National Library of Energy BETA

Sample records for thermal pane type

  1. Multi-pane glass unit having seal with adhesive and hermetic coating layer

    DOE Patents [OSTI]

    Miller, Seth A; Stark, David H; Francis, IV, William H; Puligandla, Viswanadham; Boulos, Edward N; Pernicka, John

    2015-02-10

    A vacuum insulated glass unit (VIGU) comprises a first pane of a transparent material and a second pane of a transparent material. The second pane is spaced apart from the first pane to define a cavity therebetween. At least one of a spacer and an array of stand-off members is disposed between the first and second panes to maintain separation therebetween. A first adhesive layer forms at least a portion of a gas-tight connection between the first pane and the second pane. A highly hermetic coating is disposed over the adhesive layer, where the coating is an inorganic layer.

  2. Filament-strung stand-off elements for maintaining pane separation in vacuum insulating glazing units

    DOE Patents [OSTI]

    Bettger, Kenneth J; Stark, David H

    2013-08-20

    A vacuum insulating glazing unit (VIGU) comprises first and second panes of transparent material, first and second anchors, a plurality of filaments, a plurality of stand-off elements, and seals. The first and second panes of transparent material have edges and inner and outer faces, are disposed with their inner faces substantially opposing one another, and are separated by a gap having a predetermined height. The first and second anchors are disposed at opposite edges of one pane of the VIGU. Each filament is attached at one end to the first anchor and at the other end to the second anchor, and the filaments are collectively disposed between the panes substantially parallel to one another. The stand-off elements are affixed to each filament at predetermined positions along the filament, and have a height substantially equal to the predetermined height of the gap such that the each stand-off element touches the inner surfaces of both panes. The seals are disposed about the edges of the panes, enclosing the stand-off elements within a volume between the panes from which the atmosphere may be evacuated to form a partial vacuum.

  3. Lighting energy savings potential of split-pane electrochromic windows controlled for daylighting with visual comfort

    SciTech Connect (OSTI)

    Software, Anyhere; Fernandes, Luis; Lee, Eleanor; Ward, Greg

    2013-03-15

    A simulation study was conducted to evaluate lighting energy savings of split-pane electrochromic (EC) windows controlled to satisfy key visual comfort parameters. Using the Radiance lighting simulation software, interior illuminance and luminance levels were computed for a south-facing private office illuminated by a window split into two independently-controlled EC panes. The transmittance of these was optimized hourly for a workplane illuminance target while meeting visual comfort constraints, using a least-squares algorithm with linear inequality constraints. Blinds were successively deployed until visual comfort criteria were satisfied. The energy performance of electrochromics proved to be highly dependent on how blinds were controlled. With hourly blind position adjustments, electrochromics showed significantly higher (62percent and 53percent, respectively without and with overhang) lighting energy consumption than clear glass. With a control algorithm designed to better approximate realistic manual control by an occupant, electrochromics achieved significant savings (48percent and 37percent, respectively without and with overhang). In all cases, energy consumption decreased when the workplace illuminance target was increased. In addition, the fraction of time during which the occupant had an unobstructed view of the outside was significantly greater with electrochromics: 10 months out of the year versus a handful of days for the reference case.

  4. Transient Thermal and Stress Response of A Helium-Cooled Tungsten Plate-Type Divertor

    E-Print Network [OSTI]

    Raffray, A. René

    Transient Thermal and Stress Response of A Helium- Cooled Tungsten Plate-Type Divertor X.R. Wang, A and shutdown operations have been analyzed with a coupled transient thermo-fluid and thermal-stress approach and investigated for power plant applications with a goal of accommodating a heat flux of 10 MW/m2 . The concepts

  5. Solar Thermal Demonstration Project

    SciTech Connect (OSTI)

    Biesinger, K.; Cuppett, D.; Dyer, D.

    2012-01-30

    HVAC Retrofit and Energy Efficiency Upgrades at Clark High School, Las Vegas, Nevada The overall objectives of this project are to increase usage of alternative/renewable fuels, create a better and more reliable learning environment for the students, and reduce energy costs. Utilizing the grant resources and local bond revenues, the District proposes to reduce electricity consumption by installing within the existing limited space, one principal energy efficient 100 ton adsorption chiller working in concert with two 500 ton electric chillers. The main heating source will be primarily from low nitrogen oxide (NOX), high efficiency natural gas fired boilers. With the use of this type of chiller, the electric power and cost requirements will be greatly reduced. To provide cooling to the information technology centers and equipment rooms of the school during off-peak hours, the District will install water source heat pumps. In another measure to reduce the cooling requirements at Clark High School, the District will replace single pane glass and metal panels with â??Kalwallâ?? building panels. An added feature of the â??Kalwallâ? system is that it will allow for natural day lighting in the student center. This system will significantly reduce thermal heat/cooling loss and control solar heat gain, thus delivering significant savings in heating ventilation and air conditioning (HVAC) costs.

  6. Practical Thermal Evaluation Methods For HAC Fire Analysis In Type B Radiaoactive Material (RAM) Packages

    SciTech Connect (OSTI)

    Abramczyk, Glenn; Hensel, Stephen J; Gupta, Narendra K.

    2013-03-28

    Title 10 of the United States Code of Federal Regulations Part 71 for the Nuclear Regulatory Commission (10 CFR Part 71.73) requires that Type B radioactive material (RAM) packages satisfy certain Hypothetical Accident Conditions (HAC) thermal design requirements to ensure package safety during accidental fire conditions. Compliance with thermal design requirements can be met by prototype tests, analyses only or a combination of tests and analyses. Normally, it is impractical to meet all the HAC using tests only and the analytical methods are too complex due to the multi-physics non-linear nature of the fire event. Therefore, a combination of tests and thermal analyses methods using commercial heat transfer software are used to meet the necessary design requirements. The authors, along with his other colleagues at Savannah River National Laboratory in Aiken, SC, USA, have successfully used this 'tests and analyses' approach in the design and certification of several United States' DOE/NNSA certified packages, e.g. 9975, 9977, 9978, 9979, H1700, and Bulk Tritium Shipping Package (BTSP). This paper will describe these methods and it is hoped that the RAM Type B package designers and analysts can use them for their applications.

  7. Thermal activation energy for the passivation of the n-type crystalline silicon surface by hydrogenated amorphous silicon

    E-Print Network [OSTI]

    Thermal activation energy for the passivation of the n-type crystalline silicon surface of crystalline silicon wafers is known to occur following post-deposition thermal annealing of intrinsic a this, an activation energy of 0.7 0.1 eV was calculated, suggesting that surface passivation

  8. An X-ray Reprocessing Model of Disk Thermal Emission in Type 1 Seyfert Galaxies

    E-Print Network [OSTI]

    James Chiang

    2002-02-12

    Using a geometry consisting of a hot central Comptonizing plasma surrounded by a thin accretion disk, we model the optical through hard X-ray spectral energy distributions of the type 1 Seyfert galaxies NGC 3516 and NGC 7469. As in the model proposed by Poutanen, Krolik, & Ryde for the X-ray binary Cygnus X-1 and later applied to Seyfert galaxies by Zdziarski, Lubi\\'nski, & Smith, feedback between the radiation reprocessed by the disk and the thermal Comptonization emission from the hot central plasma plays a pivotal role in determining the X-ray spectrum, and as we show, the optical and ultraviolet spectra as well. Seemingly uncorrelated optical/UV and X-ray light curves, similar to those which have been observed from these objects can be explained by variations in the size, shape, and temperature of the Comptonizing plasma. Furthermore, by positing a disk mass accretion rate which satisfies a condition for global energy balance between the thermal Comptonization luminosity and the power available from accretion, one can predict the spectral properties of the hard X-ray continuum above $\\sim 50$ keV in type 1 Seyfert galaxies. Forthcoming measurements of the hard X-ray continuum by more sensitive hard X-ray and soft $\\gamma$-ray telescopes, in conjunction with simultaneous optical, UV, and soft X-ray monitoring, will allow the mass accretion rates to be directly constrained for these sources in the context of this model.

  9. Deep levels generated by thermal oxidation in p-type 4H-SiC

    SciTech Connect (OSTI)

    Kawahara, Koutarou; Suda, Jun; Kimoto, Tsunenobu

    2013-01-21

    Thermal oxidation is an effective method to reduce deep levels, especially the Z{sub 1/2}-center (E{sub C}-0.67 eV), which strongly suppresses carrier lifetimes in n-type 4H-SiC epilayers. The oxidation, however, simultaneously generates other deep levels, HK0 (E{sub V}+0.79 eV) and HK2 (E{sub V}+0.98 eV) centers, within the lower half of the bandgap of SiC, where the HK0 center is a dominant deep level with a concentration of about 1 Multiplication-Sign 10{sup 13} cm{sup -3} after oxidation. By comparing deep levels observed in three sets of p-type 4H-SiC: oxidized, electron-irradiated, and C{sup +}- or Si{sup +}-implanted samples, we find that the HK0 and HK2 centers are complexes including carbon interstitials such as the di-carbon interstitial or di-carbon antisite. Other defects observed in p-type 4H-SiC after electron irradiation or after C{sup +}/Si{sup +} implantation are also studied.

  10. A COMPARISON OF TWO THERMAL INSULATION AND STRUCTURAL MATERIALS FOR USE IN TYPE B PACKAGINGS

    SciTech Connect (OSTI)

    Blanton, P.; Eberl, K.

    2010-07-16

    This paper presents the summary of design features and test results of two Type B Shipping Package prototype configurations comprising different insulating materials developed by the Savannah River National Laboratory (SRNL) for the Department of Energy. The materials evaluated, a closed-cell polyurethane foam and a vacuformed ceramic fiber material, were selected to provide adequate structural protection to the package containment vessel during Normal Conditions of Transport (NCT) and Hypothetical Accident Condition (HAC) events and to provide thermal protection during the HAC fire. Polyurethane foam has been used in shipping package designs for many years because of the stiffness it provides to the structure and because of the thermal protection it provides during fire scenarios. This comparison describes how ceramic fiber material offers an alternative to the polyurethane foam in a specific overpack design. Because of the high operating temperature ({approx}2,300 F) of the ceramic material, it allows for contents with higher heat loads to be shipped than is possible with polyurethane foam. Methods of manufacturing and design considerations using the two materials will be addressed.

  11. Identification of sublimation-type thermal contraction crack polygons at the proposed NASA Phoenix landing site: Implications for substrate

    E-Print Network [OSTI]

    Marchant, David R.

    Identification of sublimation-type thermal contraction crack polygons at the proposed NASA Phoenix within the NASA Phoenix landing site Area D characterized by boulder-topped, polygonally-patterned mounds of buried ice. On the basis of morphological similarities, we classify the Phoenix Box 1 polygons

  12. The culture of selected marine fish in ponds receiving thermal effluent from a power station and their use as biological monitors of water quality 

    E-Print Network [OSTI]

    Pane, Joseph John

    1976-01-01

    THE CULTURE OF SELECTED MARINE FISH IN PONDS RECEIVING THERMAL EFFLUENT FROM A POWER STATION AND THEIR USE AS BIOLOGICAL MONITORS OF WATER QUALITY A Thesis by JOSEPH JOHN PANE Submitted to the Graduate College of Texas A&M University... in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1976 Major Subject: Wildlife and Fisheries Sciences THE CULTURE OF SELECTED MARINE FISH IN PONDS RECEIVING THERMAL EFFLUENT FROM A POWER STATION AND THEIR USE...

  13. The hardening of Type 316L stainless steel welds with thermal aging

    E-Print Network [OSTI]

    Ayers, Lauren Juliet

    2012-01-01

    Welded stainless steel piping is a component of boiling water reactors (BWRs). Reirculation and other large diameter piping are fabricated from Type 304 or 316 stainless steels. Delta ferrite is present in welds, because ...

  14. ANISOTROPIC THERMAL CONDUCTIVITY IN A DIRTY TYPE II SUPERCONDUCTOR J.P.M. Van der Veeken, P.H. Kes and D. de Klerk

    E-Print Network [OSTI]

    Boyer, Edmond

    ANISOTROPIC THERMAL CONDUCTIVITY IN A DIRTY TYPE II SUPERCONDUCTOR J.P.M. Van der Veeken, P.H. Kes, The results are compared with calculations by Watts - Tobin and Imai. For dirty type II superconductors) of the total conductivities. ii) The theoretical calculations are valid only for BCS - superconductors

  15. The effect of thermal aging and boiling water reactor environment on Type 316L stainless steel welds

    E-Print Network [OSTI]

    Lucas, Timothy R

    2011-01-01

    The thermal aging and consequent embrittlement of materials are ongoing issues in cast stainless steels and duplex stainless steels. Spinodal decomposition is largely responsible for the well known "475°C" embrittlement ...

  16. Development and validation of capabilities to measure thermal properties of layered monolithic U-Mo alloy plate-type fuel

    SciTech Connect (OSTI)

    Burkes, Douglas; Casella, Andrew M.; Buck, Edgar C.; Casella, Amanda J.; Edwards, Matthew K.; MacFarlan, Paul J.; Pool, Karl N.; Smith, Frances N.; Steen, Franciska H.

    2014-07-19

    The uranium-molybdenum (U-Mo) alloy in a monolithic form has been proposed as one fuel design capable of converting some of the world’s highest power research reactors from the use of high enriched uranium (HEU) to low enriched uranium (LEU). One aspect of the fuel development and qualification process is to demonstrate appropriate understanding of thermal conductivity behavior of the fuel system as a function of temperature and expected irradiation conditions. The purpose of this paper is to verify and validate the functionality of equipment methods installed in hot cells for eventual measurements on irradiated uranium-molybdenum (U-Mo) monolithic fuel specimens, procedures to operate the equipment, and models to extract the desired thermal properties. The results presented here demonstrate the adequacy of the equipment, procedures and models that have been developed for this purpose based on measurements conducted on surrogate depleted uranium-molybdenum (DU-Mo) alloy samples containing a zirconium diffusion barrier and clad in aluminum alloy 6061 (AA6061). The results are in excellent agreement with thermal property data reported in the literature for similar U-Mo alloys as a function of temperature.

  17. Predicted thermal performance of triple vacuum glazing

    SciTech Connect (OSTI)

    Fang, Yueping; Hyde, Trevor J.; Hewitt, Neil

    2010-12-15

    The simulated triple vacuum glazing (TVG) consists of three 4 mm thick glass panes with two vacuum gaps, with each internal glass surface coated with a low-emittance coating with an emittance of 0.03. The two vacuum gaps are sealed by an indium based sealant and separated by a stainless steel pillar array with a height of 0.12 mm and a pillar diameter of 0.3 mm spaced at 25 mm. The thermal transmission at the centre-of-glazing area of the TVG was predicted to be 0.26 W m{sup -2} K{sup -1}. The simulation results show that although the thermal conductivity of solder glass (1 W m{sup -1} K{sup -1}) and indium (83.7 W m{sup -1} K{sup -1}) are very different, the difference in thermal transmission of TVGs resulting from the use of an indium and a solder glass edge seal was 0.01 W m{sup -2} K{sup -1}. This is because the edge seal is so thin (0.12 mm), consequently there is a negligible temperature drop across it irrespective of the material that the seal is made from relative to the total temperature difference across the glazing. The results also show that there is a relatively large increase in the overall thermal conductance of glazings without a frame when the width of the indium edge seal is increased. Increasing the rebate depth in a solid wood frame decreased the heat transmission of the TVG. The overall heat transmission of the simulated 0.5 m by 0.5 m TVG was 32.6% greater than that of the 1 m by 1 m TVG, since heat conduction through the edge seal of the small glazing has a larger contribution to the total glazing heat transfer than that of the larger glazing system. (author)

  18. Electrical and Thermal Transport Optimization of High Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites Work on...

  19. Load Sharing and Spacer Flexibility in Double Pane and Triple Pane Insulating Glass Units 

    E-Print Network [OSTI]

    Mertens, Karl Phillip

    2015-03-25

    , is the initial gas space temper- ature measured in degrees Kelvin. To then find the current gas space pressure Pgs, insert the constant C into: Pgs = C ? Tgs/Vgs (5) where Tgs, is the current gas space temperature and Vgs, is the current gas space volume... the net loads that act on the outer plate by combining equations (1) and (5) to get: q1 = q0 + Pa ? C ? Tgs/Vgs (11) This equation can then be inserted into equation (9) and rearranged to find the load distribution factor n? for each iteration: n...

  20. Thermochronometric constraints on the thermal anatomy and evolution of an extensional accommodation zone and implications on exploration for extensional-type geothermal systems

    E-Print Network [OSTI]

    Gorynski, Kyle

    2011-05-12

    related to Walker Lane transtensional faulting. Pliocene to recent Walker Lane transtensional structures are associated with a number of extensional-type geothermal systems. AHe ages along the modern WR range front and from a ~1.4 km deep borehole...

  1. Thermal engine

    SciTech Connect (OSTI)

    Karnes, T.E.; Trupin, R.J.

    1984-01-03

    A thermal engine utilizing a strip of nitinol material or other thermally responsive shape memory effect material to drive a reciprocating output shaft, said strip of material forming a common wall between two different alternating temperature sources which thermally cycle the material.

  2. A NEW SOLAR THERMAL RECEIVER UTILIZING SMALL PARTICLES

    E-Print Network [OSTI]

    Hunt, Arlon J.

    2011-01-01

    iuision, Ext. 6782 A New Solar Thermal Receiver UtilizingI \\D \\. }J F--' A NEW SOLAR THERMAL RECEIVER UTILIZING SMALL94720 ABSTRACT A new type of solar thermal receiver is being

  3. Thermal Resonance Fusion

    E-Print Network [OSTI]

    Dong, Bao-Guo

    2015-01-01

    We first show a possible mechanism to create a new type of nuclear fusion, thermal resonance fusion, i.e. low energy nuclear fusion with thermal resonance of light nuclei or atoms, such as deuterium or tritium. The fusion of two light nuclei has to overcome the Coulomb barrier between these two nuclei to reach up to the interacting region of nuclear force. We found nuclear fusion could be realized with thermal vibrations of crystal lattice atoms coupling with light atoms at low energy by resonance to overcome this Coulomb barrier. Thermal resonances combining with tunnel effects can greatly enhance the probability of the deuterium fusion to the detectable level. Our low energy nuclear fusion mechanism research - thermal resonance fusion mechanism results demonstrate how these light nuclei or atoms, such as deuterium, can be fused in the crystal of metal, such as Ni or alloy, with synthetic thermal vibrations and resonances at different modes and energies experimentally. The probability of tunnel effect at dif...

  4. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    Solar Thermal Collectors .is solar energy. Solar thermal collector arrays can be usedon integrating solar thermal collectors with desalination

  5. Thermal Resonance Fusion

    E-Print Network [OSTI]

    Bao-Guo Dong

    2015-07-07

    We first show a possible mechanism to create a new type of nuclear fusion, thermal resonance fusion, i.e. low energy nuclear fusion with thermal resonance of light nuclei or atoms, such as deuterium or tritium. The fusion of two light nuclei has to overcome the Coulomb barrier between these two nuclei to reach up to the interacting region of nuclear force. We found nuclear fusion could be realized with thermal vibrations of crystal lattice atoms coupling with light atoms at low energy by resonance to overcome this Coulomb barrier. Thermal resonances combining with tunnel effects can greatly enhance the probability of the deuterium fusion to the detectable level. Our low energy nuclear fusion mechanism research - thermal resonance fusion mechanism results demonstrate how these light nuclei or atoms, such as deuterium, can be fused in the crystal of metal, such as Ni or alloy, with synthetic thermal vibrations and resonances at different modes and energies experimentally. The probability of tunnel effect at different resonance energy given by the WKB method is shown that indicates the thermal resonance fusion mode, especially combined with the tunnel effect, is possible and feasible. But the penetrating probability decreases very sharply when the input resonance energy decreases less than 3 keV, so for thermal resonance fusion, the key point is to increase the resonance peak or make the resonance sharp enough to the acceptable energy level by the suitable compound catalysts, and it is better to reach up more than 3 keV to make the penetrating probability larger than 10^{-10}.

  6. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    and thermal energy storage in solar thermal applications,"aided or powered by solar thermal energy. A section is alsoexhaustive review of solar thermal energy systems has been

  7. Advanced Thermal Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    thermal models power density cost lifetime Advanced Thermal Interface Materials Advanced Heat Transfer Technologies Air Cooling Thermal System Performance and Integration Thermal...

  8. Thermal noise driven computing

    E-Print Network [OSTI]

    Laszlo B. Kish

    2006-10-28

    The possibility of a new type of computing, where thermal noise is the information carrier and the clock in a computer, is studied. The information channel capacity and the lower limit of energy requirement/dissipation are studied in a simple digital system with zero threshold voltage, for the case of error probability close to 0.5, when the thermal noise is equal to or greater than the digital signal. In a simple hypothetical realization of a thermal noise driven gate, the lower limit of energy needed to generate the digital signal is 1.1*kT/bit. The arrangement has potentially improved energy efficiency and it is free of leakage current, crosstalk and ground plane electromagnetic interference problems. Disadvantage is the large number of redundancy elements needed for low-error operation.

  9. Mechanochemical-thermal preparation and structural studies of mullite-type Bi{sub 2}(Ga{sub x}Al{sub 1-x}){sub 4}O{sub 9} solid solutions

    SciTech Connect (OSTI)

    Da Silva, K.L. [Institute of Physical and Theoretical Chemistry, Technische Universitaet Braunschweig, Hans-Sommer-Str. 10, 38106 Braunschweig (Germany); Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstr. 3a, 30167 Hannover (Germany); Department of Physics, State University of Maringa, Av. Colombo 5790, 87020-900 Maringa (Brazil); Sepelak, V., E-mail: vladimir.sepelak@kit.ed [Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Duevel, A. [Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstr. 3a, 30167 Hannover (Germany); Paesano, A. [Department of Physics, State University of Maringa, Av. Colombo 5790, 87020-900 Maringa (Brazil); Hahn, H. [Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Litterst, F.J. [Institute of Condensed Matter Physics, Technische Universitaet Braunschweig, Mendelssohnstr. 3, 38106 Braunschweig (Germany); Heitjans, P. [Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstr. 3a, 30167 Hannover (Germany); Becker, K.D. [Institute of Physical and Theoretical Chemistry, Technische Universitaet Braunschweig, Hans-Sommer-Str. 10, 38106 Braunschweig (Germany)

    2011-05-15

    A series of Bi{sub 2}(Ga{sub x}Al{sub 1-x}){sub 4}O{sub 9} solid solutions (0{<=}x{<=}1), prepared by mechanochemical processing of Bi{sub 2}O{sub 3}/Ga{sub 2}O{sub 3}/Al{sub 2}O{sub 3} mixtures and subsequent annealing, was investigated by XRD, EDX, and {sup 27}Al MAS NMR. The structure of the Bi{sub 2}(Ga{sub x}Al{sub 1-x}){sub 4}O{sub 9} solid solutions is found to be orthorhombic, space group Pbam (No. 55). The lattice parameters of the Bi{sub 2}(Ga{sub x}Al{sub 1-x}){sub 4}O{sub 9} series increase linearly with increasing gallium content. Rietveld refinement of the XRD data as well as the analysis of the {sup 27}Al MAS NMR spectra show a preference of gallium cations for the tetrahedral sites in Bi{sub 2}(Ga{sub x}Al{sub 1-x}){sub 4}O{sub 9}. As a consequence, this leads to a far from random distribution of Al and Ga cations across the whole series of solid solutions. -- Graphical Abstract: Mullite-type Bi{sub 2}(Ga{sub x}Al{sub 1-x}){sub 4}O{sub 9} mixed crystals (0{<=}x{<=}1) prepared by a combined mechanochemical-thermal route possess a non-random distribution of Ga{sup 3+} and Al{sup 3+} cations over the sites of tetrahedral (T) and octahedral [O] coordination, characterized by the preference of Ga{sup 3+} (Al{sup 3+}) for tetrahedral (octahedral) sites. Display Omitted Highlights: {yields} Bi{sub 2}(Ga{sub x}Al{sub 1-x}){sub 4}O{sub 9} (0{<=}x{<=}1) were synthesized via mechanochemical-thermal route. {yields} The lattice parameters of Bi{sub 2}(Ga{sub x}Al{sub 1-x}){sub 4}O{sub 9} increase linearly with gallium content. {yields} Quantitative information on the cation distribution in Bi{sub 2}(Ga{sub x}Al{sub 1-x}){sub 4}O{sub 9} is derived. {yields} Ga{sup 3+} and Al{sup 3+} show the preference for tetrahedral and octahedral sites, respectively.

  10. Solar thermal financing guidebook

    SciTech Connect (OSTI)

    Williams, T.A.; Cole, R.J.; Brown, D.R.; Dirks, J.A.; Edelhertz, H.; Holmlund, I.; Malhotra, S.; Smith, S.A.; Sommers, P.; Willke, T.L.

    1983-05-01

    This guidebook contains information on alternative financing methods that could be used to develop solar thermal systems. The financing arrangements discussed include several lease alternatives, joint venture financing, R and D partnerships, industrial revenue bonds, and ordinary sales. In many situations, alternative financing arrangements can significantly enhance the economic attractiveness of solar thermal investments by providing a means to efficiently allocate elements of risk, return on investment, required capital investment, and tax benefits. A net present value approach is an appropriate method that can be used to investigate the economic attractiveness of alternative financing methods. Although other methods are applicable, the net present value approach has advantages of accounting for the time value of money, yielding a single valued solution to the financial analysis, focusing attention on the opportunity cost of capital, and being a commonly understood concept that is relatively simple to apply. A personal computer model for quickly assessing the present value of investments in solar thermal plants with alternative financing methods is presented in this guidebook. General types of financing arrangements that may be desirable for an individual can be chosen based on an assessment of his goals in investing in solar thermal systems and knowledge of the individual's tax situation. Once general financing arrangements have been selected, a screening analysis can quickly determine if the solar investment is worthy of detailed study.

  11. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    varying solar energy inputs and thermal or power demands. Itusing aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"

  12. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    of solar collectors and thermal energy storage in solaraided or powered by solar thermal energy. A section is alsobesides MVC require thermal energy as their primary energy

  13. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    15] O. A. Hamed, "THERMAL PERFORMANCE OF MULTISTAGE FLASHdesa4.aspx. [18] Encon, "Thermal Evaporators," June 2013. [http://www.evaporator.com/thermal-evaporator. [19] Y. Tian

  14. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    of such an aquifer thermal storage system were studied andusing aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"

  15. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    This requires no thermal storage tanks, but can have athe need for large thermal storage equipment, the evaporatorinclude analysis of thermal storage. A way of keeping the

  16. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

  17. A NEW SOLAR THERMAL RECEIVER UTILIZING A SMALL PARTICLE HEAT EXCHANGER

    E-Print Network [OSTI]

    Hunt, Arlon J.

    2011-01-01

    Report LBL 8520. ) A NEW SOLAR THERMAL RECEIVER UTILIZING Aenergy. A new type of solar thermal receiver based on thisThe success of the solar thermal electric power program

  18. Thermal Transport in Nanoporous Materials for Energy Applications

    E-Print Network [OSTI]

    Fang, Jin

    2012-01-01

    Thermal Conductivity Measurement . . . . . . . . . . . . .Thermal ConductivityThermal Conductivity . . . . . . . . . . . . . . . .Thermal

  19. Thermo Tracer Infrared Thermal Imager

    E-Print Network [OSTI]

    Walker, D. Greg

    -range area G Environment monitoring Volcano, ecology, vegetation, global warming, pollution G R&D Evaluation is a fixed installation type infrared thermal imaging camera to monitor important facilities Production line monitoring Quality anomalies in production processes G Facility monitoring Anomalies

  20. Thermal disconnect for high-temperature batteries

    DOE Patents [OSTI]

    Jungst, Rudolph George (Albuquerque, NM); Armijo, James Rudolph (Albuquerque, NM); Frear, Darrel Richard (Austin, TX)

    2000-01-01

    A new type of high temperature thermal disconnect has been developed to protect electrical and mechanical equipment from damage caused by operation at extreme temperatures. These thermal disconnects allow continuous operation at temperatures ranging from 250.degree. C. to 450.degree. C., while rapidly terminating operation at temperatures 50.degree. C. to 150.degree. C. higher than the continuous operating temperature.

  1. Development of MEMS based pyroelectric thermal energy harvesters...

    Office of Scientific and Technical Information (OSTI)

    Laboratory (ORNL) is developing a new type of high efficiency thermal waste heat energy converter that can be used to actively cool electronic devices, concentrated...

  2. Typicality of thermal equilibrium and thermalization in isolated macroscopic quantum systems

    E-Print Network [OSTI]

    Hal Tasaki

    2015-08-01

    Based on the view that thermal equilibrium should be characterized through macroscopic observations, we develop a general theory about typicality of thermal equilibrium and the approach to thermal equilibrium in macroscopic quantum systems. We first formulate the notion that a pure state in an isolated quantum system represents thermal equilibrium. Then by assuming, or proving in certain classes of nontrivial models (including that of two bodies in thermal contact), large-deviation type bounds (which we call thermodynamic bounds) for the microcanonical ensemble, we prove that to represent thermal equilibrium is a typical property for pure states in the microcanonical energy shell. We also establish the approach to thermal equilibrium under two different assumptions; one is that the initial state has a moderate energy distribution, and the other is the energy eigenstate thermalization hypothesis. We also discuss three easily solvable models in which these assumptions can be verified.

  3. Building America Whole-House Solutions for Existing Homes: Conway...

    Energy Savers [EERE]

    envelope of closed-cell spray foam and triple-pane windows, ductless heat pumps, solar thermal hot water system, and photovoltaic system. Conway Street Apartments More...

  4. High Temperature Thermal Array for Next Generation Solar Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This...

  5. Effects of thermal fluctuations on thermal inflation

    E-Print Network [OSTI]

    Takashi Hiramatsu; Yuhei Miyamoto; Jun'ichi Yokoyama

    2014-12-25

    The mechanism of thermal inflation, a relatively short period of accelerated expansion after primordial inflation, is a desirable ingredient for a certain class of particle physics models if they are not to be in contention with the cosmology of the early Universe. Though thermal inflation is most simply described in terms of a thermal effective potential, a thermal environment also gives rise to thermal fluctuations that must be taken into account. We numerically study the effects of these thermal fluctuations using lattice simulations. We conclude that though they do not ruin the thermal inflation scenario, the phase transition at the end of thermal inflation proceeds through phase mixing and is therefore not accompanied by the formations of bubbles nor appreciable amplitude of gravitational waves.

  6. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    storage in solar thermal applications," Applied Energy, pp.of Non-Tracking Solar Thermal Technology," 2011. [26] R.C. Y. Zhao, "A review of solar collectors and thermal energy

  7. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    Evaporator Powered By Solar Thermal Energy 10:00 AM 10:00 AMaided or powered by solar thermal energy. A section is alsoexhaustive review of solar thermal energy systems has been

  8. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    and thermal energy storage in solar thermal applications,"Solar infrastructure should include analysis of thermal storage.storage equipment, the evaporator can be integrated into the current solar

  9. Thermal Control & System Integration

    Broader source: Energy.gov [DOE]

    The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

  10. DNA Engine Thermal Cycler

    E-Print Network [OSTI]

    Raizada, Manish N.

    ® Peltier Thermal Cycler PTC-0200 DNA Engine Cycler Operations Manual Version 4.0 #12;ii Tech Support: 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .vi The DNA Engine® Peltier Thermal Cycler Introduction

  11. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    and C. Y. Zhao, "A review of solar collectors and thermalenergy storage in solar thermal applications," Appliedon photovoltaic/thermal hybrid solar technology," Applied

  12. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    thermal energy becomes apparent with the development of solarsolar energy systems, aquifer energy storage provides a buffer between time-varying solar energy inputs and thermal

  13. Thermal Regimes of Northeast Streams

    E-Print Network [OSTI]

    Thermal Loading (USGS) Stormwater and Streams ­ Optimizing Stormwater Management to Protect the Thermal

  14. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    2012-01-01

    HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  15. Thermal and Electrical Transport in Oxide Heterostructures

    E-Print Network [OSTI]

    Ravichandran, Jayakanth

    2011-01-01

    of thermal conductivity . . . . . . . . . . . . . . . .4.4 Thermal transport in2.3.2 Thermal transport . . . . . . . . . . . . . . . .

  16. Thermal Energy Storage

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Cooperman, Alissa; Bouza, Antonio

    2013-06-05

    The article discusses thermal energy storage technologies. This article addresses benefits of TES at both the building site and the electricity generation source. The energy savings and market potential of thermal energy store are reviewed as well.

  17. Thermal Management of Solar Cells

    E-Print Network [OSTI]

    Saadah, Mohammed Ahmed

    2013-01-01

    phonon transmission and interface thermal conductance acrossF. Miao, et al. , "Superior Thermal Conductivity of Single-Advanced Materials for Thermal Management of Electronic

  18. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    time-varying solar energy inputs and thermal or powerthermal energy becomes apparent with the development of solar

  19. Multiwavelength Thermal Emission

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Multiwavelength Astronomy NASA #12;Thermal Emission #12;Thermal Emission Non-thermal p-p collisions Optical IR Radio/ Microwave sources of emission massive stars, WHIM, Ly many dust, cool objects-ray ~GeV Gamma-ray ~TeV sources of emission AGN, clusters, SNR, binaries, stars AGN (obscured), shocks

  20. Thermal neutron detection system

    DOE Patents [OSTI]

    Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

    2000-01-01

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  1. Thermal Performance Benchmarking (Presentation)

    SciTech Connect (OSTI)

    Moreno, G.

    2014-11-01

    This project will benchmark the thermal characteristics of automotive power electronics and electric motor thermal management systems. Recent vehicle systems will be benchmarked to establish baseline metrics, evaluate advantages and disadvantages of different thermal management systems, and identify areas of improvement to advance the state-of-the-art.

  2. Blood Types

    E-Print Network [OSTI]

    Hacker, Randi; Tsutsui, William

    2007-03-14

    Sox spent a hundred mil to acquire pitcher Daisuke Matsuzaka; they probably weren't even aware that he is a Type O and that they make the best bankers, politicians and... you guessed it... professional baseball players. #ceas #hacker #japan #tsutsuien...

  3. Quantum chaos and effective thermalization

    E-Print Network [OSTI]

    Altland, Alexander

    2011-01-01

    We demonstrate effective equilibration for unitary quantum dynamics under conditions of classical chaos. Focusing on the paradigmatic example of the Dicke model, we show how a constructive description of the thermalization process is facilitated by the Glauber $Q$ or Husimi function, for which the evolution equation turns out to be of Fokker-Planck type. The equation describes a competition of classical drift and quantum diffusion in contractive and expansive directions. By this mechanism the system follows a 'quantum smoothened' approach to equilibrium, which avoids the notorious singularities inherent to classical chaotic flows.

  4. Neutrino Physics with Thermal Detectors

    SciTech Connect (OSTI)

    Nucciotti, A. [Dipartimento di Fisica, Universita di Milano Bicocca and INFN Sezione di Milano-Bicocca Piazza della Scienza, 3, 20126 Milano (Italy)

    2009-11-09

    The investigation of fundamental neutrino properties like its mass and its nature calls for the design of a new generation of experiments. High sensitivity, high energy resolution, and versatility together with the possibility of a simple multiplexing scheme are the key features of future detectors for these experiments. Thermal detectors can combine all these features. This paper reviews the status and the perspectives for what concerns the application of this type of detectors to neutrino physics, focusing on direct neutrino mass measurements and neutrinoless double beta decay searches.

  5. Multiple thermal maxima during the Holocene

    SciTech Connect (OSTI)

    Davis, O.K.

    1984-08-10

    The astronomical theory of climatic change provides an alternative to the traditional chronology for Holocene climatic change, which calls for one thermal maximum about 6000 years ago. The theory predicts a series of maxima during the Holocene, one for each season. Because the relation of the perihelion to the spring equinox changes with a 22,000-year period, late summer insolation would have been greatest 5000 years ago, whereas early summer insolation would have been greatest 13,000 years ago. Climatic reconstructions based on the response of ecosystems to late summer climate indicate a later Holocene thermal maximum than paleoclimatic data sensitive to early summer climate. In southern Idaho, three different vegetation types indicate thermal maxima at different times during the Holocene, depending on the climatic variable controlling each type. 28 references, 2 figures.

  6. Pv-Thermal Solar Power Assembly

    DOE Patents [OSTI]

    Ansley, Jeffrey H. (El Cerrito, CA); Botkin, Jonathan D. (El Cerrito, CA); Dinwoodie, Thomas L. (Piedmont, CA)

    2001-10-02

    A flexible solar power assembly includes a flexible photovoltaic device attached to a flexible thermal solar collector. The solar power assembly can be rolled up for transport and then unrolled for installation on a surface, such as the roof or side wall of a building or other structure, by use of adhesive and/or other types of fasteners.

  7. Special fiber elements for thermal analysis

    E-Print Network [OSTI]

    Qin, Qinghua

    of this paper is to present a new special element model for thermal analysis of composites. Design analysis, Hybrid FEM, Fundamental solution, Special inclusion element, Representative volume cell Paper type Research paper 1. Introduction Fiber-reinforced composites (Chung, 1994) are structural materials

  8. Catalytic thermal barrier coatings

    DOE Patents [OSTI]

    Kulkarni, Anand A. (Orlando, FL); Campbell, Christian X. (Orlando, FL); Subramanian, Ramesh (Oviedo, FL)

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  9. Thermal breeder fuel enrichment zoning

    DOE Patents [OSTI]

    Capossela, Harry J. (Schenectady, NY); Dwyer, Joseph R. (Albany, NY); Luce, Robert G. (Schenectady, NY); McCoy, Daniel F. (Latham, NY); Merriman, Floyd C. (Rotterdam, NY)

    1992-01-01

    A method and apparatus for improving the performance of a thermal breeder reactor having regions of higher than average moderator concentration are disclosed. The fuel modules of the reactor core contain at least two different types of fuel elements, a high enrichment fuel element and a low enrichment fuel element. The two types of fuel elements are arranged in the fuel module with the low enrichment fuel elements located between the high moderator regions and the high enrichment fuel elements. Preferably, shim rods made of a fertile material are provided in selective regions for controlling the reactivity of the reactor by movement of the shim rods into and out of the reactor core. The moderation of neutrons adjacent the high enrichment fuel elements is preferably minimized as by reducing the spacing of the high enrichment fuel elements and/or using a moderator having a reduced moderating effect.

  10. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    aquifers for thermal energy storage. Problems outlined abovean Aquifer Used for Hot Water Storage: Digital Simulation ofof Aquifer Systems for Cyclic Storage of Water," of the Fall

  11. Scattering Solar Thermal Concentrators

    Office of Environmental Management (EM)

    sunshot DOEGO-102012-3669 * September 2012 MOTIVATION All thermal concentrating solar power (CSP) systems use solar tracking, which involves moving large mirror surfaces...

  12. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    pp. 67-73, 2003. [17] "Energy Requirements of Desalinationof solar collectors and thermal energy storage in solarapplications," Applied Energy, pp. 538-553, 2013. [20] P. G.

  13. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    C. Y. Zhao, "A review of solar collectors and thermal energya Passive Flat-Plate Solar Collector," International Journalof Flat Plate Solar Collector Equipped with Rectangular Cell

  14. Derived Types What Are Derived Types?

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    Derived Types #12;What Are Derived Types? As usual, a hybrid of two, unrelated concepts C++, Python orientation comes in #12;Simple Derived Types TYPE Wheel INTEGER :: spokes REAL :: diameter, width CHARACTER(LEN=15) :: material END TYPE Wheel That defines a derived type Wheel Using derived types needs a special

  15. Derived Types What Are Derived Types?

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    Derived Types #12;What Are Derived Types? As usual, a hybrid of two, unrelated concepts C object orientation comes in This course will only describe the former. #12;Simple Derived Types TYPE That defines a derived type Wheel Using derived types needs a special syntax TYPE(Wheel) :: w1 #12;More

  16. Type: Renewal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsStateof Energy TwoEvent at the Pu Facility,Type IV COPV1

  17. Fast Thermal Simulation for Architecture Level Dynamic Thermal Management

    E-Print Network [OSTI]

    Tan, Sheldon X.-D.

    Fast Thermal Simulation for Architecture Level Dynamic Thermal Management Pu Liu, Zhenyu Qi, Hang temperature by dynamic thermal managements becomes necessary. This paper proposes a novel approach to the thermal analysis at chip architecture level for efficient dynamic thermal management. Our new approach

  18. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, G.A.; Elder, M.G.; Kemme, J.E.

    1984-03-20

    The disclosure is directed to an apparatus for thermally protecting sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components such as electronics to a heat sink such as ice.

  19. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, Gloria A. (Los Alamos, NM); Elder, Michael G. (Los Alamos, NM); Kemme, Joseph E. (Albuquerque, NM)

    1985-01-01

    An apparatus which thermally protects sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components to a heat sink such as ice.

  20. Thermal radiation Ron Zevenhoven

    E-Print Network [OSTI]

    Zevenhoven, Ron

    .00032, similarly for 2·T = 0.7·2500 = 1750 µmK4 this gives f0-2 = 0.03392. Thus for 0.4 - 0.7 µm, f1-2 = 0Thermal radiation revisited Ron Zevenhoven Åbo Akademi University Thermal and Flow Engineering Laboratory / Värme- och strömningsteknik tel. 3223 ; ron.zevenhoven@abo.fi Process Engineering

  1. Mechanical Engineering & Thermal Group

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    LASP's mechanical analysts also lead mechanical verification testing including: random vibration, forceMechanical Engineering & Thermal Group The Mechanical Engineering (ME) & Thermal Group at LASP has, and ground- based mechanical systems. Instrument Design Building on decades of design experience that has

  2. Thermal treatment wall

    DOE Patents [OSTI]

    Aines, Roger D. (Livermore, CA); Newmark, Robin L. (Livermore, CA); Knauss, Kevin G. (Livermore, CA)

    2000-01-01

    A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.

  3. Tunable thermal link

    DOE Patents [OSTI]

    Chang, Chih-Wei; Majumdar, Arunava; Zettl, Alexander K.

    2014-07-15

    Disclosed is a device whereby the thermal conductance of a multiwalled nanostructure such as a multiwalled carbon nanotube (MWCNT) can be controllably and reversibly tuned by sliding one or more outer shells with respect to the inner core. As one example, the thermal conductance of an MWCNT dropped to 15% of the original value after extending the length of the MWCNT by 190 nm. The thermal conductivity returned when the tube was contracted. The device may comprise numbers of multiwalled nanotubes or other graphitic layers connected to a heat source and a heat drain and various means for tuning the overall thermal conductance for applications in structure heat management, heat flow in nanoscale or microscale devices and thermal logic devices.

  4. Solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L. (Livermore, CA)

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  5. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    and Background Solar thermal energy collection is anThermal Energy Storage in Concentrated Solar Thermal PowerThermal Energy Storage in Concentrated Solar Thermal Power

  6. Thermally-related safety issues associated with thermal batteries.

    SciTech Connect (OSTI)

    Guidotti, Ronald Armand

    2006-06-01

    Thermal batteries can experience thermal runaway under certain usage conditions. This can lead to safety issues for personnel and cause damage to associated test equipment if the battery thermally self destructs. This report discusses a number of thermal and design related issues that can lead to catastrophic destruction of thermal batteries under certain conditions. Contributing factors are identified and mitigating actions are presented to minimize or prevent undesirable thermal runaway.

  7. Burning Thermals in Type Ia Supernovae A. J. Aspden1

    E-Print Network [OSTI]

    Bell, John B.

    . It is generally agreed that they result from the thermonuclear explosion of a white dwarf accreting matter from that a thermonuclear explosion is involved means that a realistic model requires an understanding of both the ignition

  8. Thermal Giant Gravitons

    E-Print Network [OSTI]

    Armas, Jay; Obers, Niels A; Orselli, Marta; Pedersen, Andreas Vigand

    2012-01-01

    We study the giant graviton solution as the AdS_5 X S^5 background is heated up to finite temperature. The analysis employs the thermal brane probe technique based on the blackfold approach. We focus mainly on the thermal giant graviton corresponding to a thermal D3-brane probe wrapped on an S^3 moving on the S^5 of the background at finite temperature. We find several interesting new effects, including that the thermal giant graviton has a minimal possible value for the angular momentum and correspondingly also a minimal possible radius of the S^3. We compute the free energy of the thermal giant graviton in the low temperature regime, which potentially could be compared to that of a thermal state on the gauge theory side. Moreover, we analyze the space of solutions and stability of the thermal giant graviton and find that, in parallel with the extremal case, there are two available solutions for a given temperature and angular momentum, one stable and one unstable. In order to write down the equations of mot...

  9. Multilayer thermal barrier coating systems

    DOE Patents [OSTI]

    Vance, Steven J. (Orlando, FL); Goedjen, John G. (Oviedo, FL); Sabol, Stephen M. (Orlando, FL); Sloan, Kelly M. (Longwood, FL)

    2000-01-01

    The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

  10. Incinerator thermal release valve risk assessment

    SciTech Connect (OSTI)

    Stevens, J.B.

    1998-12-31

    Human health risk assessments were conducted on emissions from several types of incinerators--a hazardous waste combustor, a medical waste/tire combustor, and a refuse derived fuel combustor in three different states. As part of these studies, the short-term emissions from thermal release valves operating during upset conditions were additionally evaluated. The latter assessments addressed two specific risk-related questions: (1) what are the incremental long-term risks/hazards associated with these short-term emissions; (2) what are the acute health hazards associated with these emissions? For each study, emission estimates for both the incinerator stack and the thermal release valve were obtained from the facility. Stack testing was utilized to obtain stack gas concentrations of emissions at one facility; engineering estimates were used to ascertain emissions from the thermal release valve. The two facilities were proposed incinerators, so literature-derived emissions were used throughout.

  11. Thermally Polymerized Rylene Nanoparticles

    E-Print Network [OSTI]

    Andrew, Trisha Lionel

    Rylene dyes functionalized with varying numbers of phenyl trifluorovinyl ether (TFVE) moieties were subjected to a thermal emulsion polymerization to yield shape-persistent, water-soluble chromophore nanoparticles. Perylene ...

  12. Thermal Insulation Systems 

    E-Print Network [OSTI]

    Stanley, T. F.

    1982-01-01

    Thermal insulation systems are receiving a high degree of attention in view of increasing energy cost. Industrial, commercial and residential energy users are all well aware of energy cost increases and great emphasis is being directed to energy...

  13. Contact thermal lithography

    E-Print Network [OSTI]

    Schmidt, Aaron Jerome, 1979-

    2004-01-01

    Contact thermal lithography is a method for fabricating microscale patterns using heat transfer. In contrast to photolithography, where the minimum achievable feature size is proportional to the wavelength of light used ...

  14. Photovoltaic-thermal collectors

    DOE Patents [OSTI]

    Cox, III, Charles H. (Carlisle, MA)

    1984-04-24

    A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

  15. STUDY TYPES What is a "Study Type"?

    E-Print Network [OSTI]

    Dorf, Martin E.

    #12;STUDY TYPES What is a "Study Type"? A Study Type is a defined business process. Study Types work together to streamline workflow, track data & keep users informed. There are 2 Study Types in eCOMS: COMS and IACUC. The COMS Study: The COMS Study is an online form that a Principal Investigator fills

  16. Coral Thermal Tolerance: Tuning Gene Expression to Resist Thermal Stress

    E-Print Network [OSTI]

    Coral Thermal Tolerance: Tuning Gene Expression to Resist Thermal Stress Anthony J. Bellantuono1 thermal tolerance in the scleractinian coral Acropora millepora, corals preconditioned to a sub under which non-preconditioned corals bleached and preconditioned corals (thermal-tolerant) maintained

  17. Thermal Duality and Gravitational Collapse

    E-Print Network [OSTI]

    Hewitt, Michael

    2015-01-01

    Thermal duality is a relationship between the behaviour of heterotic string models of the $E(8)x E(8)$ or $SO(32)$ types at inversely related temperatures, a variant of T duality in the Euclidean regime. This duality would have consequences for the nature of the Hagedon transition in these string models. We propose that the vacuum admits a family of deformations in situations where there are closed surfaces of constant area but high radial acceleration (a string regularized version of a Penrose trapped surface), such as would be formed in situations of extreme gravitational collapse. This would allow a radical resolution of the firewall paradox by allowing quantum effects to significantly modify the spacetime geometry around a collapsed object. A string bremsstrahlung process would convert the kinetic energy of infalling matter in extreme gravitational collapse to form a region of the deformed vacuum, which would be equivalent to forming a high temperature string phase. This process might have observable cons...

  18. PV/thermal solar power assembly

    DOE Patents [OSTI]

    Ansley, Jeffrey H.; Botkin, Jonathan D.; Dinwoodie, Thomas L.

    2004-01-13

    A flexible solar power assembly (2) includes a flexible photovoltaic device (16) attached to a flexible thermal solar collector (4). The solar power assembly can be rolled up for transport and then unrolled for installation on a surface, such as the roof (20, 25) or side wall of a building or other structure, by use of adhesive and/or other types of fasteners (23).

  19. Thermal Lens Spectroscopy Mladen Franko

    E-Print Network [OSTI]

    Reid, Scott A.

    Thermal Lens Spectroscopy Mladen Franko Laboratory of Environmental Research, University of Nova-beam Instruments 5 3.3 Differential Thermal Lens Instruments 7 3.4 Multiwavelength and Tunable Thermal Lens Spectrometers 8 3.5 Circular Dichroism TLS Instruments 9 3.6 Miniaturization of Thermal Lens Instruments 9 4

  20. Wheel-type magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, J.A.

    1982-01-20

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load.

  1. Wheel-type magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, J.A.

    1983-10-11

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load. 7 figs.

  2. Article for thermal energy storage

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    2000-06-27

    A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

  3. Thermally Activated Martensite: Its Relationship to Non-Thermally Activated (Athermal) Martensite

    SciTech Connect (OSTI)

    Laughlin, D E; Jones, N J; Schwartz, A J; Massalski, T B

    2008-10-21

    The classification of martensitic displacive transformations into athermal, isothermal or anisothermal is discussed. Athermal does not mean 'no temperature dependence' as is often thought, but is best considered to be short for the notion of no thermal activation. Processes with no thermal activation do not depend on time, as there is no need to wait for sufficient statistical fluctuations in some specific order parameter to overcome an activation barrier to initiate the process. Clearly, this kind of process contrasts with those that are thermally activated. In the literature, thermally activated martensites are usually termed isothermal martensites, suggesting a constant temperature. Actually such martensites also typically occur with continuous cooling. The important distinctive feature of these martensites is that they are thermally activated and hence are distinguishable in principle from athermal martensites. A third type of process, anisothermal, has been introduced to account for those transformations which are thought to be thermally activated but which occur on continuous cooling. They may occur so rapidly that they do not appear to have an incubation time, and hence could be mistakenly called an athermal transformation. These designations will be reviewed and discussed in terms of activation energies and kinetic processes of the various martensitic transformations.

  4. Thermal trim for luminaire

    DOE Patents [OSTI]

    Bazydola, Sarah; Ghiu, Camil-Daniel; Harrison, Robert; Jeswani, Anil

    2013-11-19

    A luminaire with a thermal pathway to reduce the junction temperature of the luminaire's light source, and methods for so doing, are disclosed. The luminaire includes a can, a light engine, and a trim, that define a substantially continuous thermal pathway from the light engine to a surrounding environment. The can defines a can cavity and includes a can end region. The light engine is within the can cavity and includes a light source and a heat sink, including a heat sink end region, coupled thereto. The trim is at least partially disposed within the can cavity and includes a first trim end region coupled to the heat sink end region and a second trim end region coupled to the can end region. Thermal interface material may be located between: the heat sink and the trim, the trim and the can, and/or the heat sink and the light source.

  5. Thermal insulated glazing unit

    DOE Patents [OSTI]

    Selkowitz, S.E.; Arasteh, D.K.; Hartmann, J.L.

    1988-04-05

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas. 2 figs.

  6. Thermal insulated glazing unit

    DOE Patents [OSTI]

    Selkowitz, Stephen E. (Piedmont, CA); Arasteh, Dariush K. (Oakland, CA); Hartmann, John L. (Seattle, WA)

    1991-01-01

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas.

  7. Highly directional thermal emitter

    DOE Patents [OSTI]

    Ribaudo, Troy; Shaner, Eric A; Davids, Paul; Peters, David W

    2015-03-24

    A highly directional thermal emitter device comprises a two-dimensional periodic array of heavily doped semiconductor structures on a surface of a substrate. The array provides a highly directional thermal emission at a peak wavelength between 3 and 15 microns when the array is heated. For example, highly doped silicon (HDSi) with a plasma frequency in the mid-wave infrared was used to fabricate nearly perfect absorbing two-dimensional gratings structures that function as highly directional thermal radiators. The absorption and emission characteristics of the HDSi devices possessed a high degree of angular dependence for infrared absorption in the 10-12 micron range, while maintaining high reflectivity of solar radiation (.about.64%) at large incidence angles.

  8. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, Roy (Columbus, IN); Kakwani, Ramesh M. (Columbus, IN); Valdmanis, Edgars (Columbus, IN); Woods, Melvins E. (Columbus, IN)

    1988-01-01

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m.degree. C. and a specific heat greater than 480 J/kg.degree. C. with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber.

  9. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

    1988-04-19

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

  10. Cermet fuel thermal conductivity 

    E-Print Network [OSTI]

    Alvis, John Mark

    1988-01-01

    VITA 36 37 40 40 40 40 44 45 47 48 LIST OF FIGURES Figure Unit cell for derivation of model Page Heat Conduction Solution 22 3 Fission Gas Release Model 26 4A Metal Matrix Thermal Conductivity 4B Ceramic Fuel Thermal Conductivity 5... is based on the simple heat conduction equation. It is assumed that there is a uniform distribution of fuel particles in a regular array. A unit cell consists of a cube of matrix material of side length L, containing a spherical fuel particle of radius, r...

  11. Scattering Solar Thermal Concentrators

    Broader source: Energy.gov [DOE]

    "This fact sheet describes a scattering solar thermal concentrators project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Pennsylvania State University, is working to demonstrate a new, scattering-based approach to concentrating sunlight that aims to improve the overall performance and reliability of the collector field. The research team aims to show that scattering solar thermal collectors are capable of achieving optical performance equal to state-of-the-art parabolic trough systems, but with the added benefits of immunity to wind-load tracking error, more efficient land use, and utilization of stationary receivers."

  12. Thermal conductivity changes upon neutron transmutation of {sup 10}B doped diamond

    SciTech Connect (OSTI)

    Jagannadham, K., E-mail: jag-kasichainula@ncsu.edu [Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Verghese, K. [Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Butler, J. E. [Code 6174, Naval research Laboratory, Washington, District of Columbia 20375 (United States)

    2014-08-28

    {sup 10}B doped p-type diamond samples were subjected to neutron transmutation reaction using thermal neutron flux of 0.9 × 10{sup 13} cm{sup ?2} s{sup ?1} and fast neutron flux of 0.09 × 10{sup 13} cm{sup ?2} s{sup ?1}. Another sample of epilayer grown on type IIa (110) single crystal diamond substrate was subjected to equal thermal and fast neutron flux of 10{sup 14}?cm{sup ?2} s{sup ?1}. The defects in the diamond samples were previously characterized by different methods. In the present work, thermal conductivity of these diamond samples was determined at room temperature by transient thermoreflectance method. The thermal conductivity change in the samples as a function of neutron fluence is explained by the phonon scattering from the point defects and disordered regions. The thermal conductivity of the diamond samples decreased more rapidly initially and less rapidly for larger neutron fluence. In addition, the thermal conductivity in type IIb diamond decreased less rapidly with thermal neutron fluence compared to the decrease in type IIa diamond subjected to fast neutron fluence. It is concluded that the rate of production of defects during transmutation reaction is slower when thermal neutrons are used. The thermal conductivity of epilayer of diamond subjected to high thermal and fast neutron fluence is associated with the covalent carbon network in the composite structure consisting of disordered carbon and sp{sup 2} bonded nanocrystalline regions.

  13. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    and Background Solar thermal energy collection is anCHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLAR POWERfor Thermal Energy Storage in Concentrated Solar Thermal

  14. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    ENERGY STORAGE FOR CONCENTRATING SOLAR POWER PLANTS,”Thermal Energy Storage in Concentrated Solar Thermal PowerThermal Energy Storage in Concentrated Solar Thermal Power

  15. Assignment Types UTS LIBRARY

    E-Print Network [OSTI]

    University of Technology, Sydney

    Assignment Types UTS LIBRARY February 2013 Academic Writing Guide Part 2 ­ Assignment Types: This section outlines the basic types of written assignments, providing structural elements and examples. #12;2 II. Assignment Types 1. Essay Writing

  16. Thermal Reactor Safety

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

  17. Thermal barrier coating

    DOE Patents [OSTI]

    Bowker, Jeffrey Charles (Gibsonia, PA); Sabol, Stephen M. (Orlando, FL); Goedjen, John G. (Oviedo, FL)

    2001-01-01

    A thermal barrier coating for hot gas path components of a combustion turbine based on a zirconia-scandia system. A layer of zirconium scandate having the hexagonal Zr.sub.3 Sc.sub.4 O.sub.12 structure is formed directly on a superalloy substrate or on a bond coat formed on the substrate.

  18. Giant Thermal Rectification from Polyethylene Nanofiber Thermal Diodes

    E-Print Network [OSTI]

    Zhang, Teng

    2015-01-01

    The realization of phononic computing is held hostage by the lack of high performance thermal devices. Here we show through theoretical analysis and molecular dynamics simulations that unprecedented thermal rectification factors (as large as 1.20) can be achieved utilizing the phase dependent thermal conductivity of polyethylene nanofibers. More importantly, such high thermal rectifications only need very small temperature differences (< 20 oC) across the device, which is a significant advantage over other thermal diodes which need temperature biases on the order of the operating temperature. Taking this into consideration, we show that the dimensionless temperature-scaled rectification factors of the polymer nanofiber diodes range from 12 to 25 - much larger than other thermal diodes (< 8). The polymer nanofiber thermal diode consists of a crystalline portion whose thermal conductivity is highly phase-sensitive and a cross-linked portion which has a stable phase. Nanoscale size effect can be utilized t...

  19. A Typed Operational Semantics for Type Theory 

    E-Print Network [OSTI]

    Goguen, Healfdene

    Untyped reduction provides a natural operational semantics for type theory. Normalization results say that such a semantics is sound. However, this reduction does not take type information into account and gives no information ...

  20. Thermal conductivity of configurable two-dimensional carbon nanotube architecture and strain modulation

    SciTech Connect (OSTI)

    Zhan, H. F.; Bell, J. M.; Gu, Y. T., E-mail: yuantong.gu@qut.edu.au [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George St., Brisbane, Queensland 4000 (Australia); Zhang, G. [Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, Singapore 138632 (Singapore)

    2014-10-13

    We reported the thermal conductivity of the two-dimensional carbon nanotube (CNT)-based architecture, which can be constructed through welding of single-wall CNTs by electron beam. Using large-scale nonequilibrium molecular dynamics simulations, the thermal conductivity is found to vary with different junction types due to their different phonon scatterings at the junction. The strong length and strain dependence of the thermal conductivity suggests an effective avenue to tune the thermal transport properties of the CNT-based architecture, benefiting the design of nanoscale thermal rectifiers or phonon engineering.

  1. Thermal tests of MC3811 rigid/flex printed wiring boards

    SciTech Connect (OSTI)

    Gentry, F.L.

    1990-10-01

    Rigid/flex multilayer printed wiring boards are more sensitive to thermal environmental changes than conventional printed wiring boards. This is manifested because of a composition of dissimilar materials used within the construction of this type of product. During fabrication and assembly, stresses can develop within the plated-through holes from differences in thermal properties of the rigid and flexible materials, primarily thermal coefficient of expansion. Thermal shock and thermal stress tests and rework simulation as defined in MIL-P-50884 have been performed in this study as indicators of processing quality to detect faults and to verify improvements in board reliability. 3 refs., 17 figs., 3 tabs.

  2. The thermal performance of steel-framed walls

    SciTech Connect (OSTI)

    Barbour, C.E. [NAHB Research Center, Upper Marlboro, MD (United States). Building Systems Div.; Goodrow, J. [Holometrix, Bedford, MA (United States)

    1995-12-31

    Thermal bridges are areas in constructions that have highly conductive materials, allowing higher heat transfer through less conductive areas. In a wall, thermal bridges can increase heat loss, cause dust to accumulate on the studs (ghosting) due to temperature distribution, and cause condensation to form in and on the walls. The effects of thermal bridges are often misunderstood by engineers, buildings, and manufacturers of construction products. This study attempts to provide a better understanding of the effects of thermal bridges in steel-framed walls, as well as information leading to improved methods of predicting R-value of walls containing thermal bridges. An improved method for estimating R-value would allow an equitable comparison of thermal performance with other construction types and materials. This would increase the number of alternative materials for walls available to designers, thus allowing them the freedom to correctly choose the optimum choice for construction. In order to arrive at an improved method, experimental data on the heat transfer characteristics of steel-framed walls were collected. Twenty-three wall samples were tested in a calibrated hot box (ASTM C976) to measure the thermal performance of steel-framed wall systems. The tests included an array of stud frame configurations, exterior sheathing, and fiberglass batt insulations. Other studies of thermal bridging in steel-framed walls have not included the use of insulating sheathing, which reduces the extent of the thermal bridges and improves total thermal performance. The purpose of the project was to provide measured R-values for commonly used steel-framed wall configurations and to improve R-value estimating methods. Also, detailed monitoring of temperature gradients in the test walls combined with numerical analysis provided new insights into heat transfer phenomena concerning thermal bridges.

  3. Thermal Insulation Performance in the Process Industries: Facts and Fallacies 

    E-Print Network [OSTI]

    Tye, R. P.

    1985-01-01

    stream_source_info ESL-IE-85-05-54.pdf.txt stream_content_type text/plain stream_size 24703 Content-Encoding ISO-8859-1 stream_name ESL-IE-85-05-54.pdf.txt Content-Type text/plain; charset=ISO-8859-1 THERMAL INSULATION... PERFORMANCE IN 'mE PROCESS INDUSTRIES: FACTS AND FALLACIES R.P. Tye Dynatech RID Company, Cambridge, MA, U.S.A. ABSTRACT The efficient use of thermal insulation materials and systems for design of cryogenic and elevated temperature process...

  4. Thermal Modeling of Lundell Alternators

    E-Print Network [OSTI]

    Tang, Sai Chun

    Thermal analysis of Lundell alternators used in automobiles is presented. An analytical thermal model for Lundell alternators is proposed, and procedures for acquiring the model parameters are elucidated. Based on the ...

  5. Ocean Thermal Extractable Energy Visualization: Final Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean Thermal Extractable Energy Visualization: Final Technical Report Ocean Thermal Extractable Energy Visualization: Final Technical Report Report about the Ocean Thermal...

  6. Harvesting nanoscale thermal radiation using pyroelectric materials

    E-Print Network [OSTI]

    Fang, Jin; Frederich, Hugo; Pilon, Laurent

    2010-01-01

    the other hand, energy transfer by thermal radiation betweenit was shown that energy transfer by thermal radi- ationpyroelectric energy conversion and nanoscale thermal

  7. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01

    1978, High temperature underground thermal energy storage,in Proceedings, Thermal Energy Storage in Aquifers Workshop:High temperature underground thermal energy storage, in ATES

  8. Modeling thermal comfort in stratified environments

    E-Print Network [OSTI]

    Zhang, H.; Huizenga, C.; Arens, Edward A; Yu, T.

    2005-01-01

    non-uniform thermal environments", European Journal of7730, 1994, Moderate Thermal Environments – Determination offor assessing complex thermal environments,” Building and

  9. Evolving opportunities for providing thermal comfort

    E-Print Network [OSTI]

    Brager, Gail; Zhang, Hui; Arens, Edward

    2015-01-01

    field measurement of thermal environment and questionnaireand non-uniform thermal environments, PhD Thesis, Center forPerception of transient thermal environments: Pleasure and

  10. Thermal Transport in Graphene Multilayers and Nanoribbons

    E-Print Network [OSTI]

    Subrina, Samia

    2011-01-01

    1 CHAPTER 2 Thermal transport atvalues of graphene’s thermal conductivity and different1 Thermal conductivity : metals and non - metallic

  11. Evolving opportunities for providing thermal comfort

    E-Print Network [OSTI]

    Brager, Gail; Zhang, Hui; Arens, Edward

    2015-01-01

    control in offices for thermal comfort and energy savings.ANSI/ASHRAE 55-2013: Thermal environmental conditions forA global database of thermal comfort field experiments.

  12. Thermal Conductivity of Polycrystalline Semiconductors and Ceramics

    E-Print Network [OSTI]

    Wang, Zhaojie

    2012-01-01

    35, (3-6), Dames, C. ; Chen, G. , Thermal Conductivity ofProperties of Matter: Thermal conductivity: nonmetallicSociety), Dames, C. ; Chen, G. , Thermal Conductivity of

  13. Thermal Conduction in Graphene and Graphene Multilayers

    E-Print Network [OSTI]

    Ghosh, Suchismita

    2009-01-01

    1 1.2 Thermal transport atxv Introduction xii 1.1 Thermal conductivity and65 4.13 Thermal conductivity of graphene as a function of

  14. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    Energy can be saved and thermal pollution reduced if a totalnatural flow, and thermal pollution caused by simultaneousStored Heat Energy and Thermal Pollution Daily stored heat

  15. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01

    Reduction of air and thermal pollution are additionalsubsidence or upliftu thermal pollution, water chemistry,or ponds to avoid thermal pollution. Because periods of heat

  16. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    the possibility of thermal stratification, i.e. the tendencyratio is very large. Thermal stratification A simple model (ef- fects of thermal stratification. This ideal- ized model

  17. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Motor Thermal Control Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Integrated Vehicle Thermal Management...

  18. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01

    the prob- lem of seasonal storage of thermal energy (Matheyto study seasonal storage of thermal energy: winter storagewithin the Seasonal Thermal Energy Storage Program managed

  19. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01

    High temperature underground thermal energy storage, inProceedings, Thermal Energy Storage in Aquifers Workshop:underground thermal energy storage, in ATES newsletter:

  20. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    Survey of Thermal Energy Storage in Aquifers Coupled withLow Temperature Thermal Energy Storage Program of Oak Ridgefor Seasonal Thermal Energy Storage: An Overview of the DOE-

  1. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    Scale Thermal Energy Storage for Cogeneration and Solarsolar captors, thermal effluents, low cost energy duringSeale Thermal Energy Storage for Cogeneration and Solar

  2. Ocean Thermal Energy Conversion Basics

    Broader source: Energy.gov [DOE]

    A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity.

  3. Liquid metal thermal electric converter

    DOE Patents [OSTI]

    Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

    1989-01-01

    A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

  4. ,{ MO. REV. NO. THERMAL DESIGN

    E-Print Network [OSTI]

    Rathbun, Julie A.

    ,{ MO. REV. NO. LRRR 300 THERMAL DESIGN FINAL REPORT ATM-931 PAGE i OF iv DATE 1 S Dec 1970 The results of thermal design/analyses performed on the 300 corner Laser Ranging Retro-Reflector (LRRR 300 performance profiles are contained herein, The entire LRRR thermal design effort is des- cribed commendng

  5. Thermal synthesis apparatus

    DOE Patents [OSTI]

    Fincke, James R. (Idaho Falls, ID) [Idaho Falls, ID; Detering, Brent A. (Idaho Falls, ID) [Idaho Falls, ID

    2009-08-18

    An apparatus for thermal conversion of one or more reactants to desired end products includes an insulated reactor chamber having a high temperature heater such as a plasma torch at its inlet end and, optionally, a restrictive convergent-divergent nozzle at its outlet end. In a thermal conversion method, reactants are injected upstream from the reactor chamber and thoroughly mixed with the plasma stream before entering the reactor chamber. The reactor chamber has a reaction zone that is maintained at a substantially uniform temperature. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle, which "freezes" the desired end product(s) in the heated equilibrium reaction stage, or is discharged through an outlet pipe without the convergent-divergent nozzle. The desired end products are then separated from the gaseous stream.

  6. Thermally stable diamond brazing

    DOE Patents [OSTI]

    Radtke, Robert P. (Kingwood, TX)

    2009-02-10

    A cutting element and a method for forming a cutting element is described and shown. The cutting element includes a substrate, a TSP diamond layer, a metal interlayer between the substrate and the diamond layer, and a braze joint securing the diamond layer to the substrate. The thickness of the metal interlayer is determined according to a formula. The formula takes into account the thickness and modulus of elasticity of the metal interlayer and the thickness of the TSP diamond. This prevents the use of a too thin or too thick metal interlayer. A metal interlayer that is too thin is not capable of absorbing enough energy to prevent the TSP diamond from fracturing. A metal interlayer that is too thick may allow the TSP diamond to fracture by reason of bending stress. A coating may be provided between the TSP diamond layer and the metal interlayer. This coating serves as a thermal barrier and to control residual thermal stress.

  7. Thermal reactor safety

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport.

  8. Thermally actuated thermionic switch

    DOE Patents [OSTI]

    Barrus, D.M.; Shires, C.D.

    1982-09-30

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  9. Methods of forming thermal management systems and thermal management methods

    DOE Patents [OSTI]

    Gering, Kevin L.; Haefner, Daryl R.

    2012-06-05

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  10. Multiscale thermal transport.

    SciTech Connect (OSTI)

    Graham, Samuel Jr. (; .); Wong, C. C.; Piekos, Edward Stanley

    2004-02-01

    A concurrent computational and experimental investigation of thermal transport is performed with the goal of improving understanding of, and predictive capability for, thermal transport in microdevices. The computational component involves Monte Carlo simulation of phonon transport. In these simulations, all acoustic modes are included and their properties are drawn from a realistic dispersion relation. Phonon-phonon and phonon-boundary scattering events are treated independently. A new set of phonon-phonon scattering coefficients are proposed that reflect the elimination of assumptions present in earlier analytical work from the simulation. The experimental component involves steady-state measurement of thermal conductivity on silicon films as thin as 340nm at a range of temperatures. Agreement between the experiment and simulation on single-crystal silicon thin films is excellent, Agreement for polycrystalline films is promising, but significant work remains to be done before predictions can be made confidently. Knowledge gained from these efforts was used to construct improved semiclassical models with the goal of representing microscale effects in existing macroscale codes in a computationally efficient manner.

  11. flray Transport in Type Ia In order to solve the rate equations in a consistent manner, PHOENIX must include

    E-Print Network [OSTI]

    Nugent, Peter

    in a consistent manner, PHOENIX must include the effects of non­thermal ionization. In Type Ia supernovae the non

  12. Thermal control structure and garment

    DOE Patents [OSTI]

    Klett, James W. (Knoxville, TN); Cameron, Christopher Stan (Sanford, NC)

    2012-03-13

    A flexible thermally conductive structure. The structure generally includes a plurality of thermally conductive yarns, at least some of which are at least partially disposed adjacent to an elastomeric material. Typically, at least a portion of the plurality of thermally conductive yarns is configured as a sheet. The yarns may be constructed from graphite, metal, or similar materials. The elastomeric material may be formed from urethane or silicone foam that is at least partially collapsed, or from a similar material. A thermal management garment is provided, the garment incorporating a flexible thermally conductive structure.

  13. Thermal management systems and methods

    DOE Patents [OSTI]

    Gering, Kevin L.; Haefner, Daryl R.

    2006-12-12

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  14. Thermal and non-thermal energies in solar flares

    E-Print Network [OSTI]

    Pascal Saint-Hilaire; Arnold O. Benz

    2005-03-03

    The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same magnitude. This surprising result may be interpreted by an efficient conversion of non-thermal energy to hot flare plasma.

  15. Thermal Duality and Gravitational Collapse

    E-Print Network [OSTI]

    Michael Hewitt

    2015-04-19

    Thermal duality is a relationship between the behaviour of heterotic string models of the $E(8)x E(8)$ or $SO(32)$ types at inversely related temperatures, a variant of T duality in the Euclidean regime. This duality would have consequences for the nature of the Hagedon transition in these string models. We propose that the vacuum admits a family of deformations in situations where there are closed surfaces of constant area but high radial acceleration (a string regularized version of a Penrose trapped surface), such as would be formed in situations of extreme gravitational collapse. This would allow a radical resolution of the firewall paradox by allowing quantum effects to significantly modify the spacetime geometry around a collapsed object. A string bremsstrahlung process would convert the kinetic energy of infalling matter in extreme gravitational collapse to form a region of the deformed vacuum, which would be equivalent to forming a high temperature string phase. This process might have observable consequences for charged particles falling into a rotating collapsed object by producing high energy particles via a variant of the Penrose process.

  16. Types of Commissioning

    Broader source: Energy.gov [DOE]

    Several commissioning types exist to address the specific needs of equipment and systems across both new and existing buildings. The following commissioning types provide a good overview.

  17. Postdoc Appointment Types

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Appointment Types Postdoc Appointment Types Most postdocs will be offered a postdoctoral research associate appointment. Each year, approximately 30 Postdoctoral Fellow...

  18. Cosmological moduli problem in large volume scenario and thermal inflation

    SciTech Connect (OSTI)

    Choi, Kiwoon [Department of Physics, KAIST, Daejeon 305-701 (Korea, Republic of); Park, Wan-Il [School of Physics, KIAS, Seoul 130-722 (Korea, Republic of); Shin, Chang Sub, E-mail: kchoi@kaist.ac.kr, E-mail: wipark@kias.re.kr, E-mail: csshin@apctp.org [APCTP, Pohang, Gyeongbuk 790-784 (Korea, Republic of)

    2013-03-01

    We show that in a large volume scenario of type IIB string or F-theory compactifications, single thermal inflation provides only a partial solution to the cosmological problem of the light volume modulus. We then clarify the conditions for double thermal inflation, being a simple extension of the usual single thermal inflation scenario, to solve the cosmological moduli problem in the case of relatively light moduli masses. Using a specific example, we demonstrate that double thermal inflation can be realized in large volume scenario in a natural manner, and the problem of the light volume modulus can be solved for the whole relevant mass range. We also find that right amount of baryon asymmetry and dark matter can be obtained via a late-time Affleck-Dine mechanism and the decays of the visible sector NLSP to flatino LSP.

  19. HIA 2015 DOE Zero Energy Ready Home Case Study: Habitat for Humanity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    deck, providing an R-20-insulated, cool, conditioned space for the home's high-efficiency heat pump. The vinyl-framed, thermally insulated, dual-pane windows have impact-resistant...

  20. NCBECS C&E 1979

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    includes tinted, reflective, insulated, or thermal pane ty;e of glass that, when installed in the exterior windows of a building., se . i: to reduce the rate of solar...

  1. Non-thermal emission processes in massive binaries

    E-Print Network [OSTI]

    M. De Becker

    2007-09-26

    In this paper, I present a general discussion of several astrophysical processes likely to play a role in the production of non-thermal emission in massive stars, with emphasis on massive binaries. Even though the discussion will start in the radio domain where the non-thermal emission was first detected, the census of physical processes involved in the non-thermal emission from massive stars shows that many spectral domains are concerned, from the radio to the very high energies. First, the theoretical aspects of the non-thermal emission from early-type stars will be addressed. The main topics that will be discussed are respectively the physics of individual stellar winds and their interaction in binary systems, the acceleration of relativistic electrons, the magnetic field of massive stars, and finally the non-thermal emission processes relevant to the case of massive stars. Second, this general qualitative discussion will be followed by a more quantitative one, devoted to the most probable scenario where non-thermal radio emitters are massive binaries. I will show how several stellar, wind and orbital parameters can be combined in order to make some semi-quantitative predictions on the high-energy counterpart to the non-thermal emission detected in the radio domain. These theoretical considerations will be followed by a census of results obtained so far, and related to this topic... (see paper for full abstract)

  2. MULTISPECTRAL THERMAL IMAGER - OVERVIEW

    SciTech Connect (OSTI)

    P. WEBER

    2001-03-01

    The Multispectral Thermal Imager satellite fills a new and important role in advancing the state of the art in remote sensing sciences. Initial results with the full calibration system operating indicate that the system was already close to achieving the very ambitious goals which we laid out in 1993, and we are confident of reaching all of these goals as we continue our research and improve our analyses. In addition to the DOE interests, the satellite is tasked about one-third of the time with requests from other users supporting research ranging from volcanology to atmospheric sciences.

  3. Response microcantilever thermal detector

    DOE Patents [OSTI]

    Cunningham, Joseph P.; Rajic, Slobodan; Datskos, Panagiotis G.; Evans III, Boyd M.

    2004-10-19

    A "folded leg" thermal detector microcantilever constructed of a substrate with at least one leg interposed between a fixed end and a deflective end, each leg having at least three essentially parallel leg segments interconnected on alternate opposing ends and aligned in a serpentine pattern with only the first leg segment attached to the fixed end and only the last leg segment attached to the deflective end. Alternate leg segment are coated on the pentalever with coating applied to the top of the first, third, and fifth leg segments of each leg and to the bottom of the second and fourth leg segments of each leg.

  4. Thermally cleavable surfactants

    DOE Patents [OSTI]

    McElhanon, James R. (Manteca, CA); Simmons, Blake A. (San Francisco, CA); Zifer, Thomas (Manteca, CA); Jamison, Gregory M. (Albuquerque, NM); Loy, Douglas A. (Albuquerque, NM); Rahimian, Kamyar (Albuquerque, NM); Long, Timothy M. (Urbana, IL); Wheeler, David R. (Albuquerque, NM); Staiger, Chad L. (Albuquerque, NM)

    2009-11-24

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  5. Thermally cleavable surfactants

    DOE Patents [OSTI]

    McElhanon, James R. (Manteca, CA); Simmons, Blake A. (San Francisco, CA); Zifer, Thomas (Manteca, CA); Jamison, Gregory M. (Albuquerque, NM); Loy, Douglas A. (Albuquerque, NM); Rahimian, Kamyar (Albuquerque, NM); Long, Timothy M. (Urbana, IL); Wheeler, David R. (Albuquerque, NM); Staiger, Chad L. (Albuquerque, NM)

    2009-09-29

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  6. Thermally cleavable surfactants

    DOE Patents [OSTI]

    McElhanon, James R. (Manteca, CA); Simmons, Blake A. (San Francisco, CA); Zifer, Thomas (Manteca, CA); Jamison, Gregory M. (Albuquerque, NM); Loy, Douglas A. (Albuquerque, NM); Rahimian, Kamyar (Albuquerque, NM); Long, Timothy M. (Urbana, IL); Wheeler, David R. (Albuquerque, NM); Staiger, Chad L. (Albuquerque, NM)

    2006-04-04

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments and the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  7. Thermal network reduction

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1983-01-01

    A method is presented for reducing the number of elements required in a thermal network representation of a building. The method is based on matching the actual building response at two frequencies, the diurnal response and 3-day response. The procedure provides a straightforward methodology for combining all the various materials inside a discrete building zone into a few nodes while retaining a high degree of accuracy in the dynamic response. An example is given showing a comparison between a large network and the reduced network.

  8. Thermal network reduction

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1983-06-01

    A method is presented for reducing the number of elements required in a thermal network representation of a building. The method is based on matching the actual building response at two frequencies, the diurnal response and 3-day response. The procedure provides a straightforward methodology for combining all the various materials inside a discrete building zone into a few nodes while retaining a high degree of accuracy in the dynamic response. An example is given showing a comparison between a large network and the reduced network.

  9. Thermal indicator for wells

    DOE Patents [OSTI]

    Gaven, Jr., Joseph V. (Oakton, VA); Bak, Chan S. (Newbury Park, CA)

    1983-01-01

    Minute durable plate-like thermal indicators are employed for precision measuring static and dynamic temperatures of well drilling fluids. The indicators are small enough and sufficiently durable to be circulated in the well with drilling fluids during the drilling operation. The indicators include a heat resistant indicating layer, a coacting meltable solid component and a retainer body which serves to unitize each indicator and which may carry permanent indicator identifying indicia. The indicators are recovered from the drilling fluid at ground level by known techniques.

  10. Solid state thermal engine

    SciTech Connect (OSTI)

    Wayman, C.M.

    1981-01-27

    An improved solid state thermal engine utilizes as a drive member a braided belt fabricated from a memory alloy such as nickel-titanium and nickel-titanium ternary alloys, copper-zinc and copper-zinc ternary alloys, and the like. The braided belt is mounted on a set of pulleys to provide passage through a hot zone where the belt contracts and develops tension, and through a cold zone where it relaxes and stretches. Since more energy is delivered by contraction than is required for relaxation, positive work output results with an efficiency of between onefifth and one-third of the carnot cycle.

  11. Thermally switchable dielectrics

    DOE Patents [OSTI]

    Dirk, Shawn M.; Johnson, Ross S.

    2013-04-30

    Precursor polymers to conjugated polymers, such as poly(phenylene vinylene), poly(poly(thiophene vinylene), poly(aniline vinylene), and poly(pyrrole vinylene), can be used as thermally switchable capacitor dielectrics that fail at a specific temperature due to the non-conjugated precursor polymer irreversibly switching from an insulator to the conjugated polymer, which serves as a bleed resistor. The precursor polymer is a good dielectric until it reaches a specific temperature determined by the stability of the leaving groups. Conjugation of the polymer backbone at high temperature effectively disables the capacitor, providing a `built-in` safety mechanism for electronic devices.

  12. Thermally Oxidized Silicon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.Week DayDr. JeffreyThermal Multi-layer4 Anneli Munkholm

  13. Western Canadian coking coals -- Thermal rheology and coking quality

    SciTech Connect (OSTI)

    Leeder, W.R. [Teck Corp. (Canada); Price, J.T.; Gransden, J.F. [CANMET Energy Technology Centre, Ottawa, Ontario (Canada)

    1997-12-31

    Methods of predicting coke strength developed from the thermal rheological properties of Carboniferous coals frequently indicate that Cretaceous coals would not make high quality coke -- yet both types of coals produce coke suitable for the iron blast furnace. This paper will discuss the reasons why Western Canadian coals exhibit lower rheological values and how to predict the strength of coke produced from them.

  14. Stabilized thermally beneficiated low rank coal and method of manufacture

    DOE Patents [OSTI]

    Viall, Arthur J. (Colstrip, MT); Richards, Jeff M. (Colstrip, MT)

    2000-01-01

    A process for reducing the spontaneous combustion tendencies of thermally beneficiated low rank coals employing heat, air or an oxygen containing gas followed by an optional moisture addition. Specific reaction conditions are supplied along with knowledge of equipment types that may be employed on a commercial scale to complete the process.

  15. Thermal Neutrons in Eas: A New Dimension in Eas Study

    E-Print Network [OSTI]

    Yuri V. Stenkin

    2007-02-27

    A new method to study Extensive Air Shower (EAS) hadronic component is proposed. It is shown that addition of specific detectors for thermal neutron detection to a standard array for EAS study can significantly improve its performance. Results of CORSIKA based Monte Carlo simulations as well as preliminary experimental data are presented. A proposal of novel type of EAS array is given.

  16. Stabilized thermally beneficiated low rank coal and method of manufacture

    DOE Patents [OSTI]

    Viall, A.J.; Richards, J.M.

    1999-01-26

    A process is described for reducing the spontaneous combustion tendencies of thermally beneficiated low rank coals employing heat, air or an oxygen containing gas followed by an optional moisture addition. Specific reaction conditions are supplied along with knowledge of equipment types that may be employed on a commercial scale to complete the process. 3 figs.

  17. Stabilized thermally beneficiated low rank coal and method of manufacture

    DOE Patents [OSTI]

    Viall, Arthur J. (Colstrip, MT); Richards, Jeff M. (Colstrip, MT)

    1999-01-01

    A process for reducing the spontaneous combustion tendencies of thermally beneficiated low rank coals employing heat, air or an oxygen containing gas followed by an optional moisture addition. Specific reaction conditions are supplied along with knowledge of equipment types that may be employed on a commercial scale to complete the process.

  18. Vacuum 65 (2002) 415425 Plasma spraying of micro-composite thermal barrier coatings

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    2002-01-01

    blades and vanes of gas turbine engines, turbine shrouds and combus- tor cans. These coatings increase. Keywords: Plasma spraying; Gas tunnel-type; Thermal barrier-composite coatings; Aluminum oxide; ZirconiumVacuum 65 (2002) 415­425 Plasma spraying of micro-composite thermal barrier coatings S. Sharafata

  19. Fusion of Visual and Thermal Signatures with Eyeglass Removal for Robust Face Recognition

    E-Print Network [OSTI]

    Abidi, Mongi A.

    Fusion of Visual and Thermal Signatures with Eyeglass Removal for Robust Face Recognition Jingu Heo.S.A. Abstract ­ This paper describes a fusion of visual and thermal infrared (IR) images for robust face recognition. Two types of fusion methods are discussed: data fusion and decision fusion. Data fusion produces

  20. Electric Vehicle Battery Thermal Issues and Thermal Management Techniques (Presentation)

    SciTech Connect (OSTI)

    Rugh, J. P.; Pesaran, A.; Smith, K.

    2013-07-01

    This presentation examines the issues concerning thermal management in electric drive vehicles and management techniques for improving the life of a Li-ion battery in an EDV.

  1. Types of Lights Types of Lights

    E-Print Network [OSTI]

    1 Types of Lights Types of Lights q So far we have studied point lights ­ Radiate in all direc7ons q Other lights ­ Direc7onal lights (posi7on-independent) ­ Spotlights #12;2 Direc1onal Lights q Shine in a single, uniform direc7on q All rays

  2. Solar thermal power system

    DOE Patents [OSTI]

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  3. The thermal performance of fixed and variable selective transmitters in commercial architecture

    E-Print Network [OSTI]

    Bartovics, William A

    1984-01-01

    A parametric model is developed for use in evaluating the relative thermal and lighting performance of a variety of existing and proposed types of commercial glazing materials. The glazing materials considered are divided ...

  4. Gas-cooled fast breeder reactor fuel element thermal-hydraulic investigations : final report

    E-Print Network [OSTI]

    Eaton, Thomas Eldon

    1975-01-01

    Experimental and analytical work was performed to determine the influence of rod surface roughening on the thermal-hydraulic behavior of rod array type, nuclear fuel elements. Experimental data was obtained using a ...

  5. Lighting energy savings potential of split-pane electrochromic windows controlled for daylighting with visual comfort

    E-Print Network [OSTI]

    Fernandes, Luis

    2014-01-01

    Daylight Coefficients, Lighting Research and Technology,America, 1999, The IESNA lighting handbook: reference andcontrol of electric lighting and blinds, Solar Energy, 77(

  6. Photo of the Week: The First Energy-Efficient Dual-Paned Windows |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary Areas ofEnergy OnPeter B.Energy This week, the

  7. Thermal Flipping of Interstellar Grains

    E-Print Network [OSTI]

    Joseph C. Weingartner

    2008-08-27

    In interstellar dust grains, internal processes dissipate rotational kinetic energy. The dissipation is accompanied by thermal fluctuations, which transfer energy from the vibrational modes to rotation. Together, these processes are known as internal relaxation. For the past several years, internal relaxation has been thought to give rise to thermal flipping, with profound consequences for grain alignment theory. I show that thermal flipping is not possible in the limit that the inertia tensor does not vary with time.

  8. Thermal desorption for passive dosimeter 

    E-Print Network [OSTI]

    Liu, Wen-Chen

    1981-01-01

    recovery of styrene and improved precision when compared with thermal desorption. In addition, thermal desorption tended to breakdown sty- rene, which is vulnerable to heat. The breakdown product may interfere with the analysis results if thermal desorp... of the activation processes. (12, 1&) The first step in the production of activated carbon is carbonization, which is the formation of a char from a source material. The source materials may be coconut shells, peach pits, sawdust, wood char, etc ~ Carbonization...

  9. Remotely Sensed Thermal Anomalies in western Colorado

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Landsat Thermal Anomalies Western Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the areas identified as areas of anomalous surface temperature from Landsat satellite imagery in Western Colorado. Data was obtained for two different dates. The digital numbers of each Landsat scene were converted to radiance and the temperature was calculated in degrees Kelvin and then converted to degrees Celsius for each land cover type using the emissivity of that cover type. And this process was repeated for each of the land cover types (open water, barren, deciduous forest and evergreen forest, mixed forest, shrub/scrub, grassland/herbaceous, pasture hay, and cultivated crops). The temperature of each pixel within each scene was calculated using the thermal band. In order to calculate the temperature an average emissivity value was used for each land cover type within each scene. The NLCD 2001 land cover classification raster data of the zones that cover Colorado were downloaded from USGS site and used to identify the land cover types within each scene. Areas that had temperature residual greater than 2?, and areas with temperature equal to 1? to 2?, were considered Landsat modeled very warm and warm surface exposures (thermal anomalies), respectively Spatial Domain: Extent: Top: 4546381.234113 m Left: 140556.857021 m Right: 573390.000000 m Bottom: 4094583.641581 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  10. Thermal Management of Solar Cells

    E-Print Network [OSTI]

    Saadah, Mohammed Ahmed

    2013-01-01

    cell. The solar cell’s power conversion efficiency, ? is theEfficiency ..5 Thermal Managements of SolarTemperature on Efficiency Photons incident on a solar cell

  11. Actively driven thermal radiation shield

    DOE Patents [OSTI]

    Madden, Norman W. (Livermore, CA); Cork, Christopher P. (Pleasant Hill, CA); Becker, John A. (Alameda, CA); Knapp, David A. (Livermore, CA)

    2002-01-01

    A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

  12. Overview of solar thermal technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The solar-thermal overview section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  13. Underfloor air distribution: thermal stratification

    E-Print Network [OSTI]

    Webster, T.; Bauman, Fred; Reese, J.

    2002-01-01

    Air Distribution: Thermal Stratification By Tom Webster, Pthermal bypassing of convective loads that occurs above the stratificationthermal plumes that develop over heat sources in the room. A stratification

  14. Thermal performance of steel-framed walls. Final report

    SciTech Connect (OSTI)

    Barbour, E. [NAHB Research Center, Inc., Upper Marlboro, MD (United States); Goodrow, J. [Holometrix, Inc., Bedford, MA (United States); Kosny, J.; Christian, J.E. [Oak Ridge National Lab., TN (United States)

    1994-11-21

    In wall construction, highly conductive members spaced along the wall, which allow higher heat transfer than that through less conductive areas, are referred to as thermal bridges. Thermal bridges in walls tend to increase heat loss and, under certain adverse conditions, can cause dust streaking (``ghosting``) on interior walls over studs due to temperature differentials, as well as condensation in and on walls. Although such adverse conditions can be easily avoided by proper thermal design of wall systems, these effects have not been well understood and thermal data has been lacking. Therefore, the present study was initiated to provide (1) a better understanding of the thermal behavior of steel-framed walls, (2) a set of R-values for typical wall constructions, and (3) information that could be used to develop improved methods of predicting R-values. An improved method for estimating R-value would allow an equitable comparison of thermal performance with other construction types and materials. This would increase the number of alternative materials for walls available to designers, thus allowing them to choose the optimum choice for construction. Twenty-three wall samples were tested in a calibrated hot box (ASTM C9761) to measure the thermal performance of steel-framed wall systems. The tests included an array of stud frame configurations, exterior sheathing and fiberglass batt insulations. Other studies have not included the use of insulating sheathing, which reduces the extent of the thermal bridges and improves total thermal performance. The purpose of the project was to provide measured R-values for commonly used steel-framed wall configurations and to improve R-value estimating methods. Test results were compared to R-value estimates using the parallel path method, the isothermal planes method and the ASHRAE Zone method. The comparison showed that the known procedures do not fully account for the three-dimensional effects created by steel framing in a wall.

  15. Guide to Setting Thermal Comfort Criteria and Minimizing Energy Use in Delivering Thermal Comfort

    E-Print Network [OSTI]

    Regnier, Cindy

    2014-01-01

    including cost, energy and thermal comfort analysis, whichfor greatest energy benefits, prioritize thermal comfortMinimizing Energy Use in Delivering Thermal Comfort Cindy

  16. Human thermal sensation and comfort in transient and non-uniform thermal environments

    E-Print Network [OSTI]

    Zhang, H.

    2003-01-01

    the Human and the Thermal Environment." ASHRAE TransactionA field Study of Thermal Environment and Comfort in OfficeISO 7730 - Moderate Thermal Environments - Determination of

  17. Thermal sensation and comfort in transient non-uniform thermal environments

    E-Print Network [OSTI]

    Zhang, Hui; Huizenga, Charlie; Arens, Edward; Wang, Danni

    2004-01-01

    for assessing complex thermal environments. Building andand non-uniform thermal environment. ” Ph.D. thesis,Non-Uniform Thermal Environments Hui Zhang, Charlie

  18. Evaluating thermal environments by using a thermal manikin with controlled skin surface temperature

    E-Print Network [OSTI]

    Tanabe, S.; Arens, Edward A; Bauman, Fred; Zhang, H.; Madsen, T.

    1994-01-01

    betweenhumans their thermal and environment. WinslowandErgonomics of the thermal environment--Estimation of theSymposium on Man-Thermal Environment System, Tokyo. Olesen,

  19. Thermal Properties of Graphene and Applications for Thermal Management of High-Power Density Electronics

    E-Print Network [OSTI]

    Yan, Zhong

    2013-01-01

    Raman Spectroscopy and Thermal Properties of Graphenegraphite heat spreaders for thermal management of high-powerthe Raman spectroscopy and thermal properties of a novel

  20. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    well a molten salt thermal storage system could be utilizedof Solar Two [2] Thermal storage in these plants is anper kilowatt goes towards thermal storage[3]. Considering a

  1. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    Storage in Concentrated Solar Thermal Power Plants A ThesisStorage in Concentrated Solar Thermal Power Plants by Coreysystems for concentrated solar thermal power (CSP) systems.

  2. Thermally stabilized heliostat

    DOE Patents [OSTI]

    Anderson, Alfred J. (Littleton, CO)

    1983-01-01

    An improvement in a heliostat having a main support structure and pivoting and tilting motors and gears and a mirror module for reflecting solar energy onto a collector, the improvement being characterized by an internal support structure within each mirror module and front and back sheets attached to the internal support structure, the front and back sheets having the same coefficient of thermal expansion such that no curvature is induced by temperature change, and a layer of adhesive adhering the mirror to the front sheet. The adhesive is water repellent and has adequate set strength to support the mirror but has sufficient shear tolerance to permit the differential expansion of the mirror and the front sheet without inducing stresses or currature effect. The adhesive also serves to dampen fluttering of the mirror and to protect the mirror backside against the adverse effects of weather. Also disclosed are specific details of the preferred embodiment.

  3. Thermal barrier coatings

    DOE Patents [OSTI]

    Alvin, Mary Anne (Pittsburg, PA)

    2010-06-22

    This disclosure addresses the issue of providing a metallic-ceramic overlay coating that potentially serves as an interface or bond coat layer to provide enhanced oxidation resistance to the underlying superalloy substrate via the formation of a diffusion barrier regime within the supporting base material. Furthermore, the metallic-ceramic coating is expected to limit the growth of a continuous thermally grown oxide (TGO) layer that has been primarily considered to be the principal cause for failure of existing TBC systems. Compositional compatibility of the metallic-ceramic with traditional yttria-stabilized zirconia (YSZ) top coats is provided to further limit debond or spallation of the coating during operational use. A metallic-ceramic architecture is disclosed wherein enhanced oxidation resistance is imparted to the surface of nickel-based superalloy or single crystal metal substrate, with simultaneous integration of the yttria stabilized zirconia (YSZ) within the metallic-ceramic overlayer.

  4. Underground Coal Thermal Treatment

    SciTech Connect (OSTI)

    P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

    2011-10-30

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coalâ??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: â?¢ Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). â?¢ Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). â?¢ Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). â?¢ Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

  5. On the thermal expansion of composite materials and cross-property connection between thermal expansion and thermal conductivity

    E-Print Network [OSTI]

    Sevostianov, Igor

    On the thermal expansion of composite materials and cross-property connection between thermal expansion and thermal conductivity Igor Sevostianov Department of Mechanical and Aerospace Engineering, New: Composite material Thermal expansion Cross-property Microstructure Thermal conductivity a b s t r a c

  6. Comparison of experimental and analytical methods to evaluate thermal bridges in wall systems

    SciTech Connect (OSTI)

    Desjarlais, A.O. [Oak Ridge National Lab., TN (United States). Energy Div.; McGowan, A.G. [Enermodal Engineering Ltd., Kitchener, Ontario (Canada)

    1997-03-01

    Twelve ASTM C0236 guarded hot box experiments have been performed on wall systems containing a variety of thermal bridges. All of the wall systems included steel framing. Six walls also had a concrete block wall system and a concrete slab to simulate a wall/floor intersection. Thermal bridges included in the wall systems included steel studs, steel tracks, steel stud/track joints, fasteners (steel framing system), concrete slab, metal bolts and angle iron, and brick ties (concrete block wall). Two-dimensional finite difference modeling was also employed to characterize the wall systems. The experimental test data was used to tune and ultimately validate the computer simulation model. The average variation between the tested and simulated wall system R-Values was 3.3% and ranged from {minus}3.4 to +7.4%. The model was then used to determine the thermal impact of each individual thermal bridge. Beside the standard complement of temperature sensors that are traditionally used for these laboratory experiments, additional sensors were installed near each thermal bridge to define the area and magnitude of the thermal distortion caused by the thermal bridge. These thermal bridges were analytically simulated and the additional heat flux due to each thermal bridge was computed. This paper summarizes the experimental and analytical analyses used to characterize the wall systems and concentrate on the thermal impact each type of thermal bridge has on the overall performance of the wall systems.

  7. Thermal Evolution of Strange Stars

    E-Print Network [OSTI]

    Zhou Xia; Wang Lingzhi; Zhou Aizhi

    2007-09-03

    We investigated the thermal evolution of rotating strange stars with the deconfinement heating due to magnetic braking. We consider the stars consisting of either normal quark matter or color-flavor-locked phase. Combining deconfinement heating with magnetic field decay, we find that the thermal evolution curves are identical to pulsar data.

  8. Thermal entanglement of bosonic modes

    E-Print Network [OSTI]

    M. Asoudeh

    2006-07-21

    We study the change of entanglement under general linear transformation of modes in a bosonic system and determine the conditions under which entanglement can be generated under such transformation. As an example we consider the thermal entanglement between the vibrational modes of two coupled oscillators and determine the temperature above which quantum correlations are destroyed by thermal fluctuations.

  9. Peg supported thermal insulation panel

    DOE Patents [OSTI]

    Nowobilski, J.J.; Owens, W.J.

    1985-04-30

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprises high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure. 2 figs.

  10. Types of Reuse

    Broader source: Energy.gov [DOE]

    The following provides greater detail regarding the types of reuse pursued for LM sites. It should be noted that many actual reuses combine several types of the uses listed below.

  11. LMFBR thermal-striping evaluation

    SciTech Connect (OSTI)

    Brunings, J.E.

    1982-10-01

    Thermal striping is defined as the fluctuating temperature field that is imposed on a structure when fluid streams at different temperatures mix in the vicinity of the structure surface. Because of the uncertainty in structural damage in LMFBR structures subject to thermal striping, EPRI has funded an effort for the Rockwell International Energy Systems Group to evaluate this problem. This interim report presents the following information: (1) a Thermal Striping Program Plan which identifies areas of analytic and experimental needs and presents a program of specific tasks to define damage experienced by ordinary materials of construction and to evaluate conservatism in the existing approach; (2) a description of the Thermal Striping Test Facility and its operation; and (3) results from the preliminary phase of testing to characterize the fluid environment to be applied in subsequent thermal striping damage experiments.

  12. 303:20130618.1036 Thermal Engineering Group

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    303:20130618.1036 Thermal Engineering Group LASP's Thermal Engineering Group is involved in all of the component, as well as on-orbit trending and operations planning. Design Experience The Thermal Engineering Systems Engineering The group has formulated general thermal design and thermal interface requirements

  13. Steady-state and transient thermal performance of subsea hardware

    SciTech Connect (OSTI)

    Zabaras, G.J.; Zhang, J.

    1998-06-01

    The thermal performance of subsea hardware is of ultimate importance to the economic development and reliable operation of deepwater subsea oil and gas systems because of the potential for hydrate formation. Results of numerical calculations are presented on the thermal performance of subsea equipment such as wellheads, tubing and flowline jumpers, and flowline field joints. In contrast to previous published studies on the thermal performance of insulated subsea wellbores and flowlines, this paper addresses the thermal performance of the subsea equipment that can provide weak thermal links for the subsea system. A two-dimensional (2D), general-purpose, finite-element, partial-differential equation solver was used to analyze the steady-state and transient thermal behavior at different cross sections of the subsea tree. This paper presents a new method for predicting pressure profiles in oil and gas wells. The method combines mechanistic flow-pattern transition criteria with physical models for pressure-loss and liquid-holdup calculations for each of the flow patterns considered. Past published methods relied heavily on empirical fit of limited field data. As a result, they are inaccurate when used outside the range of data upon which they are based. In contrast, the new method is universally applicable to all types of wells under all operating scenarios because it is based on fundamental physics rather than the curve-fit of field data. Its prediction performance has been demonstrated by extensive comparison to field data from a variety of wells.

  14. Thermal to electricity conversion using thermal magnetic properties

    DOE Patents [OSTI]

    West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID

    2010-04-27

    A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.

  15. Thermal Stress and Reliability for Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Power Electronic Thermal System Performance and Integration Thermal...

  16. Microelectromechanical (MEM) thermal actuator

    DOE Patents [OSTI]

    Garcia, Ernest J. (Albuquerque, NM); Fulcher, Clay W. G. (Sandia Park, NM)

    2012-07-31

    Microelectromechanical (MEM) buckling beam thermal actuators are disclosed wherein the buckling direction of a beam is constrained to a desired direction of actuation, which can be in-plane or out-of-plane with respect to a support substrate. The actuators comprise as-fabricated, linear beams of uniform cross section supported above the substrate by supports which rigidly attach a beam to the substrate. The beams can be heated by methods including the passage of an electrical current through them. The buckling direction of an initially straight beam upon heating and expansion is controlled by incorporating one or more directional constraints attached to the substrate and proximal to the mid-point of the beam. In the event that the beam initially buckles in an undesired direction, deformation of the beam induced by contact with a directional constraint generates an opposing force to re-direct the buckling beam into the desired direction. The displacement and force generated by the movement of the buckling beam can be harnessed to perform useful work, such as closing contacts in an electrical switch.

  17. Thermal energy storage apparatus

    SciTech Connect (OSTI)

    Thoma, P.E.

    1980-04-22

    A thermal energy storage apparatus and method employs a container formed of soda lime glass and having a smooth, defectfree inner wall. The container is filled substantially with a material that can be supercooled to a temperature greater than 5* F., such as ethylene carbonate, benzophenone, phenyl sulfoxide, di-2-pyridyl ketone, phenyl ether, diphenylmethane, ethylene trithiocarbonate, diphenyl carbonate, diphenylamine, 2benzoylpyridine, 3-benzoylpyridine, 4-benzoylpyridine, 4methylbenzophenone, 4-bromobenzophenone, phenyl salicylate, diphenylcyclopropenone, benzyl sulfoxide, 4-methoxy-4prmethylbenzophenone, n-benzoylpiperidine, 3,3pr,4,4pr,5 pentamethoxybenzophenone, 4,4'-bis-(Dimethylamino)-benzophenone, diphenylboron bromide, benzalphthalide, benzophenone oxime, azobenzene. A nucleating means such as a seed crystal, a cold finger or pointed member is movable into the supercoolable material. A heating element heats the supercoolable material above the melting temperature to store heat. The material is then allowed to cool to a supercooled temperature below the melting temperature, but above the natural, spontaneous nucleating temperature. The liquid in each container is selectively initiated into nucleation to release the heat of fusion. The heat may be transferred directly or through a heat exchange unit within the material.

  18. Thermal-performance study of liquid metal fast breeder reactor insulation

    SciTech Connect (OSTI)

    Shiu, Kelvin K.

    1980-09-01

    Three types of metallic thermal insulation were investigated analytically and experimentally: multilayer reflective plates, multilayer honeycomb composite, and multilayer screens. Each type was subjected to evacuated and nonevacuated conditions, where thermal measurements were made to determine thermal-physical characteristics. A variation of the separation distance between adjacent reflective plates of multilayer reflective plates and multilayer screen insulation was also experimentally studied to reveal its significance. One configuration of the multilayer screen insulation was further selected to be examined in sodium and sodium oxide environments. The emissivity of Type 304 stainless steel used in comprising the insulation was measured by employing infrared technology. A comprehensive model was developed to describe the different proposed types of thermal insulation. Various modes of heat transfer inherent in each type of insulation were addressed and their relative importance compared. Provision was also made in the model to allow accurate simulation of possible sodium and sodium oxide contamination of the insulation. The thermal-radiation contribution to heat transfer in the temperature range of interest for LMFBR's was found to be moderate, and the suppression of natural convection within the insulation was vital in preserving its insulating properties. Experimental data were compared with the model and other published results. Moreover, the three proposed test samples were assessed and compared under various conditions as viable LMFBR thermal insulations.

  19. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    the arrival Stored Heat Energy and Thermal Pollution DailyAn Answer to Energy Conservation and Thermal validity of ourWells for Conserving Energy and Reducing Thermal Pollution,"

  20. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    Resources Res. 14: 273-280. THERMAL STORAGE OF COLD WATER INR.C. HARE, 1972. Thermal Storage for Eco-Energy Utilities,W.J. MASICA, 1977. "Thermal Storage for Electric Utilities,"

  1. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01

    R. C. 1 1972 1 Thermal storage for eco=energy utilities: GE-and Harris, w. B. 0 1978 0 Thermal storage of cold water induration EXPERIMENTS Thermal storage radius (m) thickness

  2. Lake thermal structure influences macroinvertebrate predation on

    E-Print Network [OSTI]

    Arnott, Shelley

    . KEYWORDS: thermal stratification; climate warming; Chaoborus; notonectid; Boreal Shield; mesocosm INTRODUCTION Climate change is expected to alter the timing, strength and depth of thermal stratificationLake thermal structure influences macroinvertebrate predation on crustacean zooplankton SHANNON A

  3. Thermal properties of soils and soils testing

    SciTech Connect (OSTI)

    Not Available

    1981-02-17

    The thermal properties of soils are reviewed with reference to the use of soils as heat sources, heat sinks, or thermal storage. Specific heat and thermal conductivity are discussed. (ACR)

  4. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    20) E. B. Quale. Seasonal storage of thermal energy in waterE.B. , 1976. "Seasonal Storage of Thermal Energy in Water ina truly worthwhile goal. Seasonal Storage of Thermal Energy

  5. Advanced nanofabrication of thermal emission devices

    E-Print Network [OSTI]

    Hurley, Fergus (Fergus Gerard)

    2008-01-01

    Nanofabricated thermal emission devices can be used to modify and modulate blackbody thermal radiation. There are many areas in which altering thermal radiation is extremely useful, especially in static power conversion, ...

  6. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    ocean thermal energy, distributed solar thermal energy,heat source can be solar thermal energy, biological thermaland concentrated solar thermal energy farms. They demand

  7. Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration

    E-Print Network [OSTI]

    Jackson, Philip Robert

    2012-01-01

    significant challenge for solar thermal energy generation issolar thermal, cogeneration of electrical and thermal energy, andfor efficient energy production. Solar thermal plants, such

  8. Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration

    E-Print Network [OSTI]

    Jackson, Philip Robert

    2012-01-01

    significant challenge for solar thermal energy generation issolar thermal, cogeneration of electrical and thermal energy,for efficient energy production. Solar thermal plants, such

  9. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    heat source can be solar thermal energy, biological thermaland concentrated solar thermal energy farms. They demandsources include solar thermal energy, geo-thermal energy,

  10. Ocean Thermal Extractable Energy Visualization

    SciTech Connect (OSTI)

    Ascari, Matthew

    2012-10-28

    The Ocean Thermal Extractable Energy Visualization (OTEEV) project focuses on assessing the Maximum Practicably Extractable Energy (MPEE) from the world’s ocean thermal resources. MPEE is defined as being sustainable and technically feasible, given today’s state-of-the-art ocean energy technology. Under this project the OTEEV team developed a comprehensive Geospatial Information System (GIS) dataset and software tool, and used the tool to provide a meaningful assessment of MPEE from the global and domestic U.S. ocean thermal resources.

  11. Rapid thermal processing by stamping

    DOE Patents [OSTI]

    Stradins, Pauls; Wang, Qi

    2013-03-05

    A rapid thermal processing device and methods are provided for thermal processing of samples such as semiconductor wafers. The device has components including a stamp (35) having a stamping surface and a heater or cooler (40) to bring it to a selected processing temperature, a sample holder (20) for holding a sample (10) in position for intimate contact with the stamping surface; and positioning components (25) for moving the stamping surface and the stamp (35) in and away from intimate, substantially non-pressured contact. Methods for using and making such devices are also provided. These devices and methods allow inexpensive, efficient, easily controllable thermal processing.

  12. TYPES OF NONIMMIGRANT VISAS Type Description

    E-Print Network [OSTI]

    for pleasure and cannot receive any type of payments. C-1*, Aliens in travel status while travelling directly through the C-2*, United States. C-3* D-1 Alien crewman on shore leave or transferring to another vessel is grounds for deportation. E-1 Aliens who conduct trade or inventories between the United States

  13. Integrated External Aerodynamic and Underhood Thermal Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    External Aerodynamic and Underhood Thermal Analysis for Heavy Vehicles Integrated External Aerodynamic and Underhood Thermal Analysis for Heavy Vehicles 2012 DOE Hydrogen and Fuel...

  14. Develop & Evaluate Materials & Additives that Enhance Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluate Materials & Additives that Enhance Thermal & Overcharge Abuse Develop & Evaluate Materials & Additives that Enhance Thermal & Overcharge Abuse 2011 DOE Hydrogen and Fuel...

  15. Continuous Processing of High Thermal Conductivity Polyethylene...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processing of High Thermal Conductivity Polyethylene Fibers and Sheets Continuous Processing of High Thermal Conductivity Polyethylene Fibers and Sheets Massachusetts Institute of...

  16. Thermally Activated Technologies Technology Roadmap, May 2003...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermally Activated Technologies Technology Roadmap, May 2003 Thermally Activated Technologies Technology Roadmap, May 2003 The purpose of this Technology Roadmap is to outline a...

  17. Scattering Solar Thermal Concentrators

    SciTech Connect (OSTI)

    Giebink, Noel C.

    2015-01-31

    This program set out to explore a scattering-based approach to concentrate sunlight with the aim of improving collector field reliability and of eliminating wind loading and gross mechanical movement through the use of a stationary collection optic. The approach is based on scattering sunlight from the focal point of a fixed collection optic into the confined modes of a sliding planar waveguide, where it is transported to stationary tubular heat transfer elements located at the edges. Optical design for the first stage of solar concentration, which entails focusing sunlight within a plane over a wide range of incidence angles (>120 degree full field of view) at fixed tilt, led to the development of a new, folded-path collection optic that dramatically out-performs the current state-of-the-art in scattering concentration. Rigorous optical simulation and experimental testing of this collection optic have validated its performance. In the course of this work, we also identified an opportunity for concentrating photovoltaics involving the use of high efficiency microcells made in collaboration with partners at the University of Illinois. This opportunity exploited the same collection optic design as used for the scattering solar thermal concentrator and was therefore pursued in parallel. This system was experimentally demonstrated to achieve >200x optical concentration with >70% optical efficiency over a full day by tracking with <1 cm of lateral movement at fixed latitude tilt. The entire scattering concentrator waveguide optical system has been simulated, tested, and assembled at small scale to verify ray tracing models. These models were subsequently used to predict the full system optical performance at larger, deployment scale ranging up to >1 meter aperture width. Simulations at an aperture widths less than approximately 0.5 m with geometric gains ~100x predict an overall optical efficiency in the range 60-70% for angles up to 50 degrees from normal. However, the concentrator optical efficiency was found to decrease significantly with increasing aperture width beyond 0.5 m due to parasitic waveguide out-coupling loss and low-level absorption that become dominant at larger scale. A heat transfer model was subsequently implemented to predict collector fluid heat gain and outlet temperature as a function of flow rate using the optical model as a flux input. It was found that the aperture width size limitation imposed by the optical efficiency characteristics of the waveguide limits the absolute optical power delivered to the heat transfer element per unit length. As compared to state-of-the-art parabolic trough CPV system aperture widths approaching 5 m, this limitation leads to an approximate factor of order of magnitude increase in heat transfer tube length to achieve the same heat transfer fluid outlet temperature. The conclusion of this work is that scattering solar thermal concentration cannot be implemented at the scale and efficiency required to compete with the performance of current parabolic trough CSP systems. Applied within the alternate context of CPV, however, the results of this work have likely opened up a transformative new path that enables quasi-static, high efficiency CPV to be implemented on rooftops in the form factor of traditional fixed-panel photovoltaics.

  18. Commercialization of cryptomelane-type manganese oxide (OMS-2) nanowire paper oil sorbent

    E-Print Network [OSTI]

    Soo, Haw Yun

    2007-01-01

    Cryptomelane-type Manganese oxide (OMS-2, a group of Octahedral Molecular Sieves) nanowire paper exhibits interesting properties: reversible wettability, oleophilic while being hydrophobic, and high thermal stability. These ...

  19. Development of thermal performance criteria for residential passive solar buildings

    SciTech Connect (OSTI)

    Sabatiuk, P.A.; Cassel, D.E.; McCabe, M.; Scarbrough, C.

    1980-01-01

    In support of the development of thermal performance criteria for residential passive solar buildings, thermal design characteristics and anticipated performance for 266 projects in the HUD Passive Residential Design Competition and the HUD Cycle 5 Demonstration Program were analyzed. These passive residences are located in all regions of the United States requiring space heating, and they represent a variety of passive solar system types including direct gain, indirect gain, and solarium (isolated gain) systems. The results of this statistical analysis are being used to develop proposed minimum acceptable levels of thermal performance for passive solar buildings for the residential performance criteria. A number of performance measures were examined, including net solar contribution, solar fraction, and auxiliary energy use. These and other design and climate-related parameters were statistically correlated using the DATAPLOT computer program and standard statistical analysis techniques.

  20. Thermal Performance of Uninsulated and Partially Filled Wall Cavities: Preprint

    SciTech Connect (OSTI)

    Ridouane, E. H.; Bianchi, M.

    2011-08-01

    Low-rise, wood-framed homes are the most common type of residential structures in the United States. Wood wall construction supports roofs efficiently and provides a stable frame for attaching interior and exterior wall coverings. Wall cavities are prevalent and increase thermal resistance, particularly when they are filled with insulating material. This paper describes detailed computational fluid dynamics modeling to evaluate the thermal performance of uninsulated or partially filled wall cavities and accounts for conduction through framing, convection, and radiation. Parameters are ambient outdoor temperature, cavity surface emissivity, cavity aspect ratio, and insulation height. Understanding the thermal performance of uninsulated or partially insulated wall cavities is essential for conserving energy in residential buildings. The results can serve as input for building energy simulation tools such as DOE2 and EnergyPlus for modeling the temperature dependent energy performance of new and older homes with uninsulated or partially insulated walls.

  1. Acknowledgments Hard and Thermal Photon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acknowledgments Hard and Thermal Photon Absorption in a QGP Eric Palmerduca 1,2 Advisor: Dr. Rainer Fries 2 1 Colgate University 2 Cyclotron Institute, Department of Physics and...

  2. Advanced Thermally Stable Jet Fuels

    SciTech Connect (OSTI)

    A. Boehman; C. Song; H. H. Schobert; M. M. Coleman; P. G. Hatcher; S. Eser

    1998-01-01

    The Penn State program in advanced thermally stable jet fuels has five components: 1) development of mechanisms of degradation and solids formation; 2) quantitative measurement of growth of sub-micrometer and micrometer-sized particles during thermal stressing; 3) characterization of carbonaceous deposits by various instrumental and microscopic methods; 4) elucidation of the role of additives in retarding the formation of carbonaceous solids; and 5) assessment of the potential of producing high yields of cycloalkanes and hydroaromatics from coal.

  3. Thermally activated technologies: Technology Roadmap

    SciTech Connect (OSTI)

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting America’s wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  4. Power Electronics Thermal Control (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.

    2010-05-05

    Thermal management plays an important part in the cost of electric drives in terms of power electronics packaging. Very promising results have been obtained by using microporous coatings and skived surfaces in conjunction with single-phase and two-phase flows. Sintered materials and thermoplastics with embedded fibers show significant promise as thermal interface materials, or TIMs. Appropriate cooling technologies depend on the power electronics package application and reliability.

  5. Lih thermal energy storage device

    DOE Patents [OSTI]

    Olszewski, Mitchell (Knoxville, TN); Morris, David G. (Knoxville, TN)

    1994-01-01

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.

  6. Thermal Batteries for Electric Vehicles

    SciTech Connect (OSTI)

    2011-11-21

    HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

  7. Thermal depinning of fluxons in discrete Josephson rings

    SciTech Connect (OSTI)

    Mazo, J. J.; Naranjo, F.; Segall, K.

    2008-11-01

    We study the thermal depinning of single fluxons in rings made of Josephson junctions. Due to thermal fluctuations a fluxon can be excited from its energy minima and move through the array, causing a voltage across each junction. We find that for the initial depinning, the fluxon behaves as a single particle and follows a Kramers-type escape law. However, under some conditions this single-particle description breaks down. At low values of the discreteness parameter and low values of the damping, the depinning rate is larger than what the single-particle result would suggest. In addition, for some values of the parameters the fluxon can undergo low-voltage diffusion before switching to the high-voltage whirling mode. This type of diffusion is similar to phase diffusion in a single junction but occurs without frequency-dependent damping. We study the switching to the whirling state as well.

  8. EMBEDDED OPTICAL SENSORS FOR THERMAL BARRIER COATINGS

    SciTech Connect (OSTI)

    David R. Clarke

    2004-12-16

    In this first year of the program we have focused on the selection of rare-earth dopants for luminescent sensing in thermal barrier coating materials, the effect of dopant concentration on several of the luminescence characteristics and initial fabrication of one type of embedded sensor, the ''red-line'' sensor. We have initially focused on erbium as the lanthanide dopant for luminescence doping of yttria-stabilized zirconia and europium as the lanthanide for luminescence doping of gadolinium zirconate. The latter exhibits a temperature-dependent luminescence lifetime up to at least 1100 C. A buried layer, ''red-line'' sensor in an electron-beam deposited yttria-stabilized zirconia coating with erbium has been demonstrated and exhibits a temperature-dependent luminescence lifetime up to at least 400 C.

  9. ZPPR FUEL ELEMENT THERMAL STRESS-STRAIN ANALYSIS

    SciTech Connect (OSTI)

    Charles W. Solbrig; Jason Andrus; Chad Pope

    2014-04-01

    The design temperature of high plutonium concentration ZPPR fuel assemblies is 600 degrees C. Cladding integrity of the 304L stainless steel cladding is a significant concern with this fuel since even small holes can lead to substantial fuel degradation. Since the fuel has a higher coefficient of thermal expansion than the cladding, an investigation of the stress induced in the cladding due to the differential thermal expansion of fuel and cladding up to the design temperature was conducted. Small holes in the cladding envelope would be expected to lead to the fuel hydriding and oxidizing into a powder over a long period of time. This is the same type of chemical reaction chain that exists in the degradion of the high uranium concentration ZPPR fuel. Unfortunately, the uranium fuel was designed with vents which allowed this degradation to occur. The Pu cladding is sealed so only fuel with damaged cladding would be subject to this damage. The thermal stresses that can be developed in the fuel cladding have been calculated in in this paper and compared to the ultimate tensile stress of the cladding. The conclusion is drawn that thermal stresses cannot induce holes in the cladding even for the highest storage temperatures predicted in calculations (292°C). In fact, thermal stress can not cause cladding failure as long as the fuel temperatures are below the design limit of 600 degrees C (1,112 degrees F).

  10. Typed Self-Optimization

    E-Print Network [OSTI]

    Brown, Matt

    2013-01-01

    type T y[O]. The operator IsIs is self-applicative, in thatargument t is any of Is[O] or IsIs, and otherwise behavesproof constant introduced by IsIs proves that the type of t

  11. Additive for iron disulfide cathodes used in thermal batteries

    DOE Patents [OSTI]

    Not Available

    1982-03-23

    The invention comprises thermal batteries employing an FeS/sub 2/ depolarizer itself. A minor amount of CaSi/sub 2/ preferably 1-3% by weight is provided as an additive in the FeS/sub 2/ depolarizer to eliminate the voltage transient (spike) which normally occurs upon activation of batteries of this type. The amount of FeS/sub 2/ by weight generally comprises 64 to 90%.

  12. Additive for iron disulfide cathodes used in thermal batteries

    DOE Patents [OSTI]

    Armijo, James R. (Albuquerque, NM); Searcy, Jimmie Q. (Albuquerque, NM)

    1983-01-01

    The invention comprises thermal batteries employing an FeS.sub.2 depolarizer, i.e. cathode material, and the depolarizer itself. A minor amount of CaSi.sub.2 preferably, 1-3% by weight is provided as an additive in the FeS.sub.2 depolarizer to eliminate the voltage transient (spike) which normally occurs upon activation of batteries of this type. The amount of FeS.sub.2 by weight generally comprises 64-90%.

  13. Thermal Performance Evaluation of Innovative Metal Building Roof Assemblies

    SciTech Connect (OSTI)

    Walker, Daniel James [ORNL; Zaltash, Abdolreza [ORNL; Atchley, Jerald Allen [ORNL

    2011-01-01

    In order to meet the coming energy codes, multiple layers of various insulation types will be required. The demand for greater efficiency has pushed insulation levels beyond the cavity depth. These experiments show the potential for improving metal building roof thermal performance. Additional work is currently being done by several stakeholders, so the data is expanding. These experiments are for research and development purposes, and may not be viable for immediate use.

  14. Thermal storage module for solar dynamic receivers

    DOE Patents [OSTI]

    Beatty, Ronald L. (Farragut, TN); Lauf, Robert J. (Oak Ridge, TN)

    1991-01-01

    A thermal energy storage system comprising a germanium phase change material and a graphite container.

  15. Thermal to Visible Face Recognition Jonghyun Choi

    E-Print Network [OSTI]

    Daume III, Hal

    Thermal to Visible Face Recognition Jonghyun Choi , Shuowen Hu , S. Susan Young and Larry S. Davis surveillance, thermal imaging is commonly used because of the intrinsic emissivity of thermal radiation from the human body. However, matching thermal images of faces acquired at nighttime to the predominantly visible

  16. Thermal diffusion shock waves Sorasak Danworaphong1

    E-Print Network [OSTI]

    Craig, Walter

    Thermal diffusion shock waves Sorasak Danworaphong1 , Walter Craig3 , Vitalyi Gusev4 , and Gerald J and are concentrated by a thermal gradient imposed on a salt solution, the separation of the components of a mixture in a thermal field, known as "thermal diffusion", or the Ludwig-Soret effect has been found not only in liquids

  17. Battery Thermal Management System Design Modeling (Presentation)

    SciTech Connect (OSTI)

    Kim, G-H.; Pesaran, A.

    2006-10-01

    Presents the objectives and motivations for a battery thermal management vehicle system design study.

  18. Thermal transport through non-ideal Andreev quantum dots

    E-Print Network [OSTI]

    Pedro Vidal

    2015-01-07

    We consider the scenario of thermal transport through two types of Andreev quantum dots which are coupled to two leads, belonging to the Class D and Class C symmetry classes. Using the random matrix description we derive the joint probability density function (j.p.d.f.) in term of Hypergeometric Function of Matrix Arguments when we consider one lead to be attached ideally and one lead non ideally. For the class C ensemble we derive a more explicit representation of the j.p.d.f. which results in a new type of random matrix model.

  19. Device for thermal transfer and power generation

    DOE Patents [OSTI]

    Weaver, Stanton Earl (Northville, NY); Arik, Mehmet (Niskayuna, NY)

    2011-04-19

    A system is provided. The system includes a device that includes top and bottom thermally conductive substrates positioned opposite to one another, wherein a top surface of the bottom thermally conductive substrate is substantially atomically flat and a thermal blocking layer disposed between the top and bottom thermally conductive substrates. The device also includes top and bottom electrodes separated from one another between the top and bottom thermally conductive substrates to define a tunneling path, wherein the top electrode is disposed on the thermal blocking layer and the bottom electrode is disposed on the bottom thermally conductive substrate.

  20. Active Thermal Extraction of Near-field Thermal Radiation

    E-Print Network [OSTI]

    Ding, Ding

    2015-01-01

    Radiative heat transport between materials supporting surface-phonon polaritons is greatly enhanced when the materials are placed at sub-wavelength separation as a result of the contribution of near-field surface modes. However, the enhancement is limited to small separations due to the evanescent decay of the surface waves. In this work, we propose and numerically demonstrate an active scheme to extract these modes to the far-field. Our approach exploits the monochromatic nature of near-field thermal radiation to drive a transition in a laser gain medium, which, when coupled with external optical pumping, allows the resonant surface mode to be emitted into the far-field. Our study demonstrates a new approach to manipulate thermal radiation that could find applications in thermal management.

  1. Three-Dimensional Fluorescence Spectra of Thermally Stressed Commercial Jet A-1 Aviation Fuel in the Autoxidative Regime

    E-Print Network [OSTI]

    Gülder, Ömer L.

    Three-Dimensional Fluorescence Spectra of Thermally Stressed Commercial Jet A-1 Aviation Fuel: In this study, the thermal oxidative stability of a kerosene-type Jet A-1 commercial aviation fuel has been investigated using a three-dimensional (3D) excitation/emission matrix fluorescence (EEMF) method. The fuel

  2. Validation of thermal models for a prototypical MEMS thermal actuator.

    SciTech Connect (OSTI)

    Gallis, Michail A.; Torczynski, John Robert; Piekos, Edward Stanley; Serrano, Justin Raymond; Gorby, Allen D.; Phinney, Leslie Mary

    2008-09-01

    This report documents technical work performed to complete the ASC Level 2 Milestone 2841: validation of thermal models for a prototypical MEMS thermal actuator. This effort requires completion of the following task: the comparison between calculated and measured temperature profiles of a heated stationary microbeam in air. Such heated microbeams are prototypical structures in virtually all electrically driven microscale thermal actuators. This task is divided into four major subtasks. (1) Perform validation experiments on prototypical heated stationary microbeams in which material properties such as thermal conductivity and electrical resistivity are measured if not known and temperature profiles along the beams are measured as a function of electrical power and gas pressure. (2) Develop a noncontinuum gas-phase heat-transfer model for typical MEMS situations including effects such as temperature discontinuities at gas-solid interfaces across which heat is flowing, and incorporate this model into the ASC FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (3) Develop a noncontinuum solid-phase heat transfer model for typical MEMS situations including an effective thermal conductivity that depends on device geometry and grain size, and incorporate this model into the FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (4) Perform combined gas-solid heat-transfer simulations using Calore with these models for the experimentally investigated devices, and compare simulation and experimental temperature profiles to assess model accuracy. These subtasks have been completed successfully, thereby completing the milestone task. Model and experimental temperature profiles are found to be in reasonable agreement for all cases examined. Modest systematic differences appear to be related to uncertainties in the geometric dimensions of the test structures and in the thermal conductivity of the polycrystalline silicon test structures, as well as uncontrolled nonuniform changes in this quantity over time and during operation.

  3. High Performance Thermal Interface Technology Overview

    E-Print Network [OSTI]

    R. Linderman; T. Brunschwiler; B. Smith; B. Michel

    2008-01-07

    An overview on recent developments in thermal interfaces is given with a focus on a novel thermal interface technology that allows the formation of 2-3 times thinner bondlines with strongly improved thermal properties at lower assembly pressures. This is achieved using nested hierarchical surface channels to control the particle stacking with highly particle-filled materials. Reliability testing with thermal cycling has also demonstrated a decrease in thermal resistance after extended times with longer overall lifetime compared to a flat interface.

  4. THERMALLY ACTIVATED MARTENSITE: ITS RELATIONSHIP TO NON-THERMALLY ACTIVATED (ATHERMAL) MARTENSITE

    E-Print Network [OSTI]

    Laughlin, David E.

    THERMALLY ACTIVATED MARTENSITE: ITS RELATIONSHIP TO NON-THERMALLY ACTIVATED (ATHERMAL) MARTENSITE Keywords: Thermal Activation, Isothermal, Athermal, Activation Energy Abstract The classification of no thermal activation. Processes with no thermal activation do not depend on time, as there is no need

  5. Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials

    E-Print Network [OSTI]

    Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials 2012 Accepted by L. Bery Available online 25 April 2012 Keywords: A. Graphene A. Thermal interface materials C. Graphene composites D. Thermal properties a b s t r a c t We review the thermal properties

  6. Thermal Signature: A Simple Yet Accurate Thermal Index for Floorplan Optimization

    E-Print Network [OSTI]

    Sapatnekar, Sachin

    Thermal Signature: A Simple Yet Accurate Thermal Index for Floorplan Optimization ABSTRACT evaluation should be done extremely fast with high accuracy. A new thermal index, named thermal signature's function and power density in- tegrated over space. The correlation coefficient between thermal signature

  7. UNH Thermal WorkshopUNH Thermal Workshop or how important isor how important is

    E-Print Network [OSTI]

    UNH Thermal WorkshopUNH Thermal Workshop or how important isor how important is stream) EPA grants to UNH for thermal regimes of Northeast g g Streams and Thermal Impacts of Stormwater BMPsResponse curves created for original R1 RARE Extension to fish communities Build on UNH BMP Thermal work

  8. Enhancing the thermoelectric figure of merit through the reduction of bipolar thermal conductivity with heterostructure barriers

    SciTech Connect (OSTI)

    Bahk, Je-Hyeong, E-mail: jbahk@purdue.edu; Shakouri, Ali [Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States)

    2014-08-04

    In this paper, we present theoretically that the thermoelectric figure of merit for a semiconductor material with a small band gap can be significantly enhanced near the intrinsic doping regime at high temperatures via the suppression of bipolar thermal conductivity when the minority carriers are selectively blocked by heterostructure barriers. This scheme is particularly effective in nanostructured materials where the lattice thermal conductivity is lowered by increased phonon scatterings at the boundaries, so that the electronic thermal conductivity including the bipolar term is limiting the figure of merit zT. We show that zT can be enhanced to above 3 for p-type PbTe, and above 2 for n-type PbTe at 900?K with minority carrier blocking, when the lattice thermal conductivity is as low as 0.3?W/m K.

  9. Thermal trim for a luminaire

    DOE Patents [OSTI]

    Bazydola, Sarah; Ghiu, Camil-Daniel; Harrison, Robert; Jeswani, Anil

    2013-02-19

    A luminaire with a thermal pathway to reduce the junction temperature of the luminaire's light source, and methods for so doing, are disclosed. The luminaire includes a can, a light engine, and a trim, that define a substantially continuous thermal pathway from the light engine to a surrounding environment. The can defines a can cavity and includes a can end region. The light engine is within the can cavity and includes a light source and a heat sink, including a heat sink end region, coupled thereto. The trim is at least partially disposed within the can cavity and includes a first trim end region coupled to the heat sink end region and a second trim end region coupled to the can end region. Thermal interface material may be located between: the heat sink and the trim, the trim and the can, and/or the heat sink and the light source.

  10. Holographic thermalization of charged operators

    E-Print Network [OSTI]

    Alejandro Giordano; Nicolas E. Grandi; Guillermo A. Silva

    2014-12-26

    We study a light-like charged collapsing shell in AdS-Reissner-Nordstrom spacetime, investigating whether the corresponding Vaidya metric is supported by matter that satisfies the null energy condition. We find that, if the absolute value of the charge decreases during the collapse, energy conditions are fulfilled everywhere in spacetime. On the other hand, if the absolute value of the charge increases, the metric does not satisfy energy conditions in the IR region. Therefore, from the gauge/gravity perspective, this last case is only useful to study the thermalization of the UV degrees of freedom. For all these geometries, we probe the thermalization process with two point correlators of charged operators, finding that the thermalization time grows with the charge of the operator, as well as with the dimension of space.

  11. Thermality of the Hawking flux

    E-Print Network [OSTI]

    Visser, Matt

    2014-01-01

    Is the Hawking flux "thermal"? Unfortunately, the answer to this seemingly innocent question depends on a number of often unstated, but quite crucial, technical assumptions built into modern (mis-)interpretations of the word "thermal". The original 1850's notions of thermality --- based on classical thermodynamic reasoning applied to idealized "black bodies" or "lamp black surfaces" --- when supplemented by specific basic quantum ideas from the early 1900's, immediately led to the notion of the black-body spectrum, (the Planck-shaped spectrum), but "without" any specific assumptions or conclusions regarding correlations between the quanta. Many (not all) modern authors (often implicitly and unintentionally) add an extra, and quite unnecessary, assumption that there are no correlations in the black-body radiation; but such usage is profoundly ahistorical and dangerously misleading. Specifically, the Hawking flux from an evaporating black hole, (just like the radiation flux from a leaky furnace or a burning lum...

  12. Hybrid type checking

    E-Print Network [OSTI]

    Flanagan, C

    2006-01-01

    O’Callahan and J. -D. Choi. Hybrid dynamic data race detec-subtyping is sound, the hybrid compilation algorithmHybrid Type Checking Cormac Flanagan Department of Computer

  13. Fejer-type inequalities

    E-Print Network [OSTI]

    Mitroi, F C

    2011-01-01

    The aim of this paper is to present some new Fejer-type results for convex functions. Improvements of Young's inequality (the arithmetic-geometric mean inequality) and other applications to special means are pointed as well.

  14. On the origin of thermality

    E-Print Network [OSTI]

    Bernard S. Kay

    2012-12-04

    It is well-known that a small system weakly coupled to a large energy bath in a total microcanonical ensemble will find itself in an (approximately) thermal state and, recently, it has been shown that, if the total state is, instead, a random pure state with energy in a narrow range, then the small system will still be approximately thermal with a high probability (wrt `Haar measure'). We ask what conditions are required for something resembling these 'traditional' and 'modern' thermality results to still hold when system and energy bath are of comparable size. In Part 1, we show that, for given system and energy-bath densities of states, s_S(e) and s_B(e), thermality does not hold in general, as we illustrate when both increase as powers of energy, but that it does hold in certain approximate senses, in both traditional and modern frameworks, when both grow as exp(be) or as exp(qe^2) and we calculate the system entropy in these cases. In their 'modern' version, our results rely on new quantities, which we introduce and call the S and B 'modapprox' density operators, which, we claim, will, with high probability, give a close approximation to the reduced density operator for the system and energy bath when the total state of system plus energy bath is a random pure state with energy in a narrow range. In Part 2 we clarify the meaning of these modapprox density operators and give arguments for our claim. The prime examples of non-small thermal systems are quantum black holes. Here and in two companion papers, we argue that current string-theoretic derivations of black hole entropy and thermal properties are incomplete and, on the question of information loss, inconclusive. However, we argue that these deficiencies are remedied with a modified scenario which relies on the modern strand of our methods and results here and is based on our previous 'matter-gravity entanglement hypothesis'.

  15. Effective Thermal Conductivity of Graded Nanocomposites with Interfacial Thermal

    E-Print Network [OSTI]

    Paulino, Glaucio H.

    .M. Yin", G. H. Paulino", W.G. Buttlar", and L.Z. Sun'' '^Department of Civil and Environmental the effective thermal conductivity distribution in functionally graded materials (FGMs) considering the Kapitza is developed to derive the averaged heat flux field of the particle phase. Then the temperature gradient can

  16. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,Storage in Concentrated Solar Thermal Power Plants A ThesisStorage in Concentrated Solar Thermal Power Plants by Corey

  17. Thermal Preconditioning and Heat-Shock Protein 72 Preserve Synaptic Transmission during Thermal Stress

    E-Print Network [OSTI]

    Robertson, Meldrum

    Thermal Preconditioning and Heat-Shock Protein 72 Preserve Synaptic Transmission during Thermal therapeutic implications. Key words: hyperthermia; heat shock; synaptic transmission; miniature postsynaptic, exposing the mammalian CNS to nonle- thal heat stress (i.e., thermal preconditioning) increases levels

  18. THERMAL HYDRAULICS KEYWORDS: neutron activation,

    E-Print Network [OSTI]

    Pázsit, Imre

    THERMAL HYDRAULICS KEYWORDS: neutron activation, flow measurements, evaluation methods FLOWACT, FLOW RATE MEASUREMENTS IN PIPES WITH THE PULSED-NEUTRON ACTIVATION METHOD PER LINDÉN,* GUDMAR GROSSHÖG- neutron activation (PNA) in a specially designed test loop. A stationary neutron generator was used

  19. Low Conductivity Thermal Barrier Coatings

    E-Print Network [OSTI]

    Wadley, Haydn

    Low Conductivity Thermal Barrier Coatings A Dissertation Presented to The Faculty of the School ________________________________________________________________________ Abstract The dissertation begins by exploring the growth of 7YSZ coatings on vapor deposited NiCoCrAlY bond coats at different substrate rotation rates. The experiments show that as the rotation rate

  20. Solar mechanics thermal response capabilities.

    SciTech Connect (OSTI)

    Dobranich, Dean D.

    2009-07-01

    In many applications, the thermal response of structures exposed to solar heat loads is of interest. Solar mechanics governing equations were developed and integrated with the Calore thermal response code via user subroutines to provide this computational simulation capability. Solar heat loads are estimated based on the latitude and day of the year. Vector algebra is used to determine the solar loading on each face of a finite element model based on its orientation relative to the sun as the earth rotates. Atmospheric attenuation is accounted for as the optical path length varies from sunrise to sunset. Both direct and diffuse components of solar flux are calculated. In addition, shadowing of structures by other structures can be accounted for. User subroutines were also developed to provide convective and radiative boundary conditions for the diurnal variations in air temperature and effective sky temperature. These temperature boundary conditions are based on available local weather data and depend on latitude and day of the year, consistent with the solar mechanics formulation. These user subroutines, coupled with the Calore three-dimensional thermal response code, provide a complete package for addressing complex thermal problems involving solar heating. The governing equations are documented in sufficient detail to facilitate implementation into other heat transfer codes. Suggestions for improvements to the approach are offered.

  1. Solar energy thermalization and storage device

    DOE Patents [OSTI]

    McClelland, John F. (Ames, IA)

    1981-09-01

    A passive solar thermalization and thermal energy storage assembly which is visually transparent. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  2. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    STORAGE FOR CONCENTRATING SOLAR POWER PLANTS,” Eurosun 2010,COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,Storage in Concentrated Solar Thermal Power Plants A Thesis

  3. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    ENERGY STORAGE FOR CONCENTRATING SOLAR POWER PLANTS,”Energy Storage in Concentrated Solar Thermal Power Plants AEnergy Storage in Concentrated Solar Thermal Power Plants by

  4. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    FOR CONCENTRATING SOLAR POWER PLANTS,” Eurosun 2010, Graz,STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa, Ontario: 1999.heat transfer in solar thermal power plants utilizing phase

  5. Thermal Properties of Graphene and Applications for Thermal Management of High-Power Density Electronics

    E-Print Network [OSTI]

    Yan, Zhong

    2013-01-01

    on Thermal Management, Las Gatos, CA, Nov. 2012 [3] Z. Yan,Thermal Management, Las Gatos, CA, Nov. 2012 Young Scientist

  6. Advanced thermally stable jet fuels

    SciTech Connect (OSTI)

    Schobert, H.H.

    1999-01-31

    The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume (Sections 1 through 5).

  7. Type Ia Supernovae

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two Electron Holes in HematiteType Ia Supernovae Type Ia

  8. Agreement Type Union

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReporteeo | National Nucleara min [Type the abstract of theType

  9. Nanoscale thermal transport. II. 2003–2012

    E-Print Network [OSTI]

    Cahill, David G.

    A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale ...

  10. Thermal pumping of light-emitting diodes

    E-Print Network [OSTI]

    Gray, Dodd (Dodd J.)

    2011-01-01

    The work presented here is a study of thermally enhanced injection in light-emitting diodes (LEDs). This effect, which we refer to as "thermal pumping", results from Peltier energy exchange from the lattice to charge ...

  11. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    environmentally sound method of using thermal energy storageconcept of thermal energy of energy conversion methods tothermal energy, particularly cavern storage, appears to offer a promising near-term method

  12. Thermal Storage with Conventional Cooling Systems 

    E-Print Network [OSTI]

    Kieninger, R. T.

    1994-01-01

    simple thermal energy storage system that already exists in almost every structure - concrete. Thermal storage calculations simulate sub-cooling of a building's structure during unoccupied times. During occupied times, the sub-cooled concrete reduces peak...

  13. Thermal Storage with Conventional Cooling Systems 

    E-Print Network [OSTI]

    McGee, E. E.

    1990-01-01

    "Thermal Storage" is a term that describes a mechanical systems ability to sustain normal HVAC operations through a thermal retention source. This system allows for the curtailment of operating major refrigeration equipment during periods of high kw...

  14. Successfully Marketing Thermal Storage in Commercial Buildings 

    E-Print Network [OSTI]

    McDonald, C.

    1988-01-01

    This paper first reviews the key hurdles to thermal energy storage. Next, case studies of three electric utility thermal storage marketing programs are reviewed. The results of these case studies. as well as advice and experiences from other...

  15. Doctoral Defense "Thermal-hydro-mechanical model

    E-Print Network [OSTI]

    Kamat, Vineet R.

    Doctoral Defense "Thermal-hydro-mechanical model for freezing and thawing soils" Yao Zhang Date been implemented in a finite element system, with a thermal-hydro- mechanical framework being used

  16. Basics, types Evolution

    E-Print Network [OSTI]

    Crenshaw, Michael

    to nuclear fusion. · Novae radiate primarily in the UV to X-ray region. · Types: ­ Classical Novae: only one is hot enough for explosive fusion. For classical novae, this happens on a time scale of 103 ­ 105 years. · Thermonuclear runaway (TNR): capture of protons by heavy elements (CNO cycle), happens in seconds #12;5 Novae

  17. Thermal Energy Storage for Cooling of Commercial Buildings

    E-Print Network [OSTI]

    Akbari, H.

    2010-01-01

    of Commercial Building Thermal Energy _Storage in ASEANGas Electric Company, "Thermal Energy Storage for Cooling,"LBL--25393 DE91 ,THERMAL ENERGY STORAGE FOR COOLING OF

  18. OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT

    E-Print Network [OSTI]

    Sands, M.Dale

    2013-01-01

    M.D. (editor). 1980. Ocean Thermal Energy Conversion Draft1980 :. i l OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTALDevelopment Plan. Ocean Thermal Energy Conversion. U.S. DOE

  19. A Magnetomechanical Thermal Energy Harvester With A Reversible Liquid Interface

    E-Print Network [OSTI]

    He, Hong

    2012-01-01

    for Waste Heat Energy Harvesting and Thermal Conductanceand Mechanical Model of a Thermal Energy Harvesting Device”,to remove the excess thermal energy and prevent burning of

  20. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    Recycling of Wasted Energy : Thermal to Electrical EnergyRecycling of Wasted Energy : Thermal to Electrical Energyelectric energy generation and thermal energy conduction

  1. DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01

    1979. Commercial ocean thermal energy conversion ( OTEC)field of ocean thermal energy conversion discharges. I~. L.II of the Sixth Ocean Thermal Energy conversion Conference.

  2. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01

    studies, electric energy and thermal energy were assumed totemperatures to storage. and thermal energy transfer ratesstores or releases thermal energy. This subsystem consists

  3. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01

    1979. Commercial ocean thermal energy conversion (OTEC)of the Fifth Ocean Thermal Energy Conversion Conference,Sands. 1980. Ocean thermal energy conversion (OTEC) pilot

  4. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01

    310, the Ocean the Ocean Energy Thermal Energy Conversionfor the commercialization of ocean thermal energy conversionOpen cycle ocean thermal energy conversion. A preliminary

  5. Thermal Adaptation in the Built Environment: a Literature Review

    E-Print Network [OSTI]

    de Dear, Richard; Brager, G. S.

    1998-01-01

    f the Bruce, Man and his thermal environment: physiologicalrecipient of the given thermal environment, but instead isa "comfortable' thermal environment? The answer to this

  6. Thermal Imaging of Single Living Cells Using Semiconductor Quantum Dots

    E-Print Network [OSTI]

    Yang, Jui-Ming

    2009-01-01

    A novel method of thermal activation and temperatureS. Ishiwata, "Imaging of thermal activation of actomyosinbeen used to image thermal activation of single actomyosin

  7. Discrete Element Modeling of Impact Damage on Thermal Barrier Coatings

    E-Print Network [OSTI]

    Minor, Peter Michel

    2013-01-01

    Thermal barrier coating morphology produced by air plasmacompared to other potential thermal barrier coating2 Thermal Barrier Coatings 2.1 System of

  8. Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration

    E-Print Network [OSTI]

    Jackson, Philip Robert

    2012-01-01

    designed for optimal thermal storage after extracting theand hot water for thermal storage. 2. Theory and Backgroundnot as ideal for thermal storage. An insulated reservoir

  9. Thermal Energy Storage for Cooling of Commercial Buildings

    E-Print Network [OSTI]

    Akbari, H.

    2010-01-01

    23) Knipp, R. "Marketing Thermal Storage," In Proceedings:1986. Tejl, D.S. , "Thermal Storage Strategies for Energy14) Ott, V,J. , "Thermal Storage Air Conditioning with

  10. Thermal Performance of Phase Change Wallboard for Residential Cooling Application

    E-Print Network [OSTI]

    Feustel, H.E.

    2011-01-01

    Coupling latent thermal storage with the ground by means ofcooling sources. Large thermal storage devices have beenmaterial, would permit the thermal storage to become part of

  11. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01

    ADVANCED THERMAL ENERGY STORAGE CONCEPT DEFINITION STUDY FORSchilling. F. E. , Thermal Energy Storage Using PrestressedNo ~cumulate thermal energy storage. Estimate ESTrof2(

  12. Thermal stratification performance of underfloor air distribution (UFAD) systems

    E-Print Network [OSTI]

    Webster, T.; Bauman, Fred; Shi, M.; Reese, J.

    2002-01-01

    Distribution (UFAD): Thermal Stratification Performance,"Engineers, Inc. Thermal Stratification Performance ofSAT) on the thermal stratification in interior spaces, and

  13. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    and nuclear power plants, solar thermal energy, geothermalpower plants, distributed solar thermal energy, geo/ocean-power plants and concentrated solar thermal energy farms.

  14. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01

    HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT Thomas F.CENTRAL RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE progressCorporation, RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE I,

  15. Thermal Energy Storage for Cooling of Commercial Buildings

    E-Print Network [OSTI]

    Akbari, H.

    2010-01-01

    Building Thermal Energy _Storage in ASEAN Countries,"Company, "Thermal Energy Storage for Cooling," Seminar25393 DE91 ,THERMAL ENERGY STORAGE FOR COOLING OF COMMERCIAL

  16. Duct thermal performance models for large commercial buildings

    SciTech Connect (OSTI)

    Wray, Craig P.

    2003-10-01

    Despite the potential for significant energy savings by reducing duct leakage or other thermal losses from duct systems in large commercial buildings, California Title 24 has no provisions to credit energy-efficient duct systems in these buildings. A substantial reason is the lack of readily available simulation tools to demonstrate the energy-saving benefits associated with efficient duct systems in large commercial buildings. The overall goal of the Efficient Distribution Systems (EDS) project within the PIER High Performance Commercial Building Systems Program is to bridge the gaps in current duct thermal performance modeling capabilities, and to expand our understanding of duct thermal performance in California large commercial buildings. As steps toward this goal, our strategy in the EDS project involves two parts: (1) developing a whole-building energy simulation approach for analyzing duct thermal performance in large commercial buildings, and (2) using the tool to identify the energy impacts of duct leakage in California large commercial buildings, in support of future recommendations to address duct performance in the Title 24 Energy Efficiency Standards for Nonresidential Buildings. The specific technical objectives for the EDS project were to: (1) Identify a near-term whole-building energy simulation approach that can be used in the impacts analysis task of this project (see Objective 3), with little or no modification. A secondary objective is to recommend how to proceed with long-term development of an improved compliance tool for Title 24 that addresses duct thermal performance. (2) Develop an Alternative Calculation Method (ACM) change proposal to include a new metric for thermal distribution system efficiency in the reporting requirements for the 2005 Title 24 Standards. The metric will facilitate future comparisons of different system types using a common ''yardstick''. (3) Using the selected near-term simulation approach, assess the impacts of duct system improvements in California large commercial buildings, over a range of building vintages and climates. This assessment will provide a solid foundation for future efforts that address the energy efficiency of large commercial duct systems in Title 24. This report describes our work to address Objective 1, which includes a review of past modeling efforts related to duct thermal performance, and recommends near- and long-term modeling approaches for analyzing duct thermal performance in large commercial buildings.

  17. Battery Thermal Modeling and Testing (Presentation)

    SciTech Connect (OSTI)

    Smith, K.

    2011-05-01

    This presentation summarizes NREL battery thermal modeling and testing work for the DOE Annual Merit Review, May 9, 2011.

  18. Thermal Spray Coatings for Coastal Infrastructure

    SciTech Connect (OSTI)

    Holcomb, G.R.; Covino, BernardS. Jr.; Cramer, S.D.; Bullard, S.J.

    1997-11-01

    Several protection strategies for coastal infrastructure using thermal-spray technology are presented from research at the Albany Research Center. Thermal-sprayed zinc coatings for anodes in impressed current cathodic protection systems are used to extend the service lives of reinforced concrete bridges along the Oregon coast. Thermal-sprayed Ti is examined as an alternative to the consumable zinc anode. Sealed thermal-sprayed Al is examined as an alternative coating to zinc dust filled polyurethane paint for steel structures.

  19. Battery Thermal Management System Design Modeling

    SciTech Connect (OSTI)

    Pesaran, A.; Kim, G. H.

    2006-11-01

    Looks at the impact of cooling strategies with air and both direct and indirect liquid cooling for battery thermal management.

  20. THERMALLY ACTIVATED REVERSAL IN MAGNETIC NANOSTRUCTURES

    E-Print Network [OSTI]

    Usadel, K. D.

    THERMALLY ACTIVATED REVERSAL IN MAGNETIC NANOSTRUCTURES ULRICH NOWAK Theoretische Physik, Gerhard to the nanometer scale. With decreasing size of magnetic particles thermal activation becomes rel­ evant an overview on numerical ap­ proaches to thermal activation in magnetic systems as far as they can

  1. Thermal Preference and Tolerance of Alvinellids

    E-Print Network [OSTI]

    Girguis, Peter R.

    Thermal Preference and Tolerance of Alvinellids Peter R. Girguis1 * and Raymond W. Lee2 * T he thermal tolerance of marine animals has been debated for some time (1, 2). At deep-sea hydrothermal vents found that the rapid mixing of hot vent fluids and cold seawater produces a dynamic thermal regime

  2. Thermal Conductivity of Electrons and Muons

    E-Print Network [OSTI]

    Gnedin, Oleg Y.

    Thermal Conductivity of Electrons and Muons in Neutron Star Cores O.Y. Gnedin and D.G. Yakovlev A thermal conductivity of dense matter (ae ? ¸ 10 14 g cm \\Gamma3 ) in neutron star cores with various expressions valid for a wide class of models of dense matter. 1 #12; 1 Introduction Thermal conductivity

  3. NO. REV. NO. APOLLO 12 PSE THERMAL

    E-Print Network [OSTI]

    Rathbun, Julie A.

    : . .'.) NO. REV. NO. ATM 887 APOLLO 12 PSE THERMAL ANOMALY FINAL REPORT PAGE I DATE 5 This ATM summarizes the results of the BxA study conducted to investigate the ALSEP Flight I PSE Thermal Anomaly) determine the most probable cause of the temperature related anomalies, (3) recommend possible thermal

  4. the thermal-8 to-plasma

    E-Print Network [OSTI]

    Vertes, Akos

    Modeling the thermal- 8 to-plasma . transitions for Cu photoablation by A. Vertes R. W. Dreyfus D. E. Platt Excimer laser ablation of metals starts as a thermal process in the -1-J/cm2 fluence range on the thermal (diffusivity and vapor pressure) properties of copper, along with electron heating by inverse

  5. Weak measurement based on thermal noise effect

    E-Print Network [OSTI]

    Gang Li; Tao Wang; Shuang Xu; He-Shan Song

    2015-07-03

    Weak measurement with thermal state pointer can give rise to an amplification effect, and we give the generalization of the mechanism behind the amplification with pure Gaussion state pointer. We find that the maximal value of this effect can reach thermal fluctuations, and propose two schemes to implement room temperature weak measurement with thermal state pointer in optomechanical system.

  6. Thermal Conductivity of Graphene Laminate H. Malekpour,

    E-Print Network [OSTI]

    Thermal Conductivity of Graphene Laminate H. Malekpour, K.-H. Chang, J.-C. Chen, C.-Y. Lu, D. L, Manchester, United Kingdom *S Supporting Information ABSTRACT: We have investigated thermal conductivity and a set of suspended samples with the graphene laminate thickness from 9 to 44 m. The thermal conductivity

  7. Measurements of the Thermal Neutron Scattering Kernel

    E-Print Network [OSTI]

    Danon, Yaron

    Measurements of the Thermal Neutron Scattering Kernel Li (Emily) Liu, Yaron Danon, Bjorn Becker and discussions Problems and Future study Questions #12;3 M. Mattes and J. Keinert, Thermal Neutron Scattering experimental data used was from 1973-1974! M. Mattes and J. Keinert, Thermal Neutron Scattering Data

  8. Experimental study of transient pool boiling heat transfer under exponential power excursion on plate-type heater

    E-Print Network [OSTI]

    Su, Guanyu, S.M. Massachusetts Institute of Technology

    2015-01-01

    Conduction and single-phase convective heat transfer are well understood phenomena: analytical models [1] and empirical correlations [2] allow capturing the thermal behavior of plate-type fuels or heaters in contact with ...

  9. Thermal Dynamics in General Relativity

    E-Print Network [OSTI]

    C. S. Lopez-Monsalvo; N. Andersson

    2010-06-15

    We discuss a relativistic model for heat conduction, building on a convective variational approach to multi-fluid systems where the entropy is treated as a distinct dynamical entity. We demonstrate how this approach leads to a relativistic version of the Cattaneo equation, encoding the finite thermal relaxation time that is required to satisfy causality. We also show that the model naturally includes the non-equilibrium Gibbs relation that is a key ingredient in most approaches to extended thermodynamics. Focussing on the pure heat conduction problem, we compare the variational results to the second-order model developed by Israel and Stewart. The comparison shows that, despite the very different philosophies behind the two approaches, the two models are equivalent at first order deviations from thermal equilibrium. Finally, we complete the picture by working out the non-relativistic limit of our results, making contact with recent work in that regime.

  10. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, I.O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

  11. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

  12. Energy.gov Page Types

    Broader source: Energy.gov [DOE]

    Learn about the standard page types available in the Energy.gov Drupal content management system. For information about other available page types, or to request a new kind of page type, contact...

  13. Practical pluggable types for Java

    E-Print Network [OSTI]

    Papi, Matthew M

    2008-01-01

    This paper introduces the Checker Framework, which supports adding pluggable type systems to the Java language in a backward-compatible way. A type system designer defines type qualifiers and their semantics, and a compiler ...

  14. Window Types | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    aluminum or vinyl cladding reduces maintenance requirements. Types of Window Glazing or Glass In addition to choosing a frame type, you will need to consider what type of glazing...

  15. Thermal well-test method

    DOE Patents [OSTI]

    Tsang, Chin-Fu (Albany, CA); Doughty, Christine A. (Berkeley, CA)

    1985-01-01

    A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

  16. Harvesting thermal fluctuations: Activation process induced by a nonlinear chain in thermal equilibrium

    E-Print Network [OSTI]

    Galán, Antonio Sarmiento

    Harvesting thermal fluctuations: Activation process induced by a nonlinear chain in thermal of a bistable system is a molecular chain which in turn is connected to a thermal environment of the Langevin. The distribution, intensity, and mobility of thermal fluctuations in these chains is strongly dependent

  17. Thermal challenges in MEMS applications: phase change phenomena and thermal bonding processes

    E-Print Network [OSTI]

    Lin, Liwei

    Thermal challenges in MEMS applications: phase change phenomena and thermal bonding processes Liwei, MC 1740, Berkeley, CA 94720, USA Abstract Two thermal challenges for current and next generation generate single, spherical and controllable thermal bubbles with diameters between 2 and 500 mm. Both

  18. J. of Thermal Science Vol.2, No4. Journal of Thermal Science Science Press 1993 ~

    E-Print Network [OSTI]

    Zhang, Yuwen

    J. of Thermal Science Vol.2, No4. Journal of Thermal Science· Science Press 1993 ~ Flow P atterns and Thermal Drag in a One-Dimen- sional Inviscid Channel wit h Heating or Cooling Yuwen Zhang Yonglin Ju investigations on the fl.ow patterns and the thermal drag phenomenon in one-dimensional inviscid channel fiow

  19. Odne Stokke Burheim Thermal Signature and Thermal Conductivities of PEM Fuel Cells

    E-Print Network [OSTI]

    Kjelstrup, Signe

    Odne Stokke Burheim Thermal Signature and Thermal Conductivities of PEM Fuel Cells Thesis-Holst for believing in me and for giving me the opportunity to join the work on the "Thermal Effects in Fuel cell The work presented here gives estimates on thermal gradients within the PEM fuel cell, an experimental

  20. The effect of thermal aging on the thermal conductivity of plasma sprayed and EB-PVD thermal barrier coatings

    SciTech Connect (OSTI)

    Dinwiddie, R.B.; Beecher, S.C.; Porter, W.D.; Nagaraj, B.A.

    1996-05-01

    Thermal barrier coatings (TBCs) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBCs is of primary importance. Electron beam-physical vapor deposition (EV-PVD) and air plasma spraying (APS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The density of the APS coatings was controlled by varying the spray parameters. The low density APS yttria-partially stabilized zirconia (yttria-PSZ) coatings yielded a thermal conductivity that is lower than both the high density APS coatings and the EB-PVD coatings. The thermal aging of both fully and partially stabilized zirconia are compared. The thermal conductivity of the coatings permanently increases upon exposure to high temperatures. These increases are attributed to microstructural changes within the coatings. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the EB-PVD coatings are less susceptible to thermal aging effects, results suggest that they typically have a higher thermal conductivity than APS coatings before thermal aging. The increases in thermal conductivity due to thermal aging for plasma sprayed partially stabilized zirconia have been found to be less than for plasma sprayed fully stabilized zirconia coatings.

  1. Thermal modeling of an indirectly heated E-beam gun

    SciTech Connect (OSTI)

    Jallouk, P.A.

    1994-12-31

    Uranium atomic vapor for the Atomic Vapor Laser Isotope Separation (AVLIS) process is produced by magnetically steering a high-power electron beam to the surface of the uranium melt. The electron beam is produced by a Pierce-type axial E-beam gun with an indirectly heated emitter (IDHE)-the industry standard for high-power melting and vaporization. AVLIS process design requirements for the E-beam gun are stringent, particularly in the areas of modularity, compactness, and lifetime. The gun assembly details are complex, geometric clearances are tight, and operating temperatures and stress levels are at the upper limits of acceptability. Detailed three-dimensional finite-element thermal models of the E-beam gun have been developed to address this challenging thermal packaging issue. These models are used in conjunction with design and testing activities to develop a gun exhibiting a high level of reliability for acceptable operation in a plant environment.

  2. Thermality of the Hawking flux

    E-Print Network [OSTI]

    Matt Visser

    2015-05-06

    Is the Hawking flux "thermal"? Unfortunately, the answer to this seemingly innocent question depends on a number of often unstated, but quite crucial, technical assumptions built into modern (mis-)interpretations of the word "thermal". The original 1850's notions of thermality --- based on classical thermodynamic reasoning applied to idealized "black bodies" or "lamp black surfaces" --- when supplemented by specific basic quantum ideas from the early 1900's, immediately led to the notion of the black-body spectrum, (the Planck-shaped spectrum), but "without" any specific assumptions or conclusions regarding correlations between the quanta. Many (not all) modern authors (often implicitly and unintentionally) add an extra, and quite unnecessary, assumption that there are no correlations in the black-body radiation; but such usage is profoundly ahistorical and dangerously misleading. Specifically, the Hawking flux from an evaporating black hole, (just like the radiation flux from a leaky furnace or a burning lump of coal), is only "approximately" Planck-shaped over a bounded frequency range. Standard physics (phase space and adiabaticity effects) explicitly bound the frequency range over which the Hawking flux is "approximately" Planck-shaped from both above and below --- the Hawking flux is certainly not exactly Planckian, and there is no compelling physics reason to assume the Hawking photons are uncorrelated.

  3. Thermal Stability Of Formohydroxamic Acid

    SciTech Connect (OSTI)

    Fondeur, F. F.; Rudisill, T. S.

    2011-10-21

    The thermal stability of formohydroxamic acid (FHA) was evaluated to address the potential for exothermic decomposition during storage and its use in the uranium extraction process. Accelerating rate calorimetry showed rapid decomposition at a temperature above 65 {degree}?C; although, the rate of pressure rise was greater than two orders of magnitude less than the lower bound for materials which have no explosive properties with respect to transportation. FHA solutions in water and nitric acid did not reach runaway conditions until 150 {degree}?C. Analysis by differential scanning calorimetry showed that FHA melted at 67 {degree}?C and thermally decomposed at 90 {degree}?C with an enthalpy of -1924 J/g. The energics of the FHA thermal decomposition are comparable to those measured for aqueous solutions of hydroxylamine nitrate. Solid FHA should be stored in a location where the temperature does not exceed 20-25 {degree}?C. As a best practice, the solid material should be stored in a climate-controlled environment such as a refrigerator or freezer. FHA solutions in water are not susceptible to degradation by acid hydrolysis and are the preferred way to handle FHA prior to use.

  4. Pillar Structured Thermal Neutron Detector

    SciTech Connect (OSTI)

    Nikolic, R; Conway, A; Reinhardt, C; Graff, R; Wang, T; Deo, N; Cheung, C

    2008-06-10

    This work describes an innovative solid state device structure that leverages advanced semiconductor fabrication technology to produce an efficient device for thermal neutron detection which we have coined the 'Pillar Detector'. State-of-the-art thermal neutron detectors have shortcomings in simultaneously achieving high efficiency, low operating voltage while maintaining adequate fieldability performance. By using a three dimensional silicon PIN diode pillar array filled with isotopic {sup 10}boron ({sup 10}B), a high efficiency device is theoretically possible. Here we review the design considerations for going from a 2-D to 3-D device and discuss the materials trade-offs. The relationship between the geometrical features and efficiency within our 3-D device is investigated by Monte Carlo radiation transport method coupled with finite element drift-diffusion carrier transport simulations. To benchmark our simulations and validate the predicted efficiency scaling, experimental results of a prototype device are illustrated. The fabricated pillar structures reported in this work are composed of 2 {micro}m diameter silicon pillars with a 2 {micro}m spacing and pillar height of 12 {micro}m. The pillar detector with a 12 {micro}m height achieved a thermal neutron detection efficiency of 7.3% at a reverse bias of -2 V.

  5. Dust around Type Ia supernovae

    E-Print Network [OSTI]

    Wang, Lifan

    2005-01-01

    Dust around Type Ia supernovae Lifan Wang 1,2 LawrenceIa. Subject headings: Supernovae: General, Dust, Extinctionline) bands for Type Ia supernovae. (a), upper panel, shows

  6. Thermal conductivity of sputtered amorphous Ge films

    SciTech Connect (OSTI)

    Zhan, Tianzhuo; Xu, Yibin; Goto, Masahiro; Tanaka, Yoshihisa; Kato, Ryozo; Sasaki, Michiko; Kagawa, Yutaka [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan)] [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan)

    2014-02-15

    We measured the thermal conductivity of amorphous Ge films prepared by magnetron sputtering. The thermal conductivity was significantly higher than the value predicted by the minimum thermal conductivity model and increased with deposition temperature. We found that variations in sound velocity and Ge film density were not the main factors in the high thermal conductivity. Fast Fourier transform patterns of transmission electron micrographs revealed that short-range order in the Ge films was responsible for their high thermal conductivity. The results provide experimental evidences to understand the underlying nature of the variation of phonon mean free path in amorphous solids.

  7. Thermal wake/vessel detection technique

    DOE Patents [OSTI]

    Roskovensky, John K. (Albuquerque, NM); Nandy, Prabal (Albuquerque, NM); Post, Brian N (Albuquerque, NM)

    2012-01-10

    A computer-automated method for detecting a vessel in water based on an image of a portion of Earth includes generating a thermal anomaly mask. The thermal anomaly mask flags each pixel of the image initially deemed to be a wake pixel based on a comparison of a thermal value of each pixel against other thermal values of other pixels localized about each pixel. Contiguous pixels flagged by the thermal anomaly mask are grouped into pixel clusters. A shape of each of the pixel clusters is analyzed to determine whether each of the pixel clusters represents a possible vessel detection event. The possible vessel detection events are represented visually within the image.

  8. Thermal Balance in the Intracluster Medium: Is AGN Feedback Necessary?

    E-Print Network [OSTI]

    Charlie Conroy; Jeremiah P. Ostriker

    2008-03-10

    A variety of physical heating mechanisms are combined with radiative cooling to explore, via one dimensional hydrodynamic simulations, the expected thermal properties of the intracluster medium (ICM) in the context of the cooling flow problem. Energy injection from type Ia supernovae, thermal conduction, and dynamical friction (DF) from orbiting satellite galaxies are considered. The novel feature of this work is the exploration of a wide range of efficiencies of each heating process. While the latter two can provide a substantial amount of energy, neither mechanism operating alone can produce nor maintain an ICM in thermal balance over cosmological timescales, in stark contrast with observations. For simulated clusters with initially isothermal temperature profiles, both mechanisms acting in combination result in long-term thermal balance for a range of ICM temperatures and for central electron densities less than n_e~0.02 cm^-3; at greater densities catastrophic cooling invariably occurs. Furthermore, these heating mechanisms can neither produce nor maintain clusters with a declining temperature profile in the central regions, implying that the observed "cooling-core'' clusters, which have such declining temperature profiles, cannot be maintained with these mechanisms alone. Thus, while there appears to be an abundant supply of energy capable of heating the ICM in clusters, it is extremely difficult for the energy deposition to occur in such a way that the ICM remains in thermal balance over cosmological time-scales. These results strongly suggest that a more dynamic heating process such as feedback from a central black hole is required to generate the properties of observed intracluster media. (ABRIDGED)

  9. Thermal Interface Materials for Power Electronics Applications: Preprint

    SciTech Connect (OSTI)

    Narumanchi, S.; Mihalic, M.; Kelly, K.; Eesley, G.

    2008-07-01

    The thermal resistance of the thermal interface material layer greatly affects the maximum temperature of the power electronics.

  10. Advanced Thermal Interface Materials (TIMs) for Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Thermal Performance and Reliability of Bonded Interfaces Thermal Performance and Reliability of Bonded Interfaces Vehicle Technologies...

  11. Calculated transport properties of CdO: thermal conductivity and thermoelectric power factor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lindsay, Lucas R.; Parker, David S.

    2015-10-01

    We present first principles calculations of the thermal and electronic transport properties of the oxide semiconductor CdO. In particular, we find from theory that the accepted thermal conductivity ? value of 0.7 Wm-1K-1 is approximately one order of magnitude too small; our calculations of ? of CdO are in good agreement with recent measurements. We also find that alloying of MgO with CdO is an effective means to reduce the lattice contribution to ?, despite MgO having a much larger thermal conductivity. We further consider the electronic structure of CdO in relation to thermoelectric performance, finding that large thermoelectric powermore »factors may occur if the material can be heavily doped p-type. This work develops insight into the nature of thermal and electronic transport in an important oxide semiconductor.« less

  12. Thermal self-oscillations in radiative heat exchange

    E-Print Network [OSTI]

    Dyakov, Sergey; Yan, Min; Qiu, Min

    2014-01-01

    We report the effect of relaxation-type self-induced temperature oscillations in the system of two parallel plates of SiO$_2$ and VO$_2$ which exchange heat by thermal radiation in vacuum. The nonlinear feedback in the self-oscillating system is provided by metal-insulator transition in VO$_2$. Using the method of fluctuational electrodynamics we show that under the action of external laser of a constant power, the temperature of VO$_2$ plate oscillates around its phase transition value.

  13. Thermal Shock-resistant Cement

    SciTech Connect (OSTI)

    Sugama T.; Pyatina, T.; Gill, S.

    2012-02-01

    We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cement’s resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved cement, causing its volume to expand.

  14. Heat Transfer Characteristics of the Wet Thermal Insulator with Multi-layer

    SciTech Connect (OSTI)

    Jong-Won Kim; Goon-Cherl Park; Tae-Wan Kim; Doo-Jeong Lee

    2006-07-01

    SMART developed in KAERI is an integral type nuclear cogeneration reactor. SMART uses a nitrogen-filled gas pressurizer so that the steam partial pressure should be minimized and the pressurizer should be under low temperature condition. To sustain the low temperature condition, the wet thermal insulator and pressurizer cooler are installed in the pressurizer. Since the performance of wet thermal insulator is an important parameter to determine the size of the pressurizer cooler, it is important to evaluate the insulation performance of the wet thermal insulator. The wet thermal insulators with 20 layers are installed in SMART. In the design of SMART, the empirical correlation by Adamovich was used to estimate the thermal resistance of the wet thermal insulator. However, the experimental condition and results are not clear so that this correlation should be verified. To analyze the heat transfer characteristics of the multi-layer wet thermal insulator, natural convective heat transport through horizontal and vertical water-filled layers is investigated. Experiments and numerical analyses have been performed to evaluate the heat transfer rates through multi-layer and verify Adamovich correlation. In addition, a new multi-layer correlation was obtained. (authors)

  15. Thermal well-test method

    DOE Patents [OSTI]

    Tsang, C.F.; Doughty, C.A.

    1984-02-24

    A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir is disclosed. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

  16. Majorana braiding with thermal noise

    E-Print Network [OSTI]

    Fabio L. Pedrocchi; David P. DiVincenzo

    2015-05-14

    We investigate the self-correcting properties of a network of Majorana wires, in the form of a trijunction, in contact with a parity-preserving thermal environment. As opposed to the case where Majoranas are immobile, braiding Majoranas within a trijunction introduces dangerous error processes that we identify. Such errors prevent the lifetime of the memory from increasing with the size of the system. We confirm our predictions with Monte Carlo simulations. Our findings put a fundamental restriction on the feasibility of this specific quantum computing architecture.

  17. Thermal aspects in curved metrics

    E-Print Network [OSTI]

    Giovanni Acquaviva

    2013-01-15

    In this paper we describe two approaches that allow to calculate some thermal features as perceived by different observers in curved spacetimes: the tunnelling method and the Unruh-DeWitt detector. The tunnelling phenomenon is a semi-classical approach to the issue of Hawking radiation and allows a straightforward calculation of the horizon temperature in a plethora of scenarios; the Unruh-DeWitt model relies instead on a quantum field-theoretical approach and (whenever possible) gives a more exact answer in terms of transition rates between energy levels of an idealized detector.

  18. Photon Clusters in Thermal Radiation

    E-Print Network [OSTI]

    Aleksey Ilyin

    2014-10-30

    Within the framework of Bose-Einstein statistics, it is shown that the blackbody radiation, in addition to single photons, contains photon clusters, or coalescent photons. The probability to find a k-photon cluster versus radiation frequency and temperature is found, as well as the statistics of clusters. Spectra of photon-cluster radiation are calculated as functions of blackbody temperature. The Planck's radiation law is derived based on the existence of photon clusters. The possibility of experimental observation of photon clusters in thermal radiation is discussed.

  19. Vacuum 59 (2000) 185}193 Development of composite thermal barrier coatings with

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    2000-01-01

    barrier composite coating was produced using a gas-tunnel-type plasma spraying torch. To enhance) in high-temperature turbine blade applications has led to the recognition that TBC-coated superalloys oVacuum 59 (2000) 185}193 Development of composite thermal barrier coatings with anisotropic

  20. Thermal-reliable 3D Clock-tree Synthesis Considering Nonlinear Electrical-thermal-coupled TSV Model

    E-Print Network [OSTI]

    Lim, Sung Kyu

    Thermal-reliable 3D Clock-tree Synthesis Considering Nonlinear Electrical-thermal-coupled TSV Model, physics-based electrical-thermal model is introduced for both signal and dummy thermal TSVs with the consider- ation of nonlinear electrical-thermal dependence. Taking thermal-reliable 3D clock-tree synthesis

  1. Thermal Conductivity Of Rubble Piles

    E-Print Network [OSTI]

    Luan, Jing

    2015-01-01

    Rubble piles are a common feature of solar system bodies. They are composed of monolithic elements of ice or rock bound by gravity. Voids occupy a significant fraction of the volume of a rubble pile. They can exist up to pressure $P\\approx \\epsy\\mu$, where $\\epsy$ is the monolithic material's yield strain and $\\mu$ its rigidity. At low $P$, contacts between neighboring elements are confined to a small fraction of their surface areas. As a result, the effective thermal conductivity of a rubble pile, $\\kcon\\approx k(P/(\\epsy\\mu))^{1/2}$, can be orders of magnitude smaller than, $k$, the thermal conductivity of its monolithic elements. In a fluid-free environment, only radiation can transfer energy across voids. It contributes an additional component, $\\krad=16\\ell\\sigma T^3/3$, to the total effective conductivity, $\\keff=\\kcon +\\krad$. Here $\\ell$, the inverse of the opacity per unit volume, is of order the size of the elements and voids. An important distinction between $\\kcon$ and $\\krad$ is that the former i...

  2. Thermal effects in radiation processing

    SciTech Connect (OSTI)

    Zagorski, Z.P.

    1984-10-21

    The balance of ionizing radiation energy incident on an object being processed is discussed in terms of energy losses, influencing the amount really absorbed. To obtain the amount of heat produced, the absorbed energy is corrected for the change in internal energy of the system and for the heat effect of secondary reactions developing after the initiation. The temperature of a processed object results from the heat evolved and from the specific heat of the material comprising the object. The specific heat of most materials is usually much lower than that of aqueous systems and therefore temperatures after irradiation are higher. The role of low specific heat in radiation processing at cryogenic conditions is stressed. Adiabatic conditions of accelerator irradiation are contrasted with the steady state thermal conditions prevailing in large gamma sources. Among specific questions discussed in the last part of the paper are: intermediate and final temperature of composite materials, measurement of real thermal effects in situ, neutralization of undesired warming experienced during radiation processing, processing at temperatures other than ambient and administration of very high doses of radiation.

  3. High thermal expansion, sealing glass

    DOE Patents [OSTI]

    Brow, Richard K. (Albuquerque, NM); Kovacic, Larry (Albuquerque, NM)

    1993-01-01

    A glass composition for hermetically sealing to high thermal expansion materials such as aluminum alloys, stainless steels, copper, and copper/beryllium alloys, which includes between about 10 and about 25 mole percent Na.sub.2 O, between about 10 and about 25 mole percent K.sub.2 O, between about 5 and about 15 mole percent Al.sub.2 O.sub.3, between about 35 and about 50 mole percent P.sub.2 O.sub.5 and between about 5 and about 15 mole percent of one of PbO, BaO, and mixtures thereof. The composition, which may also include between 0 and about 5 mole percent Fe.sub.2 O.sub.3 and between 0 and about 10 mole percent B.sub.2 O.sub.3, has a thermal expansion coefficient in a range of between about 160 and 210.times.10-7/.degree.C. and a dissolution rate in a range of between about 2.times.10.sup.- 7 and 2.times.10.sup.-9 g/cm.sup.2 -min. This composition is suitable to hermetically seal to metallic electrical components which will be subjected to humid environments over an extended period of time.

  4. High thermal expansion, sealing glass

    DOE Patents [OSTI]

    Brow, R.K.; Kovacic, L.

    1993-11-16

    A glass composition is described for hermetically sealing to high thermal expansion materials such as aluminum alloys, stainless steels, copper, and copper/beryllium alloys, which includes between about 10 and about 25 mole percent Na[sub 2]O, between about 10 and about 25 mole percent K[sub 2]O, between about 5 and about 15 mole percent Al[sub 2]O[sub 3], between about 35 and about 50 mole percent P[sub 2]O[sub 5] and between about 5 and about 15 mole percent of one of PbO, BaO, and mixtures thereof. The composition, which may also include between 0 and about 5 mole percent Fe[sub 2]O[sub 3] and between 0 and about 10 mole percent B[sub 2]O[sub 3], has a thermal expansion coefficient in a range of between about 160 and 210[times]10[sup [minus]7]/C and a dissolution rate in a range of between about 2[times]10[sup [minus]7] and 2[times]10[sup [minus]9]g/cm[sup 2]-min. This composition is suitable to hermetically seal to metallic electrical components which will be subjected to humid environments over an extended period of time.

  5. Nuclear Instruments and Methods in Physics Research A 432 (1999) 403}409 Measurement of the thermal and fast neutron #ux in a research

    E-Print Network [OSTI]

    Pázsit, Imre

    1999-01-01

    the neutron converter material to measure neu- trons of various energies, such as fast, thermal and epithermal positions, such as between the fuel plates of an MTR-type reactor. At the same time, its sensitive volume

  6. Near-field thermal electromagnetic transport

    E-Print Network [OSTI]

    Edalatpour, Sheila

    2015-01-01

    A general near-field thermal electromagnetic transport formalism that is independent of the size, shape and number of heat sources is derived. The formalism is based on fluctuational electrodynamics, where fluctuating currents due to thermal agitation are added into Maxwell's curl equations, and is thus valid for heat sources in local thermodynamic equilibrium. Using a volume integral formulation, it is shown that the proposed formalism is a generalization of the classical electromagnetic scattering framework in which thermal emission is implicitly assumed to be negligible. The near-field thermal electromagnetic transport formalism is afterwards applied to a problem involving three spheres exchanging thermal radiation, where all multipolar interactions are taken into account. Using the thermal discrete dipole approximation, it is shown that depending on the dielectric function, the presence of a third sphere slightly affects the spatial distribution of power absorbed compared to the two-sphere case. The forma...

  7. Improved Calculation of Thermal Fission Energy

    E-Print Network [OSTI]

    Ma, X B; Wang, L Z; Chen, Y X; Cao, J

    2013-01-01

    Thermal fission energy is one of the basic parameters needed in the calculation of antineutrino flux for reactor neutrino experiments. It is useful to improve the precision of the thermal fission energy calculation for current and future reactor neutrino experiments, which are aimed at more precise determination of neutrino oscillation parameters. In this article, we give new values for thermal fission energies of some common thermal reactor fuel iso-topes, with improvements on two aspects. One is more recent input data acquired from updated nuclear databases. The other, which is unprecedented, is a consideration of the production yields of fission fragments from both thermal and fast incident neutrons for each of the four main fuel isotopes. The change in calculated antineutrino flux due to the new values of thermal fission energy is about 0.33%, and the uncertainties of the new values are about 30% smaller.

  8. A Thermal-Photovoltaic Device Based on Thermally Enhanced Photoluminescence

    E-Print Network [OSTI]

    Manor, Assaf

    2015-01-01

    Single-junction photovoltaic cells are considered to be efficient solar energy converters, but even ideal cells cannot exceed the their fundamental thermodynamic efficiency limit, first analysed by Shockley and Queisser (SQ). For moderated irradiation levels, the efficiency limit ranges between 30%-40%. The efficiency loss is, to a great extent, due to the inherent heat-dissipation accompanying the process of electro-chemical potential generation. Concepts such as solar thermo-photovoltaics (STPV) and thermo-photonics4 aim to harness this dissipated heat, yet exceeding the SQ limit has not been achieved, mainly due to the very high operating temperatures needed. Recently, we demonstrated that in high-temperature endothermic-photoluminescence (PL), the photon rate is conserved with temperature increase, while each photon is blue shifted. We also demonstrated how endothermic-PL generates orders of magnitude more energetic-photons than thermal emission at similar temperatures. These new findings show that endoth...

  9. Ultra low thermal expansion, highly thermal shock resistant ceramic

    DOE Patents [OSTI]

    Limaye, S.Y.

    1996-01-30

    Three families of ceramic compositions having the given formula: {phi}{sub 1+X}Zr{sub 4}P{sub 6{minus}2X}Si{sub 2X}O{sub 24}, {phi}{sub 1+X}Zr{sub 4{minus}2X}Y{sub 2X}P{sub 6}O{sub 24} and {phi}{sub 1+X}Zr{sub 4{minus}X}Y{sub X}P{sub 6{minus}2X}Si{sub X}O{sub 24} wherein {phi} is either strontium or barium and X has a value from about 0.2 to about 0.8 have been disclosed. Ceramics formed from these compositions exhibit very low, generally near neutral, thermal expansion over a wide range of elevated temperatures. 7 figs.

  10. Ultra low thermal expansion, highly thermal shock resistant ceramic

    DOE Patents [OSTI]

    Limaye, Santosh Y. (1440 Sandpiper Cir. #38, Salt Lake City, UT 84117)

    1996-01-01

    Three families of ceramic compositions having the given formula: .phi..sub.1+X Zr.sub.4 P.sub.6-2X Si.sub.2X O.sub.24, .phi..sub.1+X Zr.sub.4-2X Y.sub.2X P.sub.6 O.sub.24 and .phi..sub.1+X Zr.sub.4-X Y.sub.X P.sub.6-2X Si.sub.X O.sub.24 wherein .phi. is either Strontium or Barium and X has a value from about 0.2 to about 0.8 have been disclosed. Ceramics formed from these compositions exhibit very low, generally near neutral, thermal expansion over a wide range of elevated temperatures.

  11. Thermal Comptonization and Disk Thermal Reprocessing in NGC 3516

    E-Print Network [OSTI]

    James Chiang; Omer Blaes

    2001-07-03

    We present an application of the thermal Comptonization/disk reprocessing model recently proposed by Zdziarski, Lubi\\'nski, & Smith. We show that the absence of strong optical variations in the presence of strong concurrent X-ray variations, similar to those found by HST/RXTE monitoring observations of NGC 3516, can be explained by changing the geometry of the Comptonizing plasma rather than the accretion disk itself. The total X-ray luminosity of the Comptonizing plasma must decrease as its spatial extent increases. In contrast, the disk inner radius must be roughly fixed in order not to produce optical/ultraviolet color variations stronger than observed. By including emission due to internal viscous dissipation in the disk, we can roughly match the optical and X-ray flux levels and variability amplitudes seen from NGC 3516 during the HST/RXTE campaign.

  12. Pluggable type-checking for custom type qualifiers in Java

    E-Print Network [OSTI]

    Papi, Matthew M.

    2007-09-17

    We have created a framework for adding custom type qualifiers to the Javalanguage in a backward-compatible way. The type system designer definesthe qualifiers and creates a compiler plug-in that enforces theirsemantics. ...

  13. DDT of hot, thermally damaged PBX 9501 in heavy confinement

    SciTech Connect (OSTI)

    Parker, Gary R [Los Alamos National Laboratory; Dickerson, Peter M [Los Alamos National Laboratory; Asay, Blaine W [Los Alamos National Laboratory; Mc Afee, John M [Los Alamos National Laboratory

    2010-01-01

    The research presented examines DDT of cylinders of PBX 9501 damaged above 180 C in heavy confinement for 0-3 hours and end-ignited or ramped until self-ignition (cookoff) occurred. Progression of luminous reaction was observed by streak photography through a glass-filled slit running the length of the cylinder. Post-mortem analysis of the steel DDT tubes was also done for correlation with the optical records. Results indicate that repeatable, Type I DDT was observed to occur in hot, thermally damaged PBX 9501 with low levels of porosity. It was demonstrated that multiple parameters affect DDT behavior, most likely in a coupled fashion. These parameters are porosity, ignition temperature and thermal soak duration. Conditions leading up to cookoff were shown to sensitize the HE to DDT by increasing likelihood and decreasing run length. Over the range of porosities (0-37%) and ignition temperatures (180-235 C), run lengths and detonation velocities varied, respectively, from approximately 22-109 mm and 6.0-8.3 mm {micro}s{sup -1}. This work fills a valuable and realistic space in the understanding of high explosive violent reaction, including DDT, in abnormal thermal environments.

  14. Carbon fiber composite characterization in adverse thermal environments.

    SciTech Connect (OSTI)

    Gomez-Vasquez, Sylvia; Brown, Alexander L.; Hubbard, Joshua A.; Ramirez, Ciro J.; Dodd, Amanda B.

    2011-05-01

    The behavior of carbon fiber aircraft composites was studied in adverse thermal environments. The effects of resin composition and fiber orientation were measured in two test configurations: 102 by 127 millimeter (mm) test coupons were irradiated at approximately 22.5 kW/m{sup 2} to measure thermal response, and 102 by 254 mm test coupons were irradiated at approximately 30.7 kW/m{sup 2} to characterize piloted flame spread in the vertically upward direction. Carbon-fiber composite materials with epoxy and bismaleimide resins, and uni-directional and woven fiber orientations, were tested. Bismaleimide samples produced less smoke, and were more resistant to flame spread, as expected for high temperature thermoset resins with characteristically lower heat release rates. All materials lost approximately 20-25% of their mass regardless of resin type, fiber orientation, or test configuration. Woven fiber composites displayed localized smoke jetting whereas uni-directional composites developed cracks parallel to the fibers from which smoke and flames emanated. Swelling and delamination were observed with volumetric expansion on the order of 100% to 200%. The purpose of this work was to provide validation data for SNL's foundational thermal and combustion modeling capabilities.

  15. Parametric Thermal Models of the Transient Reactor Test Facility (TREAT)

    SciTech Connect (OSTI)

    Bradley K. Heath

    2014-03-01

    This work supports the restart of transient testing in the United States using the Department of Energy’s Transient Reactor Test Facility at the Idaho National Laboratory. It also supports the Global Threat Reduction Initiative by reducing proliferation risk of high enriched uranium fuel. The work involves the creation of a nuclear fuel assembly model using the fuel performance code known as BISON. The model simulates the thermal behavior of a nuclear fuel assembly during steady state and transient operational modes. Additional models of the same geometry but differing material properties are created to perform parametric studies. The results show that fuel and cladding thermal conductivity have the greatest effect on fuel temperature under the steady state operational mode. Fuel density and fuel specific heat have the greatest effect for transient operational model. When considering a new fuel type it is recommended to use materials that decrease the specific heat of the fuel and the thermal conductivity of the fuel’s cladding in order to deal with higher density fuels that accompany the LEU conversion process. Data on the latest operating conditions of TREAT need to be attained in order to validate BISON’s results. BISON’s models for TREAT (material models, boundary convection models) are modest and need additional work to ensure accuracy and confidence in results.

  16. Uncooled thin film pyroelectric IR detector with aerogel thermal isolation

    SciTech Connect (OSTI)

    Ruffner, J.A.; Clem, P.G.; Tuttle, B.A. [and others

    1998-01-01

    Uncooled pyroelectric IR imaging systems, such as night vision goggles, offer important strategic advantages in battlefield scenarios and reconnaissance surveys. Until now, the current technology for fabricating these devices has been limited by low throughput and high cost which ultimately limit the availability of these sensor devices. We have developed and fabricated an alternative design for pyroelectric IR imaging sensors that utilizes a multilayered thin film deposition scheme to create a monolithic thin film imaging element on an active silicon substrate for the first time. This approach combines a thin film pyroelectric imaging element with a thermally insulating SiO{sub 2} aerogel thin film to produce a new type of uncooled IR sensor that offers significantly higher thermal, spatial, and temporal resolutions at a substantially lower cost per unit. This report describes the deposition, characterization and optimization of the aerogel thermal isolation layer and an appropriate pyroelectric imaging element. It also describes the overall integration of these components along with the appropriate planarization, etch stop, adhesion, electrode, and blacking agent thin film layers into a monolithic structure. 19 refs., 8 figs., 6 tabs.

  17. NO. REV. NO. LSPE THERMAL BATTERY TEST

    E-Print Network [OSTI]

    Rathbun, Julie A.

    NO. REV. NO. ATM 1086 LSPE THERMAL BATTERY TEST PAGE 1 OF DATE 2/25/72 Prepared by @c!_.e,~.~ ~P. Weir Approved by ~~---:J L. Lewis 5 #12;KC::Y, NO. LSPE THERMAL BATTERY TEST ATM 1086 2 PAGE OF DATE 2-52-72 Introduction The purpose of this ATM is to document the results of a Thermal Battery test for the Lunar Seismic

  18. PICTURE GROUPS OF FINITE TYPE AND COHOMOLOGY IN TYPE An

    E-Print Network [OSTI]

    Igusa, Kiyoshi

    PICTURE GROUPS OF FINITE TYPE AND COHOMOLOGY IN TYPE An KIYOSHI IGUSA, KENT ORR, GORDANA TODOROV a picture group. We construct a finite CW complex which is shown in another paper [10] to be a K(, 1) for this picture group. In [5] another independent proof was given for this fact in the special case of type

  19. Abstract Data Types 5 Algebraic Theory of Abstract Data Types

    E-Print Network [OSTI]

    Berger, Ulrich

    stack top: stack elts The following is an algebra for the signature STACK. Algebra SeqN Carriers N, N43 Part II Abstract Data Types #12;44 5 Algebraic Theory of Abstract Data Types An Abstract Data Type (ADT) is a collection of objects and functions, that is, an algebra, where one ignores how

  20. Thermal Simulation of Advanced Powertrain Systems | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simulation of Advanced Powertrain Systems Thermal Simulation of Advanced Powertrain Systems Under this project, the Volvo complete vehicle model was modified to include engine and...

  1. Geothermal Reconnaissance From Quantitative Analysis Of Thermal...

    Open Energy Info (EERE)

    Geothermal Reconnaissance From Quantitative Analysis Of Thermal Infrared Imagery Jump to: navigation, search OpenEI Reference LibraryAdd to library Reference: Geothermal...

  2. Develop & evaluate materials & additives that enhance thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Additives that Enhance Thermal and Overcharge Abuse Electrolytes - Advanced Electrolyte and Electrolyte Additives Advanced Electrolyte Additives for PHEVEV Lithium-ion Battery...

  3. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01

    heat. flow, dispersion, land subsidence or uplift, the ofpossibility of land subsidence or upliftu thermal pollution,flow, land uplift or subsidence 1 water chemistry and

  4. Thermal tolerant avicelase from acidothermus cellulolyticus ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Visit the NREL Commercialization and Technology Transfer Website Abstract: The invention provides a thermal tolerant (thermostable) cellulase that is a member of the...

  5. Thermal tolerant mannanase from acidothermus cellulolyticus ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Visit the NREL Commercialization and Technology Transfer Website Abstract: The invention provides a thermal tolerant mannanase that is a member of the glycoside hydrolase...

  6. Thermal tolerant exoglucanase from acidothermus cellulolyticus...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Visit the NREL Commercialization and Technology Transfer Website Abstract: The invention provides a thermal tolerant cellulase that is a member of the glycoside hydrolase...

  7. Thermal tolerant cellulase from acidothermus cellulolyticus ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Visit the NREL Commercialization and Technology Transfer Website Abstract: The invention provides a thermal tolerant cellulase that is a member of the glycoside hydrolase...

  8. Thermal tolerant cellulase from Acidothermus cellulolyticus ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enzymes for the Conversion of Biomass to Biofuels and Chemicals Abstract: The invention provides a thermal tolerant cellulase that is a member of the glycoside hydrolase...

  9. Thermal tolerant avicelase from Acidothermus cellulolyticus ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enzymes for the Conversion of Biomass to Biofuels and Chemicals Abstract: The invention provides a thermal tolerant (thermostable) cellulase, AviIII, that is a member of...

  10. Thermal tolerant exoglucanase from Acidothermus cellulolyticus...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enzymes for the Conversion of Biomass to Biofuels and Chemicals Abstract: The invention provides a thermal tolerant cellulase that is a member of the glycoside hydrolase...

  11. Thermal tolerant mannanase from acidothermus cellulolyticus ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enzymes for the Conversion of Biomass to Biofuels and Chemicals Abstract: The invention provides a thermal tolerant mannanase that is a member of the glycoside hydrolase...

  12. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May 18-22, 2009 -- Washington D.C. ape13bennion.pdf More Documents & Publications Power Electronic Thermal System Performance and Integration Integrated Power Module...

  13. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    Survey of Thermal Energy Storage in Aquifers Coupled withGeneration and Energy Storage," presented at Frontiers ofStudy of Underground Energy Storage Using High-Pressure,

  14. Advanced Thermal Control | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control Advanced Thermal Control Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland....

  15. Integrated Vehicle Thermal Management Systems (VTMS) Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems (VTMS) AnalysisModeling Integrated Vehicle Thermal Management Systems (VTMS) AnalysisModeling 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit...

  16. Thermal conductivity of bulk nanostructured lead telluride

    E-Print Network [OSTI]

    Hori, Takuma

    Thermal conductivity of lead telluride with embedded nanoinclusions was studied using Monte Carlo simulations with intrinsic phonon transport properties obtained from first-principles-based lattice dynamics. The ...

  17. turbine thermal index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management Fact Sheets Research Team Members Key Contacts Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances to current...

  18. Thermal and Electrical Transport in Oxide Heterostructures

    E-Print Network [OSTI]

    Ravichandran, Jayakanth

    2011-01-01

    2.3.1 Electrical transport . . . . . . . . . . . . . . . .3.5 Controlling electrical conductivity and opticalthe variation of electrical and thermal con- ductivity and

  19. Chemical preconcentrator with integral thermal flow sensor

    DOE Patents [OSTI]

    Manginell, Ronald P. (Albuquerque, NM); Frye-Mason, Gregory C. (Cedar Crest, NM)

    2003-01-01

    A chemical preconcentrator with integral thermal flow sensor can be used to accurately measure fluid flow rate in a microanalytical system. The thermal flow sensor can be operated in either constant temperature or constant power mode and variants thereof. The chemical preconcentrator with integral thermal flow sensor can be fabricated with the same MEMS technology as the rest of the microanlaytical system. Because of its low heat capacity, low-loss, and small size, the chemical preconcentrator with integral thermal flow sensor is fast and efficient enough to be used in battery-powered, portable microanalytical systems.

  20. Thermal Conductivity of Polycrystalline Semiconductors and Ceramics

    E-Print Network [OSTI]

    Wang, Zhaojie

    2012-01-01

    F. , Properties of Advanced Semiconductor Materials GaN,materials In the semiconductor community, thermal conductivity is a very important property

  1. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    in an estimated well drilling cost of $275 per foot. Thiscosts are not. Estimating the $/kW (thermal) of capi- tal investment needed for drilling and

  2. High-resolution urban thermal sharpener (HUTS)

    E-Print Network [OSTI]

    Dominguez, Anthony; Kleissl, Jan; Luvall, Jeffrey C; Rickman, Douglas L

    2011-01-01

    of zoning in urban ecosystems with remote sensing, Remote Sensing of Environment  Yaghoobian, N. , J.  of thermal imagery.  Remote Sensing of Environment 107 , 

  3. Design method addresses subsea pipeline thermal stresses

    SciTech Connect (OSTI)

    Suman, J.C.; Karpathy, S.A. )

    1993-08-30

    Managing thermal stresses in subsea pipelines carrying heated petroleum requires extensive thermal-stress analysis to predict trouble spots and to ensure a design flexible enough to anticipate stresses and expansions. Explored here are various methods for resolving predicaments posed by thermal loads and resulting deformations by keeping the stresses and deformations in the pipeline system within allowable limits. The problems posed by thermal stresses are not unique; the solutions proposed here are. These methods are based on recent work performed for a major Asian subsea pipeline project currently under construction.

  4. Evolving opportunities for providing thermal comfort

    E-Print Network [OSTI]

    Brager, Gail; Zhang, Hui; Arens, Edward

    2015-01-01

    for thermal comfort and energy savings. Master of Scienceprevent good building energy Performance – Inte- gratedACEEE Summer Study on Energy Efficiency in Buildings, Arens,

  5. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    in an estimated well drilling cost of $275 per foot. Thiscosts are not. Estimating the $/kW (thermal) of capi- tal investment needed for drilling

  6. Theoretical investigation of the impact of grain boundaries and fission gases on UO2 thermal conductivity

    SciTech Connect (OSTI)

    Du, Shiyu; Andersson, Anders D.; Germann, Timothy C.; Stanek, Christopher R.

    2012-05-02

    Thermal conductivity is one of the most important metrics of nuclear fuel performance. Therefore, it is crucial to understand the impact of microstructure features on thermal conductivity, especially since the microstructure evolves with burn-up or time in the reactor. For example, UO{sub 2} fuels are polycrystalline and for high-burnup fuels the outer parts of the pellet experience grain sub-division leading to a very fine grain structure. This is known to impact important physical properties such as thermal conductivity as fission gas release. In a previous study, we calculated the effect of different types of {Sigma}5 grain boundaries on UO{sub 2} thermal conductivity and predicted the corresponding Kapitza resistances, i.e. the resistance of the grain boundary in relation to the bulk thermal resistance. There have been reports of pseudoanisotropic effects for the thermal conductivity in cubic polycrystalline materials, as obtained from molecular dynamics simulations, which means that the conductivity appears to be a function of the crystallographic direction of the temperature gradient. However, materials with cubic symmetry should have isotropic thermal conductivity. For this reason it is necessary to determine the cause of this apparent anisotropy and in this report we investigate this effect in context of our earlier simulations of UO{sub 2} Kapitza resistances. Another source of thermal resistance comes from fission products and fission gases. Xe is the main fission gas and when generated in sufficient quantity it dissolves from the lattice and forms gas bubbles inside the crystalline structure. We have performed studies of how Xe atoms dissolved in the UO{sub 2} matrix or precipitated as bubbles impact thermal conductivity, both in bulk UO{sub 2} and in the presence of grain boundaries.

  7. Computational Study on Thermal Properties of HVAC System with Building Structure Thermal Storage 

    E-Print Network [OSTI]

    Sato, Y.; Sagara, N.; Ryu, Y.; Maehara, K.; Nagai, T.

    2007-01-01

    Building structure thermal storage (BSTS) HVAC systems can store heat during nighttime thermal storage operation (nighttime operation hours) by using off-peak electricity and release it in the daytime air-conditioning operation (daytime operation...

  8. APPLIED THERMAL ENGINEERING Manuscript Draft

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    exchanger storage system for building ventilation application ARTICLE TYPE: Research paper ABSTRACT This paper presents a heat exchanger prototype containing PCM material designed to provide a 1kW heating in the exchanger, yet the heating power is lower than 1kW before 2 hours because of the use of a of constant

  9. A Note on Thermal Activation

    E-Print Network [OSTI]

    Daniel Boyanovsky; Richard Holman; Da-Shin Lee; João P. Silva

    1994-03-10

    Thermal activation is mediated by field configurations that correspond to saddle points of the energy functional. The rate of probability flow along the unstable functional directions, i.e the activation rate, is usually obtained from the imaginary part of a suitable analytic continuation of the equilibrium free energy. In this note we provide a real-time, non-equilibrium interpretation of this imaginary part which is analogous to the real-time interpretation of the imaginary part of the one-loop effective potential in theories with symmetry breaking. We argue that in situations in which the system is strongly out of equilibrium the rate will be time dependent and illustrate this with an example.

  10. Thermal hydraulics development for CASL

    SciTech Connect (OSTI)

    Lowrie, Robert B

    2010-12-07

    This talk will describe the technical direction of the Thermal-Hydraulics (T-H) Project within the Consortium for Advanced Simulation of Light Water Reactors (CASL) Department of Energy Innovation Hub. CASL is focused on developing a 'virtual reactor', that will simulate the physical processes that occur within a light-water reactor. These simulations will address several challenge problems, defined by laboratory, university, and industrial partners that make up CASL. CASL's T-H efforts are encompassed in two sub-projects: (1) Computational Fluid Dynamics (CFD), (2) Interface Treatment Methods (ITM). The CFD subproject will develop non-proprietary, scalable, verified and validated macroscale CFD simulation tools. These tools typically require closures for their turbulence and boiling models, which will be provided by the ITM sub-project, via experiments and microscale (such as DNS) simulation results. The near-term milestones and longer term plans of these two sub-projects will be discussed.

  11. Chaos in thermal pulse combustion

    SciTech Connect (OSTI)

    Daw, C.S.; Thomas, J.F. [Engineering Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)] [Engineering Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Richards, G.A. [U.S. Department of Energy, Morgantown Energy Technology Center, Morgantown, West Virginia 26505 (United States)] [U.S. Department of Energy, Morgantown Energy Technology Center, Morgantown, West Virginia 26505 (United States); Narayanaswami, L.L. [Embry-Riddle Aeronautical University, Department of Aerospace Engineering, Daytona Beach, Florida 32114 (United States)] [Embry-Riddle Aeronautical University, Department of Aerospace Engineering, Daytona Beach, Florida 32114 (United States)

    1995-12-01

    An experimental thermal pulse combustor and a differential equation model of this device are shown to exhibit chaotic behavior under certain conditions. Chaos arises in the model by means of a progression of period-doubling bifurcations that occur when operating parameters such as combustor wall temperature or air/fuel flow are adjusted to push the system toward flameout. Bifurcation sequences have not yet been reproduced experimentally, but similarities are demonstrated between the dynamic features of pressure fluctuations in the model and experiment. Correlation dimension, Kolmogorov entropy, and projections of reconstructed attractors using chaotic time series analysis are demonstrated to be useful in classifying dynamical behavior of the experimental combustor and for comparison of test data to the model results. Ways to improve the model are suggested. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  12. Tornado type wind turbines

    DOE Patents [OSTI]

    Hsu, Cheng-Ting (Ames, IA)

    1984-01-01

    A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

  13. Annotated Type Systems Program Analysis

    E-Print Network [OSTI]

    Palsberg, Jens

    Danish Summary xi 1 Introduction 1 1.1 The Standard Type System . . . . . . . . . . . . . . . . . 3 1 . . . . . . . . . . . . . . . . . . 36 2.1.3 The Conjunction Type System . . . . . . . . . . . . 37 2.2 The Power of tAnnotated Type Systems for Program Analysis Kirsten Lackner Solberg Computer Science Department

  14. PROGRAMMING WITH TYPES A Dissertation

    E-Print Network [OSTI]

    Weirich, Stephanie

    WITH TYPES Stephanie Claudene Weirich, Ph.D. Cornell University 2002 Run-time type analysis, facilities to support type analysis often require complicated language semantics that allow little freedom to list. Steve's parents Arthur and Deborah Zdancewic have encouraged me as long as I have known them. I

  15. Enhancing Low-Grade Thermal Energy Recovery in a Thermally Regenerative Ammonia Battery Using

    E-Print Network [OSTI]

    Enhancing Low-Grade Thermal Energy Recovery in a Thermally Regenerative Ammonia Battery Using of renewable energy that is carbon neutral and sustainable.[1] Low-grade thermal energy from either industrial processes or natural solar or geothermal pro- cesses becomes attractive as a possible energy source because

  16. Thermal ecology of Blanding's Turtles (Emydoidea blandingii) on Grenadier Island: the influence of thermal

    E-Print Network [OSTI]

    Blouin-Demers, Gabriel

    Thermal ecology of Blanding's Turtles (Emydoidea blandingii) on Grenadier Island: the influence of thermal quality of the environment on habitat selection by Jeff Graham Thesis submitted to the Department an organism's basic functioning are dependent on temperature. Also, behaviours dictated by the thermal quality

  17. Energy storage, Thermal energy storage (TES)

    E-Print Network [OSTI]

    Zevenhoven, Ron

    Energy storage, Thermal energy storage (TES) Ron Zevenhoven Åbo Akademi University Thermal and Flow 8, 20500 Turku 2/32 4.1 Energy storage #12;Energy storage - motivations Several reasons motivate the storage of energy, either as heat, cold, or electricity: ­ Supplies of energy are in many cases

  18. Thermal Expansion and Diffusion Coefficients of Carbon

    E-Print Network [OSTI]

    Wei, Chenyu

    Thermal Expansion and Diffusion Coefficients of Carbon Nanotube-Polymer Composites Chenyu Wei* NASA of carbon nanotube-polyethylene composites. Additions of carbon nanotubes to a polymer matrix are found for polymer-nanotube interface are used to investigate the thermal expansion and diffusion characteristics

  19. ALSEP CASK ASSEMBLY GEARBOX THERMAL VACUUM TEST

    E-Print Network [OSTI]

    Rathbun, Julie A.

    ATM-835 ALSEP CASK ASSEMBLY GEARBOX · THERMAL VACUUM TEST 1 July 1969 Prepared by: Approved by: L. R. Lewis #12;: :, t · ALSEP Cask Assembly Gearbox Thermal Vacuum Test NO. ATM-835 PAGE 1 Aerospace Assembly CARR of 24 and 25 June 1969 the following summary of test results is submitted. This summary deals

  20. Apparatus and method for thermal power generation

    DOE Patents [OSTI]

    Cohen, Paul (Pittsburgh, PA); Redding, Arnold H. (Export, PA)

    1978-01-01

    An improved thermal power plant and method of power generation which minimizes thermal stress and chemical impurity buildup in the vaporizing component, particularly beneficial under loss of normal feed fluid and startup conditions. The invention is particularly applicable to a liquid metal fast breeder reactor plant.

  1. Liquid cooled fiber thermal radiation receiver

    DOE Patents [OSTI]

    Butler, B.L.

    1985-03-29

    A radiation-to-thermal receiver apparatus for collecting radiation and converting it to thermal energy is disclosed. The invention includes a fibrous mat material which captures radiation striking the receiver. Captured radiation is removed from the fibrous mat material by a transparent fluid within which the material is bathed.

  2. Analysis of thermally-degrading, confined HMX

    SciTech Connect (OSTI)

    Hobbs, M.L.; Schmitt, R.G.; Renlund, A.M.

    1996-12-01

    The response of a thermally-degrading, confined HMX pellet is analyzed using a Reactive Elastic-Plastic (REP) constitutive model which is founded on the collapse and growth of internal inclusions resulting from physical and chemical processes such as forced displacement, thermal expansion, and/or decomposition. Axial stress predictions compare adequately to data. Deficiencies in the model and future directions are discussed.

  3. Thermal dissolution of solid fossil fuels

    SciTech Connect (OSTI)

    E.G. Gorlov

    2007-10-15

    The use of oil shales and coals in the processes of thermal dissolution is considered. It is shown that thermal dissolution is a mode of liquefaction of solid fossil fuels and can be used both independently and in combination with liquefaction of coals and processing of heavy petroleum residues.

  4. Thermodynamics of nuclei in thermal contact

    E-Print Network [OSTI]

    Karl-Heinz Schmidt; Beatriz Jurado

    2010-10-05

    The behaviour of a di-nuclear system in the regime of strong pairing correlations is studied with the methods of statistical mechanics. It is shown that the thermal averaging is strong enough to assure the application of thermodynamical methods to the energy exchange between the two nuclei in contact. In particular, thermal averaging justifies the definition of a nuclear temperature.

  5. Thermal neutron shield and method of manufacture

    DOE Patents [OSTI]

    Brindza, Paul Daniel; Metzger, Bert Clayton

    2013-05-28

    A thermal neutron shield comprising concrete with a high percentage of the element Boron. The concrete is least 54% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of Boron loaded concrete which includes enriching the concrete mixture with varying grit sizes of Boron Carbide.

  6. Thermal neutron shield and method of manufacture

    DOE Patents [OSTI]

    Metzger, Bert Clayton; Brindza, Paul Daniel

    2014-03-04

    A thermal neutron shield comprising boron shielding panels with a high percentage of the element Boron. The panel is least 46% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of boron shielding panels which includes enriching the pre-cursor mixture with varying grit sizes of Boron Carbide.

  7. Examination of Thermal Impacts from Stormwater BMPs

    E-Print Network [OSTI]

    Examination of Thermal Impacts from Stormwater BMPs In a study in Durham, New Hampshire, four years treatment by infiltration and filtration can moderate runoff temperatures by thermal exchange with cool · Bioretention · Storm Tech Isolator Row · Detention Pond · Gravel Wetland · ADS Infiltration System · Retention

  8. Thermal Instability of Olivine-Type LiMnP04 Cathodes

    E-Print Network [OSTI]

    Chen, Guoying

    2010-01-01

    commercialization as a lithium ion battery cathode material.in the presence of a lithium-ion battery electrolyte is also

  9. Electrical and Thermal Transport Optimization of High Efficient n-type

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril

  10. Low thermal stress ceramic turbine nozzle

    DOE Patents [OSTI]

    Glezer, Boris (Del Mar, CA); Bagheri, Hamid (San Diego, CA); Fierstein, Aaron R. (San Diego, CA)

    1996-01-01

    A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of vanes therebetween. Each of the plurality of vanes have a device for heating and cooling a portion of each of the plurality of vanes. Furthermore, the inner shroud has a plurality of bosses attached thereto. A cylindrical member has a plurality of grooves formed therein and each of the plurality of bosses are positioned in corresponding ones of the plurality of grooves. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component.

  11. A boron nitride nanotube peapod thermal rectifier

    SciTech Connect (OSTI)

    Loh, G. C., E-mail: jgloh@mtu.edu [Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States); Institute of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632 (Singapore); Baillargeat, D. [CNRS-International-NTU-Thales Research Alliance (CINTRA), 50 Nanyang Drive, Singapore 637553 (Singapore)

    2014-06-28

    The precise guidance of heat from one specific location to another is paramount in many industrial and commercial applications, including thermal management and thermoelectric generation. One of the cardinal requirements is a preferential conduction of thermal energy, also known as thermal rectification, in the materials. This study introduces a novel nanomaterial for rectifying heat—the boron nitride nanotube peapod thermal rectifier. Classical non-equilibrium molecular dynamics simulations are performed on this nanomaterial, and interestingly, the strength of the rectification phenomenon is dissimilar at different operating temperatures. This is due to the contingence of the thermal flux on the conductance at the localized region around the scatterer, which varies with temperature. The rectification performance of the peapod rectifier is inherently dependent on its asymmetry. Last but not least, the favourable rectifying direction in the nanomaterial is established.

  12. Thermal preference in Drosophila Michael E. Dillon a,,1

    E-Print Network [OSTI]

    Huey, Raymond B.

    Review Thermal preference in Drosophila Michael E. Dillon a,Ã,1 , George Wang a , Paul A. Garrity b October 2008 Accepted 12 November 2008 Keywords: dTRPA1 Drosophila Thermal preference Fitness Thermal is known about Drosophila thermal preference. Work on thermal behavior in this group is particularly

  13. EXERGETIC ANALYSIS OF A STEAM-FLASHING THERMAL STORAGE SYSTEM

    E-Print Network [OSTI]

    Abstract Thermal energy storage is attractive in the design of concentrator solar thermal systems because of its ability to allow collector field, thermal storage, and power cycle to all work with the same fluid, thermal storage 1. Introduction As solar thermal technology is still in its infancy compared to more

  14. University of Alberta SafeType: Detecting Type Violations for Type-Based Alias

    E-Print Network [OSTI]

    Amaral, José Nelson

    University of Alberta SafeType: Detecting Type Violations for Type-Based Alias Analysis of C Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other

  15. A simplified model for thermal-wave cavity self-consistent measurement of thermal diffusivity

    SciTech Connect (OSTI)

    Shen, Jun, E-mail: jun.shen@nrc-cnrc.gc.ca; Zhou, Jianqin; Gu, Caikang [Energy, Mining and Environment Portfolio, National Research Council Canada, 4250 East Mall, Vancouver, British Columbia V6T 1W5 (Canada)] [Energy, Mining and Environment Portfolio, National Research Council Canada, 4250 East Mall, Vancouver, British Columbia V6T 1W5 (Canada); Neill, Stuart [Energy, Mining and Environment Portfolio, National Research Council Canada, 1200 Montreal Road, Building M-9, Ottawa, Ontario K1A 0R6 (Canada)] [Energy, Mining and Environment Portfolio, National Research Council Canada, 1200 Montreal Road, Building M-9, Ottawa, Ontario K1A 0R6 (Canada); Michaelian, Kirk H.; Fairbridge, Craig [CanmetENERGY, Natural Resources Canada, One Oil Drive Patch, Devon, Alberta T9G 1A8 (Canada)] [CanmetENERGY, Natural Resources Canada, One Oil Drive Patch, Devon, Alberta T9G 1A8 (Canada); Astrath, Nelson G. C.; Baesso, Mauro L. [Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, Paraná 87020-900 (Brazil)] [Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, Paraná 87020-900 (Brazil)

    2013-12-15

    A simplified theoretical model was developed for the thermal-wave cavity (TWC) technique in this study. This model takes thermal radiation into account and can be employed for absolute measurements of the thermal diffusivity of gas and liquid samples without any knowledge of geometrical and thermal parameters of the components of the TWC. Using this model and cavity-length scans, thermal diffusivities of air and distilled water were accurately and precisely measured as (2.191 ± 0.004) × 10{sup ?5} and (1.427 ± 0.009) × 10{sup ?7} m{sup 2}?s{sup ?1}, respectively, in very good agreement with accepted literature values.

  16. Super-hot (T > 30 MK) Thermal Plasma in Solar Flares

    E-Print Network [OSTI]

    Caspi, Amir

    2010-01-01

    B = 100 G Total Thermal Energy Thermal Energy Density B 2 /B = 100 G Total Thermal Energy Thermal Energy Density B 2 /Total thermal energy (red) and thermal energy density (blue)

  17. Process to improve boiler operation by supplemental firing with thermally beneficiated low rank coal

    DOE Patents [OSTI]

    Sheldon, Ray W. (Huntley, MT)

    2001-01-01

    The invention described is a process for improving the performance of a commercial coal or lignite fired boiler system by supplementing its normal coal supply with a controlled quantity of thermally beneficiated low rank coal, (TBLRC). This supplemental TBLRC can be delivered either to the solid fuel mill (pulverizer) or directly to the coal burner feed pipe. Specific benefits are supplied based on knowledge of equipment types that may be employed on a commercial scale to complete the process. The thermally beneficiated low rank coal can be delivered along with regular coal or intermittently with regular coal as the needs require.

  18. PVD thermal barrier coating applications and process development for aircraft engines

    SciTech Connect (OSTI)

    Rigney, D.V.; Viguie, R.; Wortman, D.J.; Skelly, D.W.

    1995-10-01

    Thermal barrier coatings (TBC`s) have been developed for application to aircraft engine components to improve the life in an increasingly hostile thermal environment. The choice of TBC type is related to the component, intended use and economics. The selection of electron beam physical vapor deposition (EB PVD) processing for turbine blades is due in part to part size, surface finish requirements, thickness control needs, and hole closure issues. Process development of PVD TBC`s has been carried out at several different sites including GEAE. Some of the influences of processing variables on microstructure are discussed. The GEAE development coater and initial experiences of pilot line operation are discussed.

  19. TYPE OF OPERATION R Research & Development T& Facility Type

    Office of Legacy Management (LM)

    -- R Research & Development T& Facility Type 0 Production scale testing a Pilat scale Y-. Bench Scale Process i Theoretical Studies Sample & Analysis 0 Productian 0 Disposal...

  20. Thermal properties of the hybrid graphene-metal nano-micro-composites: Applications in thermal interface materials

    E-Print Network [OSTI]

    Thermal properties of the hybrid graphene-metal nano-micro-composites: Applications in thermal) The authors report on synthesis and thermal properties of the electrically conductive thermal interface materials with the hybrid graphene-metal particle fillers. The thermal conductivity of resulting composites

  1. Thermal dileptons at SPS energies

    E-Print Network [OSTI]

    S. Damjanovic; for the NA60 Collaboration

    2008-05-27

    Clear signs of excess dileptons above the known sources were found at the SPS since long. However, a real clarification of these observations was only recently achieved by NA60, measuring dimuons with unprecedented precision in 158A GeV, In-In collisions. The excess mass spectrum in the region M rho -> mu+mu- annihilation. The associated rho spectral function shows a strong broadening, but essentially no shift in mass. In the region M>1 GeV, the excess is found to be prompt, not due to enhanced charm production. The inverse slope parameter Teff associated with the transverse momentum spectra rises with mass up to the rho, followed by a sudden decline above. While the initial rise, coupled to a hierarchy in hadron freeze-out, points to radial flow of a hadronic decay source, the decline above signals a transition to a low-flow source, presumably of partonic origin. The mass spectra show at low transverse momenta the steep rise towards low masses characteristic for Planck-like radiation. The polarization of the excess referred to the Collins Soper frame is found to be isotropic. All observations are consistent with the interpretation of the excess as thermal radiation.

  2. Cellulolytic Microorganisms from Thermal Environments

    SciTech Connect (OSTI)

    Vishnivetskaya, Tatiana A [ORNL; Raman, Babu [ORNL; Phelps, Tommy Joe [ORNL; Podar, Mircea [ORNL; Elkins, James G [ORNL

    2012-01-01

    Thermal, anaerobic environments rich in decaying plant material are a potential source of novel cellulolytic bacteria. Samples collected from geothermal aquifers in the Yellowstone National Park (YNP) were used to select for cellulolytic thermophiles. Laboratory enrichments on dilute-acid pretreated plant biomass (switchgrass, Populus), and crystalline cellulose (Avicel) resulted in the isolation of 247 environmental clones. The majority of individual clones were affiliated with the cellulolytic bacteria of phylum Firmicutes, followed by xylanolytic and saccharolytic members of the phylum Dictyoglomi. Among the Firmicutes, the clones were affiliated with the genera Caldicellulosiruptor (54.4%), Caloramator (11.5%), Thermoanaerobacter (8.8%), Thermovenabulum (4.1%), and Clostridium (2.0%). From established anaerobic thermophilic enrichments a total of 81 single strains of the genera Caldicellulosiruptor (57%) and Thermoanaerobacter (43%) were isolated. With continuous flow enrichment on Avicel, increases in the relative abundance of Caloramator sp. was observed over clones detected from the Caldicellulosiruptor. Complex communities of interacting microorganisms bring about cellulose decomposition in nature, therefore using up-to-date approaches may yield novel cellulolytic microorganisms with high activity and a rapid rate of biomass conversion to biofuels.

  3. Plates for vacuum thermal fusion

    DOE Patents [OSTI]

    Davidson, James C. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

    2002-01-01

    A process for effectively bonding arbitrary size or shape substrates. The process incorporates vacuum pull down techniques to ensure uniform surface contact during the bonding process. The essence of the process for bonding substrates, such as glass, plastic, or alloys, etc., which have a moderate melting point with a gradual softening point curve, involves the application of an active vacuum source to evacuate interstices between the substrates while at the same time providing a positive force to hold the parts to be bonded in contact. This enables increasing the temperature of the bonding process to ensure that the softening point has been reached and small void areas are filled and come in contact with the opposing substrate. The process is most effective where at least one of the two plates or substrates contain channels or grooves that can be used to apply vacuum between the plates or substrates during the thermal bonding cycle. Also, it is beneficial to provide a vacuum groove or channel near the perimeter of the plates or substrates to ensure bonding of the perimeter of the plates or substrates and reduce the unbonded regions inside the interior region of the plates or substrates.

  4. Assessment of Hypothermia Blankets Using an Advanced Thermal Manikin: Preprint

    SciTech Connect (OSTI)

    Rugh, J. P.; Barazanji, K.

    2009-07-01

    A thermal manikin developed at NREL helped to assess thermal blankets used to treat U.S. Army personnel suffering from hypothermia. The chemical blanket showed the best thermal performance.

  5. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01

    for concentrating solar-thermal energy use a large number ofsolar energy and collecting the resulting thermal energy inBoth solar power plants absorb thermal energy in high-

  6. Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration

    E-Print Network [OSTI]

    Jackson, Philip Robert

    2012-01-01

    of electrical and thermal energy, and the software used forincident 384 watts of thermal energy from the sun via thethe system can extract thermal energy from the receiver, but

  7. EXPERIMENTAL AND THEORETICAL STUDIES OF THERMAL ENERGY STORAGE IN AQUIFERS

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2011-01-01

    In Proceed- ings of Thermal Energy Storage in Aquifers Work-Mathematical Modeling of Thermal Energy storage in Aquifers.In Proceed- ings of Thermal Energy Storage in Aquifers Work-

  8. Thermal dependence of endurance and locomotory energetics in a lizard

    E-Print Network [OSTI]

    Bennett, Albert F.

    Thermal dependence of endurance and locomotory energetics in a lizard HENRY B. JOHN thermal dependencies of endurance and the rates of oxygen consumption (v02) and carbon dioxide production processesare generally very tempera- ture dependent. Consequently, a comparable thermal dependence

  9. Thermal comfort and perceived air quality of a PEC system

    E-Print Network [OSTI]

    Arens, Edward; Zhang, Hui; Pasut, Wilmer; Warneke, Ashley; Bauman, Fred; Higuchi, Hiroshi

    2011-01-01

    Akimoto, T. , Genma T. 2007. Thermal sensation and comfortW. , Gong, N. 2007. Thermal performance of a personalizedRESULTS 1. Whole-body thermal sensation and comfort with the

  10. EXPERIMENTAL AND THEORETICAL STUDIES OF THERMAL ENERGY STORAGE IN AQUIFERS

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2011-01-01

    K" and Hare, R, C" Thermal Storage for Eco-energy utilities,Current aquifer thermal storage projects are sum- marized inIn Proceed- ings of Thermal Energy Storage in Aquifers Work-

  11. Ocean Thermal Energy Conversion: Potential Environmental Impacts and Fisheries

    E-Print Network [OSTI]

    Hawai'i at Manoa, University of

    Ocean Thermal Energy Conversion: Potential Environmental Impacts and Fisheries Christina M Comfort Institute #12;Ocean Thermal Energy Conversion (OTEC) · Renewable energy ­ ocean thermal gradient · Large will unavoidably affect pelagic fish... ­ Noise and water pollution ­ FAD effects ­ Entrainment and Impingement

  12. Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration

    E-Print Network [OSTI]

    Jackson, Philip Robert

    2012-01-01

    13 2.2.2. Solar Thermal Versus Photovoltaic ..…………..…………doi:10.1038/nmat2090. 17. Solar Thermal Technology on anFigure 2.5: An eSolar solar thermal system in Burbank,

  13. Thermal analysis and air flow modelling of electrical machines 

    E-Print Network [OSTI]

    Chong, Yew Chuan

    2015-06-29

    Thermal analysis is an important topic that can affect the electrical machine performance, reliability, lifetime and efficiency. In order to predict the electrical machine thermal performance accurately, thermal analysis ...

  14. Molecular dynamics simulation of thermal energy transport in polydimethylsiloxane (PDMS)

    E-Print Network [OSTI]

    Luo, Tengfei

    Heat transfer across thermal interface materials is a critical issue for microelectronics thermal management. Polydimethylsiloxane (PDMS), one of the most important components of thermal interface materials presents a large ...

  15. Design optimization of thermal paths in spacecraft systems

    E-Print Network [OSTI]

    Stout, Kevin Dale

    2013-01-01

    This thesis introduces a thermal design approach to increase thermal control system performance and decrease reliance on system resources, e.g., mass. Thermal design optimization has lagged other subsystems because the ...

  16. Ocean Thermal Energy Conversion Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat...

  17. The Role of Thermal Energy Storage in Industrial Energy Conservation 

    E-Print Network [OSTI]

    Duscha, R. A.; Masica, W. J.

    1979-01-01

    Thermal Energy Storage for Industrial Applications is a major thrust of the Department of Energy's Thermal Energy Storage Program. Utilizing Thermal Energy Storage (TES) with process or reject heat recovery systems has been shown to be extremely...

  18. Improved lumped parameter thermal modelling of synchronous generators 

    E-Print Network [OSTI]

    Mejuto, Carlos

    2010-01-01

    Within the existing available mix of numerical and analytical thermal analysis options, lumped parameter thermal modelling is selected as the operational backbone to develop an improved novel synchronous generator thermal ...

  19. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01

    for concentrating solar-thermal energy use a large number ofBoth solar power plants absorb thermal energy in high-of a solar power plant that converts thermal energy into

  20. Thermal interface materials (TIMs) are extensively used in thermal management applications especially in the microelectronics industry. With the advancement in microprocessors design and speed, the thermal management is

    E-Print Network [OSTI]

    Thermal interface materials (TIMs) are extensively used in thermal management applications, the thermal management is becoming more complex. As length scales shrink, power density and heat dissipation materials such as carbon nanotubes. The primary goal of all these materials is to reduce the thermal

  1. Thermal conductivity measurements of Summit polycrystalline silicon.

    SciTech Connect (OSTI)

    Clemens, Rebecca; Kuppers, Jaron D.; Phinney, Leslie Mary

    2006-11-01

    A capability for measuring the thermal conductivity of microelectromechanical systems (MEMS) materials using a steady state resistance technique was developed and used to measure the thermal conductivities of SUMMiT{trademark} V layers. Thermal conductivities were measured over two temperature ranges: 100K to 350K and 293K to 575K in order to generate two data sets. The steady state resistance technique uses surface micromachined bridge structures fabricated using the standard SUMMiT fabrication process. Electrical resistance and resistivity data are reported for poly1-poly2 laminate, poly2, poly3, and poly4 polysilicon structural layers in the SUMMiT process from 83K to 575K. Thermal conductivity measurements for these polysilicon layers demonstrate for the first time that the thermal conductivity is a function of the particular SUMMiT layer. Also, the poly2 layer has a different variation in thermal conductivity as the temperature is decreased than the poly1-poly2 laminate, poly3, and poly4 layers. As the temperature increases above room temperature, the difference in thermal conductivity between the layers decreases.

  2. Thermal properties of organic and inorganic aerogels

    SciTech Connect (OSTI)

    Hrubesh, L.W.; Pekala, R.W. (Chemistry and Material Science Department, Lawrence Livermore National Laboratory, Livermore, California 94551-9900 (United States))

    1994-03-01

    Aerogels are open-cell foams that have already been shown to be among the best thermal insulating solid materials known. This paper examines the three major contributions to thermal transport through porous materials; solid, gaseous, and radiative, to identify how to reduce the thermal conductivity of air-filled aerogels. We find that significant improvements in the thermal insulation property of aerogels are possible by; (i) employing materials with a low intrinsic solid conductivity, (ii) reducing the average pore size within aerogels, and (iii) affecting an increase of the infrared extinction in aerogels. Theoretically, polystyrene is the best of the organic materials and zirconia is the best inorganic material to use for the lowest achievable conductivity. Significant reduction of the thermal conductivity for all aerogel varieties is predicted with only a modest decrease of the average pore size. This might be achieved by modifying the sol-gel chemistry leading to aerogels. For example, a thermal resistance value of [ital R]=20 per inch would be possible for an air-filled resorcinol-formaldehyde aerogel at a density of 156 kg/m[sup 3], if the average pore size was less than 35 nm. An equation is included which facilitates the calculation of the optimum density for the minimum total thermal conductivity, for all varieties of aerogels.

  3. Improved Calculation of Thermal Fission Energy

    E-Print Network [OSTI]

    X. B. Ma; W. L. Zhong; L. Z. Wang; Y. X. Chen; J. Cao

    2013-06-30

    Thermal fission energy is one of the basic parameters needed in the calculation of antineutrino flux for reactor neutrino experiments. It is useful to improve the precision of the thermal fission energy calculation for current and future reactor neutrino experiments, which are aimed at more precise determination of neutrino oscillation parameters. In this article, we give new values for thermal fission energies of some common thermal reactor fuel isotopes, with improvements on three aspects. One is more recent input data acquired from updated nuclear databases. the second one is a consideration of the production yields of fission fragments from both thermal and fast incident neutrons for each of the four main fuel isotopes. The last one is more carefully calculation of the average energy taken away by antineutrinos in thermal fission with the comparison of antineutrino spectrum from different models. The change in calculated antineutrino flux due to the new values of thermal fission energy is about 0.32%, and the uncertainties of the new values are about 50% smaller.

  4. MINICHANNEL-TUBE SOLAR THERMAL COLLECTORS FOR LOW TO MEDIUM TEMPERATURE APPLICATIONS

    E-Print Network [OSTI]

    Duong, Van Thuc

    2015-01-01

    and thermal energy storage in solar thermal applications,91] F. Proske, Solar thermal energy technology and marketindefinitely. However, solar thermal energy is renewable and

  5. Heun equation, Teukolsky equation, and type-D metrics

    E-Print Network [OSTI]

    D. Batic; H. Schmid

    2007-01-15

    Starting with the whole class of type-D vacuum backgrounds with cosmological constant we show that the separated Teukolsky equation for zero rest-mass fields with spin $s=\\pm 2$ (gravitational waves), $s=\\pm 1$ (electromagnetic waves) and $s=\\pm 1/2$ (neutrinos) is an Heun equation in disguise.

  6. Maintenance Types | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    requirements of any physical asset within its operating context. Chapter 5 of the Federal Energy Management Program's O&M Best Practices Guide outlines these maintenance types in...

  7. Portfolio Manager Space Type Discussion

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assistance Program (TAP), provides a discussion about space/type in regards to the Portfolio Manager Initiative.

  8. Window Types | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    its U-factor. There are advantages and disadvantages to all types of frame materials, but vinyl, wood, fiberglass, and some composite frame materials provide greater...

  9. Portfolio Manager Space Type Discussion

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), provides a discussion about space/type in regards to the Portfolio Manager Initiative.

  10. Type I Superconductivity upon Monopole Condensation in Seiberg-Witten Theory

    E-Print Network [OSTI]

    Titov, Anatoly

    1 Type I Superconductivity upon Monopole Condensation in Seiberg-Witten Theory A. Vainshtein, A the confinement scenario in N=2 supersymmetric SU(2) gauge theory near the monopole point upon breaking of N=2 containing samples are presented. Thermal neutrons from the reactor or neutrons from the standard 238 Ðè

  11. In Situ Observation of Type II Solar Radio Burst Source Region: a New Generation Mechanism

    E-Print Network [OSTI]

    mechanisms: non-thermal -- shock waves -- Sun: radio radiation 1. Introduction Electromagnetic waves can by Cluster spacecraft (Escoubet et al. 1997). We observe intense radio waves above the local plasma frequencyIn Situ Observation of Type II Solar Radio Burst Source Region: a New Generation Mechanism M. V

  12. Numerical Investigation of Natural Convection Loss in Cavity-Type Solar Receivers

    E-Print Network [OSTI]

    Numerical Investigation of Natural Convection Loss in Cavity-Type Solar Receivers S-mail: Sawat.Paitoonsurikarn@anu.edu.au Abstract In solar thermal systems, especially for high concentration by various previously proposed empirical models. The Clausing model (1981) shows the closest prediction

  13. Thermal conductivity of bulk nanostructured lead telluride

    SciTech Connect (OSTI)

    Hori, Takuma [Department of Mechanical Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656 (Japan); Chen, Gang [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Shiomi, Junichiro, E-mail: shiomi@photon.t.u-tokyo.ac.jp [Department of Mechanical Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656 (Japan); PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan)

    2014-01-13

    Thermal conductivity of lead telluride with embedded nanoinclusions was studied using Monte Carlo simulations with intrinsic phonon transport properties obtained from first-principles-based lattice dynamics. The nanoinclusion/matrix interfaces were set to completely reflect phonons to model the maximum interface-phonon-scattering scenario. The simulations with the geometrical cross section and volume fraction of the nanoinclusions matched to those of the experiment show that the experiment has already reached the theoretical limit of thermal conductivity. The frequency-dependent analysis further identifies that the thermal conductivity reduction is dominantly attributed to scattering of low frequency phonons and demonstrates mutual adaptability of nanostructuring and local disordering.

  14. Quantum chaos and thermalization in gapped systems

    SciTech Connect (OSTI)

    Rigol, Marcos [Department of Physics, Georgetown University, Washington, DC 20057 (United States); Santos, Lea F. [Department of Physics, Yeshiva University, New York, New York 10016 (United States)

    2010-07-15

    We investigate the onset of thermalization and quantum chaos in finite one-dimensional gapped systems of hard-core bosons. Integrability in these systems is broken by next-nearest-neighbor repulsive interactions, which also generate a superfluid to insulator transition. By employing full exact diagonalization, we study chaos indicators and few-body observables. We show that with increasing system size, chaotic behavior is seen over a broader range of parameters and, in particular, deeper into the insulating phase. Concomitantly, we observe that, as the system size increases, the eigenstate thermalization hypothesis extends its range of validity inside the insulating phase and is accompanied by the thermalization of the system.

  15. Thermal Bogoliubov transformation in nuclear structure theory

    E-Print Network [OSTI]

    A. I. Vdovin; Alan A. Dzhioev

    2010-01-20

    Thermal Bogoliubov transformation is an essential ingredient of the thermo field dynamics -- the real time formalism in quantum field and many-body theories at finite temperatures developed by H. Umezawa and coworkers. The approach to study properties of hot nuclei which is based on the extension of the well-known Quasiparticle-Phonon Model to finite temperatures employing the TFD formalism is presented. A distinctive feature of the QPM-TFD combination is a possibility to go beyond the standard approximations like the thermal Hartree-Fock or the thermal RPA ones.

  16. Thermal Gravitational Waves from Primordial Black Holes

    E-Print Network [OSTI]

    C. Sivaram; Kenath Arun

    2010-05-19

    Thermal gravitational waves can be generated in various sources such as, in the cores of stars, white dwarfs and neutron stars due to the fermion collisions in the dense degenerate Fermi gas. Such high frequency thermal gravitational waves can also be produced during the collisions in a gamma ray burst or during the final stages of the evaporation of primordial black holes. Here we estimate the thermal gravitational waves from primordial black holes and estimate the integrated energy of the gravitational wave emission over the entire volume of the universe and over Hubble time. We also estimate the gravitational wave flux from gamma ray bursts and jets.

  17. Increased thermal conductivity monolithic zeolite structures

    DOE Patents [OSTI]

    Klett, James (Knoxville, TN); Klett, Lynn (Knoxville, TN); Kaufman, Jonathan (Leonardtown, MD)

    2008-11-25

    A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

  18. Electrical and thermal conductivities in dense plasmas

    SciTech Connect (OSTI)

    Faussurier, G. Blancard, C.; Combis, P.; Videau, L.

    2014-09-15

    Expressions for the electrical and thermal conductivities in dense plasmas are derived combining the Chester-Thellung-Kubo-Greenwood approach and the Kramers approximation. The infrared divergence is removed assuming a Drude-like behaviour. An analytical expression is obtained for the Lorenz number that interpolates between the cold solid-state and the hot plasma phases. An expression for the electrical resistivity is proposed using the Ziman-Evans formula, from which the thermal conductivity can be deduced using the analytical expression for the Lorenz number. The present method can be used to estimate electrical and thermal conductivities of mixtures. Comparisons with experiment and quantum molecular dynamics simulations are done.

  19. Hard-thermal-loop QED thermodynamics

    E-Print Network [OSTI]

    Nan Su; Jens O. Andersen; Michael Strickland

    2009-11-24

    The weak-coupling expansion for thermodynamic quantities in thermal field theories is poorly convergent unless the coupling constant is tiny. We discuss the calculation of the free energy for a hot gas of electrons and photons to three-loop order using hard-thermal-loop perturbation theory (HTLpt). We show that the hard-thermal-loop perturbation reorganization improves the convergence of the successive approximations to the QED free energy at large coupling, e ~ 2. The reorganization is gauge invariant by construction, and due to the cancellations among various contributions, we obtain a completely analytic result for the resummed thermodynamic potential at three loops.

  20. Lighting system with thermal management system

    DOE Patents [OSTI]

    Arik, Mehmet; Weaver, Stanton; Stecher, Thomas; Seeley, Charles; Kuenzler, Glenn; Wolfe, Jr., Charles; Utturkar, Yogen; Sharma, Rajdeep; Prabhakaran, Satish; Icoz, Tunc

    2013-05-07

    Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.

  1. Coating thermal noise for arbitrary shaped beams

    E-Print Network [OSTI]

    Richard O'Shaughnessy

    2006-10-13

    Advanced LIGO's sensitivity will be limited by coating noise. Though this noise depends on beam shape, and though nongaussian beams are being seriously considered for advanced LIGO, no published analysis exists to compare the quantitative thermal noise improvement alternate beams offer. In this paper, we derive and discuss a simple integral which completely characterizes the dependence of coating thermal noise on shape. The derivation used applies equally well, with minor modifications, to all other forms of thermal noise in the low-frequency limit.

  2. Method of making thermally removable epoxies

    SciTech Connect (OSTI)

    Loy, Douglas A. (Albuquerque, NM); Wheeler, David R. (Albuquerque, NM); Russick, Edward M. (Rio Rancho, NM); McElhanon, James R. (Albuquerque, NM); Saunders, Randall S. (late of Albuquerque, NM)

    2002-01-01

    A method of making a thermally-removable epoxy by mixing a bis(maleimide) compound to a monomeric furan compound containing an oxirane group to form a di-epoxy mixture and then adding a curing agent at temperatures from approximately room temperature to less than approximately 90.degree. C. to form a thermally-removable epoxy. The thermally-removable epoxy can be easily removed within approximately an hour by heating to temperatures greater than approximately 90.degree. C. in a polar solvent. The epoxy material can be used in protecting electronic components that may require subsequent removal of the solid material for component repair, modification or quality control.

  3. Generic disposal concepts and thermal load management for larger...

    Office of Scientific and Technical Information (OSTI)

    Generic disposal concepts and thermal load management for larger waste packages. Citation Details In-Document Search Title: Generic disposal concepts and thermal load management...

  4. Mechanical Testing of TR-55 Rubber Thermally Aged Under Tensile...

    Office of Scientific and Technical Information (OSTI)

    Mechanical Testing of TR-55 Rubber Thermally Aged Under Tensile Strain Citation Details In-Document Search Title: Mechanical Testing of TR-55 Rubber Thermally Aged Under Tensile...

  5. U.S. CHP Installations Incorporating Thermal Energy Storage ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP Installations Incorporating Thermal Energy Storage (TES) andor Turbine Inlet Cooling (TIC), September 2003 U.S. CHP Installations Incorporating Thermal Energy Storage (TES)...

  6. Flow and Thermal Behavior of an EGS Reservoir - Geothermal Code...

    Office of Scientific and Technical Information (OSTI)

    Conference: Flow and Thermal Behavior of an EGS Reservoir - Geothermal Code Comparison Study Citation Details In-Document Search Title: Flow and Thermal Behavior of an EGS...

  7. High-Performance Home Technologies: Solar Thermal & Photovoltaic...

    Energy Savers [EERE]

    High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series High-Performance Home Technologies: Solar Thermal &...

  8. Karnataka Power Corporation Limited and National Thermal Power...

    Open Energy Info (EERE)

    Karnataka Power Corporation Limited and National Thermal Power Corporation JV Jump to: navigation, search Name: Karnataka Power Corporation Limited and National Thermal Power...

  9. Thermal Bypass Air Barriers in the 2009 International Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Bypass Air Barriers in the 2009 International Energy Conservation Code - Building America Top Innovation Thermal Bypass Air Barriers in the 2009 International Energy...

  10. Development of an Airless Thermal Enhancer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Airless Thermal Enhancer Development of an Airless Thermal Enhancer Developing a system to introduce heat to a diesel exhaust system to enable catalyst operation during low...

  11. Thermal Gradient Holes At Northern Basin & Range Region (Pritchett...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Northern Basin & Range Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes...

  12. Advanced Powertrain Research Facility Vehicle Test Cell Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powertrain Research Facility Vehicle Test Cell Thermal Upgrade Advanced Powertrain Research Facility Vehicle Test Cell Thermal Upgrade 2010 DOE Vehicle Technologies and Hydrogen...

  13. Thermal Gradient Holes At Breitenbush Hot Springs Area (Ingebritsen...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Breitenbush Hot Springs Area (Ingebritsen, Et Al., 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  14. Thermal Gradient Holes At Neal Hot Springs Geothermal Area (U...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Neal Hot Springs Geothermal Area (U.S. Geothermal Inc., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  15. Thermal Gradient Holes At Lightning Dock Geothermal Area (Cunniff...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Lightning Dock Geothermal Area (Cunniff & Bowers, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  16. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Long Valley Caldera Geothermal Area (Sorey, Et Al., 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  17. Project Profile: Molten Salt-Carbon Nanotube Thermal Storage

    Office of Energy Efficiency and Renewable Energy (EERE)

    Texas Engineering Experiment Station (TEES), under the Thermal Storage FOA, created a composite thermal energy storage material by embedding nanoparticles in a molten salt base material.

  18. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Long Valley Caldera Geothermal Area (Conservation, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  19. Project Profile: Reducing the Cost of Thermal Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants Project Profile: Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power...

  20. Soft ionization of thermally evaporated hypergolic ionic liquid aerosols

    E-Print Network [OSTI]

    Koh, Christine J.

    2013-01-01

    thermal energy from evaporation and the energy imparted by the ionization process.energy imparted into the isolated ion pair upon thermal vaporization and minimizes reactive processes.