National Library of Energy BETA

Sample records for thermal process heat

  1. List of Solar Thermal Process Heat Incentives | Open Energy Informatio...

    Open Energy Info (EERE)

    List of Solar Thermal Process Heat Incentives Jump to: navigation, search The following contains the list of 211 Solar Thermal Process Heat Incentives. CSV (rows 1 - 211) Incentive...

  2. Value of solar thermal industrial process heat

    SciTech Connect (OSTI)

    Brown, D.R.; Fassbender, L.L.; Chockie, A.D.

    1986-03-01

    This study estimated the value of solar thermal-generated industrial process heat (IPH) as a function of process heat temperature. The value of solar thermal energy is equal to the cost of producing energy from conventional fuels and equipment if the energy produced from either source provides an equal level of service. This requirement put the focus of this study on defining and characterizing conventional process heat equipment and fuels. Costs (values) were estimated for 17 different design points representing different combinations of conventional technologies, temperatures, and fuels. Costs were first estimated for median or representative conditions at each design point. The cost impact of capacity factor, efficiency, fuel escalation rate, and regional fuel price differences were then evaluated by varying each of these factors within credible ranges.

  3. Materials Selection Considerations for Thermal Process Equipment: A BestPractices Process Heating Technical Brief

    Broader source: Energy.gov [DOE]

    This technical brief is a guide to selecting high-temperature metallic materials for use in process heating applications such as burners, electrical heating elements, material handling, load support, and heater tubes, etc.

  4. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    2012-01-01

    HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  5. Waste Heat Recovery and Recycling in Thermal Separation Processes: Distillation, Multi-Effect Evaporation (MEE) and Crystallization Processes

    SciTech Connect (OSTI)

    Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie; Aaron Reichl; Chris C. Thomas

    2012-12-03

    Evaporation and crystallization are key thermal separation processes for concentrating and purifying inorganic and organic products with energy consumption over 1,000 trillion Btu/yr. This project focused on a challenging task of recovering low-temperature latent heat that can have a paradigm shift in the way thermal process units will be designed and operated to achieve high-energy efficiency and significantly reduce the carbon footprint as well as water footprint. Moreover, this project has evaluated the technical merits of waste-heat powered thermal heat pumps for recovery of latent heat from distillation, multi-effect evaporation (MEE), and crystallization processes and recycling into the process. The Project Team has estimated the potential energy, economics and environmental benefits with the focus on reduction in CO2 emissions that can be realized by 2020, assuming successful development and commercialization of the technology being developed. Specifically, with aggressive industry-wide applications of heat recovery and recycling with absorption heat pumps, energy savings of about 26.7 trillion Btu/yr have been estimated for distillation process. The direct environmental benefits of this project are the reduced emissions of combustible products. The estimated major reduction in environmental pollutants in the distillation processes is in CO2 emission equivalent to 3.5 billion lbs/year. Energy consumption associated with water supply and treatments can vary between 1,900 kWh and 23,700 kWh per million-gallon water depending on sources of natural waters [US DOE, 2006]. Successful implementation of this technology would significantly reduce the demand for cooling-tower waters, and thereby the use and discharge of water treatment chemicals. The Project Team has also identified and characterized working fluid pairs for the moderate-temperature heat pump. For an MEE process, the two promising fluids are LiNO3+KNO3+NANO3 (53:28:19 ) and LiNO3+KNO3+NANO2

  6. Thermal Analysis of the Divertor Primary Heat Transfer System Piping During the Gas Baking Process

    SciTech Connect (OSTI)

    Yoder Jr, Graydon L; Harvey, Karen; Ferrada, Juan J

    2011-02-01

    A preliminary analysis has been performed examining the temperature distribution in the Divertor Primary Heat Transfer System (PHTS) piping and the divertor itself during the gas baking process. During gas baking, it is required that the divertor reach a temperature of 350 C. Thermal losses in the piping and from the divertor itself require that the gas supply temperature be maintained above that temperature in order to ensure that all of the divertor components reach the required temperature. The analysis described in this report was conducted in order to estimate the required supply temperature from the gas heater.

  7. Roadmap for Process Heating Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Glass * Metal (ferrous and non- ferrous * Resin and plastic * Heat forming * Thermal forming * Paint and organic ... process heating into the Industries of the Future framework. ...

  8. HEATING THE SOLAR ATMOSPHERE BY THE SELF-ENHANCED THERMAL WAVES CAUSED BY THE DYNAMO PROCESSES

    SciTech Connect (OSTI)

    Dumin, Yurii V. E-mail: dumin@izmiran.ru

    2012-05-20

    We discuss a possible mechanism for heating the solar atmosphere by the ensemble of thermal waves, generated by the photospheric dynamo and propagating upward with increasing magnitudes. These waves are self-sustained and amplified due to the specific dependence of the efficiency of heat release by Ohmic dissipation on the ratio of the collisional to gyrofrequencies, which in its turn is determined by the temperature profile formed in the wave. In the case of sufficiently strong driving, such a mechanism can increase the plasma temperature by a few times, i.e., it may be responsible for heating the chromosphere and the base of the transition region.

  9. Materials Selection Considerations for Thermal Process Equipment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Selection Considerations for Thermal Process Equipment: A BestPractices Process Heating Technical Brief Materials Selection Considerations for Thermal Process Equipment: ...

  10. Heat distribution ceramic processing method

    DOE Patents [OSTI]

    Tiegs, Terry N. (Lenoir City, TN); Kiggans, Jr., James O. (Oak Ridge, TN)

    2001-01-01

    A multi-layered heat distributor system is provided for use in a microwave process. The multi-layered heat distributors includes a first inner layer of a high thermal conductivity heat distributor material, a middle insulating layer and an optional third insulating outer layer. The multi-layered heat distributor system is placed around the ceramic composition or article to be processed and located in a microwave heating system. Sufficient microwave energy is applied to provide a high density, unflawed ceramic product.

  11. Liquid Salts as Media for Process Heat Transfer from VHTR's: Forced Convective Channel Flow Thermal Hydraulics, Materials, and Coating

    SciTech Connect (OSTI)

    Sridharan, Kumar; Anderson, Mark; Allen, Todd; Corradini, Michael

    2012-01-30

    The goal of this NERI project was to perform research on high temperature fluoride and chloride molten salts towards the long-term goal of using these salts for transferring process heat from high temperature nuclear reactor to operation of hydrogen production and chemical plants. Specifically, the research focuses on corrosion of materials in molten salts, which continues to be one of the most significant challenges in molten salts systems. Based on the earlier work performed at ORNL on salt properties for heat transfer applications, a eutectic fluoride salt FLiNaK (46.5% LiF-11.5%NaF-42.0%KF, mol.%) and a eutectic chloride salt (32%MgCl2-68%KCl, mole %) were selected for this study. Several high temperature candidate Fe-Ni-Cr and Ni-Cr alloys: Hastelloy-N, Hastelloy-X, Haynes-230, Inconel-617, and Incoloy-800H, were exposed to molten FLiNaK with the goal of understanding corrosion mechanisms and ranking these alloys for their suitability for molten fluoride salt heat exchanger and thermal storage applications. The tests were performed at 850C for 500 h in sealed graphite crucibles under an argon cover gas. Corrosion was noted to occur predominantly from dealloying of Cr from the alloys, an effect that was particularly pronounced at the grain boundaries Alloy weight-loss due to molten fluoride salt exposure correlated with the initial Cr-content of the alloys, and was consistent with the Cr-content measured in the salts after corrosion tests. The alloys weight-loss was also found to correlate to the concentration of carbon present for the nominally 20% Cr containing alloys, due to the formation of chromium carbide phases at the grain boundaries. Experiments involving molten salt exposures of Incoloy-800H in Incoloy-800H crucibles under an argon cover gas showed a significantly lower corrosion for this alloy than when tested in a graphite crucible. Graphite significantly accelerated alloy corrosion due to the reduction of Cr from solution by graphite and formation

  12. Solar Process Heat Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Process Heat Basics Commercial and industrial buildings may use the same solar technologies-photovoltaics, passive heating, daylighting, and water heating-that are used for ...

  13. Solar industrial process heat

    SciTech Connect (OSTI)

    Lumsdaine, E.

    1981-04-01

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  14. Process Heating Assessment and Survey Tool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Heating Assessment and Survey Tool Process Heating Assessment and Survey Tool April 10, 2014 - 3:34pm Addthis Process Heating Assessment and Survey Tool The Process Heating Assessment and Survey Tool (PHAST) introduces methods to improve thermal efficiency of heating equipment. This tool helps industrial users survey process heating equipment that consumes fuel, steam, or electricity, and identifies the most energy-intensive equipment. The tool can be used to perform a heat balance that

  15. Frostless heat pump having thermal expansion valves

    DOE Patents [OSTI]

    Chen, Fang C.; Mei, Viung C.

    2002-10-22

    A heat pump system having an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant and further having a compressor, an interior heat exchanger, an exterior heat exchanger, a heat pump reversing valve, an accumulator, a thermal expansion valve having a remote sensing bulb disposed in heat transferable contact with the refrigerant piping section between said accumulator and said reversing valve, an outdoor temperature sensor, and a first means for heating said remote sensing bulb in response to said outdoor temperature sensor thereby opening said thermal expansion valve to raise suction pressure in order to mitigate defrosting of said exterior heat exchanger wherein said heat pump continues to operate in a heating mode.

  16. Industrial Process Heating - Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Process Heating - Technology Assessment 1 2 Contents 3 4 1. Introduction to the Technology/System ............................................................................................... 2 5 1.1. Industrial Process Heating Overview ............................................................................................ 2 6 2. Technology Assessment and Potential ................................................................................................. 6 7 2.1. Status

  17. Roadmap for Process Heating Technology

    SciTech Connect (OSTI)

    Eichner, Melissa; Thekdi, Arvind

    2001-03-16

    This roadmap identifies priority research & development goals and near-rerm non- research goals to improve industrial process heating.

  18. Potential for Solar Industrial Process Heat in the United States...

    Office of Scientific and Technical Information (OSTI)

    This initial analysis identified 48 TWhthyear of process heat demand in certain California industries versus a technical solar-thermal energy potential of 23,000 TWhthyear. The ...

  19. Project Profile: Sensible Heat, Direct, Dual-Media Thermal Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sensible Heat, Direct, Dual-Media Thermal Energy Storage Module Project Profile: Sensible Heat, Direct, Dual-Media Thermal Energy Storage Module Acciona logo Acciona Solar, under ...

  20. Molten salt heat transfer fluids and thermal storage technology...

    Office of Scientific and Technical Information (OSTI)

    Molten salt heat transfer fluids and thermal storage technology. Citation Details In-Document Search Title: Molten salt heat transfer fluids and thermal storage technology. No ...

  1. Waste Heat Management Options for Improving Industrial Process Heating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems | Department of Energy Waste Heat Management Options for Improving Industrial Process Heating Systems Waste Heat Management Options for Improving Industrial Process Heating Systems This presentation covers typical sources of waste heat from process heating equipment, characteristics of waste heat streams, and options for recovery including Combined Heat and Power. Waste Heat Management Options for Improving Industrial Process Heating Systems (August 20, 2009) (494.7 KB) More

  2. NREL: Learning - Solar Process Heat Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Heating Solar water-heating systems are designed to provide large quantities of hot water for nonresidential ... Solar absorption systems use thermal energy to evaporate a ...

  3. Advanced Heat Transfer and Thermal Storage Fluids

    SciTech Connect (OSTI)

    Moens, L.; Blake, D.

    2005-01-01

    The design of the next generation solar parabolic trough systems for power production will require the development of new thermal energy storage options with improved economics or operational characteristics. Current heat-transfer fluids such as VP-1?, which consists of a eutectic mixture of biphenyl and diphenyl oxide, allow a maximum operating temperature of ca. 300 C, a limit above which the vapor pressure would become too high and would require pressure-rated tanks. The use of VP-1? also suffers from a freezing point around 13 C that requires heating during cold periods. One of the goals for future trough systems is the use of heat-transfer fluids that can act as thermal storage media and that allow operating temperatures around 425 C combined with lower limits around 0 C. This paper presents an outline of our latest approach toward the development of such thermal storage fluids.

  4. Rapid thermal processing by stamping

    DOE Patents [OSTI]

    Stradins, Pauls; Wang, Qi

    2013-03-05

    A rapid thermal processing device and methods are provided for thermal processing of samples such as semiconductor wafers. The device has components including a stamp (35) having a stamping surface and a heater or cooler (40) to bring it to a selected processing temperature, a sample holder (20) for holding a sample (10) in position for intimate contact with the stamping surface; and positioning components (25) for moving the stamping surface and the stamp (35) in and away from intimate, substantially non-pressured contact. Methods for using and making such devices are also provided. These devices and methods allow inexpensive, efficient, easily controllable thermal processing.

  5. Molten Glass for Thermal Storage: Advanced Molten Glass for Heat Transfer and Thermal Energy Storage

    SciTech Connect (OSTI)

    2012-01-01

    HEATS Project: Halotechnics is developing a high-temperature thermal energy storage system using a new thermal-storage and heat-transfer material: earth-abundant and low-melting-point molten glass. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Halotechnics new thermal storage material targets a price that is potentially cheaper than the molten salt used in most commercial solar thermal storage systems today. It is also extremely stable at temperatures up to 1200°C—hundreds of degrees hotter than the highest temperature molten salt can handle. Being able to function at high temperatures will significantly increase the efficiency of turning heat into electricity. Halotechnics is developing a scalable system to pump, heat, store, and discharge the molten glass. The company is leveraging technology used in the modern glass industry, which has decades of experience handling molten glass.

  6. Advanced Heat Transfer Fluids and Novel Thermal Storage Concepts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Heat Transfer Fluids and Novel Thermal Storage Concepts for CSP Generation Advanced Heat Transfer ... Concepts for Concentrating Solar Power (CSP) Generation funding ...

  7. Thermal Storage and Advanced Heat Transfer Fluids (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01

    Fact sheet describing NREL CSP Program capabilities in the area of thermal storage and advanced heat transfer fluids: measuring thermophysical properties, measuring fluid flow and heat transfer, and simulating flow of thermal energy and fluid.

  8. Waste Heat Management Options: Industrial Process Heating Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Management Options Industrial Process Heating Systems By Dr. Arvind C. Thekdi E-mail: athekdi@e3minc.com E3M, Inc. August 20, 2009 2 Source of Waste Heat in Industries * Steam Generation * Fluid Heating * Calcining * Drying * Heat Treating * Metal Heating * Metal and Non-metal Melting * Smelting, agglomeration etc. * Curing and Forming * Other Heating Waste heat is everywhere! Arvind Thekdi, E3M Inc Arvind Thekdi, E3M Inc 3 Waste Heat Sources from Process Heating Equipment * Hot gases -

  9. Capture process heat during VOC destruction

    SciTech Connect (OSTI)

    1996-03-01

    To avoid problems with volatile organic compounds (VOCs) produced during the manufacture or use of coatings, sealants or adhesives, many operators would rather switch to water-based products and systems than install costly emission-control equipment. However, for some, this option is not always available. The Hoell Co. (Langenfeld, Germany), a manufacturer of aluminum and laminated tubes, recently adopted an innovative process to fold and seal its tubes. The new technique uses a thin coat of hot varnish instead of the standard latex sealant. To cope with organic vapors created by the sealing technique, the company installed an air purification system from LTG Lufttechnische GmbH (Stuttgart, Germany). The thermal regenerative oxidizer, which consists of a combustion chamber and three ceramic heat storage chambers, not only destroys vapor-phase organic pollutants, but captures the heat of oxidation to generate process heat and produce hot water for tube washing. This helps to offset operating costs at the facility.

  10. Thermal synthesis apparatus and process

    DOE Patents [OSTI]

    Fincke, James R.; Detering, Brent A.

    2004-11-23

    An apparatus for thermal conversion of one or more reactants to desired end products includes an insulated reactor chamber having a high temperature heater such as a plasma torch at its inlet end and, optionally, a restrictive convergent-divergent nozzle at its outlet end. In a thermal conversion method, reactants are injected upstream from the reactor chamber and thoroughly mixed with the plasma stream before entering the reactor chamber. The reactor chamber has a reaction zone that is maintained at a substantially uniform temperature. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle, which "freezes" the desired end product(s) in the heated equilibrium reaction stage, or is discharged through an outlet pipe without the convergent-divergent nozzle. The desired end products are then separated from the gaseous stream.

  11. Thermal Systems Process and Components Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Thermal Systems Process and Components Laboratory at the Energy Systems Integration Facility. The focus of the Thermal Systems Process and Components Laboratory at NREL's Energy Systems Integration Facility (ESIF) is to research, develop, test, and evaluate new techniques for thermal energy storage systems that are relevant to utility-scale concentrating solar power plants. The laboratory holds test systems that can provide heat transfer fluids for the evaluation of heat exchangers and thermal energy storage devices. The existing system provides molten salt at temperatures up to 800 C. This unit is charged with nitrate salt rated to 600 C, but is capable of handling other heat transfer fluid compositions. Three additional test bays are available for future deployment of alternative heat transfer fluids such as hot air, carbon dioxide, or steam systems. The Thermal Systems Process and Components Laboratory performs pilot-scale thermal energy storage system testing through multiple charge and discharge cycles to evaluate heat exchanger performance and storage efficiency. The laboratory equipment can also be utilized to test instrument and sensor compatibility with hot heat transfer fluids. Future applications in the laboratory may include the evaluation of thermal energy storage systems designed to operate with supercritical heat transfer fluids such as steam or carbon dioxide. These tests will require the installation of test systems capable of providing supercritical fluids at temperatures up to 700 C.

  12. Process Heating Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Heating Systems Process Heating Systems Best operating practices and advanced process heating technologies can lead to significant energy savings at your plant. Use the software tools, training, and publications listed below to optimize performance and save energy. Process Heating Tools Tools to assess your energy system: Process Heating Assessment and Survey Tool (PHAST) Qualified Specialists Qualified Specialists have passed a rigorous competency examination on a specific industrial

  13. SOLTECH 92 proceedings: Solar Process Heat Program

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    This document is a limited Proceedings, documenting the presentations given at the symposia conducted by the US Department of Energy's (DOE) Solar Industrial Program and Solar Thermal Electrical Program at SOLTECH92. The SOLTECH92 national solar energy conference was held in Albuquerque, New Mexico during the period February 17--20, 1992. The National Renewable Energy Laboratory manages the Solar Industrial Program; Sandia National Laboratories (Albuquerque) manages the Solar Thermal Electric Program. The symposia sessions were as follows: (1) Solar Industrial Program and Solar Thermal Electric Program Overviews, (2) Solar Process Heat Applications, (3) Solar Decontamination of Water and Soil; (4) Solar Building Technologies, (5) Solar Thermal Electric Systems, (6) PV Applications and Technologies. For each presentation given in these symposia, these Proceedings provide a one- to two-page abstract and copies of the viewgraphs and/or 35mm slides utilized by the speaker. Some speakers provided additional materials in the interest of completeness. The materials presented in this document were not subjected to a peer review process.

  14. NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger

    SciTech Connect (OSTI)

    Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

    2008-09-01

    One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor - process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change

  15. Passive Solar Building Design and Solar Thermal Space Heating Webinar |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Passive Solar Building Design and Solar Thermal Space Heating Webinar Passive Solar Building Design and Solar Thermal Space Heating Webinar Watch a recording of National Renewable Energy Laboratory (NREL) Senior Engineer Andy Walker's Nov. 30, 2010, presentation about passive solar building design, and solar thermal space heating technologies and applications. It's one in a series of Webinars to support state and local projects funded by Sustainable Energy Resources for

  16. Specific heat and thermal conductivity of explosives, mixtures...

    Office of Scientific and Technical Information (OSTI)

    Specific heat and thermal conductivity of explosives, mixtures, and plastic-bonded explosives determined experimentally Baytos, J.F. 45 MILITARY TECHNOLOGY, WEAPONRY, AND NATIONAL...

  17. Training: Process Heating Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Heating Systems Training: Process Heating Systems April 16, 2014 - 6:31pm Addthis Learn about the diverse training sessions offered. The courses are taught by highly qualified instructors who have met rigorous standards. View additional process heating system resources. Process Heating Assessment and Survey Tool Training - ONLINE TRAINING AND QUALIFIED SPECIALISTS Availability: Online self-paced workshop For access to online training in this area visit the National Training &

  18. Thermal modeling of an indirectly heated E-beam gun

    SciTech Connect (OSTI)

    Jallouk, P.A.

    1994-12-31

    Uranium atomic vapor for the Atomic Vapor Laser Isotope Separation (AVLIS) process is produced by magnetically steering a high-power electron beam to the surface of the uranium melt. The electron beam is produced by a Pierce-type axial E-beam gun with an indirectly heated emitter (IDHE)-the industry standard for high-power melting and vaporization. AVLIS process design requirements for the E-beam gun are stringent, particularly in the areas of modularity, compactness, and lifetime. The gun assembly details are complex, geometric clearances are tight, and operating temperatures and stress levels are at the upper limits of acceptability. Detailed three-dimensional finite-element thermal models of the E-beam gun have been developed to address this challenging thermal packaging issue. These models are used in conjunction with design and testing activities to develop a gun exhibiting a high level of reliability for acceptable operation in a plant environment.

  19. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    SciTech Connect (OSTI)

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-05-01

    The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported (via an intermediate heat exchanger (IHX)) to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers.

  20. Characterization of industrial process waste heat and input heat streams

    SciTech Connect (OSTI)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  1. Project Profile: Degradation Mechanisms for Thermal Energy Storage and Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transfer Fluid Containment Materials | Department of Energy Degradation Mechanisms for Thermal Energy Storage and Heat Transfer Fluid Containment Materials Project Profile: Degradation Mechanisms for Thermal Energy Storage and Heat Transfer Fluid Containment Materials National Renewable Energy Laboratory logo -- This project is inactive -- The National Renewable Energy Laboratory (NREL), with support from the University of Wisconsin and Sandia National Laboratories, under the National

  2. Waste Heat Management Options for Improving Industrial Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Management Options for Improving Industrial Process Heating Systems Waste Heat Management Options for Improving Industrial Process Heating Systems This presentation ...

  3. Investigating coupled thermal-hydrological-mechanical processes...

    Office of Scientific and Technical Information (OSTI)

    processes in geothermal reservoirs Citation Details In-Document Search Title: Investigating coupled thermal-hydrological-mechanical processes in geothermal reservoirs ...

  4. Solar-thermal reaction processing

    DOE Patents [OSTI]

    Weimer, Alan W; Dahl, Jaimee K; Lewandowski, Allan A; Bingham, Carl; Raska Buechler, Karen J; Grothe, Willy

    2014-03-18

    In an embodiment, a method of conducting a high temperature chemical reaction that produces hydrogen or synthesis gas is described. The high temperature chemical reaction is conducted in a reactor having at least two reactor shells, including an inner shell and an outer shell. Heat absorbing particles are included in a gas stream flowing in the inner shell. The reactor is heated at least in part by a source of concentrated sunlight. The inner shell is heated by the concentrated sunlight. The inner shell re-radiates from the inner wall and heats the heat absorbing particles in the gas stream flowing through the inner shell, and heat transfers from the heat absorbing particles to the first gas stream, thereby heating the reactants in the gas stream to a sufficiently high temperature so that the first gas stream undergoes the desired reaction(s), thereby producing hydrogen or synthesis gas in the gas stream.

  5. High Thermal Conductivity Polymer Composites for Low-Cost Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    future heat exchanger development. (1 year project - ... available state of the art) Enable replacement of ... transfer UTRC Innovation Process CURRENT ...

  6. Efficient Process Heating in the Aluminum Industry

    SciTech Connect (OSTI)

    2003-01-01

    This 8-page brochure (PDF 300 KB) provides pointers for enhancing the efficiency of melters and furnaces to cut process heating costs by 10 to 30 percent.

  7. Industrial Process Heating - Technology Assessment

    Broader source: Energy.gov (indexed) [DOE]

    ... fuels 29 such as natural gas, coal, biomass and fuel oils. ... heat energy through combustion of solid, liquid, or 46 ... low cost 77 fuel or by products for use in steam generation. ...

  8. Minnesota Power- Solar-Thermal Water Heating Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Minnesota Power offers a 25% rebate for qualifying solar thermal water heating systems. The maximum award for single-family customers is $2,000 per customer; $4,000 for 2-3 family unit buildings;...

  9. Continuous Processing of High Thermal Conductivity Polyethylene...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Continuous Processing of High Thermal Conductivity Polyethylene Fibers and Sheets Massachusetts Institute of Technology (MIT) - Cambridge, MA A new, continuous manufacturing ...

  10. Process for fabricating composite material having high thermal conductivity

    DOE Patents [OSTI]

    Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.

    2001-01-01

    A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

  11. Thermal overinsulation and the behavior of hot water heating systems

    SciTech Connect (OSTI)

    Casier, Y.

    1982-01-01

    Supported by thermodynamic calculations and field experience G.D.F. disproved the theory that because of their high warm-up/cooldown inertia, hot-water central heating systems are inefficient for insulated dwellings that have low thermal losses, causing overheating in certain situations. With the proper choice of thermostat, water temperature, and piping design, a heating system that uses water as the heat carrier can be responsive to the needs of a tightly insulated residence.

  12. Synthesis report on thermally driven coupled processes

    SciTech Connect (OSTI)

    Hardin, E.L.

    1997-10-15

    The main purpose of this report is to document observations and data on thermally coupled processes for conditions that are expected to occur within and around a repository at Yucca Mountain. Some attempt is made to summarize values of properties (e.g., thermal properties, hydrologic properties) that can be measured in the laboratory on intact samples of the rock matrix. Variation of these properties with temperature, or with conditions likely to be encountered at elevated temperature in the host rock, is of particular interest. However, the main emphasis of this report is on direct observation of thermally coupled processes at various scales. Direct phenomenological observations are vitally important in developing and testing conceptual models. If the mathematical implementation of a conceptual model predicts a consequence that is not observed, either (1) the parameters or the boundary conditions used in the calculation are incorrect or (2) the conceptual basis of the model does not fit the experiment; in either case, the model must be revised. For example, the effective continuum model that has been used in thermohydrology studies combines matrix and fracture flow in a way that is equivalent to an assumption that water is imbibed instantaneously from fractures into adjacent, partially saturated matrix. Based on this approximation, the continuum-flow response that is analogous to fracture flow will not occur until the effective continuum is almost completely saturated. This approximation is not entirely consistent with some of the experimental data presented in this report. This report documents laboratory work and field studies undertaken in FY96 and FY97 to investigate thermally coupled processes such as heat pipes and fracture-matrix coupling. In addition, relevant activities from past years, and work undertaken outside the Yucca Mountain project are summarized and discussed. Natural and artificial analogs are also discussed to provide a convenient source of

  13. Aquifer thermal energy (heat and chill) storage

    SciTech Connect (OSTI)

    Jenne, E.A.

    1992-11-01

    As part of the 1992 Intersociety Conversion Engineering Conference, held in San Diego, California, August 3--7, 1992, the Seasonal Thermal Energy Storage Program coordinated five sessions dealing specifically with aquifer thermal energy storage technologies (ATES). Researchers from Sweden, The Netherlands, Germany, Switzerland, Denmark, Canada, and the United States presented papers on a variety of ATES related topics. With special permission from the Society of Automotive Engineers, host society for the 1992 IECEC, these papers are being republished here as a standalone summary of ATES technology status. Individual papers are indexed separately.

  14. Method for thermal processing alumina-enriched spinel single crystals

    DOE Patents [OSTI]

    Jantzen, Carol M.

    1995-01-01

    A process for age-hardening alumina-rich magnesium aluminum spinel to obtain the desired combination of characteristics of hardness, clarity, flexural strength and toughness comprises selection of the time-temperature pair for isothermal heating followed by quenching. The time-temperature pair is selected from the region wherein the precipitate groups have the characteristics sought. The single crystal spinel is isothermally heated and will, if heated long enough pass from its single phase through two pre-precipitates and two metastable precipitates to a stable secondary phase precipitate within the spinel matrix. Quenching is done slowly at first to avoid thermal shock, then rapidly.

  15. Method for thermal processing alumina-enriched spinel single crystals

    DOE Patents [OSTI]

    Jantzen, C.M.

    1995-05-09

    A process for age-hardening alumina-rich magnesium aluminum spinel to obtain the desired combination of characteristics of hardness, clarity, flexural strength and toughness comprises selection of the time-temperature pair for isothermal heating followed by quenching. The time-temperature pair is selected from the region wherein the precipitate groups have the characteristics sought. The single crystal spinel is isothermally heated and will, if heated long enough pass from its single phase through two pre-precipitates and two metastable precipitates to a stable secondary phase precipitate within the spinel matrix. Quenching is done slowly at first to avoid thermal shock, then rapidly. 12 figs.

  16. DIRECT MEASUREMENT OF HEAT FLUX FROM COOLING LAKE THERMAL IMAGERY

    SciTech Connect (OSTI)

    Garrett, A; Eliel Villa-Aleman, E; Robert Kurzeja, R; Malcolm Pendergast, M; Timothy Brown, T; Saleem Salaymeh, S

    2007-12-19

    Laboratory experiments show a linear relationship between the total heat flux from a water surface to air and the standard deviation of the surface temperature field, {sigma}, derived from thermal images of the water surface over a range of heat fluxes from 400 to 1800 Wm{sup -2}. Thermal imagery and surface data were collected at two power plant cooling lakes to determine if the laboratory relationship between heat flux and {sigma} exists in large heated bodies of water. The heat fluxes computed from the cooling lake data range from 200 to 1400 Wm{sup -2}. The linear relationship between {sigma} and Q is evident in the cooling lake data, but it is necessary to apply band pass filtering to the thermal imagery to remove camera artifacts and non-convective thermal gradients. The correlation between {sigma} and Q is improved if a correction to the measured {sigma} is made that accounts for wind speed effects on the thermal convection. Based on more than a thousand cooling lake images, the correlation coefficients between {sigma} and Q ranged from about 0.8 to 0.9.

  17. Thermally conductive cementitious grout for geothermal heat pump systems

    DOE Patents [OSTI]

    Allan, Marita

    2001-01-01

    A thermally conductive cement-sand grout for use with a geothermal heat pump system. The cement sand grout contains cement, silica sand, a superplasticizer, water and optionally bentonite. The present invention also includes a method of filling boreholes used for geothermal heat pump systems with the thermally conductive cement-sand grout. The cement-sand grout has improved thermal conductivity over neat cement and bentonite grouts, which allows shallower bore holes to be used to provide an equivalent heat transfer capacity. In addition, the cement-sand grouts of the present invention also provide improved bond strengths and decreased permeabilities. The cement-sand grouts can also contain blast furnace slag, fly ash, a thermoplastic air entraining agent, latex, a shrinkage reducing admixture, calcium oxide and combinations thereof.

  18. Damage of MEMS thermal actuators heated by laser irradiation.

    SciTech Connect (OSTI)

    Walraven, Jeremy Allen; Klody, Kelly Anne; Sackos, John T.; Phinney, Leslie Mary

    2005-01-01

    Optical actuation of microelectromechanical systems (MEMS) is advantageous for applications for which electrical isolation is desired. Thirty-two polycrystalline silicon opto-thermal actuators, optically-powered MEMS thermal actuators, were designed, fabricated, and tested. The design of the opto-thermal actuators consists of a target for laser illumination suspended between angled legs that expand when heated, providing the displacement and force output. While the amount of displacement observed for the opto-thermal actuators was fairly uniform for the actuators, the amount of damage resulting from the laser heating ranged from essentially no damage to significant amounts of damage on the target. The likelihood of damage depended on the target design with two of the four target designs being more susceptible to damage. Failure analysis of damaged targets revealed the extent and depth of the damage.

  19. Damage of MEMS thermal actuators heated by laser irradiation.

    SciTech Connect (OSTI)

    Walraven, Jeremy Allen; Klody, Kelly Anne; Sackos, John T.; Phinney, Leslie Mary

    2004-11-01

    Optical actuation of microelectromechanical systems (MEMS) is advantageous for applications for which electrical isolation is desired. Thirty-two polycrystalline silicon opto-thermal actuators, optically-powered MEMS thermal actuators, were designed, fabricated, and tested. The design of the opto-thermal actuators consists of a target for laser illumination suspended between angled legs that expand when heated, providing the displacement and force output. While the amount of displacement observed for the opto-thermal actuators was fairly uniform for the actuators, the amount of damage resulting from the laser heating ranged from essentially no damage to significant amounts of damage on the target. The likelihood of damage depended on the target design with two of the four target designs being more susceptible to damage. Failure analysis of damaged targets revealed the extent and depth of the damage.

  20. Evaluating the ignition sensitivity of thermal battery heat pellets

    SciTech Connect (OSTI)

    Thomas, E.V.

    1993-09-01

    Thermal batteries are activated by the ignition of heat pellets. If the heat pellets are not sensitive enough to the ignition stimulus, the thermal battery will not activate, resulting in a dud. Thus, to assure reliable thermal batteries, it is important to demonstrate that the pellets have satisfactory ignition sensitivity by testing a number of specimens. There are a number of statistical methods for evaluating the sensitivity of a device to some stimulus. Generally, these methods are applicable to the situation in which a single test is destructive to the specimen being tested, independent of the outcome of the test. In the case of thermal battery heat pellets, however, tests that result in a nonresponse do not totally degrade the specimen. This peculiarity provides opportunities to efficiently evaluate the ignition sensitivity of heat pellets. In this paper, a simple strategy for evaluating heat pellet ignition sensitivity (including experimental design and data analysis) is described. The relatively good asymptotic and small-sample efficiencies of this strategy are demonstrated.

  1. Testing of thermally enhanced cement ground heat exchanger grouts

    SciTech Connect (OSTI)

    Kavanaugh, S.P.; Allan, M.L.

    1999-07-01

    Optimal performance of closed-loop, ground-source heat pumps (ground-coupled heat pumps) is dependent upon the thermal properties of the backfill in the annual region between the ground heat exchanger (GHEX) tubes and the outer bore wall. Equally important is the protection of groundwater aquifers from contaminants that may flow from the surface of other aquifers through poorly sealed boreholes. Conventional cement and bentonite-based grouts have relatively low thermal conductivities. Loop requirements often increase beyond the allotted budget in applications where regulatory bodies require the entire heat exchanger length to be grouted. This paper reports on the results of four mixes of thermally enhanced cementitious grouts. Four grouts were evaluated in a test stand to minimize the impact of external factors typically present in field tests. The test stand accepts up to 6 in. (15 cm) ground heat exchangers in a 10 ft (3 m) test section. Controlled testing is performed in either the cooling mode (loop above 85 F [29 C]) or heating mode (loop at 32 F [0 C]), and the temperature of the outer bore wall is held constant with a groundwater source. Results indicate cement grouts that are enhanced with low-cost additives have thermal conductivities three to four times as large as conventional high-solids bentonite grouts. This would result in reduced heat exchanger lengths compared to those grouted with bentonite. There appears to be no measurable increase in overall borehole resistance due to separation of the colder tubes from the grout in the heating mode. This discussion does not include pumpability, permeability, and material handling issues, which must be thoroughly investigated before any grout can be recommended for use.

  2. Using Waste Heat for External Processes; Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using Waste Heat for External Processes The temperature of exhaust gases from fuel-fired industrial processes depends mainly on the process temperature and the waste heat recovery ...

  3. Advanced Reactors Thermal Energy Transport for Process Industries

    SciTech Connect (OSTI)

    P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

    2014-07-01

    The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

  4. Using Waste Heat for External Processes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using Waste Heat for External Processes Using Waste Heat for External Processes This tip sheet describes the potential savings resulting from using waste heat from high-temperature process heating for lower temperature processes, like oven-drying. PROCESS HEATING TIP SHEET #10 Using Waste Heat for External Processes (January 2006) (290.05 KB) More Documents & Publications Reduce Air Infiltration in Furnaces Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and

  5. The Big Picture on Process Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Big Picture on Process Heating The Big Picture on Process Heating This brief provides an overview of process heating system components, energy consumption, and potential for savings. The Big Picture on Process Heating (January 2001) (71.34 KB) More Documents & Publications Install Waste Heat Recovery Systems for Fuel-Fired Furnaces Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems Save Energy Now in Your Process Heating Systems

  6. Thermal project to heat Paluxy oil

    SciTech Connect (OSTI)

    Mickey, V.

    1984-05-01

    A steam injection project aimed at encouraging low gravity crude to the surface is reported for the Devil's River (Paluxy) field in Val Verde County, Texas. By using natural gas produced in the field from the 9000-ft Strawn Formation steam can be produced economically for injection into the 300- to 350-ft Paluxy Formation where 17 gravity crude is found. Petro Imperial conducted a thermal pilot test on its Glasscock Ranch lease 32 miles southwest of Sonora. Steam and oxygen were injected in a huff-and-puff mode on 2 of the 11 wells--each for ca 15 hr. The wells responded with a 6 bopd flow rate that declined in a few hours subsequent to the steam injection. A permit has been granted that will allow steam injection through a central location in a 5-spot pattern.

  7. Seven Ways to Optimize Your Process Heat System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    transfer from heat source to process or Clean heat transfer surfaces frequently load in indirectly heated systems, such as stream coils, radiant tubes, and electrical elements. ...

  8. List of Heat recovery Incentives | Open Energy Information

    Open Energy Info (EERE)

    Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat Energy Storage Nuclear Wind Heat recovery Fuel Cells using Renewable Fuels No Agricultural Energy Efficiency...

  9. Solar thermal aerosol flow reaction process

    DOE Patents [OSTI]

    Weimer, Alan W.; Dahl, Jaimee K.; Pitts, J. Roland; Lewandowski, Allan A.; Bingham, Carl; Tamburini, Joseph R.

    2005-03-29

    The present invention provides an environmentally beneficial process using concentrated sunlight to heat radiation absorbing particles to carry out highly endothermic gas phase chemical reactions ultimately resulting in the production of hydrogen or hydrogen synthesis gases.

  10. Integrated thermal solar heat pump system

    SciTech Connect (OSTI)

    Shaw, D.N.

    1980-04-08

    A compression module may comprise a hermetic helical screw rotary compressor having injection and ejection ports in addition to discharge and suction ports or may comprise a multiple cylinder, multiple level, reciprocating compressor. The module incorporates a subcooler coil and is connected to an outside air coil, a thermal energy storage coil, a direct solar energy supply coil, one or more inside coils for the space to be conditioned and a hot water coil through common, discharge manifold, suction manifold, liquid drain manifold and liquid feed manifold, by suitable solenoid operated control valves and check valves. The solenoid operated control valves are selectively operated in response to system operating parameters. Seal pots and positive displacement pumps may operate to force liquid refrigerant condensed at intermediate pressure to flow to the receiver which is pressurized at a pressure corresponding to the condensation temperature of the highest pressure condensing coil in the system. Alternatively, liquid refrigerant expansion may be used to reach a common receiver pressure for all condenser returns.

  11. High heating rate thermal desorption for molecular surface sampling

    DOE Patents [OSTI]

    Ovchinnikova, Olga S.; Van Berkel, Gary J.

    2016-03-29

    A method for analyzing a sample having at least one analyte includes the step of heating the sample at a rate of at least 10.sup.6 K/s to thermally desorb at least one analyte from the sample. The desorbed analyte is collected. The analyte can then be analyzed.

  12. Solar Thermal Process Heat | Open Energy Information

    Open Energy Info (EERE)

    Contact needs updating Image needs updating Reference needed Missing content Broken link Other Additional Comments Cancel Submit Category: Articles with outstanding TODO tasks...

  13. Seven Ways to Optimize Your Process Heat System | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seven Ways to Optimize Your Process Heat System Seven Ways to Optimize Your Process Heat System This brief outlines the seven Best Bets for Process Heating System Savings and ...

  14. Thermal acidization and recovery process for recovering viscous petroleum

    DOE Patents [OSTI]

    Poston, Robert S.

    1984-01-01

    A thermal acidization and recovery process for increasing production of heavy viscous petroleum crude oil and synthetic fuels from subterranean hydrocarbon formations containing clay particles creating adverse permeability effects is described. The method comprises injecting a thermal vapor stream through a well bore penetrating such formations to clean the formation face of hydrocarbonaceous materials which restrict the flow of fluids into the petroleum-bearing formation. Vaporized hydrogen chloride is then injected simultaneously to react with calcium and magnesium salts in the formation surrounding the bore hole to form water soluble chloride salts. Vaporized hydrogen fluoride is then injected simultaneously with its thermal vapor to dissolve water-sensitive clay particles thus increasing permeability. Thereafter, the thermal vapors are injected until the formation is sufficiently heated to permit increased recovery rates of the petroleum.

  15. Thermally stable booster explosive and process for manufacture

    DOE Patents [OSTI]

    Quinlin, William T.; Thorpe, Raymond; Lightfoot, James M.

    2006-03-21

    A thermally stable booster explosive and process for the manufacture of the explosive. The product explosive is 2,4,7,9-tetranitro-10H-benzo[4,5]furo[3,2-b]indole (TNBFI). A reactant/solvent such as n-methylpyrrolidone (NMP) or dimethyl formamide (DMF) is made slightly basic. The solution is heated to reduce the water content. The solution is cooled and hexanitrostilbene is added. The solution is heated to a predetermined temperature for a specific time period, cooled, and the product is collected by filtration.

  16. Improving Process Heating System Performance: A Sourcebook for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    It is not intended to be a comprehensive technical text on improving process heating ... Improving Process Heating System Performance: A Sourcebook for Industry, Third Edition ...

  17. Save Energy Now in Your Process Heating Systems; Industrial Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Heating Systems Process heating accounts for about 36% of the total energy used in industrial manufacturing applications. And in some industries, this percentage is much ...

  18. Quantity, quality, and availability of waste heat from United States thermal power generation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gingerich, Daniel B; Mauter, Meagan S

    2015-06-10

    Secondary application of unconverted heat produced during electric power generation has the potential to improve the life-cycle fuel efficiency of the electric power industry and the sectors it serves. This work quantifies the residual heat (also known as waste heat) generated by U.S. thermal power plants and assesses the intermittency and transport issues that must be considered when planning to utilize this heat. Combining Energy Information Administration plant-level data with literature-reported process efficiency data, we develop estimates of the unconverted heat flux from individual U.S. thermal power plants in 2012. Together these power plants discharged an estimated 18.9 billion GJthmore »of residual heat in 2012, 4% of which was discharged at temperatures greater than 90 °C. We also characterize the temperature, spatial distribution, and temporal availability of this residual heat at the plant level and model the implications for the technical and economic feasibility of its end use. Increased implementation of flue gas desulfurization technologies at coal-fired facilities and the higher quality heat generated in the exhaust of natural gas fuel cycles are expected to increase the availability of residual heat generated by 10.6% in 2040.« less

  19. Method and apparatus for thermal processing of semiconductor substrates

    DOE Patents [OSTI]

    Griffiths, Stewart K.; Nilson, Robert H.; Mattson, Brad S.; Savas, Stephen E.

    2002-01-01

    An improved apparatus and method for thermal processing of semiconductor wafers. The apparatus and method provide the temperature stability and uniformity of a conventional batch furnace as well as the processing speed and reduced time-at-temperature of a lamp-heated rapid thermal processor (RTP). Individual wafers are rapidly inserted into and withdrawn from a furnace cavity held at a nearly constant and isothermal temperature. The speeds of insertion and withdrawal are sufficiently large to limit thermal stresses and thereby reduce or prevent plastic deformation of the wafer as it enters and leaves the furnace. By processing the semiconductor wafer in a substantially isothermal cavity, the wafer temperature and spatial uniformity of the wafer temperature can be ensured by measuring and controlling only temperatures of the cavity walls. Further, peak power requirements are very small compared to lamp-heated RTPs because the cavity temperature is not cycled and the thermal mass of the cavity is relatively large. Increased speeds of insertion and/or removal may also be used with non-isothermal furnaces.

  20. Method and apparatus for thermal processing of semiconductor substrates

    DOE Patents [OSTI]

    Griffiths, Stewart K.; Nilson, Robert H.; Mattson, Brad S.; Savas, Stephen E.

    2000-01-01

    An improved apparatus and method for thermal processing of semiconductor wafers. The apparatus and method provide the temperature stability and uniformity of a conventional batch furnace as well as the processing speed and reduced time-at-temperature of a lamp-heated rapid thermal processor (RTP). Individual wafers are rapidly inserted into and withdrawn from a furnace cavity held at a nearly constant and isothermal temperature. The speeds of insertion and withdrawal are sufficiently large to limit thermal stresses and thereby reduce or prevent plastic deformation of the wafer as it enters and leaves the furnace. By processing the semiconductor wafer in a substantially isothermal cavity, the wafer temperature and spatial uniformity of the wafer temperature can be ensured by measuring and controlling only temperatures of the cavity walls. Further, peak power requirements are very small compared to lamp-heated RTPs because the cavity temperature is not cycled and the thermal mass of the cavity is relatively large. Increased speeds of insertion and/or removal may also be used with non-isothermal furnaces.

  1. Nanoparticles for heat transfer and thermal energy storage

    DOE Patents [OSTI]

    Singh, Dileep; Cingarapu, Sreeram; Timofeeva, Elena V.; Moravek, Michael

    2015-07-14

    An article of manufacture and method of preparation thereof. The article of manufacture and method of making the article includes an eutectic salt solution suspensions and a plurality of nanocrystalline phase change material particles having a coating disposed thereon and the particles capable of undergoing the phase change which provides increase in thermal energy storage. In addition, other articles of manufacture can include a nanofluid additive comprised of nanometer-sized particles consisting of copper decorated graphene particles that provide advanced thermal conductivity to heat transfer fluids.

  2. US industrial process heating energy consumption: 1985

    SciTech Connect (OSTI)

    McDermott, H.; Chapman, M.A.

    1988-02-01

    The objective of this report was to refine and update energy-use estimates for US industrial process heating based on categories defined in an earlier study sponsored by Gas Research Institute (GRI) (Report No. GRI--84/0187. 154 refs., 77 tabs.

  3. Innovative Miniaturized Heat Pumps for Buildings: Modular Thermal Hub for Building Heating, Cooling and Water Heating

    SciTech Connect (OSTI)

    2010-09-01

    BEETIT Project: Georgia Tech is using innovative components and system design to develop a new type of absorption heat pump. Georgia Tech’s new heat pumps are energy efficient, use refrigerants that do not emit greenhouse gases, and can run on energy from combustion, waste heat, or solar energy. Georgia Tech is leveraging enhancements to heat and mass transfer technology possible in microscale passages and removing hurdles to the use of heat-activated heat pumps that have existed for more than a century. Use of microscale passages allows for miniaturization of systems that can be packed as monolithic full-system packages or discrete, distributed components enabling integration into a variety of residential and commercial buildings. Compared to conventional heat pumps, Georgia Tech’s design innovations will create an absorption heat pump that is much smaller, has higher energy efficiency, and can also be mass produced at a lower cost and assembly time.

  4. Roadmap for Process Heating Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap for Process Heating Technology Roadmap for Process Heating Technology This roadmap identifies priority research & development goals and near-term non-research goals to improve industrial process heating. Roadmap for Process Heating Technology (March 2001) (577.94 KB) More Documents & Publications Process Heating Roadmap to Help U.S. Industries Be Competitive ITP Chemicals: Vision 2020 Technology Roadmap for Combinatroial Methods; September 2001 ITP Aluminum: Alumina Technology

  5. Materials performance in prototype Thermal Cycling Absorption Process (TCAP) columns

    SciTech Connect (OSTI)

    Clark, E.A.

    1992-11-21

    Two prototype Thermal Cycling Absorption Process (TCAP) columns have been metallurgically examined after retirement, to determine the causes of failure and to evaluate the performance of the column container materials in this application. Leaking of the fluid heating and cooling subsystems caused retirement of both TCAP columns, not leaking of the main hydrogen-containing column. The aluminum block design TCAP column (ABL block TCAP) used in the Advanced Hydride Laboratory, Building 773-A, failed in one nitrogen inlet tube that was crimped during fabrication, which lead to fatigue crack growth in the tube and subsequent leaking of nitrogen from this tube. The Third Generation stainless steel design TCAP column (Third generation TCAP), operated in 773-A room C-061, failed in a braze joint between the freon heating and cooling tubes (made of copper) and the main stainless steel column. In both cases, stresses from thermal cycling and local constraint likely caused the nucleation and growth of fatigue cracks. No materials compatibility problems between palladium coated kieselguhr (the material contained in the TCAP column) and either aluminum or stainless steel column materials were observed. The aluminum-stainless steel transition junction appeared to be unaffected by service in the AHL block TCAP. Also, no evidence of cracking was observed in the AHL block TCAP in a location expected to experience the highest thermal shock fatigue in this design. It is important to limit thermal stresses caused by constraint in hydride systems designed to work by temperature variation, such as hydride storage beds and TCAP columns.

  6. Materials performance in prototype Thermal Cycling Absorption Process (TCAP) columns

    SciTech Connect (OSTI)

    Clark, E.A.

    1992-11-21

    Two prototype Thermal Cycling Absorption Process (TCAP) columns have been metallurgically examined after retirement, to determine the causes of failure and to evaluate the performance of the column container materials in this application. Leaking of the fluid heating and cooling subsystems caused retirement of both TCAP columns, not leaking of the main hydrogen-containing column. The aluminum block design TCAP column (AHL block TCAP) used in the Advanced Hydride Laboratory, Building 773-A, failed in one nitrogen inlet tube that was crimped during fabrication, which lead to fatigue crack growth in the tube and subsequent leaking of nitrogen from this tube. The Third Generation stainless steel design TCAP column (Third generation TCAP), operated in 773-A room C-061, failed in a braze joint between the freon heating and cooling tubes (made of copper) and the main stainless steel column. In both cases, stresses from thermal cycling and local constraint likely caused the nucleation and growth of fatigue cracks. No materials compatibility problems between palladium coated kieselguhr (the material contained in the TCAP column) and either aluminum or stainless steel column materials were observed. The aluminum-stainless steel transition junction appeared to be unaffected by service in the AHL block TCAP. Also, no evidence of cracking was observed in the AHL block TCAP in a location expected to experience the highest thermal shock fatigue in this design. It is important to limit thermal stresses caused by constraint in hydride systems designed to work by temperature variation, such as hydride storage beds and TCAP columns.

  7. Improving Process Heating System Performance: A Sourcebook for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This sourcebook introduces industry to process heating basics, performance opportunities for fuel and electric based systems, waste heat management and where they can find help on ...

  8. SOLTECH 92 proceedings: Solar Process Heat Program. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    This document is a limited Proceedings, documenting the presentations given at the symposia conducted by the US Department of Energy`s (DOE) Solar Industrial Program and Solar Thermal Electrical Program at SOLTECH92. The SOLTECH92 national solar energy conference was held in Albuquerque, New Mexico during the period February 17--20, 1992. The National Renewable Energy Laboratory manages the Solar Industrial Program; Sandia National Laboratories (Albuquerque) manages the Solar Thermal Electric Program. The symposia sessions were as follows: (1) Solar Industrial Program and Solar Thermal Electric Program Overviews, (2) Solar Process Heat Applications, (3) Solar Decontamination of Water and Soil; (4) Solar Building Technologies, (5) Solar Thermal Electric Systems, (6) PV Applications and Technologies. For each presentation given in these symposia, these Proceedings provide a one- to two-page abstract and copies of the viewgraphs and/or 35mm slides utilized by the speaker. Some speakers provided additional materials in the interest of completeness. The materials presented in this document were not subjected to a peer review process.

  9. Firearm suppressor having enhanced thermal management for rapid heat dissipation

    DOE Patents [OSTI]

    Moss, William C.; Anderson, Andrew T.

    2014-08-19

    A suppressor is disclosed for use with a weapon having a barrel through which a bullet is fired. The suppressor has an inner portion having a bore extending coaxially therethrough. The inner portion is adapted to be secured to a distal end of the barrel. A plurality of axial flow segments project radially from the inner portion and form axial flow paths through which expanding propellant gasses discharged from the barrel flow through. The axial flow segments have radially extending wall portions that define sections which may be filled with thermally conductive material, which in one example is a thermally conductive foam. The conductive foam helps to dissipate heat deposited within the suppressor during firing of the weapon.

  10. Heat transfer research for ocean thermal energy conversion

    SciTech Connect (OSTI)

    Kreith, F.; Bharathan, D.

    1988-02-01

    In this lecture an overview of the heat and mass-transfer phenomena of importance in ocean thermal energy conversion (OTEC) is presented with particular emphasis on open-cycle OTEC systems. Also included is a short historical review of OTEC developments in the past century and a comparison of open and closed-cycle thermodynamics. Finally, results of system analyses, showing the effect of plant size on cost and the near-term potential of using OTEC for combined power production and desalination systems, are briefly discussed.

  11. Heat transfer research for ocean thermal energy conversion

    SciTech Connect (OSTI)

    Kreith, F.; Bharathan, D.

    1987-03-01

    In this lecture an overview of the heat- and mass-transfer phenomena of importance in ocean thermal energy conversion (OTEC) is presented with particular emphasis on open-cycle OTEC systems. Also included is a short historical review of OTEC developments in the past century and a comparison of open- and closed-cycle thermodynamics. Finally, results of system analyses, showing the effect of plant size on cost and the near-term potential of using OTEC for combined power production and desalination systems are briefly discussed.

  12. Project Profile: Sensible Heat, Direct, Dual-Media Thermal Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Module | Department of Energy Sensible Heat, Direct, Dual-Media Thermal Energy Storage Module Project Profile: Sensible Heat, Direct, Dual-Media Thermal Energy Storage Module Acciona logo Acciona Solar, under the Thermal Storage FOA, plans to develop a prototype thermal energy storage (TES) module with high efficiency. This project is looking at a packed or structured bed TES tank with molten salt flowing through it. Approach A computational modeling of molten salt heat transfer fluid

  13. Assessment of Latent Heat Reservoirs for Thermal Management of...

    Office of Scientific and Technical Information (OSTI)

    During the early portion of the pulse, heating of the diode and its surrounding material ... Subject: 42 ENGINEERING; CAPACITY; FUSION HEAT; GALLIUM; HEAT FLUX; HEAT TRANSFER; ...

  14. Assessment of Latent Heat Reservoirs for Thermal Management of...

    Office of Scientific and Technical Information (OSTI)

    ... During the early portion of the pulse, heating of the diode and its surrounding material ... Subject: 42 ENGINEERING; CAPACITY; FUSION HEAT; GALLIUM; HEAT FLUX; HEAT TRANSFER; ...

  15. Thermal Energy Corporation Combined Heat and Power Project

    SciTech Connect (OSTI)

    Turner, E. Bruce; Brown, Tim; Mardiat, Ed

    2011-12-31

    To meet the planned heating and cooling load growth at the Texas Medical Center (TMC), Thermal Energy Corporation (TECO) implemented Phase 1 of a Master Plan to install an additional 32,000 tons of chilled water capacity, a 75,000 ton-hour (8.8 million gallon) Thermal Energy Storage (TES) tank, and a 48 MW Combined Heat and Power (CHP) system. The Department of Energy selected TMC for a $10 million grant award as part of the Financial Assistance Funding Opportunity Announcement, U.S. Department of Energy National Energy Technology, Recovery Act: Deployment of Combined Heat and Power (CHP) Systems, District Energy Systems, Waste Energy Recovery Systems, and Efficiency Industrial Equipment Funding Opportunity Number: DE-FOA-0000044 to support the installation of a new 48 MW CHP system at the TMC located just outside downtown Houston. As the largest medical center in the world, TMC is home to many of the nation's best hospitals, physicians, researchers, educational institutions, and health care providers. TMC provides care to approximately six million patients each year, and medical instruction to over 71,000 students. A medical center the size of TMC has enormous electricity and thermal energy demands to help it carry out its mission. Reliable, high-quality steam and chilled water are of utmost importance to the operations of its many facilities. For example, advanced medical equipment, laboratories, laundry facilities, space heating and cooling all rely on the generation of heat and power. As result of this project TECO provides this mission critical heating and cooling to TMC utilizing a system that is both energy-efficient and reliable since it provides the capability to run on power independent of the already strained regional electric grid. This allows the medical center to focus on its primary mission providing top quality medical care and instruction without worrying about excessive energy costs or the loss of heating and cooling due to the risk of power

  16. Efficient Heat Storage Materials: Metallic Composites Phase-Change Materials for High-Temperature Thermal Energy Storage

    SciTech Connect (OSTI)

    2011-11-21

    HEATS Project: MIT is developing efficient heat storage materials for use in solar and nuclear power plants. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun’s not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. MIT is designing nanostructured heat storage materials that can store a large amount of heat per unit mass and volume. To do this, MIT is using phase change materials, which absorb a large amount of latent heat to melt from solid to liquid. MIT’s heat storage materials are designed to melt at high temperatures and conduct heat well—this makes them efficient at storing and releasing heat and enhances the overall efficiency of the thermal storage and energy-generation process. MIT’s low-cost heat storage materials also have a long life cycle, which further enhances their efficiency.

  17. Experimental investigation of plastic finned-tube heat exchangers, with emphasis on material thermal conductivity

    SciTech Connect (OSTI)

    Chen, Lin; Li, Zhen; Guo, Zeng-Yuan

    2009-07-15

    In this paper, two modified types of polypropylene (PP) with high thermal conductivity up to 2.3 W/m K and 16.5 W/m K are used to manufacture the finned-tube heat exchangers, which are prospected to be used in liquid desiccant air conditioning, heat recovery, water source heat pump, sea water desalination, etc. A third plastic heat exchanger is also manufactured with ordinary PP for validation and comparison. Experiments are carried out to determine the thermal performance of the plastic heat exchangers. It is found that the plastic finned-tube heat exchanger with thermal conductivity of 16.5 W/m K can achieve overall heat transfer coefficient of 34 W/m{sup 2} K. The experimental results are compared with calculation and they agree well with each other. Finally, the effect of material thermal conductivity on heat exchanger thermal performance is studied in detail. The results show that there is a threshold value of material thermal conductivity. Below this value improving thermal conductivity can considerably improve the heat exchanger performance while over this value improving thermal conductivity contributes very little to performance enhancement. For the finned-tube heat exchanger designed in this paper, when the plastic thermal conductivity can reach over 15 W/m K, it can achieve more than 95% of the titanium heat exchanger performance and 84% of the aluminum or copper heat exchanger performance with the same dimension. (author)

  18. In situ heat treatment process utilizing a closed loop heating system

    DOE Patents [OSTI]

    Vinegar, Harold J.; Nguyen, Scott Vinh

    2010-12-07

    Systems and methods for an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas are described herein. The circulation system may use a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation. In some embodiments, the piping may be positioned in at least two of the wellbores.

  19. Solar-Thermal Fluid-Wall Reaction Processing - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Solar-Thermal Fluid-Wall Reaction Processing University of Colorado National Renewable Energy Laboratory Contact CU About This Technology Technology Marketing Summary Currently most hydrogen is produced through a process of heating natural gas with water vapor called steam reforming. This process requires energy to heat the gasses and produces greenhouse gases such as CO2 as its byproducts. These conditions

  20. Process Heating: A Special Supplement to Energy Matters

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Special Supplement to Energy Matters Process Heating Roadmap to Help U.S. Industries Be ... This plan is entitled "Roadmap for Process Heating Technology" and is intended as an ...

  1. Process Heating Assessment and Survey Tool Fact Sheet | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Assessment and Survey Tool Fact Sheet Process Heating Assessment and Survey Tool Fact Sheet This fact sheet describes how industrial plants can improve their process heating system performance using AMO's Process Heating Assessment and Survey Tool (PHAST) PHAST Fact Sheet (714.05 KB) More Documents & Publications Process Heating Assessment and Survey Tool (PHAST) Introduction Energy Assessment Helps Kaiser Aluminum Save Energy and Improve Productivity Reduce Air Infiltration in

  2. Heat pipe device and heat pipe fabricating process

    SciTech Connect (OSTI)

    Busch, C.H.

    1982-08-10

    An energy saving liquid to liquid heat exchanger for a dishwasher or like device discharging hot waste water comprising a hot water tank for holding the waste water from the dishwasher and having inlet and outlet pipes, a cold water tank for holding the fresh water going to a water heater and having inlet and outlet pipes, the cold water tank disposed on top of the hot water tank, a bundle of heat pipes containing low boiling refrigerant disposed inside of the two tanks so as to extract heat from the hot water tank and give it up to the cold water tank, whereby the temperature of the fresh water leaving the heat exchanger is higher than its entering temperature.

  3. Initial Investigation into the Potential of CSP Industrial Process Heat for

    Office of Scientific and Technical Information (OSTI)

    the Southwest United States (Technical Report) | SciTech Connect Initial Investigation into the Potential of CSP Industrial Process Heat for the Southwest United States Citation Details In-Document Search Title: Initial Investigation into the Potential of CSP Industrial Process Heat for the Southwest United States After significant interest in the 1970s, but relatively few deployments, the use of solar technologies for thermal applications, including enhanced oil recovery (EOR),

  4. Potential for Solar Industrial Process Heat in the United States: A Look at

    Office of Scientific and Technical Information (OSTI)

    California (Conference) | SciTech Connect Conference: Potential for Solar Industrial Process Heat in the United States: A Look at California Citation Details In-Document Search Title: Potential for Solar Industrial Process Heat in the United States: A Look at California The use of Concentrating Solar Power (CSP) collectors (e.g., parabolic trough or linear Fresnel systems) for industrial thermal applications has been increasing in global interest in the last few years. In particular, the

  5. New processing technique for DEB powder for thermal batteries

    SciTech Connect (OSTI)

    Szwarc, R.; Walton, R.D.

    1980-06-01

    The purpose of this paper is to explore how material processing influences thermal battery performance, and how battery performance can be improved by changes in processing. This discussion is confined to the class of thermal batteries designed by Sandia Laboratories and built under the supervision of General Electric in St. Petersburg, Florida. The electrochemical system employed is: Ca/LiCl-KCl-CaCrO/sub 4//Fe. These batteries are primary reserve batteries which employ a pelletized cell design. Each cell consists of an electrolyte-depolarizer pellet sandwiched between an anode and a heat pellet. The anode employed may be one of two forms: sheet calcium disc, mechanically attached to an iron or steel backing; or a substrate disc of iron or steel on which 3 to 5 mils of calcium had been evaporated. The depolarizer-electrolyte, commonly referred to as DEB, is composed of CaCrO/sub 4/, LiCl-KCl eutectic and SiO/sub 2/ binder powder, which has been blended and pressed into pellets. The DEB pellet serves as electrolyte and as active cathode when the salt becomes molten upon battery activation. The heat pellet serves the dual purpose of providing the heat necessary to activate the battery and as the cathode current collector. The heat pellet is composed of iron powder and KClO/sub 4/. A battery is made up of one or more stacks of about 12 cells connected in series to produce a voltage of 28 to 32 volts. Since activated life requirements for batteries vary from seconds up to one hour, the battery must be well insulated to conserve the heat produced by the ignition of the heat pellets to maintain the electrolyte in a molten state. This insulation is also important to protect sensitive electronic components in contact with the battery case. Because the electrolyte, particularly LiCl, is hygroscopic, the batteries are hermetically sealed in stainless steel cans, and are manufactured in dryrooms maintained at 3% relative humidity or better.

  6. ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers biomass-firedboilers.pdf (177.31 KB) More Documents ...

  7. Process Heat Exchanger Options for the Advanced High Temperature Reactor

    SciTech Connect (OSTI)

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-06-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  8. Process Heat Exchanger Options for Fluoride Salt High Temperature Reactor

    SciTech Connect (OSTI)

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-04-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  9. Waste heat driven absorption refrigeration process and system

    DOE Patents [OSTI]

    Wilkinson, William H.

    1982-01-01

    Absorption cycle refrigeration processes and systems are provided which are driven by the sensible waste heat available from industrial processes and other sources. Systems are disclosed which provide a chilled water output which can be used for comfort conditioning or the like which utilize heat from sensible waste heat sources at temperatures of less than 170.degree. F. Countercurrent flow equipment is also provided to increase the efficiency of the systems and increase the utilization of available heat.

  10. Improving Process Heating System Performance: A Sourcebook for Industry,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Third Edition | Department of Energy Third Edition Improving Process Heating System Performance: A Sourcebook for Industry, Third Edition This sourcebook introduces industry to process heating basics, performance opportunities for fuel and electric based systems, waste heat management and where they can find help on optimizing these important industrial systems. Over the years AMO has worked with the Industrial Heating Equipment Association (IHEA) in its development. IHEA's mission is to

  11. Differential heating: A versatile method for thermal conductivity measurements in high-energy-density matter

    SciTech Connect (OSTI)

    Ping, Y.; Fernandez-Panella, A.; Sio, H.; Correa, A.; Shepherd, R.; Landen, O.; London, R. A.; Sterne, P. A.; Whitley, H. D.; Fratanduono, D.; Boehly, T. R.; Collins, G. W.

    2015-09-04

    We propose a method for thermal conductivity measurements of high energy density matter based on differential heating. A temperature gradient is created either by surface heating of one material or at an interface between two materials by different energy deposition. The subsequent heat conduction across the temperature gradient is observed by various time-resolved probing techniques. Conceptual designs of such measurements using laser heating, proton heating, and x-ray heating are presented. As a result, the sensitivity of the measurements to thermal conductivity is confirmed by simulations.

  12. A High-Temperature Fuel Cell to Provide On-Site Process Reducing Gas, Clean Power, and Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat, Hydrogen, and Power System A High-Temperature Fuel Cell to Provide On-Site Process Reducing Gas, Clean Power, and Heat Introduction In order for metal products to have desired properties, most metal is thermally processed at a high temperature one or more times under a controlled atmosphere. Many different thermal operations are used including oxide reduction, annealing, brazing, sintering, and carburizing. A mixture of hydrogen and nitrogen gas often provides a reducing

  13. Thermal Storage and Advanced Heat Transfer Fluids (Fact Sheet...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    measure the thermophysical properties of heat transfer fluids and storage materials to ... measure the melting point, boiling point, heat capacity, density, viscosity, and phase- ...

  14. Thermal Modeling of A Friction Bonding Process

    SciTech Connect (OSTI)

    John Dixon; Douglas Burkes; Pavel Medvedev

    2007-10-01

    A COMSOL model capable of predicting temperature evolution during nuclear fuel fabrication is being developed at the Idaho National Laboratory (INL). Fuel plates are fabricated by friction bonding (FB) uranium-molybdenum (U-Mo) alloy foils positioned between two aluminum plates. The ability to predict temperature distribution during fabrication is imperative to ensure good quality bonding without inducing an undesirable chemical reaction between U-Mo and aluminum. A three-dimensional heat transfer model of the FB process implementing shallow pin penetration for cladding monolithic nuclear fuel foils is presented. Temperature distribution during the FB process as a function of fabrication parameters such as weld speed, tool load, and tool rotational frequency are predicted. Model assumptions, settings, and equations are described in relation to standard friction stir welding. Current experimental design for validation and calibration of the model is also demonstrated. Resulting experimental data reveal the accuracy in describing asymmetrical temperature distributions about the tool face. Temperature of the bonded plate drops beneath the pin and is higher on the advancing side than the retreating side of the tool.

  15. Improving Process Heating System Performance: A Sourcebook for Industry,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Second Edition | Department of Energy Second Edition Improving Process Heating System Performance: A Sourcebook for Industry, Second Edition This sourcebook describes basic process heating applications and equipment, and outlines opportunities for energy and performance improvements. It also discusses the merits of using a systems approach in identifying and implementing these improvement opportunities. It is not intended to be a comprehensive technical text on improving process heating

  16. Process Heating Assessment and Survey Tool (PHAST) Introduction - Webcast

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Heating Assessment and Survey Tool (PHAST) Introduction Date: January 30, 2007 Instructor: Dr. Arvind Thekdi Agenda ESA Training Web Cast Introduction - 15 minutes Process Heating Assessment and Survey Tool (PHAST) Software Demonstration - 45 minutes Q & A - 20 minutes PHAST BestPractices- 30 minutes Q & A - 20 minutes Conclusion - 10 minutes Reference Information DOE Resources Calendar for Future ESA Training Web Casts Process Heating ESA Plant Lead Web Cast Purpose: Help Plant

  17. Simulated evolution of fractures and fracture networks subject to thermal cooling: A coupled discrete element and heat conduction model

    SciTech Connect (OSTI)

    Huang, Hai; Plummer, Mitchell; Podgorney, Robert

    2013-02-01

    Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.

  18. Save Energy Now in Your Process Heating Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    This fact sheet describes how manufacturing plants can save energy and money by making energy efficiency improvements to their industrial process heating systems.

  19. Improving Process Heating System Performance: A Sourcbook for Industry

    SciTech Connect (OSTI)

    2004-09-01

    A sourcebook designed to provide process heating system users with a reference outlining opportunities to improve system performance and optimize energy efficiency in industrial energy systems.

  20. Reduce Natural Gas Use in Your Industrial Process Heating Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    This fact sheet describes ten effective ways to save energy and money in industrial process heating systems by making some changes in equipment, operations, and maintenance.

  1. Continuous Processing of High Thermal Conductivity Polyethylene...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    conductivity polyethylene fibers and sheets will be developed to replace metals and ceramics in heat-transfer devices. Project innovations include using massively parallel...

  2. Experimental investigation on the photovoltaic-thermal solar heat pump air-conditioning system on water-heating mode

    SciTech Connect (OSTI)

    Fang, Guiyin; Hu, Hainan; Liu, Xu

    2010-09-15

    An experimental study on operation performance of photovoltaic-thermal solar heat pump air-conditioning system was conducted in this paper. The experimental system of photovoltaic-thermal solar heat pump air-conditioning system was set up. The performance parameters such as the evaporation pressure, the condensation pressure and the coefficient of performance (COP) of heat pump air-conditioning system, the water temperature and receiving heat capacity in water heater, the photovoltaic (PV) module temperature and the photovoltaic efficiency were investigated. The experimental results show that the mean photovoltaic efficiency of photovoltaic-thermal (PV/T) solar heat pump air-conditioning system reaches 10.4%, and can improve 23.8% in comparison with that of the conventional photovoltaic module, the mean COP of heat pump air-conditioning system may attain 2.88 and the water temperature in water heater can increase to 42 C. These results indicate that the photovoltaic-thermal solar heat pump air-conditioning system has better performances and can stably work. (author)

  3. Solar-thermal fluid-wall reaction processing

    DOE Patents [OSTI]

    Weimer, Alan W.; Dahl, Jaimee K.; Lewandowski, Allan A.; Bingham, Carl; Buechler, Karen J.; Grothe, Willy

    2006-04-25

    The present invention provides a method for carrying out high temperature thermal dissociation reactions requiring rapid-heating and short residence times using solar energy. In particular, the present invention provides a method for carrying out high temperature thermal reactions such as dissociation of hydrocarbon containing gases and hydrogen sulfide to produce hydrogen and dry reforming of hydrocarbon containing gases with carbon dioxide. In the methods of the invention where hydrocarbon containing gases are dissociated, fine carbon black particles are also produced. The present invention also provides solar-thermal reactors and solar-thermal reactor systems.

  4. Solar-Thermal Fluid-Wall Reaction Processing

    DOE Patents [OSTI]

    Weimer, A. W.; Dahl, J. K.; Lewandowski, A. A.; Bingham, C.; Raska Buechler, K. J.; Grothe, W.

    2006-04-25

    The present invention provides a method for carrying out high temperature thermal dissociation reactions requiring rapid-heating and short residence times using solar energy. In particular, the present invention provides a method for carrying out high temperature thermal reactions such as dissociation of hydrocarbon containing gases and hydrogen sulfide to produce hydrogen and dry reforming of hydrocarbon containing gases with carbon dioxide. In the methods of the invention where hydrocarbon containing gases are dissociated, fine carbon black particles are also produced. The present invention also provides solar-thermal reactors and solar-thermal reactor systems.

  5. Heat transmission between a profiled nanowire and a thermal bath

    SciTech Connect (OSTI)

    Blanc, Christophe; Heron, Jean-Savin; Fournier, Thierry; Bourgeois, Olivier

    2014-07-28

    Thermal transport through profiled and abrupt contacts between a nanowire and a reservoir has been investigated by thermal conductance measurements. It is demonstrated that above 1?K the transmission coefficients are identical between abrupt and profiled junctions. This shows that the thermal transport is principally governed by the nanowire itself rather than by the resistance of the thermal contact. These results are perfectly compatible with the previous theoretical models. The thermal conductance measured at sub-Kelvin temperatures is discussed in relation to the universal value of the quantum of thermal conductance.

  6. Preheated Combustion Air (International Fact Sheet), Energy Tips-Process Heating, Process Heating Tip Sheet #1c

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    This English/Chinese international tip sheet provides information for optimizing industrial process heating systems and includes measurements in metric units.

  7. High Magnetic Field Processing - A Heat-Free Heat Treating Method

    SciTech Connect (OSTI)

    Ludtka, Gerard Michael; Ludtka, Gail Mackiewicz-; Wilgen, John B; Kenik, Edward A; Parish, Chad M; Rios, Orlando; Rogers, Hiram; Manuel, Michele; Kisner, Roger A; Watkins, Thomas R; Murphy, Bart L

    2012-08-01

    The High and Thermal Magnetic Processing/Electro-magnetic Acoustic Transducer (HTMP/EMAT) technology has been shown to be an enabling disruptive materials processing technology, that can achieve significant improvements in microstructure and consequently material performance beyond that achievable through conventional processing, and will lead to the next generation of advanced performance structural and functional materials. HTMP exposure increased the reaction kinetics enabling refinement of microstructural features such as finer martensite lath size, and finer, more copious, homogeneous dispersions of strengthening carbides leading to combined strength and toughness improvements in bainitic steels. When induction heating is applied in a high magnetic field environment, the induction heating coil is configured so that high intensity acoustic/ultrasonic treatment occurs naturally. The configuration results in a highly effective electromagnetic acoustical transducer (EMAT). HTMP combined with applying high-field EMAT, produce a non-contact ultrasonic treatment that can be used to process metal alloys in either the liquid state resulting in significant microstructural changes over conventional processing. Proof-of-principle experiments on cast irons resulted in homogeneous microstructures in small castings along with improved casting surface appearance. The experiment showed that by exposing liquid metal to the non-contact acoustic/ultrasonic processing technology developed using HMFP/EMAT wrought-like microstructures were developed in cast components. This Energy Intensive Processes (EIP) project sponsored by the DOE EERE Advanced Manufacturing Office (AMO) demonstrated the following: (1) The reduction of retained austenite in high carbon/high alloy steels with an ambient temperature HTMP process, replacing either a cryogenic or double tempering thermal process normally employed to accomplish retained austenite transformation. HTMP can be described as a 'heat

  8. Heat exchanger for coal gasification process

    DOE Patents [OSTI]

    Blasiole, George A.

    1984-06-19

    This invention provides a heat exchanger, particularly useful for systems requiring cooling of hot particulate solids, such as the separated fines from the product gas of a carbonaceous material gasification system. The invention allows effective cooling of a hot particulate in a particle stream (made up of hot particulate and a gas), using gravity as the motive source of the hot particulate. In a preferred form, the invention substitutes a tube structure for the single wall tube of a heat exchanger. The tube structure comprises a tube with a core disposed within, forming a cavity between the tube and the core, and vanes in the cavity which form a flow path through which the hot particulate falls. The outside of the tube is in contact with the cooling fluid of the heat exchanger.

  9. Continuous Processing of High Thermal Conductivity Polyethylene Fibers and Sheets

    Broader source: Energy.gov [DOE]

    Project to develop and validate a continuous manufacturing process for polyethylene fibers and sheets yielding a thermal conductivity value greater than 60 W/m.K.

  10. Composite material having high thermal conductivity and process for fabricating same

    DOE Patents [OSTI]

    Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.

    1998-01-01

    A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

  11. Composite material having high thermal conductivity and process for fabricating same

    DOE Patents [OSTI]

    Colella, N.J.; Davidson, H.L.; Kerns, J.A.; Makowiecki, D.M.

    1998-07-21

    A process is disclosed for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost. 7 figs.

  12. Thermal processing of EVA encapsulants and effects of formulation additives

    SciTech Connect (OSTI)

    Pern, F.J.; Glick, S.H.

    1996-05-01

    The authors investigated the in-situ processing temperatures and effects of various formulation additives on the formation of ultraviolet (UV) excitable chromophores, in the thermal lamination and curing of ethylene-vinyl acetate (EVA) encapsulants. A programmable, microprocessor-controlled, double-bag vacuum laminator was used to study two commercial as formulated EVA films, A9918P and 15295P, and solution-cast films of Elvaxrm (EVX) impregnated with various curing agents and antioxidants. The results show that the actual measured temperatures of EVA lagged significantly behind the programmed profiles for the heating elements and were affected by the total thermal mass loaded inside the laminator chamber. The antioxidant Naugard P{trademark}, used in the two commercial EVA formulations, greatly enhances the formation of UV-excitable, short chromophores upon curing, whereas other tested antioxidants show little effect. A new curing agent chosen specifically for the EVA formulation modification produces little or no effect on chromophore formation, no bubbling problems in the glass/EVX/glass laminates, and a gel content of {approximately}80% when cured at programmed 155{degrees}C for 4 min. Also demonstrated is the greater discoloring effect with higher concentrations of curing-generated chromophores.

  13. Process for heating coal-oil slurries

    DOE Patents [OSTI]

    Braunlin, W.A.; Gorski, A.; Jaehnig, L.J.; Moskal, C.J.; Naylor, J.D.; Parimi, K.; Ward, J.V.

    1984-01-03

    Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec[sup [minus]1]. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72. 29 figs.

  14. Process for heating coal-oil slurries

    DOE Patents [OSTI]

    Braunlin, Walter A.; Gorski, Alan; Jaehnig, Leo J.; Moskal, Clifford J.; Naylor, Joseph D.; Parimi, Krishnia; Ward, John V.

    1984-01-03

    Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec.sup. -1. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72.

  15. Method For Brazing And Thermal Processing

    DOE Patents [OSTI]

    Milewski, John O.; Dave, Vivek R.; Christensen, Dane; Carpenter, II, Robert W.

    2005-07-12

    The present invention includes a method for brazing of two objects or heat treatment of one object. First, object or objects to be treated are selected and initial conditions establishing a relative geometry and material characteristics are determined. Then, a first design of an optical system for directing heat energy onto the object or objects is determined. The initial conditions and first design of the optical system are then input into a optical ray-tracing computer program. The program is then run to produce a representative output of the heat energy input distribution to the object or objects. The geometry of the object or objects, material characteristics, and optical system design are then adjusted until an desired heat input is determined.

  16. Experience with thermal storage in tanks of stratified water for solar heating and load management

    SciTech Connect (OSTI)

    Wildin, M.W.; Witkofsky, M.P.; Noble, J.M.; Hopper, R.E.; Stromberg, P.G.

    1982-01-01

    Results have been obtained for performance of stratified tanks of water used to store heating and cooling capacity in a 5574 m/sup 2/ university building. The major sources of energy used to charge the heated tanks were solar energy, obtained via collectors on the roof of the building, and excess heat recovered from the interior of the building via thermal storage and electric-driven heat pump/chillers. Through stratification of the water in the storage tanks and an appropriate system operating strategy, 40 percent of the building's total heating needs were supplied by solar energy during the first four months of 1981. Month-long thermal efficiencies of the storage array ranging from 70 percent during the heating season to nearly 90 percent during the cooling season, were measured. Work is underway to improve the performance of thermal storage.

  17. Heat transfer in ocean thermal energy conversion (OTEC) systems. Proceedings of the wanter mnnual Meeting, Chicago, IL, November 16-21, 1980

    SciTech Connect (OSTI)

    Owens, W.L.

    1980-01-01

    Among the topics discussed are: condensation heat transfer on long vertical, axially ridged tubes tests of the Applied Physics Laboratory of Johns Hopkins University (APL/JHU) folded-tube, Ocean Thermal Energy Conversion (OTEC) heat exchanger the design of a 1.0-MW OTEC heat exchanger for ocean testing and convective vaporization and condensation in serrated-fin channels. Also considered are: heat tranfer studies of an improved heat transfer monitor for OTEC an analysis of the mist lift process for mist flow, open-cycle OTEC the heat transfer characteristics of working fluids for OTEC and a comparison of major OTEC power system characteristics.

  18. An analytical oscillating-flow thermal analysis of the heat exchangers and regenerator in Stirling machines

    SciTech Connect (OSTI)

    Monte, F. de; Galli, G.; Marcotullio, F.

    1996-12-31

    A closed form-expression for the effectiveness of the heat exchangers and regenerator of a Stirling cycle machine is given. This result may be used in a simple way in order to evaluate their effect on the machine performance. The proposed method, indeed, allows the actual cycle gas temperatures in the heater and cooler to be obtained readily, once the geometry of the heater, cooler and regenerator is known and some quantities characterizing the engine dynamics (strokes, frequency and phase angle of the moving elements) and its heat-exchange processes (inlet temperatures of the heating and cooling fluids, and their volumetric flow rates) are measured. Thus, an immediate indication about the effectiveness of the heat exchangers and regenerator as well as about the machine thermal efficiency may be obtained. The availability of a closed-form expression for the heater, regenerator and cooler effectiveness is useful especially for those engines, like the free-piston Stirling engines, whose design requires the application of analytically based optimization criteria.

  19. Maraging superalloys and heat treatment processes

    DOE Patents [OSTI]

    Korenko, Michael K.; Gelles, David S.; Thomas, Larry E.

    1986-01-01

    Described herein are nickel-chromium-iron maraging, gamma prime strengthened superalloys containing about 18 to 25 weight percent nickel, about 4 to 8 weight percent chromium, gamma prime forming elements such as aluminum and/or titanium, and a solid solution strengthening element, such as molybdenum. After heat treatment, which includes at least one ausaging treatment and at least one maraging treatment, a microstructure containing gamma prime phase and decomposed Fe-Ni-Cr type martensite is produced.

  20. Pulse thermal processing of functional materials using directed plasma arc

    DOE Patents [OSTI]

    Ott, Ronald D.; Blue, Craig A.; Dudney, Nancy J.; Harper, David C.

    2007-05-22

    A method of thermally processing a material includes exposing the material to at least one pulse of infrared light emitted from a directed plasma arc to thermally process the material, the pulse having a duration of no more than 10 s.

  1. THERMAL PROCESSES GOVERNING HOT-JUPITER RADII

    SciTech Connect (OSTI)

    Spiegel, David S.; Burrows, Adam E-mail: burrows@astro.princeton.edu

    2013-07-20

    There have been many proposed explanations for the larger-than-expected radii of some transiting hot Jupiters, including either stellar or orbital energy deposition deep in the atmosphere or deep in the interior. In this paper, we explore the important influences on hot-Jupiter radius evolution of (1) additional heat sources in the high atmosphere, the deep atmosphere, and deep in the convective interior; (2) consistent cooling of the deep interior through the planetary dayside, nightside, and poles; (3) the degree of heat redistribution to the nightside; and (4) the presence of an upper atmosphere absorber inferred to produce anomalously hot upper atmospheres and inversions in some close-in giant planets. In particular, we compare the radius expansion effects of atmospheric and deep-interior heating at the same power levels and derive the power required to achieve a given radius increase when night-side cooling is incorporated. We find that models that include consistent day/night cooling are more similar to isotropically irradiated models when there is more heat redistributed from the dayside to the nightside. In addition, we consider the efficacy of ohmic heating in the atmosphere and/or convective interior in inflating hot Jupiters. Among our conclusions are that (1) the most highly irradiated planets cannot stably have uB {approx}> 10 km s{sup -1} G over a large fraction of their daysides, where u is the zonal wind speed and B is the dipolar magnetic field strength in the atmosphere, and (2) that ohmic heating cannot in and of itself lead to a runaway in planet radius.

  2. Thermal processing system concepts and considerations for RWMC buried waste

    SciTech Connect (OSTI)

    Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

    1992-02-01

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided.

  3. Heat Flow in VC-2A and VC-2B, and Constraints on the Thermal...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Heat Flow in VC-2A and VC-2B, and Constraints on the Thermal Regime of the Valles Caldera, New...

  4. Advanced Heat Transfer Fluids and Novel Thermal Storage Concepts for CSP Generation

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2008, DOE issued the Advanced Heat Transfer Fluids and Novel Thermal Storage Concepts for Concentrating Solar Power (CSP) Generation funding opportunity announcement (FOA) managed by the SunShot Initiative. The following projects were selected under this competitive solicitation.

  5. Waste Heat Recovery System: Lightweight Thermal Energy Recovery (LIGHTER) System

    SciTech Connect (OSTI)

    2010-01-01

    Broad Funding Opportunity Announcement Project: GM is using shape memory alloys that require as little as a 10°C temperature difference to convert low-grade waste heat into mechanical energy. When a stretched wire made of shape memory alloy is heated, it shrinks back to its pre-stretched length. When the wire cools back down, it becomes more pliable and can revert to its original stretched shape. This expansion and contraction can be used directly as mechanical energy output or used to drive an electric generator. Shape memory alloy heat engines have been around for decades, but the few devices that engineers have built were too complex, required fluid baths, and had insufficient cycle life for practical use. GM is working to create a prototype that is practical for commercial applications and capable of operating with either air- or fluid-based heat sources. GM’s shape memory alloy based heat engine is also designed for use in a variety of non-vehicle applications. For example, it can be used to harvest non-vehicle heat sources, such as domestic and industrial waste heat and natural geothermal heat, and in HVAC systems and generators.

  6. Thermal transport in shock wave–compressed solids using pulsed laser heating

    SciTech Connect (OSTI)

    La Lone, B. M. Capelle, G.; Stevens, G. D.; Turley, W. D.; Veeser, L. R.

    2014-07-15

    A pulsed laser heating method was developed for determining thermal transport properties of solids under shock-wave compression. While the solid is compressed, a laser deposits a known amount of heat onto the sample surface, which is held in the shocked state by a transparent window. The heat from the laser briefly elevates the surface temperature and then diffuses into the interior via one-dimensional heat conduction. The thermal effusivity is determined from the time history of the resulting surface temperature pulse, which is recorded with optical pyrometry. Thermal effusivity is the square root of the product of thermal conductivity and volumetric heat capacity and is the key thermal transport parameter for relating the surface temperature to the interior temperature of the sample in a dynamic compression experiment. Therefore, this method provides information that is needed to determine the thermodynamic state of the interior of a compressed metal sample from a temperature measurement at the surface. The laser heat method was successfully demonstrated on tin that was shock compressed with explosives to a stress and temperature of ∼25 GPa and ∼1300 K. In this state, tin was observed to have a thermal effusivity of close to twice its ambient value. The implications on determining the interior shock wave temperature of tin are discussed.

  7. Process and apparatus for thermal enhancement

    DOE Patents [OSTI]

    Burrill, Jr., Charles E.; Smirlock, Martin E.; Krepchin, Ira P.

    1984-06-26

    Thermal treatment apparatus for downhole deployment comprising a combustion stage with an elongated hot wall combustion zone for the substantially complete combustion of the fuel-air mixture and an ignition zone immediately upstream from the combustion zone in which a mixture of atomized liquid fuel and air at or below stoichiometric ratio is ignited; together with a water injection stage immediately downstream from the combustion zone through which essentially partuculate free high temperature combustion products flow from the combustion zone and into which water is sprayed. The resulting mixture of steam and combustion products is injected into an oil formation for enhancing the speed and effectiveness of reservoir response due to physical, chemical, and/or thermal stimulation interactions.

  8. Automated Process for the Fabrication of Highly Customized Thermally

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulated Cladding Systems | Department of Energy Automated Process for the Fabrication of Highly Customized Thermally Insulated Cladding Systems Automated Process for the Fabrication of Highly Customized Thermally Insulated Cladding Systems Addthis 1 of 2 Resin casting prototype Image: Worcester Polytechnic Institute 2 of 2 A project member completes cuts foam insulating via a process known as computer numerically controlled (CNC) foam cutting. Image: Worcester Polytechnic Institute

  9. Automated Process for the Fabrication of Highly Customized Thermally

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulated Cladding Systems | Department of Energy Automated Process for the Fabrication of Highly Customized Thermally Insulated Cladding Systems Automated Process for the Fabrication of Highly Customized Thermally Insulated Cladding Systems 1 of 2 Resin casting prototype Image: Worcester Polytechnic Institute 2 of 2 A project member completes cuts foam insulating via a process known as computer numerically controlled (CNC) foam cutting. Image: Worcester Polytechnic Institute Lead Performer:

  10. Agricultural and Industrial Process-Heat-Market Sector workbook

    SciTech Connect (OSTI)

    Shulman, M. J.; Kannan, N. P.; deJong, D. L.

    1980-01-01

    This workbook summarizes the preliminary data and assumptions of the Agricultural and Industrial Process Heat Market Sector prepared in conjunction with the development of inputs for a National Plan for the Accelerated Commercialization of Solar Energy.

  11. Process Heating Assessment and Survey Tool (PHAST) Introduction

    Broader source: Energy.gov [DOE]

    This presentation provides an introduction to PHAST, shows how to use the tool to survey process heating equipment that uses fuel, steam, or electricity, and helps plant personnel identify the most energy-intensive equipment.

  12. Process Heating Assessment and Survey Tool User Manuals

    Office of Energy Efficiency and Renewable Energy (EERE)

    PHAST 3.0 User Manuals are available for Electrotechnology and Fuel Fired Technology (for US and International units). The PHAST tool can be used to assess energy use and estimate energy use reduction for industrial process heating equipment.

  13. Quantifying shallow subsurface water and heat dynamics using coupled hydrological-thermal-geophysical inversion

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tran, Anh Phuong; Dafflon, Baptiste; Hubbard, Susan S.; Kowalsky, Michael B.; Long, Philip; Tokunaga, Tetsu K.; Williams, Kenneth H.

    2016-08-31

    Improving our ability to estimate the parameters that control water and heat fluxes in the shallow subsurface is particularly important due to their strong control on recharge, evaporation and biogeochemical processes. The objectives of this study are to develop and test a new inversion scheme to simultaneously estimate subsurface hydrological, thermal and petrophysical parameters using hydrological, thermal and electrical resistivity tomography (ERT) data. The inversion scheme – which is based on a nonisothermal, multiphase hydrological model – provides the desired subsurface property estimates in high spatiotemporal resolution. A particularly novel aspect of the inversion scheme is the explicit incorporation of themore » dependence of the subsurface electrical resistivity on both moisture and temperature. The scheme was applied to synthetic case studies, as well as to real datasets that were autonomously collected at a biogeochemical field study site in Rifle, Colorado. At the Rifle site, the coupled hydrological-thermal-geophysical inversion approach well predicted the matric potential, temperature and apparent resistivity with the Nash–Sutcliffe efficiency criterion greater than 0.92. Synthetic studies found that neglecting the subsurface temperature variability, and its effect on the electrical resistivity in the hydrogeophysical inversion, may lead to an incorrect estimation of the hydrological parameters. The approach is expected to be especially useful for the increasing number of studies that are taking advantage of autonomously collected ERT and soil measurements to explore complex terrestrial system dynamics.« less

  14. Analytical Study on Thermal and Mechanical Design of Printed Circuit Heat Exchanger

    SciTech Connect (OSTI)

    Su-Jong Yoon; Piyush Sabharwall; Eung-Soo Kim

    2013-09-01

    The analytical methodologies for the thermal design, mechanical design and cost estimation of printed circuit heat exchanger are presented in this study. In this study, three flow arrangements of parallel flow, countercurrent flow and crossflow are taken into account. For each flow arrangement, the analytical solution of temperature profile of heat exchanger is introduced. The size and cost of printed circuit heat exchangers for advanced small modular reactors, which employ various coolants such as sodium, molten salts, helium, and water, are also presented.

  15. PBMR as an Ideal Heat Source for High-Temperature Process Heat Applications

    SciTech Connect (OSTI)

    Correia, Michael; Greyvenstein, Renee; Silady, Fred; Penfield, Scott

    2006-07-01

    The Pebble Bed Modular Reactor (PBMR) is an advanced helium-cooled, graphite-moderated High Temperature Gas-cooled Reactor (HTGR). A 400 MWt PBMR Demonstration Power Plant (DPP) for the production of electricity is being developed in South Africa. This PBMR technology is also an ideal heat source for process heat applications, including Steam Methane Reforming, steam for Oil Sands bitumen recovery, Hydrogen Production and co-generation (process heat and/or electricity and/or process steam) for petrochemical industries. The cycle configuration used to transport the heat of the reactor to the process plant or to convert the reactor's heat into electricity or steam directly influences the cycle efficiency and plant economics. The choice of cycle configuration depends on the process requirements and is influenced by practical considerations, component and material limitations, maintenance, controllability, safety, performance, risk and cost. This paper provides an overview of the use of a PBMR reactor for process applications and possible cycle configurations are presented for applications which require high temperature process heat and/or electricity. (authors)

  16. Thermal conductivity of cementitious grouts for geothermal heat pumps. Progress report FY 1997

    SciTech Connect (OSTI)

    Allan, M.L.

    1997-11-01

    Grout is used to seal the annulus between the borehole and heat exchanger loops in vertical geothermal (ground coupled, ground source, GeoExchange) heat pump systems. The grout provides a heat transfer medium between the heat exchanger and surrounding formation, controls groundwater movement and prevents contamination of water supply. Enhanced heat pump coefficient of performance (COP) and reduced up-front loop installation costs can be achieved through optimization of the grout thermal conductivity. The objective of the work reported was to characterize thermal conductivity and other pertinent properties of conventional and filled cementitious grouts. Cost analysis and calculations of the reduction in heat exchanger length that could be achieved with such grouts were performed by the University of Alabama. Two strategies to enhance the thermal conductivity of cementitious grouts were used simultaneously. The first of these was to incorporate high thermal conductivity filler in the grout formulations. Based on previous tests (Allan and Kavanaugh, in preparation), silica sand was selected as a suitable filler. The second strategy was to reduce the water content of the grout mix. By lowering the water/cement ratio, the porosity of the hardened grout is decreased. This results in higher thermal conductivity. Lowering the water/cement ratio also improves such properties as permeability, strength, and durability. The addition of a liquid superplasticizer (high range water reducer) to the grout mixes enabled reduction of water/cement ratio while retaining pumpability. Superplasticizers are commonly used in the concrete and grouting industry to improve rheological properties.

  17. System for thermal energy storage, space heating and cooling and power conversion

    DOE Patents [OSTI]

    Gruen, Dieter M.; Fields, Paul R.

    1981-04-21

    An integrated system for storing thermal energy, for space heating and cong and for power conversion is described which utilizes the reversible thermal decomposition characteristics of two hydrides having different decomposition pressures at the same temperature for energy storage and space conditioning and the expansion of high-pressure hydrogen for power conversion. The system consists of a plurality of reaction vessels, at least one containing each of the different hydrides, three loops of circulating heat transfer fluid which can be selectively coupled to the vessels for supplying the heat of decomposition from any appropriate source of thermal energy from the outside ambient environment or from the spaces to be cooled and for removing the heat of reaction to the outside ambient environment or to the spaces to be heated, and a hydrogen loop for directing the flow of hydrogen gas between the vessels. When used for power conversion, at least two vessels contain the same hydride and the hydrogen loop contains an expansion engine. The system is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators, but may be used with any source of heat, including a source of low-grade heat.

  18. Initial Investigation into the Potential of CSP Industrial Process Heat for the Southwest United States

    SciTech Connect (OSTI)

    Kurup, Parthiv; Turchi, Craig

    2015-11-01

    After significant interest in the 1970s, but relatively few deployments, the use of solar technologies for thermal applications, including enhanced oil recovery (EOR), desalination, and industrial process heat (IPH), is again receiving global interest. In particular, the European Union (EU) has been a leader in the use, development, deployment, and tracking of Solar Industrial Process Heat (SIPH) plants. The objective of this study is to ascertain U.S. market potential of IPH for concentrating collector technologies that have been developed and promoted through the U.S. Department of Energy's Concentrating Solar Power (CSP) Program. For this study, the solar-thermal collector technologies of interest are parabolic trough collectors (PTCs) and linear Fresnel (LF) systems.

  19. (Thermal energy storage technologies for heating and cooling applications)

    SciTech Connect (OSTI)

    Tomlinson, J.J.

    1990-12-19

    Recent results from selected TES research activities in Germany and Sweden under an associated IEA annex are discussed. In addition, several new technologies for heating and cooling of buildings and automobiles were reviewed and found to benefit similar efforts in the United states. Details of a meeting with Didier-Werke AG, a leading German ceramics manufacturer who will provide TES media necessary for the United States to complete field tests of an advanced high temperature latent heat storage material, are presented. Finally, an overview of the December 1990 IEA Executive Committee deliberations on TES is presented.

  20. Deformation mechanisms, defects, heat treatment, and thermal conductivity in large grain niobium

    SciTech Connect (OSTI)

    Bieler, Thomas R. Kang, Di Baars, Derek C.; Chandrasekaran, Saravan; Mapar, Aboozar Wright, Neil T.; Ciovati, Gianluigi Myneni, Ganapati Rao; Pourboghrat, Farhang; Murphy, James E.; Compton, Chris C.

    2015-12-04

    The physical and mechanical metallurgy underlying fabrication of large grain cavities for superconducting radio frequency accelerators is summarized, based on research of 1) grain orientations in ingots, 2) a metallurgical assessment of processing a large grain single cell cavity and a tube, 3) assessment of slip behavior of single crystal tensile samples extracted from a high purity ingot slice before and after annealing at 800 °C / 2 h, 4) development of crystal plasticity models based upon the single crystal experiments, and 5) assessment of how thermal conductivity is affected by strain, heat treatment, and exposure to hydrogen. Because of the large grains, the plastic anisotropy of deformation is exaggerated, and heterogeneous strains and localized defects are present to a much greater degree than expected in polycrystalline material, making it highly desirable to computationally anticipate potential forming problems before manufacturing cavities.

  1. Pulse Thermal Processing of Functional Materials Using a Directed Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arc - Energy Innovation Portal Early Stage R&D Early Stage R&D Advanced Materials Advanced Materials Find More Like This Return to Search Pulse Thermal Processing of Functional Materials Using a Directed Plasma Arc Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryUsing pulses of high density infrared light from a directed plasma arc, ORNL researchers invented a method to thermally process thin films and other functional materials on

  2. Visual investigation on the heat dissipation process of a heat sink by using digital holographic interferometry

    SciTech Connect (OSTI)

    Wu, Bingjing; Zhao, Jianlin Wang, Jun; Di, Jianglei; Chen, Xin; Liu, Junjiang

    2013-11-21

    We present a method for visually and quantitatively investigating the heat dissipation process of plate-fin heat sinks by using digital holographic interferometry. A series of phase change maps reflecting the temperature distribution and variation trend of the air field surrounding heat sink during the heat dissipation process are numerically reconstructed based on double-exposure holographic interferometry. According to the phase unwrapping algorithm and the derived relationship between temperature and phase change of the detection beam, the full-field temperature distributions are quantitatively obtained with a reasonably high measurement accuracy. And then the impact of heat sink's channel width on the heat dissipation performance in the case of natural convection is analyzed. In addition, a comparison between simulation and experiment results is given to verify the reliability of this method. The experiment results certify the feasibility and validity of the presented method in full-field, dynamical, and quantitative measurement of the air field temperature distribution, which provides a basis for analyzing the heat dissipation performance of plate-fin heat sinks.

  3. Compositions produced using an in situ heat treatment process

    DOE Patents [OSTI]

    Roes, Augustinus Wilhelmus Maria; Nair, Vijay; Munsterman, Erwin Hunh; Van Bergen, Petrus Franciscus; Van Den Berg, Franciscus Gondulfus Antonius

    2013-05-28

    Methods for treating a subsurface formation and compositions produced therefrom are described herein. At least one method for producing hydrocarbons from a subsurface formation includes providing heat to the subsurface formation using an in situ heat treatment process. One or more formation particles may be formed during heating of the subsurface formation. Fluid that includes hydrocarbons and the formation particles may be produced from the subsurface formation. The formation particles in the produced fluid may include cenospheres and have an average particle size of at least 0.5 micrometers.

  4. Compositions produced using an in situ heat treatment process

    DOE Patents [OSTI]

    Roes, Augustinus Wilhelmus Maria; Nair, Vijay; Munsterman, Erwin Henh; Van Bergen, Petrus Franciscus; Van Den Berg, Franciscus Gondulfus Antonius

    2009-10-20

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing hydrocarbons from a subsurface formation includes providing heat to the subsurface formation using an in situ heat treatment process. One or more formation particles may be formed during heating of the subsurface formation. Fluid that includes hydrocarbons and the formation particles may be produced from the subsurface formation. The formation particles in the produced fluid may include cenospheres and have an average particle size of at least 0.5 micrometers.

  5. NGNP Process Heat Applications: Hydrogen Production Accomplishments for FY2010

    SciTech Connect (OSTI)

    Charles V Park

    2011-01-01

    This report summarizes FY10 accomplishments of the Next Generation Nuclear Plant (NGNP) Engineering Process Heat Applications group in support of hydrogen production technology development. This organization is responsible for systems needed to transfer high temperature heat from a high temperature gas-cooled reactor (HTGR) reactor (being developed by the INL NGNP Project) to electric power generation and to potential industrial applications including the production of hydrogen.

  6. MODELING COUPLED PROCESSES OF MULTIPHASE FLOW AND HEAT TRANSFER IN UNSATURATED FRACTURED ROCK

    SciTech Connect (OSTI)

    Y. Wu; S. Mukhopadhyay; K. Zhang; G.S. Bodvarsson

    2006-02-28

    A mountain-scale, thermal-hydrologic (TH) numerical model is developed for investigating unsaturated flow behavior in response to decay heat from the radioactive waste repository at Yucca Mountain, Nevada, USA. The TH model, consisting of three-dimensional (3-D) representations of the unsaturated zone, is based on the current repository design, drift layout, and thermal loading scenario under estimated current and future climate conditions. More specifically, the TH model implements the current geological framework and hydrogeological conceptual models, and incorporates the most updated, best-estimated input parameters. This mountain-scale TH model simulates the coupled TH processes related to mountain-scale multiphase fluid flow, and evaluates the impact of radioactive waste heat on the hydrogeological system, including thermally perturbed liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature elevations, as well as the changes in water flux driven by evaporation/condensation processes and drainage between drifts. For a better description of the ambient geothermal condition of the unsaturated zone system, the TH model is first calibrated against measured borehole temperature data. The ambient temperature calibration provides the necessary surface and water table boundary as well as initial conditions. Then, the TH model is used to obtain scientific understanding of TH processes in the Yucca Mountain unsaturated zone under the designed schedule of repository thermal load.

  7. Heat Transfer Characteristics of the Wet Thermal Insulator with Multi-layer

    SciTech Connect (OSTI)

    Jong-Won Kim; Goon-Cherl Park; Tae-Wan Kim; Doo-Jeong Lee

    2006-07-01

    SMART developed in KAERI is an integral type nuclear cogeneration reactor. SMART uses a nitrogen-filled gas pressurizer so that the steam partial pressure should be minimized and the pressurizer should be under low temperature condition. To sustain the low temperature condition, the wet thermal insulator and pressurizer cooler are installed in the pressurizer. Since the performance of wet thermal insulator is an important parameter to determine the size of the pressurizer cooler, it is important to evaluate the insulation performance of the wet thermal insulator. The wet thermal insulators with 20 layers are installed in SMART. In the design of SMART, the empirical correlation by Adamovich was used to estimate the thermal resistance of the wet thermal insulator. However, the experimental condition and results are not clear so that this correlation should be verified. To analyze the heat transfer characteristics of the multi-layer wet thermal insulator, natural convective heat transport through horizontal and vertical water-filled layers is investigated. Experiments and numerical analyses have been performed to evaluate the heat transfer rates through multi-layer and verify Adamovich correlation. In addition, a new multi-layer correlation was obtained. (authors)

  8. Thermal behavior of spiral fin-and-tube heat exchanger having fly ash deposit

    SciTech Connect (OSTI)

    Nuntaphan, Atipoang; Kiatsiriroat, Tanongkiat

    2007-08-15

    This research investigates the effect of fly-ash deposit on thermal performance of a cross-flow heat exchanger having a set of spiral finned-tubes as a heat transfer surface. A stream of warm air having high content of fly-ash is exchanging heat with a cool water stream in the tubes. In this study, the temperature of the heat exchanger surface is lower than the dew point temperature of air, thus there is condensation of moisture in the air stream on the heat exchanger surface. The affecting parameters such as the fin spacing, the air mass flow rate, the fly-ash mass flow rate and the inlet temperature of warm air are varied while the volume flow rate and the inlet temperature of the cold water stream are kept constant at 10 l/min and 5 C, respectively. From the experiment, it is found that as the testing period is shorter than 8 h the thermal resistance due to the fouling increases with time. Moreover, the deposit of fly-ash on the heat transfer surface is directly proportional to the dust-air ratio and the amount of condensate on heat exchange surface. However, the deposit of fly-ash is inversely proportional to the fin spacing. The empirical model for evaluating the thermal resistance is also developed in this work and the simulated results agree well with those of the measured data. (author)

  9. Thermal wave image processing for characterization of subsurface of flaws in materials

    SciTech Connect (OSTI)

    Gopalan, K.; Gopalsami, N.

    1993-08-01

    Infrared images resulting from back-scattered thermal waves in composite materials are corrupted by instrument noise and sample heat-spread function. This paper demonstrates that homomorphic deconvolution and {open_quotes}demultiplication{close_quotes} result in enhanced image quality for characterization of subsurface flaws in Kevlar and graphics composites. The choice of processing depends on the material characteristics and the extent of noise in the original image.

  10. Technical resource document for assured thermal processing of wastes

    SciTech Connect (OSTI)

    Farrow, R.L.; Fisk, G.A.; Hartwig, C.M.; Hurt, R.H.; Ringland, J.T.; Swansiger, W.A.

    1994-06-01

    This document is a concise compendium of resource material covering assured thermal processing of wastes (ATPW), an area in which Sandia aims to develop a large program. The ATPW program at Sandia is examining a wide variety of waste streams and thermal processes. Waste streams under consideration include municipal, chemical, medical, and mixed wastes. Thermal processes under consideration range from various incineration technologies to non-incineration processes such as supercritical water oxidation or molten metal technologies. Each of the chapters describes the element covered, discusses issues associated with its further development and/or utilization, presents Sandia capabilities that address these issues, and indicates important connections to other ATPW elements. The division of the field into elements was driven by the team`s desire to emphasize areas where Sandia`s capabilities can lead to major advances and is therefore somewhat unconventional. The report will be valuable to Sandians involved in further ATPW program development.

  11. Mixed convection heat transfer from thermal sources mounted on horizontal and vertical surfaces

    SciTech Connect (OSTI)

    Tewari, S.S.; Jaluria, Y. )

    1990-11-01

    An experimental study is carried out on the fundamental aspects of the conjugate, mixed convective heat transfer from two finite width heat sources, which are of negligible thickness, have a uniform heat flux input at the surface, and are located on a flat plate in a horizontal or the vertical orientation. The heat sources are wide in the transverse direction and, therefore, a two-dimensional flow circumstance is simulated. The mixed convection parameter is varied over a fairly wide range to include the buoyancy-dominated and the mixed convection regimes. The circumstances of pure natural convection are also investigated. The convective mechanisms have been studied in detail by measuring the surface temperatures and determining the heat transfer coefficients for the two heated strips, which represent isolated thermal sources. Experimental results indicate that a stronger upstream heat source causes an increase in the surface temperature of a relatively weaker heat source, located downstream, by reducing it convective heat transfer coefficient. The influence of the upstream source is found to be strongly dependent on the surface orientation, especially in the pure natural convection and the buoyancy dominated regimes. The two heat sources are found to be essentially independent on the surface orientation, especially in the pure natural convection and the buoyancy dominated regimes. The two heat sources are found to be essentially independent of each other, in terms of thermal effects, at a separation distance of more than about three strip widths for both the orientations. The results obtained are relevant to many engineering applications, such as the cooling of electronic systems, positioning of heating elements in furnaces, and safety considerations in enclosure fires.

  12. Solar heat pipe testing of the Stirling thermal motors 4-120 Stirling engine

    SciTech Connect (OSTI)

    Andraka, C.E.; Rawlinson, K.S.; Moss, T.A.; Adkins, D.R.; Moreno, J.B.; Gallup, D.R.; Cordeiro, P.G.; Johansson, S.

    1996-07-01

    Stirling-cycle engines have been identified as a promising technology for the conversion of concentrated solar energy into usable electrical power. A 25kW electric system takes advantage of existing Stirling-cycle engines and existing parabolic concentrator designs. In previous work, the concentrated sunlight impinged directly on the heater head tubes of the Stirling Thermal Motors (STM) 4-120 engine. A Sandia-designed felt-metal-wick heat pipe receiver was fitted to the STM 4-120 engine for on-sun testing on Sandia`s Test Bed Solar Concentrator. The heat pipe uses sodium metal as an intermediate two-phase heat transfer fluid. The receiver replaces the directly-illuminated heater head previously tested. The heat pipe receiver provides heat isothermally to the engine, and the heater head tube length is reduced, both resulting in improved engine performance. The receiver also has less thermal losses than the tube receiver. The heat pipe receiver design is based on Sandia`s second-generation felt-wick heat pipe receiver. This paper presents the interface design, and compares the heat pipe/engine test results to those of the directly-illuminated receiver/engine package.

  13. Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating

    SciTech Connect (OSTI)

    Wang, Mingyu; WolfeIV, Edward; Craig, Timothy; LaClair, Tim J; Gao, Zhiming; Abdelaziz, Omar

    2016-01-01

    Without the waste heat available from the engine of a conventional automobile, electric vehicles (EVs) must provide heat to the cabin for climate control using energy stored in the vehicle. In current EV designs, this energy is typically provided by the traction battery. In very cold climatic conditions, the power required to heat the EV cabin can be of a similar magnitude to that required for propulsion of the vehicle. As a result, the driving range of an EV can be reduced very significantly during winter months, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The system uses the stored latent heat of an advanced phase change material (PCM) to provide cabin heating. The PCM is melted while the EV is connected to the electric grid for charging of the electric battery, and the stored energy is subsequently transferred to the cabin during driving. To minimize thermal losses when the EV is parked for extended periods, the PCM is encased in a high performance insulation system. The electrical PCM-Assisted Thermal Heating System (ePATHS) was designed to provide enough thermal energy to heat the EV s cabin for approximately 46 minutes, covering the entire daily commute of a typical driver in the U.S.

  14. Thermal Storage System for Electric Vehicle Cabin Heating Component and System Analysis

    SciTech Connect (OSTI)

    LaClair, Tim J; Gao, Zhiming; Abdelaziz, Omar; Wang, Mingyu; WolfeIV, Edward; Craig, Timothy

    2016-01-01

    Cabin heating of current electric vehicle (EV) designs is typically provided using electrical energy from the traction battery, since waste heat is not available from an engine as in the case of a conventional automobile. In very cold climatic conditions, the power required for space heating of an EV can be of a similar magnitude to that required for propulsion of the vehicle. As a result, its driving range can be reduced very significantly during the winter season, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage from an advanced phase change material (PCM) has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The present paper focuses on the modeling and analysis of this electrical PCM-Assisted Thermal Heating System (ePATHS) and is a companion to the paper Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating. A detailed heat transfer model was developed to simulate the PCM heat exchanger that is at the heart of the ePATHS and was subsequently used to analyze and optimize its design. The results from this analysis were integrated into a MATLAB Simulink system model to simulate the fluid flow, pressure drop and heat transfer in all components of the ePATHS. The system model was then used to predict the performance of the climate control system in the vehicle and to evaluate control strategies needed to achieve the desired temperature control in the cabin. The analysis performed to design the ePATHS is described in detail and the system s predicted performance in a vehicle HVAC system is presented.

  15. Progress Report for Diffusion Welding of the NGNP Process Application Heat Exchangers

    SciTech Connect (OSTI)

    R.E. Mizia; D.E. Clark; M.V. Glazoff; T.E. Lister; T.L. Trowbridge

    2011-04-01

    The NGNP Project is currently investigating the use of metallic, diffusion welded, compact heat exchangers to transfer heat from the primary (reactor side) heat transport system to the secondary heat transport system. The intermediate heat exchanger will transfer this heat to downstream applications such as hydrogen production, process heat, and electricity generation. The channeled plates that make up the heat transfer surfaces of the intermediate heat exchanger will have to be assembled into an array by diffusion welding.

  16. Weldability of general purpose heat source new-process iridium

    SciTech Connect (OSTI)

    Kanne, W.R.

    1987-01-01

    Weldability tests on General Purpose Heat Source (GPHS) iridium capsules showed that a new iridium fabrication process reduced susceptibility to underbead cracking. Seventeen capsules were welded (a total of 255 welds) in four categories and the number of cracks in each weld was measured.

  17. Process management using component thermal-hydraulic function classes

    DOE Patents [OSTI]

    Morman, J.A.; Wei, T.Y.C.; Reifman, J.

    1999-07-27

    A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced. 5 figs.

  18. Process management using component thermal-hydraulic function classes

    DOE Patents [OSTI]

    Morman, James A.; Wei, Thomas Y. C.; Reifman, Jaques

    1999-01-01

    A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced.

  19. Heat Transfer and Fluid Transport of Supercritical CO2 in Enhanced Geothermal System with Local Thermal Non-equilibrium Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Le; Luo, Feng; Xu, Ruina; Jiang, Peixue; Liu, Huihai

    2014-12-31

    The heat transfer and fluid transport of supercritical CO2 in enhanced geothermal system (EGS) is studied numerically with local thermal non-equilibrium model, which accounts for the temperature difference between solid matrix and fluid components in porous media and uses two energy equations to describe heat transfer in the solid matrix and in the fluid, respectively. As compared with the previous results of our research group, the effect of local thermal non-equilibrium mainly depends on the volumetric heat transfer coefficient ah, which has a significant effect on the production temperature at reservoir outlet and thermal breakthrough time. The uniformity of volumetricmore » heat transfer coefficient ah has little influence on the thermal breakthrough time, but the temperature difference become more obvious with time after thermal breakthrough with this simulation model. The thermal breakthrough time reduces and the effect of local thermal non-equilibrium becomes significant with decreasing ah.« less

  20. Negative thermal expansion and anomalies of heat capacity of LuB50 at low temperatures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Novikov, V. V.; Zhemoedov, N. A.; Matovnikov, A. V.; Mitroshenkov, N. V.; Kuznetsov, S. V.; Bud'ko, S. L.

    2015-07-20

    Heat capacity and thermal expansion of LuB50 boride were experimentally studied in the 2–300 K temperature range. The data reveal an anomalous contribution to the heat capacity at low temperatures. The value of this contribution is proportional to the first degree of temperature. It was identified that this anomaly in heat capacity is caused by the effect of disorder in the LuB50 crystalline structure and it can be described in the soft atomic potential model (SAP). The parameters of the approximation were determined. The temperature dependence of LuB50 heat capacity in the whole temperature range was approximated by the summore » of SAP contribution, Debye and two Einstein components. The parameters of SAP contribution for LuB50 were compared to the corresponding values for LuB66, which was studied earlier. Negative thermal expansion at low temperatures was experimentally observed for LuB50. The analysis of the experimental temperature dependence for the Gruneisen parameter of LuB50 suggested that the low-frequency oscillations, described in SAP mode, are responsible for the negative thermal expansion. As a result, the glasslike character of the behavior of LuB50 thermal characteristics at low temperatures was confirmed.« less

  1. Negative thermal expansion and anomalies of heat capacity of LuB 50 at low temperatures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Novikov, V. V.; Zhemoedov, N. A.; Matovnikov, A. V.; Mitroshenkov, N. V.; Kuznetsov, S. V.; Bud'ko, S. L.

    2015-07-20

    Heat capacity and thermal expansion of LuB50 boride were experimentally studied in the 2–300 K temperature range. The data reveal an anomalous contribution to the heat capacity at low temperatures. The value of this contribution is proportional to the first degree of temperature. It was identified that this anomaly in heat capacity is caused by the effect of disorder in the LuB50crystalline structure and it can be described in the soft atomic potential model (SAP). The parameters of the approximation were determined. The temperature dependence of LuB50 heat capacity in the whole temperature range was approximated by the sum ofmore »SAP contribution, Debye and two Einstein components. The parameters of SAP contribution for LuB50 were compared to the corresponding values for LuB66, which was studied earlier. Negative thermal expansion at low temperatures was experimentally observed for LuB50. The analysis of the experimental temperature dependence for the Gruneisen parameter of LuB50 suggested that the low-frequency oscillations, described in SAP mode, are responsible for the negative thermal expansion. Thus, the glasslike character of the behavior of LuB50 thermal characteristics at low temperatures was confirmed.« less

  2. Numerical study on coupled fluid flow and heat transfer process in parabolic trough solar collector tube

    SciTech Connect (OSTI)

    Tao, Y.B.; He, Y.L.

    2010-10-15

    A unified two-dimensional numerical model was developed for the coupled heat transfer process in parabolic solar collector tube, which includes nature convection, forced convection, heat conduction and fluid-solid conjugate problem. The effects of Rayleigh number (Ra), tube diameter ratio and thermal conductivity of the tube wall on the heat transfer and fluid flow performance were numerically analyzed. The distributions of flow field, temperature field, local Nu and local temperature gradient were examined. The results show that when Ra is larger than 10{sup 5}, the effects of nature convection must be taken into account. With the increase of tube diameter ratio, the Nusselt number in inner tube (Nu{sub 1}) increases and the Nusselt number in annuli space (Nu{sub 2}) decreases. With the increase of tube wall thermal conductivity, Nu{sub 1} decreases and Nu{sub 2} increases. When thermal conductivity is larger than 200 W/(m K), it would have little effects on Nu and average temperatures. Due to the effect of the nature convection, along the circumferential direction (from top to down), the temperature in the cross-section decreases and the temperature gradient on inner tube surface increases at first. Then, the temperature and temperature gradients would present a converse variation at {theta} near {pi}. The local Nu on inner tube outer surface increases along circumferential direction until it reaches a maximum value then it decreases again. (author)

  3. Transition from cool flame to thermal flame in compression ignition process

    SciTech Connect (OSTI)

    Yamada, Hiroyuki; Suzaki, Kotaro; Goto, Yuichi; Tezaki, Atsumu

    2008-07-15

    The mechanism that initiates thermal flames in compression ignition has been studied. Experimentally, a homogeneous charge compression ignition (HCCI) engine was used with DME, n-heptane, and n-decane. Arrhenius plots of the heat release rate in the HCCI experiments showed that rates of heat release with DME, n-heptane, and n-decane exhibited a certain activation energy that is identical to that of the H{sub 2}O{sub 2} decomposition reaction. The same feature was observed in diesel engine operation using ordinary diesel fuel with advanced ignition timing to make ignition occur after the end of fuel injection. These experimental results were reproduced in nondimensional simulations using kinetic mechanisms for DME, n-heptane, and n-decane, the last being developed by extending the n-heptane mechanism. Methanol addition, which suppresses low-temperature oxidation (LTO) and delays the ignition timing, had no effect on the activation energy obtained from the Arrhenius plot of heat release rate. Nevertheless, methanol addition lowered the heat release rates during the prethermal flame process. This is because H{sub 2}O{sub 2} formation during cool flame was reduced by adding methanol. The mechanism during the transition process from cool flame to thermal flame can be explained quantitatively using thermal explosion theory, in which the rate-determining reaction is H{sub 2}O{sub 2} decomposition, assuming that heat release in this period is caused by partial oxidation of DME and HCHO initiated with the reaction with OH produced though H{sub 2}O{sub 2} decomposition. (author)

  4. Role of thermal processes in dewetting of epitaxial Ag(111) film on Si(111)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sanders, Charlotte E.; Zhang, Chendong D.; Kellogg, Gary L.; Shih, Chih-Kang

    2014-08-01

    Epitaxially grown silver (Ag) film on silicon (Si) is an optimal plasmonic device platform, but its technological utility has been limited by its tendency to dewet rapidly under ambient conditions (standard temperature and pressure). The mechanisms driving this dewetting have not heretofore been determined. In our study, scanning probe microscopy and low-energy electron microscopy are used to compare the morphological evolution of epitaxial Ag(111)/Si(111) under ambient conditions with that of similarly prepared films heated under ultra-high vacuum (UHV) conditions. Furthermore, dewetting is seen to be initiated with the formation of pinholes, which might function to relieve strain in the film.more » We find that in the UHV environment, dewetting is determined by thermal processes, and while under ambient conditions, thermal processes are not required. Finally, we conclude that dewetting in ambient conditions is triggered by some chemical process, most likely oxidation.« less

  5. Role of thermal processes in dewetting of epitaxial Ag(111) film on Si(111)

    SciTech Connect (OSTI)

    Sanders, Charlotte E.; Zhang, Chendong D.; Kellogg, Gary L.; Shih, Chih-Kang

    2014-08-01

    Epitaxially grown silver (Ag) film on silicon (Si) is an optimal plasmonic device platform, but its technological utility has been limited by its tendency to dewet rapidly under ambient conditions (standard temperature and pressure). The mechanisms driving this dewetting have not heretofore been determined. In our study, scanning probe microscopy and low-energy electron microscopy are used to compare the morphological evolution of epitaxial Ag(111)/Si(111) under ambient conditions with that of similarly prepared films heated under ultra-high vacuum (UHV) conditions. Furthermore, dewetting is seen to be initiated with the formation of pinholes, which might function to relieve strain in the film. We find that in the UHV environment, dewetting is determined by thermal processes, and while under ambient conditions, thermal processes are not required. Finally, we conclude that dewetting in ambient conditions is triggered by some chemical process, most likely oxidation.

  6. Heat capacities of solid polymers (The Advanced THermal Analysis System, ATHAS)

    SciTech Connect (OSTI)

    Wunderlich, B.

    1990-01-01

    The thermal properties of solid, linear macromolecules are accessible through heat capacity measurements from about 10 K to the glass transition. By measuring and collecting data on over 150 polymers, a data bank was established and used as a base for detailed correlation with an approximate frequency spectrum for the polymers. Besides assessment of the entropy at zero kelvin of disordered polymers, this heat capacity knowledge has helped in the elucidation of partial phase transitions and conformationally disordered crystal phases. A link has also been established to measurements of mobility through solid state nuclear magnetic resonance. Most recently heat capacity measurements have been linked to full dynamic simulations of crystal segments of 1900 chain atoms. Questions of disorder and anharmonicity can thus be analyzed. The work is summarized as the Advanced Thermal Analysis System, ATHAS. 27 refs., 26 figs.

  7. Countercurrent direct contact heat exchange process and system

    DOE Patents [OSTI]

    Wahl, III, Edward F.; Boucher, Frederic B.

    1979-01-01

    Recovery of energy from geothermal brines and other hot water sources by direct contact heat exchange with a working fluid, such as a hydrocarbon working fluid, e.g. isobutane. The process and system consists of a plurality of stages, each stage including mixing and settling units. In the first stage, hot brine and arm working fluid are intimately mixed and passed into a settler wherein the brine settles to the bottom of the settler and the hot working fluid rises to the top. The hot working fluid is passed to a heat engine or turbine to produce work and the working fluid is then recycled back into the system. The system is comprised of a series of stages each containing a settler and mixer, and wherein the working fluid and the brine flow in a countercurrent manner through the stages to recover the heat from the brine in increments and raise the temperature of the working fluid in increments.

  8. Agricultural Mixed Waster Biorefinery Using Thermal Conversion Process

    SciTech Connect (OSTI)

    2006-08-01

    This Congressionally-mandated project is supporting efforts to develop a demonstration facility that will use the patented Thermal Conversion Process (TCP) to produce fuel, power and chemicals from poultry waste and agricultural wastes such as animal and vegetable grease and wastewater sludge.

  9. Modeling of thermally driven hydrological processes in partially saturated fractured rock

    SciTech Connect (OSTI)

    Tsang, Yvonne; Birkholzer, Jens; Mukhopadhyay, Sumit

    2009-03-15

    This paper is a review of the research that led to an in-depth understanding of flow and transport processes under strong heat stimulation in fractured, porous rock. It first describes the anticipated multiple processes that come into play in a partially saturated, fractured porous volcanic tuff geological formation, when it is subject to a heat source such as that originating from the decay of radionuclides. The rationale is then given for numerical modeling being a key element in the study of multiple processes that are coupled. The paper outlines how the conceptualization and the numerical modeling of the problem evolved, progressing from the simplified to the more realistic. Examples of numerical models are presented so as to illustrate the advancement and maturation of the research over the last two decades. The most recent model applied to in situ field thermal tests is characterized by (1) incorporation of a full set of thermal-hydrological processes into a numerical simulator, (2) realistic representation of the field test geometry, in three dimensions, and (3) use of site-specific characterization data for model inputs. Model predictions were carried out prior to initiation of data collection, and the model results were compared to diverse sets of measurements. The approach of close integration between modeling and field measurements has yielded a better understanding of how coupled thermal hydrological processes produce redistribution of moisture within the rock, which affects local permeability values and subsequently the flow of liquid and gases. The fluid flow in turn will change the temperature field. We end with a note on future research opportunities, specifically those incorporating chemical, mechanical, and microbiological factors into the study of thermal and hydrological processes.

  10. Combined heat and mass transfer device for improving separation process

    DOE Patents [OSTI]

    Tran, T.N.

    1999-08-24

    A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area. 12 figs.

  11. Combined heat and mass transfer device for improving separation process

    DOE Patents [OSTI]

    Tran, Thanh Nhon

    1999-01-01

    A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area.

  12. Efficient Phase-Change Materials: Development of a Low-Cost Thermal Energy Storage System Using Phase-Change Materials with Enhanced Radiation Heat Transfer

    SciTech Connect (OSTI)

    2011-12-05

    HEATS Project: USF is developing low-cost, high-temperature phase-change materials (PCMs) for use in thermal energy storage systems. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Most PCMs do not conduct heat very well. Using an innovative, electroless encapsulation technique, USF is enhancing the heat transfer capability of its PCMs. The inner walls of the capsules will be lined with a corrosion-resistant, high-infrared emissivity coating, and the absorptivity of the PCM will be controlled with the addition of nano-sized particles. USF’s PCMs remain stable at temperatures from 600 to 1,000°C and can be used for solar thermal power storage, nuclear thermal power storage, and other applications.

  13. Process Heating Roadmap to Help U.S. Industries Be Competitive | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Roadmap to Help U.S. Industries Be Competitive Process Heating Roadmap to Help U.S. Industries Be Competitive This brief summarizes the development of a comprehensive plan for meeting industrial process heating needs started by the Industrial Heating Equipment Association (IHEA) and DOE in 1999. Process Heating Roadmap to Help U.S. Industries Be Competitive (January 2001) (19.86 KB) More Documents & Publications Roadmap for Process Heating Technology The Big Picture on Process

  14. Pressurized heat treatment of glass-ceramic to control thermal expansion

    DOE Patents [OSTI]

    Kramer, Daniel P.

    1985-01-01

    A method of producing a glass-ceramic having a specified thermal expansion value is disclosed. The method includes the step of pressurizing the parent glass material to a predetermined pressure during heat treatment so that the glass-ceramic produced has a specified thermal expansion value. Preferably, the glass-ceramic material is isostatically pressed. A method for forming a strong glass-ceramic to metal seal is also disclosed in which the glass-ceramic is fabricated to have a thermal expansion value equal to that of the metal. The determination of the thermal expansion value of a parent glass material placed in a high-temperature environment is also used to determine the pressure in the environment.

  15. An improved absorption generator for solar-thermal powered heat pumps. Part 2: Energy and economics

    SciTech Connect (OSTI)

    Fineblum, S.

    1997-12-31

    Solar heated absorption chiller installations have been very expensive for their rating. To enhance collector thermal efficiency the liquid flowing within the collectors must be kept as cool as possible. However, there is also a need to operate the absorption reported earlier. The compromise usually results in poor collector efficiency as well as a relatively poor specific chiller effect. The proposed vortex generator permits a heat pump to operate efficiently with relatively low temperature solar heated fluid (70--80 C). As a result, the collectors are cooler and more efficient. As noted in Part 1, the specific heat pumping capacity is about 27% greater than conventional systems operating at the same reduced generator temperatures. Therefore, a smaller, less expensive chiller is required. The reduced investment in solar arrays and absorption chillers is estimated along with a range of paybacks.

  16. An improved absorption generator for solar-thermal powered heat pumps. Part 1: Feasibility

    SciTech Connect (OSTI)

    Fineblum, S.

    1997-12-31

    Solar heated absorption chiller installations have been, typically, very expensive for their rating. The need to keep the liquid flowing within the collectors as cool as possible to enhance collector thermal efficiency, conflicts with the need to operate the absorption chiller at a higher temperature. The compromise usually results in poor collector efficiency as well as a relatively poor specific chiller effect. The proposed vortex generator permits a heat pump to operate efficiently with relatively low temperature solar heated fluid (70--80 C). As a result, the collectors are cooler and much more efficient. In addition, the specific heat pumping capacity is about 27% greater than conventional systems operating at the same reduced generator temperatures and, therefore, a smaller chiller is required. The economic consequences of these benefits will be presented in Part 2.

  17. Engineering process instructions and development summary MC3642 thermal battery

    SciTech Connect (OSTI)

    Jacobs, D.

    1981-06-01

    The MC3642 is a dual channel thermal battery used on the DE1010/W85 Command Disable Controller. It utilizes the CalCaCrO{sub 4} electrochemical system. The electrical requirements of this battery are as follows: RISE TIME PEAK VOLTAGE ACTIVE LIFE LOAD Channel 1 - 1.0 Sec. Max. 34 Volts 10 Sec. Min. 40.0 Ohms to 20 Volts above 20 Volts Channel 2 - .350 Sec. Max. 42 Volts 10 MSec. Min. 6.5 Ohms to 23 Volts above 23 Volts The battery consists of 14 cells connected in series (Channel 2) and 12 cells connected in series (Channel 1). Each cell is composed of an anode fabricated from a bimetallic sheet (0.005{double_prime} thick calcium on 0.005{double_prime} thick iron substrate), a depolarizer-electrolyte-binder (DEB) pellet and a heat pellet. Activation is achieved by mechanical primer. Optimum battery performance is achieved with a 35155/10 DEB pellet weighing .80g and a heat pellet, weighing 1.30 grams, of 88/12 heat powder.

  18. TOPAZ2D heat transfer code users manual and thermal property data base

    SciTech Connect (OSTI)

    Shapiro, A.B.; Edwards, A.L.

    1990-05-01

    TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available. The material thermal property data base, Chapter 4, included in this manual was originally published in 1969 by Art Edwards for use with his TRUMP finite difference heat transfer code. The format of the data has been altered to be compatible with TOPAZ2D. Bob Bailey is responsible for adding the high explosive thermal property data.

  19. Thermal modeling of head disk interface system in heat assisted magnetic recording

    SciTech Connect (OSTI)

    Vemuri, Sesha Hari; Seung Chung, Pil; Jhon, Myung S., E-mail: mj3a@andrew.cmu.edu [Department of Chemical Engineering and Data Storage Systems Center, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213 (United States); Min Kim, Hyung [Department of Mechanical System Engineering, Kyonggi University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2014-05-07

    A thorough understanding of the temperature profiles introduced by the heat assisted magnetic recording is required to maintain the hotspot at the desired location on the disk with minimal heat damage to other components. Here, we implement a transient mesoscale modeling methodology termed lattice Boltzmann method (LBM) for phonons (which are primary carriers of energy) in the thermal modeling of the head disk interface (HDI) components, namely, carbon overcoat (COC). The LBM can provide more accurate results compared to conventional Fourier methodology by capturing the nanoscale phenomena due to ballistic heat transfer. We examine the in-plane and out-of-plane heat transfer in the COC via analyzing the temperature profiles with a continuously focused and pulsed laser beam on a moving disk. Larger in-plane hotspot widening is observed in continuously focused laser beam compared to a pulsed laser. A pulsed laser surface develops steeper temperature gradients compared to continuous hotspot. Furthermore, out-of-plane heat transfer from the COC to the media is enhanced with a continuous laser beam then a pulsed laser, while the temperature takes around 140 fs to reach the bottom surface of the COC. Our study can lead to a realistic thermal model describing novel HDI material design criteria for the next generation of hard disk drives with ultra high recording densities.

  20. Analytical evaluation of thermal conductance and heat capacities of one-dimensional material systems

    SciTech Connect (OSTI)

    Saygi, Salih

    2014-02-15

    We theoretically predict some thermal properties versus temperature dependence of one dimensional (1D) material nanowire systems. A known method is used to provide an efficient and reliable analytical procedure for wide temperature range. Predicted formulas are expressed in terms of Bloch-Grüneisen functions and Debye functions. Computing results has proved that the expressions are in excellent agreement with the results reported in the literature even if it is in very low dimension limits of nanowire systems. Therefore the calculation method is a fully predictive approach to calculate thermal conductivity and heat capacities of nanowire material systems.

  1. Analysis of Heat Dissipation in Li-Ion Cells & Modules for Modeling of Thermal Runaway (Presentation)

    SciTech Connect (OSTI)

    Kim, G.-H.; Pesaran, A.

    2007-05-15

    The objectives of this study are: (1) To develop 3D Li-Ion battery thermal abuse ''reaction'' models for cell and module analysis; (2) To understand the mechanisms and interactions between heat transfer and chemical reactions during thermal runaway for Li-Ion cells and modules; (3) To develop a tool and methodology to support the design of abuse-tolerant Li-Ion battery systems for PHEVs/HEVs; and (4) To help battery developers accelerate delivery of abuse-tolerant Li-Ion battery systems in support of the FreedomCAR's Energy Storage Program.

  2. A performance data network for solar process heat systems

    SciTech Connect (OSTI)

    Barker, G.; Hale, M.J.

    1996-03-01

    A solar process heat (SPH) data network has been developed to access remote-site performance data from operational solar heat systems. Each SPH system in the data network is outfitted with monitoring equipment and a datalogger. The datalogger is accessed via modem from the data network computer at the National Renewable Energy Laboratory (NREL). The dataloggers collect both ten-minute and hourly data and download it to the data network every 24-hours for archiving, processing, and plotting. The system data collected includes energy delivered (fluid temperatures and flow rates) and site meteorological conditions, such as solar insolation and ambient temperature. The SPH performance data network was created for collecting performance data from SPH systems that are serving in industrial applications or from systems using technologies that show promise for industrial applications. The network will be used to identify areas of SPH technology needing further development, to correlate computer models with actual performance, and to improve the credibility of SPH technology. The SPH data network also provides a centralized bank of user-friendly performance data that will give prospective SPH users an indication of how actual systems perform. There are currently three systems being monitored and archived under the SPH data network: two are parabolic trough systems and the third is a flat-plate system. The two trough systems both heat water for prisons; the hot water is used for personal hygiene, kitchen operations, and laundry. The flat plate system heats water for meat processing at a slaughter house. We plan to connect another parabolic trough system to the network during the first months of 1996. We continue to look for good examples of systems using other types of collector technologies and systems serving new applications (such as absorption chilling) to include in the SPH performance data network.

  3. Process modeling for the Integrated Thermal Treatment System (ITTS) study

    SciTech Connect (OSTI)

    Liebelt, K.H.; Brown, B.W.; Quapp, W.J.

    1995-09-01

    This report describes the process modeling done in support of the integrated thermal treatment system (ITTS) study, Phases 1 and 2. ITTS consists of an integrated systems engineering approach for uniform comparison of widely varying thermal treatment technologies proposed for treatment of the contact-handled mixed low-level wastes (MLLW) currently stored in the U.S. Department of Energy complex. In the overall study, 19 systems were evaluated. Preconceptual designs were developed that included all of the various subsystems necessary for a complete installation, from waste receiving through to primary and secondary stabilization and disposal of the processed wastes. Each system included the necessary auxiliary treatment subsystems so that all of the waste categories in the complex were fully processed. The objective of the modeling task was to perform mass and energy balances of the major material components in each system. Modeling of trace materials, such as pollutants and radioactive isotopes, were beyond the present scope. The modeling of the main and secondary thermal treatment, air pollution control, and metal melting subsystems was done using the ASPEN PLUS process simulation code, Version 9.1-3. These results were combined with calculations for the remainder of the subsystems to achieve the final results, which included offgas volumes, and mass and volume waste reduction ratios.

  4. Supporting technology for enhanced oil recovery - EOR thermal processes

    SciTech Connect (OSTI)

    1995-03-01

    This report contains the results of efforts under the six tasks of the Eighth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section.

  5. Modelling aging effects on a thermal cycling absorption process column

    SciTech Connect (OSTI)

    Laquerbe, C.; Contreras, S.; Demoment, J.

    2008-07-15

    Palladium coated on alumina is used in hydrogen separation systems operated at CEA/Valduc, and more particularly in Thermal Cycling Absorption Process columns. With such materials, tritium decay is known to induce aging effects which have direct side effects on hydrogen isotopes absorption isotherms. Furthermore in a TCAP column, aging occurs in an heterogeneous way. The possible impacts of these intrinsic material evolutions on the separation performances are investigated here through a numerical approach. (authors)

  6. Fracture toughness of plasma-sprayed thermal barrier ceramics: Influence of processing, microstructure, and thermal aging

    SciTech Connect (OSTI)

    Dwivedi, Gopal; Viswanathan, Vaishak; Sampath, Sanjay; Shyam, Amit; Lara-Curzio, Edgar

    2014-06-09

    Fracture toughness has become one of the dominant design parameters that dictates the selection of materials and their microstructure to obtain durable thermal barrier coatings (TBCs). Much progress has been made in characterizing the fracture toughness of relevant TBC compositions in bulk form, and it has become apparent that this property is significantly affected by process-induced microstructural defects. In this investigation, a systematic study of the influence of coating microstructure on the fracture toughness of atmospheric plasma sprayed (APS) TBCs has been carried out. Yttria partially stabilized zirconia (YSZ) coatings were fabricated under different spray process conditions inducing different levels of porosity and interfacial defects. Fracture toughness was measured on free standing coatings in as-processed and thermally aged conditions using the double torsion technique. Results indicate significant variance in fracture toughness among coatings with different microstructures including changes induced by thermal aging. Comparative studies were also conducted on an alternative TBC composition, Gd2Zr2O7 (GDZ), which as anticipated shows significantly lower fracture toughness compared to YSZ. Furthermore, the results from these studies not only point towards a need for process and microstructure optimization for enhanced TBC performance but also a framework for establishing performance metrics for promising new TBC compositions.

  7. Fracture toughness of plasma-sprayed thermal barrier ceramics: Influence of processing, microstructure, and thermal aging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dwivedi, Gopal; Viswanathan, Vaishak; Sampath, Sanjay; Shyam, Amit; Lara-Curzio, Edgar

    2014-06-09

    Fracture toughness has become one of the dominant design parameters that dictates the selection of materials and their microstructure to obtain durable thermal barrier coatings (TBCs). Much progress has been made in characterizing the fracture toughness of relevant TBC compositions in bulk form, and it has become apparent that this property is significantly affected by process-induced microstructural defects. In this investigation, a systematic study of the influence of coating microstructure on the fracture toughness of atmospheric plasma sprayed (APS) TBCs has been carried out. Yttria partially stabilized zirconia (YSZ) coatings were fabricated under different spray process conditions inducing different levelsmore » of porosity and interfacial defects. Fracture toughness was measured on free standing coatings in as-processed and thermally aged conditions using the double torsion technique. Results indicate significant variance in fracture toughness among coatings with different microstructures including changes induced by thermal aging. Comparative studies were also conducted on an alternative TBC composition, Gd2Zr2O7 (GDZ), which as anticipated shows significantly lower fracture toughness compared to YSZ. Furthermore, the results from these studies not only point towards a need for process and microstructure optimization for enhanced TBC performance but also a framework for establishing performance metrics for promising new TBC compositions.« less

  8. Recent Advances in SRS on Hydrogen Isotope Separation Using Thermal Cycling Absorption Process

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiao, Xin; Sessions, Henry T.; Heung, L. Kit

    2015-02-01

    The recent Thermal Cycling Absorption Process (TCAP) advances at Savannah River Site (SRS) include compressor-free concept for heating/cooling, push and pull separation using an active inverse column, and compact column design. The new developments allow significantly higher throughput and better reliability from 1/10th of the current production system’s footprint while consuming 60% less energy. Various versions are derived in the meantime for external customers to be used in fusion energy projects and medical isotope production.

  9. Recent Advances in SRS on Hydrogen Isotope Separation Using Thermal Cycling Absorption Process

    SciTech Connect (OSTI)

    Xiao, Xin; Sessions, Henry T.; Heung, L. Kit

    2015-02-01

    The recent Thermal Cycling Absorption Process (TCAP) advances at Savannah River Site (SRS) include compressor-free concept for heating/cooling, push and pull separation using an active inverse column, and compact column design. The new developments allow significantly higher throughput and better reliability from 1/10th of the current production system’s footprint while consuming 60% less energy. Various versions are derived in the meantime for external customers to be used in fusion energy projects and medical isotope production.

  10. TRANSIENT HEAT TRANSFER ANALYSIS FOR ION-EXCHANGE WASTE REMOVAL PROCESS

    SciTech Connect (OSTI)

    Lee, S.

    2010-07-12

    The small column ion exchange (SCIX) process treats low curie salt (LCS) waste before feeding it to the saltstone facility to be made into grout. Through this process, radioactive cesium from the salt solution is absorbed into the CST bed. A CST column loaded with radioactive cesium will generate significant heat from radiolytic decay. If engineering designs of the CST sorption column can not handle this thermal load, hot spots may develop locally within the column and degrade the performance of the ion-exchange process. The CST starts to degrade at about 80 to 85 C, and the CST completely changes to another material above 120 C. In addition, the process solution will boil around 130 C. If the column boiled dry, the sorbent could plug the column and require replacement of the column module. The objective of the present work is to compute temperature distributions across the column as a function of transit time after the initiation of accidents when there is loss of the salt solution flow in the CST column under abnormal conditions of the process operations. In this situation, the customer requested that the calculations should be conservative in that the model results would show the maximum centerline temperatures achievable by the CST design configurations. The thermal analysis results will be used to evaluate the fluid temperature distributions and the process component temperatures within the ion exchange system. This information will also assist in the system design and maintenance.

  11. Utilization of geothermal heat in tropical fruit-drying process

    SciTech Connect (OSTI)

    Chen, B.H.; Lopez, L.P.; King, R.; Fujii, J.; Tanaka, M.

    1982-10-01

    The power plant utilizes only the steam portion of the HGP-A well production. There are approximately 50,000 pounds per hour of 360/sup 0/F water produced (approximately 10 million Btu per hour) and the water is currently not used and is considered a waste. This tremendous resource could very well be used in applications such as food processing, food dehydration and other industrial processing that requires low-grade heat. One of the applications is examined, namely the drying of tropical fruits particularly the papaya. The papaya was chosen for the obvious reason that it is the biggest crop of all fruits produced on the Big Island. A conceptual design of a pilot plant facility capable of processing 1000 pounds of raw papaya per day is included. This facility is designed to provide a geothermally heated dryer to dehydrate papayas or other tropical fruits available on an experimental basis to obtain data such as drying time, optimum drying temperature, etc.

  12. Industrial and agricultural process heat information user study

    SciTech Connect (OSTI)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-03-01

    The results of a series of telephone interviews with groups of users of information on solar industrial and agricultural process heat (IAPH) are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. In the current study only high-priority groups were examined. Results from 10 IAPH groups of respondents are analyzed in this report: IPH Researchers; APH Researchers; Representatives of Manufacturers of Concentrating and Nonconcentrating Collectors; Plant, Industrial, and Agricultural Engineers; Educators; Representatives of State Agricultural Offices; and County Extension Agents.

  13. Improving Process Heating System Performance: A Sourcebook for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Dryers, Evaporators, Fans, Heat Exchangers, HVAC Systems, Pumps Author: Bela G. Liptak ... Modeling of Gas-Fired Furnaces and Boilers and Other Industrial Heating ...

  14. Economizer refrigeration cycle space heating and cooling system and process

    DOE Patents [OSTI]

    Jardine, D.M.

    1983-03-22

    This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle. 18 figs.

  15. Economizer refrigeration cycle space heating and cooling system and process

    DOE Patents [OSTI]

    Jardine, Douglas M.

    1983-01-01

    This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle.

  16. Pulse Thermal Processing for Low Thermal Budget Integration of IGZO Thin Film Transistors

    SciTech Connect (OSTI)

    Noh, Joo Hyon; Joshi, Pooran C.; Kuruganti, Teja; Rack, Philip D.

    2014-11-26

    Pulse thermal processing (PTP) has been explored for low thermal budget integration of indium gallium zinc oxide (IGZO) thin film transistors (TFTs). The IGZO TFTs are exposed to a broadband (0.2-1.4 m) arc lamp radiation spectrum with 100 pulses of 1 msec pulse width. The impact of radiant exposure power on the TFT performance was analyzed in terms of the switching characteristics and bias stress reliability characteristics, respectively. The PTP treated IGZO TFTs with power density of 3.95 kW/cm2 and 0.1 sec total irradiation time showed comparable switching properties, at significantly lower thermal budget, to furnace annealed IGZO TFT. The typical field effect mobility FE, threshold voltage VT, and sub-threshold gate swing S.S were calculated to be 7.8 cm2/ V s, 8.1 V, and 0.22 V/ decade, respectively. The observed performance shows promise for low thermal budget TFT integration on flexible substrates exploiting the large-area, scalable PTP technology.

  17. Pulse Thermal Processing for Low Thermal Budget Integration of IGZO Thin Film Transistors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Noh, Joo Hyon; Joshi, Pooran C.; Kuruganti, Teja; Rack, Philip D.

    2014-11-26

    Pulse thermal processing (PTP) has been explored for low thermal budget integration of indium gallium zinc oxide (IGZO) thin film transistors (TFTs). The IGZO TFTs are exposed to a broadband (0.2-1.4 m) arc lamp radiation spectrum with 100 pulses of 1 msec pulse width. The impact of radiant exposure power on the TFT performance was analyzed in terms of the switching characteristics and bias stress reliability characteristics, respectively. The PTP treated IGZO TFTs with power density of 3.95 kW/cm2 and 0.1 sec total irradiation time showed comparable switching properties, at significantly lower thermal budget, to furnace annealed IGZO TFT. Themore » typical field effect mobility FE, threshold voltage VT, and sub-threshold gate swing S.S were calculated to be 7.8 cm2/ V s, 8.1 V, and 0.22 V/ decade, respectively. The observed performance shows promise for low thermal budget TFT integration on flexible substrates exploiting the large-area, scalable PTP technology.« less

  18. Assessing the Thermal Environmental Impacts of an Groundwater Heat Pump in Southeastern Washington State

    SciTech Connect (OSTI)

    Freedman, Vicky L.; Waichler, Scott R.; Mackley, Rob D.; Horner, Jacob A.

    2012-04-01

    A thermal analysis of a large-scale (e.g., 1900 gpm), open-loop ground source heat pump (GSHP) installed on the Pacific Northwest National Laboratory (PNNL) campus in southeastern Washington State has been performed using a numerical modeling approach. Water temperature increases at the upgradient extraction wells in the system and at the downgradient Columbia River are potential concerns, especially since heat rejection to the subsurface will occur year-round. Hence, thermal impacts of the open-loop GSHP were investigated to identify operational scenarios that minimized downgradient environmental impacts at the river, and upgradient temperature drift at the production wells. Simulations examined the sensitivity of the system to variations in pumping rates and injected water temperatures, as well as to hydraulic conductivity estimates of the aquifer. Results demonstrated that both downgradient and upgradient thermal impacts were more sensitive to injection flow rates than estimates of hydraulic conductivity. Higher injection rates at lower temperatures resulted in higher temperature increases at the extraction wells but lower increases at the river. Conversely, lower pumping rates and higher injected water temperatures resulted in a smaller temperature increase at the extraction wells, but higher increases at the river. The scenario with lower pumping rates is operationally more efficient, but does increase the likelihood of a thermal plume discharging into the Columbia River. However, this impact would be mitigated by mixing within the hyporheic zone and the Columbia River. The impact under current operational conditions is negligible, but future increases in heat rejection could require a compromise between maximizing operational efficiency and minimizing temperature increases at the shoreline.

  19. Thermal and Non-thermal Physiochemical Processes in Nanoscale Films of Amorphous Solid Water

    SciTech Connect (OSTI)

    Smith, R. Scott; Petrik, Nikolay G.; Kimmel, Gregory A.; Kay, Bruce D.

    2012-01-17

    Amorphous solid water (ASW) is a metastable form of water created by vapor deposition onto a cold substrate (typically less than 130 K). Since this unusual form of water only exists on earth in laboratories with highly specialized equipment, it is fair to ask why there is any interest in studying this esoteric material. Much of the scientific interest involves using ASW as a model system to explore the physical and reactive properties of liquid water and aqueous solutions. Other researchers are interested in ASW because it is believed to be the predominate form of water in the extreme cold temperatures found in many astrophysical and planetary environments. In addition, ASW is a convenient model system for studying the stability of metastable systems (glasses) and the properties of highly porous materials. A fundamental understanding of such properties has applications in a diverse range of disciplines including cryobiology, food science, pharmaceuticals, astrophysics and nuclear waste storage among others.There exist several excellent reviews on the properties of ASW and supercooled liquid water and a new comprehensive review is beyond the scope of this Account. Instead, we focus on our research over the past 15 years using molecular beams and surface science techniques to probe the thermal and non thermal properties of nanoscale films of ASW. We use molecular beams to precisely control the deposition conditions (flux, incident, energy, incident angle) to create compositionally-tailored, nanoscale films of ASW at low temperatures. To study the transport properties (viscosity, diffusivity), the amorphous films can be heated above their glass transition temperatures, Tg, at which time they transform into deeply supercooled liquids prior to crystallization. The advantage of this approach is that at temperatures near Tg the viscosity is approximately 15 orders of magnitude larger than a normal liquid, and therefore the crystallization kinetics are dramatically slowed

  20. Weldability of general purpose heat source new process iridium

    SciTech Connect (OSTI)

    Kanne, W.R.

    1987-05-01

    Weldability test results show that iridium produced by the new Oak Ridge National Laboratory (ORNL) process is less susceptible to cracking than old process iridium. Seventeen capsules were welded (for a total of 255 welds) in four categories, and the number of cracks in the welds was counted as the criterion for weldability. Results also indicate that the 1500C iridium shell heat treatment at Mound Facility has little effect on weld cracking. Long weld quenches had fewer cracks than did short quenches, confirming that the present production procedure is the preferred procedure. Ultrasonic test indications were confirmed to be either cracks or other defects. Metallographic examination showed the metallurgical structure of the welds to be typical and unaffected by the category of material.

  1. Convective heat transfer with buoyancy effects from thermal sources on a flat plate

    SciTech Connect (OSTI)

    Tewari, S.S.; Jaluria, Y. )

    1991-06-01

    An experimental study is carried out on the thermal interaction between two finite-size heat sources, located on a flat plate that is well insulated on the back. Both the horizontal and the vertical orientations of the surface are studied by measuring the flow velocities, the temperature field, and the local heat flux. The investigation is directed at the pure natural convection circumstance (no forced flow velocity) and the buoyancy-dominated mixed-convection circumstance (presence of a relatively small forced flow velocity). Large temperature gradients occur in the vicinity of the heat sources, resulting in a substantial diffusion of heat along the plate length. However, the effect of conduction is found to be highly localized. The orientation of the surface has a very strong effect on the interaction of the wakes from the heat sources for the circumstances considered. An upstream source is found to have a very strong influence on the temperature of a downstream source in the vertical surface orientation but has a much weaker influence in the horizontal orientation. In the latter circumstance the presence of a small forced flow velocity may actually increase the temperature of a downstream source by tilting the wake from the upstream source toward the downstream source. 25 refs.

  2. A survey of geothermal process heat applications in Guatemala: An engineering survey

    SciTech Connect (OSTI)

    Altseimer, J.H.; Edeskuty, F.J.

    1988-08-01

    This study investigates how process heat from Guatemala's geothermal energy resources can be developed to reduce Guatemala's costly importation of oil, create new employment by encouraging new industry, and reduce fuel costs for existing industry. This investigation was funded by the US Agency for International Development and carried out jointly by the Guatemalan Government and the Los Alamos National Laboratory. Two sites, Amatitlan and Zunil, are being developed geothermally. Amatitlan is in the better industrial area but Zunil's geothermal development is more advanced. The industry around Zunil is almost exclusively agricultural and the development of an agricultural processing plant (freezing, dehydration, and cold storage) using geothermal heat is recommended. Similar developments throughout the volcanic zones of Guatemala are possible. Later, when the field at Amatitlan has been further developed, an industrial park can be planned. Potential Amatitlan applications are the final stage of salt refining, a thermal power plant, hospital/hotel heating and cooling, steam curing of concrete blocks, production of alcohol from sugar cane, and production of polyethylene from ethanol. Other special developments such as water pumping for the city of Guatemala and the use of moderate-temperature geothermal fluids for localized power production are also possible. 12 refs., 13 figs., 14 tabs.

  3. Analysis of Zinc 65 Contamination after Vacuum Thermal Process

    SciTech Connect (OSTI)

    Korinko, Paul S.; Tosten, Michael H.

    2013-01-01

    Radioactive contamination with a gamma energy emission consistent with {sup 65}Zn was detected in a glovebox following a vacuum thermal process. The contaminated components were removed from the glovebox and subjected to examination. Selected analytical techniques were used to determine the nature of the precursor material, i.e., oxide or metallic, the relative transferability of the deposit and its nature. The deposit was determined to be borne from natural zinc and was further determined to be deposited as a metallic material from vapor.

  4. Continuous Processing of High Thermal Conductivity Fibers and Sheets

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Professor Gang Chen, Carl Richard Soderberg Professor of Power Engineering 617-253-0006 (phone), 617-324-5545 (fax) gchen2@mit.edu U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective ï‚— Plastics are less expensive, lighter, and require less energy to process than metals; however, they have low thermal conductivity values (~0.3 W/mK) ï‚—

  5. Full-size solar dynamic heat receiver thermal-vacuum tests

    SciTech Connect (OSTI)

    Sedgwick, L.M.; Kaufmann, K.J.; Mclallin, K.L.; Kerslake, T.W.

    1991-01-01

    The testing of a full-size, 120 kW, solar dynamic heat receiver utilizing high-temperature thermal energy storage is described. The purpose of the test program was to quantify receiver thermodynamic performance, operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber with liquid nitrogen cold shrouds and an aperture cold plate to partly simulate a low-Earth-orbit environment. The cavity of the receiver was heated by an infrared quartz lamp heater with 30 independently controllable zones to allow axially and circumferentially varied flux distributions. A closed-Brayton cycle engine simulator conditioned a helium-xenon gas mixture to specific interface conditions to simulate the various operational modes of the solar dynamic power module on the Space Station Freedom. Inlet gas temperature, pressure, and flow rate were independently varied. A total of 58 simulated orbital cycles, each 94 minutes in duration, was completed during the test conduct period.

  6. Avoiding Carbon Bed Hot Spots in Thermal Process Off-Gas Systems...

    Office of Scientific and Technical Information (OSTI)

    Avoiding Carbon Bed Hot Spots in Thermal Process Off-Gas Systems Citation Details In-Document Search Title: Avoiding Carbon Bed Hot Spots in Thermal Process Off-Gas Systems You ...

  7. Avoiding Carbon Bed Hot Spots in Thermal Process Off-Gas Systems...

    Office of Scientific and Technical Information (OSTI)

    Conference: Avoiding Carbon Bed Hot Spots in Thermal Process Off-Gas Systems Citation Details In-Document Search Title: Avoiding Carbon Bed Hot Spots in Thermal Process Off-Gas ...

  8. Structurally Integrated Coatings for Wear and Corrosion (SICWC): Arc Lamp, InfraRed (IR) Thermal Processing

    SciTech Connect (OSTI)

    Mackiewicz-Ludtka, G.; Sebright, J.

    2007-12-15

    The primary goal of this Cooperative Research and Development Agreement (CRADA) betwe1311 UT-Battelle (Contractor) and Caterpillar Inc. (Participant) was to develop the plasma arc lamp (PAL), infrared (IR) thermal processing technology 1.) to enhance surface coating performance by improving the interfacial bond strength between selected coatings and substrates; and 2.) to extend this technology base for transitioning of the arc lamp processing to the industrial Participant. Completion of the following three key technical tasks (described below) was necessary in order to accomplish this goal. First, thermophysical property data sets were successfully determined for composite coatings applied to 1010 steel substrates, with a more limited data set successfully measured for free-standing coatings. These data are necessary for the computer modeling simulations and parametric studies to; A.) simulate PAL IR processing, facilitating the development of the initial processing parameters; and B.) help develop a better understanding of the basic PAL IR fusing process fundamentals, including predicting the influence of melt pool stirring and heat tnmsfar characteristics introduced during plasma arc lamp infrared (IR) processing; Second, a methodology and a set of procedures were successfully developed and the plasma arc lamp (PAL) power profiles were successfully mapped as a function of PAL power level for the ORNL PAL. The latter data also are necessary input for the computer model to accurately simulate PAL processing during process modeling simulations, and to facilitate a better understand of the fusing process fundamentals. Third, several computer modeling codes have been evaluated as to their capabilities and accuracy in being able to capture and simulate convective mixing that may occur during PAL thermal processing. The results from these evaluation efforts are summarized in this report. The intention of this project was to extend the technology base and provide for

  9. Evaluation of a Heat Flux Sensor for Spray Cooling for the Die Casting Processes

    SciTech Connect (OSTI)

    Sabau, Adrian S; Wu, Zhuoxi

    2007-02-01

    During the die casting process, lubricants are sprayed in order to cool the dies and facilitate the ejection of the casting. In this paper, a new technique for measuring the heat flux during lubricant application is evaluated. Data from experiments conducted using water spray are first presented. Water spray experiments were conducted for different initial plate temperatures. Measurements were conducted for the application of two different lubricants, of dilution ratios of 1/15 and 1/50 of lubricant in water. The measurement uncertainties were documented. The results show that the surface temperature decreases initially very fast. Numerical simulation results confirmed that the abrupt temperature drop is not an artifact but illustrates the thermal shock experienced by the dies during the initial stages of lubricant application. The lubricant experiments show that the sensor can be successfully used for testing die lubricants with typical dilution ratios encountered in the die casting process.

  10. Simulation of a photovoltaic/thermal heat pump system having a modified collector/evaporator

    SciTech Connect (OSTI)

    Xu, Guoying; Deng, Shiming; Zhang, Xiaosong; Yang, Lei; Zhang, Yuehong

    2009-11-15

    A new photovoltaic/thermal heat pump (PV/T-HP) system having a modified collector/evaporator (C/E) has been developed and numerically studied. Multi-port flat extruded aluminum tubes were used in the modified C/E, as compared to round copper tubes used in a conventional C/E. Simulation results suggested that a better operating performance can be achieved for a PV/T-HP system having such a modified C/E. In addition, using the meteorological data in both Nanjing and Hong Kong, China, the simulation results showed that this new PV/T-HP system could efficiently generate electricity and thermal energy simultaneously in both cities all-year-round. Furthermore, improved operation by using variable speed compressor has been designed and discussed. (author)

  11. Thermal reactive ion etching technique involving use of self-heated cathode

    SciTech Connect (OSTI)

    Yamada, S.; Minami, Y.; Sohgawa, M.; Abe, T.

    2015-04-15

    In this work, the thermal reactive ion etching (TRIE) technique for etching hard-to-etch materials is presented. The TRIE technique employs a self-heated cathode and a thermally insulated aluminum plate is placed on the cathode of a regular reactive ion etching (RIE) system. By optimizing the beam size to support the sample stage, the temperature of the stage can be increased to a desired temperature without a cathode heater. The technique was used to etch a bulk titanium plate. An etch rate of 0.6 μm/min and an etch selectivity to nickel of 100 were achieved with SF{sub 6} plasma. The proposed technique makes a regular RIE system a more powerful etcher without the use of chlorine gas, a cathode heater, and an inductively coupled plasma source.

  12. Considerations and measurements of latent-heat-storage salts for secondary thermal battery applications

    SciTech Connect (OSTI)

    Koenig, A.A.; Braithwaite, J.W.; Armijo, J.R.

    1988-05-16

    Given its potential benefits, the practicality of using a latent heat-storage material as the basis for a passive thermal management system is being assessed by Chloride Silent Power Ltd. (CSPL) with technical assistance from Beta Power, Inc. and Sandia National Laboratories (SNL). Based on the experience gained in large-scale solar energy storage programs, fused salts were selected as the primary candidates for the heat-storage material. The initial phase of this assessment was directed to an EV battery being designed at CSPL for the ETX-II program. Specific tasks included the identification and characterization of potential fused salts, a determination of placement options for the salts within the battery, and an assessment of the ultimate benefit to the battery system. The results obtained to date for each of these tasks are presented in this paper.

  13. Modulation and amplification of radiative far field heat transfer: Towards a simple radiative thermal transistor

    SciTech Connect (OSTI)

    Joulain, Karl; Ezzahri, Younès; Drevillon, Jérémie; Ben-Abdallah, Philippe

    2015-03-30

    We show in this article that phase change materials (PCM) exhibiting a phase transition between a dielectric state and a metallic state are good candidates to perform modulation as well as amplification of radiative thermal flux. We propose a simple situation in plane parallel geometry where a so-called radiative thermal transistor could be achieved. In this configuration, we put a PCM between two blackbodies at different temperatures. We show that the transistor effect can be achieved easily when this material has its critical temperature between the two blackbody temperatures. We also see that the more the material is reflective in the metallic state, the more switching effect is realized, whereas the more PCM transition is stiff in temperature, the more thermal amplification is high. We finally take the example of VO{sub 2} that exhibits an insulator-metallic transition at 68 °C. We show that a demonstrator of a radiative transistor could easily be achieved in view of the heat flux levels predicted. Far-field thermal radiation experiments are proposed to back the results presented.

  14. CFD Modeling of Thermal Effects of Nuclear Waste Vitrification Processes

    SciTech Connect (OSTI)

    Rayner, Chris; Soltani, Mehdi; Barringer, Chris; Knight, Kelly

    2006-07-01

    The Waste Treatment Plant (WTP) at Hanford, WA will vitrify nuclear waste stored at the DOE Hanford facility. The vitrification process will take place in two large concrete buildings where the glass is poured into stainless steel canisters or containers and allowed to cool. Computational Fluid Dynamics (CFD) was used extensively to calculate the effects of the heat released by molten glass as it is poured and cooled, on the HVAC system and the building structure. CFD studies of the glass cooling in these facilities were used to predict canister temperatures, HVAC air temperatures, concrete temperatures and insulation requirements, and design temperatures for canister handling equipment and instrumentation at various stages of the process. These predictions provided critical input in the design of the HVAC system, specification of insulation, the design of canister handling equipment, and the selection of instrumentation. (authors)

  15. Using Waste Heat for External Processes (English/Chinese) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Chinese translation of the Using Waste Heat for External Processes fact sheet. Provides suggestions on how to use waste heat in industrial applications. The temperature of exhaust gases from fuel-fired industrial processes depends mainly on the process temperature and the waste heat recovery method. Figure 1 shows the heat lost in exhaust gases at various exhaust gas temperatures and percentages of excess air. Energy from gases exhausted from higher temperature processes (primary processes) can be recovered and used for lower temperature processes (secondary processes). One example is to generate steam using waste heat boilers for the fluid heaters used in petroleum crude processing. In addition, many companies install heat exchangers on the exhaust stacks of furnaces and ovens to produce hot water or to generate hot air for space heating.

  16. Subsurface Temperature, Moisture, Thermal Conductivity and Heat Flux, Barrow, Area A, B, C, D

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cable, William; Romanovsky, Vladimir

    2014-03-31

    Subsurface temperature data are being collected along a transect from the center of the polygon through the trough (and to the center of the adjacent polygon for Area D). Each transect has five 1.5m vertical array thermistor probes with 16 thermistors each. This dataset also includes soil pits that have been instrumented for temperature, water content, thermal conductivity, and heat flux at the permafrost table. Area C has a shallow borehole of 2.5 meters depth is instrumented in the center of the polygon.

  17. Subsurface Temperature, Moisture, Thermal Conductivity and Heat Flux, Barrow, Area A, B, C, D

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cable, William; Romanovsky, Vladimir

    Subsurface temperature data are being collected along a transect from the center of the polygon through the trough (and to the center of the adjacent polygon for Area D). Each transect has five 1.5m vertical array thermistor probes with 16 thermistors each. This dataset also includes soil pits that have been instrumented for temperature, water content, thermal conductivity, and heat flux at the permafrost table. Area C has a shallow borehole of 2.5 meters depth is instrumented in the center of the polygon.

  18. Industrial process heat case studies. [PROSYS/ECONMAT code

    SciTech Connect (OSTI)

    Hooker, D.W.; May, E.K.; West, R.E.

    1980-05-01

    Commercially available solar collectors have the potential to provide a large fraction of the energy consumed for industrial process heat (IPH). Detailed case studies of individual industrial plants are required in order to make an accurate assessment of the technical and economic feasibility of applications. This report documents the results of seven such case studies. The objectives of the case study program are to determine the near-term feasibility of solar IPH in selected industries, identify energy conservation measures, identify conditions of IPH systems that affect solar applications, test SERI's IPH analysis software (PROSYS/ECONOMAT), disseminate information to the industrial community, and provide inputs to the SERI research program. The detailed results from the case studies are presented. Although few near-term, economical solar applications were found, the conditions that would enhance the opportunities for solar IPH applications are identified.

  19. Environmental assessment for radioisotope heat source fuel processing and fabrication

    SciTech Connect (OSTI)

    Not Available

    1991-07-01

    DOE has prepared an Environmental Assessment (EA) for radioisotope heat source fuel processing and fabrication involving existing facilities at the Savannah River Site (SRS) near Aiken, South Carolina and the Los Alamos National Laboratory (LANL) near Los Alamos, New Mexico. The proposed action is needed to provide Radioisotope Thermoelectric Generators (RTG) to support the National Aeronautics and Space Administration's (NASA) CRAF and Cassini Missions. Based on the analysis in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an Environmental Impact Statement is not required. 30 refs., 5 figs.

  20. Process Heating: A Special Supplement to Energy Matters

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    successful example of a waste heat recovery application is at ... In the kiln, gases heated to 1500F enter a center tube ... from 8.2% to 7.5% on one set of furnace data runs. ...

  1. Process and apparatus for indirect-fired heating and drying

    DOE Patents [OSTI]

    Abbasi, Hamid Ali; Chudnovsky, Yaroslav

    2005-04-12

    A method for heating flat or curved surfaces comprising injecting fuel and oxidant along the length, width or longitudinal side of a combustion space formed between two flat or curved plates, transferring heat from the combustion products via convection and radiation to the surface being heated on to the material being dried/heated, and recirculating at least 20% of the combustion products to the root of the flame.

  2. The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with CombinedHeat and Power

    SciTech Connect (OSTI)

    Marnay, Chris; Stadler, Michael; Cardoso, Goncalo; Megel, Olivier; Lai, Judy; Siddiqui, Afzal

    2009-08-15

    The addition of solar thermal and heat storage systems can improve the economic, as well as environmental attraction of micro-generation systems, e.g. fuel cells with or without combined heat and power (CHP) and contribute to enhanced CO2 reduction. However, the interactions between solar thermal collection and storage systems and CHP systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of solar thermal and heat storage on CO2 emissions and annual energy costs, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program. The objective is minimization of annual energy costs. This paper focuses on analysis of the optimal interaction of solar thermal systems, which can be used for domestic hot water, space heating and/or cooling, and micro-CHP systems in the California service territory of San Diego Gas and Electric (SDG&E). Contrary to typical expectations, our results indicate that despite the high solar radiation in southern California, fossil based CHP units are dominant, even with forecast 2020 technology and costs. A CO2 pricing scheme would be needed to incent installation of combined solar thermal absorption chiller systems, and no heat storage systems are adopted. This research also shows that photovoltaic (PV) arrays are favored by CO2 pricing more than solar thermal adoption.

  3. Heat transfer modelling of the saltstone pouring and curing process. Task Number: 93-016-0

    SciTech Connect (OSTI)

    Shadday, M.A. Jr.

    1993-11-01

    A byproduct of the in tank precipitation, ITP, process will be 25 million gallons of low-level salt solution. This salt solution will be mixed with cement and a flyash/slag mixture and solidified in surface vaults in the Z-area Saltstone Facility. The curing process of saltstone involves exothermic reactions, and there is a maximum temperature limit of 90{degree}C for the curing saltstone. If this temperature limit is exceeded, the physical properties of the saltstone can be degraded. A heat transfer model of the saltstone pouring and curing process has been developed that predicts transient temperature distributions in the curing saltstone. The purpose of this model is to predict peak temperatures as functions of the several independent variables in this process: pour temperature, the pour schedule, and seasonal variations in the ambient temperature. The peak temperature of the saltstone is very sensitive to the internal heat generation that accompanies the curing process. Most of the energy is released over a short period of several hours, and the balance is released slowly over a period of time that can be in excess of a month. This long term low level internal heat generation is difficult to measure in laboratory calorimetry tests, and it can significantly influence the peak temperature in the saltstone. Due to the low thermal conductivity of the saltstone, the central region of the poured saltstone will essentially heat up adiabatically. The time dependence of the internal heat generation rate was determined from an analysis of the 1991 pilot pour test. With a pour schedule of eight hours a day and five days a week in the summer, the model predicts that the saltstone will have a peak temperature of 98 C with a pour temperature of 45 C, and a peak temperature of 88 C with a pour temperature of 30 C. With a pour schedule of three days a week, the peak temperature will be 88{degree}C with a pour temperature of 45 C, and 80 C with a pour temperature of 30 C.

  4. Evaluation of gasification and novel thermal processes for the treatment of municipal solid waste

    SciTech Connect (OSTI)

    Niessen, W.R.; Marks, C.H.; Sommerlad, R.E.

    1996-08-01

    This report identifies seven developers whose gasification technologies can be used to treat the organic constituents of municipal solid waste: Energy Products of Idaho; TPS Termiska Processor AB; Proler International Corporation; Thermoselect Inc.; Battelle; Pedco Incorporated; and ThermoChem, Incorporated. Their processes recover heat directly, produce a fuel product, or produce a feedstock for chemical processes. The technologies are on the brink of commercial availability. This report evaluates, for each technology, several kinds of issues. Technical considerations were material balance, energy balance, plant thermal efficiency, and effect of feedstock contaminants. Environmental considerations were the regulatory context, and such things as composition, mass rate, and treatability of pollutants. Business issues were related to likelihood of commercialization. Finally, cost and economic issues such as capital and operating costs, and the refuse-derived fuel preparation and energy conversion costs, were considered. The final section of the report reviews and summarizes the information gathered during the study.

  5. Heating hydrocarbon containing formations in a line drive staged process

    DOE Patents [OSTI]

    Miller, David Scott

    2009-07-21

    Method for treating a hydrocarbon containing formation are described herein. Methods may include providing heat to a first section of the formation with one or more first heaters in the first section. First hydrocarbons may be heated in the first section such that at least some of the first hydrocarbons are mobilized. At least some of the mobilized first hydrocarbons may be produced through a production well located in a second section of the formation. The second section may be located substantially adjacent to the first section. A portion of the second section may be provided some heat from the mobilized first hydrocarbons, but is not conductively heated by heat from the first heaters. Heat may be provided to the second section with one or more second heaters in the second section to further heat the second section.

  6. Shape optimization of a printed-circuit heat exchanger to enhance thermal-hydraulic performance

    SciTech Connect (OSTI)

    Lee, S. M.; Kim, K. Y.

    2012-07-01

    Printed circuit heat exchanger (PCHE) is recently considered as a recuperator for the high temperature gas cooled reactor. In this work, the zigzag-channels of a PCHE have been optimized by using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) analysis and response surface approximation (RSA) modeling technique to enhance thermal-hydraulic performance. Shear stress transport turbulence model is used as a turbulence closure. The objective function is defined as a linear combination of the functions related to heat transfer and friction loss of the PCHE, respectively. Three geometric design variables viz., the ratio of the radius of the fillet to hydraulic diameter of the channels, the ratio of wavelength to hydraulic diameter of the channels, and the ratio of wave height to hydraulic diameter of the channels, are used for the optimization. Design points are selected through Latin-hypercube sampling. The optimal design is determined through the RSA model which uses RANS derived calculations at the design points. The results show that the optimum shape enhances considerably the thermal-hydraulic performance than a reference shape. (authors)

  7. Thermal effects on transducer material for heat assisted magnetic recording application

    SciTech Connect (OSTI)

    Ji, Rong Xu, Baoxi; Cen, Zhanhong; Ying, Ji Feng; Toh, Yeow Teck

    2015-05-07

    Heat Assisted Magnetic Recording (HAMR) is a promising technology for next generation hard disk drives with significantly increased data recording capacities. In HAMR, an optical near-field transducer (NFT) is used to concentrate laser energy on a magnetic recording medium to fulfill the heat assist function. The key components of a NFT are transducer material, cladding material, and adhesion material between the cladding and the transducer materials. Since transducer materials and cladding materials have been widely reported, this paper focuses on the adhesion materials between the Au transducer and the Al{sub 2}O{sub 3} cladding material. A comparative study for two kinds of adhesion material, Ta and Cr, has been conducted. We found that Ta provides better thermal stability to the whole transducer than Cr. This is because after thermal annealing, chromium forms oxide material at interfaces and chromium atoms diffuse remarkably into the Au layer and react with Au to form Au alloy. This study also provides insights on the selection of adhesion material for HAMR transducer.

  8. Thermal hydraulic performance testing of printed circuit heat exchangers in a high-temperature helium test facility

    SciTech Connect (OSTI)

    Sai K. Mylavarapu; Xiaodong Sun; Richard E. Glosup; Richard N. Christensen; Michael W. Patterson

    2014-04-01

    In high-temperature gas-cooled reactors, such as a very high temperature reactor (VHTR), an intermediate heat exchanger (IHX) is required to efficiently transfer the core thermal output to a secondary fluid for electricity generation with an indirect power cycle and/or process heat applications. Currently, there is no proven high-temperature (750–800 °C or higher) compact heat exchanger technology for high-temperature reactor design concepts. In this study, printed circuit heat exchanger (PCHE), a potential IHX concept for high-temperature applications, has been investigated for their heat transfer and pressure drop characteristics under high operating temperatures and pressures. Two PCHEs, each having 10 hot and 10 cold plates with 12 channels (semicircular cross-section) in each plate are fabricated using Alloy 617 plates and tested for their performance in a high-temperature helium test facility (HTHF). The PCHE inlet temperature and pressure were varied from 85 to 390 °C/1.0–2.7 MPa for the cold side and 208–790 °C/1.0–2.7 MPa for the hot side, respectively, while the mass flow rate of helium was varied from 15 to 49 kg/h. This range of mass flow rates corresponds to PCHE channel Reynolds numbers of 950 to 4100 for the cold side and 900 to 3900 for the hot side (corresponding to the laminar and laminar-to-turbulent transition flow regimes). The obtained experimental data have been analyzed for the pressure drop and heat transfer characteristics of the heat transfer surface of the PCHEs and compared with the available models and correlations in the literature. In addition, a numerical treatment of hydrodynamically developing and hydrodynamically fully-developed laminar flow through a semicircular duct is presented. Relations developed for determining the hydrodynamic entrance length in a semicircular duct and the friction factor (or pressure drop) in the hydrodynamic entry length region for laminar flow through a semicircular duct are given. Various hydrodynamic

  9. Market development directory for solar industrial process heat systems

    SciTech Connect (OSTI)

    1980-02-01

    The purpose of this directory is to provide a basis for market development activities through a location listing of key trade associations, trade periodicals, and key firms for three target groups. Potential industrial users and potential IPH system designers were identified as the prime targets for market development activities. The bulk of the directory is a listing of these two groups. The third group, solar IPH equipment manufacturers, was included to provide an information source for potential industrial users and potential IPH system designers. Trade associates and their publications are listed for selected four-digit Standard Industrial Code (SIC) industries. Since industries requiring relatively lower temperature process heat probably will comprise most of the near-term market for solar IPH systems, the 80 SIC's included in this chapter have process temperature requirements less than 350/sup 0/F. Some key statistics and a location list of the largest plants (according to number of employees) in each state are included for 15 of the 80 SIC's. Architectural/engineering and consulting firms are listed which are known to have solar experience. Professional associated and periodicals to which information on solar IPH sytstems may be directed also are included. Solar equipment manufacturers and their associations are listed. The listing is based on the SERI Solar Energy Information Data Base (SEIDB).

  10. Thermal casting process for the preparation of membranes

    DOE Patents [OSTI]

    Caneba, G.T.M.; Soong, D.S.

    1985-07-10

    Disclosed is a method for providing anisotropic polymer membrane from a binary polymer/solvent solution using a thermal inversion process. A homogeneous binary solution is cast onto a support and cooled in such a way as to provide a differential in cooling rate across the thickness of the resulting membrane sheet. Isotropic or anisotropic structures of selected porosities can be produced, depending on the initial concentration of polymer in the selected solvent and on the extent of the differential in cooling rate. This differential results in a corresponding gradation in pore size. The method may be modified to provide a working skin by applying a rapid, high-temperature pulse to redissolve a predetermined thickness of the membrane at one of its faces and then freezing the entire structure.