Materials: Processing And Properties.  

E-Print Network [OSTI]

??The power density of electronic packages has substantially increased. The thermal interface resistance involves more than 50% of the total thermal resistance in current high-power… (more)

Memon, Muhammad Omar

2011-01-01T23:59:59.000Z

208

Plasma resistivity profile measurement from an external radio-frequency magnetic coil  

E-Print Network [OSTI]

, the plasma looks like the secondary of a transformer, and the power dissipated can be seen from the primary the induced currents. The effect of the field change inside the conductor is thus principally manifested only. The resistive dissipation in this image current shows up as a power loss from the circuit that is used

Washington at Seattle, University of

209

Generalizing the flash technique in the front-face configuration to measure the thermal diffusivity of semitransparent solids  

SciTech Connect (OSTI)

In this work, we have extended the front-face flash method to retrieve simultaneously the thermal diffusivity and the optical absorption coefficient of semitransparent plates. A complete theoretical model that allows calculating the front surface temperature rise of the sample has been developed. It takes into consideration additional effects, such as multiple reflections of the heating light beam inside the sample, heat losses by convection and radiation, transparency of the sample to infrared wavelengths, and heating pulse duration. Measurements performed on calibrated solids, covering a wide range of absorption coefficients (from transparent to opaque) and thermal diffusivities, validate the proposed method.

Pech-May, Nelson Wilbur [Departamento de Física Aplicada I, Escuela Técnica Superior de Ingeniería, Universidad del País Vasco UPV/EHU, Alameda Urquijo s/n, 48013 Bilbao (Spain); Department of Applied Physics, CINVESTAV Unidad Mérida, carretera Antigua a Progreso km6, A.P. 73 Cordemex, Mérida Yucatán 97310, México (Mexico); Mendioroz, Arantza; Salazar, Agustín, E-mail: agustin.salazar@ehu.es [Departamento de Física Aplicada I, Escuela Técnica Superior de Ingeniería, Universidad del País Vasco UPV/EHU, Alameda Urquijo s/n, 48013 Bilbao (Spain)

2014-10-15T23:59:59.000Z

210

Thermal Interface Materials for Power Electronics Applications: Preprint  

SciTech Connect (OSTI)

The thermal resistance of the thermal interface material layer greatly affects the maximum temperature of the power electronics.

Narumanchi, S.; Mihalic, M.; Kelly, K.; Eesley, G.

2008-07-01T23:59:59.000Z

211

High Temperature Thermal Stability and Oxidation Resistance of Magnetron-sputtered Homogeneous CrAlON Coatings on 430 Steel  

SciTech Connect (OSTI)

The requirements of low cost and high-temperature corrosion resistance for bipolar interconnect plates in solid oxide fuel cell stacks has directed attention to the use of metal plates with oxidation resistant coatings. We have investigated the performance of steel plates with homogenous coatings of CrAlON (oxynitrides). The coatings were deposited using RF magnetron sputtering, with Ar as a sputtering gas. Oxygen in these coatings was not intentionally added. Oxygen might have come through contaminated nitrogen gas bottle, leak in the chamber or from the partial pressure of water vapors. Nitrogen was added during the growth process to get oxynitride coating. The Cr/Al composition ratio in the coatings was varied in a combinatorial approach. The coatings were subsequently annealed in air for up to 25 hours at 800 deg. C. The composition of the coated plates and the rate of oxidation were characterized using Rutherford backscattering (RBS) and nuclear reaction analysis (NRA). From our results, we conclude that Al rich coatings are more susceptible to oxidation than Cr rich coatings.

Kayani, A.; Wickey, K. J.; Nandasiri, M. I.; Moore, A.; Garratt, E.; AlFaify, S.; Gao, X. [Western Michigan University-Kalamazoo, MI 49008 (United States); Smith, R. J.; Buchanan, T. L.; Priyantha, W.; Kopczyk, M.; Gannon, P. E. [Montana State University-Bozeman, MT 59717 (United States); Gorokhovsky, V. I. [Arcomac Surface Engineering, LLC-Bozeman, MT 59715 (United States)

2009-03-10T23:59:59.000Z

212

An optimal guarding scheme for thermal conductivity measurement using a guarded cut-bar technique, part 1 experimental study  

SciTech Connect (OSTI)

In the guarded cut-bar technique, a guard surrounding the measured sample and reference (meter) bars is temperature controlled to carefully regulate heat losses from the sample and reference bars. Guarding is typically carried out by matching the temperature profiles between the guard and the test stack of sample and meter bars. Problems arise in matching the profiles, especially when the thermal conductivitiesof the meter bars and of the sample differ, as is usually the case. In a previous numerical study, the applied guarding condition (guard temperature profile) was found to be an important factor in measurement accuracy. Different from the linear-matched or isothermal schemes recommended in literature, the optimal guarding condition is dependent on the system geometry and thermal conductivity ratio of sample to meter bar. To validate the numerical results, an experimental study was performed to investigate the resulting error under different guarding conditions using stainless steel 304 as both the sample and meter bars. The optimal guarding condition was further verified on a certified reference material, pyroceram 9606, and 99.95% pure iron whose thermal conductivities are much smaller and much larger, respectively, than that of the stainless steel meter bars. Additionally, measurements are performed using three different inert gases to show the effect of the insulation effective thermal conductivity on measurement error, revealing low conductivity, argon gas, gives the lowest error sensitivity when deviating from the optimal condition. The result of this study provides a general guideline for the specific measurement method and for methods requiring optimal guarding or insulation.

Changhu Xing [Utah State Univ., Logan, UT (United States). Dept. of Mechanical and Aerospace Engineering; Colby Jensen [Utah State Univ., Logan, UT (United States). Dept. of Mechanical and Aerospace Engineering; Charles Folsom [Utah State Univ., Logan, UT (United States). Dept. of Mechanical and Aerospace Engineering; Heng Ban [Utah State Univ., Logan, UT (United States). Dept. of Mechanical and Aerospace Engineering; Douglas W. Marshall [Idaho National Laboratory (INL), Idaho Falls, ID (United States)

2014-01-01T23:59:59.000Z

213

A Correction Scheme for Thermal Conductivity Measurement Using the Comparative Cut-bar Technique Based on a 3D Numerical Simulation  

SciTech Connect (OSTI)

As an important factor affecting the accuracy of the thermal conductivity measurement, systematic (bias) error in the guarded comparative axial heat flow (cut-bar) method was mostly neglected by previous researches. This bias is due primarily to the thermal conductivity mismatch between sample and meter bars (reference), which is common for a sample of unknown thermal conductivity. A correction scheme, based on a finite element simulation of the measurement system, was proposed to reduce the magnitude of the overall measurement uncertainty. This scheme was experimentally validated by applying corrections on four types of sample measurements in which the specimen thermal conductivity is much smaller, slightly smaller, equal and much larger than that of the meter bar. As an alternative to the optimum guarding technique proposed before, the correction scheme can be used to minimize uncertainty contribution from the measurement system with non-optimal guarding conditions. It is especially necessary for large thermal conductivity mismatches between sample and meter bars.

Douglas W. Marshall; Changhu Xing; Charles Folsom; Colby Jensen; Heng Ban

2014-05-01T23:59:59.000Z

214

In situ resistance measurement of the p-type contact in InPInGaAsP coolerless ridge waveguide lasers  

E-Print Network [OSTI]

microscopy SVM is employed to measure the voltage division--and resulting contact resistance and power loss. This in situ experimental study of the parasitic voltage division and resulting power loss and series contact

215

Compact and high-particle-flux thermal-lithium-beam probe system for measurement of two-dimensional electron density profile  

SciTech Connect (OSTI)

A compact and high-particle-flux thermal-lithium-beam source for two-dimensional measurement of electron density profiles has been developed. The thermal-lithium-beam oven is heated by a carbon heater. In this system, the maximum particle flux of the thermal lithium beam was ?4 × 10{sup 19} m{sup ?2} s{sup ?1} when the temperature of the thermal-lithium-beam oven was 900 K. The electron density profile was evaluated in the small tokamak device HYBTOK-II. The electron density profile was reconstructed using the thermal-lithium-beam probe data and this profile was consistent with the electron density profile measured with a Langmuir electrostatic probe. We confirm that the developed thermal-lithium-beam probe can be used to measure the two-dimensional electron density profile with high time and spatial resolutions.

Shibata, Y., E-mail: shibata.yoshihide@jaea.go.jp; Manabe, T.; Ohno, N.; Takagi, M. [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Kajita, S. [EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Tsuchiya, H.; Morisaki, T. [National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292 (Japan)

2014-09-15T23:59:59.000Z

216

Lattice thermal conductivity of self-assembled PbTe-Sb2Te3 composites with nanometer lamellae Teruyuki Ikeda1  

E-Print Network [OSTI]

. In this work, the thermal conductivities and the electrical resistivities have been measured as functions for effective use of heat or electrical energy, it is essential to discover materials with a high thermoelectric to control the fraction transformed and inter-lamellar spacing. The electrical resistivity and the thermal

217

Investigation of Thermal Interface Materials Using Phase-Sensitive Transient Thermoreflectance Technique: Preprint  

SciTech Connect (OSTI)

With increasing power density in electronics packages/modules, thermal resistances at multiple interfaces are a bottleneck to efficient heat removal from the package. In this work, the performance of thermal interface materials such as grease, thermoplastic adhesives and diffusion-bonded interfaces are characterized using the phase-sensitive transient thermoreflectance technique. A multi-layer heat conduction model was constructed and theoretical solutions were derived to obtain the relation between phase lag and the thermal/physical properties. This technique enables simultaneous extraction of the contact resistance and bulk thermal conductivity of the TIMs. With the measurements, the bulk thermal conductivity of Dow TC-5022 thermal grease (70 to 75 um bondline thickness) was 3 to 5 W/(m-K) and the contact resistance was 5 to 10 mm2-K/W. For the Btech thermoplastic material (45 to 80 ?m bondline thickness), the bulk thermal conductivity was 20 to 50 W/(m-K) and the contact resistance was 2 to 5 mm2-K/W. Measurements were also conducted to quantify the thermal performance of diffusion-bonded interface for power electronics applications. Results with the diffusion-bonded sample showed that the interfacial thermal resistance is more than one order of magnitude lower than those of traditional TIMs, suggesting potential pathways to efficient thermal management.

Feng, X.; King, C.; DeVoto, D.; Mihalic, M.; Narumanchi, S.

2014-08-01T23:59:59.000Z

218

A study of stability analysis of pyroclastic covers based on electrical resistivity measurements  

E-Print Network [OSTI]

Usually, the degree of stability of a slope is quantified by the Factor of Safety whose values depend on physical and mechanical soil properties analyzed on samples of much reduced sizes or referring to very small soil volumes around porous probes. To overcome the limit of punctual information, we propose a semi-empirical approach based on the use of geophysical methods and the employment of a geophysical Factor of Safety recently introduced by the authors in terms of local resistivities and slope angles. In this paper, we show an application of our proposal on a test area of about 2000 m2 on Sarno Mountains (Campania Region - Southern Italy), where shallow landslides involving pyroclastic soils periodically occur triggered by critical rainfall events. Starting from two resistivity tomography surveys performed on the test area in autumn and spring, we obtained maps of the geophysical Factor of Safety at different depths for the two seasons. We also estimated the values of the Factor of Safety by using the inf...

Di Maio, Rosa

2011-01-01T23:59:59.000Z

219

Advancing Reactive Tracer Methods for Measurement of Thermal Evolution in Geothermal Reservoirs: Final Report  

SciTech Connect (OSTI)

The injection of cold fluids into engineered geothermal system (EGS) and conventional geothermal reservoirs may be done to help extract heat from the subsurface or to maintain pressures within the reservoir (e.g., Rose et al., 2001). As these injected fluids move along fractures, they acquire heat from the rock matrix and remove it from the reservoir as they are extracted to the surface. A consequence of such injection is the migration of a cold-fluid front through the reservoir (Figure 1) that could eventually reach the production well and result in the lowering of the temperature of the produced fluids (thermal breakthrough). Efficient operation of an EGS as well as conventional geothermal systems involving cold-fluid injection requires accurate and timely information about thermal depletion of the reservoir in response to operation. In particular, accurate predictions of the time to thermal breakthrough and subsequent rate of thermal drawdown are necessary for reservoir management, design of fracture stimulation and well drilling programs, and forecasting of economic return. A potential method for estimating migration of a cold front between an injection well and a production well is through application of reactive tracer tests, using chemical whose rate of degradation is dependent on the reservoir temperature between the two wells (e.g., Robinson 1985). With repeated tests, the rate of migration of the thermal front can be determined, and the time to thermal breakthrough calculated. While the basic theory behind the concept of thermal tracers has been understood for some time, effective application of the method has yet to be demonstrated. This report describes results of a study that used several methods to investigate application of reactive tracers to monitoring the thermal evolution of a geothermal reservoir. These methods included (1) mathematical investigation of the sensitivity of known and hypothetical reactive tracers, (2) laboratory testing of novel tracers that would improve method sensitivity, (3) development of a software tool for design and interpretation of reactive tracer tests and (4) field testing of the reactive tracer temperature monitoring concept.

Mitchell A. Plummer; Carl D. Palmer; Earl D. Mattson; Laurence C. Hull; George D. Redden

2011-07-01T23:59:59.000Z

220

Thermal imaging measurement of lateral diffusivity and non-invasive material defect detection  

DOE Patents [OSTI]

A system and method for determining lateral thermal diffusivity of a material sample using a heat pulse; a sample oriented within an orthogonal coordinate system; an infrared camera; and a computer that has a digital frame grabber, and data acquisition and processing software. The mathematical model used within the data processing software is capable of determining the lateral thermal diffusivity of a sample of finite boundaries. The system and method may also be used as a nondestructive method for detecting and locating cracks within the material sample.

Sun, Jiangang (Westmont, IL); Deemer, Chris (Downers Grove, IL)

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal resistance measured" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Effects of proton-exchange membrane fuel-cell operating conditions on charge transfer resistances measured by electrochemical impedance spectroscopy  

SciTech Connect (OSTI)

Proton-exchange-membrane fuel cells (PEMFC) are highly dependent on operating conditions, such as humidity and temperature. This study employs electrochemical impedance spectroscopy (EIS) to measure the effects of operating parameters on internal proton and electron transport resistance mechanisms in the PEMFC. Current-density experiments have been performed to measure the power production in a 25 cm{sup 2} Nafion 117 PEMFC at varying operating conditions. These experiments have shown that low humidity and low temperature contribute to decreased power production. EIS is currently employed to provide a better understanding of the mechanisms involved in power production by calculating the specific resistances at various regions in the PEMFC. Experiments are performed at temperatures ranging from 30 to 50 C, feed humidities from 20 to 98%, and air stoichiometric ratios from 1.33 to 2.67. In all experiments, the hydrogen feed stoichiometric ratio was approximately 4.0. EIS is used to identify which transport steps limit the power production of the PEMFC over these ranges of conditions. The experimental data are analyzed via comparison to equivalent circuit models (ECMs), a technique that uses an electrical circuit to represent the electrochemical and transport properties of the PEMFC. These studies will aid in designing fuel cells that are more tolerant to wide-ranging operating conditions. In addition, optimal operating conditions for PEMFC operation can be identified.

Aaron, Doug S [ORNL; Yiacoumi, Sotira [Georgia Institute of Technology; Tsouris, Costas [ORNL

2008-01-01T23:59:59.000Z

222

NANO REVIEW Open Access Thermal conductivity and thermal boundary  

E-Print Network [OSTI]

NANO REVIEW Open Access Thermal conductivity and thermal boundary resistance of nanostructures and the thermal transport prop- erties is a key point to design materials with preferred thermal properties with the heat dissipation on them. The influence of the interfacial roughness on the thermal conductivity

Boyer, Edmond

223

Building design and thermal renovation measures proposal by means of regression models issued from dynamic simulations  

E-Print Network [OSTI]

comparison between different energy reduction strategies, like improving the insulation levels or increasing the thermal inertia. An example of their use and a data comparison with a dynamic simulation is shown in last;Nowadays, the most reliable solutions to calculate the energy demand are the simulation energy tools

Boyer, Edmond

224

Measurement of the thermal expansion coefficients of ferroelectric crystals by a moire interferometer  

E-Print Network [OSTI]

reserved. Keywords: Moire´ interferometry; Ferroelectric; Thermal expansion 1. Introduction Lithium niobate-phase-matched interactions [4­6]. Design of such devices requires accurate knowledge of the relevant physi- cal parameters properties, as the thermo-optic coefficients [7]. Further- more, in quasi-phase-match nonlinear processes

Arie, Ady

225

On the information content of the thermal infrared cooling rate profile from satellite instrument measurements  

E-Print Network [OSTI]

On the information content of the thermal infrared cooling rate profile from satellite instrument 2008; accepted 25 February 2008; published 13 June 2008. [1] This work investigates how remote sensing of the quantities required to calculate clear-sky cooling rate profiles propagates into cooling rate profile

Liou, K. N.

226

2694 IEEE TRANSACTIONS ON MAGNETICS, VOL. 38, NO. 5, SEPTEMBER 2002 Analysis of Angular Dependent Resistance  

E-Print Network [OSTI]

direction and the thermal coefficient of resistance. This analysis can support the design of spin valve Resistance Measurements on IrMn-Based Spin Valves Using a Finite Pinning Model Chih-Ling Lee, Shaoyan Chu, James A. Bain, and Michael E. McHenry Abstract--The magnetoresistance of IrMn based spin valve sheet

McHenry, Michael E.

227

Thermal indicator for wells  

DOE Patents [OSTI]

Minute durable plate-like thermal indicators are employed for precision measuring static and dynamic temperatures of well drilling fluids. The indicators are small enough and sufficiently durable to be circulated in the well with drilling fluids during the drilling operation. The indicators include a heat resistant indicating layer, a coacting meltable solid component and a retainer body which serves to unitize each indicator and which may carry permanent indicator identifying indicia. The indicators are recovered from the drilling fluid at ground level by known techniques.

Gaven, Jr., Joseph V. (Oakton, VA); Bak, Chan S. (Newbury Park, CA)

1983-01-01T23:59:59.000Z

228

Proc. Fifteenth IEEE Semiconductor Thermal Measurement and Management Symposium, March 9-11, 1999, San Diego CA, IEEE # 99CH36306.  

E-Print Network [OSTI]

Proc. Fifteenth IEEE Semiconductor Thermal Measurement and Management Symposium, March 9-11, 1999, San Diego CA, IEEE # 99CH36306. 74 THERMAL MANAGEMENT USING "DRY" PHASE CHANGE MATERIALS R.A. Wirtz" PCM unit conductance D Heat sink depth htr Heat of transition H Fin height Hpcm PCM mass depth kal

Wirtz, Richard A.

229

Measurement and modeling of thermal properties of sorghum and soy flours  

E-Print Network [OSTI]

Kelvin. Figure 1 shows the OSC conventions for presentation of thermal analysis data. When a transition such as melting, boiling, gelatinization or crystallization occurs in the sample material, an endothermic or exothermic reaction takes place... important than the second scan values. The second scan values, however, can tell us whether endothermic or exothermic transitions occurred in the first scan and 1f these transitions are irreversible. The bas1c methodology for determining specific heat...

Gonzalez Palacios, Lazaro

1981-01-01T23:59:59.000Z

230

An apparatus for the measurement of thermal conductivity of liquid neon  

E-Print Network [OSTI]

past the max1mum recommended storage temperature of 100 C. The hot plate, Pl, and guard ring, P2, are heated. by nicrome heater wires, whose respective resistances are 50 ohms and. 150 ohms. An additional heater of 5 ohms was placed near the cupro-nickel.... to the heater. They were coiled around the top of the guard. ring once before being soldered to the number 36 copper wires leading to the top plate. The number 36 wires go to the top plate by means of a 1/8 in. cupro-nickel tube and were sealed from...

Jensen, Jerald Norman

1967-01-01T23:59:59.000Z

231

Methods for enhancing mapping of thermal fronts in oil recovery  

DOE Patents [OSTI]

A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the CSAMT technique is disclosed. This method includes the steps of: (a) preparing a CSAMT-determined topological resistivity map of the production field; (b) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the connate water of the production field; (c) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (d) mathematically comparing the maps from step (a) and step (c) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.

Lee, David O. (Albuquerque, NM); Montoya, Paul C. (Albuquerque, NM); Wayland, Jr., James R. (Albuquerque, NM)

1987-01-01T23:59:59.000Z

232

Methods for enhancing mapping of thermal fronts in oil recovery  

DOE Patents [OSTI]

A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the controlled source audio frequency magnetotelluric (CSAMT) technique is disclosed. This method includes the steps of: (1) preparing a CSAMT-determined topological resistivity map of the production field; (2) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the conate water of the production field; (3) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (4) mathematically comparing the maps from step (1) and step (3) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.

Lee, D.O.; Montoya, P.C.; Wayland, J.R. Jr.

1984-03-30T23:59:59.000Z

233

Calorimetric and Resistive Measurements of Amorphous Splat Cooled La1-Xgax Foils  

E-Print Network [OSTI]

- tors have been directed toward the simple (nontransi- tion) metals. A survey of the available experimental data on the simple' amorphous metals leads one to the following conclusions: (i) they are strong-coupling superconductors with electron...?~Au?alloys to be only intermediate coupling superconductors, and tun- neling measurements by Tsuei et al. ' indicated weak- coupling superconductivity in several a-TM alloys. These results are very interesting in light of the very general argument by Bergmann...

SHULL, WH; Naugle, Donald G.; POON, SJ; JOHNSON, WL.

1978-01-01T23:59:59.000Z

234

Non-contact, Wavelet-based Measurement of Vital Signs using Thermal Imaging S. Yu. Chekmenev, H. Rara, and Aly A. Farag  

E-Print Network [OSTI]

be measured and used to assess the person's level of physical functioning. Normal ranges of vital signs vary with ECG data as the baseline measurement. Geisheimer [6] developed a Radar Vital Signs Monitor (RVSMNon-contact, Wavelet-based Measurement of Vital Signs using Thermal Imaging S. Yu. Chekmenev, H

Farag, Aly A.

235

Photo-Thermal Transfer Function of Dielectric Mirrors for Precision Measurements  

E-Print Network [OSTI]

The photo-thermal transfer function from absorbed power incident on a dielectric mirror to the effective mirror position is calculated using the coating design as input. The effect is found to change in amplitude and sign for frequencies corresponding to diffusion length comparable to the coating thickness. Transfer functions are calculated for the $Ti$-doped ${\\rm Ta_2O_5:SiO_2}$ coating used in Advanced LIGO and for a crystalline ${\\rm Al_xGa_{1-x}As}$ coating. The shape of the transfer function at high frequencies is shown to be a sensitive indicator of the effective absorption depth, providing a potentially powerful tool to distinguish coating-internal absorption from surface contamination related absorption. The sign change of the photo-thermal effect could also be useful to stabilize radiation pressure-based opto-mechanical systems. High frequency corrections to the previously published thermo-optic noise estimates are also provided. Finally, estimating the quality of the thermo-optic noise cancellation occurring in fine-tuned ${\\rm Al_xGa_{1-x}As}$ coatings requires the detailed heat flow analysis done in this paper.

Stefan W. Ballmer

2015-01-07T23:59:59.000Z

236

THERMAL CONDUCTIVITY AND OTHER PROPERTIES OF CEMENTITIOUS GROUTS  

SciTech Connect (OSTI)

The thermal conductivity and other properties cementitious grouts have been investigated in order to determine suitability of these materials for grouting vertical boreholes used with geothermal heat pumps. The roles of mix variables such as water/cement ratio, sand/cement ratio and superplasticizer dosage were measured. In addition to thermal conductivity, the cementitious grouts were also tested for bleeding, permeability, bond to HDPE pipe, shrinkage, coefficient of thermal expansion, exotherm, durability and environmental impact. This paper summarizes the results for selected grout mixes. Relatively high thermal conductivities were obtained and this leads to reduction in predicted bore length and installation costs. Improvements in shrinkage resistance and bonding were achieved.

ALLAN,M.

1998-05-01T23:59:59.000Z

237

Calculations of thermal-reactor spent-fuel nuclide inventories and comparisons with measurements  

SciTech Connect (OSTI)

Comparisons with integral measurements have demonstrated the accuracy of CINDER codes and libraries in calculating aggregate fission-product properties, including neutron absorption, decay power, and decay spectra. CINDER calculations have, alternatively, been used to supplement measured integral data describing fission-product decay power and decay spectra. Because of the incorporation of the extensive actinide library and the use of ENDF/B-V data, it is desirable to compare the inventory of individual nuclides obtained from tandem EPRI-CELL/CINDER-2 calculations with those determined in documented benchmark inventory measurements of spent reactor fuel. The development of the popular /sup 148/Nd burnup measurement procedure is outlined, and areas of uncertainty in it and lack of clarity in its interpretation are indicated. Six inventory samples of varying quality and completeness are examined. The power histories used in the calculations have been listed for other users.

Wilson, W.B.; LaBauve, R.J.; England, T.R.

1982-01-01T23:59:59.000Z

238

American Institute of Aeronautics and Astronautics Measurements for fuel reforming for scramjet thermal management and  

E-Print Network [OSTI]

American Institute of Aeronautics and Astronautics 1 Measurements for fuel reforming for scramjet to be achieved with dual-mode-Ramjet (Ramjet under Mach 6 and Scramjet beyond) because of its high specific

Paris-Sud XI, Université de

239

American Institute of Aeronautics and Astronautics Measurements for fuel reforming for scramjet thermal management and  

E-Print Network [OSTI]

American Institute of Aeronautics and Astronautics 1 Measurements for fuel reforming for scramjet, since even composite materials can't withstand the large heat load found in a Scramjet combustion

Paris-Sud XI, Université de

240

Measurements of the spatial and energy distribution of thermal neutrons in uranium, heavy water lattices  

E-Print Network [OSTI]

Intracell activity distributions were measured in three natural uranium, heavy water lattices of 1. 010 inch diameter, aluminum clad rods on triangular spacings of 4. 5 inches, 5. 0 inches, and 5. 75 inches, respectively, ...

Brown, Paul S. (Paul Sherman)

1962-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal resistance measured" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Deflection Measurements of a Thermally Simulated Nuclear Core using a High-Resolution CCD-Camera  

SciTech Connect (OSTI)

Space fission systems under consideration for near-term missions all use compact, fast-spectrum reactor cores. Reactor dimensional change with increasing temperature, which affects neutron leakage, is the dominant source of reactivity feedback in these systems. Accurately measuring core dimensional changes during realistic non-nuclear testing is therefore necessary in predicting the system 'nuclear' equivalent behavior. This paper discusses one key technique being evaluated for measuring such changes. The proposed technique is to use a Charged Couple Device (CCD) sensor to obtain deformation readings of electrically heated prototypic reactor core geometry. This paper introduces a technique by which a single high spatial resolution CCD camera is used to measure core deformation in Real-Time (RT). Initial system checkout results are presented along with a discussion on how additional cameras could be used to achieve a three-dimensional deformation profile of the core during test. (authors)

Stanojev, B.J. [Marshall Space Flight Center, National Aeronautics and Space Administration, Huntsville, Al, 35812 (United States); Houts, M. [Los Alamos National Laboratory, Department of Energy, Los Alamos, NM, 87545 (United States)

2004-07-01T23:59:59.000Z

242

Thermal conductivity of highly-ordered mesoporous titania thin films from 30 to 320 K  

E-Print Network [OSTI]

Thermal resistance of grain boundaries in alumina ceramicsThermal conductivity of highly porous zirconia”. Journal of the European Ceramic

2011-01-01T23:59:59.000Z

243

The use of electrical resistance in the plant stem to measure plant response to soil moisture tension and evaporative demand  

E-Print Network [OSTI]

. . . . . . , . . . . . . ~. . . . . . . . . 30 10- Diurnal cotton plant stem electrical resistance readings as recorded simultaneously from three soil moisture levels. ~ 36 Flot 1-P (cotton), Diurnal cotton plant stem electrical resistance readings with soil moisture tension equal to 13... atsespheresl ~ ~ a ~ ~ ~ ~ ~ . ~ ~ ~ ~ ta ~ I ~ ~ ~ t ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ae ~ ~ ~ a ~ ~ t ~ ~ ~ ~ 37 13 ' Electrical resistance in the plant stem, and evapotrans- piration in non-irrigated and irrigated cotton plots during one diurnal period. . ~ 39 Plots...

Box, James E.

1956-01-01T23:59:59.000Z

244

Quantitative comparison of processes of oil-and water-based mud-filtrate invasion and corresponding effects on borehole resistivity measurements  

E-Print Network [OSTI]

for hydrocarbon exploration and production, drilling fluids sustain a pressure higher than that of formationQuantitative comparison of processes of oil- and water-based mud-filtrate invasion-filtrate invasion on borehole resistivity measurements. We simulate the process of mud-fil- trate invasion

Torres-Verdín, Carlos

245

Measurements of thermal-hydraulic parameters in liquid-metal-cooled fast-breeder reactors  

SciTech Connect (OSTI)

This paper discusses instrumentation for liquid-metal-cooled fast breeder reactors (LMFBR's). Included is instrumentation to measure sodium flow, pressure, temperature, acoustic noise, sodium purity, and leakage. The paper identifies the overall instrumentation requirements for LMFBR's and those aspects of instrumentation which are unique or of special concern to LMFBR systems. It also gives an overview of the status of instrument design and performance.

Sackett, J.I.

1983-01-01T23:59:59.000Z

246

High PID Resistant Cross-Linked Encapsulnt Based on Polyolefin...  

Broader source: Energy.gov (indexed) [DOE]

are some concern about thermal creep resistance We have developed new polyolefin encapsulant "SOLAR ASCE TM" , which is based on high electrical resistivity polyolefin...

247

Thermal conductivity of thermal-battery insulations  

SciTech Connect (OSTI)

The thermal conductivities of a variety of insulating materials used in thermal batteries were measured in atmospheres of argon and helium using several techniques. (Helium was used to simulate the hydrogen atmosphere that results when a Li(Si)/FeS{sub 2} thermal battery ages.) The guarded-hot-plate method was used with the Min-K insulation because of its extremely low thermal conductivity. For comparison purposes, the thermal conductivity of the Min-K insulating board was also measured using the hot-probe method. The thermal-comparator method was used for the rigid Fiberfrax board and Fiberfrax paper. The thermal conductivity of the paper was measured under several levels of compression to simulate the conditions of the insulating wrap used on the stack in a thermal battery. The results of preliminary thermal-characterization tests with several silica aerogel materials are also presented.

Guidotti, R.A.; Moss, M.

1995-08-01T23:59:59.000Z

248

A pressure gauge based on gas density measurement from analysis of the thermal noise of an atomic force microscope cantilever  

SciTech Connect (OSTI)

We describe a gas-density gauge based on the analysis of the thermally-driven fluctuations of an atomic force microscope (AFM) cantilever. The fluctuations are modeled as a ring-down of a simple harmonic oscillator, which allows fitting of the resonance frequency and damping of the cantilever, which in turn yields the gas density. The pressure is obtained from the density using the known equation of state. In the range 10-220 kPa, the pressure readings from the cantilever gauge deviate by an average of only about 5% from pressure readings on a commercial gauge. The theoretical description we use to determine the pressure from the cantilever motion is based upon the continuum hypothesis, which sets a minimum pressure for our analysis. It is anticipated that the cantilever gauge could be extended to measure lower pressures given a molecular theoretical description. Alternatively, the gauge could be calibrated for use in the non-continuum range. Our measurement technique is similar to previous AFM cantilever measurements, but the analysis produces improved accuracy.

Seo, Dongjin; Ducker, William A. [Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States); Paul, Mark R. [Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States)

2012-05-15T23:59:59.000Z

249

An experimental measurement of the thermal conductivity and diffusivity of a porous solid-liquid system  

E-Print Network [OSTI]

to contain the sample for the flow rate measurement. 1. Air Supply 2 ~ Vacuun Line 3. Waste Line 4 ~ Surge Tank 5. Water Reservoir 6. Oil Reservoir Test Specinsn 8. Pressure Regulator Valve SATURATION APPARATUS FCR SATURATI?l SARDSTONR TXSP... the system can be described by' the one h dimensional form of Fouriers dT Equation: Q ~ -!:. A ? . ds The quantity of heat flowing through the oil and water in the pore dT space is OCk! ~ K A& ( ? ) + Kp AC (~)C ~ Based on the unidirectional W & d...

Dunn, James Elliott

1959-01-01T23:59:59.000Z

250

Thermal input control and enhancement for laser based residual stress measurements using liquid temperature indicating coatings  

DOE Patents [OSTI]

An improved method for measuring residual stress in a material is disclosed comprising the steps of applying a spot of temperature indicating coating to the surface to be studied, establishing a speckle pattern surrounds the spot of coating with a first laser then heating the spot of coating with a far infrared laser until the surface plastically deforms. Comparing the speckle patterns before and after deformation by subtracting one pattern from the other will produce a fringe pattern that serves as a visual and quantitative indication of the degree to which the plasticized surface responded to the stress during heating and enables calculation of the stress. 3 figs.

Pechersky, M.J.

1999-07-06T23:59:59.000Z

251

Thermal input control and enhancement for laser based residual stress measurements using liquid temperature indicating coatings  

DOE Patents [OSTI]

An improved method for measuring residual stress in a material comprising the steps of applying a spot of temperature indicating coating to the surface to be studied, establishing a speckle pattern surrounds the spot of coating with a first laser then heating the spot of coating with a far infrared laser until the surface plastically deforms. Comparing the speckle patterns before and after deformation by subtracting one pattern from the other will produce a fringe pattern that serves as a visual and quantitative indication of the degree to which the plasticized surface responded to the stress during heating and enables calculation of the stress.

Pechersky, Martin J. (Aiken, SC)

1999-01-01T23:59:59.000Z

252

24-26 September 2008, Rome, Italy Thermal Design of  

E-Print Network [OSTI]

conductivity of most materials used to electrically insulate the devices enhances the thermal issues that could to estimate the overall thermal resistance by considering a combination of individual thermal resistances of layout parameters upon the thermal resistance of such devices. This contribution is aimed at supplying

Technische Universiteit Delft

253

FAST STATIC AND DYNAMIC GRID LEVEL THERMAL SIMULATION CONSIDERING TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY OF SILICON  

E-Print Network [OSTI]

is based on an equivalent circuit of thermal resistances andof convection resistance to 0.13 K/W. This is equivalent toequivalent convection coefficient. h = 1/(R × A) The convection resistance

Ziabari, Amirkoushyar

2012-01-01T23:59:59.000Z

254

Measuring the Optical Performance of Evacuated Receivers via an Outdoor Thermal Transient Test: Preprint  

SciTech Connect (OSTI)

Modern parabolic trough solar collectors operated at high temperatures to provide the heat input to Rankine steam power cycles employ evacuated receiver tubes along the collector focal line. High performance is achieved via the use of a selective surface with a high absorptance for incoming short-wave solar radiation and a low emittance for outgoing long-wave infrared radiation, as well as the use of a hard vacuum to essentially eliminate convective and conductive heat losses. This paper describes a new method that determines receiver overall optical efficiency by exposing a fluid-filled, pre-cooled receiver to one sun outdoors and measuring the slope of the temperature curve at the point where the receiver temperature passes the glass envelope temperature (that is, the point at which there is no heat gain or loss from the absorber). This transient test method offers the potential advantages of simplicity, high accuracy, and the use of the actual solar spectrum.

Kutscher, C.; Burkholder, F.; Netter, J.

2011-08-01T23:59:59.000Z

255

Sound speed and thermal property measurements of inert materials: laser spectroscopy and the diamond-anvil cell  

SciTech Connect (OSTI)

An indispensable companion to dynamical physics experimentation, static high-pressure diamond-anvil cell research continues to evolve, with laser diagnostic, as an accurate and versatile experimental deep planetary properties have bootstrapped each other in a process that has produced even higher pressures; consistently improved calibrations of temperature and pressure under static and dynamic conditions; and unprecedented data and understanding of materials, their elasticity, equations of state (EOS), and transport properties under extreme conditions. A collection of recent pressure and/or temperature dependent acoustic and thermal measurements and deduced mechanical properties and EOS data are summarized for a wide range of materials including H2, H2O, H2S, D2S, CO2, CH4, N2O, CH3OH,, SiO2, synthetic lubricants, PMMA, single crystal silicates, and ceramic superconductors. Room P&T sound speed measurements are presented for the first time on single crystals of beta-HMX. New high-pressure and temperature diamond cell designed and pressure calibrant materials are reviewed.

Zaug, J.M.

1997-07-01T23:59:59.000Z

256

Measurement of probe displacement to the thermal resolution limit in photonic force microscopy using a miniature quadrant photodetector  

SciTech Connect (OSTI)

A photonic force microscope comprises of an optically trapped micro-probe and a position detection system to track the motion of the probe. Signal collection for motion detection is often carried out using the backscattered light off the probe-however, this mode has problems of low S/N due to the small backscattering cross sections of the micro-probes typically used. The position sensors often used in these cases are quadrant photodetectors. To ensure maximum sensitivity of such detectors, it would help if the detector size matched with the detection beam radius after the condenser lens (which for backscattered detection would be the trapping objective itself). To suit this condition, we have used a miniature displacement sensor whose dimensions makes it ideal to work with 1:1 images of micrometer-sized trapped probes in the backscattering detection mode. The detector is based on the quadrant photo-integrated chip in the optical pick-up head of a compact disc player. Using this detector, we measured absolute displacements of an optically trapped 1.1 {mu}m probe with a resolution of {approx}10 nm for a bandwidth of 10 Hz at 95% significance without any sample or laser stabilization. We characterized our optical trap for different sized probes by measuring the power spectrum for each probe to 1% accuracy, and found that for 1.1 {mu}m diameter probes, the noise in our position measurement matched the thermal resolution limit for averaging times up to 10 ms. We also achieved a linear response range of around 385 nm with cross talk between axes {approx_equal}4% for 1.1 {mu}m diameter probes. The detector has extremely high bandwidth (few MHz) and low optical power threshold-other factors that can lead to its widespread use in photonic force microscopy.

Pal, Sambit Bikas; Haldar, Arijit; Roy, Basudev; Banerjee, Ayan [Department of Physical Sciences, IISER-Kolkata, West Bengal 741252 (India)

2012-02-15T23:59:59.000Z

257

Nanoscale Thermal Transport andMicrorefrigeratorsonaChip  

E-Print Network [OSTI]

are promising candidates as thermal vias and thermal interface materials due to their inherently high thermal; superlattices; thermal boundary resistance; thermionics; thermotunneling; thermoelectrics I. INTRODUCTIONINVITED P A P E R Nanoscale Thermal Transport andMicrorefrigeratorsonaChip Devices for cooling high

258

Validation of thermal models for a prototypical MEMS thermal actuator.  

SciTech Connect (OSTI)

This report documents technical work performed to complete the ASC Level 2 Milestone 2841: validation of thermal models for a prototypical MEMS thermal actuator. This effort requires completion of the following task: the comparison between calculated and measured temperature profiles of a heated stationary microbeam in air. Such heated microbeams are prototypical structures in virtually all electrically driven microscale thermal actuators. This task is divided into four major subtasks. (1) Perform validation experiments on prototypical heated stationary microbeams in which material properties such as thermal conductivity and electrical resistivity are measured if not known and temperature profiles along the beams are measured as a function of electrical power and gas pressure. (2) Develop a noncontinuum gas-phase heat-transfer model for typical MEMS situations including effects such as temperature discontinuities at gas-solid interfaces across which heat is flowing, and incorporate this model into the ASC FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (3) Develop a noncontinuum solid-phase heat transfer model for typical MEMS situations including an effective thermal conductivity that depends on device geometry and grain size, and incorporate this model into the FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (4) Perform combined gas-solid heat-transfer simulations using Calore with these models for the experimentally investigated devices, and compare simulation and experimental temperature profiles to assess model accuracy. These subtasks have been completed successfully, thereby completing the milestone task. Model and experimental temperature profiles are found to be in reasonable agreement for all cases examined. Modest systematic differences appear to be related to uncertainties in the geometric dimensions of the test structures and in the thermal conductivity of the polycrystalline silicon test structures, as well as uncontrolled nonuniform changes in this quantity over time and during operation.

Gallis, Michail A.; Torczynski, John Robert; Piekos, Edward Stanley; Serrano, Justin Raymond; Gorby, Allen D.; Phinney, Leslie Mary

2008-09-01T23:59:59.000Z

259

Effects of temperature and disorder on thermal boundary conductance at solidsolid interfaces: Nonequilibrium  

E-Print Network [OSTI]

with the constituent materials. The inter- face thermal resistance, often referred to as thermal boundary resistance between two different materials when a heat flux is applied. The inverse of thermal boundary resistance mismatched interfaces. Ã? 2007 Elsevier Ltd. All rights reserved. Keywords: Thermal boundary resistance

Zhigilei, Leonid V.

260

Advancing reactive tracer methods for measuring thermal evolution in CO2-and water-based geothermal reservoirs  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. This project aims to develop reactive tracer method for monitoring thermal drawdown in enhanced geothermal systems.

Note: This page contains sample records for the topic "thermal resistance measured" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

High-temperature quenching of electrical resistance in graphene interconnects  

E-Print Network [OSTI]

into the chip interconnect design the materials with low electrical resistance and high thermal con- ductivity dependence of the resistance were explained by the thermal generation of the electron-hole pairs and carrier, increased total thermal boundary resistance of the chip layers, incorporation of the alternative dielectric

262

Cross-verification of thermal characterisation of a micro-cooler Extended abstract  

E-Print Network [OSTI]

of holding the microcooler plate and ensured the necessary cooling gas supply to it. The method of obtaining was recorded in the measurement. The measured transients (cooling curves) were transformed into structure functions from which the partial thermal resistance corresponding to the cooling assembly was identified

Paris-Sud XI, Université de

263

Low Conductivity Thermal Barrier Coatings  

E-Print Network [OSTI]

Low Conductivity Thermal Barrier Coatings A Dissertation Presented to The Faculty of the School conductivity of the coatings. The minimum thermal conductivity occurs at a low rotation rate and is 0.8 W intrinsic thermal conductivity, good phase stability and greater resistance to sintering and CMAS attack

Wadley, Haydn

264

Thermal characterization of submicron polyacrylonitrile fibers based on optical heating and electrical thermal sensing  

SciTech Connect (OSTI)

In this work, the thermal diffusivity of single submicron ({approx}800 nm) polyacrylonitrile (PAN) fibers is characterized using the recently developed optical heating and electrical thermal sensing technique. In the experiment, a thin Au film (approximately in the nanometer range) is coated on the surface of nonconductive PAN fibers. A periodically modulated laser beam is used to irradiate suspended individual fibers to achieve noncontact periodical heating. The periodical temperature response of the sample is monitored by measuring the electrical resistance variation of the thin Au coating. The experimental results for three different synthesized PAN fibers with varying Au coating thickness are presented and discussed.

Hou Jinbo; Wang Xinwei; Zhang Lijun [Department of Mechanical Engineering, N104 Walter Scott Engineering Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0656 (United States)

2006-10-09T23:59:59.000Z

265

Greg Nelson traveled to the Institute of Physics in Zagreb, Croatia, for a seven week period in the summer of 2005. His research plan was to measure the thermopower and resistivity at low  

E-Print Network [OSTI]

Greg Nelson traveled to the Institute of Physics in Zagreb, Croatia, for a seven week period corresponded to TaxN with x=.5, .6, .7, .8, 1. When in Croatia, he worked directly with Dr. Miroslav Ocko resistivity(triangles) and resistivity at 4.2 K(squares), with open symbols showing measurements from Croatia

Freericks, Jim

266

A COMPUTATIONAL STUDY ON THERMAL CONDUCITIVITY OF  

E-Print Network [OSTI]

aspect ratio, weight fraction, and thermal resistance at the interface between the SWNTsA COMPUTATIONAL STUDY ON THERMAL CONDUCITIVITY OF CARBON NANOTUBE DISPERSED BIOLOGICAL NANOFLUIDS: Massachusetts Institute of Technology 2: School of Chemical, Biological and Materials Engineering, Oklahoma

Maruyama, Shigeo

267

M. Oreglia, IIT Mtg 111 November 2000 Bolometric Measurement of Beam  

E-Print Network [OSTI]

.0014 J g-1 K-1 (6061) · Thermal diffusion constant: = 21.7 cm2 s-1 · Speed of sound: 5000 m s-1, the liquid hydrogen temperatures could permit novel use of resistance measurements in ­ Superconducting Edge · Expansion coefficient: 2 10-5 · Thus, the relevant time constants are: sound = 100 ns thermal = 40 µs

268

Thermal Transport in Nanoporous Materials for Energy Applications  

E-Print Network [OSTI]

Theory of thermal conduction in thin ceramic ?lms”,Thermal resistance of grain boundaries in alumina ceramicsThermal conduc- tivity of highly porous zirconia”, Journal of the European Ceramic

Fang, Jin

2012-01-01T23:59:59.000Z

269

Electric Motor Thermal Management for Electric Traction Drives (Presentation)  

SciTech Connect (OSTI)

Thermal constraints place significant limitations on how electric motors ultimately perform. Finite element analysis and computational fluid dynamics modeling approaches are being increasingly utilized in the design and analysis of electric motors. As the models become more sophisticated, it is important to have detailed and accurate knowledge of material thermal properties and convective heat transfer coefficients. In this work, the thermal properties and inter-lamination thermal contact resistances were measured for different stator lamination materials. Also, convective heat transfer coefficients of automatic transmission fluid (ATF) jets were measured to better understand the heat transfer of ATF impinging on motor copper windings. Experiments were carried out at various ATF temperatures and jet velocities to quantify the influence of these parameters on heat transfer coefficients.

Bennion, K.; Cousineau, J.; Moreno, G.

2014-09-01T23:59:59.000Z

270

Structural stability vs. thermal performance: old dilemma, new solutions  

SciTech Connect (OSTI)

In many building envelopes, actual thermal performance falls quite a bit short of nominal design parameters given in standards. Very often only windows, doors, and a small part of the wall area meet standards requirements. In the other parts of the building envelope, unaccounted thermal bridges reduce the effective thermal resistance of the insulation material. Such unaccounted heat losses compromise the thermal performance of the whole building envelope. For the proper analysis of the thermal performance of most wall and roof details, measurements and three-dimensional thermal modeling are necessary. For wall thermal analysis the whole-wall R-value calculation method can be very useful. In ties method thermal properties of all wall details are incorporated as an area weighted average. For most wall systems, the part of the wall that is traditionally analyzed, is the clear wall, that is, the flat part of the wall that is uninterrupted by details. It comprises only 50 to 80% of the total area of the opaque wall. The remaining 20 to 50% of the wall area is not analyzed nor are its effects incorporated in the thermal performance calculations. For most of the wall technologies, traditionally estimated R-values are 20 to 30% higher than whole-wall R-values. Such considerable overestimation of wall thermal resistance leads to significant errors in building heating and cooling load estimations. In this paper several examples are presented of the use of the whole-wall R-value procedure for building envelope components. The advantages of the use of the whole wall R-value calculation procedure are also discussed. For several building envelope components, traditional clear-wall R-values are compared with the results of whole-wall thermal analysis to highlight significant limits on the use of the traditional methods and the advantages of advanced computer modeling.

Kosny, J.; Christian, J.E.

1996-10-01T23:59:59.000Z

271

Thermal neutron detection system  

DOE Patents [OSTI]

According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

2000-01-01T23:59:59.000Z

272

Feasibility study for measurement of insulation compaction in the cryogenic rocket fuel storage tanks at Kennedy Space Center by fast/thermal neutron techniques  

SciTech Connect (OSTI)

The liquid hydrogen and oxygen cryogenic storage tanks at John F. Kennedy Space Center (KSC) use expanded perlite as thermal insulation. Some of the perlite may have compacted over time, compromising the thermal performance and also the structural integrity of the tanks. Neutrons can readily penetrate through the 1.75 cm outer steel shell and through the entire 120 cm thick perlite zone. Neutrons interactions with materials produce characteristic gamma rays which are then detected. In compacted perlite the count rates in the individual peaks in the gamma ray spectrum will increase. Portable neutron generators can produce neutron simultaneous fluxes in two energy ranges: fast (14 MeV) and thermal (25 meV). Fast neutrons produce gamma rays by inelastic scattering which is sensitive to Si, Al, Fe and O. Thermal neutrons produce gamma rays by radiative capture in prompt gamma neutron activation (PGNA), which is sensitive to Si, Al, Na, K and H among others. The results of computer simulations using the software MCNP and measurements on a test article suggest that the most promising approach would be to operate the system in time-of-flight mode by pulsing the neutron generator and observing the subsequent die away curve in the PGNA signal.

Livingston, R. A. [Materials Science and Engineering Dept., U. of Maryland, College Park, MD (United States); Schweitzer, J. S. [Physics Dept., U. of Connecticut, Storrs (United States); Parsons, A. M. [Goddard Space Flight Center, Greenbelt (United States); Arens, E. E. [John F. Kennedy Space Center, FL (United States)

2014-02-18T23:59:59.000Z

273

Thermal Fluids  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal Fluids The Thermal Fluids and Heat Transfer program works on thermal hydraulic reactor safety code development and experimental heat transferthermal hydraulics. The...

274

Thermal conductivity profile determination in proton-irradiated ZrC by spatial and frequency scanning thermal wave methods  

SciTech Connect (OSTI)

Using complementary thermal wave methods, the irradiation damaged region of zirconium carbide (ZrC) is characterized by quantifiably profiling the thermophysical property degradation. The ZrC sample was irradiated by a 2.6 MeV proton beam at 600 °C to a dose of 1.75 displacements per atom. Spatial scanning techniques including scanning thermal microscopy (SThM), lock-in infrared thermography (lock-in IRT), and photothermal radiometry (PTR) were used to directly map the in-depth profile of thermal conductivity on a cross section of the ZrC sample. The advantages and limitations of each system are discussed and compared, finding consistent results from all techniques. SThM provides the best resolution finding a very uniform thermal conductivity envelope in the damaged region measuring ?52 ± 2 ?m deep. Frequency-based scanning PTR provides quantification of the thermal parameters of the sample using the SThM measured profile to provide validation of a heating model. Measured irradiated and virgin thermal conductivities are found to be 11.9 ± 0.5 W m{sup ?1} K{sup ?1} and 26.7 ±1 W m{sup ?1} K{sup ?1}, respectively. A thermal resistance evidenced in the frequency spectra of the PTR results was calculated to be (1.58 ± 0.1) × 10{sup ?6} m{sup 2} K W{sup ?1}. The measured thermal conductivity values compare well with the thermal conductivity extracted from the SThM calibrated signal and the spatially scanned PTR. Combined spatial and frequency scanning techniques are shown to provide a valuable, complementary combination for thermal property characterization of proton-irradiated ZrC. Such methodology could be useful for other studies of ion-irradiated materials.

Jensen, C. [GRESPI, Multiscale Thermophysics Lab., Université de Reims Champagne-Ardenne URCA, Moulin de la Housse BP 1039, Reims 51687 (France) [GRESPI, Multiscale Thermophysics Lab., Université de Reims Champagne-Ardenne URCA, Moulin de la Housse BP 1039, Reims 51687 (France); Department of Mechanical and Aerospace Engineering, Utah State University, Logan, Utah 84322 (United States); Chirtoc, M.; Horny, N.; Antoniow, J. S.; Pron, H. [GRESPI, Multiscale Thermophysics Lab., Université de Reims Champagne-Ardenne URCA, Moulin de la Housse BP 1039, Reims 51687 (France)] [GRESPI, Multiscale Thermophysics Lab., Université de Reims Champagne-Ardenne URCA, Moulin de la Housse BP 1039, Reims 51687 (France); Ban, H. [Department of Mechanical and Aerospace Engineering, Utah State University, Logan, Utah 84322 (United States)] [Department of Mechanical and Aerospace Engineering, Utah State University, Logan, Utah 84322 (United States)

2013-10-07T23:59:59.000Z

275

Fission Product Data Measured at Los Alamos for Fission Spectrum and Thermal Neutrons on {sup 239}Pu, {sup 235}U, {sup 238}U  

SciTech Connect (OSTI)

We describe measurements of fission product data at Los Alamos that are important for determining the number of fissions that have occurred when neutrons are incident on plutonium and uranium isotopes. The fission-spectrum measurements were made using a fission chamber designed by the National Institute for Standards and Technology (NIST) in the BIG TEN critical assembly, as part of the Inter-laboratory Liquid Metal Fast Breeder Reactor (LMFBR) Reaction Rate (ILRR) collaboration. The thermal measurements were made at Los Alamos' Omega West Reactor. A related set of measurements were made of fission-product ratios (so-called R-values) in neutron environments provided by a number of Los Alamos critical assemblies that range from having average energies causing fission of 400-600 keV (BIG TEN and the outer regions of the Flattop-25 assembly) to higher energies (1.4-1.9 MeV) in the Jezebel, and in the central regions of the Flattop-25 and Flattop-Pu, critical assemblies. From these data we determine ratios of fission product yields in different fuel and neutron environments (Q-values) and fission product yields in fission spectrum neutron environments for {sup 99}Mo, {sup 95}Zr, {sup 137}Cs, {sup 140}Ba, {sup 141,143}Ce, and {sup 147}Nd. Modest incident-energy dependence exists for the {sup 147}Nd fission product yield; this is discussed in the context of models for fission that include thermal and dynamical effects. The fission product data agree with measurements by Maeck and other authors using mass-spectrometry methods, and with the ILRR collaboration results that used gamma spectroscopy for quantifying fission products. We note that the measurements also contradict earlier 1950s historical Los Alamos estimates by {approx}5-7%, most likely owing to self-shielding corrections not made in the early thermal measurements. Our experimental results provide a confirmation of the England-Rider ENDF/B-VI evaluated fission-spectrum fission product yields that were carried over to the ENDF/B-VII.0 library, except for {sup 99}Mo where the present results are about 4%-relative higher for neutrons incident on {sup 239}Pu and {sup 235}U. Additionally, our results illustrate the importance of representing the incident energy dependence of fission product yields over the fast neutron energy range for high-accuracy work, for example the {sup 147}Nd from neutron reactions on plutonium. An upgrade to the ENDF library, for ENDF/B-VII.1, based on these and other data, is described in a companion paper to this work.

Selby, H.D., E-mail: hds@lanl.go [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Mac Innes, M.R.; Barr, D.W.; Keksis, A.L.; Meade, R.A.; Burns, C.J.; Chadwick, M.B.; Wallstrom, T.C. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

2010-12-15T23:59:59.000Z

276

Thermal And Mechanical Analysis of High-power Light-emitting Diodes with Ceramic Packages  

E-Print Network [OSTI]

In this paper we present the thermal and mechanical analysis of high-power light-emitting diodes (LEDs) with ceramic packages. Transient thermal measurements and thermo-mechanical simulation were performed to study the thermal and mechanical characteristics of ceramic packages. Thermal resistance from the junction to the ambient was decreased from 76.1 oC/W to 45.3 oC/W by replacing plastic mould to ceramic mould for LED packages. Higher level of thermo-mechanical stresses in the chip were found for LEDs with ceramic packages despite of less mismatching coefficients of thermal expansion comparing with plastic packages. The results suggest that the thermal performance of LEDs can be improved by using ceramic packages, but the mounting process of the high power LEDs with ceramic packages is critically important and should be in charge of delaminating interface layers in the packages.

J. Hu; L. Yang; M. -W. Shin

2008-01-07T23:59:59.000Z

277

High Performance Thermal Interface Technology Overview  

E-Print Network [OSTI]

An overview on recent developments in thermal interfaces is given with a focus on a novel thermal interface technology that allows the formation of 2-3 times thinner bondlines with strongly improved thermal properties at lower assembly pressures. This is achieved using nested hierarchical surface channels to control the particle stacking with highly particle-filled materials. Reliability testing with thermal cycling has also demonstrated a decrease in thermal resistance after extended times with longer overall lifetime compared to a flat interface.

R. Linderman; T. Brunschwiler; B. Smith; B. Michel

2008-01-07T23:59:59.000Z

278

High Performance Thermal Interface Technology Overview  

E-Print Network [OSTI]

An overview on recent developments in thermal interfaces is given with a focus on a novel thermal interface technology that allows the formation of 2-3 times thinner bondlines with strongly improved thermal properties at lower assembly pressures. This is achieved using nested hierarchical surface channels to control the particle stacking with highly particle-filled materials. Reliability testing with thermal cycling has also demonstrated a decrease in thermal resistance after extended times with longer overall lifetime compared to a flat interface.

Linderman, R; Smith, B; Michel, B

2008-01-01T23:59:59.000Z

279

Thermal and Structural Analysis of Targets and Windows  

E-Print Network [OSTI]

Thermal and Structural Analysis of Targets and Windows Materials, Irradiation Data and Fracture) = EDD/Cp Applied Thermal Stress Pa CTE*E*DeltaT Thermal Resistance Rts=UTS/(CTE*E *DeltaT) Thermal Shock 1147 1.16E+09 0.984 7445 Candidate Materials - Young's Modulus, UTS, Delta T, Thermal Stress

McDonald, Kirk

280

E-Print Network 3.0 - applied thermal cutting Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

applied... ON THE EFFECTIVE THERMAL CONDUCTIVITY AND THERMAL CONTACT RESISTANCE IN PEM FUEL CELL GAS DIFFUSION LAYERS Ehsan... of this process requires determination of the...

Note: This page contains sample records for the topic "thermal resistance measured" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Electric Motor Thermal Management R&D (Presentation)  

SciTech Connect (OSTI)

Thermal constraints place significant limitations on how electric motors ultimately perform. Without the ability to remove heat, the motor cannot operate without sacrificing performance, efficiency, and reliability. Finite element analysis and computational fluid dynamics modeling approaches are being increasingly utilized in the design and analysis of electric motors. As the models become more sophisticated, it is important to have detailed and accurate knowledge of both the passive thermal performance and the active cooling performance. In this work, we provide an overview of research characterizing both passive and active thermal elements related to electric motor thermal management. To better characterize the passive thermal performance, the effective thermal properties and inter-lamination thermal contact resistances were measured for different stator lamination materials. The active cooling performance of automatic transmission fluid (ATF) jets was also measured to better understand the heat transfer coefficients of ATF impinging on motor copper windings. Ford's Mercon LV was the ATF evaluated in this study. The presentation provides an overview of prior work with a focus on describing future plans for research to be performed during FY15.

Bennion, K.

2014-11-01T23:59:59.000Z

282

Abrasion resistant heat pipe  

DOE Patents [OSTI]

A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

Ernst, Donald M. (Leola, PA)

1984-10-23T23:59:59.000Z

283

Abrasion resistant heat pipe  

DOE Patents [OSTI]

A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

Ernst, D.M.

1984-10-23T23:59:59.000Z

284

Thermal conductance of buckled carbon nanotubes Fumio Nishimura1  

E-Print Network [OSTI]

with the strain energy generated in the buckle. Despite the highly stained deformation, the thermal resistance have motivated applications of carbon nanotubes as thermal interface materials [4-8] and additives in nanocomposites [9-12], in practice, one needs to consider various thermal resistances that manifest in the actual

Maruyama, Shigeo

285

Measurement of the thermal conductance of the graphene/SiO2 interface Kin Fai Mak, Chun Hung Lui, and Tony F. Heinz  

E-Print Network [OSTI]

, 043112 (2012) Opposite ReD-dependencies of nanofluid (Al2O3) thermal conductivities between heating and cooling modes Appl. Phys. Lett. 101, 083111 (2012) Thermal transport in graphene supported on copper J of thermal transport in this material system2­4 is currently less advanced. The thermal transport properties

Heinz, Tony F.

286

Nice, Cte d'Azur, France, 27-29 September 2006 CHARACTERIZATION OF THERMAL INTERFACE MATERIALS TO SUPPORT  

E-Print Network [OSTI]

is presented, which evaluates thermal conductivity and interface resistance of thermal inter- face materials (e- face resistance (between the silicon and the thermal inter- face material (Rth0,Si-TIM) as well resistance is characterized. It is shown that the interface material can become a key issue for the thermal

Paris-Sud XI, Université de

287

Abstract --Design guidelines are provided to improve the thermal stability of three-finger bipolar transistors. Experiments  

E-Print Network [OSTI]

in selfheating and mutual thermal resistances, which are extracted through accurate 3-D numerical simulations. To avoid strong asymmetries between the mutual thermal resistances of two adjacent fingers compared to two of the thermal resistance of the transistors; as a consequence, selfheating and thermal coupling among

Technische Universiteit Delft

288

Experimental Measurement of the Interface Heat Conductance Between Nonconforming Beryllium and Type 316 Stainless Steel Surfaces Subjected to Nonuniform Thermal Deformations  

SciTech Connect (OSTI)

In fusion blanket designs that employ beryllium as a neutron multiplier, the interface conductance h plays a key role in evaluating the blanket's thermal profile. Therefore, an extensive experimental program was conducted to measure the magnitude of h between nonconforming beryllium and Type 316 stainless steel surfaces subjected to nonuniform thermal deformations. The magnitude of h was measured as a function of relevant environmental, surface, and geometric parameters, including surface roughness, contact pressure, gas pressure, gas type, and magnitude and direction of heat flow. The results indicate the following: (a) Decreasing the interfacial surface roughness from 6.28 to 0.28 {mu}m, in 760 Torr of helium, increased the magnitude of h by up to 100%; however, increasing the surface roughness reduced the dependence of h on the magnitude of the contact pressure. (b) The interface conductance was significantly higher for measurements made in helium gas as opposed to air. Additionally, the sensitivity of h to the gas pressure was significantly greater for runs conducted in helium and/or with smoother surfaces. This sensitivity was reduced in air and/or with roughened surfaces, and it was essentially nonexistent for the 6.25-{mu}m specimen for air pressures exceeding 76 Torr. (c) For runs conducted in vacuum, the interface conductance was more sensitive to heat flux than when runs were conducted in 760 Torr of helium. (d) The interface conductance was found to be dependent on the direction of heat flux. When the specimens were arranged so that heat flowed from the steel to the beryllium disk, the magnitude of h was generally greater than in the opposite direction.

Abelson, Robert Dean; Abdou, Mohamed A. [University of California, Los Angeles (United States)

2001-03-15T23:59:59.000Z

289

Comparison of different experimental and analytical measures of the thermal annealing response of neutron-irradiated RPV steels  

SciTech Connect (OSTI)

The thermal annealing response of several materials as indicated by Charpy transition temperature (TT) and upper-shelf energy (USE), crack initiation toughness, K{sub Jc}, predictive models, and automated-ball indentation (ABI) testing are compared. The materials investigated are representative reactor pressure vessel (RPV) steels (several welds and a plate) that were irradiated for other tasks of the Heavy-Section Steel Irradiation (HSSI) Program and are relatively well characterized in the unirradiated and irradiated conditions. They have been annealed at two temperatures, 343 and 454 C (650 and 850 F) for varying lengths of time. The correlation of the Charpy response and the fracture toughness, ABI, and the response predicted by the annealing model of Eason et al. for these conditions and materials appears to be reasonable. The USE after annealing at the temperature of 454 C appears to recover at a faster rate than the TT, and even over-recovers (i.e., the recovered USE exceeds that of the unirradiated material).

Iskander, S.K.; Sokolov, M.A.; Nanstad, R.K. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

1997-05-01T23:59:59.000Z

290

Comparison of different experimental and analytical measures of the thermal annealing response of neutron-irradiated RPV steels  

SciTech Connect (OSTI)

The thermal annealing response of several materials as indicated by Charpy transition temperature (TT) and upper-shelf energy (USE), crack initiation toughness, K{sub Jc}, predictive models, and automated-ball indentation (ABI) testing are compared. The materials investigated are representative reactor pressure vessel (RPV) steels (several welds and a plate) that were irradiated for other tasks of the Heavy-Section Steel Irradiation (HSSI) Program and are relatively well characterized in the unirradiated and irradiated conditions. They have been annealed at two temperatures, 343 and 454 C (650 and 850 F) for varying lengths of time. The correlation of the Charpy response and the fracture toughness, ABI, and the response predicted by the annealing model of Eason et al. for these conditions and materials appears to be reasonable. The USE after annealing at the temperature of 454 C appears to recover at a faster rate than the TT, and even over-recovers (i.e., the recovered USE exceeds that of the unirradiated material).

Iskander, S.K.; Sokolov, M.A.; Nanstad, R.K. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

1999-10-01T23:59:59.000Z

291

IEEE BCTM5.1 Dependenceof ThermalResistanceon Ambientand Actual Temperature  

E-Print Network [OSTI]

resistance is inversely proportional to the thermal conductivity. This means that the temperature behaviour of the thermal resistance as function of power dissipation at constant ambient, but increasing device temperature increases the thermal resistance. The relation between temperature and power dissipation is then no longer

Technische Universiteit Delft

292

Photothermal investigation of the thermal shock behavior of alumina ceramics for engine components  

E-Print Network [OSTI]

. to transform highly dense bulk ceramic materials to a state with high thermal shock resistance with- out treatment improved the thermal shock resistance of alumina ceramic materials from the critical temperature have shown much higher thermal shock resistance than corresponding untreated ceramics. A theoretical

Mandelis, Andreas

293

Thermal Energy Measurement with Tangential Paddlewheel Flow Meters: Summary of Experimental Results and in-situ Diagnostics  

E-Print Network [OSTI]

paddlewheel flow meters, and several new methods for in-situ diagnostic measures for ascertaining whether or not a flow meter is experiencing fluctuating flow conditions or if a flow meter is suffering a degraded signal due to shaft wear. INTRODUCTION Flow... section where it passes across the candidate sensor that is placed in the inter-changeable test section, through the orifice plate and finally into the is combined with Btu meter the threshold can be much higher than the published threshold of the flow...

Haberl, J. S.; Watt, J. B.

1994-01-01T23:59:59.000Z

294

Measurement of the Anisotropic Thermal Conductivity of Molybdenum Disulfide Single Crystal by the Time-resolved Magneto-optic Kerr Effect  

E-Print Network [OSTI]

with perpendicular magnetization serves as the heater and thermometer in the experiment. The low thermal conductivity for determining the thermal conductivity of materials but the sensitivity of TDTR to the lateral or in-plane thermal conductivity of a sample is low when conventional choices are made for laser spot sizes, #12

Cahill, David G.

295

Thermal Barrier Coatings Resistant to Glassy Deposits.  

E-Print Network [OSTI]

?? Engineering of alloys has for years allowed aircraft turbine engines to become more efficient and operate at higher temperatures. As advancements in these alloy… (more)

Drexler, Julie

2011-01-01T23:59:59.000Z

296

Thermal insulation by heat resistant polymers.  

E-Print Network [OSTI]

??Internal insulation in a solid rocket motor is a layer of heat-barrier material placed between the internal surface of the case and the propellant. The… (more)

Ahmed, Ashraf Fathy

2009-01-01T23:59:59.000Z

297

Graphene-Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials  

E-Print Network [OSTI]

resistance at the graphene-matrix interface. KEYWORDS: Graphene, thermal interface materials, nanocompositesGraphene-Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials Khan M suggest that graphene-multilayer graphene nanocomposite used as the thermal interface material outperforms

298

THERMAL PROPERTIES OF SINGLE-WALLED CARBON NANOTUBES Shigeo MARUYAMA  

E-Print Network [OSTI]

, optical and mechanical properties, thermal properties of SWNTs are quite unique with the high thermal and thermal conductance between a nanotube and various materials are reviewed. The experimental approach, and thermal boundary resistance in a junction of nanotubes are reviewed. Then, the heat transfer from an SWNT

Maruyama, Shigeo

299

DC Resistivity Survey (Wenner Array) At Mt Princeton Hot Springs...  

Open Energy Info (EERE)

Determination of groundwater flux patterns Notes Researchers measured DC resistivity and produced 12 resistivity profiles, each approximately 1.3 km in length. Equilibrium...

300

Low thermal expansion behavior and thermal durability of ZrTiO4Al2TiO5Fe2O3 ceramics between 750 and 1400  

E-Print Network [OSTI]

2002 Abstract The thermal-shock-resistant materials in the system Al2TiO5­ZrTiO4 (ZAT) were synthesized Aluminum titanate (Al2TiO5) is well-known as an excellent thermal shock-resistant material, resulting from. All rights reserved. Keywords: Al2TiO5; Thermal expansion; Thermal shock resistance 1. Introduction

Cao, Guozhong

Note: This page contains sample records for the topic "thermal resistance measured" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Preliminary requirements for thermal storage subsystems in solar thermal applications  

SciTech Connect (OSTI)

Methodologies for the analysis of value and comparing thermal storage concepts are presented. Value is a measure of worth and is determined by the cost of conventional fuel systems. Value data for thermal storage in large solar thermal electric power applications are presented. Thermal storage concepts must be compared when all are performing the same mission. A method for doing that analysis, called the ranking index, is derived. Necessary data to use the methodology are included.

Copeland, R.J.

1980-04-01T23:59:59.000Z

302

Effect of current compliance and voltage sweep rate on the resistive switching of HfO{sub 2}/ITO/Invar structure as measured by conductive atomic force microscopy  

SciTech Connect (OSTI)

The electrical characterization of HfO{sub 2}/ITO/Invar resistive switching memory structure was studied using conductive atomic force microscopy (AFM) with a semiconductor parameter analyzer, Agilent 4156C. The metal alloy Invar was used as the metal substrate to ensure good ohmic contact with the substrate holder of the AFM. A conductive Pt/Ir AFM tip was placed in direct contact with the HfO{sub 2} surface, such that it acted as the top electrode. Nanoscale current-voltage (I-V) characteristics of the HfO{sub 2}/ITO/Invar structure were measured by applying a ramp voltage through the conductive AFM tip at various current compliances and ramp voltage sweep rates. It was found that the resistance of the low resistance state (RLRS) decreased with increasing current compliance value, but resistance of high resistance state (RHRS) barely changed. However, both the RHRS and RLRS decreased as the voltage sweep rate increased. The reasons for this dependency on current compliance and voltage sweep rate are discussed.

Wu, You-Lin, E-mail: ylwu@ncnu.edu.tw; Liao, Chun-Wei [Department of Electrical Engineering, National Chi Nan University, Puli, Nantou, Taiwan (China); Ling, Jing-Jenn [Department of Applied Materials and Optoelectronic Engineering, National Chi Nan University, Puli, Nantou, Taiwan (China)

2014-06-16T23:59:59.000Z

303

Resistivity analysis  

DOE Patents [OSTI]

According to an example embodiment of the present invention a semiconductor die having a resistive electrical connection is analyzed. Heat is directed to the die as the die is undergoing a state-changing operation to cause a failure due to suspect circuitry. The die is monitored, and a circuit path that electrically changes in response to the heat is detected and used to detect that a particular portion therein of the circuit is resistive. In this manner, the detection and localization of a semiconductor die defect that includes a resistive portion of a circuit path is enhanced.

Bruce, Michael R. (Austin, TX); Bruce, Victoria J. (Austin, TX); Ring, Rosalinda M. (Austin, TX); Cole, Edward Jr. I. (Albuquerque, NM); Hawkins, Charles F. (Albuquerque, NM); Tangyungong, Paiboon (Albuquerque, NM)

2006-06-13T23:59:59.000Z

304

Influence on Grain Yields and Yield Components of Leaf Rust of Wheat and Crown Rust of Oats as Measured by Isogenic Resistant and Susceptible Lines.  

E-Print Network [OSTI]

., and Allard, R. W. 1965. Genetic variability in highly inbred isogenic lines of the lima bean. Crop Sci. 5 1203-206. Hilu, H. M. 1965. Host-pathogen relationship of Pllrccinia ~orghi in nearly isogenic resistant and susceptible seedling corn...IIVFLUENm ON GRAIN Y_LEI;DS AND YZZXD COMPONENTS OF LEAF RUST OF l+%?EAT AND CROWN RUST OF OATS m fl2kmured by ISOGENIC RESISTANT AND SUSCEPTIBLE LINES Contents SUMMARY...

Atkins, I. M.; Alcala de Stephano, Maximino; Merkle, O. G.; Kilpatrick, R. A.

1966-01-01T23:59:59.000Z

305

IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, VOL. 25, NO. 4, DECEMBER 2002 615 In-Plane Effective Thermal Conductivity of  

E-Print Network [OSTI]

material. Thermal conductivity of second phase material. . . Heat flux. Mesh numbers along. Effective thermal resistance. Thermal diffusivity. Specific surface area. Porosity. Time. Manuscript effect, the effective thermal conductivity of these materials, is relatively small, so that much

Wirtz, Richard A.

306

Oxidation of Metals, Vol. 61, Nos. 3/4, April 2004 ( 2004) Thermal Conductivity, Phase Stability, and Oxidation  

E-Print Network [OSTI]

, and Oxidation Resistance of Y3Al5O12 (YAG)/Y2O3­ZrO2 (YSZ) Thermal-Barrier Coatings Y. J. Su, R. W. Trice,# K oxidation resistance while maintaining low thermal conductivity and good phase stability. Padture) is proposed. The objective of this work is to quantify the effect of YAG on thermal resistance, long

Trice, Rodney W.

307

Corrosiveness of wet residential building thermal insulation---Mechanisms and evaluation of electrochemical methods for assessing corrosion behavior  

SciTech Connect (OSTI)

An evaluation has been made of the corrosiveness of selected wet residential building thermal insulation materials in contact with low carbon steel. Investigations were conducted both in wet insulations and in filtered leachates from insulations derived from thirteen cellulosic, three mineral fiber and four foam products. Potentiodynamic polarization measurements are reported from which the overall corrosion response was assessed and then the techniques of Tafel and polarization resistance analysis applied to estimate corrosion rates. Corrosion rates were also estimated electrochemically using a direct reading instrument which performs the rate calculation based on the polarization resistance principle. Direct determinations of corrosion rate were based on weight loss measurements.

Stansbury, E.E. [Stansbury (E.E.), Knoxville, TN (United States)

1991-10-01T23:59:59.000Z

308

Elevated temperature ablation resistance of HfC particle-reinforced tungsten composites  

E-Print Network [OSTI]

C­W was attributed to the low thermal conductivity, high oxidation resistance, and high melting point of the Hf melting points (e.g., 3440 °C for W), high moduli of elasticity, good thermal shock resistances, and good torch was used to ablate the samples at high temperature. Ablation resistance improved with an in

Hong, Soon Hyung

309

Solar Thermal Conversion  

SciTech Connect (OSTI)

The thermal conversion process of solar energy is based on well-known phenomena of heat transfer (Kreith 1976). In all thermal conversion processes, solar radiation is absorbed at the surface of a receiver, which contains or is in contact with flow passages through which a working fluid passes. As the receiver heats up, heat is transferred to the working fluid which may be air, water, oil, or a molten salt. The upper temperature that can be achieved in solar thermal conversion depends on the insolation, the degree to which the sunlight is concentrated, and the measures taken to reduce heat losses from the working fluid.

Kreith, F.; Meyer, R. T.

1982-11-01T23:59:59.000Z

310

Basal-plane thermal conductivity of few-layer molybdenum disulfide  

SciTech Connect (OSTI)

We report the in-plane thermal conductivity of suspended exfoliated few-layer molybdenum disulfide (MoS{sub 2}) samples that were measured by suspended micro-devices with integrated resistance thermometers. The obtained room-temperature thermal conductivity values are (44–50) and (48–52) W m{sup ?1} K{sup ?1} for two samples that are 4 and 7 layers thick, respectively. For both samples, the peak thermal conductivity occurs at a temperature close to 120?K, above which the thermal conductivity is dominated by intrinsic phonon-phonon scattering although phonon scattering by surface disorders can still play an important role in these samples especially at low temperatures.

Jo, Insun; Ou, Eric; Shi, Li, E-mail: lishi@mail.utexas.edu [Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Pettes, Michael Thompson [Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Department of Mechanical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Wu, Wei [Department of Mechanical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States)

2014-05-19T23:59:59.000Z

311

Thermal barrier coatings  

DOE Patents [OSTI]

This disclosure addresses the issue of providing a metallic-ceramic overlay coating that potentially serves as an interface or bond coat layer to provide enhanced oxidation resistance to the underlying superalloy substrate via the formation of a diffusion barrier regime within the supporting base material. Furthermore, the metallic-ceramic coating is expected to limit the growth of a continuous thermally grown oxide (TGO) layer that has been primarily considered to be the principal cause for failure of existing TBC systems. Compositional compatibility of the metallic-ceramic with traditional yttria-stabilized zirconia (YSZ) top coats is provided to further limit debond or spallation of the coating during operational use. A metallic-ceramic architecture is disclosed wherein enhanced oxidation resistance is imparted to the surface of nickel-based superalloy or single crystal metal substrate, with simultaneous integration of the yttria stabilized zirconia (YSZ) within the metallic-ceramic overlayer.

Alvin, Mary Anne (Pittsburg, PA)

2010-06-22T23:59:59.000Z

312

advanced spaceborne thermal: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from and is used to measure volcanic thermal radiance. ASTER provides relatively high spatial resolution (90 m Wright, Robert 6 Advanced nanofabrication of thermal emission...

313

Computational modeling of thermal conductivity of single walled carbon nanotube polymer composites  

E-Print Network [OSTI]

to solid materials like metals. Keywords: SWNT, Random Walk, Thermal Conductivity, Composites 1 at the interface between the matrix material and the SWNT plays a very important role on the effective thermal conductivity. This thermal resistance is known as the Kapitza resistance [8]. According to the acoustic theory

Maruyama, Shigeo

314

The Prediction of thermal properties of single walled carbon nanotube suspensions  

E-Print Network [OSTI]

aspect ratio, weight fraction and of the interfacial thermal resistance on the suspension effective and electrical transport properties1 and thermal transport properties2,3 of materials that incorporate SWNTs and on the temperature. The existence of a thermal resistance7-11 to the transfer of heat between the nanoscale

Maruyama, Shigeo

315

The 6th ASME-JSME Thermal Engineering Joint Conference March 16-20, 2003  

E-Print Network [OSTI]

conductivity interface materials and thus reduce the thermal resistance of the lasers. Copper heat spreaders samples. A two-dimensional analytical model is developed to verify the thermal resistance experimental conductivity solder materials, which can limit the performance of the laser [7, 13]. NOMENCLATURE K thermal

316

Generalized model of thermal boundary conductance between SWNT and surrounding supercritical Lennard-Jones fluid  

E-Print Network [OSTI]

of the promising applications is to use SWNTs as additives to enhance thermal conductivity of composite materials of the composite can be strongly influenced by thermal boundary resistance (TBR) between carbon nanotubes, it is essential to understand TBR. Thermal boundary resistance, with its importance in small scale, has been

Maruyama, Shigeo

317

Quantification of corrosion resistance of a new-class of criticality control materials: thermal-spray coatings of high-boron iron-based amorphous metals - Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4  

SciTech Connect (OSTI)

An iron-based amorphous metal, Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4} (SAM2X5), with very good corrosion resistance was developed. This material was produced as a melt-spun ribbon, as well as gas atomized powder and a thermal-spray coating. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass formation. The high boron content of this particular amorphous metal made it an effective neutron absorber, and suitable for criticality control applications. Earlier studies have shown that ingots and melt-spun ribbons of these materials have good passive film stability in these environments. Thermal spray coatings of these materials have now been produced, and have undergone a variety of corrosion testing, including both atmospheric and long-term immersion testing. The modes and rates of corrosion have been determined in the various environments, and are reported here.

Farmer, J C; Choi, J S; Shaw, C K; Rebak, R; Day, S D; Lian, T; Hailey, P; Payer, J H; Branagan, D J; Aprigliano, L F

2007-03-28T23:59:59.000Z

318

Low thermal conductivity skutterudites  

SciTech Connect (OSTI)

Recent experimental results on semiconductors with the skutterudite crystal structure show that these materials possess attractive transport properties and have a good potential for achieving ZT values substantially larger than for state-of-the-art thermoelectric materials. Both n-type and p-type conductivity samples have been obtained, using several preparation techniques. Associated with a low hole effective mass, very high carrier mobilities, low electrical resistivities and moderate Seebeck coefficients are obtained in p-type skutterudites. For a comparable doping level, the carrier mobilities of n-type samples are about an order of magnitude lower than the values achieved on p-type samples. However, the much larger electron effective masses and Seebeck coefficients on p-type samples. However, the much larger electron effective masses and Seebeck coefficients make n-type skutterudite promising candidates as well. Unfortunately, the thermal conductivities of the binary skutterudites compounds are too large, particularly at low temperatures, to be useful for thermoelectric applications. Several approaches to the reduction of the lattice thermal conductivity in skutterudites are being pursued: heavy doping, formation of solid solutions and alloys, study of novel ternary and filled skutterudite compounds. All those approaches have already resulted in skutterudite compositions with substantially lower thermal conductivity values in these materials. Recently, superior thermoelectric properties in the moderate to high temperature range were achieved for compositions combining alloying and filling of the skutterudite structure. Experimental results and mechanisms responsible for low thermal conductivity in skutterudites are discussed.

Fleurial, J.P.; Caillat, T.; Borshchevsky, A.

1997-07-01T23:59:59.000Z

319

In situ measurement system  

DOE Patents [OSTI]

A multipurpose in situ underground measurement system comprising a plurality of long electrical resistance elements in the form of rigid reinforcing bars, each having an open loop hairpin configuration of shorter length than the other resistance elements. The resistance elements are arranged in pairs in a unitized structure, and grouted in place in the underground volume. Measurement means are provided for obtaining for each pair the electrical resistance of each element and the difference in electrical resistance of the paired elements, which difference values may be used in analytical methods involving resistance as a function of temperature. A scanner means sequentially connects the resistance-measuring apparatus to each individual pair of elements. A source of heating current is also selectively connectable for heating the elements to an initial predetermined temperature prior to electrical resistance measurements when used as an anemometer.

Lord, D.E.

1980-11-24T23:59:59.000Z

320

Investigation and Analysis of Winter Classroom Thermal Environment in Chongqing  

E-Print Network [OSTI]

the thermal sense value of the occupants, the winter classroom thermal environment was evaluated. Measures for improving the classroom indoor thermal environmental quality were also given. The lower limit air temperature of the non-air conditioned classrooms...

Liu, J.; Li, B.; Yao, R.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal resistance measured" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

JOURNAL DE PHYSIQUE Colloque C6, suppldment au no 8, Tome 39, aolit 1978, page C6-344 LAYERING AND THERMAL CONDUCTIVITY OF 4 ~ eFILMS ON UNIFORM GRAPHITE'  

E-Print Network [OSTI]

-Halsey-Hill pressure isotherm fit /5/ which assumes liquid-like film Fin. 1 : Heat capacity of 27.47 STPcc He film combined heat capacity, vapor pressure and thermal resistance measurements to cha- racterize layering and onsets of superfluidity on a highly uniform graphite substrate, UCAR-ZYX. Strong desorption heat capacity

Paris-Sud XI, Université de

322

Measurements and Predictions of the Heat Transfer at the Tube-Fin Junction for Louvered Fin Heat Exchangers  

E-Print Network [OSTI]

Measurements and Predictions of the Heat Transfer at the Tube-Fin Junction for Louvered Fin Heat Transfer at the Tube-Fin Junction for Louvered Fin Heat Exchangers Abstract The dominant thermal resistance used to increase heat transfer by initiating new boundary layer growth and increasing surface area

Thole, Karen A.

323

Inr .I. Heor Mass Transfer. Vol. 14. pp. 751-766. Pergamon Press 1971 Printed in Great Britain THE EFFECT OF THERMAL DISTORTION ON  

E-Print Network [OSTI]

on the thermal contact resistance between two semi-infinite solids of different materials. Good agreement THE EFFECT OF THERMAL DISTORTION ON CONSTRICTION RESISTANCE J. R. BARBER Department of Mechanical Engineering ; "9 Poisson's ratio ; P, thermal contact resistance ; 0, direct stress. Subscripts 0, interface

Barber, James R.

324

Methods and apparatus for measurement of the resistivity of geological formations from within cased wells in presence of acoustic and magnetic energy sources  

DOE Patents [OSTI]

Methods and apparatus are provided for measuring the acoustically modulated electronic properties of geological formations and cement layers adjacent to cased boreholes. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. Voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the leakage current conducted into formation in the vicinity of those electrodes. Simultaneously subjecting the casing and formation to an acoustic source acoustically modulates the leakage current measured thereby providing a measure of the acoustically modulated electronic properties of the adjacent formation. Similarly, methods and apparatus are also described which measure the leakage current into formation while simultaneously subjecting the casing to an applied magnetic field which therefore allows measurement of the magnetically modulated electronic properties of the casing and the adjacent formation. 9 figures.

Vail, W.B. III.

1991-08-27T23:59:59.000Z

325

Effect of metallic coatings on the thermal contact conductance of turned surfaces  

E-Print Network [OSTI]

area. . IInfortunately this is not always possible, due to design or load restrictions In situations where the applied load is limited. the thermal contact resistance can be reduced by introducing a material at the interface that is relatively sof... materials on thermal contact resistance both analytically and experimen- tally for a. fixed geometry and material. In the analytical portion, the approximate relative reduction of the thermal contact resistance due to plating was described as ~plating (u...

Kang, Tik Kwie

2012-06-07T23:59:59.000Z

326

Thermal conductivity of Er{sup +3}:Y{sub 2}O{sub 3} films grown by atomic layer deposition  

SciTech Connect (OSTI)

Cross-plane thermal conductivity of 800, 458, and 110?nm erbium-doped crystalline yttria (Er{sup +3}:Y{sub 2}O{sub 3}) films deposited via atomic layer deposition was measured using the 3? method at room temperature. Thermal conductivity results show 16-fold increase in thermal conductivity from 0.49?W m{sup ?1}K{sup ?1} to 8?W m{sup ?1}K{sup ?1} upon post deposition annealing, partially due to the suppression of the number of the -OH/H{sub 2}O bonds in the films after annealing. Thermal conductivity of the annealed film was ?70% lower than undoped bulk single crystal yttria. The cumulative interface thermal resistivity of substrate-Er{sup +3}:Y{sub 2}O{sub 3}-metal heater was determined to be ?2.5?×?10{sup ?8} m{sup 2} K/W.

Raeisi Fard, Hafez; Hess, Andrew; Pashayi, Kamyar; Borca-Tasciuc, Theodorian, E-mail: borcat@rpi.edu [Mechanical, Aerospace and Nuclear Engineering Department, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)] [Mechanical, Aerospace and Nuclear Engineering Department, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Becker, Nicholas; Proslier, Thomas; Pellin, Michael [Material Sciences Division, Argonne National Laboratory 9700 S. Cass Avenue, Lemont, Illinois 60439 (United States)] [Material Sciences Division, Argonne National Laboratory 9700 S. Cass Avenue, Lemont, Illinois 60439 (United States)

2013-11-04T23:59:59.000Z

327

Measuring resistivity changes from within a first cased well to monitor fluids injected into oil bearing geological formations from a second cased well while passing electrical current between the two cased wells  

DOE Patents [OSTI]

A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.

Vail, III, William B. (Bothell, WA)

1993-01-01T23:59:59.000Z

328

Measuring resistivity changes from within a first cased well to monitor fluids injected into oil bearing geological formations from a second cased well while passing electrical current between the two cased wells  

DOE Patents [OSTI]

A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.

Vail, W.B. III.

1993-02-16T23:59:59.000Z

329

Identifying and bounding uncertainties in nuclear reactor thermal power calculations  

SciTech Connect (OSTI)

Determination of the thermal power generated in the reactor core of a nuclear power plant is a critical element in the safe and economic operation of the plant. Direct measurement of the reactor core thermal power is made using neutron flux instrumentation; however, this instrumentation requires frequent calibration due to changes in the measured flux caused by fuel burn-up, flux pattern changes, and instrumentation drift. To calibrate the nuclear instruments, steam plant calorimetry, a process of performing a heat balance around the nuclear steam supply system, is used. There are four basic elements involved in the calculation of thermal power based on steam plant calorimetry: The mass flow of the feedwater from the power conversion system, the specific enthalpy of that feedwater, the specific enthalpy of the steam delivered to the power conversion system, and other cycle gains and losses. Of these elements, the accuracy of the feedwater mass flow and the feedwater enthalpy, as determined from its temperature and pressure, are typically the largest contributors to the calorimetric calculation uncertainty. Historically, plants have been required to include a margin of 2% in the calculation of the reactor thermal power for the licensed maximum plant output to account for instrumentation uncertainty. The margin is intended to ensure a cushion between operating power and the power for which safety analyses are performed. Use of approved chordal ultrasonic transit-time technology to make the feedwater flow and temperature measurements (in place of traditional differential-pressure- based instruments and resistance temperature detectors [RTDs]) allows for nuclear plant thermal power calculations accurate to 0.3%-0.4% of plant rated power. This improvement in measurement accuracy has allowed many plant operators in the U.S. and around the world to increase plant power output through Measurement Uncertainty Recapture (MUR) up-rates of up to 1.7% of rated power, while also decreasing the probability of significant over-power events. This paper will examine the basic elements involved in calculation of thermal power using ultrasonic transit-time technology and will discuss the criteria for bounding uncertainties associated with each element in order to achieve reactor thermal power calculations to within 0.3% to 0.4%. (authors)

Phillips, J.; Hauser, E.; Estrada, H. [Cameron, 1000 McClaren Woods Drive, Coraopolis, PA 15108 (United States)

2012-07-01T23:59:59.000Z

330

Mechanical and thermal properties of benzoxazine nanocomposites containing multiwalled carbon nanotubes.  

E-Print Network [OSTI]

??Due to the need for thermally resistant materials in microelectronic insulators, high-speed aircraft structures, and structural components of space vehicles require high temperature polymer composites.… (more)

Kaleemullah, Muhammad

2011-01-01T23:59:59.000Z

331

978-1-61284-736-8/11/$26.00 2011 IEEE 10 27th IEEE SEMI-THERM Symposium Study of Thermal Interfaces Aging for Power Electronics Applications  

E-Print Network [OSTI]

investigations on the aging of Thermal Interface Materials (TIM) subjected to thermal cycling conditions conditions. Thermal conductivity is used as aging indicator. Several TIM materials (change phase, graphite thermal interface has been affected with a 30% decrease of initial thermal resistance. Keywords Thermal

Paris-Sud XI, Université de

332

Thermal Conduction Path Analysis in 3-D ICs Boris Vaisband1  

E-Print Network [OSTI]

in the temperature and thermal resistance of up to, respectively, 20% and 28%. As confirmed by simulation, those [9], [10]. Thermal flow in materials is described by the Fourier Law, q = -k · T . (1) Thermal-D stack. through a unit of area) q [ W m2 ], the thermal conductivity, a property of the material k

Friedman, Eby G.

333

Interfacial thermal conductance in spun-cast polymer films and polymer brushes  

E-Print Network [OSTI]

represents the length of a material of thermal conduc- tivity providing an equivalent thermal resistance inorganic materials and anharmonic polymers have potentially intriguing thermal transport behavior. The low. This requirement proves challenging for low thermal conductivity materials like amorphous polymers. The effective

Braun, Paul

334

Ultra-Low Thermal Conductivity in W/Al2O3 Nanolaminates  

E-Print Network [OSTI]

conversion (3). Conversely, the thermal resistance of interfaces degrades the performance of materials dissimilar materials may provide a route for the production of thermal barriers with ultra-low thermal and improve the performance of thermal bar- riers (2) and of materials used in thermoelec- tric energy

George, Steven M.

335

Direct observation of resistive heating at graphene wrinkles and grain boundaries  

SciTech Connect (OSTI)

We directly measure the nanometer-scale temperature rise at wrinkles and grain boundaries (GBs) in functioning graphene devices by scanning Joule expansion microscopy with 50 nm spatial and 0.2K temperature resolution. We observe a small temperature increase at select wrinkles and a large (100 K) temperature increase at GBs between coalesced hexagonal grains. Comparisons of measurements with device simulations estimate the GB resistivity (8 150 X lm) among the lowest reported for graphene grown by chemical vapor deposition. An analytical model is developed, showing that GBs can experience highly localized resistive heating and temperature rise, most likely affecting the reliability of graphene devices. Our studies provide an unprecedented view of thermal effects surrounding nanoscale defects in nanomaterials such as graphene.

Grosse, Kyle L. [University of Illinois Urbana-Champaign; Dorgan, Vincent E. [University of Illinois at Urbana-Champaign, Urbana-Champaign; Estrada, David [University of Illinois at Urbana-Champaign, Urbana-Champaign; Wood, Joshua D. [University of Illinois at Urbana-Champaign, Urbana-Champaign; Vlassiouk, Ivan V [ORNL; Eres, Gyula [ORNL; Lyding, Joseph W [University of Illinois at Urbana-Champaign, Urbana-Champaign; King, William P. [University of Illinois at Urbana-Champaign, Urbana-Champaign; Pop, Eric [Stanford University

2014-01-01T23:59:59.000Z

336

PCM energy storage during defective thermal cycling:.  

E-Print Network [OSTI]

??Incomplete thermal cycling affects storage capacities of phase change materials (PCMs). Existing PCM measuring methods are presented with their drawbacks. A new device named “the… (more)

Koekenbier, S.F.

2011-01-01T23:59:59.000Z

337

Effect of percolation on thermal transport in nanotube composites School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907  

E-Print Network [OSTI]

. It is found that percolation effects may play a role for tube-tube and tube-substrate thermal resistance macroelectronics,1­7 thermal manage- ment,8­10 and high strength materials.11 In these applications, CNTs widely used effective medium approximations.16 However, recent studies of thermal contact resistance have

Alam, Muhammad A.

338

Measurements of gas sorption from seawater and the influence of gas release on open-cycle ocean thermal energy conversion (OC-OTEC) system performance  

SciTech Connect (OSTI)

The technical community has questioned the validity and cost-effectiveness of open-cycle ocean thermal energy conversion (OC-OTEC) systems because of the unknown effect of noncondensable gas on heat exchanger performance and the power needed to run vacuum equipment to remove this gas. To date, studies of seawater gas desorption have not been prototypical for system level analysis. This study gives preliminary gas desorption data on a vertical spout, direct contact evaporator and multiple condenser geometries. Results indicate that dissolved gas can be substantially removed before the seawater enters the heat exchange process, reducing the uncertainty and effect of inert gas on heat exchanger performance.

Penney, T.R.; Althof, J.A.

1985-06-01T23:59:59.000Z

339

Thermal Storage and Advanced Heat Transfer Fluids (Fact Sheet)  

SciTech Connect (OSTI)

Fact sheet describing NREL CSP Program capabilities in the area of thermal storage and advanced heat transfer fluids: measuring thermophysical properties, measuring fluid flow and heat transfer, and simulating flow of thermal energy and fluid.

Not Available

2010-08-01T23:59:59.000Z

340

Carbon fiber composite characterization in adverse thermal environments.  

SciTech Connect (OSTI)

The behavior of carbon fiber aircraft composites was studied in adverse thermal environments. The effects of resin composition and fiber orientation were measured in two test configurations: 102 by 127 millimeter (mm) test coupons were irradiated at approximately 22.5 kW/m{sup 2} to measure thermal response, and 102 by 254 mm test coupons were irradiated at approximately 30.7 kW/m{sup 2} to characterize piloted flame spread in the vertically upward direction. Carbon-fiber composite materials with epoxy and bismaleimide resins, and uni-directional and woven fiber orientations, were tested. Bismaleimide samples produced less smoke, and were more resistant to flame spread, as expected for high temperature thermoset resins with characteristically lower heat release rates. All materials lost approximately 20-25% of their mass regardless of resin type, fiber orientation, or test configuration. Woven fiber composites displayed localized smoke jetting whereas uni-directional composites developed cracks parallel to the fibers from which smoke and flames emanated. Swelling and delamination were observed with volumetric expansion on the order of 100% to 200%. The purpose of this work was to provide validation data for SNL's foundational thermal and combustion modeling capabilities.

Gomez-Vasquez, Sylvia; Brown, Alexander L.; Hubbard, Joshua A.; Ramirez, Ciro J.; Dodd, Amanda B.

2011-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal resistance measured" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Electrical resistivity investigations over limestone caverns  

E-Print Network [OSTI]

necessary to supplement the geo- electrical measurements with geologicsl structural information in orqer to carry out useful analyses, but the resistivi ty data did con- tr&bute significantly to the fine I interpretation. A new approach. to resistivity..., ) radial distance from electrode or image (m) radius of cavity (m) mutual resistance given by V/I (ohms) electric resistance between opposite faces of test specimen (ohms) current source and sink terms (volt. m/2'n ) electric potential (volts...

Porter, Charles Osgood

1966-01-01T23:59:59.000Z

342

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

343

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

344

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"Proceed- ings of Aquifer Thermal Energy Storage Workshop,

Tsang, C.-F.

2011-01-01T23:59:59.000Z

345

Thermal Performance and Reliability Characterization of Bonded Interface Materials (BIMs): Preprint  

SciTech Connect (OSTI)

Thermal interface materials are an important enabler for low thermal resistance and reliable electronics packaging for a wide array of applications. There is a trend towards bonded interface materials (BIMs) because of their potential for low thermal resistivity (< 1 mm2K/W). However, BIMs induce thermomechanical stresses in the package and can be prone to failures and integrity risks. Deteriorated interfaces can result in high thermal resistance in the package and degradation and/or failure of the electronics. DARPA's Thermal Management Technologies program has addressed this challenge, supporting the development of mechanically-compliant, low resistivity nano-thermal interface (NTI) materials. In this work, we describe the testing procedure and report the results of NREL's thermal performance and reliability characterization of an initial sample of four different NTI-BIMs.

DeVoto, D.; Paret, P.; Mihalic, M.; Narumanchi, S.; Bar-Cohen, A.; Matin, K.

2014-08-01T23:59:59.000Z

346

CORROSION RESISTANCE OF DENTAL ALLOYS  

E-Print Network [OSTI]

Metals and metallic alloys are unavoidable materials in everyday dental use for the making of fillings, cast cores and post systems, individual crowns, implantants ’ suprastructures, dentures and orthodontic devices. They still belong to the vital materials in dentistry. Applied alloys in a mouth are exposed to the influence of chemical, biological, mechanical, thermal and electrical forces which can have a negative impact on a very therapeutic work or surrounding tissue. Electrochemical corrosion is the most important damaging factor of dental works. The corrosive resistance of metal is its important characteristic during implantation into a mouth. Therefore precious alloys are the most suitable for dental use. However, due to economic reasons, nonprecious alloys are frequently used, while corrosive resistant precious metals have been used less frequently. Based on studying different literature, the purpose of this work was to give and overview of the existing dental metals and alloys in contexts with their anticorrosive characteristics.

Belma Muhamedagi?; Bosna I Hercegovina; Lejla Muhamedagi?; Bosna I Hercegovina

347

Full-field characterization of thermal diffusivity in continuous- fiber ceramic composite materials and components  

SciTech Connect (OSTI)

Continuous-fiber ceramic matrix composites (CFCCs) are currently being developed for various high-temperature applications, including use in advanced heat engines. Among the material classes of interest for such applications are silicon carbide (SiC)-fiber-reinforced SiC (SiC{sub (f)}/SiC), SiC-fiber-reinforced silicon nitride (SiC {sub (f)}/Si{sub 3}N{sub 4}), aluminum oxide (Al{sub 2}O{sub 3})-fiber-reinforced Al{sub 2}O{sub 3} (Al{sub 2}O{sub 3}{sub (f)}/Al{sub 2}O{sub 3}), and others. In such composites, the condition of the interfaces (between the fibers and matrix) are critical to the mechanical and thermal behavior of the component (as are conventional mechanical defects such as cracks, porosity, etc.). For example, oxidation of this interface (especially on carbon coated fibers) can seriously degrade both mechanical and thermal properties. Furthermore, thermal shock damage can degrade the matrix through extensive crack generation. A nondestructive evaluation method that could be used to assess interface condition, thermal shock damage, and to detect other ``defects`` would thus be very beneficial, especially if applicable to full-scale components. One method under development uses infrared thermal imaging to provide ``single-shot`` full-field assessment of the distribution of thermal properties in large components by measuring thermal diffusivity. By applying digital image filtering, interpolation, and least-squares-estimation techniques for noise reduction, we can achieve acquisition and analysis times of minutes or less with submillimeter spatial resolution. The system developed at Argonne has been used to examine the effects of thermal shock, oxidation treatment, density variations, and variations in oxidation resistant coatings in a full array of test specimens. Subscale CFCC components with nonplanar geometries have also been studied for manufacturing-induced variations in thermal properties.

Steckenrider, J.S.; Ellingson, W.A. [Argonne National Lab., IL (United States); Rothermel, S.A. [South Dakota State Univ., Brookings, SD (United States)

1995-05-01T23:59:59.000Z

348

High-Q operation of SRF cavities: The potential impact of thermocurrents on the RF surface resistance  

E-Print Network [OSTI]

For many new accelerator applications, superconducting radio frequency (SRF) systems are the enabling technology. In particular for CW applications, much effort is being expended to minimize the power dissipation (surface resistance) of niobium cavities. Starting in 2009, we suggested a means of reducing the residual resistance by performing a thermal cycle [1], a procedure of warming up a cavity after initial cooldown to about 20K and cooling it down again. In subsequent studies [2], this technique was used to manipulate the residual resistance by more than a factor of 2. It was postulated that thermocurrents during cooldown generate additional trapped magnetic flux that impacts the cavity quality factor. Here, we present a more extensive study that includes measurements of two additional passband modes and that confirms the effect. In this paper, we also discuss simulations that support the claim. While the layout of the cavity LHe tank system is cylindrically symmetric, we show that the temperature depende...

Vogt, J -M; Knobloch, J

2015-01-01T23:59:59.000Z

349

Advanced thermal imaging of composites  

SciTech Connect (OSTI)

Composite materials were studied by Scanning Thermal Conductivity Microscope (STCM) and high speed thermography. The STCM is a qualitative technique which is used to study thermal conductivity variations on a sub-micrometer scale. High speed thermography is a quantitative technique for measuring thermal diffusivity with a variable spatial resolution from centimeters down to less than 25 gm. A relative thermal conductivity contrast map was obtained from a SiC/Si3N4 continuous fiber ceramic composite using the STCM. Temperature changes of a carbon/carbon composite after a heat pulse were captured by an IR camera to generate a thermal diffusivity map of the specimen. Line profiles of the temperature distribution showed significant variations as a result of fiber orientation.

Wang, H.; Dinwiddie, R.B.

1996-06-01T23:59:59.000Z

350

Kapitza Resistance of the Grain Boundaries in Ceria  

SciTech Connect (OSTI)

Thermal conductivity is one of the key performance metrics of the nuclear fuels. In electrical insulators, such as most ubiquitous nuclear fuel – UO2, thermal transport is due to phonons, or lattice waves. Their propagation is impeded by any lattice defect, such as impurities or vacancies, as well as larger microstructural features: grain boundaries, dislocations and pores/bubbles. Detailed description of the phonons interactions with these features is still lacking. In this work, we elucidate the dependence of the grain boundary thermal resistance, also known as a Kapitza resistance, on the type and misorientation angle of the grain boundary in model system of CeO2.

David Bai; Jian Gan; Aleksandr Chernatynskiy

2014-06-01T23:59:59.000Z

351

Thermal Properties of Metal-Coated Vertically-Aligned Single Wall Nanotube Films M. Panzer, G. Zhang, D. Mann, X. Hu, E. Pop, H. Dai, and K. E. Goodson  

E-Print Network [OSTI]

materials. Keywords: Vertically-aligned Carbon Nanotubes, Thermal Interface Resistance, Thermoreflectance interface materials (TIMs). While there has been much previous research on carbon nanotube thermal properties including their interface resistances. The data show the total thermal resistance of the TIM is R

Zhang, Guangyu

352

978-1-4244-2128-2/08/$25.00 C 2008 IEEE 9th. Int. Conf. on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, EuroSimE 2008  

E-Print Network [OSTI]

of the thermal resistance is obtained through the integration of AlN layers. This is a material that is fully Aluminum nitride heatspreaders are demonstrated to provide a large reduction of the thermal resistance, silicon oxide and glass, leads also to very high thermal resistances. We have shown that a large decrease

Technische Universiteit Delft

353

Electrical and thermal conductivities in dense plasmas  

SciTech Connect (OSTI)

Expressions for the electrical and thermal conductivities in dense plasmas are derived combining the Chester-Thellung-Kubo-Greenwood approach and the Kramers approximation. The infrared divergence is removed assuming a Drude-like behaviour. An analytical expression is obtained for the Lorenz number that interpolates between the cold solid-state and the hot plasma phases. An expression for the electrical resistivity is proposed using the Ziman-Evans formula, from which the thermal conductivity can be deduced using the analytical expression for the Lorenz number. The present method can be used to estimate electrical and thermal conductivities of mixtures. Comparisons with experiment and quantum molecular dynamics simulations are done.

Faussurier, G., E-mail: gerald.faussurier@cea.fr; Blancard, C.; Combis, P.; Videau, L. [CEA, DAM, DIF, F-91297 Arpajon (France)

2014-09-15T23:59:59.000Z

354

High temperature ablation resistance of ZrNp reinforced W matrix composites  

E-Print Network [OSTI]

modulus of elasticity, good thermal shock resistance, stiffness and good high temperature strengthHigh temperature ablation resistance of ZrNp reinforced W matrix composites Malik Adeel Umer microscopy (SEM) For the purpose of improving the high temperature ablation resistance of tungsten

Hong, Soon Hyung

355

Size-dependent interface phonon transmission and thermal conductivity of nanolaminates  

E-Print Network [OSTI]

resistance between different materials exists since the interface breaks the regular lattice structure and superlattices as the interface distance or periodic thickness reduces. The interface thermal resistance has beenSize-dependent interface phonon transmission and thermal conductivity of nanolaminates L. H. Liang

Li, Baowen

356

Iron-Based Amorphous Metals:The High Performance Corrosion Resistant Materials(HPCRM) Program  

SciTech Connect (OSTI)

An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional stainless steel and nickel-based materials, and are proving to have excellent wear properties, sufficient to warrant their use in earth excavation, drilling and tunnel boring applications. Large areas have been successfully coated with these materials, with thicknesses of approximately one centimeter. The observed corrosion resistance may enable applications of importance in industries such as: oil and gas production, refining, nuclear power generation, shipping, and others.

Farmer, J

2007-07-09T23:59:59.000Z

357

Iron-Based Amorphous-Metals: High-Performance Corrosion-Resistant Material (HPCRM) Development  

SciTech Connect (OSTI)

An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional stainless steel and nickel-based materials, and are proving to have excellent wear properties, sufficient to warrant their use in earth excavation, drilling and tunnel boring applications. Large areas have been successfully coated with these materials, with thicknesses of approximately one centimeter. The observed corrosion resistance may enable applications of importance in industries such as: oil and gas production, refining, nuclear power generation, shipping, and others.

Farmer, J C; Choi, J S; Saw, C; Haslam, J; Day, D; Hailey, P; Lian, T; Rebak, R; Perepezko, J; Payer, J; Branagan, D; Beardsley, B; D'Amato, A; Aprigliano, L

2008-01-09T23:59:59.000Z

358

Heat conduction through a trapped solid: effect of structural changes on thermal conductance  

E-Print Network [OSTI]

We study the conduction of heat across a narrow solid strip trapped by an external potential and in contact with its own liquid. Structural changes, consisting of addition and deletion of crystal layers in the trapped solid, are produced by altering the depth of the confining potential. Nonequilibrium molecular dynamics simulations and, wherever possible, simple analytical calculations are used to obtain the thermal resistance in the liquid, solid and interfacial regions (Kapitza or contact resistance). We show that these layering transitions are accompanied by sharp jumps in the contact thermal resistance. Dislocations, if present, are shown to increase the thermal resistance of the strip drastically.

Debasish Chaudhuri; Abhishek Chaudhuri; Surajit Sengupta

2007-03-20T23:59:59.000Z

359

Corrosion resistant concrete using corrosion resistant steel.  

E-Print Network [OSTI]

??Corrosion of reinforced concrete is a major concern in the United States infrastructure. It is possible to create corrosion resistant concrete structures throughcareful evaluation of… (more)

Beh, David

2013-01-01T23:59:59.000Z

360

Measurement of the energy, multiplicity and angular correlation of ?-rays from the thermal neutron capture reaction Gd(n, ?) using JPARC-ANNRI  

SciTech Connect (OSTI)

We conducted an experiment using the JPARC-ANNRI spectrometer to measure the energy, multiplicity and correlation of ?-rays from the neutron capture of natural gadolinium. We incorporated the GEANT4 Monte Carlo (MC) simulation into the detector, and compared the data with the results of the MC simulation. We report our data analysis and compare our data with those obtained by the MC simulation.

Ou, Iwa; Yamada, Yoshiyuki; Yano, Takatomi; Mori, Takaaki; Kayano, Tsubasa; Sakuda, Makoto [Department of Physics, Okayama University, Okayama, 700-8530 (Japan); Kimura, Atsushi; Harada, Hideo [Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai, Naka, Ibaraki 319-1195 (Japan)

2014-05-02T23:59:59.000Z

Note: This page contains sample records for the topic "thermal resistance measured" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Resistive hydrogen sensing element  

DOE Patents [OSTI]

Systems and methods are described for providing a hydrogen sensing element with a more robust exposed metallization by application of a discontinuous or porous overlay to hold the metallization firmly on the substrate. An apparatus includes: a substantially inert, electrically-insulating substrate; a first Pd containing metallization deposited upon the substrate and completely covered by a substantially hydrogen-impermeable layer so as to form a reference resistor on the substrate; a second Pd containing metallization deposited upon the substrate and at least a partially accessible to a gas to be tested, so as to form a hydrogen-sensing resistor; a protective structure disposed upon at least a portion of the second Pd containing metallization and at least a portion of the substrate to improve the attachment of the second Pd containing metallization to the substrate while allowing the gas to contact said the second Pd containing metallization; and a resistance bridge circuit coupled to both the first and second Pd containing metallizations. The circuit determines the difference in electrical resistance between the first and second Pd containing metallizations. The hydrogen concentration in the gas may be determined. The systems and methods provide advantages because adhesion is improved without adversely effecting measurement speed or sensitivity.

Lauf, Robert J. (Oak Ridge, TN)

2000-01-01T23:59:59.000Z

362

The selection of appropriate material has always been issue of concern for design of lightweight clothing meant for cold weather conditions. The thermal comfort  

E-Print Network [OSTI]

and physiological interactions with the textile materials. Modelling of thermal comfort properties facilitate by studying the effect of different parameters on thermal and evaporative resistance of multilayered fabric were studied at different convective modes. It was observed that the thermal resistance increases

Kumar, M. Jagadesh

363

High Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This...

364

Automatic insulation resistance testing apparatus  

DOE Patents [OSTI]

An apparatus and method for automatic measurement of insulation resistances of a multi-conductor cable. In one embodiment of the invention, the apparatus comprises a power supply source, an input measuring means, an output measuring means, a plurality of input relay controlled contacts, a plurality of output relay controlled contacts, a relay controller and a computer. In another embodiment of the invention the apparatus comprises a power supply source, an input measuring means, an output measuring means, an input switching unit, an output switching unit and a control unit/data logger. Embodiments of the apparatus of the invention may also incorporate cable fire testing means. The apparatus and methods of the present invention use either voltage or current for input and output measured variables.

Wyant, Francis J.; Nowlen, Steven P.; Luker, Spencer M.

2005-06-14T23:59:59.000Z

365

LSPE Qualification and Flight Acceptance T /V Test Su.m..mary and Thermal Design  

E-Print Network [OSTI]

5. 2 5. 3 5.4 5.5 5. 6 5.7 Nodal Description Thermal Resistances Solar Heating Lunar SurfaceLSPE Qualification and Flight Acceptance T /V Test Su.m..mary and Thermal Design Final Report NO Thermal Control Systems. The report is divided into three sections. The first section introduces

Rathbun, Julie A.

366

Combined photothermal and photoacoustic characterization of siliconepoxy composites and the existence of a particle thermal  

E-Print Network [OSTI]

radiometric (PTR) detection were used to characterize thermal properties of silicon±epoxy composite materials applications. In this work, we study the thermal diusivity and electrical resistivity of silicon±epoxy compos materials the electrical and thermal transport properties have a spatial dependence, and thus

Mandelis, Andreas

367

NONLINEAR ANALYSIS OF RUBBER-BASED POLYMERIC MATERIALS WITH THERMAL RELAXATION MODELS  

E-Print Network [OSTI]

NONLINEAR ANALYSIS OF RUBBER-BASED POLYMERIC MATERIALS WITH THERMAL RELAXATION MODELS R. V. N of the material and their close connection with the effect of thermal relaxation time can be best appreciated (phonons). A relaxation time appears naturally as the characteristic of thermal resistance in the solid

Melnik, Roderick

368

INTERFACES AND BOUNDARIES THE SOLID-SOLID INTERFACE IN THERMAL PHONON RADIATION  

E-Print Network [OSTI]

materials as it happens if a metal film deposited on a dielectric crystal is heated and emits thermal pho the thermal boundary resistance predicted by this (>.But no convicting resultsINTERFACES AND BOUNDARIES THE SOLID-SOLID INTERFACE IN THERMAL PHONON RADIATION Institute fiir

Paris-Sud XI, Université de

369

eXtremes of heat conduction: Pushing the boundaries of the thermal  

E-Print Network [OSTI]

eXtremes of heat conduction: Pushing the boundaries of the thermal conductivity of materials David. · For example, simplest case of thermal conductivity where resistive scattering dominates C() v() l() d C for the highest thermal conductivity any material (higher conductivity than diamond) Yu et al. (2005) Maruyama

Braun, Paul

370

Effect of Via Separationand Low-k Dielectric Materials on the Thermal Characteristics of Cu Interconnects  

E-Print Network [OSTI]

Effect of Via Separationand Low-k Dielectric Materials on the Thermal Characteristics of Cu in low-k based interconnect structures by providing lower thermal resistance paths. In this paper that the temperature is highly dependent on the via separation. A 3-D electro-thermal simulation methodology using

371

Thermal conductance of metal-diamond interfaces at high pressure Gregory T. Hohensee  

E-Print Network [OSTI]

are concerned with the exchange of thermal energy across an interface between two materials. This topic-nonmetal interface, a two-temperature model predicts a thermal resistance of Rep = 1/ gL in series with the phononThermal conductance of metal-diamond interfaces at high pressure Gregory T. Hohensee Department

Cahill, David G.

372

Ultralow Thermal Conductivity in Organoclay Nanolaminates Synthesized via Simple Self-Assembly  

E-Print Network [OSTI]

transform fully dense solids into ultralow thermal conductivity materials. Here we report a simple self of nanolaminate spacing. A simple series resistance model describes the behavior and gives an interfacial thermal thermal conductance For phonon-mediated heat conduction, a material is generally thought to reach its

Braun, Paul

373

Distributed Porosity as a Control Parameter for Oxide Thermal Barriers Made by Physical Vapor Deposition  

E-Print Network [OSTI]

Anthony G. Evans* Materials Institute, Princeton University, Princeton, New Jersey 08544 Thermal barrier and generating new thermal resistance solutions, as appropri- ate. A continuum heat flow analysis is usedDistributed Porosity as a Control Parameter for Oxide Thermal Barriers Made by Physical Vapor

Wadley, Haydn

374

Simulation of the high temperature impression of thermal barrier coatings with columnar microstructure  

E-Print Network [OSTI]

the deformation resistance of actual EB-PVD layers and its application to a range of thermal barrier materials [9Simulation of the high temperature impression of thermal barrier coatings with columnar of thermal barrier coatings (TBCs) are affected by their high temperature mechanical properties: especially

Hutchinson, John W.

375

A New Thermal-Conscious System-Level Methodology for Energy-Efficient Processor Voltage Selection  

E-Print Network [OSTI]

A New Thermal-Conscious System-Level Methodology for Energy-Efficient Processor Voltage Selection a thermal-conscious system-level methodology to make energy-efficient voltage selection (VS) for nanometer), thermal resistance, are integrated and considered in our system models, and their impacts on energy

Wang, Yu

376

Thermally Induced Nonlinear Optical Absorption in Metamaterial Perfect Absorbers  

E-Print Network [OSTI]

A metamaterial perfect absorber consisting of a tri-layer (Al/ZnS/Al) metal-dielectric-metal system with top aluminium nano-disks is fabricated by laser-interference lithography and lift-off processing. The metamaterial absorber had peak resonant absorbance at 1090 nm and showed nonlinear absorption for 600ps laser pulses at 1064 nm wavelength. A nonlinear saturation of reflectance was measured to be dependent on the average laser power incident and not the peak laser intensity. The nonlinear behaviour is shown to arise from the heating due to the absorbed radiation and photo-thermal changes in the dielectric properties of aluminium. The metamaterial absorber is seen to be damage resistant at large laser intensities of 25 MW/cm2.

Guddala, Sriram; Ramakrishna, S Anantha

2015-01-01T23:59:59.000Z

377

Multiscale thermal transport.  

SciTech Connect (OSTI)

A concurrent computational and experimental investigation of thermal transport is performed with the goal of improving understanding of, and predictive capability for, thermal transport in microdevices. The computational component involves Monte Carlo simulation of phonon transport. In these simulations, all acoustic modes are included and their properties are drawn from a realistic dispersion relation. Phonon-phonon and phonon-boundary scattering events are treated independently. A new set of phonon-phonon scattering coefficients are proposed that reflect the elimination of assumptions present in earlier analytical work from the simulation. The experimental component involves steady-state measurement of thermal conductivity on silicon films as thin as 340nm at a range of temperatures. Agreement between the experiment and simulation on single-crystal silicon thin films is excellent, Agreement for polycrystalline films is promising, but significant work remains to be done before predictions can be made confidently. Knowledge gained from these efforts was used to construct improved semiclassical models with the goal of representing microscale effects in existing macroscale codes in a computationally efficient manner.

Graham, Samuel Jr. (; .); Wong, C. C.; Piekos, Edward Stanley

2004-02-01T23:59:59.000Z

378

Stray thermal influences in zinc fixed-point cells  

SciTech Connect (OSTI)

The influence of thermal effects is a major uncertainty contribution to the calibration of Standard Platinum Resistance Thermometers (SPRTs) in fixed-point cells. Axial heat losses strongly depend on the fixed-point temperature, constructional details of cells and SPRTs and the resulting heat transfer between cell, thermometer, furnace and environment. At the zinc point contributions by heat conduction and thermal radiation must be considered. Although the measurement of temperature gradients in the re-entrant well of a fixed-point cell provides very important information about the influence of axial heat losses, further investigations are required for a reliable estimate of the resulting uncertainty contribution. It is shown that specific modifications of a zinc fixed-point cell, following generally accepted principles, may result in systematic deviations of the measured fixed-point temperatures larger than typically stated in the uncertainty budget of National Metrology Institutes (NMIs). The underlying heat transport processes are investigated and the consequences for the construction of zinc cells are discussed.

Rudtsch, S.; Aulich, A.; Monte, C. [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany)] [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany)

2013-09-11T23:59:59.000Z

379

Why Granular Media Are, After All, Thermal  

E-Print Network [OSTI]

Granular media are considered "athermal", because the grains are too large to display Brownian type thermal fluctuations. Yet being macroscopic, every grain undergoes thermal expansion, possesses a temperature that may be measured with a thermometer, and consists of many, many internal degrees of freedom that in their sum do affect granular dynamics. Therefore, including them in a comprehensive approach to account for granular behavior entails crucial advantages. The pros and cons of thermal versus athermal descriptions are considered.

Yimin Jiang; Mario Liu

2014-07-27T23:59:59.000Z

380

Seasonal thermal energy storage  

SciTech Connect (OSTI)

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal resistance measured" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Influence of embedded-carbon nanotubes on the thermal properties of copper matrix nanocomposites processed  

E-Print Network [OSTI]

-level mix- ing, exhibits CNTs homogeneously dispersed in the Cu matrix. Measured thermal conductivity: Metal matrix composites; Nanocomposite; Carbon and graphite; Thermal conductivity Carbon nanotubes (CNTs management applications, due to their extraordinarily low coefficient of thermal expan- sion (CTE) [1

Hong, Soon Hyung

382

Thermal Control & System Integration  

Broader source: Energy.gov [DOE]

The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

383

PLANT RESISTANCE Glandular-Haired Alfalfa Resistance to Potato Leafhopper  

E-Print Network [OSTI]

PLANT RESISTANCE Glandular-Haired Alfalfa Resistance to Potato Leafhopper (Homoptera: Cicadellidae for the degree and types of resistance to the potato leafhopper, Empoasca fabae (Harris), and hopperburn. A tube resistance indices for potato leafhopper resistance, hopperburn resistance, and an overall glandular

Mathis, Wayne N.

384

A Comparison of the Corrosion Resistance of Iron-Based Amorphous Metals and Austenitic Alloys in Synthetic Brines at Elevated Temperature  

SciTech Connect (OSTI)

Several hard, corrosion-resistant and neutron-absorbing iron-based amorphous alloys have now been developed that can be applied as thermal spray coatings. These new alloys include relatively high concentrations of Cr, Mo, and W for enhanced corrosion resistance, and substantial B to enable both glass formation and neutron absorption. The corrosion resistances of these novel alloys have been compared to that of several austenitic alloys in a broad range of synthetic brines, with and without nitrate inhibitor, at elevated temperature. Linear polarization and electrochemical impedance spectroscopy have been used for in situ measurement of corrosion rates for prolonged periods of time, while scanning electron microscopy (SEM) and energy dispersive analysis of X-rays (EDAX) have been used for ex situ characterization of samples at the end of tests. The application of these new coatings for the protection of spent nuclear fuel storage systems, equipment in nuclear service, steel-reinforced concrete will be discussed.

Farmer, J C

2008-11-25T23:59:59.000Z

385

Thermal well-test method  

DOE Patents [OSTI]

A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

Tsang, Chin-Fu (Albany, CA); Doughty, Christine A. (Berkeley, CA)

1985-01-01T23:59:59.000Z

386

Thermal properties of organic and inorganic aerogels  

SciTech Connect (OSTI)

Aerogels are open-cell foams that have already been shown to be among the best thermal insulating solid materials known. This paper examines the three major contributions to thermal transport through porous materials; solid, gaseous, and radiative, to identify how to reduce the thermal conductivity of air-filled aerogels. We find that significant improvements in the thermal insulation property of aerogels are possible by; (i) employing materials with a low intrinsic solid conductivity, (ii) reducing the average pore size within aerogels, and (iii) affecting an increase of the infrared extinction in aerogels. Theoretically, polystyrene is the best of the organic materials and zirconia is the best inorganic material to use for the lowest achievable conductivity. Significant reduction of the thermal conductivity for all aerogel varieties is predicted with only a modest decrease of the average pore size. This might be achieved by modifying the sol-gel chemistry leading to aerogels. For example, a thermal resistance value of [ital R]=20 per inch would be possible for an air-filled resorcinol-formaldehyde aerogel at a density of 156 kg/m[sup 3], if the average pore size was less than 35 nm. An equation is included which facilitates the calculation of the optimum density for the minimum total thermal conductivity, for all varieties of aerogels.

Hrubesh, L.W.; Pekala, R.W. (Chemistry and Material Science Department, Lawrence Livermore National Laboratory, Livermore, California 94551-9900 (United States))

1994-03-01T23:59:59.000Z

387

Chemical preconcentrator with integral thermal flow sensor  

DOE Patents [OSTI]

A chemical preconcentrator with integral thermal flow sensor can be used to accurately measure fluid flow rate in a microanalytical system. The thermal flow sensor can be operated in either constant temperature or constant power mode and variants thereof. The chemical preconcentrator with integral thermal flow sensor can be fabricated with the same MEMS technology as the rest of the microanlaytical system. Because of its low heat capacity, low-loss, and small size, the chemical preconcentrator with integral thermal flow sensor is fast and efficient enough to be used in battery-powered, portable microanalytical systems.

Manginell, Ronald P. (Albuquerque, NM); Frye-Mason, Gregory C. (Cedar Crest, NM)

2003-01-01T23:59:59.000Z

388

Nanoscale thermal transport. II. 2003–2012  

SciTech Connect (OSTI)

A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ?1?nm, the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interfaces between materials. Major advances in the physics of phonons include first principles calculation of the phonon lifetimes of simple crystals and application of the predicted scattering rates in parameter-free calculations of the thermal conductivity. Progress in the control of thermal transport at the nanoscale is critical to continued advances in the density of information that can be stored in phase change memory devices and new generations of magnetic storage that will use highly localized heat sources to reduce the coercivity of magnetic media. Ultralow thermal conductivity—thermal conductivity below the conventionally predicted minimum thermal conductivity—has been observed in nanolaminates and disordered crystals with strong anisotropy. Advances in metrology by time-domain thermoreflectance have made measurements of the thermal conductivity of a thin layer with micron-scale spatial resolution relatively routine. Scanning thermal microscopy and thermal analysis using proximal probes has achieved spatial resolution of 10?nm, temperature precision of 50 mK, sensitivity to heat flows of 10 pW, and the capability for thermal analysis of sub-femtogram samples.

Cahill, David G., E-mail: d-cahill@illinois.edu; Braun, Paul V. [Department of Materials Science and Engineering and the Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States); Chen, Gang [Department of Mechanical Engineering, MIT, Cambridge, Massachusetts 02139 (United States); Clarke, David R. [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Fan, Shanhui [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Goodson, Kenneth E. [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Keblinski, Pawel [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); King, William P. [Department of Mechanical Sciences and Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Mahan, Gerald D. [Department of Physics, Penn State University, University Park, Pennsylvania 16802 (United States); Majumdar, Arun [Department of Mechanical Engineering, University of California, Berkeley, California 94720 (United States); Maris, Humphrey J. [Department of Physics, Brown University, Providence, Rhode Island 02912 (United States); Phillpot, Simon R. [Department of Materials Science and Engineering, University of Florida, Gainseville, Florida 32611 (United States); Pop, Eric [Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Shi, Li [Department of Mechanical Engineering, University of Texas, Autin, Texas 78712 (United States)

2014-03-15T23:59:59.000Z

389

Thermal Management of Solar Cells  

E-Print Network [OSTI]

a better thermal conductance and when ceramic particles areor ceramic fillers that enhances thermal conductivity. Solid

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

390

Measurement of the thermoelectric properties of quasicrystalline AlPdRe and AlCuFe alloys  

SciTech Connect (OSTI)

The authors report the measurement of the thermal conductivity, electrical resistivity, and thermoelectric power on two quasicrystalline compounds, Al{sub 70}Pd{sub 20}Re{sub 10} and Al{sub 62.5}Cu{sub 25}Fe{sub 12.5}. These materials are found to possess a thermal conductivity of order 1 W/m{center{underscore}dot}K, while retaining their semimetallic conductivity. These features coupled with moderately large thermopowers, up to 55 {micro}V/K, imply that the general class of quasicrystalline compounds warrants careful investigation for their potential as new thermoelectric materials.

Wilson, M.L.; LeGault, S.; Stroud, R.M.; Tritt, T.M.

1997-07-01T23:59:59.000Z

391

Iron-Based Amorphous-Metals: High-Performance Corrosion-Resistant Materials (HPCRM) Development Final Report  

SciTech Connect (OSTI)

An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal make this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of these iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional stainless steel and nickel-based materials, and are proving to have excellent wear properties, sufficient to warrant their use in earth excavation, drilling and tunnel boring applications. The observed corrosion resistance may enable applications of importance in industries such as: oil and gas production, refining, nuclear power generation, shipping, and others. Large areas have been successfully coated with these materials, with thicknesses of approximately one centimeter.

Farmer, J C; Choi, J; Saw, C; Haslem, J; Day, D; Hailey, P; Lian, T; Rebak, R; Perepezko, J; Payer, J; Branagan, D; Beardsley, B; D'Amato, A; Aprigliano, L

2009-03-16T23:59:59.000Z

392

Hydrogen permeation resistant barrier  

DOE Patents [OSTI]

A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

McGuire, Joseph C. (Richland, WA); Brehm, William F. (Richland, WA)

1982-01-01T23:59:59.000Z

393

Sandia National Laboratories: Measurements of Thermal Stratification...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Exhibition (EU PVSC) EC Top Publications Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter Experimental Wave Tank Test for Reference Model 3 Floating- Point...

394

An International Round-Robin Study, Part II: Thermal Diffusivity, Specific Heat and Thermal Conductivity  

SciTech Connect (OSTI)

For bulk thermoelectrics, figure-of-merit, ZT, still needs to improve from the current value of 1.0 - 1.5 to above 2 to be competitive to other alternative technologies. In recent years, the most significant improvements in ZT were mainly due to successful reduction of thermal conductivity. However, thermal conductivity cannot be measured directly at high temperatures. The combined measurements of thermal diffusivity and specific heat and density are required. It has been shown that thermal conductivity is the property with the greatest uncertainty and has a direct influence on the accuracy of the figure of merit. The International Energy Agency (IEA) group under the implementing agreement for Advanced Materials for Transportation (AMT) has conducted two international round-robins since 2009. This paper is Part II of the international round-robin testing of transport properties of bulk bismuth telluride. The main focuses in Part II are on thermal diffusivity, specific heat and thermal conductivity.

Wang, Hsin [ORNL; Porter, Wallace D [ORNL; Bottner, Harold [Fraunhofer-Institute, Freiburg, Germany; Konig, Jan [Fraunhofer-Institute, Freiburg, Germany; Chen, Lidong [Chinese Academy of Sciences; Bai, Shengqiang [Chinese Academy of Sciences; Tritt, Terry M. [Clemson University; Mayolett, Alex [Corning, Inc; Senawiratne, Jayantha [Corning, Inc; Smith, Charlene [Corning, Inc; Harris, Fred [ZT-Plus; Gilbert, Partricia [Marlow Industries, Inc; Sharp, J [Marlow Industries, Inc; Lo, Jason [CANMET - Materials Technology Laboratory, Natural Resources of Canada; Keinke, Holger [University of Waterloo, Canada; Kiss, Laszlo I. [University of Quebec at Chicoutimi

2013-01-01T23:59:59.000Z

395

Improving Glass Walls Thermal Resistance In Air-Conditioned Buildings  

E-Print Network [OSTI]

The solar radiation through an air conditioned building depends on what is called the building envelope. Building envelope consists of the surfaces that separate the inside from the building outdoors. Area, direction, and specifications of glass...

Galal, T.; Kulaib, A. M.; Alajmi, R.; Al-Ansary. A; Abuzaid, M.

2010-01-01T23:59:59.000Z

396

High strength, thermally stable, oxidation resistant, nickel-based alloy  

DOE Patents [OSTI]

A polycrystalline alloy is composed essentially of, by weight %: 15% to 30% Mo, 3% to 10% Al, up to 10% Cr, up to 10% Fe, up to 2% Si, 0.01% to 0.2% C, 0.01% to 0.04% B, balance Ni.

Sikka, Vinod K. (Oak Ridge, TN); Deevi, Seetharama C. (Midlothian, VA); Vought, Joseph D. (Rockwood, TN); Howell, C. Randal (Knoxville, TN)

1999-01-01T23:59:59.000Z

397

From Consumer Resistance to Stakeholder Resistance The case of nanotechnology*  

E-Print Network [OSTI]

1 From Consumer Resistance to Stakeholder Resistance The case of nanotechnology* Caroline Gauthier proposes to study the resistance of stakeholders, by exploring the nanotech field. Nanotechnology is today in the resistance context. Keywords. Nanotechnology; Resistance Bio. Caroline Gauthier is currently Professor

Boyer, Edmond

398

RESEARCHANDTECHNICALNOTES Thermal contraction of Vespel SP-22 and  

E-Print Network [OSTI]

materials is becoming common in low temperature apparatus. Vespel SP-22 has a thermal conductivity nearly of thermal contraction of such construction materials is often necessary for proper design of low temperature devices. We present here data on the total thermal contraction of these two materials, measured relative

Packard, Richard E.

399

The Role of Thermal Conduction in Tearing Mode Theory  

E-Print Network [OSTI]

The role of anisotropic thermal diffusivity on tearing mode stability is analysed in general toroidal geometry. A dispersion relation linking the growth rate to the tearing mode stability parameter, Delta, is derived. By using a resistive MHD code, modified to include such thermal transport, to calculate tearing mode growth rates, the dispersion relation is employed to determine Delta in situations with finite plasma pressure that are stabilised by favourable average curvature in a simple resistive MHD model. We also demonstrate that the same code can also be used to calculate the basis-functions [C J Ham, et al, Plasma Phys. Control. Fusion 54 (2012) 105014] needed to construct Delta.

Connor, J W; Hastie, R J; Liu, Y Q

2014-01-01T23:59:59.000Z

400

Correspondences DDT resistance in  

E-Print Network [OSTI]

Magazine R587 Correspondences DDT resistance in flies carries no cost Caroline McCart1, Angus to carry a cost in the absence of pesticide and consequently not to spread to fixation [1,2]. However, DDT resistance in Drosophila melanogaster (DDT-R) is approaching fixation globally, long after withdrawl of DDT

Buckling, Angus

Note: This page contains sample records for the topic "thermal resistance measured" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Holographic thermalization patterns  

E-Print Network [OSTI]

We investigate the behaviour of various correlators in N=4 super Yang Mills theory, taking finite coupling corrections into account. In the thermal limit we investigate the flow of the quasinormal modes as a function of the 't Hooft coupling. Then by using a specific model of holographic thermalization we investigate the deviation of the spectral densities from their thermal limit in an out-of-equilibrium situation. The main focus lies on the thermalization pattern with which the various plasma constituents of different energies approach their final thermal distribution as the coupling constant decreases from the infinite coupling limit. All results point towards the weakening of the usual top down thermalization pattern.

Stefan Stricker

2014-03-11T23:59:59.000Z

402

HEATS: Thermal Energy Storage  

SciTech Connect (OSTI)

HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

403

Thermal transport properties of grey cast irons  

SciTech Connect (OSTI)

Thermal diffusivity and thermal conductivity of grey cast iron have been measured as a function of graphite flake morphology, chemical composition, and position in a finished brake rotor. Cast iron samples used for this investigation were cut from ``step block`` castings designed to produce iron with different graphite flake morphologies resulting from different cooling rates. Samples were also machined from prototype alloys and from production brake rotors representing a variation in foundry practice. Thermal diffusivity was measured at room and elevated temperatures via the flash technique. Heat capacity of selected samples was measured with differential scanning calorimetry, and these results were used to calculate the thermal conductivity. Microstructure of the various cast iron samples was quantified by standard metallography and image analysis, and the chemical compositions were determined by optical emission spectroscopy.

Hecht, R.L. [Ford Motor Co., Dearborn, MI (United States). Ford Research Lab.; Dinwiddie, R.B.; Porter, W.D.; Wang, Hsin [Oak Ridge National Lab., TN (United States)

1996-10-01T23:59:59.000Z

404

Crack-resistant siloxane molding compounds. [Patent application  

DOE Patents [OSTI]

The crack resistance of phenyl silicone molding resins containing siliceous fillers is improved by incorporating therein about 0.5 to 5.5% by weight of ..beta..-eucryptite, a lithium aluminum silicate having a negative thermal expansion coefficient. These molding resins are particularly suitable for encapsulating electronic devices such as diodes, coils, resistors, and the like.

McFarland, J.W.; Swearngin, C.B.

1980-11-03T23:59:59.000Z

405

High temperature, low expansion, corrosion resistant ceramic and gas turbine  

DOE Patents [OSTI]

The present invention relates to ZrO.sub.2 -MgO-Al.sub.2 O.sub.3 -SiO.sub.2 ceramic materials having improved thermal stability and corrosion resistant properties. The utilization of these ceramic materials as heat exchangers for gas turbine engines is also disclosed.

Rauch, Sr., Harry W. (Lionville, PA)

1981-01-01T23:59:59.000Z

406

Non-thermal Plasma Chemistry Non-thermal Thermal  

E-Print Network [OSTI]

-thermal Plasma Chemical Flow Reactor #12;Werner von Siemens ,, ... construction of an apparatus generation (1857) pollution control volatile organic components, NOx reforming, ... radiation sources excimer;Leuchtstoffröhre Plasma-Bildschirm Energiesparlampe #12;electrical engineering light sources textile industry

Greifswald, Ernst-Moritz-Arndt-Universität

407

Black Carbon in the Soil Carbon Cycle: Is it an Oxidation Resistant End-Product?  

E-Print Network [OSTI]

for different materials and combustion temperatures. It is less than 1% for thermally altered biomass at combusBlack Carbon in the Soil Carbon Cycle: Is it an Oxidation Resistant End-Product? Simone resistant product of incomplete combustion, and consists out of a range of combustion products such as char

Fischlin, Andreas

408

PHYSICAL REVIEW B 88, 144305 (2013) Two-channel model for nonequilibrium thermal transport in pump-probe experiments  

E-Print Network [OSTI]

150 nm of the Al/Si0.99Ge0.01 interface. The extra thermal resistance in this region is a result. INTRODUCTION The magnitude of a material's thermal conductivity and spe- cific heat is determinedPHYSICAL REVIEW B 88, 144305 (2013) Two-channel model for nonequilibrium thermal transport in pump

Cahill, David G.

409

Belgirate, Italy, 28-30 September 2005 MECHANISM AND THERMAL EFFECT OF DELAMINATION IN LIGHT-EMITTING  

E-Print Network [OSTI]

for the investigation of the thermal behavior of the delaminated LEDs. Increase of thermal resistance with the degreeBelgirate, Italy, 28-30 September 2005 MECHANISM AND THERMAL EFFECT OF DELAMINATION IN LIGHT-EMITTING DIODE PACKAGES Jianzheng Hu, Lianqiao Yang, and Moo Whan Shin Department of Materials Science

Paris-Sud XI, Université de

410

Phonon-hopping thermal conduction in quantum dot superlattices Manu Shamsa, Weili Liu, and Alexander A. Balandina  

E-Print Network [OSTI]

or polycrystalline materials in terms of thermal transport. © 2005 American Institute of Physics. DOI: 10 strongly depends on interface conditions, is considered as a major thermal resistive mecha- nismPhonon-hopping thermal conduction in quantum dot superlattices Manu Shamsa, Weili Liu

411

Thermal non-equilibrium in dispersed flow film boiling in a vertical tube  

E-Print Network [OSTI]

The departure from thermal equilibrium between a dispersed liquid phase and its vapor at high quality during film boiling is investigated, The departure from equilibruim is manifested by the high resistance to heat transfer ...

Forslund, Robert Paul

1966-01-01T23:59:59.000Z

412

E-Print Network 3.0 - acute thermal stress Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

With Summary: with the finding that Caco-2 cells are sensitive to thermal killing but resistant to oxidative stress. Acute heat... 38VA). Acute heat stress (45-518C, 30 min) caused...

413

Thermal Processes | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Production Current Technology Thermal Processes Thermal Processes Some thermal processes use the energy in various resources, such as natural gas, coal, or biomass,...

414

Electronic and thermal transport in GeTe: A versatile base for thermoelectric materials  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

GeTe is a narrow-band gap semiconductor, where Ge vacancies generate free charge carriers, holes, forming a self-dopant degenerate system with p-type conductivity, and serves as a base for high-performance multicomponent thermoelectric materials. There is a significant discrepancy between the electronic and thermal transport data for GeTe-based materials reported in the literature, which obscures the baseline knowledge and prevents a clear understanding of the effect of alloying GeTe with various elements. A comprehensive study including XRD, SEM, EDS, Seebeck coefficient, electrical resistivity, thermal conductivity, and 125Te NMR of several GeTe samples was conducted. Similar Seebeck coefficient and electrical resistivity are observed for all GeTe samples used showing that the concentration of Ge vacancies generating charge carriers is constant along the ingot. Very short 125Te NMR spin-relaxation time agrees well with high carrier concentration obtained from the Hall effect measurements. Our data show that at ~700 K, GeTe has a very large power factor, 42 ?Wcm-1K-2, much larger than that of any high efficiency thermoelectric telluride at these temperatures. Electronic and thermal properties of GeTe are compared to PbTe, another well-known thermoelectric material, where free charge carriers, holes or electrons, are generated by vacancies on Pb or Te sites, respectively. Discrepancy in the data for GeTe reported in literature can be attributed to the variation in the Ge:Te ratio of solidified samples as well as to different conditions of measurements.

None

2013-08-29T23:59:59.000Z

415

Electronic and thermal transport in GeTe: A versatile base for thermoelectric materials  

SciTech Connect (OSTI)

GeTe is a narrow-band gap semiconductor, where Ge vacancies generate free charge carriers, holes, forming a self-dopant degenerate system with p-type conductivity, and serves as a base for high-performance multicomponent thermoelectric materials. There is a significant discrepancy between the electronic and thermal transport data for GeTe-based materials reported in the literature, which obscures the baseline knowledge and prevents a clear understanding of the effect of alloying GeTe with various elements. A comprehensive study including XRD, SEM, EDS, Seebeck coefficient, electrical resistivity, thermal conductivity, and 125Te NMR of several GeTe samples was conducted. Similar Seebeck coefficient and electrical resistivity are observed for all GeTe samples used showing that the concentration of Ge vacancies generating charge carriers is constant along the ingot. Very short 125Te NMR spin-relaxation time agrees well with high carrier concentration obtained from the Hall effect measurements. Our data show that at ~700 K, GeTe has a very large power factor, 42 ?Wcm-1K-2, much larger than that of any high efficiency thermoelectric telluride at these temperatures. Electronic and thermal properties of GeTe are compared to PbTe, another well-known thermoelectric material, where free charge carriers, holes or electrons, are generated by vacancies on Pb or Te sites, respectively. Discrepancy in the data for GeTe reported in literature can be attributed to the variation in the Ge:Te ratio of solidified samples as well as to different conditions of measurements.

None

2013-08-29T23:59:59.000Z

416

Multiwavelength Thermal Emission  

E-Print Network [OSTI]

Multiwavelength Astronomy NASA #12;Thermal Emission #12;Thermal Emission Non-thermal p-p collisions Optical IR Radio/ Microwave sources of emission massive stars, WHIM, Ly many dust, cool objects-ray ~GeV Gamma-ray ~TeV sources of emission AGN, clusters, SNR, binaries, stars AGN (obscured), shocks

California at Santa Cruz, University of

417

Thermal Performance Benchmarking (Presentation)  

SciTech Connect (OSTI)

This project will benchmark the thermal characteristics of automotive power electronics and electric motor thermal management systems. Recent vehicle systems will be benchmarked to establish baseline metrics, evaluate advantages and disadvantages of different thermal management systems, and identify areas of improvement to advance the state-of-the-art.

Moreno, G.

2014-11-01T23:59:59.000Z

418

Radiation resistant austenitic stainless steel alloys  

DOE Patents [OSTI]

An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01% to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties.

Maziasz, Philip J. (Oak Ridge, TN); Braski, David N. (Oak Ridge, TN); Rowcliffe, Arthur F. (Oak Ridge, TN)

1989-01-01T23:59:59.000Z

419

Radiation resistant austenitic stainless steel alloys  

DOE Patents [OSTI]

An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01 to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties. 4 figs.

Maziasz, P.J.; Braski, D.N.; Rowcliffe, A.F.

1987-02-11T23:59:59.000Z

420

High Temperature Oxidation Resistance and Surface Electrical Conductivity of Stainless Steels with Filtered Arc Cr-Al-N Multilayer and/or Superlattice Coatings  

SciTech Connect (OSTI)

The requirements for low cost and high-tempurater corrosion resistance for bipolar interconnect plates in solid oxide fuel cell (SOFC) stacks has directed attention to the use of metal plates with oxidation resistant coatings. Candidate coatings must exhibit chemical and thermal-mechanical stability and high electrical conductivity during long-term (>400,000 hrs) exposure to SOFC operatong conditions. The high temperature oxidation resistance and surface electrical donductivity of 304, 440A,a dn Crofer-22 APU steel coupons, with and without multilayer and/or superlattice coatings from a Cr-Al-N system were investigated as a function of exposure in an oxidization atmosphere at high temperatures. The coatins were deposited using large area filtered arc depsition (LAFAD) technology [1], and subsequently annealed in air at 800 degrees C for varying times. Area specific resistance and activation energy for electrical conductivity of oxidized coupons were measured using a 4-point technique with Pt paste for electrical contact between facing oxidized coupon surfaces. The surface compositon, structure and morphology of the coupons were characterized using RBS, nuclear reaction analysis, XPS, SEM, and AFM techniques. The structure of the CRN/CrAlN multilayered superlattice coatings was characterized by TEM. By altering the architecture of the coating layers, both surface electrical conductivity and oxidation resistance [2] improved signigicantly for some of the coated samples tested up to ~100hrs.

Gannon, Paul E.; Tripp, C.; Knospe, Anders; Ramana, C. V.; Deibert, Max; Smith, Richard J.; Gorokhovsky, Vladimir I.; Shutthanandan, V.; Gelles, David S.

2004-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal resistance measured" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Thermal well-test method  

DOE Patents [OSTI]

A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir is disclosed. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

Tsang, C.F.; Doughty, C.A.

1984-02-24T23:59:59.000Z

422

Ballistic thermal point contacts made of GaAs nanopillars  

SciTech Connect (OSTI)

We measure the thermal conductance of GaAs pillars that are only a few nanometers long. Our observations can be understood with a simple model, in which the pillars constitute thermal point contacts between 3D phonon reservoirs. Moreover, first measurements of the electronic transport through these pillars are presented.

Bartsch, Th.; Wetzel, A.; Sonnenberg, D.; Schmidt, M.; Heyn, Ch.; Hansen, W. [Institut für Angewandte Physik und Zentrum für Mikrostrukturforschung, Universität Hamburg, Jungiusstr. 11, 20355 Hamburg (Germany)

2013-12-04T23:59:59.000Z

423

Computationally efficient algorithms for modelling thermal degradation and spiking phenomena in polymeric materials  

E-Print Network [OSTI]

resistance are the key factors that determine a wide spread success of these materials (Flipsen et al., 1996. These phenomena may contribute substantially to the overall thermal degrada- tion of the material at the stage of material applications. To predict the onset of thermal spiking is not an easy task, and in order

Melnik, Roderick

424

Structural and thermal characters of the Longmen Shan (Sichuan, China) A. Robert a,  

E-Print Network [OSTI]

thick material abutting the resistant and cold Yangtze crust. © 2010 Elsevier B.V. All rights reservedStructural and thermal characters of the Longmen Shan (Sichuan, China) A. Robert a, , M. Pubellier: Longmen Shan Thermal data Crustal deformation Structural geology The Longmen Shan (Sichuan, China

Nicolas, Chamot-Rooke

425

Cu-Bi as a Model System For Liquid Phase Sintered Thermal Interface Management Materials  

E-Print Network [OSTI]

relates electrical resistivity to thermal conductivity for materials where electrons are principleCu-Bi as a Model System For Liquid Phase Sintered Thermal Interface Management Materials P to produce composite materials. A high melting phase (HMP) and low melting phase (LMP) are mixed

Collins, Gary S.

426

IMA Journal of Applied Mathematics (2002) 67, 419439 Modelling thermal front dynamics in microwave heating  

E-Print Network [OSTI]

an electric field is applied to materials with high resistivity, the dipole moments of the molecules alignIMA Journal of Applied Mathematics (2002) 67, 419­439 Modelling thermal front dynamics in microwave July 2000; revised on 6 December 2001] The formation and propagation of thermal fronts in a cylindrical

Xin, Jack

427

Copper(I) Cyanide Networks: Synthesis, Luminescence Behavior and Thermal Analysis. Part 1. Diimine Ligands  

E-Print Network [OSTI]

materials derived from copper(I) halides.3 However, the resistance of copper(I) halides toward oxidationCopper(I) Cyanide Networks: Synthesis, Luminescence Behavior and Thermal Analysis. Part 1. Diimine are noted for the novel 4- and 5-coordinate Cu2- (CN)2 dimers. Thermal analyses show that most

Pike, Robert D.

428

Method for transferring thermal energy and electrical current in thin-film electrochemical cells  

DOE Patents [OSTI]

An improved electrochemical generator is disclosed. The electrochemical generator includes a thin-film electrochemical cell which is maintained in a state of compression through use of an internal or an external pressure apparatus. A thermal conductor, which is connected to at least one of the positive or negative contacts of the cell, conducts current into and out of the cell and also conducts thermal energy between the cell and thermally conductive, electrically resistive material disposed on a vessel wall adjacent the conductor. The thermally conductive, electrically resistive material may include an anodized coating or a thin sheet of a plastic, mineral-based material or conductive polymer material. The thermal conductor is fabricated to include a resilient portion which expands and contracts to maintain mechanical contact between the cell and the thermally conductive material in the presence of relative movement between the cell and the wall structure. The electrochemical generator may be disposed in a hermetically sealed housing.

Rouillard, Roger (Beloeil, CA); Domroese, Michael K. (South St. Paul, MN); Hoffman, Joseph A. (Minneapolis, MN); Lindeman, David D. (Hudson, WI); Noel, Joseph-Robert-Gaetan (St-Hubert, CA); Radewald, Vern E. (Austin, TX); Ranger, Michel (Lachine, CA); Sudano, Anthony (Laval, CA); Trice, Jennifer L. (Eagan, MN); Turgeon, Thomas A. (Fridley, MN)

2003-05-27T23:59:59.000Z

429

Thermal Acoustic Sensor for High Pulse Energy X-ray FEL Beams  

SciTech Connect (OSTI)

The pulse energy density of X-ray FELs will saturate or destroy conventional X-ray diagnostics, and the use of large beam attenuation will result in a beam that is dominated by harmonics. We present preliminary results at the LCLS from a pulse energy detector based on the thermal acoustic effect. In this type of detector an X-ray resistant material (boron carbide in this system) intercepts the beam. The pulse heating of the target material produces an acoustic pulse that can be detected with high frequency microphones to produce a signal that is linear in the absorbed energy. The thermal acoustic detector is designed to provide first- and second-order calorimetric measurement of X-ray FEL pulse energy. The first-order calorimetry is a direct temperature measurement of a target designed to absorb all or most of the FEL pulse power with minimal heat leak. The second-order measurement detects the vibration caused by the rapid thermoelastic expansion of the target material each time it absorbs a photon pulse. Both the temperature change and the amplitude of the acoustic signal are directly related to the photon pulse energy.

Smith, T.J.; Frisch, J.C.; Kraft, E.M.; Loos, J.; /SLAC; Bentsen, G.S.; /Rochester U.

2011-12-13T23:59:59.000Z

430

Structural Dependence of Grain Boundary Resistance in Copper Nanowires  

SciTech Connect (OSTI)

The current choice of the interconnect metal in integrated circuits is copper due to its higher electrical conductivity and improved electromigration reliability in comparison with aluminum. However, with reducing feature sizes, the resistance of copper interconnects (lines) increases dramatically. Greater resistance will result in higher energy use, more heat generation, more failure due to electromigration, and slower switching speeds. To keep pace with the projected planar transistor density, the first challenge is to identify the dominant factors that contribute to the high interconnect resistance. Here we directly measure individual grain boundary (GB) resistances in copper nanowires with a one-to-one correspondence to the GB structure. The specific resistivities of particular GBs are measured using four-probe scanning tunneling microscopy (STM) to establish a direct link between GB structure and the resistance. High-angle random GBs contribute to a specific resistivity of about 25 10-12 cm2 for each boundary, while coincidence boundaries are significantly less-resistive than random boundaries. Thus, replacing random boundaries with coincidence ones would be a route to suppress the GB impact to the resistivity of polycrystalline conductors. Acknowledgement: The research was supported by the Division of Scientific User Facilities, U. S. Department of Energy.

Kim, Tae Hwan [ORNL; Zhang, Xiaoguang [ORNL; Nicholson, Don M [ORNL; Radhakrishnan, Bala [ORNL; Radhakrishnan, Balasubramaniam [ORNL; Evans III, Boyd Mccutchen [ORNL; Kulkarni, Nagraj S [ORNL; Kenik, Edward A [ORNL; Meyer III, Harry M [ORNL; Li, An-Ping [ORNL

2011-01-01T23:59:59.000Z

431

Corrosion resistant refractory ceramics for slagging gasifier environment  

SciTech Connect (OSTI)

Integrated gasification combined cycle power systems are the most efficient and economical power generation systems with a relatively low environmental impact. The gasification process requires the optimal design of gasifiers with extremely corrosion resistant refractory lining. The majority of the refractory materials tested for gasifier lining applications cannot resist the action of slagging corrosive environment combined with high operation temperatures as high as 1600?C and possible thermal shocks and thermal expansion mismatch between the lining and the slag. Silicon carbide-based ceramics and some zirconia- and zircon-based ceramics manufactured by Ceramic Protection Corporation (CPC) have been tested in a simulated coal-fired slagging gasifier environment at a temperature of 1500?C. Crucible ceramic samples have been examined after exposure to the slag at high temperature. Microstructure studies of the ceramic zone contacted with the slag have been carried out. The highest performance, i.e. the absence of corrosion damage and thermal cracking after testing, was observed for silicon carbide-based ceramics ABSC formed by silicon carbide grains with an optimized particle size distribution bonded by the aluminosilicate crystalline-glassy matrix. Dense zirconia and alumina-zirconia and slightly porous zircon ceramics demonstrated comparatively lower performance due to their lower corrosion resistance and greater thermal cracking. ABSC ceramics can be manufactured as thick-walled large components and may be considered as a promising material for gasifier refractory applications. Similar ceramics, but with finer grain sizes, may also be recommended for thermocouple protection.

Medvedovski, E. (Ceramic Protection Corp., Calgary, Alberta, Canada); Chinn, Richard E.

2004-01-01T23:59:59.000Z

432

Advanced thermally stable jet fuels  

SciTech Connect (OSTI)

The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume (Sections 1 through 5).

Schobert, H.H.

1999-01-31T23:59:59.000Z

433

Stability of nickel-coated sand as gravel-pack material for thermal wells  

SciTech Connect (OSTI)

Laboratory flow tests have been carried out to study the stability of various nickel-coated sands under aqueous steam temperature and pH conditions that may exist in thermal recovery operations. Other gravel-pack materials tested include Ottawa sand, sintered bauxite, cement clinker, zirconium oxide, and nickel pellets. A comparison was made between the performances of these materials after exposure to identical thermal and hydrolytic conditions. Test results indicate that nickel-coated sands are highly resistant to dissolution at temperatures as high as 300/sup 0/C (570/sup 0/F) and to solution pH's from 4.75 to 11. Weight losses measured after a 72-hour period were less than 1%. In contrast, weight losses from sintered bauxite, zirconium oxide, and Ottawa sand dissolution tests were 30 to 70 times higher under the same conditions. Cement clinker losses were in the intermediate range under alkaline conditions. API standard crushing and acid-solubility tests for proppants also were performed on nickel-coated sands. These results were favorable in that they exceeded the recommended standards. This study of nickel-coated sand stability and mechanical strength has demonstrated its high potential for application as either a gravel-pack material or proppant in thermal recovery operations.

Sacuta, A.; Nguyen, D.M.; Kissel, G.A. (Alberta Research Council (CA))

1988-11-01T23:59:59.000Z

434

"Flexible aerogel as a superior thermal insulation for high temperature superconductor cable applications"  

SciTech Connect (OSTI)

High temperature superconducting (HTS) cables are an advanced technology that can both strengthen and improve the national electrical distribution infrastructure. HTS cables require sufficient cooling to overcome inherent low temperature heat loading. Heat loads are minimized by the use of cryogenic envelopes or cryostats. Cryostats require improvement in efficiency, reliability, and cost reduction to meet the demanding needs of HTS conductors (1G and 2G wires). Aspen Aerogels has developed a compression resistant aerogel thermal insulation package to replace compression sensitive multi-layer insulation (MLI), the incumbent thermal insulation, in flexible cryostats for HTS cables. Oak Ridge National Laboratory tested a prototype aerogel package in a lab-scale pipe apparatus to measure the rate of heat invasion. The lab-scale pipe test results of the aerogel solution will be presented and directly compared to MLI. A compatibility assessment of the aerogel material with HTS system components will also be presented. The aerogel thermal insulation solution presented will meet the demanding needs of HTS cables.

White, Shannon O. [Aspen Aerogel, Inc.; Demko, Jonathan A [ORNL; Tomich, A. [Aspen Aerogel, Inc.

2010-01-01T23:59:59.000Z

435

Thermal comfort during surgery  

E-Print Network [OSTI]

THERMAL COMFORT DURING SURGERY A Thesis by DAVID HAROLD MANNING Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1978 Major Subject: Industrial... Engineering THERMAL COMFORT DURING SURGERY A Thesis by DAVID HAROLD MANNING Approved as to style and content by: airman of C it ee Head of Department Member Me er December 1978 ABSTRACT Thermal Comfort During Surgery (December 1978) David Harold...

Manning, David Harold

1978-01-01T23:59:59.000Z

436

Thermal Infrared Remote Sensing  

E-Print Network [OSTI]

Thermal Infrared Remote Sensing Thermal Infrared Remote Sensing #12;0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4 and x-ray Ultraviolet Infrared Microwave and radio waves Wavelength in meters (m) Electromagnetic.77 700 red limit 30k0.041 2.48 green500 near-infrared far infrared ultraviolet Thermal Infrare refers

437

Optics, mask and resist implications on contact CDU  

SciTech Connect (OSTI)

Mask and condenser roughness plays important in contact CDU. Resist blur drives both dose requirements and mask specs. Correlation methods can be used to measure mask contributions to CDU.

Naulleau, Patrick

2010-06-01T23:59:59.000Z

438

Combustion Control and Diagnostics Sensor Testing in a Thermal Barrier Coated Combustor  

SciTech Connect (OSTI)

The combustion control and diagnostics sensor (CCADS) continues to be developed as an in-situ combustion sensor, with immediate application to natural gas fired turbines. In-situ combustion monitoring is also expected to benefit advanced power plants of the future, fueled by coal-derived syngas, liquified natural gas (LNG), hydrogen, or hydrogen blend fuels. The in-situ monitoring that CCADS provides can enable the optimal operation of advanced, fuel-flexible turbines for minimal pollutant emissions and maximum efficiency over the full operating range of an advanced turbine. Previous work has demonstrated CCADS as a useful sensor for in-situ monitoring of natural gas combustion, including detection of important combustion events such as flashback and lean blowoff, in experimental combustors without thermal barrier coatings (TBC). Since typical TBC materials are electrical insulators at room temperature, and CCADS operation requires conduction of electrical current to the walls of the combustor, a TBC on the combustion liner was identified as a potential barrier to CCADS operation in commercial application. This paper reports on CCADS experiments in a turbulent lean premixed combustor with a yttria-stabilized zirconia (YSZ) thermal barrier coating on the combustor wall. The tests were conducted at 0.1 MPa (1 atm), with a 15V excitation voltage on the CCADS electrodes. The results confirm that for a typical thermal barrier coating, CCADS operates properly, and the total measured average resistance is close to that of an uncoated combustor. This result is consistent with previous materials studies that found the electrical resistance of typical TBC materials considerably decreases at combustor operating temperatures.

Chorpening, B.T.; Dukes, M.G.; Robey, E.H.; Thornton, J.D.

2007-05-01T23:59:59.000Z

439

Variable pressure thermal insulating jacket  

DOE Patents [OSTI]

A device for controlled insulation of a thermal device is disclosed. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communication with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket. 10 figs.

Nelson, P.A.; Malecha, R.F.; Chilenskas, A.A.

1994-09-20T23:59:59.000Z

440

Solar Thermal Demonstration Project  

SciTech Connect (OSTI)

HVAC Retrofit and Energy Efficiency Upgrades at Clark High School, Las Vegas, Nevada The overall objectives of this project are to increase usage of alternative/renewable fuels, create a better and more reliable learning environment for the students, and reduce energy costs. Utilizing the grant resources and local bond revenues, the District proposes to reduce electricity consumption by installing within the existing limited space, one principal energy efficient 100 ton adsorption chiller working in concert with two 500 ton electric chillers. The main heating source will be primarily from low nitrogen oxide (NOX), high efficiency natural gas fired boilers. With the use of this type of chiller, the electric power and cost requirements will be greatly reduced. To provide cooling to the information technology centers and equipment rooms of the school during off-peak hours, the District will install water source heat pumps. In another measure to reduce the cooling requirements at Clark High School, the District will replace single pane glass and metal panels with â??Kalwallâ?? building panels. An added feature of the â??Kalwallâ? system is that it will allow for natural day lighting in the student center. This system will significantly reduce thermal heat/cooling loss and control solar heat gain, thus delivering significant savings in heating ventilation and air conditioning (HVAC) costs.

Biesinger, K.; Cuppett, D.; Dyer, D.

2012-01-30T23:59:59.000Z

Note: This page contains sample records for the topic "thermal resistance measured" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Triple-material stress-strain resistivity gage  

DOE Patents [OSTI]

A triple material piezoresistive gage provides multi-component elastic stress measurements is disclosed. Thin foils of three piezoresistive materials, e.g. ytterbium, manganin, and constantan, are configured in a nested serpentine rectilinear grid or other grid arrangement and embedded in a medium, preferably normal to the direction of shock wave propagation. The output of the gage is a resistivity change history for each material of the gage. Each resistivity change is independent of the others so that three diagonal components of the elastic stress or strain tensor can be calculated from the resistivity measurements. 4 figs.

Stout, R.B.

1988-05-17T23:59:59.000Z

442

Triple-material stress-strain resistivity gage  

DOE Patents [OSTI]

A triple material piezoresistive gage provides multi-component elastic stress or strain measurements. Thin foils of three piezoresistive materials, e.g., ytterbium, manganin, and constantan, are configured in a nested serpentine rectilinear grind or other grind arrangement and embedded in a medium, preferably normal to the direction of shock wave propagation. The output of the gage is a resistivity change history for each material of gage. Each resistivity change is independent of the others so that three diagonal components of the elastic stress or strain tensor can be calculated form the resistivity measurements. 4 figs.

Stout, R.B.

1987-05-19T23:59:59.000Z

443

Thermal loading study for FY 1995  

SciTech Connect (OSTI)

This report provides the results of sensitivity analyses designed to assist the test planners in focusing their in-situ measurements on parameters that appear to be important to waste isolation. Additionally, the study provides a preliminary assessment of the feasibility of certain thermal management options. A decision on thermal loading is a critical part of the scientific and engineering basis for evaluating regulatory compliance of the potential repository for waste isolation. To show, with reasonable assurance, that the natural and engineered barriers will perform adequately under expected repository conditions (thermally perturbed) will require an integrated approach based on thermal testing (laboratory, and in-situ), natural analog observations, and analytic modeling. The Office of Civilian Radioactive Waste Management needed input to assist in the planning of the thermal testing program. Additionally, designers required information on the viability of various thermal management concepts. An approximately 18-month Thermal Loading Study was conducted from March, 1994 until September 30, 1995 to address these issues. This report documents the findings of that study. 89 refs., 71 figs., 33 tabs.

NONE

1996-01-31T23:59:59.000Z

444

Thermal protection apparatus  

DOE Patents [OSTI]

The disclosure is directed to an apparatus for thermally protecting sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components such as electronics to a heat sink such as ice.

Bennett, G.A.; Elder, M.G.; Kemme, J.E.

1984-03-20T23:59:59.000Z

445

Mechanical Engineering & Thermal Group  

E-Print Network [OSTI]

Mechanical Engineering & Thermal Group The Mechanical Engineering (ME) & Thermal Group at LASP has, and ground- based mechanical systems. Instrument Design Building on decades of design experience that has evolved with the complexity of instrument design demands, LASP mechanical engineers develop advanced

Mojzsis, Stephen J.

446

Thermal protection apparatus  

DOE Patents [OSTI]

An apparatus which thermally protects sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components to a heat sink such as ice.

Bennett, Gloria A. (Los Alamos, NM); Elder, Michael G. (Los Alamos, NM); Kemme, Joseph E. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

447

Solar thermal aircraft  

DOE Patents [OSTI]

A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2007-09-18T23:59:59.000Z

448

Tunable thermal link  

DOE Patents [OSTI]

Disclosed is a device whereby the thermal conductance of a multiwalled nanostructure such as a multiwalled carbon nanotube (MWCNT) can be controllably and reversibly tuned by sliding one or more outer shells with respect to the inner core. As one example, the thermal conductance of an MWCNT dropped to 15% of the original value after extending the length of the MWCNT by 190 nm. The thermal conductivity returned when the tube was contracted. The device may comprise numbers of multiwalled nanotubes or other graphitic layers connected to a heat source and a heat drain and various means for tuning the overall thermal conductance for applications in structure heat management, heat flow in nanoscale or microscale devices and thermal logic devices.

Chang, Chih-Wei; Majumdar, Arunava; Zettl, Alexander K.

2014-07-15T23:59:59.000Z

449

Thermal Recovery Methods  

SciTech Connect (OSTI)

Thermal Recovery Methods describes the basic concepts of thermal recovery and explains the injection patterns used to exploit reservoir conditions. Basic reservoir engineering is reviewed with an emphasis on changes in flow characteristics caused by temperature. The authors discuss an energy balance for steam and combustion drive, and they explain in situ reactions. Heat loss, combustion drive, and steam displacement also are examined in detail, as well as cyclic steam injection, downhole ignition, well heating, and low-temperature oxidation. Contents: Thermal processes; Formation and reservoir evaluations; Well patterns and spacing; Flow and process equations; Laboratory simulation of thermal recovery; Heat loss and transmission; Displacement and production; Equipment; Basic data for field selection; Laboratory evaluation of combustion characteristics; Thermal properties of reservoirs and fluids.

White, P.D.; Moss, J.T.

1983-01-01T23:59:59.000Z

450

Thermal treatment wall  

DOE Patents [OSTI]

A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.

Aines, Roger D. (Livermore, CA); Newmark, Robin L. (Livermore, CA); Knauss, Kevin G. (Livermore, CA)

2000-01-01T23:59:59.000Z

451

Microsecond switchable thermal antenna  

SciTech Connect (OSTI)

We propose a thermal antenna that can be actively switched on and off at the microsecond scale by means of a phase transition of a metal-insulator material, the vanadium dioxide (VO{sub 2}). This thermal source is made of a periodically patterned tunable VO{sub 2} nanolayer, which support a surface phonon-polariton in the infrared range in their crystalline phase. Using electrodes properly registered with respect to the pattern, the VO{sub 2} phase transition can be locally triggered by ohmic heating so that the surface phonon-polariton can be diffracted by the induced grating, producing a highly directional thermal emission. Conversely, when heating less, the VO{sub 2} layers cool down below the transition temperature, the surface phonon-polariton cannot be diffracted anymore so that thermal emission is inhibited. This switchable antenna could find broad applications in the domain of active thermal coatings or in those of infrared spectroscopy and sensing.

Ben-Abdallah, Philippe, E-mail: pba@institutoptique.fr; Benisty, Henri; Besbes, Mondher [Laboratoire Charles Fabry, UMR 8501, Institut d'Optique, CNRS, Université Paris-Sud 11, 2, Avenue Augustin Fresnel, 91127 Palaiseau Cedex (France)

2014-07-21T23:59:59.000Z

452

Hydrofracture diagnosis in open-hole and steel-cased wells using borehole resistivity measurements David Pardo, University of the Basque Country UPV/EHU and IKERBASQUE and Carlos Torres-Verdin, The Uni-  

E-Print Network [OSTI]

Well Cementing Company (Howco) performed in Oklahoma the first commercial hydrofracture, costing 900 are characterized using dual-laterolog measurements. More recent results em- ploying various induction logging

Torres-Verdín, Carlos

453

Thermal control of ceramic breeder blankets  

SciTech Connect (OSTI)

Thermal control is an important issue for ceramic breeder blankets since the breeder needs to operate within its temperature window for the tritium release and inventory to be acceptable. A thermal control region is applicable not only to situations where the coolant can be run at low temperature, such as for the International Thermonuclear Experimental Reactor (ITER) base blanket, but also to ITER test module and power reactor situations, where it would allow for ceramic breeder operation over a wide range of power densities in space and time. Four thermal control mechanisms applicable to ceramic breeder blanket designs are described: A helium gap, a beryllium sintered block region, a beryllium sintered block region with a metallic felt at the beryllium-cladding interface, and a beryllium packed-bed region. Key advantages and issues associated with each of these mechanisms are discussed. Experimental and modeling studies focusing on beryllium packed-bed thermal conductivity and wall conductance, and beryllium sintered block-stainless steel cladding contact resistance are then described. Finally, an assessment of the potential of the different mechanisms for both passive and active control is carried out based on example calculations for a given set of ITER-like conditions. 28 refs., 33 figs., 3 tabs.

Raffray, A.R.; Tillack, M.S.; Abdou, M.A. (Univ. of California, Los Angeles, CA (United States))

1993-05-01T23:59:59.000Z

454

Thermal conductor for high-energy electrochemical cells  

DOE Patents [OSTI]

A thermal conductor for use with an electrochemical energy storage device is disclosed. The thermal conductor is attached to one or both of the anode and cathode contacts of an electrochemical cell. A resilient portion of the conductor varies in height or position to maintain contact between the conductor and an adjacent wall structure of a containment vessel in response to relative movement between the conductor and the wall structure. The thermal conductor conducts current into and out of the electrochemical cell and conducts thermal energy between the electrochemical cell and thermally conductive and electrically resistive material disposed between the conductor and the wall structure. The thermal conductor may be fabricated to include a resilient portion having one of a substantially C-shaped, double C-shaped, Z-shaped, V-shaped, O-shaped, S-shaped, or finger-shaped cross-section. An elastomeric spring element may be configured so as to be captured by the resilient conductor for purposes of enhancing the functionality of the thermal conductor. The spring element may include a protrusion that provides electrical insulation between the spring conductor and a spring conductor of an adjacently disposed electrochemical cell in the presence of relative movement between the cells and the wall structure. The thermal conductor may also be fabricated from a sheet of electrically conductive material and affixed to the contacts of a number of electrochemical cells.

Hoffman, Joseph A. (Minneapolis, MN); Domroese, Michael K. (South St. Paul, MN); Lindeman, David D. (Hudson, WI); Radewald, Vern E. (Austin, TX); Rouillard, Roger (Beloeil, CA); Trice, Jennifer L. (Eagan, MN)

2000-01-01T23:59:59.000Z

455

Electron thermal transport within magnetic islands in the reversed-field pinch  

SciTech Connect (OSTI)

Tearing mode induced magnetic islands have a significant impact on the thermal characteristics of magnetically confined plasmas such as those in the reversed-field pinch (RFP). New Thomson scattering diagnostic capability on the Madison Symmetric Torus (MST) RFP has enabled measurement of the thermal transport characteristics of islands. Electron temperature (T{sub e}) profiles can now be acquired at 25 kHz, sufficient to measure the effect of an island on the profile as the island rotates by the measurement point. In standard MST plasmas with a spectrum of unstable tearing modes, remnant islands are present in the core between sawtoothlike reconnection events. Associated with these island remnants is flattening of the T{sub e} profile inside the island separatricies. This flattening is characteristic of rapid parallel heat conduction along helical magnetic field lines. In striking contrast, a temperature gradient within an m=1, n=5 island is observed in these same plasmas just after a sawtooth event when the m=1, n=5 mode may briefly come into resonance near the magnetic axis. This suggests local heating and relatively good confinement within the island. Local power balance calculations suggest reduced thermal transport within this island relative to the confinement properties of standard MST discharges between reconnection events. The magnetic field and island structure is modeled with three-dimensional nonlinear resistive magnetohydrodynamic simulations (DEBS code) with Lundquist numbers matching those in MST during standard discharges. During improved confinement plasmas with reduced tearing mode activity, temperature fluctuations correlated with magnetic signals are small with characteristic fluctuation amplitudes of order T-tilde{sub e}/T{sub e}approx2%.

Stephens, H. D.; Reusch, J. A. [Department of Physics, University of Wisconsin-Madison, 1150 University Ave., Madison, Wisconsin 53706 (United States); Den Hartog, D. J. [Department of Physics, University of Wisconsin-Madison, 1150 University Ave., Madison, Wisconsin 53706 (United States); Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Hegna, C. C. [Department of Physics, University of Wisconsin-Madison, 1150 University Ave., Madison, Wisconsin 53706 (United States); Department of Engineering Physics, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, Wisconsin 53706 (United States)

2010-05-15T23:59:59.000Z

456

Neutrino Physics with Thermal Detectors  

SciTech Connect (OSTI)

The investigation of fundamental neutrino properties like its mass and its nature calls for the design of a new generation of experiments. High sensitivity, high energy resolution, and versatility together with the possibility of a simple multiplexing scheme are the key features of future detectors for these experiments. Thermal detectors can combine all these features. This paper reviews the status and the perspectives for what concerns the application of this type of detectors to neutrino physics, focusing on direct neutrino mass measurements and neutrinoless double beta decay searches.

Nucciotti, A. [Dipartimento di Fisica, Universita di Milano Bicocca and INFN Sezione di Milano-Bicocca Piazza della Scienza, 3, 20126 Milano (Italy)

2009-11-09T23:59:59.000Z

457

Thermal Stability Of Formohydroxamic Acid  

SciTech Connect (OSTI)

The thermal stability of formohydroxamic acid (FHA) was evaluated to address the potential for exothermic decomposition during storage and its use in the uranium extraction process. Accelerating rate calorimetry showed rapid decomposition at a temperature above 65 {degree}?C; although, the rate of pressure rise was greater than two orders of magnitude less than the lower bound for materials which have no explosive properties with respect to transportation. FHA solutions in water and nitric acid did not reach runaway conditions until 150 {degree}?C. Analysis by differential scanning calorimetry showed that FHA melted at 67 {degree}?C and thermally decomposed at 90 {degree}?C with an enthalpy of -1924 J/g. The energics of the FHA thermal decomposition are comparable to those measured for aqueous solutions of hydroxylamine nitrate. Solid FHA should be stored in a location where the temperature does not exceed 20-25 {degree}?C. As a best practice, the solid material should be stored in a climate-controlled environment such as a refrigerator or freezer. FHA solutions in water are not susceptible to degradation by acid hydrolysis and are the preferred way to handle FHA prior to use.

Fondeur, F. F.; Rudisill, T. S.

2011-10-21T23:59:59.000Z

458

High-Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

Thermal Array for Next Generation Solar Thermal Power Production Award Number: DE-EE00025828 Report Date: March 15, 2013 PI: Stephen Obrey * Technical approach is focused on...

459

Thermal Modeling and Device Noise Properties of Three-Dimensional-SOI Technology  

E-Print Network [OSTI]

Thermal test structures and ring oscillators (ROs) are fabricated in 0.18-mum three-dimensional (3-D)-SOI technology. Measurements and electrothermal simulations show that thermal and parasitic effects due to 3-D packaging ...

Chen, Tze Wee

460

Theoretical investigation of the impact of grain boundaries and fission gases on UO2 thermal conductivity  

SciTech Connect (OSTI)

Thermal conductivity is one of the most important metrics of nuclear fuel performance. Therefore, it is crucial to understand the impact of microstructure features on thermal conductivity, especially since the microstructure evolves with burn-up or time in the reactor. For example, UO{sub 2} fuels are polycrystalline and for high-burnup fuels the outer parts of the pellet experience grain sub-division leading to a very fine grain structure. This is known to impact important physical properties such as thermal conductivity as fission gas release. In a previous study, we calculated the effect of different types of {Sigma}5 grain boundaries on UO{sub 2} thermal conductivity and predicted the corresponding Kapitza resistances, i.e. the resistance of the grain boundary in relation to the bulk thermal resistance. There have been reports of pseudoanisotropic effects for the thermal conductivity in cubic polycrystalline materials, as obtained from molecular dynamics simulations, which means that the conductivity appears to be a function of the crystallographic direction of the temperature gradient. However, materials with cubic symmetry should have isotropic thermal conductivity. For this reason it is necessary to determine the cause of this apparent anisotropy and in this report we investigate this effect in context of our earlier simulations of UO{sub 2} Kapitza resistances. Another source of thermal resistance comes from fission products and fission gases. Xe is the main fission gas and when generated in sufficient quantity it dissolves from the lattice and forms gas bubbles inside the crystalline structure. We have performed studies of how Xe atoms dissolved in the UO{sub 2} matrix or precipitated as bubbles impact thermal conductivity, both in bulk UO{sub 2} and in the presence of grain boundaries.

Du, Shiyu [Los Alamos National Laboratory; Andersson, Anders D. [Los Alamos National Laboratory; Germann, Timothy C. [Los Alamos National Laboratory; Stanek, Christopher R. [Los Alamos National Laboratory

2012-05-02T23:59:59.000Z

Note: This page contains sample records for the topic "thermal resistance measured" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Corrosion-resistant metal surfaces  

DOE Patents [OSTI]

The present invention relates to metal surfaces having thereon an ultrathin (e.g., less than ten nanometer thickness) corrosion-resistant film, thereby rendering the metal surfaces corrosion-resistant. The corrosion-resistant film includes an at least partially crosslinked amido-functionalized silanol component in combination with rare-earth metal oxide nanoparticles. The invention also relates to methods for producing such corrosion-resistant films.

Sugama, Toshifumi (Wading River, NY)

2009-03-24T23:59:59.000Z

462

Contact Resistance for "End-Contacted" Metal-Graphene and Metal-Nanotube Interfaces from Quantum Mechanics  

E-Print Network [OSTI]

ballistic conductance,12-14 and high thermal conductivity.15 Indeed, significant progress has been made layer graphene has been demonstrated to exhibit high electron mobility (15 000 cm2 /(V s)) and thermalContact Resistance for "End-Contacted" Metal-Graphene and Metal-Nanotube Interfaces from Quantum

Goddard III, William A.

463

Multilayer thermal barrier coating systems  

DOE Patents [OSTI]

The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

Vance, Steven J. (Orlando, FL); Goedjen, John G. (Oviedo, FL); Sabol, Stephen M. (Orlando, FL); Sloan, Kelly M. (Longwood, FL)

2000-01-01T23:59:59.000Z

464

Resistance after firing protected electric match. [Patent application  

DOE Patents [OSTI]

An electric match having electrical leads embedded in flame-producing compound is protected against an accidental resistance across the leads after firing by a length of heat-shrinkable tubing encircling the match body and having a skirt portion extending beyond the leads. The heat of the burning match and an adjacent thermal battery causes the tubing to fold over the end of the match body, covering the ends of the leads and protecting them from molten pieces of the battery.

Montoya, A.P.

1980-03-20T23:59:59.000Z

465

REACTOR GROUT THERMAL PROPERTIES  

SciTech Connect (OSTI)

Savannah River Site has five dormant nuclear production reactors. Long term disposition will require filling some reactor buildings with grout up to ground level. Portland cement based grout will be used to fill the buildings with the exception of some reactor tanks. Some reactor tanks contain significant quantities of aluminum which could react with Portland cement based grout to form hydrogen. Hydrogen production is a safety concern and gas generation could also compromise the structural integrity of the grout pour. Therefore, it was necessary to develop a non-Portland cement grout to fill reactors that contain significant quantities of aluminum. Grouts generate heat when they set, so the potential exists for large temperature increases in a large pour, which could compromise the integrity of the pour. The primary purpose of the testing reported here was to measure heat of hydration, specific heat, thermal conductivity and density of various reactor grouts under consideration so that these properties could be used to model transient heat transfer for different pouring strategies. A secondary purpose was to make qualitative judgments of grout pourability and hardened strength. Some reactor grout formulations were unacceptable because they generated too much heat, or started setting too fast, or required too long to harden or were too weak. The formulation called 102H had the best combination of characteristics. It is a Calcium Alumino-Sulfate grout that contains Ciment Fondu (calcium aluminate cement), Plaster of Paris (calcium sulfate hemihydrate), sand, Class F fly ash, boric acid and small quantities of additives. This composition afforded about ten hours of working time. Heat release began at 12 hours and was complete by 24 hours. The adiabatic temperature rise was 54 C which was within specification. The final product was hard and displayed no visible segregation. The density and maximum particle size were within specification.

Steimke, J.; Qureshi, Z.; Restivo, M.; Guerrero, H.

2011-01-28T23:59:59.000Z

466

Magnetotelluric measurements  

SciTech Connect (OSTI)

The ideas of flux quantization and Josephson tunneling are reviewed, and the operation of the dc SQUID as a magnetometer is described. The SQUID currently used for magnetotellurics has a sensitivity of 10/sup -14/ T Hz/sup -1/2/, a dynamic range at 10/sup 7/ in a 1 Hz bandwidth, a frequency response from 0 to 40 kHz, and a slewing rate of 5 x 10/sup -5/T s/sup -1/. Recent improvements in sensitivity are discussed: SQUIDS are rapidly approaching the limit imposed by the uncertainty principle. The essential ideas of magnetotelluric (MT) measurements are outlined, and it is shown how the remote reference method can lead to major reductions in bias errors compared to more conventional schemes. The field techniques of the Berkeley group are described. The practical application of MT requires that amplitude and phase spectra of apparent resistivities be transformed into a geologically useful distribution of subsurface resistivities. In many areas where MT is being applied today, the technique may not provide the information needed because stations are too few and widely spaced, or because we are unable to interpret data influenced by complex 3-D resistivity features. The results of two surveys, one detailed, the other regional, over the Klamath Basin, Oregon, are examined. The detailed survey is able to resolve small (1 km wide) structural features that are missed or add a component of spatial aliasing to the regional data. On the other hand, the regional survey avoids truncation effects that may occur when the survey undersamples an area.

Clarke, J.; Goldstein, N.E.

1980-06-01T23:59:59.000Z

467

Thermal insulations using vacuum panels  

DOE Patents [OSTI]

Thermal insulation vacuum panels are formed of an inner core of compressed low thermal conductivity powders enclosed by a ceramic/glass envelope evaluated to a low pressure.

Glicksman, Leon R. (Lynnfield, MA); Burke, Melissa S. (Pittsburgh, PA)

1991-07-16T23:59:59.000Z

468

Degenerate resistive switching and ultrahigh density storage in resistive memory  

SciTech Connect (OSTI)

We show that in tantalum oxide resistive memories, activation power provides a multi-level variable for information storage that can be set and read separately from the resistance. These two state variables (resistance and activation power) can be precisely controlled in two steps: (1) the possible activation power states are selected by partially reducing resistance, then (2) a subsequent partial increase in resistance specifies the resistance state and the final activation power state. We show that these states can be precisely written and read electrically, making this approach potentially amenable for ultra-high density memories. We provide a theoretical explanation for information storage and retrieval from activation power and experimentally demonstrate information storage in a third dimension related to the change in activation power with resistance.

Lohn, Andrew J., E-mail: drewlohn@gmail.com; Mickel, Patrick R., E-mail: prmicke@sandia.gov; James, Conrad D.; Marinella, Matthew J. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

2014-09-08T23:59:59.000Z

469

Measuring Advances in HVAC Distribution System Design  

E-Print Network [OSTI]

Gabel and Andresen, HVAC Secondary Toolkil. Atlanta: ASHRAE,P_02 Measuring Advances in HVAC Distribution System Designdesign and operation of the HVAC thermal distribution system

Franconi, E.

2011-01-01T23:59:59.000Z

470

Corrosive resistant heat exchanger  

DOE Patents [OSTI]

A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

Richlen, Scott L. (Annandale, VA)

1989-01-01T23:59:59.000Z

471

Calorimetric measurements of nuclear heating in small probes of plasma-facing materials  

SciTech Connect (OSTI)

Direct measurements of nuclear heating in small probes of materials subjected to D-T neutrons from an accelerator based source were initiated during 1989 under USDOE/JAERI collaborative program. A calorimetric technique was utilized to make these measurements. The probes of plasma facing materials, among others, were kept very close, {approximately}3 to {approximately}7 cm, to the neutron source inside an evacuated vacuum chamber. A typical probe measured 20 mm in diameter by 20 mm in length. Typical source intensity was {approximately}2 x 10{sup 12} n/s. The temperature changes in the probe medium were detected by thermal sensors spatially distributed in the probe. The thermal sensors included bead-thermistors, and platinum RTD`s. The change in resistance of a thermal sensor due to onset of nuclear heating was picked up by an automated data acquisition and control system that included a highly sensitive digital voltmeter that had a resolution of 100 nV in voltage range of 300 mV or less. Usually, an individual probe was subjected to spaced neutron pulses of time duration 3 m to 10 m. Two consecutive source neutron pulses were separated by a cooling interval of almost the same duration as that of a source pulse. This approach made it possible to clearly distinguish between the heating and drift phases of the probe medium, on one hand, and to ascertain and verify the reproducibility of measured heating rates from one neutron pulse to another, on the other hand.

Kumar, A.; Abdou, M.A.; Youssef, M.Z. [Univ. of California, Los Angeles, CA (United States)] [and others

1994-12-31T23:59:59.000Z

472

Thermal Stability of Chelated Indium Activable Tracers  

SciTech Connect (OSTI)

The thermal stability of indium tracer chelated with organic ligands ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) was measured for reservoir temperatures of 150, 200, and 240 C. Measurements of the soluble indium concentration was made as a function of time by neutron activation analysis. From the data, approximate thermal decomposition rates were estimated. At 150 C, both chelated tracers were stable over the experimental period of 20 days. At 200 C, the InEDTA concentration remained constant for 16 days, after which the thermal decomposition occurred at a measured rate constant of k = 0.09 d{sup -1}. The thermal decomposition of InNTA at 200 C showed a first order reaction with a measured rate constant of k = 0.16 d{sup -1}. At 240 C, both indium chelated tracers showed rapid decomposition with rate constants greater than 1.8 d{sup -1}. The data indicate that for geothermal reservoir with temperatures up to about 200 C, indium chelated tracers can be used effectively for transit times of at least 20 days. These experiments were run without reservoir rock media, and do not account for concomitant loss of indium tracer by adsorption processes.

Chrysikopoulos, Costas; Kruger, Paul

1986-01-21T23:59:59.000Z

473

Manipulation of Thermal Phonons  

E-Print Network [OSTI]

to manipulate the behavior of phonons is crucial for both energy applications and the cooling of integrated circuits. A novel class of artificially periodic structured materials — phononic crystals — might make manipulation of thermal phonons possible. In many...

Hsu, Chung-Hao

2013-03-28T23:59:59.000Z

474

Thermally Polymerized Rylene Nanoparticles  

E-Print Network [OSTI]

Rylene dyes functionalized with varying numbers of phenyl trifluorovinyl ether (TFVE) moieties were subjected to a thermal emulsion polymerization to yield shape-persistent, water-soluble chromophore nanoparticles. Perylene ...

Andrew, Trisha Lionel

475

Thermal Insulation Systems  

E-Print Network [OSTI]

Thermal insulation systems are receiving a high degree of attention in view of increasing energy cost. Industrial, commercial and residential energy users are all well aware of energy cost increases and great emphasis is being directed to energy...

Stanley, T. F.

1982-01-01T23:59:59.000Z

476

Thermally driven circulation  

E-Print Network [OSTI]

Several problems connected by the theme of thermal forcing are addressed herein. The main topic is the stratification and flow field resulting from imposing a specified heat flux on a fluid that is otherwise confined to a ...

Nelken, Haim

1987-01-01T23:59:59.000Z

477

Contact thermal lithography  

E-Print Network [OSTI]

Contact thermal lithography is a method for fabricating microscale patterns using heat transfer. In contrast to photolithography, where the minimum achievable feature size is proportional to the wavelength of light used ...

Schmidt, Aaron Jerome, 1979-

2004-01-01T23:59:59.000Z

478

Thermal Transport in Suspended and Supported Few-Layer Graphene  

E-Print Network [OSTI]

Thermal Transport in Suspended and Supported Few-Layer Graphene Ziqian Wang,, Rongguo Xie,,,§, Cong few-layer graphene using a thermal-bridge configuration. The room temperature value of is comparable transport of the suspended graphene. The measured values of are generally lower than those from theoretical

Li, Baowen

479

Photovoltaic-thermal collectors  

DOE Patents [OSTI]

A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

Cox, III, Charles H. (Carlisle, MA)

1984-04-24T23:59:59.000Z

480

The Electrical Resistance of Rutherford-Type Superconducting Cable Splices  

E-Print Network [OSTI]

The electrical resistance of Large Hadron Collider main busbar cable lap splices produced by soft soldering has been measured with two independent methods as a function of intercable contact area and for splices made of cables with various defects. For defect-free lap splices, the resistance increases from 0.3 to 10 n? (at 4.3 K in self-field) when reducing the cable overlap length from 120 to 3 mm, as expected assuming that the resistance is inversely proportional to the intercable contact area. The resistance of bridge splices that connect side-by-side cables can be predicted from the lap splice resistances and the overlap areas involved.

Heck, C; Fleiter, J; Bottura, L

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal resistance measured" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

On The Thermal Consolidation Of Boom Clay  

E-Print Network [OSTI]

When a mass of saturated clay is heated, as in the case of host soils surrounding nuclear waste disposals at great depth, the thermal expansion of the constituents generates excess pore pressures. The mass of clay is submitted to gradients of pore pressure and temperature, to hydraulic and thermal flows, and to changes in its mechanical properties. In this work, some of these aspects were experimentally studied in the case of Boom clay, so as to help predicting the response of the soil, in relation with investigations made in the Belgian underground laboratory at Mol. Results of slow heating tests with careful volume change measurements showed that a reasonable prediction of the thermal expansion of the clay-water system was obtained by using the thermal properties of free water. In spite of the density of Boom clay, no significant effect of water adsorption was observed. The thermal consolidation of Boom clay was studied through fast heating tests. A simple analysis shows that the hydraulic and thermal trans...

Delage, Pierre; Cui, Yu-Jun

2012-01-01T23:59:59.000Z

482

Current measurement apparatus  

DOE Patents [OSTI]

Apparatus and methods are provided for a system for measurement of a current in a conductor such that the conductor current may be momentarily directed to a current measurement element in order to maintain proper current without significantly increasing an amount of power dissipation attributable to the current measurement element or adding resistance to assist in current measurement. The apparatus and methods described herein are useful in superconducting circuits where it is necessary to monitor current carried by the superconducting elements while minimizing the effects of power dissipation attributable to the current measurement element.

Umans, Stephen D. (Belmont, MA)

2008-11-11T23:59:59.000Z

483

Research and Development for Novel Thermal Energy Storage Systems (TES) for Concentrating Solar Power (CSP)  

SciTech Connect (OSTI)

The overall objective was to develop innovative heat transfer devices and methodologies for novel thermal energy storage systems for concentrating solar power generation involving phase change materials (PCMs). Specific objectives included embedding thermosyphons and/or heat pipes (TS/HPs) within appropriate phase change materials to significantly reduce thermal resistances within the thermal energy storage system of a large-scale concentrating solar power plant and, in turn, improve performance of the plant. Experimental, system level and detailed comprehensive modeling approaches were taken to investigate the effect of adding TS/HPs on the performance of latent heat thermal energy storage (LHTES) systems.

Faghri, Amir; Bergman, Theodore L; Pitchumani, Ranga

2013-09-26T23:59:59.000Z

484

Electrical resistance tomography using steel cased boreholes as electrodes  

DOE Patents [OSTI]

An electrical resistance tomography method is described which uses steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constrain the models. 2 figs.

Daily, W.D.; Ramirez, A.L.

1999-06-22T23:59:59.000Z

485

Electrical resistance tomography using steel cased boreholes as electrodes  

DOE Patents [OSTI]

An electrical resistance tomography method using steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constain the models.

Daily, William D. (Livermore, CA); Ramirez, Abelardo L. (Pleasanton, CA)

1999-01-01T23:59:59.000Z