National Library of Energy BETA

Sample records for thermal power generation

  1. Thermoelectric power generator for variable thermal power source

    DOE Patents [OSTI]

    Bell, Lon E; Crane, Douglas Todd

    2015-04-14

    Traditional power generation systems using thermoelectric power generators are designed to operate most efficiently for a single operating condition. The present invention provides a power generation system in which the characteristics of the thermoelectrics, the flow of the thermal power, and the operational characteristics of the power generator are monitored and controlled such that higher operation efficiencies and/or higher output powers can be maintained with variably thermal power input. Such a system is particularly beneficial in variable thermal power source systems, such as recovering power from the waste heat generated in the exhaust of combustion engines.

  2. Apparatus and method for thermal power generation

    DOE Patents [OSTI]

    Cohen, Paul; Redding, Arnold H.

    1978-01-01

    An improved thermal power plant and method of power generation which minimizes thermal stress and chemical impurity buildup in the vaporizing component, particularly beneficial under loss of normal feed fluid and startup conditions. The invention is particularly applicable to a liquid metal fast breeder reactor plant.

  3. Thermal Strategies for High Efficiency Thermoelectric Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies for High Efficiency Thermoelectric Power Generation Thermal Strategies for High Efficiency Thermoelectric Power Generation Developing integrated TE system configurations ...

  4. Method and apparatus for thermal power generation

    DOE Patents [OSTI]

    Mangus, James D.

    1979-01-01

    A method and apparatus for power generation from a recirculating superheat-reheat circuit with multiple expansion stages which alleviates complex control systems and minimizes thermal cycling of system components, particularly the reheater. The invention includes preheating cold reheat fluid from the first expansion stage prior to its entering the reheater with fluid from the evaporator or drum component.

  5. Device for thermal transfer and power generation

    DOE Patents [OSTI]

    Weaver, Stanton Earl; Arik, Mehmet

    2011-04-19

    A system is provided. The system includes a device that includes top and bottom thermally conductive substrates positioned opposite to one another, wherein a top surface of the bottom thermally conductive substrate is substantially atomically flat and a thermal blocking layer disposed between the top and bottom thermally conductive substrates. The device also includes top and bottom electrodes separated from one another between the top and bottom thermally conductive substrates to define a tunneling path, wherein the top electrode is disposed on the thermal blocking layer and the bottom electrode is disposed on the bottom thermally conductive substrate.

  6. High Temperature Thermal Array for Next Generation Solar Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This ...

  7. Novel Thermal Storage Technologies for Concentrating Solar Power Generation

    SciTech Connect (OSTI)

    Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

    2013-06-20

    The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300oC and 850oC using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

  8. Project Profile: High-Temperature Thermal Array for Next-Generation Solar Thermal Power Production

    Broader source: Energy.gov [DOE]

    The Los Alamos National Laboratory (ORNL), under the National Laboratory R&D competitive funding opportunity, is developing a megawatt-scale heat pipe–based technology designed to bridge the heliostat reflector field and the power cycle by replacing both the solar receiver and the heat transfer fluid (HTF) system used in concentrating solar power (CSP) systems. The technology, called the high-temperature thermal array, aims to achieve the SunShot Initiative's goals by addressing technical challenges, reducing capital and operating expenses, and increasing net photon-to-electricity conversion efficiency.

  9. Quantity, quality, and availability of waste heat from United States thermal power generation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gingerich, Daniel B; Mauter, Meagan S

    2015-06-10

    Secondary application of unconverted heat produced during electric power generation has the potential to improve the life-cycle fuel efficiency of the electric power industry and the sectors it serves. This work quantifies the residual heat (also known as waste heat) generated by U.S. thermal power plants and assesses the intermittency and transport issues that must be considered when planning to utilize this heat. Combining Energy Information Administration plant-level data with literature-reported process efficiency data, we develop estimates of the unconverted heat flux from individual U.S. thermal power plants in 2012. Together these power plants discharged an estimated 18.9 billion GJthmoreof residual heat in 2012, 4% of which was discharged at temperatures greater than 90 C. We also characterize the temperature, spatial distribution, and temporal availability of this residual heat at the plant level and model the implications for the technical and economic feasibility of its end use. Increased implementation of flue gas desulfurization technologies at coal-fired facilities and the higher quality heat generated in the exhaust of natural gas fuel cycles are expected to increase the availability of residual heat generated by 10.6% in 2040.less

  10. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOE Patents [OSTI]

    Bowman, Charles D.

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  11. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOE Patents [OSTI]

    Bowman, C.D.

    1992-11-03

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  12. High Temperature Thermal Array for Next Generation Solar Thermal Power Production

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  13. Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation

    SciTech Connect (OSTI)

    Reddy, Ramana G.

    2013-10-23

    The explicit UA program objective is to develop low melting point (LMP) molten salt thermal energy storage media with high thermal energy storage density for sensible heat storage systems. The novel Low Melting Point (LMP) molten salts are targeted to have the following characteristics: 1. Lower melting point (MP) compared to current salts (<222ºC) 2. Higher energy density compared to current salts (>300 MJ/m3) 3. Lower power generation cost compared to current salt In terms of lower power costs, the program target the DOE's Solar Energy Technologies Program year 2020 goal to create systems that have the potential to reduce the cost of Thermal Energy Storage (TES) to less than $15/kWh-th and achieve round trip efficiencies greater than 93%. The project has completed the experimental investigations to determine the thermo-physical, long term thermal stability properties of the LMP molten salts and also corrosion studies of stainless steel in the candidate LMP molten salts. Heat transfer and fluid dynamics modeling have been conducted to identify heat transfer geometry and relative costs for TES systems that would utilize the primary LMP molten salt candidates. The project also proposes heat transfer geometry with relevant modifications to suit the usage of our molten salts as thermal energy storage and heat transfer fluids. The essential properties of the down-selected novel LMP molten salts to be considered for thermal storage in solar energy applications were experimentally determined, including melting point, heat capacity, thermal stability, density, viscosity, thermal conductivity, vapor pressure, and corrosion resistance of SS 316. The thermodynamic modeling was conducted to determine potential high temperature stable molten salt mixtures that have thermal stability up to 1000 °C. The thermo-physical properties of select potential high temperature stable (HMP) molten salt mixtures were also experimentally determined. All the salt mixtures align with the go/no-go goals stipulated by the DOE for this project. Energy densities of all salt mixtures were higher than that of the current solar salt. The salt mixtures costs have been estimated and TES system costs for a 2 tank, direct approach have been estimated for each of these materials. All estimated costs are significantly below the baseline system that used solar salt. These lower melt point salts offer significantly higher energy density per volume than solar salt – and therefore attractively smaller inventory and equipment costs. Moreover, a new TES system geometry has been recommended A variety of approaches were evaluated to use the low melting point molten salt. Two novel changes are recommended that 1) use the salt as a HTF through the solar trough field, and 2) use the salt to not only create steam but also to preheat the condensed feedwater for Rankine cycle. The two changes enable the powerblock to operate at 500°C, rather than the current 400°C obtainable using oil as the HTF. Secondly, the use of salt to preheat the feedwater eliminates the need to extract steam from the low pressure turbine for that purpose. Together, these changes result in a dramatic 63% reduction required for 6 hour salt inventory, a 72% reduction in storage volume, and a 24% reduction in steam flow rate in the power block. Round trip efficiency for the Case 5 - 2 tank “direct” system is estimated at >97%, with only small losses from time under storage and heat exchange, and meeting RFP goals. This attractive efficiency is available because the major heat loss experienced in a 2 tank “indirect” system - losses by transferring the thermal energy from oil HTF to the salt storage material and back to oil to run the steam generator at night - is not present for the 2 tank direct system. The higher heat capacity values for both LMP and HMP systems enable larger storage capacities for concentrating solar power.

  14. Metal Hydride Thermal Storage: Reversible Metal Hydride Thermal Storage for High-Temperature Power Generation Systems

    SciTech Connect (OSTI)

    2011-12-05

    HEATS Project: PNNL is developing a thermal energy storage system based on a Reversible Metal Hydride Thermochemical (RMHT) system, which uses metal hydride as a heat storage material. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at nightwhen the sun is not outto drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. PNNLs metal hydride material can reversibly store heat as hydrogen cycles in and out of the material. In a RHMT system, metal hydrides remain stable in high temperatures (600- 800C). A high-temperature tank in PNNLs storage system releases heat as hydrogen is absorbed, and a low-temperature tank stores the heat until it is needed. The low-cost material and simplicity of PNNLs thermal energy storage system is expected to keep costs down. The system has the potential to significantly increase energy density.

  15. Development and Demonstration of an Innovative Thermal Energy Storage System for Baseload Power Generation

    SciTech Connect (OSTI)

    D. Y. Goswami

    2012-09-04

    The objective of this project is to research and develop a thermal energy storage system (operating range 3000C ???¢???????? 450 0C ) based on encapsulated phase change materials (PCM) that can meet the utility-scale base-load concentrated solar power plant requirements at much lower system costs compared to the existing thermal energy storage (TES) concepts. The major focus of this program is to develop suitable encapsulation methods for existing low-cost phase change materials that would provide a cost effective and reliable solution for thermal energy storage to be integrated in solar thermal power plants. This project proposes a TES system concept that will allow for an increase of the capacity factor of the present CSP technologies to 75% or greater and reduce the cost to less than $20/kWht.

  16. An improved absorption generator for solar-thermal powered heat pumps. Part 2: Energy and economics

    SciTech Connect (OSTI)

    Fineblum, S.

    1997-12-31

    Solar heated absorption chiller installations have been very expensive for their rating. To enhance collector thermal efficiency the liquid flowing within the collectors must be kept as cool as possible. However, there is also a need to operate the absorption reported earlier. The compromise usually results in poor collector efficiency as well as a relatively poor specific chiller effect. The proposed vortex generator permits a heat pump to operate efficiently with relatively low temperature solar heated fluid (70--80 C). As a result, the collectors are cooler and more efficient. As noted in Part 1, the specific heat pumping capacity is about 27% greater than conventional systems operating at the same reduced generator temperatures. Therefore, a smaller, less expensive chiller is required. The reduced investment in solar arrays and absorption chillers is estimated along with a range of paybacks.

  17. An improved absorption generator for solar-thermal powered heat pumps. Part 1: Feasibility

    SciTech Connect (OSTI)

    Fineblum, S.

    1997-12-31

    Solar heated absorption chiller installations have been, typically, very expensive for their rating. The need to keep the liquid flowing within the collectors as cool as possible to enhance collector thermal efficiency, conflicts with the need to operate the absorption chiller at a higher temperature. The compromise usually results in poor collector efficiency as well as a relatively poor specific chiller effect. The proposed vortex generator permits a heat pump to operate efficiently with relatively low temperature solar heated fluid (70--80 C). As a result, the collectors are cooler and much more efficient. In addition, the specific heat pumping capacity is about 27% greater than conventional systems operating at the same reduced generator temperatures and, therefore, a smaller chiller is required. The economic consequences of these benefits will be presented in Part 2.

  18. Project Profile: High-Temperature Thermal Array for Next-Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Array for Next-Generation Solar Thermal Power Production Project Profile: High-Temperature Thermal Array for Next-Generation Solar Thermal Power Production Los Alamos ...

  19. Solar thermal power system

    DOE Patents [OSTI]

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  20. Project Profile: Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation

    Broader source: Energy.gov [DOE]

    The University of Alabama, under the Thermal Storage FOA, is developing thermal energy storage (TES) media consisting of low melting point (LMP) molten salt with high TES density for sensible heat storage systems.

  1. Project Profile: Novel Thermal Storage Technologies for Concentrating Solar Power Generation

    Broader source: Energy.gov [DOE]

    Lehigh University, under the Thermal Storage FOA, is working to establish the technical feasibility of using phase change materials (PCM) at elevated temperatures and to acquire engineering results that will lead to the demonstration of large-scale thermal storage systems.

  2. Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  3. Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish-Engine Solar Power Generation

    SciTech Connect (OSTI)

    Qui, Songgang; Galbraith, Ross

    2013-01-23

    This final report summarizes the final results of the Phase II Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish-Engine Solar Power Generation project being performed by Infinia Corporation for the U.S. Department of Energy under contract DE-FC36-08GO18157 during the project period of September 1, 2009 - August 30, 2012. The primary objective of this project is to demonstrate the practicality of integrating thermal energy storage (TES) modules, using a suitable thermal salt phase-change material (PCM) as its medium, with a dish/Stirling engine; enabling the system to operate during cloud transients and to provide dispatchable power for 4 to 6 hours after sunset. A laboratory prototype designed to provide 3 kW-h of net electrical output was constructed and tested at Infinia's Ogden Headquarters. In the course of the testing, it was determined that the system's heat pipe network - used to transfer incoming heat from the solar receiver to both the Stirling generator heater head and to the phase change salt - did not perform to expectations. The heat pipes had limited capacity to deliver sufficient heat energy to the generator and salt mass while in a charging mode, which was highly dependent on the orientation of the device (vertical versus horizontal). In addition, the TES system was only able to extract about 30 to 40% of the expected amount of energy from the phase change salt once it was fully molten. However, the use of heat pipes to transfer heat energy to and from a thermal energy storage medium is a key technical innovation, and the project team feels that the limitations of the current device could be greatly improved with further development. A detailed study of manufacturing costs using the prototype TES module as a basis indicates that meeting DOE LCOE goals with this hardware requires significant efforts. Improvement can be made by implementing aggressive cost-down initiatives in design and materials, improving system performance by boosting efficiencies, and by refining cost estimates with vendor quotes in lieu of mass-based approaches. Although the prototype did not fully demonstrate performance and realize projected cost targets, the project team believes that these challenges can be overcome. The test data showed that the performance can be significantly improved by refining the heat pipe designs. However, the project objective for phase 3 is to design and test on sun the field ready systems, the project team feels that is necessary to further refine the prototype heat pipe design in the current prototype TES system before move on to field test units, Phase 3 continuation will not be pursued.

  4. Project Profile: Innovative Thermal Energy Storage for Baseload Solar Power Generation

    Broader source: Energy.gov [DOE]

    The University of South Florida, under the Baseload CSP FOA, is researching and developing a thermal energy storage system based on encapsulated phase change materials (PCM) that can meet the utility-scale baseload CSP plant requirements at significantly lower system costs.

  5. Underwater power generator

    SciTech Connect (OSTI)

    Bowley, W.W.

    1983-05-10

    Apparatus and method for generating electrical power by disposing a plurality of power producing modules in a substantially constant velocity ocean current and mechanically coupling the output of the modules to drive a single electrical generator is disclosed.

  6. Development and Performance Evaluation of High Temperature Concrete for Thermal Energy Storage for Solar Power Generation

    SciTech Connect (OSTI)

    R. Panneer Selvam, Micah Hale and Matt strasser

    2013-03-31

    Thermal energy can be stored by the mechanism of sensible or latent heat or heat from chemical reactions. Sensible heat is the means of storing energy by increasing the temperature of the solid or liquid. Since the concrete as media cost per kWhthermal is $1, this seems to be a very economical material to be used as a TES. This research is focused on extending the concrete TES system for higher temperatures (500 ?ºC to 600 ?ºC) and increasing the heat transfer performance using novel construction techniques. To store heat at high temperature special concretes are developed and tested for its performance. The storage capacity costs of the developed concrete is in the range of $0.91-$3.02/kWhthermal Two different storage methods are investigated. In the first one heat is transported using molten slat through a stainless steel tube and heat is transported into concrete block through diffusion. The cost of the system is higher than the targeted DOE goal of $15/kWhthermal The increase in cost of the system is due to stainless steel tube to transfer the heat from molten salt to the concrete blocks.The other method is a one-tank thermocline system in which both the hot and cold fluid occupy the same tank resulting in reduced storage tank volume. In this model, heated molten salt enters the top of the tank which contains a packed bed of quartzite rock and silica sand as the thermal energy storage (TES) medium. The single-tank storage system uses about half the salt that is required by the two-tank system for a required storage capacity. This amounts to a significant reduction in the cost of the storage system. The single tank alternative has also been proven to be cheaper than the option which uses large concrete modules with embedded heat exchangers. Using computer models optimum dimensions are determined to have an round trip efficiency of 84%. Additionally, the cost of the structured concrete thermocline configuration provides the TES capacity cost of $33.80$/kWhthermal compared with $30.04/kWhthermal for a packed-bed thermocline (PBTC) configuration and $46.11/kWhthermal for a two-tank liquid configuration.

  7. Overview of Thermoelectric Power Generation Technologies in Japan

    Broader source: Energy.gov [DOE]

    Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy sources, and energy harvesting

  8. Magma energy for power generation

    SciTech Connect (OSTI)

    Dunn, J.C.

    1987-01-01

    Thermal energy contained in crustal magma bodies represents a large potential resource for the US and magma generated power could become a viable alternative in the future. Engineering feasibility of the magma energy concept is being investigated as part of the Department of Energy's Geothermal Program. This current project follows a seven-year Magma Energy Research Project where scientific feasibility of the concept was concluded.

  9. Peak power ratio generator

    DOE Patents [OSTI]

    Moyer, R.D.

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  10. Peak power ratio generator

    DOE Patents [OSTI]

    Moyer, Robert D.

    1985-01-01

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  11. Oscillating fluid power generator

    DOE Patents [OSTI]

    Morris, David C

    2014-02-25

    A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

  12. JV Task 46 - Development and Testing of a Thermally Integrated SOFC-Gasification System for Biomass Power Generation

    SciTech Connect (OSTI)

    Phillip Hutton; Nikhil Patel; Kyle Martin; Devinder Singh

    2008-02-01

    The Energy & Environmental Research Center has designed a biomass power system using a solid oxide fuel cell (SOFC) thermally integrated with a downdraft gasifier. In this system, the high-temperature effluent from the SOFC enables the operation of a substoichiometric air downdraft gasifier at an elevated temperature (1000 C). At this temperature, moisture in the biomass acts as an essential carbon-gasifying medium, reducing the equivalence ratio at which the gasifier can operate with complete carbon conversion. Calculations show gross conversion efficiencies up to 45% (higher heating value) for biomass moisture levels up to 40% (wt basis). Experimental work on a bench-scale gasifier demonstrated increased tar cracking within the gasifier and increased energy density of the resultant syngas. A series of experiments on wood chips demonstrated tar output in the range of 9.9 and 234 mg/m{sup 3}. Both button cells and a 100-watt stack was tested on syngas from the gasifier. Both achieved steady-state operation with a 22% and 15% drop in performance, respectively, relative to pure hydrogen. In addition, tar tolerance testing on button cells demonstrated an upper limit of tar tolerance of approximately 1%, well above the tar output of the gasifier. The predicted system efficiency was revised down to 33% gross and 27% net system efficiency because of the results of the gasifier and fuel cell experiments. These results demonstrate the feasibility and benefits of thermally integrating a gasifier and a high-temperature fuel cell in small distributed power systems.

  13. Hydro Power (pbl/generation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation > Generation Hydro Power FCRPS Hydro Projects FCRPS Information Kiosk Current Hydrological Info Fish Funding Agreement FCRPS Definitions Wind Power Monthly GSP BPA White...

  14. Wind Power (pbl/generation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wind Power (Updated June 16, 2014) Project Descriptions Foote Creek I Wind Project (Carbon...

  15. Karnataka Power Corporation Limited and National Thermal Power...

    Open Energy Info (EERE)

    Power Corporation Limited and National Thermal Power Corporation JV Jump to: navigation, search Name: Karnataka Power Corporation Limited and National Thermal Power Corporation JV...

  16. High power microwave generator

    DOE Patents [OSTI]

    Ekdahl, Carl A. (Albuquerque, NM)

    1986-01-01

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  17. High power microwave generator

    DOE Patents [OSTI]

    Ekdahl, C.A.

    1983-12-29

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  18. thermal energy power conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility Nuclear ... Climate & Earth Systems Climate Measurement & Modeling ... Tribal Energy Program Intellectual Property Current EC ...

  19. GEOTHERMAL POWER GENERATION PLANT

    SciTech Connect (OSTI)

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  20. Project Profile: Development and Performance Evaluation of High Temperature Concrete for Thermal Energy Storage for Solar Power Generation

    Broader source: Energy.gov [DOE]

    The University of Arkansas, under the Thermal Storage FOA, is developing a novel concrete material that can withstand operating temperatures of 500°C or more and is measuring the concrete properties.

  1. Generation of electrical power

    DOE Patents [OSTI]

    Hursen, Thomas F.; Kolenik, Steven A.; Purdy, David L.

    1976-01-01

    A heat-to-electricity converter is disclosed which includes a radioactive heat source and a thermoelectric element of relatively short overall length capable of delivering a low voltage of the order of a few tenths of a volt. Such a thermoelectric element operates at a higher efficiency than longer higher-voltage elements; for example, elements producing 6 volts. In the generation of required power, thermoelectric element drives a solid-state converter which is controlled by input current rather than input voltage and operates efficiently for a high signal-plus-noise to signal ratio of current. The solid-state converter has the voltage gain necessary to deliver the required voltage at the low input of the thermoelectric element.

  2. Power Electronics Thermal Control (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.

    2010-05-05

    Thermal management plays an important part in the cost of electric drives in terms of power electronics packaging. Very promising results have been obtained by using microporous coatings and skived surfaces in conjunction with single-phase and two-phase flows. Sintered materials and thermoplastics with embedded fibers show significant promise as thermal interface materials, or TIMs. Appropriate cooling technologies depend on the power electronics package application and reliability.

  3. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Motor Thermal Control Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Integrated Vehicle Thermal Management

  4. BPA Power Generation (pbl/main)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Power Generation Hydro Power Federal Columbia River Power System (FCRPS) Hydro Projects FCRPS...

  5. Generators for Small Electrical and Thermal Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    build and test improved electric-power generators for use in residential Combined Heat and Power (CHP) systems, which capture the generator's heat output for space and water...

  6. GEOTHERMAL POWER GENERATION PLANT

    Broader source: Energy.gov [DOE]

    Project objectives: Drilling a deep geothermal well on the Oregon Institute of Technology campus, Klamath Falls, OR. Constructing a geothermal power plant on the Oregon Institute of Technology campus.

  7. Overview of Thermoelectric Power Generation Technologies in Japan |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy sources, and energy harvesting PDF icon kajikawa.pdf More Documents & Publications Overview of Thermoelectric Power Generation Technologies in Japan Overview of Progress in Thermoelectric Power Generation Technologies in Japan Overview of Japanese Activities in Thermoelectrics

  8. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electronic Thermal System Performance and Integration Power Electronic Thermal System Performance and Integration 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual ...

  9. Levelized Power Generation Cost Codes

    Energy Science and Technology Software Center (OSTI)

    1996-04-30

    LPGC is a set of nine microcomputer programs for estimating power generation costs for large steam-electric power plants. These programs permit rapid evaluation using various sets of economic and technical ground rules. The levelized power generation costs calculated may be used to compare the relative economics of nuclear and coal-fired plants based on life-cycle costs. Cost calculations include capital investment cost, operation and maintenance cost, fuel cycle cost, decommissioning cost, and total levelized power generationmore » cost. These programs can be used for quick analyses of power generation costs using alternative economic parameters, such as interest rate, escalation rate, inflation rate, plant lead times, capacity factor, fuel prices, etc. The two major types of electric generating plants considered are pressurized water reactor (PWR) and pulverized coal-fired plants. Data are also provided for the Large Scale Prototype Breeder (LSPB) type liquid metal reactor.« less

  10. High power microwave generator

    DOE Patents [OSTI]

    Minich, Roger W. (Patterson, CA)

    1988-01-01

    A device (10) for producing high-powered and coherent microwaves is described. The device comprises an evacuated, cylindrical, and hollow real cathode (20) that is driven to inwardly field emit relativistic electrons. The electrons pass through an internally disposed cylindrical and substantially electron-transparent cylindrical anode (24), proceed toward a cylindrical electron collector electrode (26), and form a cylindrical virtual cathode (32). Microwaves are produced by spatial and temporal oscillations of the cylindrical virtual cathode (32), and by electrons that reflex back and forth between the cylindrical virtual cathode (32) and the cylindrical real cathode (20).

  11. Thermally matched fluid cooled power converter

    DOE Patents [OSTI]

    Radosevich, Lawrence D.; Kannenberg, Daniel G.; Kaishian, Steven C.; Beihoff, Bruce C.

    2005-06-21

    A thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. Power electronic circuits are thermally matched, such as between component layers and between the circuits and the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  12. Solid state pulsed power generator

    DOE Patents [OSTI]

    Tao, Fengfeng; Saddoughi, Seyed Gholamali; Herbon, John Thomas

    2014-02-11

    A power generator includes one or more full bridge inverter modules coupled to a semiconductor opening switch (SOS) through an inductive resonant branch. Each module includes a plurality of switches that are switched in a fashion causing the one or more full bridge inverter modules to drive the semiconductor opening switch SOS through the resonant circuit to generate pulses to a load connected in parallel with the SOS.

  13. Thermoelectric Power Generation System with Loop Thermosyphon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Generation System with Loop Thermosyphon in Future High Efficiency Hybrid Vehicles Thermoelectric Power Generation System with Loop Thermosyphon in Future High Efficiency ...

  14. hydrogen-fuel-cell-powered generator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hydrogen-fuel-cell-powered generator - Sandia Energy Energy Search Icon Sandia Home ... SunShot Grand Challenge: Regional Test Centers hydrogen-fuel-cell-powered generator Home...

  15. Maharashtra State Power Generation Company Limited MAHAGENCO...

    Open Energy Info (EERE)

    search Name: Maharashtra State Power Generation Company Limited (MAHAGENCO) Place: Mumbai, Maharashtra, India Zip: 400051 Product: Power generating firm planning to set up a...

  16. Siemens Power Generation | Open Energy Information

    Open Energy Info (EERE)

    Siemens Power Generation Jump to: navigation, search Name: Siemens Power Generation Place: Erlangen, Bavaria, Germany Zip: 91058 Product: Erlangen-based subsidiary of Siemens AG...

  17. EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...

    Office of Environmental Management (EM)

    6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI May 3, 2010 EA-1726: Final ...

  18. Electric Power Generation and Water Use Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Generation and Water Use Data - Sandia Energy Energy Search Icon Sandia Home Locations ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  19. Table 11.5b Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Electric Power Sector, 1989-2010 (Subset of Table 11.5a; Metric Tons of Gas)

    U.S. Energy Information Administration (EIA) Indexed Site

    b Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Electric Power Sector, 1989-2010 (Subset of Table 11.5a; Metric Tons of Gas) Year Carbon Dioxide 1 Sulfur Dioxide Nitrogen Oxides Coal 2 Natural Gas 3 Petroleum 4 Geo- thermal 5 Non- Biomass Waste 6 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total 1989 1,520,229,870 169,653,294 133,545,718 363,247 4,365,768 1,828,157,897 13,815,263 832 809,873 6,874

  20. Next Generation Geothermal Power Plants

    SciTech Connect (OSTI)

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a given project.

  1. NREL: Transportation Research - Power Electronics Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Electronics Thermal Management A photo of water boiling in liquid cooling lab equipment. Power electronics thermal management research aims to help lower the cost and improve the performance of electric-drive vehicles. Photo by Dennis Schroeder, NREL NREL investigates and develops thermal management strategies for power electronics systems that use wide-bandgap technology, which enables the development of devices that are smaller than those based on other materials, demonstrating

  2. Thermal Stress and Reliability for Advanced Power Electronics...

    Broader source: Energy.gov (indexed) [DOE]

    Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Power Electronic Thermal System Performance and Integration Thermal Performance and Reliability ...

  3. Next-Generation LED Package Architectures Enabled by Thermally...

    Energy Savers [EERE]

    LED Package Architectures Enabled by Thermally Conductive Transparent Encapsulants Next-Generation LED Package Architectures Enabled by Thermally Conductive Transparent ...

  4. Wyoming Wind Power Project (generation/wind)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wyoming Wind Power Project (Foote Creek Rim I and II) Thumbnail image of wind...

  5. Local control of reactive power by distributed photovoltaic generators

    SciTech Connect (OSTI)

    Chertkov, Michael; Turitsyn, Konstantin; Sulc, Petr; Backhaus, Scott

    2010-01-01

    High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

  6. Natural gas beats coal in power generation

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural gas beats coal in power generation The amount of U.S. electricity generated by natural gas is expected to exceed the output from coal-fired power plants this year and in ...

  7. The Industrialization of Thermoelectric Power Generation Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presents module and system requirements for high volume power generation with thermoelectrics such desirable thermoelectric properties, low material toxicity, interface ...

  8. Thermal Interface Materials for Power Electronics Applications: Preprint

    SciTech Connect (OSTI)

    Narumanchi, S.; Mihalic, M.; Kelly, K.; Eesley, G.

    2008-07-01

    The thermal resistance of the thermal interface material layer greatly affects the maximum temperature of the power electronics.

  9. Anyang Lingrui Thermal Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Anyang Lingrui Thermal Power Co Ltd Jump to: navigation, search Name: Anyang Lingrui Thermal Power Co., Ltd Place: Anyang, Henan Province, China Zip: 455000 Sector: Biomass...

  10. Pv-Thermal Solar Power Assembly

    DOE Patents [OSTI]

    Ansley, Jeffrey H.; Botkin, Jonathan D.; Dinwoodie, Thomas L.

    2001-10-02

    A flexible solar power assembly includes a flexible photovoltaic device attached to a flexible thermal solar collector. The solar power assembly can be rolled up for transport and then unrolled for installation on a surface, such as the roof or side wall of a building or other structure, by use of adhesive and/or other types of fasteners.

  11. Identifying and bounding uncertainties in nuclear reactor thermal power calculations

    SciTech Connect (OSTI)

    Phillips, J.; Hauser, E.; Estrada, H.

    2012-07-01

    Determination of the thermal power generated in the reactor core of a nuclear power plant is a critical element in the safe and economic operation of the plant. Direct measurement of the reactor core thermal power is made using neutron flux instrumentation; however, this instrumentation requires frequent calibration due to changes in the measured flux caused by fuel burn-up, flux pattern changes, and instrumentation drift. To calibrate the nuclear instruments, steam plant calorimetry, a process of performing a heat balance around the nuclear steam supply system, is used. There are four basic elements involved in the calculation of thermal power based on steam plant calorimetry: The mass flow of the feedwater from the power conversion system, the specific enthalpy of that feedwater, the specific enthalpy of the steam delivered to the power conversion system, and other cycle gains and losses. Of these elements, the accuracy of the feedwater mass flow and the feedwater enthalpy, as determined from its temperature and pressure, are typically the largest contributors to the calorimetric calculation uncertainty. Historically, plants have been required to include a margin of 2% in the calculation of the reactor thermal power for the licensed maximum plant output to account for instrumentation uncertainty. The margin is intended to ensure a cushion between operating power and the power for which safety analyses are performed. Use of approved chordal ultrasonic transit-time technology to make the feedwater flow and temperature measurements (in place of traditional differential-pressure- based instruments and resistance temperature detectors [RTDs]) allows for nuclear plant thermal power calculations accurate to 0.3%-0.4% of plant rated power. This improvement in measurement accuracy has allowed many plant operators in the U.S. and around the world to increase plant power output through Measurement Uncertainty Recapture (MUR) up-rates of up to 1.7% of rated power, while also decreasing the probability of significant over-power events. This paper will examine the basic elements involved in calculation of thermal power using ultrasonic transit-time technology and will discuss the criteria for bounding uncertainties associated with each element in order to achieve reactor thermal power calculations to within 0.3% to 0.4%. (authors)

  12. FACTSHEET: Next Generation Power Electronics Manufacturing Innovation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Institute | Department of Energy Next Generation Power Electronics Manufacturing Innovation Institute FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute January 15, 2014 - 9:20am Addthis The Obama Administration today announces the selection of North Carolina State University to lead a public-private manufacturing innovation institute for next generation power electronics. Supported by a $70 million Energy Department investment over five years as well as a

  13. Thermoelectric power generator with intermediate loop

    DOE Patents [OSTI]

    Bell, Lon E; Crane, Douglas Todd

    2013-05-21

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  14. Thermoelectric power generator with intermediate loop

    DOE Patents [OSTI]

    Bel,; Lon E.; Crane, Douglas Todd

    2009-10-27

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  15. Environmentally Protective Power Generation EPPG | Open Energy...

    Open Energy Info (EERE)

    Environmentally Protective Power Generation (EPPG) Place: Tucson, Arizona Sector: Wind energy Product: Seeking financing for a Tower system, about which little has been disclosed,...

  16. EA-290 Ontario Power Generation, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ontario Power Generation, Inc. EA-290 Ontario Power Generation, Inc. Order authorizing Ontario Power Generation, Inc. to export electric energy to Canada PDF icon EA-290 Ontario ...

  17. Loranger Power Generation Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Loranger Power Generation Wind Farm Jump to: navigation, search Name Loranger Power Generation Wind Farm Facility Loranger Power Generation Sector Wind energy Facility Type...

  18. EA-345 New Brunswick Power Generation Corporation | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Brunswick Power Generation Corporation EA-345 New Brunswick Power Generation Corporation Order authorizing New Brunswick Power Generation Corporation to export electric energy ...

  19. Photovoltaic power generation system free of bypass diodes (Patent...

    Office of Scientific and Technical Information (OSTI)

    Photovoltaic power generation system free of bypass diodes Title: Photovoltaic power generation system free of bypass diodes A photovoltaic power generation system that includes a ...

  20. Datang Gansu Power Generation Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Gansu Power Generation Co Ltd Jump to: navigation, search Name: Datang Gansu Power Generation Co Ltd Place: Lanzhou, Gansu Province, China Zip: 730050 Product: A power generation...

  1. PV/thermal solar power assembly

    DOE Patents [OSTI]

    Ansley, Jeffrey H.; Botkin, Jonathan D.; Dinwoodie, Thomas L.

    2004-01-13

    A flexible solar power assembly (2) includes a flexible photovoltaic device (16) attached to a flexible thermal solar collector (4). The solar power assembly can be rolled up for transport and then unrolled for installation on a surface, such as the roof (20, 25) or side wall of a building or other structure, by use of adhesive and/or other types of fasteners (23).

  2. Solar thermal power systems. Summary report

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The work accomplished by the Aerospace Corporation from April 1973 through November 1979 in the mission analysis of solar thermal power systems is summarized. Sponsorship of this effort was initiated by the National Science Foundation, continued by the Energy Research and Development Administration, and most recently directed by the United States Department of Energy, Division of Solar Thermal Systems. Major findings and conclusions are sumarized for large power systems, small power systems, solar total energy systems, and solar irrigation systems, as well as special studies in the areas of energy storage, industrial process heat, and solar fuels and chemicals. The various data bases and computer programs utilized in these studies are described, and tables are provided listing financial and solar cost assumptions for each study. An extensive bibliography is included to facilitate review of specific study results and methodology.

  3. Electric Power Generation Systems | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Power Generation Systems Coal gasification-based power plants Coal combustion-based power plants Natural gas-fueled power plants Turbines Fuel cells Existing power plants...

  4. Advanced Heat Transfer Fluids and Novel Thermal Storage Concepts for CSP Generation

    Broader source: Energy.gov [DOE]

    In 2008, DOE issued the Advanced Heat Transfer Fluids and Novel Thermal Storage Concepts for Concentrating Solar Power (CSP) Generation funding opportunity announcement (FOA) managed by the SunShot Initiative. The following projects were selected under this competitive solicitation.

  5. ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER...

    Office of Scientific and Technical Information (OSTI)

    Conference: ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER SYSTEMS AT THE ... Citation Details In-Document Search Title: ENHANCED THERMAL VACUUM TEST CAPABILITY FOR ...

  6. Thermal Stress and Reliability for Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Performance and Reliability of Bonded Interfaces Physics of Failure of Electrical Interconnects Thermal Stress and Reliability for Advanced Power Electronics and Electric ...

  7. The Industrialization of Thermoelectric Power Generation Technology

    Broader source: Energy.gov [DOE]

    Presents module and system requirements for high volume power generation with thermoelectrics such desirable thermoelectric properties, low material toxicity, interface compatibility, cost scalability, raw material availability and module reliability

  8. Power generation method including membrane separation

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A.

    2000-01-01

    A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

  9. Martin Next Generation Solar Energy Center Solar Power Plant...

    Open Energy Info (EERE)

    Next Generation Solar Energy Center Solar Power Plant Jump to: navigation, search Name Martin Next Generation Solar Energy Center Solar Power Plant Facility Martin Next Generation...

  10. Solana Generating Plant Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Solana Generating Plant Solar Power Plant Jump to: navigation, search Name Solana Generating Plant Solar Power Plant Facility Solana Generating Plant Sector Solar Facility Type...

  11. Simulating the Value of Concentrating Solar Power with Thermal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulating the Value of Concentrating Solar Power with Thermal Energy Storage in a ... DE-AC36-08GO28308 Simulating the Value of Concentrating Solar Power with Thermal Energy ...

  12. Fiscalini Farms Renewable Energy Power Generation Project

    SciTech Connect (OSTI)

    2009-02-01

    Funded by the American Recovery and Reinvestment Act of 2009 Fiscalini Farms L.P., in collaboration with University of the Pacific, Biogas Energy, Inc., and the University of California at Berkeley will measure and analyze the efficiency and regulatory compliance of a renewable energy system for power generation. The system will utilize digester gas from an anaerobic digester located at the Fiscalini Farms dairy for power generation with a reciprocating engine. The project will provide power, efficiency, emissions, and cost/benefit analysis for the system and evaluate its compliance with federal and California emissions standards.

  13. Low thermal resistance power module assembly

    DOE Patents [OSTI]

    Hassani, Vahab; Vlahinos, Andreas; Bharathan, Desikan

    2007-03-13

    A power module assembly with low thermal resistance and enhanced heat dissipation to a cooling medium. The assembly includes a heat sink or spreader plate with passageways or openings for coolant that extend through the plate from a lower surface to an upper surface. A circuit substrate is provided and positioned on the spreader plate to cover the coolant passageways. The circuit substrate includes a bonding layer configured to extend about the periphery of each of the coolant passageways and is made up of a substantially nonporous material. The bonding layer may be solder material which bonds to the upper surface of the plate to provide a continuous seal around the upper edge of each opening in the plate. The assembly includes power modules mounted on the circuit substrate on a surface opposite the bonding layer. The power modules are positioned over or proximal to the coolant passageways.

  14. Project Profile: Innovative Phase Change Thermal Energy Storage Solution for Baseload Power

    Broader source: Energy.gov [DOE]

    Infinia, under the Baseload CSP FOA, is developing and demonstrating a subscale system for baseload CSP power generation using thermal energy storage (TES) in a unique integration of innovative enhancements that improves performance and reduces cost.

  15. Gas turbine power generation from biomass gasification

    SciTech Connect (OSTI)

    Paisley, M.A.; Litt, R.D.; Overend, R.P.; Bain, R.L.

    1994-12-31

    The Biomass Power Program of the US Department of Energy (DOE) has as a major goal the development of cost-competitive technologies for the production of power from renewable biomass crops. The gasification of biomass provides the potential to meet this goal by efficiently and economically producing a renewable source of a clean gaseous fuel suitable for use in high efficiency gas turbines or as a substitute fuel in other combustion devices such as boilers, kilns, or other natural gas fired equipment. This paper discusses the development of the use of the Battelle high-throughput gasification process for power generation systems. Projected process economics are presented along with a description of current experimental operations coupling a gas turbine power generation system to the research scale gasifier.

  16. EA-290-B Ontario Power Generation, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -B Ontario Power Generation, Inc. EA-290-B Ontario Power Generation, Inc. Order authorizing Ontario Power Generation, Inc. to export electric energy to Canada PDF icon EA-290-B ...

  17. EA-290-A Ontario Power Generation, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -A Ontario Power Generation, Inc. EA-290-A Ontario Power Generation, Inc. Order authorizing Ontario Power Generation, Inc. to export electric energy to Canada PDF icon EA-290-A ...

  18. Microelectromechanical power generator and vibration sensor

    DOE Patents [OSTI]

    Roesler, Alexander W.; Christenson, Todd R.

    2006-11-28

    A microelectromechanical (MEM) apparatus is disclosed which can be used to generate electrical power in response to an external source of vibrations, or to sense the vibrations and generate an electrical output voltage in response thereto. The MEM apparatus utilizes a meandering electrical pickup located near a shuttle which holds a plurality of permanent magnets. Upon movement of the shuttle in response to vibrations coupled thereto, the permanent magnets move in a direction substantially parallel to the meandering electrical pickup, and this generates a voltage across the meandering electrical pickup. The MEM apparatus can be fabricated by LIGA or micromachining.

  19. Proton Exchange Membrane Fuel Cells for Electrical Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board ...

  20. Electric Power Generation from Coproduced Fluids from Oil and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power Generation from Coproduced Fluids from Oil and Gas Wells Electric Power Generation from Coproduced Fluids from Oil and Gas Wells The primary objective of this ...

  1. Qingdao Hengfeng Wind Power Generator Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hengfeng Wind Power Generator Co Ltd Jump to: navigation, search Name: Qingdao Hengfeng Wind Power Generator Co Ltd Place: Jiaonan, Shandong Province, China Sector: Wind energy...

  2. Ningxia Yinyi Wind Power Generation Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Yinyi Wind Power Generation Co Ltd Jump to: navigation, search Name: Ningxia Yinyi Wind Power Generation Co Ltd Place: Ningxia Autonomous Region, China Sector: Wind energy Product:...

  3. Overview of Options to Integrate Stationary Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Options to Integrate Stationary Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Sector Overview of Options to Integrate Stationary Power Generation ...

  4. Yangbi Puping Electric Power Generation Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Puping Electric Power Generation Co Ltd Jump to: navigation, search Name: Yangbi Puping Electric Power Generation Co., Ltd Place: Yunnan Province, China Zip: 672500 Sector: Hydro...

  5. Jiangsu Dongsheng Biomass Power Generation Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Dongsheng Biomass Power Generation Co Ltd Jump to: navigation, search Name: Jiangsu Dongsheng Biomass Power Generation Co Ltd Place: Dongtai, Jiangsu Province, China Zip: 224212...

  6. Space Coast Next Generation Solar Energy Center Solar Power Plant...

    Open Energy Info (EERE)

    Coast Next Generation Solar Energy Center Solar Power Plant Jump to: navigation, search Name Space Coast Next Generation Solar Energy Center Solar Power Plant Facility Space Coast...

  7. Langao County Huiyu Hydraulic Power Generation Co Ltd | Open...

    Open Energy Info (EERE)

    Huiyu Hydraulic Power Generation Co Ltd Jump to: navigation, search Name: Langao County Huiyu Hydraulic Power Generation Co. Ltd. Place: Ankang City, Shaanxi Province, China Zip:...

  8. Electric Power Generation from Coproduced Fluids from Oil and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power Generation from Coproduced Fluids from Oil and Gas Wells Principal ... Electric Power Generation from Coproduced Fluids from Oil and Gas Wells 3 | US DOE ...

  9. Siemens Westinghouse Power Generation SWPG | Open Energy Information

    Open Energy Info (EERE)

    Pennsylvania Zip: PA 15235-5 Product: Siemens Westinghouse Power Generation is the fuel cell subsidiary of Siemens Power Generation. It develops and manufactures stationary...

  10. GE Hybrid Power Generation Systems | Open Energy Information

    Open Energy Info (EERE)

    Name: GE Hybrid Power Generation Systems Place: Georgia Zip: Atlanta Product: Focused on fuel cell stack and system development. References: GE Hybrid Power Generation Systems1...

  11. Gunsola Hydro Power Generation Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Gunsola Hydro Power Generation Pvt Ltd Jump to: navigation, search Name: Gunsola Hydro Power Generation Pvt Ltd Place: Dehradun, Uttaranchal, India Sector: Hydro Product:...

  12. Overview of Progress in Thermoelectric Power Generation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview of Thermoelectric Power Generation Technologies in Japan Overview of Thermoelectric Power Generation Technologies in Japan Overview of Japanese Activities in ...

  13. Overview of Thermoelectric Power Generation Technologies in Japan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview of Thermoelectric Power Generation Technologies in Japan Overview of Progress in Thermoelectric Power Generation Technologies in Japan Overview of Japanese Activities in ...

  14. Lincang Zhenai Power Generation Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Zhenai Power Generation Co Ltd Jump to: navigation, search Name: Lincang Zhenai Power Generation Co.,Ltd Place: Lincang, Yunnan Province, China Zip: 677000 Sector: Hydro Product:...

  15. Yiyang Baoyuan Power Generation Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Yiyang Baoyuan Power Generation Co Ltd Jump to: navigation, search Name: Yiyang Baoyuan Power Generation Co., Ltd. Place: Yiyang City, Hunan Province, China Sector: Hydro Product:...

  16. Guizhou Beiyuan Power Generation Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Beiyuan Power Generation Co Ltd Jump to: navigation, search Name: Guizhou Beiyuan Power Generation Co., Ltd Place: Guiyang, Guizhou Province, China Zip: 550002 Sector: Hydro...

  17. Velagapudi Power Generation Ltd VPGL | Open Energy Information

    Open Energy Info (EERE)

    Velagapudi Power Generation Ltd VPGL Jump to: navigation, search Name: Velagapudi Power Generation Ltd. (VPGL) Place: Vijayawada, Andhra Pradesh, India Zip: 520 007 Sector: Biomass...

  18. Datang Jilin Power Generation Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Datang Jilin Power Generation Co Ltd Jump to: navigation, search Name: Datang Jilin Power Generation Co Ltd Place: Changchun, Jilin Province, China Sector: Wind energy Product: Set...

  19. Rayapati Power Generation Pvt Ltd RPGPL | Open Energy Information

    Open Energy Info (EERE)

    Rayapati Power Generation Pvt Ltd RPGPL Jump to: navigation, search Name: Rayapati Power Generation Pvt. Ltd. (RPGPL) Place: Hyderabad, Andhra Pradesh, India Zip: 500 082 Sector:...

  20. Guizhou Dejiang Baishuiquan Power Generation Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Dejiang Baishuiquan Power Generation Co Ltd Jump to: navigation, search Name: Guizhou Dejiang Baishuiquan Power Generation Co., Ltd Place: Tongren City, China Sector: Hydro...

  1. Yunnan Zhongda Yanjin Power Generation Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Zhongda Yanjin Power Generation Co Ltd Jump to: navigation, search Name: Yunnan Zhongda Yanjin Power Generation Co. Ltd. Place: Yunnan Province, China Sector: Hydro Product:...

  2. Hubei Shenzhou New Energy Power Generation Stock Co Ltd | Open...

    Open Energy Info (EERE)

    Hubei Shenzhou New Energy Power Generation Stock Co Ltd Jump to: navigation, search Name: Hubei Shenzhou New Energy Power Generation Stock Co Ltd Place: Hubei Province, China...

  3. Yunnan Jinping Power Generation Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jinping Power Generation Co Ltd Jump to: navigation, search Name: Yunnan Jinping Power Generation Co., Ltd. Place: Kunming, Yunnan Province, China Zip: 650011 Sector: Hydro...

  4. Gansu Diantou Darong Shimenping Power Generation Co Ltd | Open...

    Open Energy Info (EERE)

    Darong Shimenping Power Generation Co Ltd Jump to: navigation, search Name: Gansu Diantou Darong Shimenping Power Generation Co.,Ltd. Place: Lanzhou, Gansu Province, China Zip:...

  5. Yunnan Luoping Seyi Power Generation Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Luoping Seyi Power Generation Co Ltd Jump to: navigation, search Name: Yunnan Luoping Seyi Power Generation Co., Ltd. Place: Qujing, Yunnan Province, China Sector: Hydro Product:...

  6. Wenshan Weilong Power Generation Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wenshan Weilong Power Generation Co Ltd Jump to: navigation, search Name: Wenshan Weilong Power Generation Co., Ltd. Place: Yunnan Province, China Zip: 663000 Sector: Hydro...

  7. TurboGenerator Power Systems{trademark} for distributed generation

    SciTech Connect (OSTI)

    Weinstein, C.H.

    1998-12-31

    The AlliedSignal TurboGenerator is a cost effective, environmentally benign, low cost, highly reliable and simple to maintain generation source. Market Surveys indicate that the significant worldwide market exists, for example, the United States Electric Power Research Institute (EPRI) which is the uniform research facility for domestic electric utilities, predicts that up to 40% of all new generation could be distributed generation by the year 2006. In many parts of the world, the lack of electric infrastructure (transmission and distribution lines) will greatly expedite the commercialization of distributed generation technologies since central plants not only cost more per kW, but also must have expensive infrastructure installed to deliver the product to the consumer. Small, multi-fuel, modular distributed generation units, such as the TurboGenerator, can help alleviate current afternoon brownouts and blackouts prevalent in many parts of the world. Its simple, one moving part concept allows for low technical skill maintenance and its low overall cost allows for wide spread purchase in those parts of the world where capital is sparse. In addition, given the United States emphasis on electric deregulation and the world trend in this direction, consumers of electricity will now have not only the right to choose the correct method of electric service but also a new cost effective choice from which to choose.

  8. Plasma plume MHD power generator and method

    DOE Patents [OSTI]

    Hammer, J.H.

    1993-08-10

    A method is described of generating power at a situs exposed to the solar wind which comprises creating at separate sources at the situs discrete plasma plumes extending in opposed directions, providing electrical communication between the plumes at their source and interposing a desired electrical load in the said electrical communication between the plumes.

  9. Low thermal resistance power module assembly

    DOE Patents [OSTI]

    Hassani, Vahab; Vlahinos, Andreas; Bharathan, Desikan

    2010-12-28

    A power module assembly (400) with low thermal resistance and enhanced heat dissipation to a cooling medium. The assembly includes a heat sink or spreader plate (410) with passageways or openings (414) for coolant that extend through the plate from a lower surface (411) to an upper surface (412). A circuit substrate (420) is provided and positioned on the spreader plate (410) to cover the coolant passageways. The circuit substrate (420) includes a bonding layer (422) configured to extend about the periphery of each of the coolant passageways and is made up of a substantially nonporous material. The bonding layer (422) may be solder material which bonds to the upper surface (412) of the plate to provide a continuous seal around the upper edge of each opening (414) in the plate. The assembly includes power modules (430) mounted on the circuit substrate (420) on a surface opposite the bonding layer (422). The power modules (430) are positioned over or proximal to the coolant passageways.

  10. Renewable Power Generation JV Company | Open Energy Information

    Open Energy Info (EERE)

    JV Company Jump to: navigation, search Name: Renewable Power Generation JV Company Place: India Product: India-based JV to develop green power projects. References: Renewable Power...

  11. Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources

    SciTech Connect (OSTI)

    Hendricks, Terry J.; Hogan, Tim; Case, Eldon D.; Cauchy, Charles J.

    2010-09-01

    The U.S. military uses large amounts of fuel during deployments and battlefield operations. This project sought to develop a lightweight, small form-factor, soldier-portable advanced thermoelectric (TE) system prototype to recover and convert waste heat from various deployed military equipment (i.e., diesel generators/engines, incinerators, vehicles, and potentially mobile kitchens), with the ultimate purpose of producing power for soldier battery charging, advanced capacitor charging, and other battlefield power applications. The technical approach employed microchannel technology, a unique “power panel” approach to heat exchange/TE system integration, and newly-characterized LAST (lead-antimony-silver-telluride) and LASTT (lead-antimony-silver-tin-telluride) TE materials segmented with bismuth telluride TE materials in designing a segmented-element TE power module and system. This project researched never-before-addressed system integration challenges (thermal expansion, thermal diffusion, electrical interconnection, thermal and electrical interfaces) of designing thin “power panels” consisting of alternating layers of thin, microchannel heat exchangers (hot and cold) sandwiching thin, segmented-element TE power generators. The TE properties, structurally properties, and thermal fatigue behavior of LAST and LASTT materials were developed and characterized such that the first segmented-element TE modules using LAST / LASTT materials were fabricated and tested at hot-side temperatures = 400 °C and cold-side temperatures = 40 °C. LAST / LASTT materials were successfully segmented with bismuth telluride and electrically interconnected with diffusion barrier materials and copper strapping within the module electrical circuit. A TE system design was developed to produce 1.5-1.6 kW of electrical energy using these new TE modules from the exhaust waste heat of 60-kW Tactical Quiet Generators as demonstration vehicles.

  12. Spin-on-doping for output power improvement of silicon nanowire array based thermoelectric power generators

    SciTech Connect (OSTI)

    Xu, B. Fobelets, K.

    2014-06-07

    The output power of a silicon nanowire array (NWA)-bulk thermoelectric power generator (TEG) with Cu contacts is improved by spin-on-doping (SOD). The Si NWAs used in this work are fabricated via metal assisted chemical etching (MACE) of 0.010.02 ? cm resistivity n- and p-type bulk, converting ~4% of the bulk thickness into NWs. The MACE process is adapted to ensure crystalline NWs. Current-voltage and Seebeck voltage-temperature measurements show that while SOD mainly influences the contact resistance in bulk, it influences both contact resistance and power factor in NWA-bulk based TEGs. According to our experiments, using Si NWAs in combination with SOD increases the output power by an order of 3 under the same heating power due to an increased power factor, decreased thermal conductivity of the NWA and reduced Si-Cu contact resistance.

  13. Isotope powered Stirling generator for terrestrial applications

    SciTech Connect (OSTI)

    Tingey, G.L.; Sorensen, G.C.; Ross, B.A.

    1995-01-01

    An electric power supply, small enough to be man-portable, is being developed for remote, terrestrial applications. This system is designed for an operating lifetime of five years without maintenance or refueling. A small Radioisotope Stirling Generator (RSG) has been developed. The energy source of the generator is a 60 watt plutonium-238 fuel clad used in the General Purpose Heat Sources (GPHS) developed for space applications. A free piston Stirling Engine drives a linear alternator to convert the heat to power. The system weighs about 7.5 kg and produces 11 watts AC power with a conversion efficiency of 18.5%. Two engine models have been designed, fabricated, and tested to date: (a) a developmental model instrumented to confirm and test parameters, and (b) an electrically heated model with an electrical heater equipped power input leads. Critical components have been tested for 10,000 to 20,000 hours. One complete generator has been operating for over 11,000 hours. Radioisotope heated prototypes are expected to be fabricated and tested in late 1995.

  14. ZERO EMISSION POWER GENERATION TECHNOLOGY DEVELOPMENT

    SciTech Connect (OSTI)

    Ronald Bischoff; Stephen Doyle

    2005-01-20

    Clean Energy Systems (CES) was previously funded by DOE's ''Vision 21'' program. This program provided a proof-of-concept demonstration that CES' novel gas generator (combustor) enabled production of electrical power from fossil fuels without pollution. CES has used current DOE funding for additional design study exercises which established the utility of the CES-cycle for retrofitting existing power plants for zero-emission operations and for incorporation in zero-emission, ''green field'' power plant concepts. DOE funding also helped define the suitability of existing steam turbine designs for use in the CES-cycle and explored the use of aero-derivative turbines for advanced power plant designs. This work is of interest to the California Energy Commission (CEC) and the Norwegian Ministry of Petroleum & Energy. California's air quality districts have significant non-attainment areas in which CES technology can help. CEC is currently funding a CES-cycle technology demonstration near Bakersfield, CA. The Norwegian government is supporting conceptual studies for a proposed 40 MW zero-emission power plant in Stavager, Norway which would use the CES-cycle. The latter project is called Zero-Emission Norwegian Gas (ZENG). In summary, current engineering studies: (1) supported engineering design of plant subsystems applicable for use with CES-cycle zero-emission power plants, and (2) documented the suitability and availability of steam turbines for use in CES-cycle power plants, with particular relevance to the Norwegian ZENG Project.

  15. ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER SYSTEMS AT THE IDAHO NATIONAL LABORATORY BETTER SIMULATES ENVIRONMENTAL CONDITIONS OF SPACE

    SciTech Connect (OSTI)

    J. C. Giglio; A. A. Jackson

    2012-03-01

    The Idaho National Laboratory (INL) is preparing to fuel and test the Advanced Stirling Radioisotope Generator (ASRG), the next generation space power generator. The INL identified the thermal vacuum test chamber used to test past generators as inadequate. A second vacuum chamber was upgraded with a thermal shroud to process the unique needs and to test the full power capability of the new generator. The thermal vacuum test chamber is the first of its kind capable of testing a fueled power system to temperature that accurately simulate space. This paper outlines the new test and set up capabilities at the INL.

  16. Value of Concentrating Solar Power and Thermal Energy Storage

    SciTech Connect (OSTI)

    Sioshansi, R.; Denholm, P.

    2010-02-01

    This paper examines the value of concentrating solar power (CSP) and thermal energy storage (TES) in four regions in the southwestern United States. Our analysis shows that TES can increase the value of CSP by allowing more thermal energy from a CSP plant?s solar field to be used, by allowing a CSP plant to accommodate a larger solar field, and by allowing CSP generation to be shifted to hours with higher energy prices. We analyze the sensitivity of CSP value to a number of factors, including the optimization period, price and solar forecasting, ancillary service sales, capacity value and dry cooling of the CSP plant. We also discuss the value of CSP plants and TES net of capital costs.

  17. Method of operating a thermal engine powered by a chemical reaction

    DOE Patents [OSTI]

    Ross, John; Escher, Claus

    1988-01-01

    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction.

  18. Method of operating a thermal engine powered by a chemical reaction

    DOE Patents [OSTI]

    Ross, J.; Escher, C.

    1988-06-07

    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction. 7 figs.

  19. Coal Fired Power Generation Market Forecast | OpenEI Community

    Open Energy Info (EERE)

    Coal Fired Power Generation Market Forecast Home There are currently no posts in this category. Syndicate...

  20. Coal Fired Power Generation Market Trends | OpenEI Community

    Open Energy Info (EERE)

    Coal Fired Power Generation Market Trends Home There are currently no posts in this category. Syndicate...

  1. Coal Fired Power Generation Market Analysis | OpenEI Community

    Open Energy Info (EERE)

    Coal Fired Power Generation Market Analysis Home There are currently no posts in this category. Syndicate...

  2. Coal Fired Power Generation Market Size | OpenEI Community

    Open Energy Info (EERE)

    Coal Fired Power Generation Market Size Home There are currently no posts in this category. Syndicate...

  3. Global Coal Fired Power Generation Market | OpenEI Community

    Open Energy Info (EERE)

    Coal Fired Power Generation Market Home There are currently no posts in this category. Syndicate content...

  4. Global Biomass Power Generation Market | OpenEI Community

    Open Energy Info (EERE)

    Global Biomass Power Generation Market Home There are currently no posts in this category. Syndicate...

  5. Financing future power generation in Italy

    SciTech Connect (OSTI)

    Esposito, P.

    1998-07-01

    Under Italian law, independent power generation fueled by renewable and so-called ``assimilated'' sources must be given incentives. To implement this provision, a resolution known as ``CIP 6'' and a decree setting forth the procedure to sell such electricity to ENEL were issued. CIP 6 has recently been revoked and new incentives have been announced. In the meantime, CIP 6 continues to apply to various projects which have been approved but not yet constructed.

  6. EV Everywhere Workshop: Power Electronics and Thermal Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ion Breakout Session Report EV Everywhere Batteries Workshop - Pack Design and Optimization Breakout Session Report Power Electronics and Thermal Management Breakout Session

  7. Rapid Modeling of Power Electronics Thermal Management Technologies: Preprint

    SciTech Connect (OSTI)

    Bennion, K.; Kelly, K.

    2009-08-01

    Describes a method of rapidly evaluating trade-offs associated with alternative packaging configurations and thermal management technologies for power electronics packaging.

  8. Parabolic Trough Solar Thermal Electric Power Plants (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2006-07-01

    This fact sheet provides an overview of the potential for parabolic trough solar thermal electric power plants, especially in the Southwestern U.S.

  9. ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER...

    Office of Scientific and Technical Information (OSTI)

    Conference: ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER SYSTEMS AT THE IDAHO NATIONAL LABORATORY BETTER SIMULATES ENVIRONMENTAL CONDITIONS OF SPACE Citation...

  10. Cummins Power Generation SECA Phase 1

    SciTech Connect (OSTI)

    Charles Vesely

    2007-08-17

    The following report documents the progress of the Cummins Power Generation (CPG) SECA Phase 1 SOFC development and final testing under the U.S. Department of Energy Solid State Energy Conversion Alliance (SECA) contract DE-FC26-01NT41244. This report overviews and summarizes CPG and partner research development leading to successful demonstration of the SECA Phase 1 objectives and significant progress towards SOFC commercialization. Significant Phase 1 Milestones: (1) Demonstrated: (a) Operation meeting Phase 1 requirements on commercial natural gas. (b) LPG and Natural Gas CPOX fuel reformers. (c) SOFC systems on dry CPOX reformate. (c) Steam reformed Natural Gas operation. (d) Successful start-up and shut-down of SOFC system without inert gas purge. (e) Utility of stack simulators as a tool for developing balance of plant systems. (2) Developed: (a) Low cost balance of plant concepts and compatible systems designs. (b) Identified low cost, high volume components for balance of plant systems. (c) Demonstrated high efficiency SOFC output power conditioning. (d) Demonstrated SOFC control strategies and tuning methods. The Phase 1 performance test was carried out at the Cummins Power Generation facility in Minneapolis, Minnesota starting on October 2, 2006. Performance testing was successfully completed on January 4, 2007 including the necessary steady-state, transient, efficiency, and peak power operation tests.

  11. Research and Development for Novel Thermal Energy Storage Systems (TES) for Concentrating Solar Power (CSP)

    SciTech Connect (OSTI)

    Faghri, Amir; Bergman, Theodore L; Pitchumani, Ranga

    2013-09-26

    The overall objective was to develop innovative heat transfer devices and methodologies for novel thermal energy storage systems for concentrating solar power generation involving phase change materials (PCMs). Specific objectives included embedding thermosyphons and/or heat pipes (TS/HPs) within appropriate phase change materials to significantly reduce thermal resistances within the thermal energy storage system of a large-scale concentrating solar power plant and, in turn, improve performance of the plant. Experimental, system level and detailed comprehensive modeling approaches were taken to investigate the effect of adding TS/HPs on the performance of latent heat thermal energy storage (LHTES) systems.

  12. Integrated Design and Manufacturing of Thermoelectric Generator Using Thermal Spray

    Broader source: Energy.gov [DOE]

    Presents progress in cost-effective thermoelectric generator fabrication by thermal spraying of thermoelectric materials and other functional layers directly onto automotive exhaust pipes with enhanced performance, durability, and heat transfer

  13. Coupled Monte Carlo neutronics and thermal hydraulics for power reactors

    SciTech Connect (OSTI)

    Bernnat, W.; Buck, M.; Mattes, M.; Zwermann, W.; Pasichnyk, I.; Velkov, K.

    2012-07-01

    The availability of high performance computing resources enables more and more the use of detailed Monte Carlo models even for full core power reactors. The detailed structure of the core can be described by lattices, modeled by so-called repeated structures e.g. in Monte Carlo codes such as MCNP5 or MCNPX. For cores with mainly uniform material compositions, fuel and moderator temperatures, there is no problem in constructing core models. However, when the material composition and the temperatures vary strongly a huge number of different material cells must be described which complicate the input and in many cases exceed code or memory limits. The second problem arises with the preparation of corresponding temperature dependent cross sections and thermal scattering laws. Only if these problems can be solved, a realistic coupling of Monte Carlo neutronics with an appropriate thermal-hydraulics model is possible. In this paper a method for the treatment of detailed material and temperature distributions in MCNP5 is described based on user-specified internal functions which assign distinct elements of the core cells to material specifications (e.g. water density) and temperatures from a thermal-hydraulics code. The core grid itself can be described with a uniform material specification. The temperature dependency of cross sections and thermal neutron scattering laws is taken into account by interpolation, requiring only a limited number of data sets generated for different temperatures. Applications will be shown for the stationary part of the Purdue PWR benchmark using ATHLET for thermal- hydraulics and for a generic Modular High Temperature reactor using THERMIX for thermal- hydraulics. (authors)

  14. Using Backup Generators: Alternative Backup Power Options | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Alternative Backup Power Options Using Backup Generators: Alternative Backup Power Options Using Backup Generators: Alternative Backup Power Options In addition to electric generators powered by fuel, homeowners and business owners may consider alternative backup power options. Battery-stored backup power-Allows you to continue operating lights, refrigerators and other appliances, fans, and communications during a power outage. These systems can connect to renewable sources of energy,

  15. Manure digester and power generating system

    SciTech Connect (OSTI)

    Santina, P.F.; Chatterjee, A.K.

    1988-06-14

    A manure digester and power generating system is described comprising: a mixing tank for receiving manure, and for mixing water with the manure to produce a manure slurry of desired consistency; a closed anaerobic digester tank of fixed volume; the mixing tank being separate from and spaced from the digester tank; pumping and conduit means for transferring the contents of the mixing tank to the digester tank; automatic control means, associated with the pumping means, for monitoring and controlling temperature and volume of the contents of the mixing tank before transfer to the digester tank; means for discharging effluent by-products out the outflow end of the digester tank; a gas-fueled engine and a generator coupled to the engine, for generating electrical power; heater means; means for drawing off biogas from the digester tank and for conducting it to the engine as fuel, and wherein the manure slurry is heated sufficiently, prior to introduction into the digester tank and separately from the digester tank, to prevent temperature shock of already digesting slurry in the digester tank when the slurry is introduced into the digester tank.

  16. Integrated control of next generation power system

    SciTech Connect (OSTI)

    None, None

    2010-02-28

    The multi-agent system (MAS) approach has been applied with promising results for enhancing an electric power distribution circuit, such as the Circuit of the Future as developed by Southern California Edison. These next generation power system results include better ability to reconfigure the circuit as well as the increased capability to improve the protection and enhance the reliability of the circuit. There were four main tasks in this project. The specific results for each of these four tasks and their related topics are presented in main sections of this report. Also, there were seven deliverables for this project. The main conclusions for these deliverables are summarized in the identified subtask section of this report. The specific details for each of these deliverables are included in the “Project Deliverables” section at the end of this Final Report.

  17. Innovative Phase Change Thermal Energy Storage Solution for Baseload Power

    Office of Scientific and Technical Information (OSTI)

    Phase 1 Final Report (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: Innovative Phase Change Thermal Energy Storage Solution for Baseload Power Phase 1 Final Report Citation Details In-Document Search Title: Innovative Phase Change Thermal Energy Storage Solution for Baseload Power Phase 1 Final Report The primary purpose of this project is to develop and validate an innovative, scalable phase change salt thermal energy storage (TES) system that can

  18. Thermal Stress and Reliability for Advanced Power Electronics and Electric

    Broader source: Energy.gov (indexed) [DOE]

    Machines | Department of Energy 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ape_14_okeefe.pdf More Documents & Publications Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Power Electronic Thermal System Performance and Integration Thermal Performance and Reliability of Bonded Interfaces

  19. High power terahertz generation using 1550 nm plasmonic photomixers...

    Office of Scientific and Technical Information (OSTI)

    through use of plasmonic contact electrodes, and by mitigating thermal breakdown at high optical pump power levels through use of a low duty cycle optical pump. The...

  20. Geek-Up[04.01.2011]: Charting Wind, Thermal, Hydro Generation

    Broader source: Energy.gov [DOE]

    Check out Bonneville Power Administration’s new near real-time energy monitoring – it displays the output of all wind, thermal and hydro generation in the agency’s balancing authority against its load. Updated every five minutes, it’s a great resource for universities, research laboratories and other utilities.

  1. EcoPower Generation LLC | Open Energy Information

    Open Energy Info (EERE)

    search Name: ecoPower Generation LLC Place: Lexington, Kentucky Zip: 40504 Sector: Bioenergy Product: Kentucky-based wood-powered bioenergy plant developer that has proposed a...

  2. Datang Jilin Resourceful New Energy Power Generation Co Ltd formerly...

    Open Energy Info (EERE)

    Datang Jilin Resourceful New Energy Power Generation Co Ltd formerly known as Roaring 40s and Datan Jump to: navigation, search Name: Datang Jilin Resourceful New Energy Power...

  3. Fuel Cell Comparison of Distributed Power Generation Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Fuel Cycle Comparison of Distributed Power Generation Technologies Energy Systems ... or UChicago Argonne, LLC. ANLESD08-4 Fuel Cycle Comparison of Distributed Power ...

  4. Power Electronics and Thermal Management Breakout Sessions

    Broader source: Energy.gov (indexed) [DOE]

    THERMAL MANAGEMENT EV Everywhere Workshop July 24, 2012 Breakout Session 1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets *...

  5. Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas ...

  6. Social Acceptance of Geothermal Power Generation in Japan | Open...

    Open Energy Info (EERE)

    Power Generation in Japan Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Social Acceptance of Geothermal Power Generation in Japan Abstract In...

  7. Low Cost High Concentration PV Systems for Utility Power Generation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Low Cost High Concentration PV Systems for Utility Power Generation An overview of the Low Cost High Concentration PV Systems for Utility Power Generation project to transition Amonix's concentrating photovoltaic (PV) systems from low-volume to high-volume production. PDF icon Low Cost High Concentration PV Systems for Utility Power Generation More Documents & Publications Solar America Initiative Low Cost High Concentration PV Systems for Utility Power Generation

  8. Low Cost High Concentration PV Systems for Utility Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Concentrating Photovoltaic Power System,Reaching Grid Parity ... for Residential and Commercial Photovoltaic Energy Generation,A Value Chain ...

  9. New power politics will determine generation's path

    SciTech Connect (OSTI)

    Maize, K.; Neville, A.; Peltier, R.

    2009-01-15

    The US power industry's story in 2009 will be all about change, to borrow a now-familiar theme. Though the new administration's policy specifics had not been revealed as this report was prepared, it appears that flat load growth in 2009 will give the new Obama administration a unique opportunity to formulate new energy policy without risking that the lights will go out. New coal projects are now facing increasing difficulties. It looks as though the electricity supply industry will continue to muddle through. It may see an advancement in infrastructure investment, significant new generation or new technology development. It also faces the possibility that policies necessary to achieving those goals will not materialize, for political and economic reasons. 4 figs.

  10. Overview of Progress in Thermoelectric Power Generation Technologies in

    Broader source: Energy.gov (indexed) [DOE]

    Japan | Department of Energy Presents progress in government- and private-funded thermoelectric power generation R&D in Japan PDF icon kajikawa.pdf More Documents & Publications Overview of Thermoelectric Power Generation Technologies in Japan Overview of Thermoelectric Power Generation Technologies in Japan Overview of Japanese Activities in Thermoelectrics

  11. Concentrating Solar Power Thermal Storage System Basics

    Broader source: Energy.gov [DOE]

    One challenge facing the widespread use of solar energy is reduced or curtailed energy production when the sun sets or is blocked by clouds. Thermal energy storage provides a workable solution to this challenge.

  12. NREL: Concentrating Solar Power Research - Parabolic Trough Thermal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of solar power Help reduce the cost of solar electricity. Parabolic trough technology currently has one thermal energy storage option-a two-tank, indirect, molten-salt system. ...

  13. Minnesota Power- Solar-Thermal Water Heating Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Minnesota Power offers a 25% rebate for qualifying solar thermal water heating systems. The maximum award for single-family customers is $2,000 per customer; $4,000 for 2-3 family unit buildings;...

  14. Power Generation Market Watch Cell Processing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Craciun received the diploma in power systems from the University 'Politehnica' of Bucharest, Romania. Abraham Ellis has a Ph.D. in electrical engineering and power systems from ...

  15. PROJECT PROFILE: Advanced Thermal Management for Higher Module Power Output

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Advanced Thermal Management for Higher Module Power Output PROJECT PROFILE: Advanced Thermal Management for Higher Module Power Output Funding Opportunity: SuNLaMP SunShot Subprogram: Photovoltaics Location: National Renewable Energy Laboratory, Golden, CO Amount Awarded: $2,816,911 Higher temperatures of photovoltaic (PV) modules are causing lower than projected module performance. For example, a free-standing Si PV module has 0.4% decrease in efficiency per degree

  16. Accelerator Generation and Thermal Separation (AGATS) of Technetium-99m

    ScienceCinema (OSTI)

    None

    2013-05-28

    Accelerator Generation and Thermal Separation (AGATS) of Technetium-99m is a linear electron accelerator-based technology for producing medical imaging radioisotopes from a separation process that heats, vaporizes and condenses the desired radioisotope. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.

  17. Power Electronics and Thermal Management Breakout Session

    Broader source: Energy.gov (indexed) [DOE]

    Reduce Energy Storage Requirements Year Cost (kW) Specific Power (kWkg) Power Density (kWl) Efficiency 2010* 19 1.08 2.60 >90% 2012 17 1.12 2.86 >91% 2015 12 1.17 3.53...

  18. Metal Hydrides for High-Temperature Power Generation

    SciTech Connect (OSTI)

    Ronnebro, Ewa; Whyatt, Greg A.; Powell, Michael R.; Westman, Matthew P.; Zheng, Feng; Fang, Zhigang Zak

    2015-08-10

    Metal hydrides can be utilized for hydrogen storage and for thermal energy storage (TES) applications. By using TES with solar technologies, heat can be stored from sun energy to be used later which enables continuous power generation. We are developing a TES technology based on a dual-bed metal hydride system, which has a high-temperature (HT) metal hydride operating reversibly at 600-800°C to generate heat as well as a low-temperature (LT) hydride near room temperature that is used for hydrogen storage during sun hours until there is a need to produce electricity, such as during night time, a cloudy day, or during peak hours. We proceeded from selecting a high-energy density, low-cost HT-hydride based on performance characterization on gram size samples, to scale-up to kilogram quantities and design, fabrication and testing of a 1.5kWh, 200kWh/m3 bench-scale TES prototype based on a HT-bed of titanium hydride and a hydrogen gas storage instead of a LT-hydride. COMSOL Multiphysics was used to make performance predictions for cylindrical hydride beds with varying diameters and thermal conductivities. Based on experimental and modeling results, a bench-scale prototype was designed and fabricated and we successfully showed feasibility to meet or exceed all performance targets.

  19. Metal Hydrides for High-Temperature Power Generation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ronnebro, Ewa; Whyatt, Greg A.; Powell, Michael R.; Westman, Matthew P.; Zheng, Feng; Fang, Zhigang Zak

    2015-08-10

    Metal hydrides can be utilized for hydrogen storage and for thermal energy storage (TES) applications. By using TES with solar technologies, heat can be stored from sun energy to be used later which enables continuous power generation. We are developing a TES technology based on a dual-bed metal hydride system, which has a high-temperature (HT) metal hydride operating reversibly at 600-800°C to generate heat as well as a low-temperature (LT) hydride near room temperature that is used for hydrogen storage during sun hours until there is a need to produce electricity, such as during night time, a cloudy day, ormore » during peak hours. We proceeded from selecting a high-energy density, low-cost HT-hydride based on performance characterization on gram size samples, to scale-up to kilogram quantities and design, fabrication and testing of a 1.5kWh, 200kWh/m3 bench-scale TES prototype based on a HT-bed of titanium hydride and a hydrogen gas storage instead of a LT-hydride. COMSOL Multiphysics was used to make performance predictions for cylindrical hydride beds with varying diameters and thermal conductivities. Based on experimental and modeling results, a bench-scale prototype was designed and fabricated and we successfully showed feasibility to meet or exceed all performance targets.« less

  20. Thermal Energy Corporation Combined Heat and Power Project

    SciTech Connect (OSTI)

    E. Bruce Turner; Tim Brown; Ed Mardiat

    2011-12-31

    To meet the planned heating and cooling load growth at the Texas Medical Center (TMC), Thermal Energy Corporation (TECO) implemented Phase 1 of a Master Plan to install an additional 32,000 tons of chilled water capacity, a 75,000 ton-hour (8.8 million gallon) Thermal Energy Storage (TES) tank, and a 48 MW Combined Heat and Power (CHP) system. The Department of Energy selected TMC for a $10 million grant award as part of the Financial Assistance Funding Opportunity Announcement, U.S. Department of Energy National Energy Technology, Recovery Act: Deployment of Combined Heat and Power (CHP) Systems, District Energy Systems, Waste Energy Recovery Systems, and Efficiency Industrial Equipment Funding Opportunity Number: DE-FOA-0000044 to support the installation of a new 48 MW CHP system at the TMC located just outside downtown Houston. As the largest medical center in the world, TMC is home to many of the nation??s best hospitals, physicians, researchers, educational institutions, and health care providers. TMC provides care to approximately six million patients each year, and medical instruction to over 71,000 students. A medical center the size of TMC has enormous electricity and thermal energy demands to help it carry out its mission. Reliable, high-quality steam and chilled water are of utmost importance to the operations of its many facilities. For example, advanced medical equipment, laboratories, laundry facilities, space heating and cooling all rely on the generation of heat and power. As result of this project TECO provides this mission critical heating and cooling to TMC utilizing a system that is both energy-efficient and reliable since it provides the capability to run on power independent of the already strained regional electric grid. This allows the medical center to focus on its primary mission ?? providing top quality medical care and instruction ?? without worrying about excessive energy costs or the loss of heating and cooling due to the risk of power outages. TECO??s operation is the largest Chilled Water District Energy System in the United States. The company used DOE??s funding to help install a new high efficiency CHP system consisting of a Combustion Turbine and a Heat Recovery Steam Generator. This CHP installation was just part of a larger project undertaken by TECO to ensure that it can continue to meet TMC??s growing needs. The complete efficiency overhaul that TECO undertook supported more than 1,000 direct and indirect jobs in manufacturing, engineering, and construction, with approximately 400 of those being jobs directly associated with construction of the combined heat and power plant. This showcase industrial scale CHP project, serving a critical component of the nation??s healthcare infrastructure, directly and immediately supported the energy efficiency and job creation goals established by ARRA and DOE. It also provided an unsurpassed model of a district energy CHP application that can be replicated within other energy intensive applications in the industrial, institutional and commercial sectors.

  1. Technical and economic assessment on coal-fired power generation FGD in

    Office of Scientific and Technical Information (OSTI)

    China (Conference) | SciTech Connect Conference: Technical and economic assessment on coal-fired power generation FGD in China Citation Details In-Document Search Title: Technical and economic assessment on coal-fired power generation FGD in China Serious pollution of SO{sub 2} and acid deposition have emerged in China in the latest decade due to the stagnant growth of coal use. As a large consumer of energy, thermal power generation takes up about 30% of the total coal consumption and will

  2. Generator powered electrically heated diesel particulate filter

    DOE Patents [OSTI]

    Gonze, Eugene V; Paratore, Jr., Michael J

    2014-03-18

    A control circuit for a vehicle powertrain includes a switch that selectivity interrupts current flow between a first terminal and a second terminal. A first power source provides power to the first terminal and a second power source provides power to the second terminal and to a heater of a heated diesel particulate filter (DPF). The switch is opened during a DPF regeneration cycle to prevent the first power source from being loaded by the heater while the heater is energized.

  3. Direct charge radioisotope activation and power generation

    DOE Patents [OSTI]

    Lal, Amit; Li, Hui; Blanchard, James P.; Henderson, Douglass L.

    2002-01-01

    An activator has a base on which is mounted an elastically deformable micromechanical element that has a section that is free to be displaced toward the base. An absorber of radioactively emitted particles is formed on the base or the displaceable section of the deformable element and a source is formed on the other of the displaceable section or the base facing the absorber across a small gap. The radioactive source emits charged particles such as electrons, resulting in a buildup of charge on the absorber, drawing the absorber and source together and storing mechanical energy as the deformable element is bent. When the force between the absorber and the source is sufficient to bring the absorber into effective electrical contact with the source, discharge of the charge between the source and absorber allows the deformable element to spring back, releasing the mechanical energy stored in the element. An electrical generator such as a piezoelectric transducer may be secured to the deformable element to convert the released mechanical energy to electrical energy that can be used to provide power to electronic circuits.

  4. Power Electronics and Thermal Management Breakout Session

    Broader source: Energy.gov [DOE]

    Presentation given at the EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL.

  5. Rankline-Brayton engine powered solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L.

    2012-03-13

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  6. Rankine-Brayton engine powered solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L.

    2009-12-29

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  7. Ames Lab 101: Next Generation Power Lines

    ScienceCinema (OSTI)

    Russell, Alan

    2012-08-29

    Ames Laboratory scientist Alan Russell discusses the need to develop new power lines that are stronger and more conductive as a way to address the problem of the nation's aging and inadequate power grid.

  8. Use of Liquid Electrodes for Magnetohydrodynamic Power Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applications | Princeton Plasma Physics Lab Use of Liquid Electrodes for Magnetohydrodynamic Power Generation Applications The use of liquid electrodes in magnetohydrodynamic (MHD) power generation applications is proposed as a means of extending the lifetime of the electrodes in these systems. Previous studies utilized various metals, metal alloys and ceramic materials as electrodes but all suffered from erosion processes in the harsh gas stream used in MHD power generation. This invention

  9. Uncertainty Reduction in Power Generation Forecast Using Coupled

    Office of Scientific and Technical Information (OSTI)

    Wavelet-ARIMA (Conference) | SciTech Connect Uncertainty Reduction in Power Generation Forecast Using Coupled Wavelet-ARIMA Citation Details In-Document Search Title: Uncertainty Reduction in Power Generation Forecast Using Coupled Wavelet-ARIMA In this paper, we introduce a new approach without implying normal distributions and stationarity of power generation forecast errors. In addition, it is desired to more accurately quantify the forecast uncertainty by reducing prediction intervals of

  10. Investigation of thermal storage and steam generator issues

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    A review and evaluation of steam generator and thermal storage tank designs for commercial nitrate salt technology showed that the potential exists to procure both on a competitive basis from a number of qualified vendors. The report outlines the criteria for review and the results of the review, which was intended only to assess the feasibility of each design, not to make a comparison or select the best concept.

  11. Baseload Concentrating Solar Power Generation | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The following projects were selected under this competitive solicitation: Abengoa: Advanced Nitrate Salt Central Receiver Power Plant eSolar: Modular and Scalable Baseload Molten ...

  12. Power Generation Asset Management Technology Roadmap M

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conditions degrade, and the likelihood of equipment damage or failure increases. Such failures can result in forced outages of units that can hamper BPA's ability to meet power...

  13. A Power Energy Generation Systems Ltd APWR | Open Energy Information

    Open Energy Info (EERE)

    Systems Ltd (APWR) Place: Shenyang, Liaoning Province, China Zip: 110021 Product: Chinese-based provider of power generation systems, acting as the holding company of Liaoning...

  14. Power Generating Stationary Engines Nox Control: A Closed Loop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Generating Stationary Engines Nox Control: A Closed Loop Control Technology Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) ...

  15. A Flashing Binary Combined Cycle For Geothermal Power Generation...

    Open Energy Info (EERE)

    Flashing Binary Combined Cycle For Geothermal Power Generation Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Flashing Binary Combined Cycle...

  16. WWTP Power Generation Station Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    WWTP Power Generation Station Sector Biomass Facility Type Non-Fossil Waste Location Alameda County, California Coordinates 37.6016892, -121.7195459 Show Map Loading map......

  17. Proactive Strategies for Designing Thermoelectric Materials for Power Generation

    Broader source: Energy.gov [DOE]

    New p-type and n-type multiple-rattler skutterudite thermoelectric materials design, synthesis, fabrication, and characterization for power generation using vehicle exhaust waste heat.

  18. Kraftwerk Union KWU Siemens Power Generation | Open Energy Information

    Open Energy Info (EERE)

    Services Product: KWU is a provider of components and services to the commercial nuclear utility industry. References: Kraftwerk Union (KWU) - Siemens Power Generation.1...

  19. Mabian Xianjiapuhe Power Generation Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Province, China Zip: 614600 Sector: Hydro Product: Sichuan-based developer of small hydro plants. References: Mabian Xianjiapuhe Power Generation Co., Ltd.1 This article is...

  20. Mayang Jinjiang Power Generation Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Place: Hunan Province, China Zip: 419400 Sector: Hydro Product: China-based small hydro project developer. References: Mayang Jinjiang Power Generation Co., Ltd1 This...

  1. Luquan Yulong Power Generation Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Province, China Zip: 651500 Sector: Hydro Product: Kunming-based developer of small hydro plants. References: Luquan Yulong Power Generation Co., Ltd1 This article is a...

  2. Gill Power Generation Company Pvt Ltd GPGC | Open Energy Information

    Open Energy Info (EERE)

    Chandigarh, Chandigarh, India Zip: 160010, Sector: Hydro Product: Chandigarh-based small hydro project developer. References: Gill Power Generation Company Pvt. Ltd. (GPGC)1...

  3. June 2014 Most Viewed Documents for Power Generation And Distribution...

    Office of Scientific and Technical Information (OSTI)

    of Geothermal Electric Projects Entingh, Daniel J. (1993) 35 > PYRAMID LAKE RENEWEABLE ENERGY PLAN HIGH DESERT GEOCULTURE, LLC (2009) 33 > Next Generation Geothermal Power ...

  4. March 2014 Most Viewed Documents for Power Generation And Distribution...

    Office of Scientific and Technical Information (OSTI)

    S.A. (1981) 48 > Employment Impacts of Geothermal Electric Projects Entingh, Daniel J. (1993) 27 > Next Generation Geothermal Power Plants Brugman, John; Hattar, Mai; ...

  5. PUCT - Registration Form for Power Generation Companies and Self...

    Open Energy Info (EERE)

    PUCT - Registration Form for Power Generation Companies and Self-Generators Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: PUCT - Registration Form for...

  6. PUCT Substantive Rule 25.109 - Registration of Power Generation...

    Open Energy Info (EERE)

    PUCT Substantive Rule 25.109 - Registration of Power Generation Companies and Self-Generators Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  7. Power Generating Inc | Open Energy Information

    Open Energy Info (EERE)

    A privately held Texas corporation, which provides a direct-fired, biomass-fueled cogeneration system that generates electricity and process heat while consuming on-site...

  8. Previous Wind Power Announcements (generation/wind)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    following as the list of resources with Western Renewable Energy Generation Information System (WREGIS) Renewable Energy Certificates (RECs) associated with them that will be...

  9. Power Electronics Thermal Management R&D (Presentation)

    SciTech Connect (OSTI)

    Waye, S.

    2014-11-01

    This project will investigate and develop thermal-management strategies for wide bandgap (WBG)-based power electronics systems. Research will be carried out to deal with thermal aspects at the module- and system-level. Module-level research will focus on die- and substrate-integrated cooling strategies and heat-transfer enhancement technologies. System-level research will focus on thermal-management strategies for the entire power electronics system to enable smart packaging solutions. One challenge with WBG device-based power electronics is that although losses in the form of heat may be lower, the footprint of the components is also likely to be reduced to reduce cost, weight, and volume. Combined with higher operational temperatures, this creates higher heat fluxes which much be removed from a smaller footprint, requiring advanced cooling strategies.

  10. Thermal Performance and Reliability of Bonded Interfaces for Power Electronics Packaging Applications (Presentation)

    SciTech Connect (OSTI)

    Devoto, D.

    2013-07-01

    This presentation discusses the thermal performance and reliability of bonded interfaces for power electronics packaging applications.

  11. Solar thermal power systems. Annual technical progress report, FY 1979

    SciTech Connect (OSTI)

    Braun, Gerald W.

    1980-06-01

    The Solar Thermal Power Systems Program is the key element in the national effort to establish solar thermal conversion technologies within the major sectors of the national energy market. It provides for the development of concentrating mirror/lens heat collection and conversion technologies for both central and dispersed receiver applications to produce electricity, provide heat at its point of use in industrial processes, provide heat and electricity in combination for industrial, commercial, and residential needs, and ultimately, drive processes for production of liquid and gaseous fuels. This report is the second Annual Technical Progress Report for the Solar Thermal Power Systems Program and is structured according to the organization of the Solar Thermal Power Systems Program on September 30, 1979. Emphasis is on the technical progress of the projects rather than on activities and individual contractor efforts. Each project description indicates its place in the Solar Thermal Power Systems Program, a brief history, the significant achievements and real progress during FY 1979, also future project activities as well as anticipated significant achievements are forecast. (WHK)

  12. Synchrophasor Applications for Wind Power Generation

    SciTech Connect (OSTI)

    Muljadi, E.; Zhang, Y. C.; Allen, A.; Singh, M.; Gevorgian, V.; Wan, Y. H.

    2014-02-01

    The U.S. power industry is undertaking several initiatives that will improve the operations of the electric power grid. One of those is the implementation of wide-area measurements using phasor measurement units to dynamically monitor the operations and status of the network and provide advanced situational awareness and stability assessment. The overviews of synchrophasors and stability analyses in this report are intended to present the potential future applications of synchrophasors for power system operations under high penetrations of wind and other renewable energy sources.

  13. EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI

    Energy Savers [EERE]

    | Department of Energy 6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI May 3, 2010 EA-1726: Final Environmental Assessment Loan Guarantee to Kahuku Wind Power, LLC for Construction of the Kahuku Wind Power Facility in Kahuku, O'ahu, Hawai'i May 13, 2010 Kahuku Wind Power Biological Opinion Kahuku Wind Power, LLC, Construction of the Kahuku Wind Power Facility in Kahuku, O'ahu, Hawaii May 27, 2010

  14. Analytical thermal model validation for Cassini radioisotope thermoelectric generator

    SciTech Connect (OSTI)

    Lin, E.I.

    1997-12-31

    The Saturn-bound Cassini spacecraft is designed to rely, without precedent, on the waste heat from its three radioisotope thermoelectric generators (RTGs) to warm the propulsion module subsystem, and the RTG end dome temperature is a key determining factor of the amount of waste heat delivered. A previously validated SINDA thermal model of the RTG was the sole guide to understanding its complex thermal behavior, but displayed large discrepancies against some initial thermal development test data. A careful revalidation effort led to significant modifications and adjustments of the model, which result in a doubling of the radiative heat transfer from the heat source support assemblies to the end domes and bring up the end dome and flange temperature predictions to within 2 C of the pertinent test data. The increased inboard end dome temperature has a considerable impact on thermal control of the spacecraft central body. The validation process offers an example of physically-driven analytical model calibration with test data from not only an electrical simulator but also a nuclear-fueled flight unit, and has established the end dome temperatures of a flight RTG where no in-flight or ground-test data existed before.

  15. Novel Molten Salts Thermal Energy Storage for Concentrating Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation This presentation ...

  16. Project Profile: Innovative Thermal Energy Storage for Baseload...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Energy Storage for Baseload Solar Power Generation Project Profile: Innovative Thermal Energy Storage for Baseload Solar Power Generation University of South Florida logo ...

  17. Reversible Metal Hydride Thermal Energy Storage for High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reversible Metal Hydride Thermal Energy Storage for High Temperature Power Generation Systems Reversible Metal Hydride Thermal Energy Storage for High Temperature Power Generation ...

  18. Nuclear power generation and fuel cycle report 1997

    SciTech Connect (OSTI)

    1997-09-01

    Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.

  19. Heat Transfer and Thermophotovoltaic Power Generation in Oil-fired Heating Systems

    SciTech Connect (OSTI)

    Butcher, T.; Hammonds, J.S.; Horne, E.; Kamath, B.; Carpenter, J.; Woods, D.R.

    2010-10-21

    The focus of this study is the production of electric power in an oil-fired, residential heatingsystem using thermophotovoltaic (TPV) conversion devices. This work uses experimental, computational, and analytical methods to investigate thermal mechanisms that drive electric power production in the TPV systems. An objective of this work is to produce results that will lead to the development of systems that generate enough electricity such that the boiler is self-powering. An important design constraint employed in this investigation is the use of conventional, yellow-flame oil burners, integrated with a typical boiler. The power production target for the systems developed here is 100 W - the power requirement for a boiler that uses low-power auxiliary components. The important heattransfer coupling mechanisms that drive power production in the systems studied are discussed. The results of this work may lead to the development of systems that export power to the home electric system.

  20. Choosing Actuators for Automatic Control Systems of Thermal Power Plants

    SciTech Connect (OSTI)

    Gorbunov, A. I.; Serdyukov, O. V.

    2015-03-15

    Two types of actuators for automatic control systems of thermal power plants are analyzed: (i) pulse-controlled actuator and (ii) analog-controlled actuator with positioning function. The actuators are compared in terms of control circuit, control accuracy, reliability, and cost.

  1. EV Everywhere Workshop: Power Electronics and Thermal Management Breakout

    Broader source: Energy.gov (indexed) [DOE]

    Session Report | Department of Energy 9b_traction_drive_systems_ed.pdf More Documents & Publications EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report EV Everywhere Batteries Workshop - Pack Design and Optimization Breakout Session Report Power Electronics and Thermal Management Breakout Session

  2. Nuclear power generation and fuel cycle report 1996

    SciTech Connect (OSTI)

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  3. Protective, Modular Wave Power Generation System

    SciTech Connect (OSTI)

    Vvedensky, Jane M.; Park, Robert Y.

    2012-11-27

    The concept of small wave energy conversion modules that can be built into large, scalable arrays, in the same vein as solar panels, has been developed. This innovation lends itself to an organic business and development model, and enables the use of large-run manufacturing technology to reduce system costs. The first prototype module has been built to full-scale, and tested in a laboratory wave channel. The device has been shown to generate electricity and dissipate wave energy. Improvements need to be made to the electrical generator and a demonstration of an array of modules should be made in natural conditions.

  4. Generating power with drained coal mine methane

    SciTech Connect (OSTI)

    2005-09-01

    The article describes the three technologies most commonly used for generating electricity from coal mine methane: internal combustion engines, gas turbines, and microturbines. The most critical characteristics and features of these technologies, such as efficiency, output and size are highlighted. 5 refs.

  5. Power generating system and method utilizing hydropyrolysis

    DOE Patents [OSTI]

    Tolman, R.

    1986-12-30

    A vapor transmission cycle is described which burns a slurry of coal and water with some of the air from the gas turbine compressor, cools and cleans the resulting low-Btu fuel gas, burns the clean fuel gas with the remaining air from the compressor, and extracts the available energy in the gas turbine. The cycle lends itself to combined-cycle cogeneration for the production of steam, absorption cooling, and electric power.

  6. A mechatronic power boosting design for piezoelectric generators

    SciTech Connect (OSTI)

    Liu, Haili; Liang, Junrui Ge, Cong

    2015-10-05

    It was shown that the piezoelectric power generation can be boosted by using the synchronized switch power conditioning circuits. This letter reports a self-powered and self-sensing mechatronic design in substitute of the auxiliary electronics towards a compact and universal synchronized switch solution. The design criteria are derived based on the conceptual waveforms and a two-degree-of-freedom analytical model. Experimental result shows that, compared to the standard bridge rectifier interface, the mechatronic design leads to an extra 111% increase of generated power from the prototyped piezoelectric generator under the same deflection magnitude excitation. The proposed design has introduced a valuable physical insight of electromechanical synergy towards the improvement of piezoelectric power generation.

  7. Combined fuel and air staged power generation system

    SciTech Connect (OSTI)

    Rabovitser, Iosif K; Pratapas, John M; Boulanov, Dmitri

    2014-05-27

    A method and apparatus for generation of electric power employing fuel and air staging in which a first stage gas turbine and a second stage partial oxidation gas turbine power operated in parallel. A first portion of fuel and oxidant are provided to the first stage gas turbine which generates a first portion of electric power and a hot oxidant. A second portion of fuel and oxidant are provided to the second stage partial oxidation gas turbine which generates a second portion of electric power and a hot syngas. The hot oxidant and the hot syngas are provided to a bottoming cycle employing a fuel-fired boiler by which a third portion of electric power is generated.

  8. Plasma plume MHD power generator and method

    DOE Patents [OSTI]

    Hammer, James H.

    1993-01-01

    Highly-conducting plasma plumes are ejected across the interplanetary magnetic field from a situs that is moving relative to the solar wind, such as a spacecraft or an astral body, such as the moon, having no magnetosphere that excludes the solar wind. Discrete plasma plumes are generated by plasma guns at the situs extending in opposite directions to one another and at an angle, preferably orthogonal, to the magnetic field direction of the solar wind plasma. The opposed plumes are separately electrically connected to their source by a low impedance connection. The relative movement between the plasma plumes and the solar wind plasma creates a voltage drop across the plumes which is tapped by placing the desired electrical load between the electrical connections of the plumes to their sources. A portion of the energy produced may be used in generating the plasma plumes for sustained operation.

  9. Next-Generation Power Electronics: Reducing Energy Waste and Powering the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Future | Department of Energy Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future January 15, 2014 - 3:53pm Addthis Watch the video above to learn how wide bandgap semiconductors could impact clean energy technology and our daily lives. | Video by Sarah Gerrity and Matty Greene, Energy Department Marina Sofos Marina Sofos Sensors and Controls Technology Manager From your laptop

  10. Photovoltaic Power Generation in Flagstaff | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Power Generation in Flagstaff Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click...

  11. 1,"Elm Road Generating Station","Coal","Wisconsin Electric Power...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Elm Road Generating Station","Coal","Wisconsin Electric Power Co",1268 2,"Point Beach ...

  12. XingYi Power Generation Company Ltd | Open Energy Information

    Open Energy Info (EERE)

    City, Guizhou Province, China Sector: Hydro Product: Guizhou-based developer of a small hydro plant. References: XingYi Power Generation Company Ltd.1 This article is a stub....

  13. Biomass Power Generation Market Capacity is Estimated to Reach...

    Open Energy Info (EERE)

    Biomass Power Generation Market Capacity is Estimated to Reach 122,331.6 MW by 2022 Home > Groups > Renewable Energy RFPs Wayne31jan's picture Submitted by Wayne31jan(150)...

  14. North Brawley Power Plant Placed in Service; Currently Generating...

    Open Energy Info (EERE)

    Placed in Service; Currently Generating 17 MW; Additional Operations Update Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: North Brawley Power Plant...

  15. Electrochemical Membrane for Carbon Dioxide Separation and Power Generation

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Electrochemical Membrane for Carbon Dioxide Separation and Power Generation Citation Details In-Document Search Title: Electrochemical Membrane for Carbon Dioxide Separation and Power Generation uelCell Energy, Inc. (FCE) has developed a novel system concept for separation of carbon dioxide (CO2) from greenhouse gas (GHG) emission sources using an electrochemical membrane (ECM). The salient feature of the ECM is its capability to produce electric

  16. Smith River Rancheria - Wind and Biomass Power Generation Feasibility Study

    Energy Savers [EERE]

    DOE Tribal Energy Program Program Review Meeting October 17 - 21, 2005 Greg Retzlaff Strategic Energy Solutions, Inc. Wind & Biomass Power Generation Smith River Rancheria 2 Smith River Rancheria * Coastal Community of 600 * Members Living in Oregon * Next Door to Booming Community * Additional Development Opportunities Wind & Biomass Power Generation Smith River Rancheria 3 Location * Northern California Location * Members in Oregon * Multiple Jurisdictions - Federal - Del Norte County

  17. Lamp for generating high power ultraviolet radiation

    DOE Patents [OSTI]

    Morgan, Gary L.; Potter, James M.

    2001-01-01

    The apparatus is a gas filled ultraviolet generating lamp for use as a liquid purifier. The lamp is powred by high voltage AC, but has no metallic electrodes within or in contact with the gas enclosure which is constructed as two concentric quartz cylinders sealed together at their ends with the gas fill between the cylinders. Cooling liquid is pumped through the volume inside the inner quartz cylinder where an electrically conductive pipe spaced from the inner cylinder is used to supply the cooling liquid and act as the high voltage electrode. The gas enclosure is enclosed within but spaced from a metal housing which is connected to operate as the ground electrode of the circuit and through which the treated fluid flows. Thus, the electrical circuit is from the central pipe, and through the cooling liquid, the gas enclosure, the treated liquid on the outside of the outer quartz cylinder, and to the housing. The high voltage electrode is electrically isolated from the source of cooling liquid by a length of insulated hose which also supplies the cooling liquid.

  18. Solar Thermal Power Plants - Energy Explained, Your Guide To Understanding

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy - Energy Information Administration Power Plants Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From

  19. High Reliability, High TemperatureThermoelectric Power Generation Materials

    Broader source: Energy.gov (indexed) [DOE]

    and Technologies | Department of Energy Key technologies and system approaches to excellent record of thermoelectric power sources in deep space missions and development of higher performance TE materials for the next generation systems PDF icon fleurial.pdf More Documents & Publications Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications Waste Heat Recovery

  20. Radiolytic and thermal generation of gases from Hanford grout samples

    SciTech Connect (OSTI)

    Meisel, D.; Jonah, C.D.; Kapoor, S.; Matheson, M.S.; Mulac, W.A.

    1993-10-01

    Gamma irradiation of WHC-supplied samples of grouted Tank 102-AP simulated nonradioactive waste has been carried out at three dose rates, 0.25, 0.63, and 130 krad/hr. The low dose rate corresponds to that in the actual grout vaults; with the high dose rate, doses equivalent to more than 40 years in the grout vault were achieved. An average G(H{sub 2}) = 0.047 molecules/100 eV was found, independent of dose rate. The rate of H2 production decreases above 80 Mrad. For other gases, G(N{sub 2}) = 0.12, G(O{sub 2}) = 0.026, G(N{sub 2}O) = 0.011 and G(CO) = 0.0042 at 130 krad/hr were determined. At lower dose rates, N{sub 2} and O{sub 2} could not be measured because of interference by trapped air. The value of G(H{sub 2}) is higher than expected, suggesting segregation of water from nitrate and nitrite salts in the grout. The total pressure generated by the radiolysis at 130 krad/h has been independently measured, and total amounts of gases generated were calculated from this measurement. Good agreement between this measurement and the sum of all the gases that were independently determined was obtained. Therefore, the individual gas measurements account for most of the major components that are generated by the radiolysis. At 90 {degree}C, H{sub 2}, N{sub 2}, and N{sub 2}O were generated at a rate that could be described by exponential formation of each of the gases. Gases measured at the lower temperatures were probably residual trapped gases. An as yet unknown product interfered with oxygen determinations at temperatures above ambient. The thermal results do not affect the radiolytic findings.

  1. Next generation geothermal power plants. Draft final report

    SciTech Connect (OSTI)

    Brugman, John; Hattar, John; Nichols, Kenneth; Esaki, Yuri

    1994-12-01

    The goal of this project is to develop concepts for the next generation geothermal power plant(s) (NGGPP). This plant, compared to existing plants, will generate power for a lower levelized cost and will be more competitive with fossil fuel fired power plants. The NGGPP will utilize geothermal resources efficiently and will be equipped with contingencies to mitigate the risk of reservoir performance. The NGGPP design will attempt to minimize emission of pollutants and consumption of surface water and/or geothermal fluids for cooling service.

  2. Performance assessment of OTEC power systems and thermal power plants. Final report. Volume I

    SciTech Connect (OSTI)

    Leidenfrost, W.; Liley, P.E.; McDonald, A.T.; Mudawwar, I.; Pearson, J.T.

    1985-05-01

    The focus of this report is on closed-cycle ocean thermal energy conversion (OTEC) power systems under research at Purdue University. The working operations of an OTEC power plant are briefly discussed. Methods of improving the performance of OTEC power systems are presented. Brief discussions on the methods of heat exchanger analysis and design are provided, as are the thermophysical properties of the working fluids and seawater. An interactive code capable of analyzing OTEC power system performance is included for use with an IBM personal computer.

  3. TTF3 POWER COUPLER THERMAL ANALYSIS FOR LCLS-II CW OPERATION...

    Office of Scientific and Technical Information (OSTI)

    TTF3 POWER COUPLER THERMAL ANALYSIS FOR LCLS-II CW OPERATION Citation Details In-Document Search Title: TTF3 POWER COUPLER THERMAL ANALYSIS FOR LCLS-II CW OPERATION Authors: Xiao,...

  4. High-Temperature Air-Cooled Power Electronics Thermal Design (Presentation)

    SciTech Connect (OSTI)

    Waye, S.

    2014-06-01

    This presentation discusses the status of research at NREL on high temperature air-cooled power electronics thermal design.

  5. Simulating the Value of Concentrating Solar Power with Thermal Energy Storage in a Production Cost Model

    SciTech Connect (OSTI)

    Denholm, P.; Hummon, M.

    2012-11-01

    Concentrating solar power (CSP) deployed with thermal energy storage (TES) provides a dispatchable source of renewable energy. The value of CSP with TES, as with other potential generation resources, needs to be established using traditional utility planning tools. Production cost models, which simulate the operation of grid, are often used to estimate the operational value of different generation mixes. CSP with TES has historically had limited analysis in commercial production simulations. This document describes the implementation of CSP with TES in a commercial production cost model. It also describes the simulation of grid operations with CSP in a test system consisting of two balancing areas located primarily in Colorado.

  6. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    SciTech Connect (OSTI)

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could benefit, in terms of efficiency and cost, from the high-temperature capabilities of advanced nuclear reactors. The more promising cycles were then analyzed in depth as to their adaptability to advanced high-temperature nuclear reactors. As a result, the Sulfur-Iodine (S-I) cycle was selected for integration into the advanced nuclear reactor system. In Phases 2 and 3, alternative flowsheets were developed and compared. This effort entailed a considerable effort into developing the solution thermodynamics pertinent to the S-I cycle.

  7. Coal-fired high performance power generating system

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of > 47% thermal efficiency; NO[sub x] SO [sub x] and Particulates < 25% NSPS; Cost of electricity 10% lower; coal > 65% of heat input and all solid wastes benign. In order to achieve these goals our team has outlined a research plan based on an optimized analysis of a 250 MW[sub e] combined cycle system applicable to both frame type and aeroderivative gas turbines. Under the constraints of the cycle analysis we have designed a high temperature advanced furnace (HITAF) which integrates several combustor and air heater designs with appropriate ash management procedures. Most of this report discusses the details of work on these components, and the R D Plan for future work. The discussion of the combustor designs illustrates how detailed modeling can be an effective tool to estimate NO[sub x] production, minimum burnout lengths, combustion temperatures and even particulate impact on the combustor walls. When our model is applied to the long flame concept it indicates that fuel bound nitrogen will limit the range of coals that can use this approach. For high nitrogen coals a rapid mixing, rich-lean, deep staging combustor will be necessary. The air heater design has evolved into two segments: a convective heat exchanger downstream of the combustion process; a radiant panel heat exchanger, located in the combustor walls; The relative amount of heat transferred either radiatively or convectively will depend on the combustor type and the ash properties.

  8. On-line diagnostic system for power generators

    SciTech Connect (OSTI)

    Skormin, V.A.; Goodenough, G.S.; Huber, R.K.

    1996-12-31

    A novel approach to diagnostics of a power generator is developed. It utilizes readily available data acquired by the existing computer-based monitoring/control system. Diagnostic procedures detect various trends in the generator data and interpret these trends in the generator data and interpret these trends as changes in the generator performance caused by incipient failures. Results of trend analyses, subjected to statistical validation, facilitate failure prediction and identification thus providing the justification for service when needed. The procedures are incorporated in a diagnostic system implemented in a PC interfaced with the existing VAX-based process monitoring and control system. The diagnostic system provides graphical display of the diagnostic messages.

  9. High power terahertz generation using 1550 nm plasmonic photomixers

    SciTech Connect (OSTI)

    Berry, Christopher W.; Hashemi, Mohammad R.; Jarrahi, Mona; Preu, Sascha; Lu, Hong; Gossard, Arthur C.

    2014-07-07

    We present a 1550 nm plasmonic photomixer operating under pumping duty cycles below 10%, which offers significantly higher terahertz radiation power levels compared to previously demonstrated photomixers. The record-high terahertz radiation powers are enabled by enhancing the device quantum efficiency through use of plasmonic contact electrodes, and by mitigating thermal breakdown at high optical pump power levels through use of a low duty cycle optical pump. The repetition rate of the optical pump can be specifically selected at a given pump duty cycle to control the spectral linewidth of the generated terahertz radiation. At an average optical pump power of 150 mW with a pump modulation frequency of 1 MHz and pump duty cycle of 2%, we demonstrate up to 0.8 mW radiation power at 1 THz, within each continuous wave radiation cycle.

  10. Environmental impact of fossil fuel combustion in power generation

    SciTech Connect (OSTI)

    Allen, J.W.; Beal, P.R.

    1996-12-31

    All the recent developments in the combustion systems employed for power generation have been based on environmental considerations. Combustion modifications have been developed and utilised in order to control NO{sub x} emissions and improvements continue to be made as the legislative requirements tighten. Chemical processes and fuel switching are used to control SO{sub x} emissions. After nitrogen, carbon dioxide is the major gas emitted from the combustion process and its potential potency as a greenhouse gas is well documented. Increased efficiency cycles, mainly based on natural gas as the prime fuel, can minimise the amount of CO{sub x} produced per unit of power generated. As the economics of natural gas utilisation become less favourable a return to clean coal technology based power generation processes may be required.

  11. Thermal vacuum life test facility for radioisotope thermoelectric generators

    SciTech Connect (OSTI)

    Deaton, R.L.; Goebel, C.J.; Amos, W.R.

    1990-01-01

    In the late 1970's, the Department of Energy (DOE) assigned Monsanto Research Corporation, Mound Facility, now operated by EG G Mound Applied Technologies, the responsibility for assembling and testing General Purpose Heat Source (GPHS) radioisotope thermoelectric generators (RTGs). Assembled and tested were five RTGs, which included four flight units and one non-flight qualification unit. Figure 1 shows the RTG, which was designed by General Electric AstroSpace Division (GE/ASD) to produce 285 W of electrical power. A detailed description of the processes for RTG assembly and testing is presented by Amos and Goebel (1989). The RTG performance data are described by Bennett, et al. (1986). The flight units will provide electrical power for the National Aeronautics and Space Administration's (NASA) Galileo mission to Jupiter (two RTGs) and the joint NASA/European Space Agency (ESA) Ulysses mission to study the polar regions of the sun (one RTG). The remaining flight unit will serve as the spare for both missions, and a non-flight qualification unit was assembled and tested to ensure that performance criteria were adequately met. 4 refs., 3 figs.

  12. Biomass gasification for gas turbine-based power generation

    SciTech Connect (OSTI)

    Paisley, M.A.; Anson, D.

    1998-04-01

    The Biomass Power Program of the US Department of Energy (DOE) has as a major goal the development of cost-competitive technologies for the production of power from renewable biomass crops. The gasification of biomass provides the potential to meet this goal by efficiently and economically producing a renewable source of a clean gaseous fuel suitable for use in high-efficiency gas turbines. This paper discusses the development and first commercial demonstration of the Battelle high-throughput gasification process for power generation systems. Projected process economics are presented along with a description of current experimental operations coupling a gas turbine power generation system to the research scale gasifier and the process scaleup activities in Burlington, Vermont.

  13. Most Viewed Documents - Power Generation and Distribution | OSTI, US Dept

    Office of Scientific and Technical Information (OSTI)

    of Energy, Office of Scientific and Technical Information - Power Generation and Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; et al. (1994) ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) Systems and economic analysis of microalgae ponds for conversion of CO{sub 2} to biomass. Quarterly technical progress report, September 1993--December 1993

  14. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect (OSTI)

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  15. New geothermal heat extraction process to deliver clean power generation

    ScienceCinema (OSTI)

    Pete McGrail

    2012-12-31

    A new method for capturing significantly more heat from low-temperature geothermal resources holds promise for generating virtually pollution-free electrical energy. Scientists at the Department of Energys Pacific Northwest National Laboratory will determine if their innovative approach can safely and economically extract and convert heat from vast untapped geothermal resources. The goal is to enable power generation from low-temperature geothermal resources at an economical cost. In addition to being a clean energy source without any greenhouse gas emissions, geothermal is also a steady and dependable source of power.

  16. Fiber optic signal amplifier using thermoelectric power generation

    DOE Patents [OSTI]

    Hart, Mark M.

    1995-01-01

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu.sub.238 or Sr.sub.90 thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu.sub.238 or Sr.sub.90 thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

  17. Fiber optic signal amplifier using thermoelectric power generation

    DOE Patents [OSTI]

    Hart, M.M.

    1995-04-18

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications. 2 figs.

  18. Fiber optic signal amplifier using thermoelectric power generation

    DOE Patents [OSTI]

    Hart, M.M.

    1993-01-01

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communication, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of material resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

  19. Technical Manual for the SAM Biomass Power Generation Model

    SciTech Connect (OSTI)

    Jorgenson, J.; Gilman, P.; Dobos, A.

    2011-09-01

    This technical manual provides context for the implementation of the biomass electric power generation performance model in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). Additionally, the report details the engineering and scientific principles behind the underlying calculations in the model. The framework established in this manual is designed to give users a complete understanding of behind-the-scenes calculations and the results generated.

  20. Integration of ocean thermal energy conversion power plants with existing power systems

    SciTech Connect (OSTI)

    Arunasalam, N.

    1986-01-01

    The problem of integrating an Ocean Thermal Energy Conversion (OTEC) power plant with existing power systems is studied. A nonlinear model of an OTEC power system is developed. The dynamics of the large local induction motor load, and the coaxial cable connection to the mainland are included in the model. The effect of the motor load and the coaxial cable on the steady-state stability of the OTEC power plant is investigated using linearized analysis. The transient stability of the OTEC system is investigated through simulation. The contribution made by the motor load and the coaxial cable to the transient stability is studied. The occurrence of self excitation phenomena is analyzed using linear methods and simulation. The effects of wave and vessel motion on the electrical power output of the OTEC plant is investigated.

  1. Fuel cycle comparison of distributed power generation technologies.

    SciTech Connect (OSTI)

    Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-12-08

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

  2. March 2016 Most Viewed Documents for Power Generation And Distribution |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy, Office of Scientific and Technical Information Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 942 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 310 Electric power substation capital costs Dagle, J.E.; Brown, D.R. (1997) 247 Load flow analysis: Base cases, data, diagrams, and

  3. Electric Power Generation from Low to Intermediate Temperature Resources

    SciTech Connect (OSTI)

    Gosnold, William D.

    2015-06-18

    This project was designed to test the concept on the Eland-Lodgepole Field near Dickinson, North Dakota in the Williston Basin. The field is in secondary-recovery water-flood and consists of 12 producing oil wells, 5 water injection wells and one disposal well. Water production at the site averages approximately 320 gallons per minute (20.2 l s-1) and the temperature is 100 ⁰C. Engineers at Ormat estimated power production potential with the existing resource to be approximately 350 kWh. Unfortunately, ownership of the field was transferred from Encore, Inc., to Denbury, Inc., within the first week of the project. After two years of discussion and planning, Denbury decided not to pursue this project due to complications with the site location and its proximity to Patterson Lake. Attempts to find other partners operating in the Williston Basin were unsuccessful. Consequently, we were unable to pursue the primary objective of the project. However, during negations with Denbury and subsequent time spent contacting other potential partners, we focused on objectives 2 and 3 and developed a clear understanding of the potential for co-produced production in the Williston Basin and the best practices for developing similar projects. At least nine water bearing formations with temperatures greater than 90 ⁰C extend over areas of several 10s of km2. The total energy contained in the rock volume of those geothermal aquifers is 283.6 EJ (1 EJ = 1018 J). The total energy contained in the water volume, determined from porosities which range from 2 percent to 8 percent, is 6.8 EJ. The aquifers grouped by 10 ⁰C temperature bins (Table 1) include one or more formations due to the bowl-shape structure of the basin. Table 1. Summary of energy available in geothermal aquifers in the Williston Basin Analysis of overall fluid production from active wells, units, fields and formations in North Dakota showed that few sites co-produce sufficient fluid for significant power production with ORC technology. Average co-produced water for 10,480 wells is 3.2 gallons per minute (gpm). Even excluding the tight formations, Bakken and Three Forks, average co-produced water for the remaining 3,337 is only 5 gpm. The output of the highest producing well is 184 gpm and the average of the top 100 wells is 52 gpm. Due to the depth of the oil producing formations in the Williston Basin, typically 3 km or greater, pumps are operated slowly to prevent watering out thus total fluid production is purposefully maintained at low volumes. There remain potential possibilities for development of geothermal fluids in the Williston Basin. Unitized fields in which water production from several tens of wells is collected at a single site are good possibilities for development. Water production in the unitized fields is greater than 1000 gpm is several areas. A similar possibility occurs where infill-drilling between Bakken and Three Forks horizontal wells has created areas where large volumes of geothermal fluids are available on multi-well pads and in unitized fields. Although the Bakken produces small amounts of water, the water/oil ration is typically less than 1, the oil and water mix produced at the well head can be sent through the heat exchanger on an ORC. It is estimated that several tens of MWh of power could be generated by a distributed system of ORC engines in the areas of high-density drilling in the Bakken Formation. Finally, horizontal drilling in water bearing formations is the other possibility. Several secondary recovery water-flood projects in the basin are producing water above 100 ⁰C at rates of 300 gpm to 850 gpm. Those systems also could produce several tens of MWh of power with ORC technology. Objective 3 of the project was highly successful. The program has produced 5 PhDs, 7 MS, and 3 BS students with theses in geothermal energy. The team has involved 7 faculty in 4 different engineering and science disciplines, ChE, EE, GE, and Geol. The team has produced 26 peer-reviewed papers and 62 presentations at professional meetings. Faculty involved in the program developed five graduate level courses covering different elements in heat flow and geothermal energy that are now offered in the Harold Hamm School of Geology and Geological Engineering. Lessons learned – Keys to developing a successful project;1. Determine target formations; a. Data from oil and gas operators, state oil and gas regulatory agencies, and state geological surveys help to identify producing formations and their properties; 2. Determine the quantity of energy available in the target formations; a. A complete thermal analysis of the basin or region yields the most useful information; b. Critical data include: BHT, heat flow, stratigraphy, lithology, lithological properties, and thermal conductivity, subsurface structure; 3. Determine fluid production potential; a. State oil and gas regulatory agencies, and state geological surveys have data on oil, gas and water production. State Water Commission/Agencies have data on water quality, aquifers, and regulations; b. Consider single horizontal wells, multiple conventional wells, and unitized fields; 4. Calculate energy production capacity of each formation based on different well combination and power plant scenarios. This is a broad overview rather than a site specific analysis; 5. Research and understand the local electrical power industry. Obtain the PPA before committing to the project; 6. Work with the high-level personnel in the oil company partner. Obtain an MOU that addresses all issues in the project including what to expect if the company goes out of business, is bought out, changes management, etc; and 7. Be prepared for project delays.

  4. DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS

    SciTech Connect (OSTI)

    Paul Tubel

    2003-03-24

    The first quarter of the Downhole Power Generation and Wireless Communications for Intelligent Completions Applications was characterized by the evaluation and determination of the specifications required for the development of the system for permanent applications in wellbores to the optimization of hydrocarbon production. The system will monitor and transmit in real time pressure and temperature information from downhole using the production tubing as the medium for the transmission of the acoustic waves carrying digital information. The most common casing and tubing sizes were determined by interfacing with the major oil companies to obtain information related to their wells. The conceptual design was created for both the wireless gauge section of the tool as well as the power generation module. All hardware for the wireless gauge will be placed in an atmospheric pressure chamber located on the outside of a production tubing with 11.4 centimeter (4-1/2 inch) diameter. This mounting technique will reduce cost as well as the diameter and length of the tool and increase the reliability of the system. The power generator will use piezoelectric wafers to generate electricity based on the flow of hydrocarbons through an area in the wellbore where the tool will be deployed. The goal of the project is to create 1 Watt of power continuously.

  5. Clean coal technologies in electric power generation: a brief overview

    SciTech Connect (OSTI)

    Janos Beer; Karen Obenshain

    2006-07-15

    The paper talks about the future clean coal technologies in electric power generation, including pulverized coal (e.g., advanced supercritical and ultra-supercritical cycles and fluidized-bed combustion), integrated gasification combined cycle (IGCC), and CO{sub 2} capture technologies. 6 refs., 2 tabs.

  6. Thermoelectric Materials Development for Low Temperature Geothermal Power Generation

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Tim Hansen

    2016-01-29

    Data includes characterization results for novel thermoelectric materials developed specifically for power generation from low temperature geothermal brines. Materials characterization data includes material density, thickness, resistance, Seebeck coefficient. This research was carried out by Novus Energy Partners in Cooperation with Southern Research Institute for a Department of Energy Sponsored Project.

  7. Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid

    Broader source: Energy.gov (indexed) [DOE]

    Coproduced from Oil and/or Gas Wells | Department of Energy Chena Hot Springs Resort project presentation at the 2013 peer review meeting in Colorado. PDF icon chenahotsprings_peerreview2013.pdf More Documents & Publications Electrical Power Generation Using Geothermal Fluid Co-produced from Oil & Gas Low Temperature Geothermal Energy Low Temperature/Coproduced/Geopressured Subprogram Overview

  8. DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS

    SciTech Connect (OSTI)

    Paul Tubel

    2003-07-05

    The third quarter of the project was dedicated to creating the detailed design for the manufacturing of the mechanical system for wireless communications and the power generation module. Another emphasis for the quarter was the development of the surface system and acoustic detector for the downhole tool for 2 way communications. The tasks accomplished during this report period were: (1) All detailed drawings for manufacturing of the wireless communications gauge and power generator were completed and the drawings were forward to a machine shop for manufacturing. (2) The power generator was incorporated to the mandrel of the wireless gauge reducing the length of the tool by 25% and manufacturing cost by about 35%. (3) The new piezoelectric acoustic generator was manufactured successfully and it was delivered during this quarter. The assembly provides a new technique to manufacture large diameter piezoelectric based acoustic generators. (4) The acoustic two-way communications development progressed significantly. The real time firmware for the surface system was developed and the processor was able to detect and process the data frame transmitted from downhole. The analog section of the tool was also developed and it is being tested for filtering capabilities and signal detection and amplification. (5) The new transformer to drive the piezoelectric wafer assembly was designed and manufactured. The transformer has been received and it will go through testing and evaluation during the next quarter.

  9. An assessment of ocean thermal energy conversion as an advanced electric generation methodology

    SciTech Connect (OSTI)

    Heydt, G.T. . School of Electrical Engineering)

    1993-03-01

    Ocean thermal energy conversion (OTEC) is a process that employs the temperature difference between surface and deep ocean water to alternately evaporate and condense a working fluid. In the open-cycle OTEC configuration, the working fluid is seawater. In the closed-cycle configuration, a working fluid such as propane is used. In this paper, OTEC is assessed for its practical merits for electric power generation. The process is not new--and its history is reviewed. Because the OTEC principle operates under a small net temperature difference regime, rather large amounts of seawater and working fluid are required. The energy requirements for pumping these fluids may be greater than the energy recovered from the OTEC engine itself. The concept of net power production is discussed. The components of a typical OTEC plant are discussed with emphasis on the evaporator heat exchanger. Operation of an OTEC electric generating station is discussed, including transient operation. Perhaps the most encouraging aspect of OTEC is the recent experiments and efforts at the Natural Energy Laboratory--Hawaii (NELH). The NELH work is summarized in the paper. Remarks are made on bottlenecks and the future of OTEC as an advanced electric generation methodology.

  10. Remote-site power generation opportunities for Alaska

    SciTech Connect (OSTI)

    Jones, M.L.

    1997-03-01

    The Energy and Environmental Research Center (EERC) has been working with the Federal Energy Technology Center in Morgantown, West Virginia, to assess options for small, low-cost, environmental acceptable power generation for application in remote areas of Alaska. The goal of this activity was to reduce the use of fuel in Alaskan villages by developing small, low-cost power generation applications. Because of the abundance of high-quality coal throughout Alaska, emphasis was placed on clean coal applications, but other energy sources, including geothermal, wind, hydro, and coalbed methane, were also considered. The use of indigenous energy sources would provide cheaper cleaner power, reduce the need for PCE (Power Cost Equalization program) subsidies, increase self-sufficiency, and retain hard currency in the state while at the same time creating jobs in the region. The introduction of economical, small power generation systems into Alaska by US equipment suppliers and technology developers aided by the EERC would create the opportunities for these companies to learn how to engineer, package, transport, finance, and operate small systems in remote locations. All of this experience would put the US developers and equipment supply companies in an excellent position to export similar types of small power systems to rural areas or developing countries. Thus activities in this task that relate to determining the generic suitability of these technologies for other countries can increase US competitiveness and help US companies sell these technologies in foreign countries, increasing the number of US jobs. The bulk of this report is contained in the two appendices: Small alternative power workshop, topical report and Global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.

  11. Power supply subsystem for MHD generator superconducting magnet, baseline power supply designs and costs

    SciTech Connect (OSTI)

    Kusko, A.; Peeran, S.M.

    1981-04-10

    An analysis of the dc power supply requirements for superconducting magnets used in MHD generators of ratings 250 MW/sub e//sup -/ 1000 MW/sub e/ is presented. The power supplies considered are rated for a peak power of 10 MW and for currents of 20 kA to 100 kA. The various aspects discussed include: rectifier configurations and specifications, control requirements, dumping the magnet energy, and rectifier size, arrangement and cost. (WHK)

  12. A NOVEL CONCEPT FOR REDUCING WATER USAGE AND INCREASING EFFICIENCY IN POWER GENERATION

    SciTech Connect (OSTI)

    Shiao-Hung Chiang; Guy Weismantel

    2004-03-01

    The objective of the project is to apply a unique ice thermal storage (ITS) technology to cooling the intake air to gas turbines used for power generation. In Phase I, the work includes theoretical analysis, computer simulation, engineering design and cost evaluation of this novel ITS technology. The study includes two typical gas turbines (an industrial and an aeroderivative type gas turbine) operated at two different geographic locations: Phoenix, AZ and Houston, TX. Simulation runs are performed to generate data for both power output (KW) and heat rate (Btu/KWh) as well as water recovery (acre ft/yr) in terms of intake air temperature and humidity based on weather data and turbine performance curves. Preliminary engineering design of a typical equipment arrangement for turbine inlet air-cooling operation using the ITS system is presented. A cost analysis has been performed to demonstrate the market viability of the ITS technology. When the ITS technology is applied to gas turbines, a net power gain up to 40% and a heat rate reduction as much as 7% can be achieved. In addition, a significant amount of water can be recovered (up to 200 acre-ft of water per year for a 50 MW turbine). The total cost saving is estimated to be $500,000/yr for a 50 MW gas turbine generator. These results have clearly demonstrated that the use of ITS technology to cool the intake-air to gas turbines is an efficient and cost effective means to improve the overall performance of its power generation capacity with an important added benefit of water recovery in power plant operation. Thus, further development of ITS technology for commercial applications in power generation, particularly in coal-based IGCC power plants is warranted.

  13. Performance of a Thermally Stable Polyaromatic Hydrocarbon in a Simulated Concentrating Solar Power Loop

    SciTech Connect (OSTI)

    McFarlane, Joanna; Bell, Jason R; Felde, David K; Joseph III, Robert Anthony; Qualls, A L; Weaver, Samuel P

    2014-01-01

    Polyaromatic hydrocarbon thermal fluids showing thermally stability to 600 C have been tested for solar thermal-power applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 C indicated that the fluid isomerized and degraded at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. So, as experienced in loop operation, eventually the internal channels of cooler components in trough solar electric generating systems, such as the waste heat rejection exchanger, may become coated or clogged affecting loop performance. Thus, pure 1-phenylnaphthalene, without addition of stabilizers, does not appear to be a fluid that would have a sufficiently long lifetime (years to decades) to be used in a loop at the temperatures greater than 500 C. The performance of a concentrating solar loop using high temperature fluids was modeled based on the National Renewable Laboratory Solar Advisory Model. It was determined that a solar-to-electricity efficiency of up to 30% and a capacity factor of near 60% could be achieved using a high efficiency collector and 12 h thermal energy storage.

  14. Thermal Strategies for High Efficiency Thermoelectric Power Generation

    Broader source: Energy.gov [DOE]

    Developing integrated TE system configurations that can achieve high heat exchange effectiveness and thus, high TE system efficiency

  15. April 2013 Most Viewed Documents for Power Generation And Distribution |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy, Office of Scientific and Technical Information April 2013 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 719 Seventh Edition Fuel Cell Handbook NETL (2004) 628 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 343 Wet cooling towers: rule-of-thumb design and

  16. September 2013 Most Viewed Documents for Power Generation And Distribution

    Office of Scientific and Technical Information (OSTI)

    | OSTI, US Dept of Energy, Office of Scientific and Technical Information September 2013 Most Viewed Documents for Power Generation And Distribution Science Subject Feed Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 200 /> Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 103 /> ASPEN Plus Simulation of CO2 Recovery Process Charles

  17. September 2015 Most Viewed Documents for Power Generation And Distribution

    Office of Scientific and Technical Information (OSTI)

    | OSTI, US Dept of Energy, Office of Scientific and Technical Information September 2015 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 700 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 190 Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky,

  18. July 2013 Most Viewed Documents for Power Generation And Distribution |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy, Office of Scientific and Technical Information July 2013 Most Viewed Documents for Power Generation And Distribution Science Subject Feed Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 535 /> ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 165 /> Wet cooling towers: rule-of-thumb design and simulation Leeper,

  19. June 2014 Most Viewed Documents for Power Generation And Distribution |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy, Office of Scientific and Technical Information June 2014 Most Viewed Documents for Power Generation And Distribution Science Subject Feed Seventh Edition Fuel Cell Handbook NETL (2004) 118 /> Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 89 /> ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 85 /> Wet

  20. June 2015 Most Viewed Documents for Power Generation And Distribution |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy, Office of Scientific and Technical Information June 2015 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 504 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 240 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 160 Load flow

  1. March 2014 Most Viewed Documents for Power Generation And Distribution |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy, Office of Scientific and Technical Information 4 Most Viewed Documents for Power Generation And Distribution Science Subject Feed ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 112 /> Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 83 /> Seventh Edition Fuel Cell Handbook NETL (2004) 68 /> Load flow

  2. March 2015 Most Viewed Documents for Power Generation And Distribution |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy, Office of Scientific and Technical Information 5 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 317 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 254 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 234 Load flow analysis: Base

  3. Most Viewed Documents for Power Generation and Distribution: December 2014

    Office of Scientific and Technical Information (OSTI)

    | OSTI, US Dept of Energy, Office of Scientific and Technical Information Most Viewed Documents for Power Generation and Distribution: December 2014 Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 133 Seventh Edition Fuel Cell Handbook NETL (2004) 96 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 84 Load flow analysis: Base cases, data,

  4. Most Viewed Documents for Power Generation and Distribution: September 2014

    Office of Scientific and Technical Information (OSTI)

    | OSTI, US Dept of Energy, Office of Scientific and Technical Information for Power Generation and Distribution: September 2014 Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 96 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 73 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 70 Seventh Edition Fuel Cell Handbook

  5. December 2015 Most Viewed Documents for Power Generation And Distribution |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy, Office of Scientific and Technical Information December 2015 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 740 Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; Peerenboom, J.P. (1997) 224 Wet cooling towers: rule-of-thumb

  6. Improvement in thermal barriers to intense terahertz generation from photoconductive antennas

    SciTech Connect (OSTI)

    Ropagnol, X.; Bouvier, Marcel; Reid, M.; Ozaki, T.

    2014-07-28

    We study the generation of free-space terahertz (THz) pulses at low THz frequencies using 6H-SiC and 4H-SiC photoconductive antennas. We investigate the dependence of the THz electric field radiated from the biased SiC emitters on the applied bias field and on the incident optical fluence. In this work, bias fields as high as 32?kV/cm, and optical fluences up to 2.5?mJ/cm{sup 2} (for the 400?nm laser), and 7.5?mJ/cm{sup 2} (for the 800?nm laser) were used. THz generation with back- and front-side illumination of the antennas is also examined. It is found that the SiC antenna, when illuminated from the backside, generates higher THz electric fields. The performance of 6H-SiC and ZnSe photoconductive antennas are compared. We show that, taking advantage of the superior thermal properties of SiC compare with ZnSe, the THz output power generated with the 6H-SiC photoconductive antenna under optimum conditions is 2.3 times larger that with a ZnSe photoconductive antenna.

  7. Advanced Thermal Interface Materials (TIMs) for Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Thermal Performance and Reliability of Bonded Interfaces Thermal Performance and Reliability of Bonded Interfaces Vehicle Technologies Office: 2009 ...

  8. Fifth parabolic dish solar thermal power program annual review: proceedings

    SciTech Connect (OSTI)

    1984-03-01

    The primary objective of the Review was to present the results of activities within the Parabolic Dish Technology and Module/Systems Development element of the Department of Energy's Solar Thermal Energy Systems Program. The Review consisted of nine technical sessions covering overall Project and Program aspects, Stirling and Brayton module development, concentrator and engine/receiver development, and associated hardware and test results to date; distributed systems operating experience; international dish development activities; and non-DOE-sponsored domestic dish activities. A panel discussion concerning business views of solar electric generation was held. These Proceedings contain the texts of presentations made at the Review, as submitted by their authors at the beginning of the Review; therefore, they may vary slightly from the actual presentations in the technical sessions.

  9. Nanodevices for generating power from molecules and batteryless sensing

    DOE Patents [OSTI]

    Wang, Yinmin; Wang, Xianying; Hamza, Alex V.

    2015-06-09

    A nanoconverter or nanosensor is disclosed capable of directly generating electricity through physisorption interactions with molecules that are dipole containing organic species in a molecule interaction zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or randomly-aligned on a substrate. Epoxy or other nonconductive polymers are used to seal portions of the nanowires or nanotubes to create molecule noninteraction zones. By correlating certain molecule species to voltages generated, a nanosensor may quickly identify which species is detected. Nanoconverters in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries. In some cases breath, from human or other life forms, contain sufficient molecules to power a nanoconverter. A membrane permeable to certain molecules around the molecule interaction zone increases specific molecule nanosensor selectivity response.

  10. Nanodevices for generating power from molecules and batteryless sensing

    DOE Patents [OSTI]

    Wang, Yinmin; Wang, Xianying; Hamza, Alex V.

    2014-07-15

    A nanoconverter or nanosensor is disclosed capable of directly generating electricity through physisorption interactions with molecules that are dipole containing organic species in a molecule interaction zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or randomly-aligned on a substrate. Epoxy or other nonconductive polymers are used to seal portions of the nanowires or nanotubes to create molecule noninteraction zones. By correlating certain molecule species to voltages generated, a nanosensor may quickly identify which species is detected. Nanoconverters in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries. In some cases breath, from human or other life forms, contain sufficient molecules to power a nanoconverter. A membrane permeable to certain molecules around the molecule interaction zone increases specific molecule nanosensor selectivity response.

  11. National-Scale Wind Resource Assessment for Power Generation (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, E. I.

    2013-08-01

    This presentation describes the current standards for conducting a national-scale wind resource assessment for power generation, along with the risk/benefit considerations to be considered when beginning a wind resource assessment. The presentation describes changes in turbine technology and viable wind deployment due to more modern turbine technology and taller towers and shows how the Philippines national wind resource assessment evolved over time to reflect changes that arise from updated technologies and taller towers.

  12. January 2013 Most Viewed Documents for Power Generation And Distribution |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy, Office of Scientific and Technical Information January 2013 Most Viewed Documents for Power Generation And Distribution Lessons from Large-Scale Renewable Energy Integration Studies: Preprint Bird, L.; Milligan, M. Small punch creep test: A promising methodology for high temperature plant components life evaluation Tettamanti, S. [CISE SpA, Milan (Italy)]; Crudeli, R. [ENEL SpA, Milan (Italy)] Failure analyses and weld repair of boiler feed water pumps Vulpen, R. van

  13. SLAC Next-Generation High Availability Power Supply

    SciTech Connect (OSTI)

    Bellomo, P.; MacNair, D.; ,

    2010-06-11

    SLAC recently commissioned forty high availability (HA) magnet power supplies for Japan's ATF2 project. SLAC is now developing a next-generation N+1 modular power supply with even better availability and versatility. The goal is to have unipolar and bipolar output capability. It has novel topology and components to achieve very low output voltage to drive superconducting magnets. A redundant, embedded, digital controller in each module provides increased bandwidth for use in beam-based alignment, and orbit correction systems. The controllers have independent inputs for connection to two external control nodes. Under fault conditions, they sense failures and isolate the modules. Power supply speed mitigates the effects of fault transients and obviates subsequent magnet standardization. Hot swap capability promises higher availability and other exciting benefits for future, more complex, accelerators, and eventually the International Linear Collider project.

  14. GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012

    SciTech Connect (OSTI)

    Curran, Scott; Theiss, Timothy J; Bunce, Michael

    2012-01-01

    Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

  15. Progress towards an Optimization Methodology for Combustion-Driven Portable Thermoelectric Power Generation Systems

    SciTech Connect (OSTI)

    Krishnan, Shankar; Karri, Naveen K.; Gogna, Pawan K.; Chase, Jordan R.; Fleurial, Jean-Pierre; Hendricks, Terry J.

    2012-03-13

    Enormous military and commercial interests exist in developing quiet, lightweight, and compact thermoelectric (TE) power generation systems. This paper investigates design integration and analysis of an advanced TE power generation system implementing JP-8 fueled combustion and thermal recuperation. Design and development of a portable TE power system using a JP-8 combustor as a high temperature heat source and optimal process flows depend on efficient heat generation, transfer, and recovery within the system are explored. Design optimization of the system required considering the combustion system efficiency and TE conversion efficiency simultaneously. The combustor performance and TE sub-system performance were coupled directly through exhaust temperatures, fuel and air mass flow rates, heat exchanger performance, subsequent hot-side temperatures, and cold-side cooling techniques and temperatures. Systematic investigation of this system relied on accurate thermodynamic modeling of complex, high-temperature combustion processes concomitantly with detailed thermoelectric converter thermal/mechanical modeling. To this end, this work reports on design integration of systemlevel process flow simulations using commercial software CHEMCADTM with in-house thermoelectric converter and module optimization, and heat exchanger analyses using COMSOLTM software. High-performance, high-temperature TE materials and segmented TE element designs are incorporated in coupled design analyses to achieve predicted TE subsystem level conversion efficiencies exceeding 10%. These TE advances are integrated with a high performance microtechnology combustion reactor based on recent advances at the Pacific Northwest National Laboratory (PNNL). Predictions from this coupled simulation established a basis for optimal selection of fuel and air flow rates, thermoelectric module design and operating conditions, and microtechnology heat-exchanger design criteria. This paper will discuss this simulation process that leads directly to system efficiency power maps defining potentially available optimal system operating conditions and regimes. This coupled simulation approach enables pathways for integrated use of high-performance combustor components, high performance TE devices, and microtechnologies to produce a compact, lightweight, combustion driven TE power system prototype that operates on common fuels.

  16. DeSoto Next Generation Solar Energy Center Solar Power Plant...

    Open Energy Info (EERE)

    Next Generation Solar Energy Center Solar Power Plant Jump to: navigation, search Name DeSoto Next Generation Solar Energy Center Solar Power Plant Facility DeSoto Next Generation...

  17. Computer controlled MHD power consolidation and pulse generation system

    SciTech Connect (OSTI)

    Johnson, R.; Marcotte, K.; Donnelly, M.

    1990-01-01

    The major goal of this research project is to establish the feasibility of a power conversion technology which will permit the direct synthesis of computer programmable pulse power. Feasibility has been established in this project by demonstration of direct synthesis of commercial frequency power by means of computer control. The power input to the conversion system is assumed to be a Faraday connected MHD generator which may be viewed as a multi-terminal dc source and is simulated for the purpose of this demonstration by a set of dc power supplies. This consolidation/inversion (CI), process will be referred to subsequently as Pulse Amplitude Synthesis and Control (PASC). A secondary goal is to deliver a controller subsystem consisting of a computer, software, and computer interface board which can serve as one of the building blocks for a possible phase II prototype system. This report period work summarizes the accomplishments and covers the high points of the two year project. 6 refs., 41 figs.

  18. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    SciTech Connect (OSTI)

    David Liscinsky

    2002-10-20

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated system that exceeds the U.S. Department of Energy (DOE) goal of 40% (HHV) efficiency at emission levels well below the DOE suggested limits; and (5) An advanced biofueled power system whose levelized cost of electricity can be competitive with other new power system alternatives.

  19. Coal-fired high performance power generating system. Final report

    SciTech Connect (OSTI)

    1995-08-31

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

  20. Thermal Management of Power Electronics and Electric Motors for Electric-Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.

    2014-09-01

    This presentation is an overview of the power electronics and electric motor thermal management and reliability activities at NREL. The focus is on activities funded by the Department of Energy Vehicle Technologies Office Advanced Power Electronics and Electric Motors Program.

  1. Enabling Greater Penetration of Solar Power via the Use of CSP with Thermal Energy Storage

    SciTech Connect (OSTI)

    Denholm, P.; Mehos, M.

    2011-11-01

    At high penetration of solar generation there are a number of challenges to economically integrating this variable and uncertain resource. These include the limited coincidence between the solar resource and normal demand patterns and limited flexibility of conventional generators to accommodate variable generation resources. Of the large number of technologies that can be used to enable greater penetration of variable generators, concentrating solar power (CSP) with thermal energy storage (TES) presents a number of advantages. The use of storage enables this technology to shift energy production to periods of high demand or reduced solar output. In addition, CSP can provide substantial grid flexibility by rapidly changing output in response to the highly variable net load created by high penetration of solar (and wind) generation. In this work we examine the degree to which CSP may be complementary to PV by performing a set of simulations in the U.S. Southwest to demonstrate the general potential of CSP with TES to enable greater use of solar generation, including additional PV.

  2. Use of GTE-65 gas turbine power units in the thermal configuration of steam-gas systems for the refitting of operating thermal electric power plants

    SciTech Connect (OSTI)

    Lebedev, A. S.; Kovalevskii, V. P.; Getmanov, E. A.; Ermaikina, N. A.

    2008-07-15

    Thermal configurations for condensation, district heating, and discharge steam-gas systems (PGU) based on the GTE-65 gas turbine power unit are described. A comparative multivariant analysis of their thermodynamic efficiency is made. Based on some representative examples, it is shown that steam-gas systems with the GTE-65 and boiler-utilizer units can be effectively used and installed in existing main buildings during technical refitting of operating thermal electric power plants.

  3. Update on use of mine pool water for power generation.

    SciTech Connect (OSTI)

    Veil, J. A.; Puder, M. G.; Environmental Science Division

    2006-09-30

    In 2004, nearly 90 percent of the country's electricity was generated at power plants using steam-based systems (EIA 2005). Electricity generation at steam electric plants requires a cooling system to condense the steam. With the exception of a few plants using air-cooled condensers, most U.S. steam electric power plants use water for cooling. Water usage occurs through once-through cooling or as make-up water in a closed-cycle system (generally involving one or more cooling towers). According to a U.S. Geological Survey report, the steam electric power industry withdrew about 136 billion gallons per day of fresh water in 2000 (USGS 2005). This is almost the identical volume withdrawn for irrigation purposes. In addition to fresh water withdrawals, the steam electric power industry withdrew about 60 billion gallons per day of saline water. Many parts of the United States are facing fresh water shortages. Even areas that traditionally have had adequate water supplies are reaching capacity limits. New or expanded steam electric power plants frequently need to turn to non-traditional alternate sources of water for cooling. This report examines one type of alternate water source-groundwater collected in underground pools associated with coal mines (referred to as mine pool water in this report). In 2003, the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) funded Argonne National Laboratory (Argonne) to evaluate the feasibility of using mine pool water in Pennsylvania and West Virginia. That report (Veil et al. 2003) identified six small power plants in northeastern Pennsylvania (the Anthracite region) that had been using mine pool water for over a decade. It also reported on a pilot study underway at Exelon's Limerick Generating Station in southeastern Pennsylvania that involved release of water from a mine located about 70 miles upstream from the plant. The water flowed down the Schuylkill River and augmented the natural flow so that the Limerick plant could withdraw a larger volume of river water. The report also included a description of several other proposed facilities that were planning to use mine pool water. In early 2006, NETL directed Argonne to revisit the sites that had previously been using mine pool water and update the information offered in the previous report. This report describes the status of mine pool water use as of summer 2006. Information was collected by telephone interviews, electronic mail, literature review, and site visits.

  4. Performance of improved magnetostrictive vibrational power generator, simple and high power output for practical applications

    SciTech Connect (OSTI)

    Ueno, Toshiyuki

    2015-05-07

    Vibration based power generation technology is utilized effectively in various fields. Author has invented novel vibrational power generation device using magnetostrictive material. The device is based on parallel beam structure consisting of a rod of iron-gallium alloy wound with coil and yoke accompanied with permanent magnet. When bending force is applied on the tip of the device, the magnetization inside the rod varies with induced stress due to the inverse magnetostrictive effect. In vibration, the time variation of the magnetization generates voltage on the wound coil. The magnetostrictive type is advantageous over conventional such using piezoelectric or moving magnet types in high efficiency and high robustness, and low electrical impedance. Here, author has established device configuration, simple, rigid, and high power output endurable for practical applications. In addition, the improved device is lower cost using less volume of Fe-Ga and permanent magnet compared to our conventional, and its assembly by soldering is easy and fast suitable for mass production. Average power of 3 mW/cm{sup 3} under resonant vibration of 212 Hz and 1.2 G was obtained in miniature prototype using Fe-Ga rod of 2 × 0.5× 7 mm{sup 3}. Furthermore, the damping effect was observed, which demonstrates high energy conversion of the generator.

  5. Method and apparatus for automated, modular, biomass power generation

    DOE Patents [OSTI]

    Diebold, James P; Lilley, Arthur; Browne, III, Kingsbury; Walt, Robb Ray; Duncan, Dustin; Walker, Michael; Steele, John; Fields, Michael; Smith, Trevor

    2013-11-05

    Method and apparatus for generating a low tar, renewable fuel gas from biomass and using it in other energy conversion devices, many of which were designed for use with gaseous and liquid fossil fuels. An automated, downdraft gasifier incorporates extensive air injection into the char bed to maintain the conditions that promote the destruction of residual tars. The resulting fuel gas and entrained char and ash are cooled in a special heat exchanger, and then continuously cleaned in a filter prior to usage in standalone as well as networked power systems.

  6. Method and apparatus for automated, modular, biomass power generation

    DOE Patents [OSTI]

    Diebold, James P.; Lilley, Arthur; Browne, Kingsbury III; Walt, Robb Ray; Duncan, Dustin; Walker, Michael; Steele, John; Fields, Michael; Smith, Trevor

    2011-03-22

    Method and apparatus for generating a low tar, renewable fuel gas from biomass and using it in other energy conversion devices, many of which were designed for use with gaseous and liquid fossil fuels. An automated, downdraft gasifier incorporates extensive air injection into the char bed to maintain the conditions that promote the destruction of residual tars. The resulting fuel gas and entrained char and ash are cooled in a special heat exchanger, and then continuously cleaned in a filter prior to usage in standalone as well as networked power systems.

  7. Power Plant Emission Reductions Using a Generation Performance Standard

    Reports and Publications (EIA)

    2001-01-01

    In an earlier analysis completed in response to a request received from Representative David McIntosh, Chairman of the Subcommittee on National Economic Growth, Natural Resources, and Regulatory Affairs, the Energy Information Administration analyzed the impacts of power sector caps on nitrogen oxides, sulfur dioxide, and carbon dioxide emissions, assuming a policy instrument patterned after the sulfur dioxide allowance program created in the Clean Air Act Amendments of 1990. This paper compares the results of that work with the results of an analysis that assumes the use of a dynamic generation performance standard as an instrument for reducing carbon dioxide emissions.

  8. Project Profile: Novel Thermal Storage Technologies for Concentrating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Technologies for Concentrating Solar Power Generation Project Profile: Novel Thermal Storage Technologies for Concentrating Solar Power Generation Lehigh logo Lehigh ...

  9. Turbine Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Key Contacts Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology ... could result in a 4 - 6 percent gain in overall system efficiency. ...

  10. Development of a concentrating solar power system using fluidized-bed technology for thermal energy conversion and solid particles for thermal energy storage

    SciTech Connect (OSTI)

    Ma, Z.; Mehos, M.; Glatzmaier, G.; Sakadjian, B. B.

    2015-05-01

    Concentrating solar power (CSP) is an effective way to convert solar energy into electricity with an economic energy-storage capability for grid-scale, dispatchable renewable power generation. However, CSP plants need to reduce costs to be competitive with other power generation methods. Two ways to reduce CSP cost are to increase solar-to-electric efficiency by supporting a high-efficiency power conversion system, and to use low-cost materials in the system. The current nitrate-based molten-salt systems have limited potential for cost reduction and improved power-conversion efficiency with high operating temperatures. Even with significant improvements in operating performance, these systems face challenges in satisfying the cost and performance targets. This paper introduces a novel CSP system with high-temperature capability that can be integrated into a high-efficiency CSP plant and that meets the low-cost, high-performance CSP targets. Unlike a conventional salt-based CSP plant, this design uses gas/solid, two-phase flow as the heat-transfer fluid (HTF); separated solid particles as storage media; and stable, inexpensive materials for the high-temperature receiver and energy storage containment. We highlight the economic and performance benefits of this innovative CSP system design, which has thermal energy storage capability for base-load power generation.

  11. Development of a concentrating solar power system using fluidized-bed technology for thermal energy conversion and solid particles for thermal energy storage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ma, Z.; Mehos, M.; Glatzmaier, G.; Sakadjian, B. B.

    2015-05-01

    Concentrating solar power (CSP) is an effective way to convert solar energy into electricity with an economic energy-storage capability for grid-scale, dispatchable renewable power generation. However, CSP plants need to reduce costs to be competitive with other power generation methods. Two ways to reduce CSP cost are to increase solar-to-electric efficiency by supporting a high-efficiency power conversion system, and to use low-cost materials in the system. The current nitrate-based molten-salt systems have limited potential for cost reduction and improved power-conversion efficiency with high operating temperatures. Even with significant improvements in operating performance, these systems face challenges in satisfying the costmore » and performance targets. This paper introduces a novel CSP system with high-temperature capability that can be integrated into a high-efficiency CSP plant and that meets the low-cost, high-performance CSP targets. Unlike a conventional salt-based CSP plant, this design uses gas/solid, two-phase flow as the heat-transfer fluid (HTF); separated solid particles as storage media; and stable, inexpensive materials for the high-temperature receiver and energy storage containment. We highlight the economic and performance benefits of this innovative CSP system design, which has thermal energy storage capability for base-load power generation.« less

  12. INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION

    SciTech Connect (OSTI)

    Peet M. Soot; Dale R. Jesse; Michael E. Smith

    2005-08-01

    An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogen from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never intended to process CMM streams containing high levels of nitrogen, as is now the case at the Federal No.2 Mine. Even lacking the CPSA pipeline delivery demonstration, the project was successful in laying the groundwork for future commercial applications of the integrated system. This operation can still provide a guide for other coal mines which need options for utilization of their methane resources. The designed system can be used as a complete template, or individual components of the system can be segregated and utilized separately at other mines. The use of the CMM not only provides an energy fuel from an otherwise wasted resource, but it also yields an environmental benefit by reducing greenhouse gas emissions. The methane has twenty times the greenhouse effect as compared to carbon dioxide, which the combustion of the methane generates. The net greenhouse gas emission mitigation is substantial.

  13. Modeling of reciprocating internal combustion engines for power generation and heat recovery

    SciTech Connect (OSTI)

    Yun, Kyung Tae; Cho, Heejin; Luck, Rogelio; Mago, Pedro J.

    2013-02-01

    This paper presents a power generation and heat recovery model for reciprocating internal combustion engines (ICEs). The purpose of the proposed model is to provide realistic estimates of performance/efficiency maps for both electrical power output and useful thermal output for various capacities of engines for use in a preliminary CHP design/simulation process. The proposed model will serve as an alternative to constant engine efficiencies or empirical efficiency curves commonly used in the current literature for simulations of CHP systems. The engine performance/efficiency calculation algorithm has been coded to a publicly distributed FORTRAN Dynamic Link Library (DLL), and a user friendly tool has been developed using Visual Basic programming. Simulation results using the proposed model are validated against manufacturer’s technical data.

  14. Ice Thermal Storage Systems for LWR Supplemental Cooling and Peak Power Shifting

    SciTech Connect (OSTI)

    Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

    2010-06-01

    Availability of enough cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. The issues become more severe due to the new round of nuclear power expansion and global warming. During hot summer days, cooling water leaving a power plant may become too hot to threaten aquatic life so that environmental regulations may force the plant to reduce power output or even temporarily to be shutdown. For new nuclear power plants to be built at areas without enough cooling water, dry cooling can be used to remove waste heat directly into the atmosphere. However, dry cooling will result in much lower thermal efficiency when the weather is hot. One potential solution for the above mentioned issues is to use ice thermal storage systems (ITS) that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses those ice for supplemental cooling during peak demand time. ITS is suitable for supplemental cooling storage due to its very high energy storage density. ITS also provides a way to shift large amount of electricity from off peak time to peak time. Some gas turbine plants already use ITS to increase thermal efficiency during peak hours in summer. ITSs have also been widely used for building cooling to save energy cost. Among three cooling methods for LWR applications: once-through, wet cooling tower, and dry cooling tower, once-through cooling plants near a large water body like an ocean or a large lake and wet cooling plants can maintain the designed turbine backpressure (or condensation temperature) during 99% of the time; therefore, adding ITS to those plants will not generate large benefits. For once-through cooling plants near a limited water body like a river or a small lake, adding ITS can bring significant economic benefits and avoid forced derating and shutdown during extremely hot weather. For the new plants using dry cooling towers, adding the ice thermal storage systems can effectively reduce the efficiency loss and water consumption during hot weather so that new LWRs could be considered in regions without enough cooling water. \\ This paper presents the feasibility study of using ice thermal storage systems for LWR supplemental cooling and peak power shifting. LWR cooling issues and ITS application status will be reviewed. Two ITS application case studies will be presented and compared with alternative options: one for once-through cooling without enough cooling for short time, and the other with dry cooling. Because capital cost, especially the ice storage structure/building cost, is the major cost for ITS, two different cost estimation models are developed: one based on scaling method, and the other based on a preliminary design using Building Information Modeling (BIM), an emerging technology in Architecture/Engineering/Construction, which enables design options, performance analysis and cost estimating in the early design stage.

  15. Electric Power Generation from Co-Produced and Other Oil Field...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power Generation from Co-Produced and Other Oil Field Fluids Electric Power Generation from Co-Produced and Other Oil Field Fluids Co-produced and low-temperature ...

  16. World geothermal power generation in the period 2001-2005 | Open...

    Open Energy Info (EERE)

    geothermal power generation in the period 2001-2005 Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: World geothermal power generation in the...

  17. High Temperature Fuel Cell Tri-Generation of Power, Heat & H2...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tri-Generation of Power, Heat & H2 from Biogas High Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas Success story about using waste water treatment gas for ...

  18. MHK Technologies/Turbo Ocean Power Generator MadaTech 17 | Open...

    Open Energy Info (EERE)

    Turbo Ocean Power Generator MadaTech 17 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Turbo Ocean Power Generator MadaTech 17.jpg Technology...

  19. High Efficiency Direct Carbon and Hydrogen Fuel Cells for Fossil Fuel Power Generation

    SciTech Connect (OSTI)

    Steinberg, M; Cooper, J F; Cherepy, N

    2002-01-02

    Hydrogen he1 cells have been under development for a number of years and are now nearing commercial applications. Direct carbon fuel cells, heretofore, have not reached practical stages of development because of problems in fuel reactivity and cell configuration. The carbon/air fuel cell reaction (C + O{sub 2} = CO{sub 2}) has the advantage of having a nearly zero entropy change. This allows a theoretical efficiency of 100 % at 700-800 C. The activities of the C fuel and CO{sub 2} product do not change during consumption of the fuel. Consequently, the EMF is invariant; this raises the possibility of 100% fuel utilization in a single pass. (In contrast, the high-temperature hydrogen fuel cell has a theoretical efficiency of and changes in fuel activity limit practical utilizations to 75-85%.) A direct carbon fuel cell is currently being developed that utilizes reactive carbon particulates wetted by a molten carbonate electrolyte. Pure COZ is evolved at the anode and oxygen from air is consumed at the cathode. Electrochemical data is reported here for the carbon/air cell utilizing carbons derived from he1 oil pyrolysis, purified coal, purified bio-char and petroleum coke. At 800 O C, a voltage efficiency of 80% was measured at power densities of 0.5-1 kW/m2. Carbon and hydrogen fuels may be produced simultaneously at lugh efficiency from: (1) natural gas, by thermal decomposition, (2) petroleum, by coking or pyrolysis of distillates, (3) coal, by sequential hydrogasification to methane and thermal pyrolysis of the methane, with recycle of the hydrogen, and (4) biomass, similarly by sequential hydrogenation and thermal pyrolysis. Fuel production data may be combined with direct C and H2 fuel cell operating data for power cycle estimates. Thermal to electric efficiencies indicate 80% HHV [85% LHV] for petroleum, 75.5% HHV [83.4% LHV] for natural gas and 68.3% HHV [70.8% LHV] for lignite coal. Possible benefits of integrated carbon and hydrogen fuel cell power generation cycles are: (1) increased efficiency by a factor of up to 2 over many conventional fossil fuel steam plants, (2) reduced power generation cost, especially for increasing fossil fuel cost, (3) reduced CO2 emission per kWh, and (4) direct sequestration or reuse (e.g., in enhanced oil or NG recovery) of the CO{sub 2} product.

  20. General volume sizing strategy for thermal storage system using phase change material for concentrated solar thermal power plant

    SciTech Connect (OSTI)

    Xu, Ben; Li, Peiwen; Chan, Cholik; Tumilowicz, Eric

    2014-12-18

    With an auxiliary large capacity thermal storage using phase change material (PCM), Concentrated Solar Power (CSP) is a promising technology for high efficiency solar energy utilization. In a thermal storage system, a dual-media thermal storage tank is typically adopted in industry for the purpose of reducing the use of the heat transfer fluid (HTF) which is usually expensive. While the sensible heat storage system (SHSS) has been well studied, a dual-media latent heat storage system (LHSS) still needs more attention and study. The volume sizing of the thermal storage tank, considering daily cyclic operations, is of particular significance. In this paper, a general volume sizing strategy for LHSS is proposed, based on an enthalpy-based 1D transient model. One example was presented to demonstrate how to apply this strategy to obtain an actual storage tank volume. With this volume, a LHSS can supply heat to a thermal power plant with the HTF at temperatures above a cutoff point during a desired 6 hours of operation. This general volume sizing strategy is believed to be of particular interest for the solar thermal power industry.

  1. General volume sizing strategy for thermal storage system using phase change material for concentrated solar thermal power plant

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Ben; Li, Peiwen; Chan, Cholik; Tumilowicz, Eric

    2014-12-18

    With an auxiliary large capacity thermal storage using phase change material (PCM), Concentrated Solar Power (CSP) is a promising technology for high efficiency solar energy utilization. In a thermal storage system, a dual-media thermal storage tank is typically adopted in industry for the purpose of reducing the use of the heat transfer fluid (HTF) which is usually expensive. While the sensible heat storage system (SHSS) has been well studied, a dual-media latent heat storage system (LHSS) still needs more attention and study. The volume sizing of the thermal storage tank, considering daily cyclic operations, is of particular significance. In thismore » paper, a general volume sizing strategy for LHSS is proposed, based on an enthalpy-based 1D transient model. One example was presented to demonstrate how to apply this strategy to obtain an actual storage tank volume. With this volume, a LHSS can supply heat to a thermal power plant with the HTF at temperatures above a cutoff point during a desired 6 hours of operation. This general volume sizing strategy is believed to be of particular interest for the solar thermal power industry.« less

  2. EA-1857: Wind Turbine Power Generation Complex at Idaho National Laboratory

    Broader source: Energy.gov [DOE]

    This EA would evaluate the environmental impacts of the proposed wind turbine power generation complex at Idaho National Laboratory, Idaho.

  3. The Value of Distributed Generation and CHP Resources in Wholesale Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Markets, September 2005 | Department of Energy The Value of Distributed Generation and CHP Resources in Wholesale Power Markets, September 2005 The Value of Distributed Generation and CHP Resources in Wholesale Power Markets, September 2005 Distributed generation and combined heat and power (DG/CHP) projects are usually considered as resources for the benefit of the electricity consumer not the utility power system. This report evaluates DG/CHP as wholesale power resources, installed on the

  4. Photovoltaic power generation system free of bypass diodes

    DOE Patents [OSTI]

    Lentine, Anthony L.; Okandan, Murat; Nielson, Gregory N.

    2015-07-28

    A photovoltaic power generation system that includes a solar panel that is free of bypass diodes is described herein. The solar panel includes a plurality of photovoltaic sub-modules, wherein at least two of photovoltaic sub-modules in the plurality of photovoltaic sub-modules are electrically connected in parallel. A photovoltaic sub-module includes a plurality of groups of electrically connected photovoltaic cells, wherein at least two of the groups are electrically connected in series. A photovoltaic group includes a plurality of strings of photovoltaic cells, wherein a string of photovoltaic cells comprises a plurality of photovoltaic cells electrically connected in series. The strings of photovoltaic cells are electrically connected in parallel, and the photovoltaic cells are microsystem-enabled photovoltaic cells.

  5. High-temperature corrosion in power-generating systems.

    SciTech Connect (OSTI)

    Natesan, K.

    2002-05-22

    Several technologies are being developed to convert coal into clean fuel for use in power generation. From the standpoint of component materials in these technologies, the environments created by coal conversion and their interactions with materials are of interest. Coal is a complex and relatively dirty fuel that contains varying amounts of sulfur and a substantial fraction of noncombustible mineral constituents, commonly called ash. Corrosion of metallic and ceramic structural materials is a potential problem at elevated temperatures in the presence of complex gas environments and coal-derived solid/liquid deposits. This paper discusses the coal-fired systems currently under development, identifies several modes of corrosion degradation that occur in many of these systems, and suggests possible mechanisms of metal wastage. Available data on the performance of materials in some of the environments are highlighted, and the research needed to improve the corrosion resistance of various materials is presented.

  6. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    SciTech Connect (OSTI)

    Kurt Montgomery; Nguyen Minh

    2003-08-01

    This report summarizes the work performed by Honeywell during the October 2001 to December 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The conceptual and demonstration system designs were proposed and analyzed, and these systems have been modeled in Aspen Plus. Work has also started on the assembly of dynamic component models and the development of the top-level controls requirements for the system. SOFC stacks have been fabricated and performance mapping initiated.

  7. Fuel cell power plants in a distributed generator application

    SciTech Connect (OSTI)

    Smith, M.J.

    1996-12-31

    ONSI`s (a subsidiary of International Fuel Cells Corporation) world wide fleet of 200-kW PC25{trademark} phosphoric acid fuel cell power plants which began operation early in 1992 has shown excellent performance and reliability in over 1 million hours of operation. This experience has verified the clean, quiet, reliable operation of the PC25 and confirmed its application as a distributed generator. Continuing product development efforts have resulted in a one third reduction of weight and volume as well as improved installation and operating characteristics for the PC25 C model. Delivery of this unit began in 1995. International Fuel Cells (IFC) continues its efforts to improve product design and manufacturing processes. This progress has been sustained at a compounded rate of 10 percent per year since the late 1980`s. These improvements will permit further reductions in the initial cost of the power plant and place increased emphasis on market development as the pacing item in achieving business benefits from the PC25 fuel cell. Derivative product opportunities are evolving with maturation of the technologies in a commercial environment. The recent announcement of Praxair, Inc., and IFC introducing a non-cryogenic hydrogen supply system utilizing IFC`s steam reformer is an example. 11 figs.

  8. Tidal Energy System for On-Shore Power Generation

    SciTech Connect (OSTI)

    Bruce, Allan J

    2012-06-26

    Addressing the urgent need to develop LCOE competitive renewable energy solutions for US energy security and to replace fossil-fuel generation with the associated benefits to environment impacts including a reduction in CO2 emissions, this Project focused on the advantages of using hydraulic energy transfer (HET) in large-scale Marine Hydrokinetic (MHK) systems for harvesting off-shore tidal energy in US waters. A recent DOE resource assessment, identifies water power resources have a potential to meet 15% of the US electric supply by 2030, with MHK technologies being a major component. The work covered a TRL-4 laboratory proof-in-concept demonstration plus modeling of a 15MW full scale system based on an approach patented by NASA-JPL, in which submerged high-ratio gearboxes and electrical generators in conventional MHK turbine systems are replaced by a submerged hydraulic radial pump coupled to on-shore hydraulic motors driving a generator. The advantages are; first, the mean-time-between-failure (MTBF), or maintenance, can be extended from approximately 1 to 5 years and second, the range of tidal flow speeds which can be efficiently harvested can be extended beyond that of a conventional submerged generator. The approach uses scalable, commercial-off-the-shelf (COTS) components, facilitating scale-up and commercialization. All the objectives of the Project have been successfully met (1) A TRL4 system was designed, constructed and tested. It simulates a tidal energy turbine, with a 2-m diameter blade in up to a 2.9 m/sec flow. The system consists of a drive motor assembly providing appropriate torque and RPM, attached to a radial piston pump. The pump circulates pressurized, environmentally-friendly, HEES hydraulic fluid in a closed loop to an axial piston motor which drives an electrical generator, with a resistive load. The performance of the components, subsystems and system were evaluated during simulated tidal cycles. The pump is contained in a tank for immersion testing. The COTS pump and motor were selected to scale to MW size and were oversized for the TRL-4 demonstration, operating at only 1-6% of rated values. Nevertheless, in for 2-18 kW drive power, in agreement with manufacturer performance data, we measured efficiencies of 85-90% and 75-80% for the pump and motor, respectively. These efficiencies being 95-96% at higher operating powers. (2) Two follow-on paths were identified. In both cases conventional turbine systems can be modified, replacing existing gear box and generator with a hydraulic pump and on-shore components. On a conventional path, a TRL5/6 15kW turbine system can be engineered and tested on a barge at an existing site in Maine. Alternatively, on an accelerated path, a TRL-8 100kW system can be engineered and tested by modifying a team member's existing MHK turbines, with barge and grid-connected test sites in-place. On both paths the work can be expedited and cost effective by reusing TRL-4 components, modifying existing turbines and using established test sites. (3) Sizing, performance modeling and costing of a scaled 15MW system, suitable for operation in Maine's Western Passage, was performed. COTS components are identified and the performance projections are favorable. The estimated LCOE is comparable to wind generation with peak production at high demand times. (4) We determined that a similar HET approach can be extended to on-shore and off-shore wind turbine systems. These are very large energy resources which can be addressed in parallel for even great National benefit. (5) Preliminary results on this project were presented at two International Conferences on renewable energy in 2012, providing a timely dissemination of information. We have thus demonstrated a proof-in-concept of a novel, tidal HET system that eliminates all submerged gears and electronics to improve reliability. Hydraulic pump efficiencies of 90% have been confirmed in simulated tidal flows between 1 and 3 m/s, and at only 1-6% of rated power. Total system efficiencies have also been modeled, up to MW-scale, for tidal, and wind, systems. Projected efficiencies are between 81% (full rated flow) and 86% (1/3 rated flow). This high efficiency in a wide operating range compares favorably with conventional systems having a performance range of 87% (full rated flow) to 0% (1/3 rated flow) efficiency. An accelerated path to commercialization is identified, leveraging conventional MHK system technology and COTS components to meet the urgent need for renewable energy generation.

  9. Microsoft PowerPoint - AECC Hydroelectric Generation 2010.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arkansas Electric Cooperative Corporation Cooperative Corporation AECC H d l i AECC Hydroelectric Generation Facilities Generation Facilities Arkansas Electric Cooperative ...

  10. Power and Frequency Control as it Relates to Wind-Powered Generation

    SciTech Connect (OSTI)

    Lacommare, Kristina S H

    2010-12-20

    This report is a part of an investigation of the ability of the U.S. power system to accommodate large scale additions of wind generation. The objectives of this report are to describe principles by which large multi-area power systems are controlled and to anticipate how the introduction of large amounts of wind power production might require control protocols to be changed. The operation of a power system is described in terms of primary and secondary control actions. Primary control is fast, autonomous, and provides the first-line corrective action in disturbances; secondary control takes place on a follow-up time scale and manages the deployment of resources to ensure reliable and economic operation. This report anticipates that the present fundamental primary and secondary control protocols will be satisfactory as wind power provides an increasing fraction of the total production, provided that appropriate attention is paid to the timing of primary control response, to short term wind forecasting, and to management of reserves for control action.

  11. Summary of: Simulating the Value of Concentrating Solar Power with Thermal Energy Storage in a Production Cost Model (Presentation)

    SciTech Connect (OSTI)

    Denholm, P.; Hummon, M.

    2013-02-01

    Concentrating solar power (CSP) deployed with thermal energy storage (TES) provides a dispatchable source of renewable energy. The value of CSP with TES, as with other potential generation resources, needs to be established using traditional utility planning tools. Production cost models, which simulate the operation of grid, are often used to estimate the operational value of different generation mixes. CSP with TES has historically had limited analysis in commercial production simulations. This document describes the implementation of CSP with TES in a commercial production cost model. It also describes the simulation of grid operations with CSP in a test system consisting of two balancing areas located primarily in Colorado.

  12. Innovative Phase hange Thermal Energy Storage Solution for Baseload Power

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  13. National Thermal Power Corporation NTPC | Open Energy Information

    Open Energy Info (EERE)

    India. The firm has also ventured into consultancy, power trading, ash utilisation and coal mining. The firm is also developing various wind, solar, small hydro and biomass...

  14. Time series power flow analysis for distribution connected PV generation.

    SciTech Connect (OSTI)

    Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J.; Smith, Jeff; Dugan, Roger

    2013-01-01

    Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating potential PV impacts.

  15. MONITORING POWER PLANT EFFICIENCY USING THE MICROWAVE-EXCITED THERMAL-ACOUSTIC EFFECT TO MEASURE UNBURNED CARBON

    SciTech Connect (OSTI)

    Robert C. Brown; Robert J. Weber; Jeffrey J. Swetelitsch

    2005-01-01

    The objective of this project is to explore microwave-excited thermal-acoustic (META) phenomena for quantitative analysis of granular and powdered materials, with the culmination of the research to be an on-line carbon-in-ash monitor for coal-fired power plants. This technique of analyzing unburned carbon in fly ash could be a less tedious and time consuming method as compared to the traditional LOI manual procedure. Phase 1 of the research focused on off-line single-frequency thermal-acoustic measurements where an off-line fly ash monitor was constructed that could operate as analytical tool to explore instrument and methodology parameters for quantifying the microwave-excited thermal-acoustic effect of carbon in fly ash, and it was determined that the off-line thermal-acoustic technique could predict the carbon content of a random collection of fly ashes with a linear correlation constant of R{sup 2} = 0.778. Much higher correlations are expected for fly ashes generated from a single boiler. Phase 2 of the research developing a methodology to generate microwave spectra of various powders, including fly ash, coal, and inorganic minerals, and to determine if these microwave spectra could be used for chemical analyses. Although different minerals produced different responses, higher resolution microwave spectra would be required to be able to distinguish among minerals. Phase 3 of the research focused on the development of an on-line fly ash monitor that could be adapted to measure either a thermal-acoustic or thermal-elastic response to due microwave excitation of fly ash. The thermal-acoustic response was successfully employed for this purpose but the thermal-elastic response was too weak to yield a useful on-line device.

  16. Middle East fuel supply & gas exports for power generation

    SciTech Connect (OSTI)

    Mitchell, G.K.; Newendorp, T.

    1995-12-31

    The Middle East countries that border on, or are near, the Persian Gulf hold over 65% of the world`s estimated proven crude oil reserves and 32% of the world`s estimated proven natural gas reserves. In fact, approximately 5% of the world`s total proven gas reserves are located in Qatar`s offshore North Field. This large natural gas/condensate field is currently under development to supply three LNG export projects, as well as a sub-sea pipeline proposal to export gas to Pakistan. The Middle East will continue to be a major source of crude oil and oil products to world petroleum markets, including fuel for existing and future base load, intermediate cycling and peaking electric generation plants. In addition, as the Persian Gulf countries turn their attention to exploiting their natural gas resources, the fast-growing need for electricity in the Asia-Pacific and east Africa areas offers a potential market for both pipeline and LNG export opportunities to fuel high efficiency, gas-fired combustion turbine power plants. Mr. Mitchell`s portion of this paper will discuss the background, status and timing of several Middle Eastern gas export projects that have been proposed. These large gas export projects are difficult and costly to develop and finance. Consequently, any IPP developers that are considering gas-fired projects which require Mid-East LNG as a fuel source, should understand the numerous sources and timing to securing project debt, loan terms and conditions, and, restrictions/credit rating issues associated with securing financing for these gas export projects. Mr. Newendorp`s section of the paper will cover the financing aspects of these projects, providing IPP developers with additional considerations in selecting the primary fuel supply for an Asian-Pacific or east African electric generation project.

  17. The rotary zone thermal cycler: A low-power system enabling automated rapid

    Office of Scientific and Technical Information (OSTI)

    PCR (Journal Article) | DOE PAGES The rotary zone thermal cycler: A low-power system enabling automated rapid PCR « Prev Next » Title: The rotary zone thermal cycler: A low-power system enabling automated rapid PCR In this study, advances in molecular biology, microfluidics, and laboratory automation continue to expand the accessibility and applicability of these methods beyond the confines of conventional, centralized laboratory facilities and into point of use roles in clinical,

  18. Water management for hydroelectric power generation at Matera and Kidatu in Tanzania

    SciTech Connect (OSTI)

    Matondo, J.I.; Rutashobya, D.G.

    1995-12-31

    The major sources of power in Tanzania are hydropower and thermo power. Most of the hydroelectric power is generated in the Great Ruaha river system (280 MW) and in the Pangani river system (46 MW). However, the generated power (hydro and thermo) does not meet the power demand and as a result, an accute power shortage occurred in August 1992. This paper explores the hydropower generation mechanism at Mtera and Kidatu hydroelectric power plants. It also looks into what measures could have been taken in order to avoid the massive power shedding which officially lasted for about six months, although unofficially, power shedding was continued well beyond that period. Strategies for future water management in the Great Ruaha river system for efficient generation of power are also presented.

  19. Property:Distributed Generation System Power Application | Open...

    Open Energy Info (EERE)

    + Based Load + Distributed Generation StudyPatterson Farms CHP System Using Renewable Biogas + Based Load + Distributed Generation StudySUNY Buffalo + Based Load + Distributed...

  20. Fossil-fuel power plants and power generation: Economic analysis. (Latest citations from the NTIS data base). Published Search

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    The bibliography contains citations concerning economic analyses and evaluations of utility and industrial fossil-fuel power generation. Coal-fired, oil-fired, and natural gas-fired electric power generating systems are discussed. Specific technologies, experiences, and locations are also considered. (Contains 250 citations and includes a subject term index and title list.)

  1. Fossil-fuel power plants and power generation: Economic analysis. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1995-10-01

    The bibliography contains citations concerning economic analyses and evaluations of utility and industrial fossil-fuel power generation. Coal-fired, oil-fired, and natural gas-fired electric power generating systems are discussed. Specific technologies, experiences, and locations are also considered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  2. Fossil-fuel power plants and power generation: Economic analysis. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The bibliography contains citations concerning economic analyses and evaluations of utility and industrial fossil-fuel power generation. Coal-fired, oil-fired, and natural gas-fired electric power generating systems are discussed. Specific technologies, experiences, and locations are also considered. (Contains 250 citations and includes a subject term index and title list.)

  3. Fossil-fuel power plants and power generation: Economic analysis. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    The bibliography contains citations concerning economic analyses and evaluations of utility and industrial fossil-fuel power generation. Coal-fired, oil-fired, and natural gas-fired electric power generating systems are discussed. Specific technologies, experiences, and locations are also considered. (Contains 250 citations and includes a subject term index and title list.)

  4. Fossil-fuel power plants and power generation: Economic analysis. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect (OSTI)

    1993-09-01

    The bibliography contains citations concerning economic analyses and evaluations of utility and industrial fossil-fuel power generation. Coal-fired, oil-fired, and natural gas-fired electric power generating systems are discussed. Specific technologies, experiences, and locations are also considered. (Contains 250 citations and includes a subject term index and title list.)

  5. Fossil-fuel power plants and power generation: Economic analysis. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1997-02-01

    The bibliography contains citations concerning economic analyses and evaluations of utility and industrial fossil-fuel power generation. Coal-fired, oil-fired, and natural gas-fired electric power generating systems are discussed. Specific technologies, experiences, and locations are also considered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  6. Coal-fueled diesels for modular power generation

    SciTech Connect (OSTI)

    Wilson, R.P.; Rao, A.K.; Smith, W.C.

    1993-11-01

    Interest in coal-fueled heat engines revived after the sharp increase in the prices of natural gas and petroleum in the 1970`s. Based on the success of micronized coal water slurry combustion tests in an engine in the 1980`s, Morgantown Energy Technology Center (METC) of the US Department of Energy. initiated several programs for the development of advanced coal-fueled diesel and gas turbine engines for use in cogeneration, small utilities, industrial applications and transportation. Cooper-Bessemer and Arthur D. Little have been developing technology since 1985, under the sponsor of METC, to enable coal water slurry (CWS) to be utilized in large bore, medium-speed diesel engines. Modular power generation applications in the 10--100 MW size (each plant typically using from two to eight engines) are the target applications for the late 1990`s and beyond when, according to the US DOE and other projections, oil and natural gas prices are expected to escalate much more rapidly compared to the price of coal. As part of this program over 7.50 hours of prototype engine operation has been achieved on coal water slurry (CWS), including over 100 hours operation of a six-cylinder full scale engine with Integrated Emissions Control System in 1993. In this paper, the authors described the project cost of the CWS fuel used, the heat rate of the engine operating on CWS, the projected maintenance cost for various engine components, and the demonstrated low emissions characteristics of the coal diesel system.

  7. The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with CombinedHeat and Power

    SciTech Connect (OSTI)

    Marnay, Chris; Stadler, Michael; Cardoso, Goncalo; Megel, Olivier; Lai, Judy; Siddiqui, Afzal

    2009-08-15

    The addition of solar thermal and heat storage systems can improve the economic, as well as environmental attraction of micro-generation systems, e.g. fuel cells with or without combined heat and power (CHP) and contribute to enhanced CO2 reduction. However, the interactions between solar thermal collection and storage systems and CHP systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of solar thermal and heat storage on CO2 emissions and annual energy costs, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program. The objective is minimization of annual energy costs. This paper focuses on analysis of the optimal interaction of solar thermal systems, which can be used for domestic hot water, space heating and/or cooling, and micro-CHP systems in the California service territory of San Diego Gas and Electric (SDG&E). Contrary to typical expectations, our results indicate that despite the high solar radiation in southern California, fossil based CHP units are dominant, even with forecast 2020 technology and costs. A CO2 pricing scheme would be needed to incent installation of combined solar thermal absorption chiller systems, and no heat storage systems are adopted. This research also shows that photovoltaic (PV) arrays are favored by CO2 pricing more than solar thermal adoption.

  8. Innovative Application of Maintenance-Free Phase-Change Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish Engine Solar Power Generation Innovative Application of Maintenance-Free Phase-Change Thermal Energy ...

  9. Concentrated Solar Power with Thermal Energy Storage Can Help...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy in, say, molten salt, can use its heat-energy to drive turbines at power plants over much longer ... This is important because electricity produced from natural gas ...

  10. Assessment of thermal embrittlement in duplex stainless steels 2003 and 2205 for nuclear power applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tucker, J. D.; Miller, M. K.; Young, G. A.

    2015-04-01

    Duplex stainless steels are desirable for use in power generation systems due to their attractive combination of strength, corrosion resistance, and cost. However, thermal embrittlement at intermediate homologous temperatures of ~887°F (475°C) and below, via spinodal decomposition, limits upper service temperatures for many applications. New lean grade duplex alloys have improved thermal stability over standard grades and potentially increase the upper service temperature or the lifetime at a given temperature for this class of material. The present work compares the thermal stability of lean grade, alloy 2003 to standard grade, alloy 2205, through a series of isothermal agings between 500°Fmore » (260°C) and 900°F (482°C) for times between 1 and 10,000 hours. Aged samples were characterized by changes in microhardness and impact toughness. Additionally, atom probe tomography was performed to illustrate the evolution of the α-α' phase separation in both alloys at select conditions. Atom probe tomography confirmed that phase separation occurs via spinodal decomposition for both alloys and identified the formation of Ni-Cu-Si-Mn-P clusters in alloy 2205 that may contribute to embrittlement of this alloy. The impact toughness model predictions for upper service temperature show that alloy 2003 can be considered for use in 550°F applications for 80 year service lifetimes based on a Charpy V-notch criteria of 35 ft-lbs at 70°F. Alloy 2205 should be limited to 500°F applications.« less

  11. Assessment of thermal embrittlement in duplex stainless steels 2003 and 2205 for nuclear power applications

    SciTech Connect (OSTI)

    Tucker, J. D.; Miller, M. K.; Young, G. A.

    2015-04-01

    Duplex stainless steels are desirable for use in power generation systems due to their attractive combination of strength, corrosion resistance, and cost. However, thermal embrittlement at intermediate homologous temperatures of ~887°F (475°C) and below, via spinodal decomposition, limits upper service temperatures for many applications. New lean grade duplex alloys have improved thermal stability over standard grades and potentially increase the upper service temperature or the lifetime at a given temperature for this class of material. The present work compares the thermal stability of lean grade, alloy 2003 to standard grade, alloy 2205, through a series of isothermal agings between 500°F (260°C) and 900°F (482°C) for times between 1 and 10,000 hours. Aged samples were characterized by changes in microhardness and impact toughness. Additionally, atom probe tomography was performed to illustrate the evolution of the α-α' phase separation in both alloys at select conditions. Atom probe tomography confirmed that phase separation occurs via spinodal decomposition for both alloys and identified the formation of Ni-Cu-Si-Mn-P clusters in alloy 2205 that may contribute to embrittlement of this alloy. The impact toughness model predictions for upper service temperature show that alloy 2003 can be considered for use in 550°F applications for 80 year service lifetimes based on a Charpy V-notch criteria of 35 ft-lbs at 70°F. Alloy 2205 should be limited to 500°F applications.

  12. Fuel Cell Comparison of Distributed Power Generation Technologies

    Broader source: Energy.gov [DOE]

    This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microturbines and internal combustion engines.

  13. April 2013 Most Viewed Documents for Power Generation And Distribution...

    Office of Scientific and Technical Information (OSTI)

    Final report Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.; Thompson, W.E.; Wilson, D.G. (1982) 70 Instantaneous reactive power and power factor of instantaneous phasors Hsu, J.S. ...

  14. Proceedings: Fourth Parabolic Dish Solar Thermal Power Program Review

    SciTech Connect (OSTI)

    Not Available

    1983-02-01

    The results of activities within the parabolic dish technology and applications development program are presented. Stirling, organic Rankine and Brayton module technologies, associated hardware and test results to date, concentrator development and progress, economic analyses, and international dish development activities are covered. Two panel discussions, concerning industry issues affecting solar thermal dish development and dish technology from a utility/user perspective, are also included.

  15. Power Electronics Thermal Management R&D; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Waye, Scot

    2015-06-10

    Presentation containing an update for the Power Electronics Thermal Management project in the Electric Drive Train task funded by the Vehicle Technology Office of DOE. This presentation outlines the purpose, plan, and results of research thus far for cooling and material selection strategies to manage heat in power electronic assemblies such as inverters, converters, and chargers.

  16. Fuel-cell based power generating system having power conditioning apparatus

    DOE Patents [OSTI]

    Mazumder, Sudip K.; Pradhan, Sanjaya K.

    2010-10-05

    A power conditioner includes power converters for supplying power to a load, a set of selection switches corresponding to the power converters for selectively connecting the fuel-cell stack to the power converters, and another set of selection switches corresponding to the power converters for selectively connecting the battery to the power converters. The power conveners output combined power that substantially optimally meets a present demand of the load.

  17. System and method to improve the power output and longetivity of a radioisotope thermoelectric generator

    DOE Patents [OSTI]

    Mowery, Jr., Alfred L. (Potomac, MD)

    1993-01-01

    By using the helium generated by the alpha emissions of a thermoelectric generator during space travel for cooling, the thermal degradation of the thermoelectric generator can be slowed. Slowing degradation allows missions to be longer with little additional expense or payload.

  18. Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes

    Fuel Cell Technologies Publication and Product Library (EERE)

    Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to

  19. Low Cost High Concentration PV Systems for Utility Power Generation Amonix,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inc. | Department of Energy Amonix, Inc. Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. A series of brief fact sheet on various topics including:Low Cost High Concentration PV Systems for Utility Power Generation,High Efficiency Concentrating Photovoltaic Power System,Reaching Grid Parity Using BP Solar Crystalline Silicon Technology, Fully Integrated Building Science Solutions for Residential and Commercial Photovoltaic Energy Generation,A Value Chain

  20. Analyzing Effects of Turbulence on Power Generation Using Wind Plant Monitoring Data: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Chowdhury, S.; Hodge, B. M.

    2014-01-01

    In this paper, a methodology is developed to analyze how ambient and wake turbulence affects the power generation of a single wind turbine within an array of turbines. Using monitoring data from a wind power plant, we selected two sets of wind and power data for turbines on the edge of the wind plant that resemble (i) an out-of-wake scenario (i.e., when the turbine directly faces incoming winds) and (ii) an in-wake scenario (i.e., when the turbine is under the wake of other turbines). For each set of data, two surrogate models were then developed to represent the turbine power generation (i) as a function of the wind speed; and (ii) as a function of the wind speed and turbulence intensity. Support vector regression was adopted for the development of the surrogate models. Three types of uncertainties in the turbine power generation were also investigated: (i) the uncertainty in power generation with respect to the published/reported power curve, (ii) the uncertainty in power generation with respect to the estimated power response that accounts for only mean wind speed; and (iii) the uncertainty in power generation with respect to the estimated power response that accounts for both mean wind speed and turbulence intensity. Results show that (i) under the same wind conditions, the turbine generates different power between the in-wake and out-of-wake scenarios, (ii) a turbine generally produces more power under the in-wake scenario than under the out-of-wake scenario, (iii) the power generation is sensitive to turbulence intensity even when the wind speed is greater than the turbine rated speed, and (iv) there is relatively more uncertainty in the power generation under the in-wake scenario than under the out-of-wake scenario.

  1. High-Temperature Thermal Array for Next Generation Solar Thermal Power Production- FY12 Q2

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this LANL project, funded by SunShot, for the second quarter of fiscal year 2013.

  2. High-Temperature Thermal Array for Next Generation Solar Thermal Power Production- FY13 Q1

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this Los Alamos National Laboratory project, funded by SunShot, for the first quarter of fiscal year 2013.

  3. Method and apparatus for optimizing operation of a power generating plant using artificial intelligence techniques

    DOE Patents [OSTI]

    Wroblewski, David; Katrompas, Alexander M.; Parikh, Neel J.

    2009-09-01

    A method and apparatus for optimizing the operation of a power generating plant using artificial intelligence techniques. One or more decisions D are determined for at least one consecutive time increment, where at least one of the decisions D is associated with a discrete variable for the operation of a power plant device in the power generating plant. In an illustrated embodiment, the power plant device is a soot cleaning device associated with a boiler.

  4. Purchase and Installation of a Geothermal Power Plant to Generate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CW-1 CW-2 Heat Exchanger Building 8" Supply Pipeline 4" - 6"- 8" Distribution System 4" - ... production * Oregon DEQ: Injection permit modification for power production * FERC ...

  5. Purchase and Installation of a Geothermal Power Plant to Generate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    feasibility of the use of an existing low-temperature geothermal resource for combined heat and power; and Maintain and enhance existing geothermal district heating operation. ...

  6. High Reliability, High TemperatureThermoelectric Power Generation...

    Broader source: Energy.gov (indexed) [DOE]

    Key technologies and system approaches to excellent record of thermoelectric power sources in deep space missions and development of higher performance TE materials for the next ...

  7. Fuel Cell Comparison of Distributed Power Generation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon fuelcyclecomparisonreport.pdf More Documents & Publications Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model Lessons Learned from SOFC...

  8. Most Viewed Documents - Power Generation and Distribution | OSTI...

    Office of Scientific and Technical Information (OSTI)

    Ridge National Lab., TN (United States) (1995) Electric power substation capital costs Dagle, J.E.; Brown, D.R. (1997) Micro-CHP Systems for Residential Applications ...

  9. Solar powered hydrogen generating facility and hydrogen powered vehicle fleet. Final technical report, August 11, 1994--January 6, 1997

    SciTech Connect (OSTI)

    Provenzano, J.J.

    1997-04-01

    This final report describes activities carried out in support of a demonstration of a hydrogen powered vehicle fleet and construction of a solar powered hydrogen generation system. The hydrogen generation system was permitted for construction, constructed, and permitted for operation. It is not connected to the utility grid, either for electrolytic generation of hydrogen or for compression of the gas. Operation results from ideal and cloudy days are presented. The report also describes the achievement of licensing permits for their hydrogen powered trucks in California, safety assessments of the trucks, performance data, and information on emissions measurements which demonstrate performance better than the Ultra-Low Emission Vehicle levels.

  10. In-Situ Measurement of Power Loss for Crystalline Silicon Modules Undergoing Thermal Cycling and Mechanical Loading Stress Testing: Preprint

    SciTech Connect (OSTI)

    Spataru, Sergiu; Hacke, Pater; Sera, Dezso

    2015-09-15

    We analyze the degradation of multi-crystalline silicon photovoltaic modules undergoing simultaneous thermal, mechanical, and humidity stress testing to develop a dark environmental chamber in-situ measurement procedure for determining module power loss. From the analysis we determine three main categories of failure modes associated with the module degradation consisting of: shunting, recombination losses, increased series resistance losses, and current mismatch losses associated with a decrease in photo-current generation by removal of some cell areas due to cell fractures. Based on the analysis, we propose an in-situ module power loss monitoring procedure that relies on dark current-voltage measurements taken during the stress test, and initial and final module flash testing, to determine the power degradation characteristic of the module.

  11. Geopressure geothermal energy conversion: the supercritical propane cycle for power generation

    SciTech Connect (OSTI)

    Goldsberry, F.L.; Bebout, D.G.; Bachman, A.L.

    1981-01-01

    The development of the geopressure geothermal unconventional gas resource has been the object of a drilling and reservoir testing program. One aspect of the assessment has been to look at the geothermal component of the energy base as a source of power generation. The basic production unit for the resource has been estimated to be a well capable of producing fluid at a rate of 15,000 to 40,000 BPD at temperatures of 240 to 360/sup 0/F (.0276 to .0736 M/sup 3//sec at 338 to 455/sup 0/K). The spacing of these wells will be approximately 2 to 4 km for effective reservoir drainage. This limits the generation capacity, per well from 700 to 3000 kW per site. It is assumed that interconnecting pipelines to carry brine from each well to a central location and then return it to salt water disposal wells will be impractical. Single well power plants with electrical gathering systems are considered to be the probable mode of development. The thermodynamic envelope within which the plant must operate is defined by the linear cooling curve of the brine and the ambient air temperature. The low resource temperature calls for a Rankine cycle. A supercritical propane cycle was selected. The only component of the thermal power system subject to uncertainty is the brine/propane heater. At the present time a scale/corrosion pilot plant is being operated on a number of geopressure test wells to determine inexpensive scale and corrosion inhibitors that may be used to reduce fouling of the exchanger tubes.

  12. Linkages from DOE's Wind Energy Program to Commercial Renewable Power Generation

    Broader source: Energy.gov [DOE]

    This report discusses linkages from the U.S. Department of Energy's Wind Energy Program research and development to commercial renewable power generation.

  13. Huayuan ChunJiang Power Generation Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Place: Hunan Province, China Zip: 416400 Sector: Hydro Product: Hunan-based small hydro project developer. References: Huayuan ChunJiang Power Generation Co., Ltd1 This...

  14. Nonequilibrium Thermoelectrics: Low-Cost, High-Performance Materials for Cooling and Power Generation

    SciTech Connect (OSTI)

    Li, Q.

    2011-05-18

    Thermoelectric materials can be made into coolers (TECs) that use electricity to develop a temperature difference, cooling something, or generators (TEGs) that convert heat directly to electricity. One application of TEGs is to place them in a waste heat stream to recuperate some of the power being lost and putting it to use more profitably. To be effective thermoelectrics, however, materials must have both high electrical conductivity and low thermal conductivity, a combination rarely found in nature. Materials selection and processing has led to the development of several systems with a figure of merit, ZT, of nearly unity. By using non-equilibrium techniques, we have fabricated higher efficiency thermoelectric materials. The process involves creating an amorphous material through melt spinning and then sintering it with either spark plasma or a hot press for as little as two minutes. This results in a 100% dense material with an extremely fine grain structure. The grain boundaries appear to retard phonons resulting in a reduced thermal conductivity while the electrons move through the material relatively unchecked. The techniques used are low-cost and scaleable to support industrial manufacturing.

  15. Power System Generation and Inter-Connection Planning Model ...

    Open Energy Info (EERE)

    Generation and Inter-Connection Planning Model (SUPER) AgencyCompany Organization: Latin American Energy Organization Sector: Energy Focus Area: Renewable Energy, Hydro...

  16. Biomass Support for the China Renewable Energy Law: Feasibility Report -- Agricultural and Forestry Solid Wastes Power Generation Demonstration, December 2005

    SciTech Connect (OSTI)

    Not Available

    2006-10-01

    Subcontractor report on feasibility of using agricultural and forestry wastes for power generation in China

  17. An Internet-based interactive module for air emissions from fossil fuel based power generation

    SciTech Connect (OSTI)

    Karman, D.; O`Leary, K.; O`Reilly, S.

    1997-12-31

    The proliferation of the Internet, Web pages and associated software tools available for developing multimedia material provides significant opportunities in training, education and information transfer. This paper will describe the development, testing and evaluation of an interactive teaching module aimed at college and university students that have previous education in thermodynamics and basic chemistry. The module is currently in development at the Department of Civil and Environmental Engineering at Carleton University with support from Environment Canada. Preliminary testing of this module is expected to begin late January. The module contains options to look at CO, CO{sub 2}, SO{sub 2} and NO{sub x} emissions associated with electric power generation in thermal stations that use coal, natural gas, crude and distillate oil. Factors governing the thermal efficiency of typical boiler systems and the thermodynamic limitations for converting heat into work are discussed. Supporting background information such as emission trends and emission factors used in calculations are also included as part of this module. A simple Rankine cycle without reheat or regeneration is considered to compare the emissions per unit energy delivered from each of the fuels considered. For natural gas and distillate oil, combined cycle operation is considered with a gas turbine-heat recovery steam generator combination replacing the boiler in the simple Rankine cycle. For all fuels, the cogeneration option is investigated by expanding the steam to an intermediate pressure in the turbine and utilizing the remaining heat by condensing the steam in a heat recovery application. Emission factors and basic information on CO, SO{sub 2} and NO{sub x} control technologies are utilized to calculate and report the emissions per unit energy delivered under the various scenarios investigated.

  18. Some aspects of the selection of materials for high temperature service in fossil fuel power generation

    SciTech Connect (OSTI)

    Birks, N.

    1999-07-01

    The electric power industry, converting heat into electricity, is concerned with two primary parameters, reliability and efficiency. In order to satisfy the reliability criteria, it is preferred to use well known and well tried materials well within their ultimate performance limits. In order to improve the economics of the process, it is attempted first to optimize the process and then to alter the operational parameters in order to increase the efficiency of the cycle used. The efficiency of the thermal cycle used depends primarily on its upper and lower temperature limits. For instance, it is well known that a plant operating in regions where the water supply is cooler demonstrate higher efficiencies than a plant that operates in warmer climates. For practical purposes however, it is the upper temperature limit of the cycle that must be increased to improve efficiency. This immediately requires that materials be selected, for the high temperature components, that can operate safely and continuously under these conditions, that also include aggressive, corrosive atmospheres. The need to consider higher operating temperatures opens up the range of materials being studied to include alloys that are established for high temperature use in other applications as well as new, mainly untried materials. The conditions under which a heat exchanger for electric power generation must operate are so different from other applications that nearly all materials, alternative to those now in use, must be approached as new and undergo extensive testing for coding. Few materials are available for use in this application off the shelf.

  19. Wind and solar power electric generation to see strong growth...

    U.S. Energy Information Administration (EIA) Indexed Site

    Outlook says the increase in wind power will be due to the new wind turbines coming online thanks to the federal production tax credit that was recently extended by Congress. ...

  20. Motion-to-Energy (M2E) Power Generation Technology

    ScienceCinema (OSTI)

    INL

    2009-09-01

    INL researchers developed M2E, a new technology that converts motion to energy. M2E uses an innovative, optimized microgenerator with power management circuitry that kinetically charges mobile batteries from natural motion such as walking.

  1. MHK Technologies/Direct Drive Power Generation Buoy | Open Energy...

    Open Energy Info (EERE)

    license agreement with Columbia Power Technologies to jointly develop a direct drive wave energy conversion device Designed to be anchored 2 5 miles off the Oregon coast in 130...

  2. Most Viewed Documents for Power Generation and Distribution:...

    Office of Scientific and Technical Information (OSTI)

    Gas Turbine Exhaust Diffuser Norris, Thomas R. (2009) 18 Electric power substation capital costs Dagle, J.E.; Brown, D.R. (1997) 17 WABASH RIVER COAL GASIFICATION REPOWERING ...

  3. December 2015 Most Viewed Documents for Power Generation And...

    Office of Scientific and Technical Information (OSTI)

    of CO2 Recovery Process Charles W. White III (2003) 176 Electric power substation capital costs Dagle, J.E.; Brown, D.R. (1997) 135 Recovery of Water from Boiler Flue Gas Using ...

  4. June 2015 Most Viewed Documents for Power Generation And Distribution...

    Office of Scientific and Technical Information (OSTI)

    (1997) 130 Electric power substation capital costs Dagle, J.E.; Brown, D.R. (1997) 122 Feed-pump hydraulic performance and design improvement, Phase I: research program design. ...

  5. September 2015 Most Viewed Documents for Power Generation And...

    Office of Scientific and Technical Information (OSTI)

    of CO2 Recovery Process Charles W. White III (2003) 154 Electric power substation capital costs Dagle, J.E.; Brown, D.R. (1997) 145 Recovery of Water from Boiler Flue Gas Using ...

  6. March 2015 Most Viewed Documents for Power Generation And Distribution...

    Office of Scientific and Technical Information (OSTI)

    Final report Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.; Thompson, W.E.; Wilson, D.G. (1982) 75 Electric power substation capital costs Dagle, J.E.; Brown, D.R. (1997) 67 Load ...

  7. Project Title: Small Scale Electrical Power Generation from Heat...

    Office of Scientific and Technical Information (OSTI)

    Subject: 15 GEOTHERMAL ENERGY Geothermal, ORC, 75kW, Green Machine, ElectraTherm, co-produced, Waste heat to power, Green energy, low temperature Word Cloud More Like This Full ...

  8. MHK Technologies/Submergible Power Generator | Open Energy Information

    Open Energy Info (EERE)

    Type Click here Axial Flow Turbine Technology Description The design of the SPG leverages water flows in varying scenarios to generate electricity While the focus of the C2C...

  9. Methods for Analyzing the Economic Value of Concentrating Solar Power with Thermal Energy Storage

    SciTech Connect (OSTI)

    Denholm, Paul; Jorgenson, Jennie; Miller, Mackay; Zhou, Ella; Wang, Caixia

    2015-07-20

    Concentrating solar power with thermal energy storage (CSP-TES) provides multiple quantifiable benefits compared to CSP without storage or to solar photovoltaic (PV) technology, including higher energy value, ancillary services value, and capacity value. This report describes modeling approaches to quantifying these benefits that have emerged through state-level policymaking in the United States as well as the potential applicability of these methods in China. The technical potential for CSP-TES in China is significant, but deployment has not yet achieved the targets established by the Chinese government. According to the 12th Five Year Plan for Renewable Energy (2011-2015), CSP was expected to reach 1 GW by 2015 and 3 GW by 2020 in China, yet as of December 2014, deployment totaled only 13.8 MW. One barrier to more rapid deployment is the lack of an incentive specific to CSP, such as a feed-in tariff. The 13th Five Year Plan for Solar Generation (2016-2020), which is under development, presents an opportunity to establish a feed-in tariff specific to CSP. This report, produced under the auspices of the U.S.-China Renewable Energy Partnership, aims to support the development of Chinese incentives that advance CSP deployment goals.

  10. Status of Biomass Power Generation in California, July 31, 2003

    SciTech Connect (OSTI)

    Morris, G.

    2003-12-01

    This report describes the development of the biomass power industry in California over the past quarter century, and examines its future outlook. The development of a state biomass policy, which has been under discussion in California for the better part of the past decade, has never gotten off the ground, but a number of smaller initiatives have helped to keep the biomass power industry afloat and have promoted the use of some targeted types of residues. In this report we analyze the prospects for policy development and the application of new biomass technologies in California.

  11. Power efficiency for very high temperature solar thermal cavity receivers

    DOE Patents [OSTI]

    McDougal, Allan R.; Hale, Robert R.

    1984-01-01

    This invention is an improved solar energy cavity receiver for exposing materials and components to high temperatures. The receiver includes a housing having an internal reflective surface defining a cavity and having an inlet for admitting solar radiation thereto. A photothermal absorber is positioned in the cavity to receive radiation from the inlet. A reflective baffle is positioned between the absorber and the inlet to severely restrict the re-radiation of energy through the inlet. The front surface of the baffle defines a narrow annulus with the internal reflective surface of the housing. The front surface of the baffle is contoured to reflect incoming radiation onto the internal surface of the housing, from which it is reflected through the annulus and onto the front surface of the absorber. The back surface of the baffle intercepts infrared radiation from the front of the absorber. With this arrangement, a high percentage of the solar power input is retained in the cavity; thus, high internal temperatures are attained.

  12. Appendix M - GPRA06 estimate of penetration of generating technologies into green power markets

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The Green Power Market Model (GPMM or the model) identifies and analyzes the potential electric-generating capacity additions that will result from green power programs, which are not captured in the least-cost analyses performed by the National Energy Modeling System (NEMS) and the Market Allocation (MARKAL) model. The term "green power" is used to define power generated from renewable energy sources, such as wind, solar, geothermal, and various forms of biomass. The Green Power market is an increasingly important element of the national renewable energy contribution, with changes in the regulatory and legislative environment and the recent dramatic changes in natural gas prices slowly altering the size of this opportunity.

  13. Membrane-Based Osmotic Heat Engine with Organic Solvent for Enhanced Power Generation from Low-Grade Heat

    SciTech Connect (OSTI)

    Shaulsky, E; Boo, C; Lin, SH; Elimelech, M

    2015-05-05

    We present a hybrid osmotic heat engine (OHE) system that uses draw solutions with an organic solvent for enhanced thermal separation efficiency. The hybrid OHE system produces sustainable energy by combining pressure-retarded osmosis (PRO) as a power generation stage and membrane distillation (MD) utilizing low-grade heat as a separation stage. While previous OHE systems employed aqueous electrolyte draw solutions, using methanol as a solvent is advantageous because methanol is highly volatile and has a lower heat capacity and enthalpy of vaporization than water. Hence, the thermal separation efficiency of a draw solution with methanol would be higher than that of an aqueous draw solution. In this study, we evaluated the performance of LiCl-methanol as a potential draw solution for a PRO-MD hybrid OHE system. The membrane transport properties as well as performance with LiCl methanol draw solution were evaluated using thin-film composite (TFC) PRO membranes and compared to the results obtained with a LiCl water draw solution. Experimental PRO methanol flux and maximum projected power density of 47.1 L m(-2) h(-1) and 72.1 W m(-2), respectively, were achieved with a 3 M LiCl-methanol draw solution. The overall efficiency of the hybrid OHE system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages under conditions with and without heat recovery. The modeling results demonstrate higher ORE energy efficiency with the LiCl methanol draw solution compared to that with the LiCl water draw solution under practical operating conditions (i.e., heat recovery <90%). We discuss the implications of the results for converting low-grade heat to power.

  14. Southeast Regional Assessment Study: an assessment of the opportunities of solar electric power generation in the Southeastern United States

    SciTech Connect (OSTI)

    1980-07-01

    The objective of this study was to identify and assess opportunities for demonstration and large scale deployment of solar electric facilities in the southeast region and to define the technical, economic, and institutional factors that can contribute to an accelerated use of solar energy for electric power generation. Graphs and tables are presented indicating the solar resource potential, siting opportunities, energy generation and use, and socioeconomic factors of the region by state. Solar electric technologies considered include both central station and dispersed solar electric generating facilities. Central stations studied include solar thermal electric, wind, photovoltaic, ocean thermal gradient, and biomass; dispersed facilities include solar thermal total energy systems, wind, and photovoltaic. The value of solar electric facilities is determined in terms of the value of conventional facilities and the use of conventional fuels which the solar facilities can replace. Suitable cost and risk sharing mechanisms to accelerate the commercialization of solar electric technologies in the Southeast are identified. The major regulatory and legal factors which could impact on the commercialization of solar facilities are reviewed. The most important factors which affect market penetration are reviewed, ways to accelerate the implementation of these technologies are identified, and market entry paths are identified. Conclusions and recommendations are presented. (WHK)

  15. Coupling Ocean Thermal Energy Conversion technology (OTEC) with nuclear power plants

    SciTech Connect (OSTI)

    Goldstein, M.K.; Rezachek, D.; Chen, C.S.

    1981-01-01

    The prospects of utilizing an OTEC Related Bottoming Cycle to recover waste heat generated by a large nuclear (or fossil) power plant are examined. With such improvements, OTEC can become a major energy contributor. 12 refs.

  16. Measurement of total ultrasonic power using thermal expansion and change in buoyancy of an absorbing target

    SciTech Connect (OSTI)

    Dubey, P. K. Kumar, Yudhisther; Gupta, Reeta; Jain, Anshul; Gohiya, Chandrashekhar

    2014-05-15

    The Radiation Force Balance (RFB) technique is well established and most widely used for the measurement of total ultrasonic power radiated by ultrasonic transducer. The technique is used as a primary standard for calibration of ultrasonic transducers with relatively fair uncertainty in the low power (below 1 W) regime. In this technique, uncertainty comparatively increases in the range of few watts wherein the effects such as thermal heating of the target, cavitations, and acoustic streaming dominate. In addition, error in the measurement of ultrasonic power is also caused due to movement of absorber at relatively high radiated force which occurs at high power level. In this article a new technique is proposed which does not measure the balance output during transducer energized state as done in RFB. It utilizes the change in buoyancy of the absorbing target due to local thermal heating. The linear thermal expansion of the target changes the apparent mass in water due to buoyancy change. This forms the basis for the measurement of ultrasonic power particularly in watts range. The proposed method comparatively reduces uncertainty caused by various ultrasonic effects that occur at high power such as overshoot due to momentum of target at higher radiated force. The functionality of the technique has been tested and compared with the existing internationally recommended RFB technique.

  17. Boiler and steam generator corrosion: Fossil fuel power plants. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers. Fluidized bed combustors and coal gasification are included in the applications. The citations examine hot corrosion, thermal mechanical degradation, and intergranular oxidation corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures. Coatings and treatment of material to inhibit corrosion are discussed. Corrosion affecting nuclear powered steam generators is examined in a separate bibliography. (Contains a minimum of 85 citations and includes a subject term index and title list.)

  18. Boiler and steam generator corrosion: Fossil fuel power plants. (Latest citations from the NTIS database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers. Fluidized bed combustors and coal gasification are included in the applications. The citations examine hot corrosion, thermal mechanical degradation, and intergranular oxidation corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures. Coatings and treatment of material to inhibit corrosion are discussed. Corrosion affecting nuclear powered steam generators is examined in a separate bibliography. (Contains a minimum of 84 citations and includes a subject term index and title list.)

  19. Boiler and steam generator corrosion: Fossil fuel power plants. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1996-03-01

    The bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers. Fluidized bed combustors and coal gasification are included in the applications. The citations examine hot corrosion, thermal mechanical degradation, and intergranular oxidation corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures. Coatings and treatment of material to inhibit corrosion are discussed. Corrosion affecting nuclear powered steam generators is examined in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  20. Boiler and steam generator corrosion: Fossil fuel power plants. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    The bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers. Fluidized bed combustors and coal gasification are included in the applications. The citations examine hot corrosion, thermal mechanical degradation, and intergranular oxidation corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures. Coatings and treatment of material to inhibit corrosion are discussed. Corrosion affecting nuclear powered steam generators is examined in a separate bibliography. (Contains a minimum of 119 citations and includes a subject term index and title list.)

  1. Boiler and steam generator corrosion: Fossil fuel power plants. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1996-11-01

    The bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers. Fluidized bed combustors and coal gasification are included in the applications. The citations examine hot corrosion, thermal mechanical degradation, and intergranular oxidation corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures. Coatings and treatment of material to inhibit corrosion are discussed. Corrosion affecting nuclear powered steam generators is examined in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  2. Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Final Report

    SciTech Connect (OSTI)

    Michael Schuller; Frank Little; Darren Malik; Matt Betts; Qian Shao; Jun Luo; Wan Zhong; Sandhya Shankar; Ashwin Padmanaban

    2012-03-30

    We demonstrated that adding nanoparticles to a molten salt would increase its utility as a thermal energy storage medium for a concentrating solar power system. Specifically, we demonstrated that we could increase the specific heat of nitrate and carbonate salts containing 1% or less of alumina nanoparticles. We fabricated the composite materials using both evaporative and air drying methods. We tested several thermophysical properties of the composite materials, including the specific heat, thermal conductivity, latent heat, and melting point. We also assessed the stability of the composite material with repeated thermal cycling and the effects of adding the nanoparticles on the corrosion of stainless steel by the composite salt. Our results indicate that stable, repeatable 25-50% improvements in specific heat are possible for these materials. We found that using these composite salts as the thermal energy storage material for a concentrating solar thermal power system can reduce the levelized cost of electricity by 10-20%. We conclude that these materials are worth further development and inclusion in future concentrating solar power systems.

  3. The impact of climate policies on the operation of a thermal power plant

    SciTech Connect (OSTI)

    Orvika Rosnes

    2008-04-15

    Climate policy measures aimed at power markets influence the cost structure of producers and price patterns, and are therefore likely to influence the production decision of power plants, even in the short run. When power plants have costs related to starting and stopping, decisions on short-term production are intertemporal, and the conventional 'price vs. marginal cost' rule is not sufficient to predict production in thermal power plants. This paper analyzes how the optimal production decision is influenced by climate policies: namely, CO{sub 2} trading mechanisms, the expansion of renewables and the interaction between these policies. The main result is that higher power price variation (as a result of increased wind power production) makes the thermal power producer less flexible, but the effect on emissions is ambiguous. A CO{sub 2} cost (as a result of an emission trading system) increases the flexibility of the producer and the operation decision resembles the conventional 'price vs. marginal cost' rule more. This implies lower emissions. However, when the CO{sub 2} price is coupled with higher power price variation, the positive effects may be reversed since the two policies have opposing effects.

  4. Electric power generating plant having direct-coupled steam and compressed-air cycles

    DOE Patents [OSTI]

    Drost, M.K.

    1981-01-07

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  5. Electric power generating plant having direct coupled steam and compressed air cycles

    DOE Patents [OSTI]

    Drost, Monte K.

    1982-01-01

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  6. Studies on a self-excited closed cycle MHD generator for pulse power system

    SciTech Connect (OSTI)

    Harada, N.

    1998-07-01

    The authors have been proposing to use a closed cycle disk MHD generator as an alternative of an open cycle linear generator for applications to portable pulsed power supply because of its special advantages of durability and reliability. Steady state operation with applied magnetic field mode, magnet coil design and dynamic behavior of a disk type MHD generator in self-excited mode were studied numerically. One-dimensional numerical code based on MacCormack method were used. Thermal input to the disk channel was 40MW and working medium was argon seeded with potassium driven by the nonequilibrium plasma generator. At first, steady state solutions were obtained for both initial applied field of 0.7T and for full magnetic field 4T. For any load conditions examined, generator behaved quite stable and output current reaches its certain final value. Based on these steady state output current, they successfully designed suitable magnet coils. Current density was about 15A/mm{sup 2} . This value was quite reasonable and durable even for relatively long duration. With the designed magnet coils, dynamic behavior of the disk generator was studied. For transition from initial applied field mode to self-excited mode, switching was succeeded and there was no abnormal fluctuations in current trace. Noticeable instability did not develop in this period. However, in self-excited mode, the output current significantly increases and becomes much higher than the rated current of 1720A at B=4T after time=4sec., in spite of the fact that the output current increases steadily and very smoothly until that time. Sudden development of ionization instability was suggested from distributions of electron temperature and number density. They tried to limit excitation current to the magnet coils exactly to the designed value using bypass circuit to prevent from development of ionization instability. Then stable operation in the self-excited mode was successfully achieved. Further the authors confirmed the stable operation in SE mode without additional control when the value of initial applied field was increased to 4T. Further, if its value was higher than 2.5T, output current stably increased up to the designed value and converged to the designed operating conditions. Such a behavior was not completely clarified so far and they need to study further that how to reach and/or how to design stable operation in SE mode.

  7. EIS-0416: Ivanpah Solar Electric Generating System in San Bernardino...

    Energy Savers [EERE]

    Ivanpah Solar Electric Generating System (07-AFC-5) Project, Proposal to Construct a 400-m Megawatt Concentrated Solar Power Tower, Thermal-Electric Power Plant, San Bernardino ...

  8. Survey of thermal-hydraulic models of commercial nuclear power plants

    SciTech Connect (OSTI)

    Determan, J.C.; Hendrix, C.E.

    1992-12-01

    A survey of the thermal-hydraulic models of nuclear power plants has been performed to identify the NRC's current analytical capabilities for critical event response. The survey also supports ongoing research for accident management. The results of the survey are presented here. The PC database which records detailed data on each model is described.

  9. Survey of thermal-hydraulic models of commercial nuclear power plants

    SciTech Connect (OSTI)

    Determan, J.C.; Hendrix, C.E.

    1992-12-01

    A survey of the thermal-hydraulic models of nuclear power plants has been performed to identify the NRC`s current analytical capabilities for critical event response. The survey also supports ongoing research for accident management. The results of the survey are presented here. The PC database which records detailed data on each model is described.

  10. The CAIR vacatur raises uncertainty in the power generation industry

    SciTech Connect (OSTI)

    Dan Weiss; John Kinsman

    2008-12-15

    On 11 July 2008, the U.S. Court of Appeals for the District of Columbia issued a unanimous decision vacating the entire Clean Air Interstate Rule (CAIR) and the associated federal implementation plan. The upset of this program to reduce power plant sulfur dioxide (SO{sub 2}) and nitrogen oxides (NOx) emissions in the eastern United States was a great surprise, creating operational and planning turmoil in the industry. 4 refs.

  11. Concentrating Solar Power Services CSP Services | Open Energy...

    Open Energy Info (EERE)

    providing consulting, due diligence and component testing for Solar Thermal Electricity Generation (STEG). References: Concentrating Solar Power Services (CSP...

  12. Calculated transport properties of CdO: thermal conductivity and thermoelectric power factor

    SciTech Connect (OSTI)

    Lindsay, Lucas R.; Parker, David S.

    2015-10-01

    We present first principles calculations of the thermal and electronic transport properties of the oxide semiconductor CdO. In particular, we find from theory that the accepted thermal conductivity κ value of 0.7 Wm-1K-1 is approximately one order of magnitude too small; our calculations of κ of CdO are in good agreement with recent measurements. We also find that alloying of MgO with CdO is an effective means to reduce the lattice contribution to κ, despite MgO having a much larger thermal conductivity. We further consider the electronic structure of CdO in relation to thermoelectric performance, finding that large thermoelectric power factors may occur if the material can be heavily doped p-type. This work develops insight into the nature of thermal and electronic transport in an important oxide semiconductor.

  13. Variable Renewable Generation can Provide Balancing Control to the Electric Power System (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-09-01

    As wind and solar plants become more common in the electric power system, they may be called on to provide grid support services to help maintain system reliability. For example, through the use of inertial response, primary frequency response, and automatic generation control (also called secondary frequency response), wind power can provide assistance in balancing the generation and load on the system. These active power (i.e., real power) control services have the potential to assist the electric power system in times of disturbances and during normal conditions while also potentially providing economic value to consumers and variable renewable generation owners. This one-page, two-sided fact sheet discusses the grid-friendly support and benefits renewables can provide to the electric power system.

  14. Biogas electric power generation: 25 kW or greater

    SciTech Connect (OSTI)

    Not Available

    1981-06-01

    A biogas cogeneration system consists basically of: an anaerobic digester to produce the gas, a prime mover which burns the gas and makes power, and recovery devices which capture engine waste heat. Guidance is given through the exercise of determining whether biogas cogeneration is worthwhile. Design, construction, and operation are covered in general. Theoretical and practical background on biogas cogeneration are given, and directions for collecting site data and a method for performing a preliminary economic analysis for a given operation are given. (LEW)

  15. Thermal generation of spin current in epitaxial CoFe2O4 thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guo, Er -Jia; Herklotz, Andreas; Kehlberger, Andreas; Cramer, Joel; Jakob, Gerhard; Klaeui, Mathias

    2016-01-12

    The longitudinal spin Seebeck effect (LSSE) has been investigated in high-quality epitaxial CoFe2O4 (CFO) thin films. The thermally excited spin currents in the CFO films are electrically detected in adjacent Pt layers due to the inverse spin Hall effect (ISHE). The LSSE signal exhibits a linear increase with increasing temperature gradient, yielding a LSSE coefficient of –100 nV/K at room temperature. The temperature dependence of the LSSE is investigated from room temperature down to 30 K, showing a significant reduction at low temperatures, revealing that the total amount of thermally generated magnons decreases. Moreover, we demonstrate that the spin Seebeckmore » effect is an effective tool to study the magnetic anisotropy induced by epitaxial strain, especially in ultrathin films with low magnetic moments.« less

  16. Photo-voltaic power generating means and methods

    DOE Patents [OSTI]

    Kroger, Ferdinand A.; Rod, Robert L.; Panicker, Ramachandra M. P.; Knaster, Mark B.

    1984-01-10

    A photo-voltaic power cell based on a photoelectric semiconductor compound and the method of using and making the same. The semiconductor compound in the photo-voltaic power cell of the present invention can be electrolytically formed at a cathode in an electrolytic solution by causing discharge or decomposition of ions or molecules of a non-metallic component with deposition of the non-metallic component on the cathode and simultaneously providing ions of a metal component which discharge and combine with the non-metallic component at the cathode thereby forming the semiconductor compound film material thereon. By stoichiometrically adjusting the amounts of the components, or otherwise by introducing dopants into the desired amounts, an N-type layer can be formed and thereafter a P-type layer can be formed with a junction therebetween. The invention is effective in producing homojunction semiconductor materials and heterojunction semiconductor materials. The present invention also provides a method of using three electrodes in order to form the semiconductor compound material on one of these electrodes. Various examples are given for manufacturing different photo-voltaic cells in accordance with the present invention.

  17. Photo-voltaic power generating means and methods

    DOE Patents [OSTI]

    Kroger, Ferdinand A.; Rod, Robert L.; Panicker, M. P. Ramachandra

    1983-08-23

    A photo-voltaic power cell based on a photoelectric semiconductor compound and the method of using and making the same. The semiconductor compound in the photo-voltaic power cell of the present invention can be electrolytically formed at a cathode in an electrolytic solution by causing discharge or decomposition of ions or molecules of a non-metallic component with deposition of the non-metallic component on the cathode and simultaneously providing ions of a metal component which discharge and combine with the non-metallic component at the cathode thereby forming the semiconductor compound film material thereon. By stoichiometrically adjusting the amounts of the components, or otherwise by introducing dopants into the desired amounts, an N-type layer can be formed and thereafter a P-type layer can be formed with a junction therebetween. The invention is effective in producing homojunction semiconductor materials and heterojunction semiconductor materials. The present invention also provides a method of using three electrodes in order to form the semiconductor compound material on one of these electrodes. Various examples are given for manufacturing different photo-voltaic cells in accordance with the present invention.

  18. Fuel Use Act: implications for new power generation. [Conference paper

    SciTech Connect (OSTI)

    Schneider, H.S.; Jandegian, G.V.

    1980-01-01

    The electric utility industry has, in general, supported the national goal of an energy shift away from imported oil to coal and other fuels but has felt that the Power Plant and Industrial Fuel Use Act is redundant and largely irrelevant. The industy believes power plant conversions to coal and new base-load plants shifting to coal has been occurring for the past several years as a result of: (1) the rapidly escalating costs associated with foreign oil imports; (2) the Federal Energy Office request for voluntary conversion to coal during the 1973-1974 oil embargo; and (3) the Energy supply and Environmental Coordination Act of 1974 prohibition and construction orders. DOE's position that, without the Fuel Use Act, utilities can continue business as usual, cannot be supported in light of the extraordinary volatile market and reliability aspects of continued use of oil. What the Act has failed to acknowledge is the need for a more-flexible and balanced approach that recognizes the experience, needs, and concerns in distinct regions of the country. What must be examined are the problem areas faced by the industry in forcing coal use in certain regions where there are increasingly stringent environmental and economic concerns to be considered or where there has been historically heavy dependence on oil as a primary energy source. The next five years will be a period of learning for both (ERA) and the electric utility industry, a period that will mold our energy future through the year 2000. 7 references.

  19. Global Assessment of Hydrogen Technologies – Task 5 Report Use of Fuel Cell Technology in Electric Power Generation

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ahluwalia, Rajesh K.

    2007-12-01

    The purpose of this work was to assess the performance of high temperature membranes and observe the impact of different parameters, such as water-to-carbon ratio, carbon formation, hydrogen formation, efficiencies, methane formation, fuel and oxidant utilization, sulfur reduction, and the thermal efficiency/electrical efficiency relationship, on fuel cell performance. A 250 KW PEM fuel cell model was simulated [in conjunction with Argonne National Laboratory (ANL) with the help of the fuel cell computer software model (GCtool)] which would be used to produce power of 250 kW and also produce steam at 120oC that can be used for industrial applications. The performance of the system was examined by estimating the various electrical and thermal efficiencies achievable, and by assessing the effect of supply water temperature, process water temperature, and pressure on thermal performance. It was concluded that increasing the fuel utilization increases the electrical efficiency but decreases the thermal efficiency. The electrical and thermal efficiencies are optimum at ~85% fuel utilization. The low temperature membrane (70oC) is unsuitable for generating high-grade heat suitable for useful cogeneration. The high temperature fuel cells are capable of producing steam through 280oC that can be utilized for industrial applications. Increasing the supply water temperature reduces the efficiency of the radiator. Increasing the supply water temperature beyond the dew point temperature decreases the thermal efficiency with the corresponding decrease in high-grade heat utilization. Increasing the steam pressure decreases the thermal efficiency. The environmental impacts of fuel cell use depend upon the source of the hydrogen rich fuel used. By using pure hydrogen, fuel cells have virtually no emissions except water. Hydrogen is rarely used due to problems with storage and transportation, but in the future, the growth of a “solar hydrogen economy” has been projected. Photovoltaic cells convert sunlight into electricity. This electricity can be used to split water (electrolysis) into hydrogen and oxygen, to store the sun's energy as hydrogen fuel. In this scenario, fuel cell powered vehicles or generating stations have no real emissions of greenhouse or acid gases, or any other pollutants. It is predominantly during the fuel processing stage that atmospheric emissions are released by a fuel cell power plant. When methanol from biomass is used as a fuel, fuel cells have no net emissions of carbon dioxide (CO2, a greenhouse gas) because any carbon released was recently taken from the atmosphere by photosynthetic plants. Any high temperature combustion, such as that which would take place in a spark ignition engine fueled by methanol, produces nitrous oxides (NOx), gases which contribute to acid rain. Fuel cells virtually eliminate NOx emissions because of the lower temperatures of their chemical reactions. Fuel cells, using processed fossil fuels, have emissions of CO2 and sulfur dioxide (SO2) but these emissions are much lower than those from traditional thermal power plants or spark ignition engines due to the higher efficiency of fuel cell power plants. Higher efficiencies result in less fuel being consumed to produce a given amount of electricity or to travel a given distance. This corresponds to lower CO2 and SO2 emissions. Fuel cell power plants also have longer life expectancies and lower maintenance costs than their alternatives.

  20. DEVELOPMENT AND ASSESSMENT OF COATINGS FOR FUTURE POWER GENERATION TURBINES

    SciTech Connect (OSTI)

    Alvin, Maryanne; Klotz, K.; McMordie, B.; Gleeson, B.; Zhu, D.; Warnes, B.; Kang, B.; Tannenbaum, J.

    2012-01-01

    The NETL-Regional University Alliance (RUA) continues to advance technology development critical to turbine manufacturer efforts for achieving DOE Fossil Energy (FE's) Advanced Turbine Program Goals. In conjunction with NETL, Coatings for Industry (CFI), the University of Pittsburgh, NASA GRC, and Corrosion Control Inc., efforts have been focused on development of composite thermal barrier coating (TBC) architectures that consist of an extreme temperature coating, a commercially applied 7-8 YSZ TBC, a reduced cost bond coat, and a diffusion barrier coating that are applied to nickel-based superalloys or single crystal airfoil substrate materials for use at temperatures >1450 C (> 2640 F). Additionally, construction of a unique, high temperature ({approx}1100 C; {approx}2010 F), bench-scale, micro-indentation, nondestructive (NDE) test facility at West Virginia University (WVU) was completed to experimentally address in-situ changes in TBC stiffness during extended cyclic oxidation exposure of coated single crystal coupons in air or steam containing environments. The efforts and technical accomplishments in these areas are presented in the following sections of this paper.

  1. Electrochemical Membrane for Carbon Dioxide Separation and Power Generation

    SciTech Connect (OSTI)

    Jolly, Stephen; Ghezel-Ayagh, Hossein; Hunt, Jennifer; Patel, Dilip; Steen, William A.; Richardson, Carl F.; Marina, Olga A.

    2012-12-28

    uelCell Energy, Inc. (FCE) has developed a novel system concept for separation of carbon dioxide (CO2) from greenhouse gas (GHG) emission sources using an electrochemical membrane (ECM). The salient feature of the ECM is its capability to produce electric power while capturing CO2 from flue gas, such as from an existing pulverized coal (PC) plant. Laboratory scale testing of the ECM has verified the feasibility of the technology for CO2 separation from simulated flue gases of PC plants as well as combined cycle power plants and other industrial facilities. Recently, FCE was awarded a contract (DE-FE0007634) from the U.S. Department of Energy to evaluate the use of ECM to efficiently and cost effectively separate CO2 from the emissions of existing coal fired power plants. The overarching objective of the project is to verify that the ECM can achieve at least 90% CO2 capture from flue gas of an existing PC plant with no more than 35% increase in the cost of electricity (COE) produced by the plant. The specific objectives and related activities planned for the project include: 1) conduct bench scale tests of a planar membrane assembly consisting of ten or more cells of about 0.8 m2 area each, 2) develop the detailed design for an ECM-based CO2 capture system applied to an existing PC plant, and 3) evaluate the effects of impurities (pollutants such as SO2, NOx, Hg) present in the coal plant flue gas by conducting laboratory scale performance tests of the membrane. The results of this project are anticipated to demonstrate that the ECM is an advanced technology, fabricated from inexpensive materials, based on proven operational track records, modular, scalable to large sizes, and a viable candidate for >90% carbon capture from existing PC plants. In this paper, the fundamentals of ECM technology including: material of construction, principal mechanisms of operation, carbon capture test results and the benefits of applications to PC plants will be presented.

  2. Preventive techniques of pollution control, the reliability and safety in core sectors including thermal power plant installations and economic evaluation

    SciTech Connect (OSTI)

    Tewari, J.K.

    1997-12-31

    This paper reports on a study of pollution control techniques, thermal power plant reliability and safety, and economics. Included are some illustrative examples dealing with pollution control. Topics include environmental planning, prevention strategy, pesticide use, food pollution, soil pollution, water pollution, thermal power plant emissions, and pollution control equipment.

  3. Phased laser array for generating a powerful laser beam

    DOE Patents [OSTI]

    Holzrichter, John F.; Ruggiero, Anthony J.

    2004-02-17

    A first injection laser signal and a first part of a reference laser beam are injected into a first laser element. At least one additional injection laser signal and at least one additional part of a reference laser beam are injected into at least one additional laser element. The first part of a reference laser beam and the at least one additional part of a reference laser beam are amplified and phase conjugated producing a first amplified output laser beam emanating from the first laser element and an additional amplified output laser beam emanating from the at least one additional laser element. The first amplified output laser beam and the additional amplified output laser beam are combined into a powerful laser beam.

  4. Analysis of Off-Board Powered Thermal Preconditioning in Electric Drive Vehicles: Preprint

    SciTech Connect (OSTI)

    Barnitt, R. A.; Brooker, A. D.; Ramroth, L.; Rugh , J.; Smith, K. A.

    2010-12-01

    Following a hot or cold thermal soak, vehicle climate control systems (air conditioning or heat) are required to quickly attain a cabin temperature comfortable to the vehicle occupants. In a plug-in hybrid electric or electric vehicle (PEV) equipped with electric climate control systems, the traction battery is the sole on-board power source. Depleting the battery for immediate climate control results in reduced charge-depleting (CD) range and additional battery wear. PEV cabin and battery thermal preconditioning using off-board power supplied by the grid or a building can mitigate the impacts of climate control. This analysis shows that climate control loads can reduce CD range up to 35%. However, cabin thermal preconditioning can increase CD range up to 19% when compared to no thermal preconditioning. In addition, this analysis shows that while battery capacity loss over time is driven by ambient temperature rather than climate control loads, concurrent battery thermal preconditioning can reduce capacity loss up to 7% by reducing pack temperature in a high ambient temperature scenario.

  5. System for thermal energy storage, space heating and cooling and power conversion

    DOE Patents [OSTI]

    Gruen, Dieter M.; Fields, Paul R.

    1981-04-21

    An integrated system for storing thermal energy, for space heating and cong and for power conversion is described which utilizes the reversible thermal decomposition characteristics of two hydrides having different decomposition pressures at the same temperature for energy storage and space conditioning and the expansion of high-pressure hydrogen for power conversion. The system consists of a plurality of reaction vessels, at least one containing each of the different hydrides, three loops of circulating heat transfer fluid which can be selectively coupled to the vessels for supplying the heat of decomposition from any appropriate source of thermal energy from the outside ambient environment or from the spaces to be cooled and for removing the heat of reaction to the outside ambient environment or to the spaces to be heated, and a hydrogen loop for directing the flow of hydrogen gas between the vessels. When used for power conversion, at least two vessels contain the same hydride and the hydrogen loop contains an expansion engine. The system is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators, but may be used with any source of heat, including a source of low-grade heat.

  6. Method and apparatus for generating electric power by waves

    SciTech Connect (OSTI)

    Watabe, T.; Dote, Y.; Kondo, H.; Matsuda, T.; Takagi, M.; Yano, K.

    1984-12-25

    At least one caisson which is part or all of a breakwater forms a water chamber therein whose closure is a pendulum having a natural period in rocking or oscillating the same as a period of stationary wave surges caused in the water chamber by rocking movement of the pendulum owing to wave force impinging against the pendulum. At least one double-acting piston and cylinder assembly is connected to the pendulum, so that when a piston of the assembly is reciprocatively moved by the pendulum, pressure difference between cylinder chambers on both sides of the piston of the assembly controls a change-over valve which in turn controls hydraulic pressure discharged from the cylinder chambers to be supplied to a plurality of hydraulic motors respectively having accumulators of a type wherein accumulated pressure and volume of the hydraulic liquid are proportional to each other, whereby driving a common generator alternately by the hydraulic motors.

  7. Linkages from DOE's Geothermal R&D to Commercial Power Generation

    Broader source: Energy.gov [DOE]

    Linkages from DOE’s Geothermal R&D to Commercial Power Generation, a report from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy

  8. DOE Selects Projects to Develop Sensors and Controls for Next-Generation Power Plants

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has selected seven projects to develop sensors and controls to support the full-scale implementation and operation of highly efficient power generation technologies with near-zero emissions.

  9. World Geothermal Power Generation in the Period 2001-2005 | Open...

    Open Energy Info (EERE)

    in the Period 2001-2005 Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: World Geothermal Power Generation in the Period 2001-2005 Abstract A...

  10. EERE Success Story-Enhanced Efficiency of Wind-Diesel Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced Efficiency of Wind-Diesel Power Generation in Tribal Villages EERE Success ... of the tribal villages and use wind energy to displace 200,000 gallons of diesel ...

  11. Post Irradiation Evaluation of Thermal Control Coatings and Solid Lubricants to Support Fission Surface Power Systems

    SciTech Connect (OSTI)

    Bowman, Cheryl L.; Jaworske, Donald A.; Stanford, Malcolm K.; Persinger, Justin A.; Khorsandi, Behrooz; Blue, Thomas E.

    2007-01-30

    The development of a nuclear power system for space missions, such as the Jupiter Icy Moons Orbiter or a lunar outpost, requires substantially more compact reactor design than conventional terrestrial systems. In order to minimize shielding requirements and hence system weight, the radiation tolerance of component materials within the power conversion and heat rejection systems must be defined. Two classes of coatings, thermal control paints and solid lubricants, were identified as material systems for which limited radiation hardness information was available. Screening studies were designed to explore candidate coatings under a predominately fast neutron spectrum. The Ohio State Research Reactor Facility staff performed irradiation in a well characterized, mixed energy spectrum and performed post irradiation analysis of representative coatings for thermal control and solid lubricant applications. Thermal control paints were evaluated for 1 MeV equivalent fluences from 1013 to 1015 n/cm2. No optical degradation was noted although some adhesive degradation was found at higher fluence levels. Solid lubricant coatings were evaluated for 1 MeV equivalent fluences from 1015 to 1016 n/cm2 with coating adhesion and flexibility used for post irradiation evaluation screening. The exposures studied did not lead to obvious property degradation indicating the coatings would have survived the radiation environment for the previously proposed Jupiter mission. The results are also applicable to space power development programs such as fission surface power for future lunar and Mars missions.

  12. Use of Geothermal Energy for Electric Power Generation

    SciTech Connect (OSTI)

    Mashaw, John M.; Prichett, III, Wilson

    1980-10-23

    The National Rural Electric Cooperative Association and its 1,000 member systems are involved in the research, development and utilization of many different types of supplemental and alternative energy resources. We share a strong commitment to the wise and efficient use of this country's energy resources as the ultimate answer to our national prosperity and economic growth. WRECA is indebted to the United States Department of Energy for funding the NRECA/DOE Geothermal Workshop which was held in San Diego, California in October, 1980. We would also like to express our gratitude to each of the workshop speakers who gave of their time, talent and experience so that rural electric systems in the Western U. S. might gain a clearer understanding of the geothermal potential in their individual service areas. The participants were also presented with practical, expert opinion regarding the financial and technical considerations of using geothermal energy for electric power production. The organizers of this conference and all of those involved in planning this forum are hopeful that it will serve as an impetus toward the full utilization of geothermal energy as an important ingredient in a more energy self-sufficient nation. The ultimate consumer of the rural electric system, the member-owner, expects the kind of leadership that solves the energy problems of tomorrow by fully utilizing the resources at our disposal today.

  13. High power microwave generation from rotating e-layers in magnetron-type

    Office of Scientific and Technical Information (OSTI)

    conducting boundary systems (Journal Article) | SciTech Connect High power microwave generation from rotating e-layers in magnetron-type conducting boundary systems Citation Details In-Document Search Title: High power microwave generation from rotating e-layers in magnetron-type conducting boundary systems Studies of the production of microwave and millimeter wave radiation at high harmonics of the relativistic electron cyclotron frequency by the interaction of a rotating E-layer with a

  14. Marine & Hydrokinetic Technology Readiness Initiative TIDAL ENERGY SYSTEM FOR ON-SHORE POWER GENERATION

    Office of Scientific and Technical Information (OSTI)

    Marine & Hydrokinetic Technology Readiness Initiative TIDAL ENERGY SYSTEM FOR ON-SHORE POWER GENERATION Marine & Hydrokinetic Technology Readiness Initiative DE-EE0003636 TIDAL ENERGY SYSTEM FOR ON-SHORE POWER GENERATION Final Technical Report: June 26, 2012 Awardee: SUNLIGHT PHOTONICS INC. 600 Corporate Court South Plainfield, NJ 07080 Sub Awardee: NASA - JET PROPULSION LAB. 4800 Oak Grove Blvd. Pasadena, CA 91109 Principal Investigator: Dr. Allan J. Bruce, Sunlight Photonics Inc.

  15. Electric Power Generation from Co-Produced and Other Oil Field Fluids |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Co-produced and low-temperature demonstration projects presentation at the 2013 peer review meeting held in Denver, Colorado. PDF icon coproduced_demoprojects_peerreview2013.pdf More Documents & Publications Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil and/or Gas Wells Electrical Power Generation Using Geothermal Fluid Co-produced from Oil & Gas track 1: Low Temp | geothermal 2015 peer review

  16. Table 8.2c Electricity Net Generation: Electric Power Sector by Plant Type, 1989-2011 (Breakout of Table 8.2b; Thousand Kilowatthours)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Electricity Net Generation: Electric Power Sector by Plant Type, 1989-2011 (Breakout of Table 8.2b; Thousand Kilowatthours) Year Fossil Fuels Nuclear Electric Power Hydro- electric Pumped Storage 5 Renewable Energy Other 10 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 6 Biomass Geo- thermal Solar/ PV 9 Wind Total Wood 7 Waste 8 Electricity-Only Plants 11<//td> 1989 1553997999 158,347,542 266,917,576 – 1,979,263,117 529,354,717 [6]

  17. Transient stability enhancement of electric power generating systems by 120-degree phase rotation

    DOE Patents [OSTI]

    Cresap, Richard L.; Taylor, Carson W.; Kreipe, Michael J.

    1982-01-01

    A method and system for enhancing the transient stability of an intertied three-phase electric power generating system. A set of power exporting generators (10) is connected to a set of power importing generators (20). When a transient cannot be controlled by conventional stability controls, and imminent loss of synchronism is detected (such as when the equivalent rotor angle difference between the two generator sets exceeds a predetermined value, such as 150 degrees), the intertie is disconnected by circuit breakers. Then a switch (30) having a 120-degree phase rotation, or a circuit breaker having a 120-degree phase rotation is placed in the intertie. The intertie is then reconnected. This results in a 120-degree reduction in the equivalent rotor angle difference between the two generator sets, making the system more stable and allowing more time for the conventional controls to stabilize the transient.

  18. Self-cooling mono-container fuel cell generators and power plants using an array of such generators

    DOE Patents [OSTI]

    Gillett, J.E.; Dederer, J.T.; Zafred, P.R.

    1998-05-12

    A mono-container fuel cell generator contains a layer of interior insulation, a layer of exterior insulation and a single housing between the insulation layers, where fuel cells, containing electrodes and electrolyte, are surrounded by the interior insulation in the interior of the generator, and the generator is capable of operating at temperatures over about 650 C, where the combination of interior and exterior insulation layers have the ability to control the temperature in the housing below the degradation temperature of the housing material. The housing can also contain integral cooling ducts, and a plurality of these generators can be positioned next to each other to provide a power block array with interior cooling. 7 figs.

  19. Self-cooling mono-container fuel cell generators and power plants using an array of such generators

    DOE Patents [OSTI]

    Gillett, James E.; Dederer, Jeffrey T.; Zafred, Paolo R.

    1998-01-01

    A mono-container fuel cell generator (10) contains a layer of interior insulation (14), a layer of exterior insulation (16) and a single housing (20) between the insulation layers, where fuel cells, containing electrodes and electrolyte, are surrounded by the interior insulation (14) in the interior (12) of the generator, and the generator is capable of operating at temperatures over about 650.degree. C., where the combination of interior and exterior insulation layers have the ability to control the temperature in the housing (20) below the degradation temperature of the housing material. The housing can also contain integral cooling ducts, and a plurality of these generators can be positioned next to each other to provide a power block array with interior cooling.

  20. The importance of combined cycle generating plants in integrating large levels of wind power generation

    SciTech Connect (OSTI)

    Puga, J. Nicolas

    2010-08-15

    Integration of high wind penetration levels will require fast-ramping combined cycle and steam cycles that, due to higher operating costs, will require proper pricing of ancillary services or other forms of compensation to remain viable. Several technical and policy recommendations are presented to help realign the generation mix to properly integrate the wind. (author)

  1. Wind Generation in the Future Competitive California Power Market

    SciTech Connect (OSTI)

    Sezgen, O.; Marnay, C.; Bretz, S.

    1998-03-01

    The goal of this work is to develop improved methods for assessing the viability of wind generation in competitive electricity markets. The viability of a limited number of possible wind sites is assessed using a geographic information system (GIS) to determine the cost of development, and Elfin, an electric utility production costing and capacity expansion model, to estimate the possible revenues and profits of wind farms at the sites. This approach improves on a simple profitability calculation by using a site-specific development cost calculation and by taking the effect of time varying market prices on revenues into account. The first component of the work is to develop data characterizing wind resources suitable for use in production costing and capacity expansion models, such as Elfin, that are capable of simulating competitive electricity markets. An improved representation of California wind resources is built, using information collected by the California Energy Commission (CE C) in previous site evaluations, and by using a GIS approach to estimating development costs at 36 specific sites. These sites, which have been identified as favorable for wind development, are placed on Digital Elevation Maps (DEMs) and development costs are calculated based on distances to roads and transmission lines. GIS is also used to develop the potential capacity at each site by making use of the physical characteristics of the terrain, such as ridge lengths. In the second part of the effort, using a previously developed algorithm for simulating competitive entry to the California electricity market, the Elfin model is used to gauge the viability of wind farms at the 36 sites. The results of this exercise are forecasts of profitable development levels at each site and the effects of these developments on the electricity system as a whole. Under best guess assumptions, including prohibition of new nuclear and coal capacity, moderate increase in gas prices and some decline in renewable capital costs, about 7.35 GW of the 10 GW potential capacity at the 36 specific sites is profitably developed and 62 TWh of electricity produced per annum by the year 2030. Most of the development happens during the earlier years of the forecast. Sensitivity of these results to future gas price scenarios is also presented. This study also demonstrates that an analysis based on a simple levelized profitability calculation approach does not sufficiently capture the implications of time varying prices in a competitive market.

  2. Boryeong Thermal Power Complex, Boryeong-Si, Chungcheongnam-do Province, South Korea

    SciTech Connect (OSTI)

    Neville, J.D.

    2008-10-15

    From tall skyscrapers and flashing neon signs to Buddhist temples and pagodas, South Korea is a mixture of the new and old Asia. Doing its part to help modernise this country, the Boryeong thermal power complex operates six coal-fired 500-MW units that provide electricity to power South Korea's economic growth. One of the important reasons for this facility's overall success is its operational reliability. An example of this is Boryeong Unit 3's outstanding achievement of 3,000 days of trouble-free operation. The Complex also has a dozen 150 MW combined cycle units burning imported liquefied natural gas for electrical system peaking. 4 photos.

  3. Electric power generation expansion and integration, Micronesia (Yap, Kosrae, Pohnpei, Chuuk) power plants project. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1990-12-01

    The State of Yap in the Federated States of Micronesia is now entirely dependent on oil for electric power generation. The present high costs and limited capacity for electric power generation are major disincentives to the economic development of Yap. Preliminary proposals from two U.S. companies regarding waste-to-energy plants might furnish electricity to Yap below present costs. Yap and its sister state of Kosrae have agreed to jointly seek a grant from the U.S. Trade and Development Program (TDP) to cover three areas: An assessment of projected power generating requirements; A review of generating alternatives with emphasis on waste to energy generation; and An environmental analysis of the waste to energy alternatives. The government in Yap has two objectives: reduce the amount of money spent for diesel fuel now and in the future and make sufficient electricity available at a reasonable price to attract development for the economy of Yap. Officials on both Pohnpei and Kosrae echoed these objectives.

  4. Tax Revenue and Job Benefits from Solar Thermal Power Plants in Nye County

    SciTech Connect (OSTI)

    Kuver, Walt

    2009-11-10

    The objective of this report is to establish a common understanding of the financial benefits that the County will receive as solar thermal power plants are developed in Amargosa Valley. Portions of the tax data and job estimates in the report were provided by developers Solar Millennium and Abengoa Solar in support of the effort. It is hoped that the resulting presented data will be accepted as factual reference points for the ensuing debates and financial decisions concerning these development projects.

  5. High gliding fluid power generation system with fluid component separation and multiple condensers

    SciTech Connect (OSTI)

    Mahmoud, Ahmad M; Lee, Jaeseon; Radcliff, Thomas D

    2014-10-14

    An example power generation system includes a vapor generator, a turbine, a separator and a pump. In the separator, the multiple components of the working fluid are separated from each other and sent to separate condensers. Each of the separate condensers is configured for condensing a single component of the working fluid. Once each of the components condense back into a liquid form they are recombined and exhausted to a pump that in turn drives the working fluid back to the vapor generator.

  6. The potential economic impact of constructing and operating solar power generation facilities in Nevada

    SciTech Connect (OSTI)

    Schwer, R. K.; Riddel, M.

    2004-02-01

    Nevada has a vast potential for electricity generation using solar power. An examination of the stock of renewable resources in Nevada proves that the state has the potential to be a leader in renewable-electric generation--one of the best in the world. This study provides estimates on the economic impact in terms of employment, personal income, and gross state product (GSP) of developing a portion of Nevada's solar energy generation resources.

  7. Development and commercialization of a biomass gasification/power generation system

    SciTech Connect (OSTI)

    Paisley, M.A.; Farris, G.

    1995-11-01

    The US Department of Energy (DOE) has been a leader in the promotion and development of alternative fuel supplies based on renewable energy crops. One promising power generation technology is biomass gasification coupled with either a gas turbine in a combined cycle system or a fuel cell. The gasification of biomass can efficiently and economically produce a renewable source of a clean gaseous fuel suitable for use in these high efficiency power systems or as a substitute fuel in other combustion devices such as boilers, kilns, or other natural gas fired equipment. This paper discusses the development and commercialization of the Battelle high-throughput gasification process for gas turbine based power generation systems. Projected process economics for a gas turbine combined cycle plant are presented along with a description of integrated system operation coupling a 200kW gas turbine power generation system to a 10 ton per day gasifier, and current commercialization activities.

  8. Technique for enhancing the power output of an electrostatic generator employing parametric resonance

    DOE Patents [OSTI]

    Post, Richard F.

    2016-02-23

    A circuit-based technique enhances the power output of electrostatic generators employing an array of axially oriented rods or tubes or azimuthal corrugated metal surfaces for their electrodes. During generator operation, the peak voltage across the electrodes occurs at an azimuthal position that is intermediate between the position of minimum gap and maximum gap. If this position is also close to the azimuthal angle where the rate of change of capacity is a maximum, then the highest rf power output possible for a given maximum allowable voltage at the minimum gap can be attained. This rf power output is then coupled to the generator load through a coupling condenser that prevents suppression of the dc charging potential by conduction through the load. Optimized circuit values produce phase shifts in the rf output voltage that allow higher power output to occur at the same voltage limit at the minimum gap position.

  9. Definitional mission report: NAPCOR thermal-power-conversion project, Philippines. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1991-11-01

    The National Power Corporation (NAPCOR) of Philippines has requested the Trade and Development Program (TDP) to fund a study to evaluate the technical and economic feasibility of converting its existing oil and coal fired power plants to natural gas. The decision to undertake the study resulted from preliminary information on a large gas find off the coast of Palawan island. However, a second exploration well has come up dry. Now, the conversion of the existing power plants to natural gas seems very questionable. Even if the proven gas reserves prove to be commercially viable, the gas will not be available until 1998 or later for utilization. At that time several of NAPCOR's plants would have aged further, the political and economic situation in Philippines could have altered significantly, possibly improved, private power companies might be able to use the gas more efficiently by building state-of-the-art combined cycle power plants which will make more economic sense than converting existing old boilers to natural gas. In addition, most of the existing power equipment was manufactured by Japanese and/or European firms. It makes sense for NAPCOR to solicit services from these firms if it decides to go ahead with the implementation of the power plant conversion project. The potential for any follow on work for U.S. businesses is minimal to zero in the thermal conversion project. Therefore, at this time, TDP funding for the feasibility would be premature and not recommended.

  10. Prediction of global solar irradiance based on time series analysis: Application to solar thermal power plants energy production planning

    SciTech Connect (OSTI)

    Martin, Luis; Marchante, Ruth; Cony, Marco; Zarzalejo, Luis F.; Polo, Jesus; Navarro, Ana

    2010-10-15

    Due to strong increase of solar power generation, the predictions of incoming solar energy are acquiring more importance. Photovoltaic and solar thermal are the main sources of electricity generation from solar energy. In the case of solar thermal energy plants with storage energy system, its management and operation need reliable predictions of solar irradiance with the same temporal resolution as the temporal capacity of the back-up system. These plants can work like a conventional power plant and compete in the energy stock market avoiding intermittence in electricity production. This work presents a comparisons of statistical models based on time series applied to predict half daily values of global solar irradiance with a temporal horizon of 3 days. Half daily values consist of accumulated hourly global solar irradiance from solar raise to solar noon and from noon until dawn for each day. The dataset of ground solar radiation used belongs to stations of Spanish National Weather Service (AEMet). The models tested are autoregressive, neural networks and fuzzy logic models. Due to the fact that half daily solar irradiance time series is non-stationary, it has been necessary to transform it to two new stationary variables (clearness index and lost component) which are used as input of the predictive models. Improvement in terms of RMSD of the models essayed is compared against the model based on persistence. The validation process shows that all models essayed improve persistence. The best approach to forecast half daily values of solar irradiance is neural network models with lost component as input, except Lerida station where models based on clearness index have less uncertainty because this magnitude has a linear behaviour and it is easier to simulate by models. (author)

  11. Space nuclear-power reactor design based on combined neutronic and thermal-fluid analyses

    SciTech Connect (OSTI)

    Koenig, D.R.; Gido, R.G.; Brandon, D.I.

    1985-01-01

    The design and performance analysis of a space nuclear-power system requires sophisticated analytical capabilities such as those developed during the nuclear rocket propulsion (Rover) program. In particular, optimizing the size of a space nuclear reactor for a given power level requires satisfying the conflicting requirements of nuclear criticality and heat removal. The optimization involves the determination of the coolant void (volume) fraction for which the reactor diameter is a minimum and temperature and structural limits are satisfied. A minimum exists because the critical diameter increases with increasing void fraction, whereas the reactor diameter needed to remove a specified power decreases with void fraction. The purpose of this presentation is to describe and demonstrate our analytical capability for the determination of minimum reactor size. The analysis is based on combining neutronic criticality calculations with OPTION-code thermal-fluid calculations.

  12. Coal-fired high performance power generating system. Quarterly progress report

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of > 47% thermal efficiency; NO{sub x} SO {sub x} and Particulates < 25% NSPS; Cost of electricity 10% lower; coal > 65% of heat input and all solid wastes benign. In order to achieve these goals our team has outlined a research plan based on an optimized analysis of a 250 MW{sub e} combined cycle system applicable to both frame type and aeroderivative gas turbines. Under the constraints of the cycle analysis we have designed a high temperature advanced furnace (HITAF) which integrates several combustor and air heater designs with appropriate ash management procedures. Most of this report discusses the details of work on these components, and the R&D Plan for future work. The discussion of the combustor designs illustrates how detailed modeling can be an effective tool to estimate NO{sub x} production, minimum burnout lengths, combustion temperatures and even particulate impact on the combustor walls. When our model is applied to the long flame concept it indicates that fuel bound nitrogen will limit the range of coals that can use this approach. For high nitrogen coals a rapid mixing, rich-lean, deep staging combustor will be necessary. The air heater design has evolved into two segments: a convective heat exchanger downstream of the combustion process; a radiant panel heat exchanger, located in the combustor walls; The relative amount of heat transferred either radiatively or convectively will depend on the combustor type and the ash properties.

  13. On the impact of CO{sub 2} emission-trading on power generation emissions

    SciTech Connect (OSTI)

    Chappin, E.J.L.; Dijkema, G.P.J.

    2009-03-15

    In Europe one of the main policy instruments to meet the Kyoto reduction targets is CO{sub 2} emission-trading (CET), which was implemented as of January 2005. In this system, companies active in specific sectors must be in the possession of CO{sub 2} emission rights to an amount equal to their CO{sub 2} emission. In Europe, electricity generation accounts for one-third of CO{sub 2} emissions. Since the power generation sector has been liberalized, reregulated and privatized in the last decade, around Europe autonomous companies determine the sectors' CO{sub 2} emission. Short-term they adjust their operation, long-term they decide on (dis) investment in power generation facilities and technology selection. An agent-based model is presented to elucidate the effect of CET on the decisions of power companies in an oligopolistic market. Simulations over an extensive scenario-space show that there CET does have an impact. A long-term portfolio shift towards less-CO{sub 2} intensive power generation is observed. However, the effect of CET is relatively small and materializes late. The absolute emissions from power generation rise under most scenarios. This corresponds to the dominant character of current capacity expansion planned in the Netherlands (50%) and in Germany (68%), where companies have announced many new coal based power plants. Coal is the most CO{sub 2} intensive option available and it seems surprising that even after the introduction of CET these capacity expansion plans indicate a preference for coal. Apparently in power generation the economic effect of CO{sub 2} emission-trading is not sufficient to outweigh the economic incentives to choose for coal.

  14. Advanced Metal-Hydrides-Based Thermal Battery: A New Generation of High Density Thermal Battery Based on Advanced Metal Hydrides

    SciTech Connect (OSTI)

    2011-12-01

    HEATS Project: The University of Utah is developing a compact hot-and-cold thermal battery using advanced metal hydrides that could offer efficient climate control system for EVs. The teams innovative designs of heating and cooling systems for EVs with high energy density, low-cost thermal batteries could significantly reduce the weight and eliminate the space constraint in automobiles. The thermal battery can be charged by plugging it into an electrical outlet while charging the electric battery and it produces heat and cold through a heat exchanger when discharging. The ultimate goal of the project is a climate-controlling thermal battery that can last up to 5,000 charge and discharge cycles while substantially increasing the driving range of EVs, thus reducing the drain on electric batteries.

  15. The rotary zone thermal cycler: A low-power system enabling automated rapid PCR

    SciTech Connect (OSTI)

    Bartsch, Michael S.; Edwards, Harrison S.; Lee, Daniel; Moseley, Caroline E.; Tew, Karen E.; Renzi, Ronald F.; Van de Vreugde, James L.; Kim, Hanyoup; Knight, Daniel L.; Sinha, Anupama; Branda, Steven S.; Patel, Kamlesh D.; Wanunu, Meni

    2015-03-31

    In this study, advances in molecular biology, microfluidics, and laboratory automation continue to expand the accessibility and applicability of these methods beyond the confines of conventional, centralized laboratory facilities and into point of use roles in clinical, military, forensic, portable, and field-deployed applications. As a result, there is a growing need to adapt the unit operations of molecular biology such as aliquoting, centrifuging, mixing, and thermal cycling to compact, portable, low-power, and automation-ready formats. Here we present one such adaptation, the rotary zone thermal cycler (RZTC), a novel wheel-based device capable of cycling up to four different fixed-temperature blocks into contact with a stationary 4-microliter capillary-bound sample to realize 1-3 second transitions with steady state heater power of less than 10 W. We further demonstrate the utility of the RZTC for DNA amplification as part of a highly integrated rotary zone PCR (rzPCR) system using low-volume valves and syringe-based fluid handling to automate sample loading and unloading, thermal cycling, and between run cleaning functionalities in a compact, modular form factor. In addition to characterizing the performance of the RZTC and the efficacy of different online cleaning protocols, preliminary results are presented for rapid single-plex PCR, multiplex short tandem repeat (STR) amplification, and second strand cDNA synthesis.

  16. The rotary zone thermal cycler: A low-power system enabling automated rapid PCR

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bartsch, Michael S.; Edwards, Harrison S.; Lee, Daniel; Moseley, Caroline E.; Tew, Karen E.; Renzi, Ronald F.; Van de Vreugde, James L.; Kim, Hanyoup; Knight, Daniel L.; Sinha, Anupama; et al

    2015-03-31

    Advances in molecular biology, microfluidics, and laboratory automation continue to expand the accessibility and applicability of these methods beyond the confines of conventional, centralized laboratory facilities and into point of use roles in clinical, military, forensic, and field-deployed applications. As a result, there is a growing need to adapt the unit operations of molecular biology (e.g., aliquoting, centrifuging, mixing, and thermal cycling) to compact, portable, low-power, and automation-ready formats. Here we present one such adaptation, the rotary zone thermal cycler (RZTC), a novel wheel-based device capable of cycling up to four different fixed-temperature blocks into contact with a stationary 4-microlitermorecapillary-bound sample to realize 1-3 second transitions with steady state heater power of less than 10 W. We demonstrate the utility of the RZTC for DNA amplification as part of a highly integrated rotary zone PCR (rzPCR) system that uses low-volume valves and syringe-based fluid handling to automate sample loading and unloading, thermal cycling, and between-run cleaning functionalities in a compact, modular form factor. In addition to characterizing the performance of the RZTC and the efficacy of different online cleaning protocols, we present preliminary results for rapid single-plex PCR, multiplex short tandem repeat (STR) amplification, and second strand cDNA synthesis.less

  17. TTF3 power coupler thermal analysis for LCLS-II CW operation

    SciTech Connect (OSTI)

    Xiao, L.; Adolphsen, C.; Li, Z.; Nantista, C.; Raubenheimer, T.; Solyak, N.; Gonin, I.

    2015-05-13

    The TESLA 9-cell SRF cavity design has been adopted for use in the LCLS-II SRF Linac. Its TTF3 coaxial fundamental power coupler (FPC), optimized for pulsed operation in European XFEL and ILC, requires modest changes to make it suitable for LCLS-II continuous-wave (CW) operation. For LCLS-II it must handle up to 7 kW of power, fully reflected, with the maximum temperature around 450 K, the coupler bake temperature. In order to improve TTF3 FPC cooling, an increased copper plating thickness will be used on the inner conductor of the ‘warm’ section of the coupler. Also, the antenna will be shortened to achieve higher cavity Qext values. Fully 3D FPC thermal analysis has been performed using the SLAC-developed parallel finite element code suite ACE3P, which includes electromagnetic codes and an integrated electromagnetic, thermal and mechanical multi-physics code. In this paper, we present TTF3 FPC thermal analysis simulation results obtained using ACE3P as well as a comparison with measurement results.

  18. Hydrogen Fuel Cell Analysis: Lessons Learned from Stationary Power Generation Final Report

    SciTech Connect (OSTI)

    Scott E. Grasman; John W. Sheffield; Fatih Dogan; Sunggyu Lee; Umit O. Koylu; Angie Rolufs

    2010-04-30

    This study considered opportunities for hydrogen in stationary applications in order to make recommendations related to RD&D strategies that incorporate lessons learned and best practices from relevant national and international stationary power efforts, as well as cost and environmental modeling of pathways. The study analyzed the different strategies utilized in power generation systems and identified the different challenges and opportunities for producing and using hydrogen as an energy carrier. Specific objectives included both a synopsis/critical analysis of lessons learned from previous stationary power programs and recommendations for a strategy for hydrogen infrastructure deployment. This strategy incorporates all hydrogen pathways and a combination of distributed power generating stations, and provides an overview of stationary power markets, benefits of hydrogen-based stationary power systems, and competitive and technological challenges. The motivation for this project was to identify the lessons learned from prior stationary power programs, including the most significant obstacles, how these obstacles have been approached, outcomes of the programs, and how this information can be used by the Hydrogen, Fuel Cells & Infrastructure Technologies Program to meet program objectives primarily related to hydrogen pathway technologies (production, storage, and delivery) and implementation of fuel cell technologies for distributed stationary power. In addition, the lessons learned address environmental and safety concerns, including codes and standards, and education of key stakeholders.

  19. Advanced technologies for co-processing fossil and biomass resources for transportation fuels and power generation

    SciTech Connect (OSTI)

    Steinberg, M.; Dong, Y.

    2004-07-01

    Over the past few decades, a number of processes have been proposed or are under development for coprocessing fossil fuel and biomass for transportation fuels and power generation. The paper gives a brief description of the following processes: the Hydrocarb system for converting biomass and other carbonaceous fuels to elemental carbon and hydrogen, methane or methanol; the Hynol process where the second step of the Hydrocarb process is replaced with a methane steam reformer to convert methane to CO and H{sub 2}S without deposition of carbon; the Carnol process where CO{sub 2} from coal and the biomass power plants is reacted with hydrogen to produce methanol; and advanced biomass high efficiency power generator cycle where a continuous plasma methane decomposition reactor (PDR) is used with direct carbon fuel cell to produce power and carbon and hydrogen. 13 refs., 5 figs., 2 tabs.

  20. Rapid hydrogen gas generation using reactive thermal decomposition of uranium hydride.

    SciTech Connect (OSTI)

    Kanouff, Michael P.; Van Blarigan, Peter; Robinson, David B.; Shugard, Andrew D.; Gharagozloo, Patricia E.; Buffleben, George M.; James, Scott Carlton; Mills, Bernice E.

    2011-09-01

    Oxygen gas injection has been studied as one method for rapidly generating hydrogen gas from a uranium hydride storage system. Small scale reactors, 2.9 g UH{sub 3}, were used to study the process experimentally. Complimentary numerical simulations were used to better characterize and understand the strongly coupled chemical and thermal transport processes controlling hydrogen gas liberation. The results indicate that UH{sub 3} and O{sub 2} are sufficiently reactive to enable a well designed system to release gram quantities of hydrogen in {approx} 2 seconds over a broad temperature range. The major system-design challenge appears to be heat management. In addition to the oxidation tests, H/D isotope exchange experiments were performed. The rate limiting step in the overall gas-to-particle exchange process was found to be hydrogen diffusion in the {approx}0.5 {mu}m hydride particles. The experiments generated a set of high quality experimental data; from which effective intra-particle diffusion coefficients can be inferred.

  1. Customer adoption of small-scale on-site power generation

    SciTech Connect (OSTI)

    Siddiqui, Afzal S.; Marnay, Chris; Hamachi, Kristina S.; Rubio, F. Javier

    2001-04-01

    The electricity supply system is undergoing major regulatory and technological change with significant implications for the way in which the sector will operate (including its patterns of carbon emissions) and for the policies required to ensure socially and environmentally desirable outcomes. One such change stems from the rapid emergence of viable small-scale (i.e., smaller than 500 kW) generators that are potentially competitive with grid delivered electricity, especially in combined heat and power configurations. Such distributed energy resources (DER) may be grouped together with loads in microgrids. These clusters could operate semi-autonomously from the established power system, or macrogrid, matching power quality and reliability more closely to local end-use requirements. In order to establish a capability for analyzing the effect that microgrids may have on typical commercial customers, such as office buildings, restaurants, shopping malls, and grocery stores, an economic mod el of DER adoption is being developed at Berkeley Lab. This model endeavors to indicate the optimal quantity and type of small on-site generation technologies that customers could employ given their electricity requirements. For various regulatory schemes and general economic conditions, this analysis produces a simple operating schedule for any installed generators. Early results suggest that many commercial customers can benefit economically from on-site generation, even without considering potential combined heat and power and reliability benefits, even though they are unlikely to disconnect from the established power system.

  2. EERE Success Story-Enhanced Efficiency of Wind-Diesel Power Generation in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tribal Villages | Department of Energy Enhanced Efficiency of Wind-Diesel Power Generation in Tribal Villages EERE Success Story-Enhanced Efficiency of Wind-Diesel Power Generation in Tribal Villages June 17, 2014 - 3:50pm Addthis The Chaninik Wind Group, formed by the Alaskan United Tribal Governments of Kongiganak, Kwigillingok, Tuntutuliak, and Kipnuk, used $750,000 in EERE funds to implement a multi-village, Wind Heat Smart Grid in the diesel microgrids of their four remote communities

  3. Computational Research Challenges and Opportunities for the Optimization of Fossil Energy Power Generation System

    SciTech Connect (OSTI)

    Zitney, S.E.

    2007-06-01

    Emerging fossil energy power generation systems must operate with unprecedented efficiency and near-zero emissions, while optimizing profitably amid cost fluctuations for raw materials, finished products, and energy. To help address these challenges, the fossil energy industry will have to rely increasingly on the use advanced computational tools for modeling and simulating complex process systems. In this paper, we present the computational research challenges and opportunities for the optimization of fossil energy power generation systems across the plant lifecycle from process synthesis and design to plant operations. We also look beyond the plant gates to discuss research challenges and opportunities for enterprise-wide optimization, including planning, scheduling, and supply chain technologies.

  4. Correlation of laboratory and field stress corrosion results in the power generation industry

    SciTech Connect (OSTI)

    Speidel, M.O.; Magdowski, R.

    1999-11-01

    This paper compares stress corrosion crack growth rates measured in the laboratory with stress corrosion crack growth rates derived from field experience in three different applications of the power generating industry: Pressurized water reactor (PWR) pressure vessel head penetrations with alloy 600, boiling water reactor (BWR) and RBMK (the Russian, watercooled graphite moderated channel-type power reactor, for example Chernobyl) welded nuclear reactor coolant pipes with stabilized stainless steels, and generator rotor retaining rings made from a high strength austenitic steel. It is shown that the minimum time to failure in service can well be predicted from laboratory crack growth rate tests.

  5. Electric Power Generation from Coproduced Fluids from Oil and Gas Wells |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy The primary objective of this project is to demonstrate the technical and economic feasibility of generating electricity from non-conventional low temperature (150 to 300º F) geothermal resources in oil and gas settings. PDF icon low_gosnold_coproduced_fluids.pdf More Documents & Publications Electric Power Generation from Co-Produced and Other Oil Field Fluids AAPG Low-Temperature Webinar Low Temperature/Coproduced/Geopressured Subprogram Overview

  6. China power - thermal coal and clean coal technology export. Topical report

    SciTech Connect (OSTI)

    Binsheng Li

    1996-12-31

    China is the world`s fourth largest electric power producer, and is expected to surpass Japan within the next two years to become the third largest power producer. During the past 15 years, China`s total electricity generation more than tripled, increasing from about 300 TWh to about 1,000 TWh. Total installed generating capacity grew at an average of 8.2 percent per year, increasing from 66 to 214 GW. The share of China`s installed capacity in Asia increased from 21 to 31 percent. The Chinese government plans to continue China`s rapid growth rate in the power sector. Total installed capacity is planned to reach 300 GW by 2000, which will generate 1,400 TWh of electricity per year. China`s long-term power sector development is subject to great uncertainty. Under the middle scenario, total capacity is expected to reach 700 GW by 2015, with annual generation of 3,330 TWh. Under the low and high scenarios, total capacity will reach 527-1,005 GW by 2015. The high scenario representing possible demand. To achieve this ambitious scenario, dramatic policy changes in favor of power development are required; however, there is no evidence that such policy changes will occur at this stage. Even under the high scenario, China`s per capita annual electricity consumption would be only 3,000 kWh by 2015, less than half of the present per capita consumption for OECD countries. Under the low scenario, electricity shortages will seriously curb economic growth.

  7. Coal-fired power generation: Proven technologies and pollution control systems

    SciTech Connect (OSTI)

    Balat, M.

    2008-07-01

    During the last two decades, significant advances have been made in the reduction of emissions from coal-fired power generating plants. New technologies include better understanding of the fundamentals of the formation and destruction of criteria pollutants in combustion processes (low nitrogen oxides burners) and improved methods for separating criteria pollutants from stack gases (FGD technology), as well as efficiency improvements in power plants (clean coal technologies). Future demand for more environmentally benign electric power, however, will lead to even more stringent controls of pollutants (sulphur dioxide and nitrogen oxides) and greenhouse gases such as carbon dioxide.

  8. Kinematic Stirling engine as an energy conversion subsystem for paraboloidal dish solar thermal power plants

    SciTech Connect (OSTI)

    Bowyer, J.M.

    1984-04-15

    The potential of a suitably designed and economically manufactured Stirling engine as the energy conversion subsystem of a paraboloidal dish-Stirling solar thermal power module has been estimated. Results obtained by elementary cycle analyses have been shown to match quite well the performance characteristics of an advanced kinematic Stirling engine, the United Stirling P-40, as established by current prototypes of the engine and by a more sophisticated analytic model of its advanced derivative. In addition to performance, brief consideration has been given to other Stirling engine criteria such as durability, reliability, and serviceability. Production costs have not been considered here.

  9. The Rotary Zone Thermal Cycler: A Low-Power System Enabling Rapid Automated PCR

    Office of Scientific and Technical Information (OSTI)

    Rotary Zone Thermal Cycler: A Low-Power System Enabling Rapid, AufgmND2 0i4-i637iJ Michael S. Bartsch1'^, Harrison J. Edwards1,2'*, Daniel Lee1,3'*, Caroline E. Moseley1'*, Karen E. Tew1'4'*, Ronald F. Renzi1, James L. Van de Vreugde1, Hanyoup Kim1,5, Daniel L. Knight6, Anupama Sinha1, Steven S. Branda1, Kamlesh D. Patel1 1 Sandia National Laboratories, Livermore, CA; 2 Currently at Gas Transmission Systems, Walnut Creek, CA; 3 Currently at California State University, Los Angeles, CA; 4

  10. Concentrating Solar Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Concentrating Solar Power Concentrating solar power (CSP) technologies use mirrors to focus and concentrate sunlight onto a receiver, from which a heat transfer fluid carries the intense thermal energy to a power block to generate electricity. A distinguishing feature of CSP is its ability to incorporate simple, efficient, and cost-effective thermal energy storage by virtue of converting sunlight to heat as an intermediate step to generating electricity. In addition to providing dispatchable

  11. Fuel cells provide a revenue-generating solution to power quality problems

    SciTech Connect (OSTI)

    King, J.M. Jr.

    1996-03-01

    Electric power quality and reliability are becoming increasingly important as computers and microprocessors assume a larger role in commercial, health care and industrial buildings and processes. At the same time, constraints on transmission and distribution of power from central stations are making local areas vulnerable to low voltage, load addition limitations, power quality and power reliability problems. Many customers currently utilize some form of premium power in the form of standby generators and/or UPS systems. These include customers where continuous power is required because of health and safety or security reasons (hospitals, nursing homes, places of public assembly, air traffic control, military installations, telecommunications, etc.) These also include customers with industrial or commercial processes which can`t tolerance an interruption of power because of product loss or equipment damage. The paper discusses the use of the PC25 fuel cell power plant for backup and parallel power supplies for critical industrial applications. Several PC25 installations are described: the use of propane in a PC25; the use by rural cooperatives; and a demonstration of PC25 technology using landfill gas.

  12. Halbach array generator/motor having an automatically regulated output voltage and mechanical power output

    DOE Patents [OSTI]

    Post, Richard F.

    2005-02-22

    A motor/generator having its stationary portion, i.e., the stator, positioned concentrically within its rotatable element, i.e., the rotor, along its axis of rotation. The rotor includes a Halbach array. The stator windings are switched or commutated to provide a DC motor/generator much the same as in a conventional DC motor/generator. The voltage and power are automatically regulated by using centrifugal force to change the diameter of the rotor, and thereby vary the radial gap in between the stator and the rotating Halbach array, as a function of the angular velocity of the rotor.

  13. Generation, deregulation, and market power? Will antitrust laws fill the void?

    SciTech Connect (OSTI)

    Teichler, S.L.

    1996-10-15

    Monopoly rents? Not in the short run. The real enemy is a price war, fueled by indifference to stranded costs. And when that happens, antitrust laws won`t offer much help. The electric industry displays attributes that encourage predatory pricing. Competition has formally begun in the electric service industry. The Federal Energy Regulatory Commission (FERC) has issued Order 888, giving generators access to wholesale loads throughout the nation. California`s investor-owned utilities have filed applications with the FERC to establish an independent system operator and a Power Exchange, through which generators will receive market-based prices for their dispatched generation.

  14. Tsiklauri-Durst combined cycle (T-D Cycle{trademark}) application for nuclear and fossil-fueled power generating plants

    SciTech Connect (OSTI)

    Tsiklauri, B.; Korolev, V.N.; Durst, B.M.; Shen, P.K.

    1998-07-01

    The Tsiklauri-Durst combined cycle is a combination of the best attributes of both nuclear power and combined cycle gas power plants. A technology patented in 1994 by Battelle Memorial Institute offers a synergistic approach to power generation. A typical combined cycle is defined as the combination of gas turbine Brayton Cycle, topping steam turbine Rankine Cycle. Exhaust from the gas turbine is used in heat recovery steam generators to produce steam for a steam turbine. In a standard combined cycle gas turbine-steam turbine application, the gas turbine generates about 65 to 70 percent of system power. The thermal efficiency for such an installation is typically about 45 to 50 percent. A T-D combined cycle takes a new, creative approach to combined cycle design by directly mixing high enthalpy steam from the heat recovery steam generator, involving the steam generator at more than one pressure. Direct mixing of superheated and saturated steam eliminates the requirement for a large heat exchanger, making plant modification simple and economical.

  15. Voith Siemens Hydro Power Generation GmbH Co KG | Open Energy...

    Open Energy Info (EERE)

    Map References: Voith Siemens Hydro Power Generation GmbH & Co KG&127;UNIQ7909a9dd6158f292-ref-0000150E-QINU&127; This article is a stub. You can help OpenEI by expanding it. Voith...

  16. Research Initiative Will Demonstrate Low Temperature Geothermal Electrical Power Generation Systems Using Oilfield Fluids

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO) is announcing a new collaboration with the Office of Fossil Energy (FE) to demonstrate the versatility, reliability, and deployment capabilities of low-temperature geothermal electrical power generation systems using co-produced water from oilfield operations at the Rocky Mountain Oilfield Testing Center (RMOTC) in Wyoming.

  17. Simulation of one-minute power output from utility-scale photovoltaic generation systems.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Ellis, Abraham; Hansen, Clifford W.

    2011-08-01

    We present an approach to simulate time-synchronized, one-minute power output from large photovoltaic (PV) generation plants in locations where only hourly irradiance estimates are available from satellite sources. The approach uses one-minute irradiance measurements from ground sensors in a climatically and geographically similar area. Irradiance is translated to power using the Sandia Array Performance Model. Power output is generated for 2007 in southern Nevada are being used for a Solar PV Grid Integration Study to estimate the integration costs associated with various utility-scale PV generation levels. Plant designs considered include both fixed-tilt thin-film, and single-axis-tracked polycrystalline Si systems ranging in size from 5 to 300 MW{sub AC}. Simulated power output profiles at one-minute intervals were generated for five scenarios defined by total PV capacity (149.5 MW, 222 WM, 292 MW, 492 MW, and 892 MW) each comprising as many as 10 geographically separated PV plants.

  18. Advanced concepts for high power RF generation using solid state materials

    SciTech Connect (OSTI)

    Fazio, M.V.; Erickson, G.A. [Los Alamos National Laboratory (United States)

    1999-05-01

    Traditionally, high power radio frequency and microwave energy have been generated using electron beam driven hard-vacuum tubes such as klystrons and magnetrons. High-power solid-state sources of RF have not been available. It is well known that a non-linear, dispersive system can convert a pulse into an array of solitons. Although this effect has been exploited in the optical field, using non-linear optical materials, little work has been done in the field of high voltage electronics. It is the goal of this work, which is just beginning, to develop sources of RF in the few hundreds of megahertz to gigahertz range with power levels in the hundreds of megawatts to the gigawatt level. To generate solitons a high voltage pulse is fed onto a transmission line that is periodically loaded with a non-linear ceramic dielectric in the paraelectric phase. The combination of the non-linearity and dispersion causes the pulse to break up into an array of solitons. A soliton-based system has several components: the solid state, high voltage, high current switch to provide the initial high voltage pulse; a shock line to decrease the rise time of the initial pulse to less than a few nanoseconds; and the soliton generating transmission line where the high power RF is generated when driven by the fast rising pulse from the shock line. The approach and progress to date will be described. {copyright} {ital 1999 American Institute of Physics.}

  19. DESIGN OF HYBRID POWER GENERATION CYCLES EMPLOYING AMMONIA-WATER-CARBON DIOXIDE MIXTURES

    SciTech Connect (OSTI)

    Ashish Gupta

    2002-06-01

    A power cycle generates electricity from the heat of combustion of fossil fuels. Its efficiency is governed by the cycle configuration, the operating parameters, and the working fluid. Typical. designs use pure water as the fluid. in the last two decades, hybrid cycles based on ammonia-water, and carbon-dioxide mixtures as the working fluid have been proposed. These cycles may improve the power generation efficiency of Rankine cycles by 15%. Improved efficiency is important for two reasons: it lowers the cost of electricity being produced, and by reducing the consumption of fossil fuels per unit power, it reduces the generation of environmental pollutants. The goal of this project is to develop a computational optimization-based method for the design and analysis of hybrid bottoming power cycles to minimize the usage of fossil fuels. The development of this methodology has been achieved by formulating this task as that of selecting the least cost power cycle design from all possible configurations. They employ a detailed thermodynamic property prediction package they have developed under a DOE-FETC grant to model working fluid mixtures. Preliminary results from this work suggest that a pure NH{sub 3} cycle outperforms steam or the expensive Kalina cycle.

  20. Worldwide assessment of steam-generator problems in pressurized-water-reactor nuclear power plants

    SciTech Connect (OSTI)

    Woo, H.H.; Lu, S.C.

    1981-09-15

    Objective is to assess the reliability of steam generators of pressurized water reactor (PWR) power plants in the United States and abroad. The assessment is based on operation experience of both domestic and foreign PWR plants. The approach taken is to collect and review papers and reports available from the literature as well as information obtained by contacting research institutes both here and abroad. This report presents the results of the assessment. It contains a general background of PWR plant operations, plant types, and materials used in PWR plants. A review of the worldwide distribution of PWR plants is also given. The report describes in detail the degradation problems discovered in PWR steam generators: their causes, their impacts on the performance of steam generators, and the actions to mitigate and avoid them. One chapter is devoted to operating experience of PWR steam generators in foreign countries. Another discusses the improvements in future steam generator design.

  1. Project Profile: Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants

    Broader source: Energy.gov [DOE]

    Abengoa, under the Thermal Storage FOA, is looking at innovative ways to reduce thermal energy storage (TES) system costs.

  2. Development of a high-voltage, high-power thermal battery

    SciTech Connect (OSTI)

    Guidotti, R.A.; Scharrer, G.L.; Binasiewicz, E.; Reinhardt, F.W.

    1998-04-01

    The power requirements for an inverter application were specified to be 500 V at 360 A, or 180 kW per each of six 1-s pulses delivered over a period of 10 minutes. Conventional high-power sources (e.g., flywheels) could not meet these requirements and the use of a thermal battery was considered. The final design involved four, 125-cell, 50-kW modules connected in series. A module using the LiSi/CoS{sub 2} couple and all-Li (LiCI-LiBr-LiF minimum-melting) electrolyte was successfully developed and tested. A power level of over 40 kW was delivered during a 0.5-s pulse. This translates into a specific power level of over 9 kW/kg or 19.2 kW/L delivered from a module. The module was still able to deliver over 30 kW during a 1-s pulse after 10 minutes.

  3. Neutron, gamma ray and post-irradiation thermal annealing effects on power semiconductor switches

    SciTech Connect (OSTI)

    Schwarze, G.E.; Frasca, A.J.

    1994-09-01

    The effects of neutrons and gamma rays on the electrical and switching characteristics of power semiconductor switches must be known and understood by the designer of the power conditioning, control, and transmission subsystem of space nuclear power systems. The SP-100 radiation requirements at 25 m from the nuclear source are a neutron fluence of 10{sup 13} n/cm {sup 2} and a gamma dose of 0.5 Mrads. Experimental data showing the effects of neutrons and gamma rays on the performance characteristics of power-type NPN Bipolar Junction Transistors (BJTs), Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs), and Static Induction Transistors (SITs) are given in this paper. These three types of devices were tested at radiation levels which met or exceeded the SP-100 requirements. For the SP-100 radiation requirements, the BJTs were found to be most sensitive to neutrons, the MOSFETs were most sensitive to gamma rays, and the SITs were only slightly sensitive to neutrons. Post-irradiation thermal anneals at 300 K and up to 425 K were done on these devices and the effectiveness of these anneals are also discussed.

  4. Preconstruction schedules, costs, and permit requirements for electric power generating resources in the Pacific Northwest

    SciTech Connect (OSTI)

    Hendrickson, P.L.; Smith, S.A.; Thurman, A.G.; Watts, R.L.; Weakley, S.A.

    1990-07-01

    This report was prepared for the Generation Programs Branch, Office of Energy Resources, Bonneville Power Administration (BPA). The principal objective of the report is to assemble in one document preconstruction cost, schedule, and permit information for twelve specific generating resources. The report is one of many documents that provide background information for BPA's Resource Program, which is designed to identify the type and amount of new resources that BPA may have to add over the next twenty years to maintain an adequate and reliable electric power supply in the Pacific Northwest. A predecessor to this report is a 1982 report prepared by the Pacific Northwest Laboratory (PNL) for the Northwest Power Planning Council (the Council''). The 1982 report had a similar, but not identical, content and format. 306 refs., 14 figs., 22 tabs.

  5. Advanced gas turbines: The choice for low-cost, environmentally superior electric power generation

    SciTech Connect (OSTI)

    Zeh, C.M.

    1996-08-01

    In July 1993, the US Department of Energy (DOE) initiated an ambitious 8-year program to advance state-of-the-art gas turbine technology for land-based electric power generation. The program, known as the Advanced Turbine System (ATS) Program, is a joint government/industry program with the objective to demonstrate advanced industrial and utility gas turbine systems by the year 2000. The goals of the ATS Program are to develop gas turbine systems capable of providing low-cost electric power, while maintaining environmental superiority over competing power generation options. A progress report on the ATS Program pertaining to program status at DOE will be presented and reviewed in this paper. The technical challenges, advanced critical technology requirements, and systems designs meeting the goals of the program will be described and discussed.

  6. Design of pulsed guiding magnetic field for high power microwave generators

    SciTech Connect (OSTI)

    Ju, J.-C. Zhang, H.; Zhang, J.; Shu, T.; Zhong, H.-H.

    2014-09-15

    In this paper, we present a comprehensive study on designing solenoid together with the corresponding power supply system to excite pulsed magnetic field required for high power microwave generators. Particularly, a solenoid is designed and the excited magnetic field is applied to a Ku-band overmoded Cerenkov generator. It is found in experiment that the electron beam is properly guided by the magnetic field and a 1.1 GW high power microwave is achieved at a central frequency of 13.76 GHz. Pulsed solenoid system has the advantages of compactness and low energy consumption, which are of great interest for repetitive operation. The reported studies and results can be generalized to other applications which require magnetic fields.

  7. An In-Core Power Deposition and Fuel Thermal Environmental Monitor for Long-Lived Reactor Cores

    SciTech Connect (OSTI)

    Don W. Miller

    2004-09-28

    The primary objective of this program is to develop the Constant Temperature Power Sensor (CTPS) as in-core instrumentation that will provide a detailed map of local nuclear power deposition and coolant thermal-hydraulic conditions during the entire life of the core.

  8. Conceptual design of an open-cycle ocean thermal energy conversion net power-producing experiment (OC-OTEC NPPE)

    SciTech Connect (OSTI)

    Bharathan, D.; Green, H.J.; Link, H.F.; Parsons, B.K.; Parsons, J.M.; Zangrando, F.

    1990-07-01

    This report describes the conceptual design of an experiment to investigate heat and mass transfer and to assess the viability of open-cycle ocean thermal energy conversion (OC-OTEC). The experiment will be developed in two stages, the Heat- and Mass-Transfer Experimental Apparatus (HMTEA) and the Net Power-Producing Experiment (NPPE). The goal for the HMTEA is to test heat exchangers. The goal for the NPPE is to experimentally verify OC-OTEC's feasibility by installing a turbine and testing the power-generating system. The design effort met the goals of both the HMTEA and the NPPE, and duplication of hardware was minimal. The choices made for the design resource water flow rates are consistent with the availability of cold and warm seawater as a result of the seawater systems upgrade carried out by the US Department of Energy (DOE), the state of Hawaii, and the Pacific International Center for High Technology Research. The choices regarding configuration of the system were made based on projected performance, degree of technical risk, schedule, and cost. The cost for the future phase of the design and the development of the HMTEA/NPPE is consistent with the projected future program funding levels. The HMTEA and NPPE were designed cooperatively by PICHTR, Argonne National Laboratory, and Solar Energy Research Institute under the guidance of DOE. The experiment will be located at the DOE's Seacoast Test Facility at the Natural Energy Laboratory of Hawaii, Kailua-Kona, Hawaii. 71 refs., 41 figs., 34 tabs.

  9. The economist`s view: Identifying market power in electric generation

    SciTech Connect (OSTI)

    Werden, G.J.

    1996-02-15

    When can regulators allow market pricing for wholesale power and still ensure competition in generation? In this article, an antitrust economist exhorts FERC to establish safe harbors based on market share. He comes to this conclusion based on the following basic tenets: (1) no firm or group of firms can possess substantial market power if industry demand for their product is highly elastic due to the availability of good substitutes, (2) the greater a competitor`s share of output in the competitive equilibrium, the greater its market power because its output share governs its share of benefits from output restriction, (3) a competitor`s market power grows as the supply of product offered by rivals becomes less price-restrictive, (4) owning resources not used in competitive equilibrium may enhance market power if those resources would become economical when market power was exercised, (5) the market power of a particular firm may vary over time as demand conditions vary, and (6) the smaller the difference between the price and the marginal cost at a particular resource, the greater the market power conferred on the owner, provided that the resource operates in the competitive equilibrium.

  10. Conceptual design of ocean thermal energy conversion (OTEC) power plants in the Philippines

    SciTech Connect (OSTI)

    Haruo Uehara; Dilao, C.O.; Tsutomu Nakaoka )

    1988-01-01

    Extensive temperature readings were obtained to determine suitable OTEC power plant sites in the Philippines. An analysis of temperature profiles reveals that surface seawater is in the range of 25 to 29{degree}C throughout the year while seawater at 500 to 700 m depth remains at a low temperature of 8 to 4{degree}C, respectively. In this article, 14 suitable sites within the Philippine seas are suggested. Conceptual designs for a 5-MW onland-type and a 25-MW floating-type OTEC power plant are proposed. Optimum conditions are determined and plant specifications are computed. Cost estimates show that a floating-type 25-MW OTEC power plant can generate electricity at a busbar power cost of 5.33 to 7.57 cents/kW {times} h while an onshore type 5-MW plant can generate electricity at a busbar cost of 14.71 to 18.09 cents/kW {times} h.

  11. Deep levels generated by thermal oxidation in p-type 4H-SiC

    SciTech Connect (OSTI)

    Kawahara, Koutarou; Suda, Jun; Kimoto, Tsunenobu

    2013-01-21

    Thermal oxidation is an effective method to reduce deep levels, especially the Z{sub 1/2}-center (E{sub C}-0.67 eV), which strongly suppresses carrier lifetimes in n-type 4H-SiC epilayers. The oxidation, however, simultaneously generates other deep levels, HK0 (E{sub V}+0.79 eV) and HK2 (E{sub V}+0.98 eV) centers, within the lower half of the bandgap of SiC, where the HK0 center is a dominant deep level with a concentration of about 1 Multiplication-Sign 10{sup 13} cm{sup -3} after oxidation. By comparing deep levels observed in three sets of p-type 4H-SiC: oxidized, electron-irradiated, and C{sup +}- or Si{sup +}-implanted samples, we find that the HK0 and HK2 centers are complexes including carbon interstitials such as the di-carbon interstitial or di-carbon antisite. Other defects observed in p-type 4H-SiC after electron irradiation or after C{sup +}/Si{sup +} implantation are also studied.

  12. Wave-actuated power take-off device for electricity generation

    SciTech Connect (OSTI)

    Chertok, Allan

    2013-01-31

    Since 2008, Resolute Marine Energy, Inc. (RME) has been engaged in the development of a rigidly moored shallow-water point absorber wave energy converter, the "3D-WEC". RME anticipated that the 3D-WEC configuration with a fully buoyant point absorber buoy coupled to three power take off (PTO) units by a tripod array of tethers would achieve higher power capture than a more conventional 1-D configuration with a single tether and PTO. The investigation conducted under this program and documented herein addressed the following principal research question regarding RME'€™s power take off (PTO) concept for its 3D-WEC: Is RME's winch-driven generator PTO concept, previously implemented at sub-scale and tested at the Ohmsett wave tank facility, scalable in a cost-effective manner to significant power levels €”e.g., 10 to 100kW?

  13. Survey of strong motion earthquake effects on thermal power plants in California with emphasis on piping systems. Volume 2, Appendices

    SciTech Connect (OSTI)

    Stevenson, J.D.

    1995-11-01

    Volume 2 of the ``Survey of Strong Motion Earthquake Effects on Thermal Power Plants in California with Emphasis on Piping Systems`` contains Appendices which detail the detail design and seismic response of several power plants subjected to strong motion earthquakes. The particular plants considered include the Ormond Beach, Long Beach and Seal Beach, Burbank, El Centro, Glendale, Humboldt Bay, Kem Valley, Pasadena and Valley power plants. Included is a typical power plant piping specification and photographs of typical power plant piping specification and photographs of typical piping and support installations for the plants surveyed. Detailed piping support spacing data are also included.

  14. Yonggwang nuclear power plant units 3 and 4; Bridging the gap to the next generation

    SciTech Connect (OSTI)

    Heider, R.C.; Daley, T.J.; Green, K.J. )

    1991-01-01

    This paper reports on the use of nuclear energy since the oil embargo of 1973 has displaced the use of 4.3 billion barrels of imported oil, which helped conserve 1 billion tons of coal and 6.5 trillion cubic feet of natural gas for future generations, and helped protect the environment by reducing utility emissions of carbon dioxide by 20% a year. The current 112 operating nuclear energy plants generate more electricity than those of France, Japan, and the Soviet Union-nations that have made a national commitment to nuclear energy-combined. Yet it has been over 10 years since the last construction permit was issued for a nuclear power plant in the United States. Considering a projected shortfall in baseload electric generation capacity in the mid-1990s, new requirements for costly air pollution controls on coal plants, the concern over increased dependence on oil imports from the unstable Middle East region, and the increased concern over the possible long-term effects of greenhouse gas emissions, the Nuclear Power Oversight Committee (NPOC), the governing organization for the commercial nuclear energy industry, has developed a strategic plan with the goal of being able to order new nuclear power plants by the mid-1990s. The strategic plan, which contains 14 enabling conditions or building blocks, outlines an integrated effort to address the range of institutional and technical issues on which significant progress must be achieved to make nuclear power attractive in the United States for the 1990s.

  15. Linearly Polarized Thermal Emitter for More Efficient Thermophotovolta...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Linearly Polarized Thermal Emitter for More Efficient Thermophotovoltaic Devices Ames ... than can be used to create more efficient thermophotovoltaic devices for power generation. ...

  16. Evaluation of annual efficiencies of high temperature central receiver concentrated solar power plants with thermal energy storage.

    SciTech Connect (OSTI)

    Ehrhart, Brian David; Gill, David Dennis

    2013-07-01

    The current study has examined four cases of a central receiver concentrated solar power plant with thermal energy storage using the DELSOL and SOLERGY computer codes. The current state-of-the-art base case was compared with a theoretical high temperature case which was based on the scaling of some input parameters and the estimation of other parameters based on performance targets from the Department of Energy SunShot Initiative. This comparison was done for both current and high temperature cases in two configurations: a surround field with an external cylindrical receiver and a north field with a single cavity receiver. There is a fairly dramatic difference between the design point and annual average performance, especially in the solar field and receiver subsystems, and also in energy losses due to the thermal energy storage being full to capacity. Additionally, there are relatively small differences (<2%) in annual average efficiencies between the Base and High Temperature cases, despite an increase in thermal to electric conversion efficiency of over 8%. This is due the increased thermal losses at higher temperature and operational losses due to subsystem start-up and shut-down. Thermal energy storage can mitigate some of these losses by utilizing larger thermal energy storage to ensure that the electric power production system does not need to stop and re-start as often, but solar energy is inherently transient. Economic and cost considerations were not considered here, but will have a significant impact on solar thermal electric power production strategy and sizing.

  17. Coal as an option for power generation in US territories of the Pacific

    SciTech Connect (OSTI)

    Borg, I. Y.

    1981-11-30

    A survey of general considerations relating to the use of coal in US territories and trust territories of the Pacific suggests that coal is a viable option for power generation. Future coal supplies, principally from Australia and the west coast of America, promise to be more than adequate, but large bulk carriers will probably not be able to land coal directly because of inadequate port facilities. Hence, smaller than Panamax-class vessels (60,000 dwt) or some arrangement utilizing self-loading barges or lighters would have to be used. Except for Guam, with peak power requirements on the order of 175 MW/sub e/, most territories have current, albeit inadequate, installations of 1 to 25 MW/sub e/ Turnkey, conventional-coal-fired, electrical-power generating systems are available in that size range. US environmental laws are now applicable to Guam and American Samoa; the trust territories are exempt. However, the small power requirements of many small islands will qualify for exemption from the New Source Performance Standards called for in the Clean Air Act. The principal problems with coal use in the territories, apart from the shallow draft of most harbors, are the limited amount of land available and the high capital costs associated with conversion. Ocean dumping of ash and sludge can be permitted under existing Environmental Protection Agency regulations, and barge-mounted power installations are not out of the question. The feasibility of converting from oil-fired to coal-fired electrical-power generating systems must be determined with site-specific information.

  18. Wind Turbine Generator System Power Performance Test Report for the ARE442 Wind Turbine

    SciTech Connect (OSTI)

    van Dam, J.; Jager, D.

    2010-02-01

    This report summarizes the results of a power performance test that NREL conducted on the ARE 442 wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 12: Power Performance Measurements of Electricity Producing Wind Turbines, IEC 61400-12-1 Ed.1.0, 2005-12. However, because the ARE 442 is a small turbine as defined by IEC, NREL also followed Annex H that applies to small wind turbines. In these summary results, wind speed is normalized to sea-level air density.

  19. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 2: Accident and Thermal Fluids Analysis PIRTs

    SciTech Connect (OSTI)

    Ball, Sydney J; Corradini, M.; Fisher, Stephen Eugene; Gauntt, R.; Geffraye, G.; Gehin, Jess C; Hassan, Y.; Moses, David Lewis; Renier, John-Paul; Schultz, R.; Wei, T.

    2008-03-01

    An accident, thermal fluids, and reactor physics phenomena identification and ranking process was conducted by a panel of experts on the next generation nuclear plant (NGNP) design (consideration given to both pebble-bed and prismatic gas-cooled reactor configurations). Safety-relevant phenomena, importance, and knowledge base were assessed for the following event classes: (1) normal operation (including some reactor physics aspects), (2) general loss of forced circulation (G-LOFC), (3) pressurized loss-of-forced circulation (P-LOFC), (4) depressurized loss-of-forced circulation (D-LOFC), (5) air ingress (following D-LOFC), (6) reactivity transients - including anticipated transients without scram (ATWS), (7) processes coupled via intermediate heat exchanger (IHX) (IHX failure with molten salt), and (8) steam/water ingress. The panel's judgment of the importance ranking of a given phenomenon (or process) was based on the effect it had on one or more figures of merit or evaluation criteria. These included public and worker dose, fuel failure, and primary (and other safety) system integrity. The major phenomena of concern that were identified and categorized as high importance combined with medium to low knowledge follow: (1) core coolant bypass flows (normal operation), (2) power/flux profiles (normal operation), (3) outlet plenum flows (normal operation), (4) reactivity-temperature feedback coefficients for high-plutonium-content cores (normal operation and accidents), (5) fission product release related to the transport of silver (normal operation), (6)emissivity aspects for the vessel and reactor cavity cooling system (G-LOFC), (7) reactor vessel cavity air circulation and heat transfer (G-LOFC), and (8)convection/radiation heating of upper vessel area (P-LOFC).

  20. A high power Ka band millimeter wave generator with low guiding magnetic field

    SciTech Connect (OSTI)

    Zhu Jun; Shu Ting; Zhang Jun; Li Guolin; Zhang Zehai

    2010-08-15

    A slow wave type gigawatt millimeter wave generator is proposed in this paper. In order to increase power capacity, overmoded slow wave structures (SWSs) with larger diameter have been used. Taking advantage of the ''surface wave'' property of overmoded SWSs, the TM{sub 01} mode can be selected to be the operating mode. Calculations have also been carried out to choose a proper low operating magnetic field strength, and it agrees with particle in cell (PIC) simulations. Main structure parameters of the device are optimized by PIC simulations. A typical simulation result is that, at the beam parameters of 600 keV and 5.05 kA, and guiding magnetic field of 0.85 T, a Ka band millimeter wave with an output power of 1.05 GW is generated, yielding a conversion efficiency of about 35%.