National Library of Energy BETA

Sample records for thermal output primarily

  1. PROJECT PROFILE: Advanced Thermal Management for Higher Module Power Output

    Broader source: Energy.gov [DOE]

    Higher temperatures of photovoltaic (PV) modules are causing lower than projected module performance. For example, a free-standing Si PV module has 0.4% decrease in efficiency per degree Celsius. Reducing the module temperature to near ambient levels will increase yearly energy output by 8%. This project will enable lower operating temperatures for modules, resulting in higher module power output and lower levelized cost of electricity (LCOE).

  2. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Biogenic Municipal Solid Waste: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities ...

  3. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    6. Useful Thermal Output by Energy Source: Industrial Sector Combined Heat and Power, 2004 - 2014 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas ...

  4. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    C. Natural Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) ...

  5. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    F. Other Waste Biomass: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) ...

  6. SAS Output

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    F. Biogenic Municipal Solid Waste: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all ...

  7. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    F. Natural Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric ...

  8. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C. Petroleum Liquids: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Barrels) Electric Power Sector Period Total (all sectors) ...

  9. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    F. Wood Wood Waste Biomass: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all ...

  10. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C. Biogenic Municipal Solid Waste: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all ...

  11. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    F. Landfill Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric ...

  12. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    F. Petroleum Liquids: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) ...

  13. SAS Output

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    C. Coal: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric ...

  14. SAS Output

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    C. Landfill Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) ...

  15. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    F. Petroleum Coke: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric ...

  16. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    C. Petroleum Coke: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all sectors) ...

  17. SAS Output

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    F. Coal: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities ...

  18. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Net Summer Capacity Using Primarily Renewable Energy Sources and by State, 2014 and 2013 (Megawatts) Summer Capacity at Utility Scale Facilities Distributed Capacity Summer Capacity From Utility Scale Facilities and Distributed Capacity Census Division and State Wind Solar Photovoltaic Solar Thermal Conventional Hydroelectric Biomass Sources Geothermal Total Renewable Sources Estimated Distributed Solar Photovoltaic Capacity Estimated Total Solar Photovoltaic Capacity Estimated Total Solar

  19. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Landfill Gas: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,158 0 415 5 738 2005 994 0 519 212 263 2006 1,034 0 267 549 218 2007 985 0 226 532 228 2008 552 0 271 211 70 2009 440 0 313 91 37 2010 847 0 643 174 30 2011 1,635 0 1,422 165 48 2012 1,630 0 1,441 156 32 2013 414 0 132 206 76 2014 852 88 266 326 173

  20. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Useful Thermal Output by Energy Source: Total Combined Heat and Power (All Sectors), 2004 - 2014 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Renewable Sources Other Total Annual Totals 2004 351,871 80,824 16,659 654,242 126,157 667,341 45,456 1,942,550 2005 341,806 79,362 13,021 624,008 138,469 664,691 41,400 1,902,757 2006 332,548 54,224 24,009 603,288 126,049 689,549 49,308 1,878,973 2007 326,803 50,882 25,373 554,394 116,313 651,230 46,822 1,771,816

  1. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Useful Thermal Output by Energy Source: Electric Power Sector Combined Heat and Power, 2004 - 2014 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Renewable Sources Other Total Annual Totals 2004 39,014 5,731 2,486 239,416 18,200 17,347 3,822 326,017 2005 39,652 5,571 2,238 239,324 36,694 18,240 3,884 345,605 2006 38,133 4,812 2,253 207,095 22,567 17,284 4,435 296,579 2007 38,260 5,294 1,862 212,705 20,473 19,166 4,459 302,219 2008 37,220 5,479 1,353 204,167

  2. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Useful Thermal Output by Energy Source: Commercial Sector Combined Heat and Power, 2004 - 2014 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Renewable Sources Other Total Annual Totals 2004 22,450 4,118 165 21,851 0 8,936 6,350 63,871 2005 22,601 3,518 166 20,227 0 8,647 5,921 61,081 2006 22,186 2,092 172 19,370 0.22 9,359 6,242 59,422 2007 22,595 1,640 221 20,040 0 6,651 3,983 55,131 2008 22,991 1,822 177 20,183 0 8,863 6,054 60,091 2009 20,057 1,095 155

  3. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Coal: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 24,275 0 3,809 1,540 18,926 2005 23,833 0 3,918 1,544 18,371 2006 23,227 0 3,834 1,539 17,854 2007 22,810 0 3,795 1,566 17,449 2008 22,168 0 3,689 1,652 16,827 2009 20,507 0 3,935 1,481 15,091 2010 21,727 0 3,808 1,406 16,513 2011 21,532 0 3,628 1,321 16,584

  4. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Coal: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 564,497 0 87,981 34,538 441,978 2005 548,666 0 88,364 34,616 425,685 2006 532,561 0 84,335 34,086 414,140 2007 521,717 0 83,838 34,690 403,189 2008 503,096 0 81,416 36,163 385,517 2009 462,674 0 90,867 32,651 339,156 2010 490,931 0 90,184 30,725 370,022 2011

  5. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Petroleum Liquids: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Barrels) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 20,654 0 1,501 1,203 17,951 2005 20,494 0 1,392 1,004 18,097 2006 14,077 0 1,153 559 12,365 2007 13,462 0 1,303 441 11,718 2008 7,533 0 1,311 461 5,762 2009 8,128 0 1,301 293 6,534 2010 4,866 0 1,086 212 3,567 2011 3,826 0 1,004 168 2,654 2012

  6. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Petroleum Liquids: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 124,809 0 8,592 7,219 108,997 2005 125,689 0 8,134 6,145 111,410 2006 87,137 0 6,740 3,481 76,916 2007 82,768 0 7,602 2,754 72,412 2008 45,481 0 7,644 2,786 35,051 2009 48,912 0 7,557 1,802 39,552 2010 29,243 0 6,402 1,297 21,545 2011 22,799 0 5,927

  7. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Petroleum Coke: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,043 0 237 8 798 2005 783 0 206 8 568 2006 1,259 0 195 9 1,055 2007 1,262 0 162 11 1,090 2008 897 0 119 9 769 2009 1,007 0 126 8 873 2010 1,059 0 98 11 950 2011 1,080 0 112 6 962 2012 1,346 0 113 11 1,222 2013 1,486 0 96 11 1,379 2014 1,283 3 90 16

  8. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Petroleum Coke: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 29,342 0 6,768 226 22,347 2005 22,224 0 5,935 228 16,061 2006 38,169 0 5,672 236 32,262 2007 38,033 0 4,710 303 33,019 2008 27,100 0 3,441 243 23,416 2009 29,974 0 3,652 213 26,109 2010 31,303 0 2,855 296 28,152 2011 31,943 0 3,244 153 28,546 2012

  9. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Natural Gas: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,052,100 0 388,424 39,233 624,443 2005 984,340 0 384,365 34,172 565,803 2006 942,817 0 330,878 33,112 578,828 2007 872,579 0 339,796 35,987 496,796 2008 793,537 0 326,048 32,813 434,676 2009 816,787 0 305,542 41,275 469,970 2010 821,775 0 301,769

  10. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Natural Gas: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,085,191 0 398,476 40,122 646,593 2005 1,008,404 0 392,842 35,037 580,525 2006 968,574 0 339,047 33,928 595,599 2007 894,272 0 347,181 36,689 510,402 2008 813,794 0 333,197 33,434 447,163 2009 836,863 0 312,553 42,032 482,279 2010 841,521 0 308,246 47,001

  11. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Wood / Wood Waste Biomass: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,016,124 0 14,968 1,493 999,663 2005 997,331 0 19,193 1,028 977,111 2006 1,049,161 0 18,814 1,045 1,029,303 2007 982,486 0 21,435 1,756 959,296 2008 923,889 0 18,075 1,123 904,690 2009 816,285 0 19,587 1,135 795,563 2010 876,041 0 18,357

  12. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Landfill Gas: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 2,174 0 735 10 1,429 2005 1,923 0 965 435 522 2006 2,051 0 525 1,094 433 2007 1,988 0 386 1,102 501 2008 1,025 0 454 433 138 2009 793 0 545 176 72 2010 1,623 0 1,195 370 58 2011 3,195 0 2,753 351 91 2012 3,189 0 2,788 340 61 2013 831 0 261 423 147

  13. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Biogenic Municipal Solid Waste: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 19,991 0 4,746 12,295 2,950 2005 20,296 0 4,551 11,991 3,754 2006 21,729 0 5,347 12,654 3,728 2007 16,174 0 5,683 8,350 2,141 2008 18,272 0 6,039 12,174 59 2009 18,785 0 6,229 11,535 1,021 2010 17,502 0 6,031 10,333 1,138 2011 16,766 0

  14. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Other Waste Biomass: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 30,228 0 12,055 2,627 15,547 2005 38,010 0 10,275 2,086 25,649 2006 36,966 0 8,561 2,318 26,087 2007 41,757 0 10,294 2,643 28,820 2008 41,851 0 9,674 1,542 30,635 2009 41,810 0 10,355 1,638 29,817 2010 47,153 0 8,436 1,648 37,070 2011 43,483 0

  15. SAS Output

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    from Renewable Sources: Independent Power Producers, 2004 - 2014 (Thousand ... and Distributed Generation Period Wind Solar Photovoltaic Solar Thermal Wood and ...

  16. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1. Total Electric Power Industry Summary Statistics, 2014 and 2013 Net Generation and Consumption of Fuels for ... Solar Thermal and Photovoltaic Utility Scale Facilities 17,691 ...

  17. SAS Output

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    15.1% 5.6% 65.4% 60.8% 75.5% Values are final. NA Not Available Notes: Solar Thermal Capacity Factors include generation from plants using concentrated solar power energy storage

  18. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    7.C. Net Summer Capacity of Utility Scale Units Using Primarily Fossil Fuels and by State, 2014 and 2013 (Megawatts) Census Division and State Natural Gas Fired Combined Cycle Natural Gas Fired Combustion Turbine Other Natural Gas Coal Petroleum Coke Petroleum Liquids Other Gases Total Fossil Fuels Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 New England 11,742.0 11,720.9 1,110.1

  19. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Net Generation from Renewable Sources: Total (All Sectors), 2004 - 2014 (Thousand Megawatthours) Generation at Utility Scale Facilities Distributed Generation Net Generation From Utility Scale Facilities and Distributed Generation Period Wind Solar Photovoltaic Solar Thermal Wood and Wood-Derived Fuels Landfill Gas Biogenic Municipal Solid Waste Other Waste Biomass Geothermal Conventional Hydroelectric Total Renewable Generation at Utility Scale Facilities Estimated Distributed Solar

  20. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Net Generation from Renewable Sources: Electric Utilities, 2004 - 2014 (Thousand Megawatthours) Generation at Utility Scale Facilities Distributed Generation Net Generation From Utility Scale Facilities and Distributed Generation Period Wind Solar Photovoltaic Solar Thermal Wood and Wood-Derived Fuels Landfill Gas Biogenic Municipal Solid Waste Other Waste Biomass Geothermal Conventional Hydroelectric Total Renewable Generation at Utility Scale Facilities Estimated Distributed Solar

  1. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Net Generation from Renewable Sources: Commercial Sector, 2004 - 2014 (Thousand Megawatthours) Generation at Utility Scale Facilities Distributed Generation Net Generation From Utility Scale Facilities and Distributed Generation Period Wind Solar Photovoltaic Solar Thermal Wood and Wood-Derived Fuels Landfill Gas Biogenic Municipal Solid Waste Other Waste Biomass Geothermal Conventional Hydroelectric Total Renewable Generation at Utility Scale Facilities Estimated Distributed Solar

  2. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Net Generation from Renewable Sources: Industrial Sector, 2004 - 2014 (Thousand Megawatthours) Generation at Utility Scale Facilities Distributed Generation Net Generation From Utility Scale Facilities and Distributed Generation Period Wind Solar Photovoltaic Solar Thermal Wood and Wood-Derived Fuels Landfill Gas Biogenic Municipal Solid Waste Other Waste Biomass Geothermal Conventional Hydroelectric Total Renewable Generation at Utility Scale Facilities Estimated Distributed Solar

  3. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Capacity Factors for Utility Scale Generators Primarily Using Fossil Fuels, January 2013-December 2014 Coal Natural Gas Petroleum Period Natural Gas Fired Combined Cycle Natural Gas Fired Combustion Turbine Steam Turbine Internal Combustion Engine Steam Turbine Petroleum Liquids Fired Combustion Turbine Internal Combustion Engine Annual Factors 2013 59.7% 48.2% 4.9% 10.6% 6.1% 12.1% 0.8% 2.2% 2014 61.0% 48.3% 5.2% 10.4% 8.5% 12.5% 1.1% 1.4% Year 2013 January 61.2% 46.3% 3.6% 7.3% 4.6% 10.0%

  4. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Existing Net Summer Capacity of Other Renewable Sources by Producer Type, 2004 through 2014 (Megawatts) Year Wind Solar Thermal and Photovoltaic Wood and Wood-Derived Fuels Geothermal Other Biomass Total (Other Renewable Sources) Total (All Sectors) 2004 6,456.0 398.0 6,182.0 2,152.0 3,529.0 18,717.0 2005 8,706.0 411.0 6,193.0 2,285.0 3,609.0 21,205.0 2006 11,329.0 411.0 6,372.0 2,274.0 3,727.0 24,113.0 2007 16,515.0 502.0 6,704.0 2,214.0 4,134.0 30,069.0 2008 24,651.0 536.0 6,864.0 2,229.0

  5. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Existing Capacity by Energy Source, 2014 (Megawatts) Energy Source Number of Generators Generator Nameplate Capacity Net Summer Capacity Net Winter Capacity Coal 1,145 325,831.5 299,094.2 300,699.8 Petroleum 3,573 46,897.8 41,135.4 44,739.7 Natural Gas 5,727 495,120.2 432,150.3 464,784.7 Other Gases 93 2,227.6 1,914.3 1,889.9 Nuclear 99 103,860.4 98,569.3 100,610.3 Hydroelectric Conventional 4,029 78,792.9 79,677.3 79,090.6 Wind 1,032 65,300.1 64,231.5 64,325.1 Solar Thermal and Photovoltaic

  6. Table 8.6a Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.6b and 8.6c)

    U.S. Energy Information Administration (EIA) Indexed Site

    a Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.6b and 8.6c) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu 1989 16,509,639 1,410,151 16,356,550 353,000 247,409 19,356,746

  7. Table 8.6b Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.6a)

    U.S. Energy Information Administration (EIA) Indexed Site

    b Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu 1989 638,798 119,640 1,471,031 762 – 1,591,433 81,669,945 2,804 24,182 5,687

  8. Table 8.6c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.6a)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu Commercial Sector 11<//td> 1989 711,212 202,091 600,653 – –

  9. Igniter and actuator output testing

    SciTech Connect (OSTI)

    Evans, N.A.

    1988-01-01

    Closed system mechanical work output measurements were made for five types of thermal battery igniters and one type of valve actuator. Each unit was fired into a high-precision fit piston/cylinder arrangement, and the work output was determined from measuring the rise of a known weight. The results showed that work output for an individual igniter type varied over a considerable range while the mean work output values of the various igniter types appeared to depend principally on the type of closure disc and the details of the charge mix. The large variability in igniter output was the principal inducement to build a second apparatus, with approximately 10 times the capacity of the first, to investigate the output actuators. Compared with igniters, the actuator work output was appropriately in scale, but the variability was considerably reduced (R=1.5), and was attributed to increase in scale. Motion picture photography at 8000 to 9000 frames per second was used to determine the motion of the rising weight and the associated output pressure, which exhibited three distinct phases. Initially, the average acceleration of the weight was of the order of 100 g during the first half-millisecond of weight rise and corresponded to average pressures of 15,000 to 37,000 psi, depending principally on the mass of the weight. This was followed by a significant weight rise at a constant pressure of approximately 150 to 450 psi. Finally, the weight decelerated to rest under gravity to reach the maximum recorded height. 2 refs., 9 figs., 2 tabs.

  10. Table 8.3a Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.3b and 8.3c; Billion Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    a Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.3b and 8.3c; Billion Btu) Year Fossil Fuels Renewable Energy Other 7 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Biomass Total Wood 5 Waste 6 1989 323,191 95,675 461,905 92,556 973,327 546,354 30,217 576,571 39,041 1,588,939 1990 362,524 127,183 538,063 140,695 1,168,465 650,572 36,433 687,005 40,149 1,895,619 1991 351,834 112,144 546,755 148,216 1,158,949 623,442 36,649

  11. Table 8.3b Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.3a; Billion Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    b Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.3a; Billion Btu) Year Fossil Fuels Renewable Energy Other 7 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Biomass Total Wood 5 Waste 6 1989 12,768 8,013 66,801 2,243 89,825 19,346 4,550 23,896 679 114,400 1990 20,793 9,029 79,905 3,822 113,549 18,091 6,418 24,509 28 138,086 1991 21,239 5,502 82,279 3,940 112,960 17,166 9,127 26,293 590 139,843 1992 27,545 6,123 101,923

  12. Table 8.3c Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.3a; Billion Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.3a; Billion Btu) Year Fossil Fuels Renewable Energy Other 7 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Biomass Total Wood 5 Waste 6 Commercial Sector 8<//td> 1989 13,517 3,896 9,920 102 27,435 145 10,305 10,450 – 37,885 1990 14,670 5,406 15,515 118 35,709 387 10,193 10,580 – 46,289 1991 15,967 3,684 20,809 118 40,578 169 8,980 9,149 1 49,728 1992

  13. Climate Model Output Rewriter

    Energy Science and Technology Software Center (OSTI)

    2004-06-21

    CMOR comprises a set of FORTRAN 90 dunctions that can be used to produce CF-compliant netCDF files. The structure of the files created by CMOR and the metadata they contain fulfill the requirements of many of the climate community’s standard model experiments (which are referred to here as "MIPS", which stands for "model intercomparison project", including, for example, AMIP, CMIP, CFMIP, PMIP, APE, and IPCC scenario runs), CMOR was not designed to serve as anmore » all-purpose wfiter of CF-compliant netCDF files, but simply to reduce the effort required to prepare and manage MIP data. Although MIPs encourage systematic analysis of results across models, this is only easy to do if the model output is written in a common format with files structured similarly and with sufficient metadata uniformly stored according to a common standard. Individual modeling groups store their data in different ways. but if a group can read its own data with FORTRAN, then it should easily be able to transform the data, using CMOR, into the common format required by the MIPs, The adoption of CMOR as a standard code for exchanging climate data will facilitate participation in MIPs because after learning how to satisfy the output requirements of one MIP, it will be easy to prepare output for the other MIPs.« less

  14. Enhanced performance CCD output amplifier

    DOE Patents [OSTI]

    Dunham, Mark E.; Morley, David W.

    1996-01-01

    A low-noise FET amplifier is connected to amplify output charge from a che coupled device (CCD). The FET has its gate connected to the CCD in common source configuration for receiving the output charge signal from the CCD and output an intermediate signal at a drain of the FET. An intermediate amplifier is connected to the drain of the FET for receiving the intermediate signal and outputting a low-noise signal functionally related to the output charge signal from the CCD. The amplifier is preferably connected as a virtual ground to the FET drain. The inherent shunt capacitance of the FET is selected to be at least equal to the sum of the remaining capacitances.

  15. Method for separating FEL output beams from long wavelength radiation

    DOE Patents [OSTI]

    Neil, George; Shinn, Michelle D.; Gubeli, Joseph

    2016-04-26

    A method for improving the output beam quality of a free electron laser (FEL) by reducing the amount of emission at wavelengths longer than the electron pulse length and reducing the amount of edge radiation. A mirror constructed of thermally conductive material and having an aperture therein is placed at an oblique angle with respect to the beam downstream of the bending magnet but before any sensitive use of the FEL beam. The aperture in the mirror is sized to deflect emission longer than the wavelength of the FEL output while having a minor impact on the FEL output beam. A properly sized aperture will enable the FEL radiation, which is coherent and generally at a much shorter wavelength than the bending radiations, to pass through the aperture mirror. The much higher divergence bending radiations will subsequently strike the aperture mirror and be reflected safely out of the way.

  16. Overload protection circuit for output driver

    DOE Patents [OSTI]

    Stewart, Roger G.

    1982-05-11

    A protection circuit for preventing excessive power dissipation in an output transistor whose conduction path is connected between a power terminal and an output terminal. The protection circuit includes means for sensing the application of a turn on signal to the output transistor and the voltage at the output terminal. When the turn on signal is maintained for a period of time greater than a given period without the voltage at the output terminal reaching a predetermined value, the protection circuit decreases the turn on signal to, and the current conduction through, the output transistor.

  17. Development of a high-output dual-fuel engine

    SciTech Connect (OSTI)

    Danyluk, P.R. . Fairbanks Morse Engineering Division)

    1993-10-01

    This paper presents the results of a new dual-fuel engine development program. The engine is the largest commercially available in terms of power output (650 hp/cyl) and features very low emissions (1 g/hp-hr NO[sub x]) and excellent fuel consumption (43 percent thermal efficiency). A two-cylinder turbocharged prototype was designed and built for the initial development. Results from testing on 18-cylinder production versions are also reported.

  18. Research Overview | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    primarily based on thermal-mechanical systems such as steam and gas turbines and internal combustion engines. Such engines are most suitable for power generation at large scales ...

  19. High Energy Output Marx Generator Design

    SciTech Connect (OSTI)

    Monty Lehmann

    2011-07-01

    High Energy Output Marx Generator Design a design of a six stage Marx generator that has a unipolar pulse waveform of 200 kA in a 50500 microsecond waveform is presented. The difficulties encountered in designing the components to withstand the temperatures and pressures generated during the output pulse are discussed. The unique methods and materials used to successfully overcome these problems are given. The steps necessary to increase the current output of this Marx generator design to the meg-ampere region or higher are specified.

  20. PV output smoothing with energy storage.

    SciTech Connect (OSTI)

    Ellis, Abraham; Schoenwald, David Alan

    2012-03-01

    This report describes an algorithm, implemented in Matlab/Simulink, designed to reduce the variability of photovoltaic (PV) power output by using a battery. The purpose of the battery is to add power to the PV output (or subtract) to smooth out the high frequency components of the PV power that that occur during periods with transient cloud shadows on the PV array. The control system is challenged with the task of reducing short-term PV output variability while avoiding overworking the battery both in terms of capacity and ramp capability. The algorithm proposed by Sandia is purposely very simple to facilitate implementation in a real-time controller. The control structure has two additional inputs to which the battery can respond. For example, the battery could respond to PV variability, load variability or area control error (ACE) or a combination of the three.

  1. Thermal Simulation of Advanced Powertrain Systems

    Broader source: Energy.gov [DOE]

    Under this project, the Volvo complete vehicle model was modified to include engine and exhaust system thermal outputs and cooling system to enable WHR simulations from a system perspective.

  2. Multiple output timing and trigger generator

    SciTech Connect (OSTI)

    Wheat, Robert M.; Dale, Gregory E

    2009-01-01

    In support of the development of a multiple stage pulse modulator at the Los Alamos National Laboratory, we have developed a first generation, multiple output timing and trigger generator. Exploiting Commercial Off The Shelf (COTS) Micro Controller Units (MCU's), the timing and trigger generator provides 32 independent outputs with a timing resolution of about 500 ns. The timing and trigger generator system is comprised of two MCU boards and a single PC. One of the MCU boards performs the functions of the timing and signal generation (the timing controller) while the second MCU board accepts commands from the PC and provides the timing instructions to the timing controller. The PC provides the user interface for adjusting the on and off timing for each of the output signals. This system provides 32 output or timing signals which can be pre-programmed to be in an on or off state for each of 64 time steps. The width or duration of each of the 64 time steps is programmable from 2 {micro}s to 2.5 ms with a minimum time resolution of 500 ns. The repetition rate of the programmed pulse train is only limited by the time duration of the programmed event. This paper describes the design and function of the timing and trigger generator system and software including test results and measurements.

  3. Porous radiant burners having increased radiant output

    DOE Patents [OSTI]

    Tong, Timothy W.; Sathe, Sanjeev B.; Peck, Robert E.

    1990-01-01

    Means and methods for enhancing the output of radiant energy from a porous radiant burner by minimizing the scattering and increasing the adsorption, and thus emission of such energy by the use of randomly dispersed ceramic fibers of sub-micron diameter in the fabrication of ceramic fiber matrix burners and for use therein.

  4. Review of Thermally Activated Technologies, July 2004 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Thermally Activated Technologies, July 2004 Review of Thermally Activated Technologies, July 2004 At the request of the U.S. Department of Energy and Oak Ridge National Laboratory, TIAX reviewed the status of various Thermally Activated Technologies (TATs). This 2004 review includes both fuel-fired and waste-heat-fired applications of thermally-driven cooling systems, thermally-driven heat pumps, and thermally-driven bottoming cycles, primarily for use in commercial buildings.

  5. Low Capital Photovoltaic Panel Electrical Output-Booster System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Capital Photovoltaic Panel Electrical Output-Booster System Low Capital Photovoltaic Panel Electrical Output-Booster System This presentation summarizes the information given ...

  6. Neutron light output and detector efficiency (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Neutron light output and detector efficiency Citation Details In-Document Search Title: Neutron light output and detector efficiency You are accessing a document from the ...

  7. Neutron light output and detector efficiency (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Neutron light output and detector efficiency Citation Details In-Document Search Title: Neutron light output and detector efficiency Authors: Taddeucci, Terry N 1 + Show Author ...

  8. Error estimates for fission neutron outputs (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Error estimates for fission neutron outputs Citation Details In-Document Search Title: Error estimates for fission neutron outputs You are accessing a document from the...

  9. Multiple-Input Multiple-Output (MIMO) Linear Systems Extreme Inputs/Outputs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smallwood, David O.

    2007-01-01

    A linear structure is excited at multiple points with a stationary normal random process. The response of the structure is measured at multiple outputs. If the autospectral densities of the inputs are specified, the phase relationships between the inputs are derived that will minimize or maximize the trace of the autospectral density matrix of the outputs. If the autospectral densities of the outputs are specified, the phase relationships between the outputs that will minimize or maximize the trace of the input autospectral density matrix are derived. It is shown that other phase relationships and ordinary coherence less than one willmore » result in a trace intermediate between these extremes. Least favorable response and some classes of critical response are special cases of the development. It is shown that the derivation for stationary random waveforms can also be applied to nonstationary random, transients, and deterministic waveforms.« less

  10. High energy density thermal cell

    SciTech Connect (OSTI)

    Fletcher, A.N.

    1980-04-29

    A thermal battery is described that uses a calcium anode and a catholyte consisting of a mixture of lithium, potassium, nitrate and chloride ions. The device is operable over a temperature range of about 150 to 600/sup 0/C and produces a long lasting, high energy density output.

  11. Off-set stabilizer for comparator output

    DOE Patents [OSTI]

    Lunsford, James S.

    1991-01-01

    A stabilized off-set voltage is input as the reference voltage to a comparator. In application to a time-interval meter, the comparator output generates a timing interval which is independent of drift in the initial voltage across the timing capacitor. A precision resistor and operational amplifier charge a capacitor to a voltage which is precisely offset from the initial voltage. The capacitance of the reference capacitor is selected so that substantially no voltage drop is obtained in the reference voltage applied to the comparator during the interval to be measured.

  12. World crude output overcomes Persian Gulf disruption

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    Several OPEC producers made good on their promises to replace 2.7 MMbpd of oil exports that vanished from the world market after Iraq took over Kuwait. Even more incredibly, they accomplished this while a breathtaking 1.2- MMbopd reduction in Soviet output took place during the course of 1991. After Abu Dhabi, Indonesia, Iran, Libya, Nigeria, Saudi Arabia and Venezuela turned the taps wide open, their combined output rose 2.95 MMbopd. Put together with a 282,000-bopd increase by Norway and contributions from smaller producers, this enabled world oil production to remain within 400,000 bopd of its 1990 level. The 60.5-MMbopd average was off by just 0.7%. This paper reports that improvement took place in five of eight regions. Largest increases were in Western Europe and Africa. Greatest reductions occurred in Eastern Europe and the Middle East. Fifteen nations produced 1 MMbopd or more last year, compared with 17 during 1990.

  13. Room-return scattering in fission neutron outputs (Conference...

    Office of Scientific and Technical Information (OSTI)

    Room-return scattering in fission neutron outputs Citation Details In-Document Search Title: Room-return scattering in fission neutron outputs You are accessing a document from...

  14. Thermal Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Sciences NETL's Thermal Sciences competency provides the scientific, engineering, and technology development community with innovative and efficient approaches to measure, harness, and convert thermal energy. Research includes sensors, advanced energy concepts, and thermodynamic optimization, specifically: Sensors and Diagnostics Advanced sensor and diagnostic technology to develop and evaluate advanced methods for non-intrusive measurement and measurement in extreme environments.

  15. High output lamp with high brightness

    DOE Patents [OSTI]

    Kirkpatrick, Douglas A.; Bass, Gary K.; Copsey, Jesse F.; Garber, Jr., William E.; Kwong, Vincent H.; Levin, Izrail; MacLennan, Donald A.; Roy, Robert J.; Steiner, Paul E.; Tsai, Peter; Turner, Brian P.

    2002-01-01

    An ultra bright, low wattage inductively coupled electrodeless aperture lamp is powered by a solid state RF source in the range of several tens to several hundreds of watts at various frequencies in the range of 400 to 900 MHz. Numerous novel lamp circuits and components are disclosed including a wedding ring shaped coil having one axial and one radial lead, a high accuracy capacitor stack, a high thermal conductivity aperture cup and various other aperture bulb configurations, a coaxial capacitor arrangement, and an integrated coil and capacitor assembly. Numerous novel RF circuits are also disclosed including a high power oscillator circuit with reduced complexity resonant pole configuration, parallel RF power FET transistors with soft gate switching, a continuously variable frequency tuning circuit, a six port directional coupler, an impedance switching RF source, and an RF source with controlled frequency-load characteristics. Numerous novel RF control methods are disclosed including controlled adjustment of the operating frequency to find a resonant frequency and reduce reflected RF power, controlled switching of an impedance switched lamp system, active power control and active gate bias control.

  16. Heat transfer characteristics of igniter output plumes

    SciTech Connect (OSTI)

    Evans, N.A.; Durand, N.A.

    1989-01-01

    Seven types of pyrotechnic igniters were each mounted at one end of a closed cylindrical bore hole representative of the center hole in a thermal battery. Measurements of local bore wall temperature, T/sub w/, using commercially available, fast response (10 /mu/sec) sheathed chromel-constantan thermocouples allowed calculation of local heat transfer rates, q, and wall heat flows, Q. The principal charge constituents of all these igniters were titanium and potassium perchlorate, while three types also contained barium styphnate as an ignition sensitizer. Igniter closure disc materials included glass-ceramic, glass, metal (plain, scored, with and without capture cone), and kapton/RTV. All igniters produced the lowest values of T/sub w/ and q at the beginning of the bore, and, except for the igniter with the kapton/RTV closure disc, these quantities increased with distance along the bore. For igniters containing only titanium/potassium perchlorate, the rates of increase of Q along the bore length, compared with those for T/sub w/ and q, were generally lower and more variable. The inclusion of barium styphnate produced rates of change in Q that were essentially constant to the end of the bore. The highest overall average wall temperatures were achieved by two igniter types with metal closure discs and no capture cone. No clear correlation was established between peak bore pressure and maximum wall temperature. 3 refs., 8 figs., 1 tab.

  17. Method and apparatus for varying accelerator beam output energy

    DOE Patents [OSTI]

    Young, Lloyd M.

    1998-01-01

    A coupled cavity accelerator (CCA) accelerates a charged particle beam with rf energy from a rf source. An input accelerating cavity receives the charged particle beam and an output accelerating cavity outputs the charged particle beam at an increased energy. Intermediate accelerating cavities connect the input and the output accelerating cavities to accelerate the charged particle beam. A plurality of tunable coupling cavities are arranged so that each one of the tunable coupling cavities respectively connect an adjacent pair of the input, output, and intermediate accelerating cavities to transfer the rf energy along the accelerating cavities. An output tunable coupling cavity can be detuned to variably change the phase of the rf energy reflected from the output coupling cavity so that regions of the accelerator can be selectively turned off when one of the intermediate tunable coupling cavities is also detuned.

  18. Halbach array generator/motor having mechanically regulated output voltage and mechanical power output

    DOE Patents [OSTI]

    Post, Richard F.

    2005-06-14

    A motor/generator has its stationary portion, i.e., the stator, positioned concentrically within its rotatable element, i.e., the rotor, along the axis of rotation of the rotor. The rotor includes a Halbach array of magnets. The voltage and power outputs are regulated by varying the radial gap in between the stator windings and the rotating Halbach array. The gap is varied by extensible and retractable supports attached to the stator windings that can move the windings in a radial direction.

  19. Factors Affecting Power Output by Photovoltaic Cells Lesson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Factors Affecting Power Output by Photovoltaic Cells Grade Level(s): IB 2 (Senior - 3 ... C.8 Photovoltaic cells and dye-sensitized solar cells (DSSC) Understandings: * Solar ...

  20. Compact waveguide power divider with multiple isolated outputs

    DOE Patents [OSTI]

    Moeller, Charles P. (Del Mar, CA)

    1987-01-01

    A waveguide power divider (10) for splitting electromagnetic microwave power and directionally coupling the divided power includes an input waveguide (21) and reduced height output waveguides (23) interconnected by axial slots (22) and matched loads (25) and (26) positioned at the unused ends of input and output guides (21) and (23) respectively. The axial slots are of a length such that the wave in the input waveguide (21) is directionally coupled to the output waveguides (23). The widths of input guide (21) and output guides (23) are equal and the width of axial slots (22) is one half of the width of the input guide (21).

  1. Output-Based Error Estimation and Adaptation for Uncertainty...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Output-Based Error Estimation and Adaptation for Uncertainty Quantification Isaac M. Asher and Krzysztof J. Fidkowski University of Michigan US National Congress on Computational...

  2. Spin-on-doping for output power improvement of silicon nanowire array based thermoelectric power generators

    SciTech Connect (OSTI)

    Xu, B. Fobelets, K.

    2014-06-07

    The output power of a silicon nanowire array (NWA)-bulk thermoelectric power generator (TEG) with Cu contacts is improved by spin-on-doping (SOD). The Si NWAs used in this work are fabricated via metal assisted chemical etching (MACE) of 0.010.02 ? cm resistivity n- and p-type bulk, converting ~4% of the bulk thickness into NWs. The MACE process is adapted to ensure crystalline NWs. Current-voltage and Seebeck voltage-temperature measurements show that while SOD mainly influences the contact resistance in bulk, it influences both contact resistance and power factor in NWA-bulk based TEGs. According to our experiments, using Si NWAs in combination with SOD increases the output power by an order of 3 under the same heating power due to an increased power factor, decreased thermal conductivity of the NWA and reduced Si-Cu contact resistance.

  3. Midtemperature solar systems test facility predictions for thermal performance of the Acurex solar collector with FEK 244 reflector surface

    SciTech Connect (OSTI)

    Harrison, T.D.

    1981-01-01

    Thermal performance predictions are presented for the Acurex solar collector, with FEK 244 reflector surface, for three output temperatures at five cities in the United States.

  4. Thermal barrier coatings

    DOE Patents [OSTI]

    Alvin, Mary Anne

    2010-06-22

    This disclosure addresses the issue of providing a metallic-ceramic overlay coating that potentially serves as an interface or bond coat layer to provide enhanced oxidation resistance to the underlying superalloy substrate via the formation of a diffusion barrier regime within the supporting base material. Furthermore, the metallic-ceramic coating is expected to limit the growth of a continuous thermally grown oxide (TGO) layer that has been primarily considered to be the principal cause for failure of existing TBC systems. Compositional compatibility of the metallic-ceramic with traditional yttria-stabilized zirconia (YSZ) top coats is provided to further limit debond or spallation of the coating during operational use. A metallic-ceramic architecture is disclosed wherein enhanced oxidation resistance is imparted to the surface of nickel-based superalloy or single crystal metal substrate, with simultaneous integration of the yttria stabilized zirconia (YSZ) within the metallic-ceramic overlayer.

  5. Dual output acoustic wave sensor for molecular identification

    DOE Patents [OSTI]

    Frye, Gregory C.; Martin, Stephen J.

    1991-01-01

    A method of identification and quantification of absorbed chemical species by measuring changes in both the velocity and the attenuation of an acoustic wave traveling through a thin film into which the chemical species is sorbed. The dual output response provides two independent sensor responses from a single sensing device thereby providing twice as much information as a single output sensor. This dual output technique and analysis allows a single sensor to provide both the concentration and the identity of a chemical species or permits the number of sensors required for mixtures to be reduced by a factor of two.

  6. Device for frequency modulation of a laser output spectrum

    DOE Patents [OSTI]

    Beene, James R.; Bemis, Jr., Curtis E.

    1986-01-01

    A device is provided for fast frequency modulating the output spectrum of multimode lasers and single frequency lasers that are not actively stabilized. A piezoelectric transducer attached to a laser cavity mirror is driven in an unconventional manner to excite resonance vibration of the transducer to rapidly, cyclicly change the laser cavity length. The result is a cyclic sweeping of the output wavelength sufficient to fill the gaps in the laser output frequency spectrum. When such a laser is used to excite atoms or molecules, complete absorption line coverage is made possible.

  7. Device for frequency modulation of a laser output spectrum

    DOE Patents [OSTI]

    Beene, J.R.; Bemis, C.E. Jr.

    1984-07-17

    A device is provided for fast frequency modulating the output spectrum of multimode lasers and single frequency lasers that are not actively stabilized. A piezoelectric transducer attached to a laser cavity mirror is driven in an unconventional manner to excite resonance vibration of the tranducer to rapidly, cyclicly change the laser cavity length. The result is a cyclic sweeping of the output wavelength sufficient to fill the gaps in the laser output frequency spectrum. When a laser is used to excite atoms or molecules, complete absorption line coverage is made possible.

  8. Community Climate System Model (CCSM) Experiments and Output Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The CCSM web makes the source code of various versions of the model freely available and provides access to experiments that have been run and the resulting output data.

  9. Bayesian approaches for combining computational model output and physical

    Office of Scientific and Technical Information (OSTI)

    observations (Conference) | SciTech Connect Bayesian approaches for combining computational model output and physical observations Citation Details In-Document Search Title: Bayesian approaches for combining computational model output and physical observations Authors: Higdon, David M [1] ; Lawrence, Earl [1] ; Heitmann, Katrin [2] ; Habib, Salman [2] + Show Author Affiliations Los Alamos National Laboratory ANL Publication Date: 2011-07-25 OSTI Identifier: 1084581 Report Number(s):

  10. Low Capital Photovoltaic Panel Electrical Output-Booster System |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Low Capital Photovoltaic Panel Electrical Output-Booster System Low Capital Photovoltaic Panel Electrical Output-Booster System This presentation summarizes the information given during the DOE SunShot Grand Challenge: Summit and Technology Forum, June 13-14, 2012. ssgrandchallenge_finance_schrag.pdf (63.07 KB) More Documents & Publications The SunShot Vision Study SunShot Vision Study: February 2012 (Book), SunShot, Energy Efficiency & Renewable Energy (EERE)

  11. Midtemperature Solar Systems Test Facility predictions for thermal performance of the Suntec solar collector with heat-formed glass reflector surface

    SciTech Connect (OSTI)

    Harrison, T.D.

    1980-11-01

    Thermal performance predictions are presented for the Suntec solar collector, with heat-formed glass reflector surface, for three output temperatures at five cities in the United States.

  12. Thermal battery

    SciTech Connect (OSTI)

    Williams, M.T.; Winchester, C.S.; Jolson, J.D.

    1989-06-20

    A thermal battery is described comprising at least one electrochemical cell comprising an anode of alkali metal, alkaline earth metal or alloys thereof, a fusible salt electrolyte, a fluorocarbon polymer or fluorochlorocarbon polymer depolarizer, and means for heating the cell to melt the electrolyte.

  13. Stirling converters for space dynamic power concepts with 2 to 130 W{sub e} output

    SciTech Connect (OSTI)

    Ross, B.A.

    1995-12-31

    Three innovative Stirling converter concepts are described. Two concepts are based on Pluto Fast Flyby (PFF) mission requirements, where two General Purpose Heat Source (GPHS) modules provide the thermal input. The first concept (PFF2) considers a power system with two opposed Stirling converters; the second concept (PFF4) considers four opposed Stirling converters. For both concepts the Stirling converters are designed to vary their power production capability to compensate for the failure of one Stirling converter. While the net thermal efficiency of PFF4 is a few percentage points lower than PFF2, the total Stirling converter mass of PFF4 is half that for PFF2. The third concept (ITTI) is designed to supply 2 watts of power for weather stations on the Martian surface. The predicted thermal performance of the ITTI is low compared to PFF2 and PFF4, yet the ITTI concept offers significant advantages compared to currently available power systems at the 2-watt power level. All three concepts are based on long-life technology demonstrated by an 11-watt output Stirling generator that as of March 1995 has accumulated over 15,000 operating hours without maintenance.

  14. Motor vehicle output and GDP, 1968-2007.

    SciTech Connect (OSTI)

    Santini, D. J.; Poyer, D. A.

    2008-01-01

    In this paper, we assess the performance of the BEA series 'value of motor vehicle output' as an indicator of the business cycle over the period 1968-2007. We statistically assess the causal relationship between real motor vehicle output (RMVO) and real gross domestic product (RGDP). This is accomplished by standard estimation and statistical methods used to assess vector autoregressive models. This assessment represents the initial results of a more encompassing research project, the intent of which is to determine the dynamic interaction of the transport sector with the overall economy. It's a start to a more comprehensive assessment of how transport and economic activity interrelate.

  15. Output-Based Regulations: A Handbook for Air Regulators (U.S. EPA), August 2004

    Office of Energy Efficiency and Renewable Energy (EERE)

    Handbook providing practical information to help regulators decide if they want to use output-based regulations and explains how to develop an output-based emission standard

  16. Solar Thermal Demonstration Project

    SciTech Connect (OSTI)

    Biesinger, K; Cuppett, D; Dyer, D

    2012-01-30

    HVAC Retrofit and Energy Efficiency Upgrades at Clark High School, Las Vegas, Nevada The overall objectives of this project are to increase usage of alternative/renewable fuels, create a better and more reliable learning environment for the students, and reduce energy costs. Utilizing the grant resources and local bond revenues, the District proposes to reduce electricity consumption by installing within the existing limited space, one principal energy efficient 100 ton adsorption chiller working in concert with two 500 ton electric chillers. The main heating source will be primarily from low nitrogen oxide (NOX), high efficiency natural gas fired boilers. With the use of this type of chiller, the electric power and cost requirements will be greatly reduced. To provide cooling to the information technology centers and equipment rooms of the school during off-peak hours, the District will install water source heat pumps. In another measure to reduce the cooling requirements at Clark High School, the District will replace single pane glass and metal panels with Kalwall building panels. An added feature of the Kalwall system is that it will allow for natural day lighting in the student center. This system will significantly reduce thermal heat/cooling loss and control solar heat gain, thus delivering significant savings in heating ventilation and air conditioning (HVAC) costs.

  17. Optical device with conical input and output prism faces

    DOE Patents [OSTI]

    Brunsden, Barry S.

    1981-01-01

    A device for radially translating radiation in which a right circular cylinder is provided at each end thereof with conical prism faces. The faces are oppositely extending and the device may be severed in the middle and separated to allow access to the central part of the beam. Radiation entering the input end of the device is radially translated such that radiation entering the input end at the perimeter is concentrated toward the output central axis and radiation at the input central axis is dispersed toward the output perimeter. Devices are disclosed for compressing beam energy to enhance drilling techniques, for beam manipulation of optical spatial frequencies in the Fourier plane and for simplification of dark field and color contrast microscopy. Both refracting and reflecting devices are disclosed.

  18. An Advanced simulation Code for Modeling Inductive Output Tubes

    SciTech Connect (OSTI)

    Thuc Bui; R. Lawrence Ives

    2012-04-27

    During the Phase I program, CCR completed several major building blocks for a 3D large signal, inductive output tube (IOT) code using modern computer language and programming techniques. These included a 3D, Helmholtz, time-harmonic, field solver with a fully functional graphical user interface (GUI), automeshing and adaptivity. Other building blocks included the improved electrostatic Poisson solver with temporal boundary conditions to provide temporal fields for the time-stepping particle pusher as well as the self electric field caused by time-varying space charge. The magnetostatic field solver was also updated to solve for the self magnetic field caused by time changing current density in the output cavity gap. The goal function to optimize an IOT cavity was also formulated, and the optimization methodologies were investigated.

  19. Light-operated proximity detector with linear output

    DOE Patents [OSTI]

    Simpson, M.L.; McNeilly, D.R.

    1984-01-01

    A light-operated proximity detector is described in which reflected light intensity from a surface whose proximity to the detector is to be gauged is translated directly into a signal proportional to the distance of the detector from the surface. A phototransistor is used to sense the reflected light and is connected in a detector circuit which maintains the phtotransistor in a saturated state. A negative feedback arrangement using an operational amplifier connected between the collector and emitter of the transistor provides an output at the output of the amplifier which is linearly proportional to the proximity of the surface to the detector containing the transistor. This direct proportional conversion is true even though the light intensity is varying with the proximity in proportion to the square of the inverse of the distance. The detector may be used for measuring the distance remotely from any target surface.

  20. Light-operated proximity detector with linear output

    DOE Patents [OSTI]

    Simpson, Marc L.; McNeilly, David R.

    1985-01-01

    A light-operated proximity detector is described in which reflected light intensity from a surface whose proximity to the detector is to be gauged is translated directly into a signal proportional to the distance of the detector from the surface. A phototransistor is used to sense the reflected light and is connected in a detector circuit which maintains the phototransistor in a saturated state. A negative feedback arrangement using an operational amplifier connected between the collector and emitter of the transistor provides an output at the output of the amplifier which is linearly proportional to the proximity of the surface to the detector containing the transistor. This direct proportional conversion is true even though the light intensity is varying with the proximity in proportion to the square of the inverse of the distance. The detector may be used for measuring the distance remotely from any target surface.

  1. High natural gas output and inventories contribute to lower prices

    U.S. Energy Information Administration (EIA) Indexed Site

    High natural gas output and inventories contribute to lower prices High natural gas production and ample gas inventories are expected to keep natural gas prices relatively low for the rest of 2015. In its new monthly forecast, the U.S. Energy Information Administration says that while expected production growth is slowing from last year's torrid pace, domestic natural gas production in 2015 is still expected to be almost 6 percent above the 2014 level. Higher production has pushed U.S. natural

  2. Development of output user interface software to support analysis

    SciTech Connect (OSTI)

    Wahanani, Nursinta Adi Natsir, Khairina Hartini, Entin

    2014-09-30

    Data processing software packages such as VSOP and MCNPX are softwares that has been scientifically proven and complete. The result of VSOP and MCNPX are huge and complex text files. In the analyze process, user need additional processing like Microsoft Excel to show informative result. This research develop an user interface software for output of VSOP and MCNPX. VSOP program output is used to support neutronic analysis and MCNPX program output is used to support burn-up analysis. Software development using iterative development methods which allow for revision and addition of features according to user needs. Processing time with this software 500 times faster than with conventional methods using Microsoft Excel. PYTHON is used as a programming language, because Python is available for all major operating systems: Windows, Linux/Unix, OS/2, Mac, Amiga, among others. Values that support neutronic analysis are k-eff, burn-up and mass Pu{sup 239} and Pu{sup 241}. Burn-up analysis used the mass inventory values of actinide (Thorium, Plutonium, Neptunium and Uranium). Values are visualized in graphical shape to support analysis.

  3. Ring laser having an output at a single frequency

    DOE Patents [OSTI]

    Hackell, Lloyd A.

    1991-01-01

    A ring laser is disclosed that produces a single frequency of laser radiation in either the pulsed mode of operation or the continuous waveform (cw) mode of operation. The laser comprises a ring laser in a bowtie configuration, a birefringent gain material such as Nd:YLF, an improved optical diode that supports laser oscillation having a desired direction of travel and linear polarization, and a Q-switch. An output coupler (mirror) having a high reflectivity, such as 94%, is disclosed. Also disclosed is a self-seeded method of operation in which the laser can provide a pulse or a series of pulses of high power laser radiation at a consistent single frequency with a high degree of amplitude stability and temporal stability. In operation, the laser is operated in continuous waveform (cw) at a low power output with the Q-switch introducing a loss into the resonating cavity. Pumping is continued at a high level, causing the gain material to store energy. When a pulse is desired, the Q-switch is actuated to substantially reduce the losses so that a pulse can build up based on the low level cw oscillation. The pulse quickly builds, using the stored energy in the gain medium to provide a high power output pulse. The process may be repeated to provide a series of high power pulses of a consistent single frequency.

  4. Thermal conductivity of thermal-battery insulations

    SciTech Connect (OSTI)

    Guidotti, R.A.; Moss, M.

    1995-08-01

    The thermal conductivities of a variety of insulating materials used in thermal batteries were measured in atmospheres of argon and helium using several techniques. (Helium was used to simulate the hydrogen atmosphere that results when a Li(Si)/FeS{sub 2} thermal battery ages.) The guarded-hot-plate method was used with the Min-K insulation because of its extremely low thermal conductivity. For comparison purposes, the thermal conductivity of the Min-K insulating board was also measured using the hot-probe method. The thermal-comparator method was used for the rigid Fiberfrax board and Fiberfrax paper. The thermal conductivity of the paper was measured under several levels of compression to simulate the conditions of the insulating wrap used on the stack in a thermal battery. The results of preliminary thermal-characterization tests with several silica aerogel materials are also presented.

  5. High Temperature Thermal Array for Next Generation Solar Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This ...

  6. Effects of thermal fluctuations on thermal inflation

    SciTech Connect (OSTI)

    Hiramatsu, Takashi; Miyamoto, Yuhei; Yokoyama, Jun’ichi

    2015-03-12

    The mechanism of thermal inflation, a relatively short period of accelerated expansion after primordial inflation, is a desirable ingredient for a certain class of particle physics models if they are not to be in contention with the cosmology of the early Universe. Though thermal inflation is most simply described in terms of a thermal effective potential, a thermal environment also gives rise to thermal fluctuations that must be taken into account. We numerically study the effects of these thermal fluctuations using lattice simulations. We conclude that though they do not ruin the thermal inflation scenario, the phase transition at the end of thermal inflation proceeds through phase mixing and is therefore not accompanied by the formations of bubbles nor appreciable amplitude of gravitational waves.

  7. Measurement of thermal conductivity in proton irradiated silicon

    SciTech Connect (OSTI)

    Marat Khafizov; Clarissa Yablinsky; Todd Allen; David Hurley

    2014-04-01

    We investigate the influence of proton irradiation on thermal conductivity in single crystal silicon. We apply laser based modulated thermoreflectance technique to extract the change in conductivity of the thin layer damaged by proton irradiation. Unlike time domain thermoreflectance techniques that require application of a metal film, we perform our measurement on uncoated samples. This provides greater sensitivity to the change in conductivity of the thin damaged layer. Using sample temperature as a parameter provides a means to deduce the primary defect structures that limit thermal transport. We find that under high temperature irradiation the degradation of thermal conductivity is caused primarily by extended defects.

  8. Advanced Wellbore Thermal Simulator

    Energy Science and Technology Software Center (OSTI)

    1992-03-04

    GEOTEMP2, which is based on the earlier GEOTEMP program, is a wellbore thermal simulator designed for geothermal well drilling and production applications. The code treats natural and forced convection and conduction within the wellbore and heat conduction within the surrounding rock matrix. A variety of well operations can be modeled including injection, production, forward and reverse circulation with gas or liquid, gas or liquid drilling, and two-phase steam injection and production. Well completion with severalmore » different casing sizes and cement intervals can be modeled. The code allows variables, such as flow rate, to change with time enabling a realistic treatment of well operations. Provision is made in the flow equations to allow the flow areas of the tubing to vary with depth in the wellbore. Multiple liquids can exist in GEOTEMP2 simulations. Liquid interfaces are tracked through the tubing and annulus as one liquid displaces another. GEOTEMP2, however, does not attempt to simulate displacement of liquids with a gas or two-phase steam or vice versa. This means that it is not possible to simulate an operation where the type of drilling fluid changes, e.g. mud going to air. GEOTEMP2 was designed primarily for use in predicting the behavior of geothermal wells, but it is flexible enough to handle many typical drilling, production, and injection problems in the oil industry as well. However, GEOTEMP2 does not allow the modeling of gas-filled annuli in production or injection problems. In gas or mist drilling, no radiation losses are included in the energy balance. No attempt is made to model flow in the formation. Average execution time is 50 CP seconds on a CDC CYBER170. This edition of GEOTEMP2 is designated as Version 2.0 by the contributors.« less

  9. Thermal Control & System Integration

    Broader source: Energy.gov [DOE]

    The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

  10. Turbine Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine Thermal Management Fact Sheets Research Team Members Key Contacts Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances ...

  11. Method and system for managing an electrical output of a turbogenerator

    DOE Patents [OSTI]

    Stahlhut, Ronnie Dean; Vuk, Carl Thomas

    2010-08-24

    The system and method manages an electrical output of a turbogenerator in accordance with multiple modes. In a first mode, a direct current (DC) bus receives power from a turbogenerator output via a rectifier where turbogenerator revolutions per unit time (e.g., revolutions per minute (RPM)) or an electrical output level of a turbogenerator output meet or exceed a minimum threshold. In a second mode, if the turbogenerator revolutions per unit time or electrical output level of a turbogenerator output are less than the minimum threshold, the electric drive motor or a generator mechanically powered by the engine provides electrical energy to the direct current bus.

  12. Method and system for managing an electrical output of a turbogenerator

    DOE Patents [OSTI]

    Stahlhut, Ronnie Dean; Vuk, Carl Thomas

    2009-06-02

    The system and method manages an electrical output of a turbogenerator in accordance with multiple modes. In a first mode, a direct current (DC) bus receives power from a turbogenerator output via a rectifier where turbogenerator revolutions per unit time (e.g., revolutions per minute (RPM)) or an electrical output level of a turbogenerator output meet or exceed a minimum threshold. In a second mode, if the turbogenerator revolutions per unit time or electrical output level of a turbogenerator output are less than the minimum threshold, the electric drive motor or a generator mechanically powered by the engine provides electrical energy to the direct current bus.

  13. Thermoelectric power generator for variable thermal power source

    SciTech Connect (OSTI)

    Bell, Lon E; Crane, Douglas Todd

    2015-04-14

    Traditional power generation systems using thermoelectric power generators are designed to operate most efficiently for a single operating condition. The present invention provides a power generation system in which the characteristics of the thermoelectrics, the flow of the thermal power, and the operational characteristics of the power generator are monitored and controlled such that higher operation efficiencies and/or higher output powers can be maintained with variably thermal power input. Such a system is particularly beneficial in variable thermal power source systems, such as recovering power from the waste heat generated in the exhaust of combustion engines.

  14. High lumen compact fluorescents boost light output in new fixtures

    SciTech Connect (OSTI)

    1992-12-31

    Some compact fluorescent lamps aren`t so compact. General Electric (GE), OSRAM, and Philips have been expanding offerings in longer, more powerful, hard wired CFLs that generate enough light to serve applications once limited to conventional fluorescents and metal halide systems. All three of these manufacturers have for some time offered 18- to 40-watt high-output CFLs, which use a fluorescent tube doubled back on itself to produce a lot of light in a compact source. Now GE has introduced an even larger, more powerful 50-watt unit, and OSRAM is soon to follow suit with a 55-watt lamp. These new entries to the field of turbocharged CFLs can provide general lighting at ceiling heights of 12 feet or more as well as indirect lighting, floodlighting, and wall washing. They are such a concentrated source of light that they can provide the desired illumination using fewer lamps and fixtures than would be needed with competing sources.

  15. Output-Based Regulations: A Handbook for Air Regulators (U.S...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Output-Based Regulations: A Handbook for Air Regulators (U.S. EPA), August 2004 Output-Based Regulations: A Handbook for Air Regulators (U.S. EPA), August 2004 The U.S. ...

  16. Fail safe controllable output improved version of the Electromechanical battery

    DOE Patents [OSTI]

    Post, Richard F.

    1999-01-01

    Mechanical means are provided to control the voltages induced in the windings of a generator/motor. In one embodiment, a lever is used to withdraw or insert the entire stator windings from the cavity where the rotating field exists. In another embodiment, voltage control and/or switching off of the output is achievable with a variable-coupling generator/motor. A stator is made up of two concentric layers of windings, with a larger number of turns on the inner layer of windings than the outer layer of windings. The windings are to be connected in series electrically, that is, their voltages add vectorially. The mechanical arrangement is such that one or both of the windings can be rotated with respect to the other winding about their common central axis. Another improved design for the stator assembly of electromechanical batteries provides knife switch contacts that are in electrical contact with the stator windings. The operation of this embodiment depends on the fact that an abnormally large torque will be exerted on the stator structure during any short-circuit condition.

  17. Fail safe controllable output improved version of the electromechanical battery

    DOE Patents [OSTI]

    Post, R.F.

    1999-01-19

    Mechanical means are provided to control the voltages induced in the windings of a generator/motor. In one embodiment, a lever is used to withdraw or insert the entire stator windings from the cavity where the rotating field exists. In another embodiment, voltage control and/or switching off of the output is achievable with a variable-coupling generator/motor. A stator is made up of two concentric layers of windings, with a larger number of turns on the inner layer of windings than the outer layer of windings. The windings are to be connected in series electrically, that is, their voltages add vectorially. The mechanical arrangement is such that one or both of the windings can be rotated with respect to the other winding about their common central axis. Another improved design for the stator assembly of electromechanical batteries provides knife switch contacts that are in electrical contact with the stator windings. The operation of this embodiment depends on the fact that an abnormally large torque will be exerted on the stator structure during any short-circuit condition. 4 figs.

  18. Process management using component thermal-hydraulic function classes

    DOE Patents [OSTI]

    Morman, J.A.; Wei, T.Y.C.; Reifman, J.

    1999-07-27

    A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced. 5 figs.

  19. Process management using component thermal-hydraulic function classes

    DOE Patents [OSTI]

    Morman, James A.; Wei, Thomas Y. C.; Reifman, Jaques

    1999-01-01

    A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced.

  20. Method for optimizing the mechanical output of a fluid pressure free piston engine

    SciTech Connect (OSTI)

    Dibrell, E.W.; Schaich, W.A.

    1988-07-05

    The method is described for minimizing rotational speed variations of a centrifugal piston expander engine comprising the steps of: (1) supplying a pressured gas to a centrifugal piston expander engine having a rotatable output element and a discharge conduit for cooled exhaust gas; (2) expanding and cooling the pressured gas in the centrifugal piston expander engine to produce cyclically varying oppositely directed, positive and negative torques on the rotatable output shaft; (3) driving a rotary load in the positive torque direction by the rotatable output element through one rotatable element of a unidirectional clutch having two rotating elements relatively movable in only the negative torque direction; and (4) connecting a battery operated motor-generator unit to the rotatable output shaft to supplement the rotary speed of the output shaft during periods of negative torque output by the centrifugal piston expander engine and to recharge the battery during periods of maximum positive torque output of the centrifugal expander engine.

  1. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    2012-01-01

    HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  2. New runners to boost peak output at Niagara Falls

    SciTech Connect (OSTI)

    Reason, J.

    1990-01-01

    Retrofitted Francis turbines will improve the value of power generated from Niagara Falls by increasing the peak output of the hydroturbine units at the Robert Moses hydroelectric plant. The computer-designed runners are expected to add 330 MW to the peak capacity of the 28-yr-old plant and significantly increase the efficiency at high flow rates. Next year, the first new runner will be retrofit to the highly instrumented Unit 4. If the retrofit unit meets it increased-performance expectations, the other 12 units will be upgraded between 1993 and 1998. The work is part of an overall expansion of the Niagara Power Project designed to made better use of the power value of Niagara river water, within the constraints of a treaty with Canada and the scenic value of the falls. These constraints, together with varying flows and heads, introduced enormous complexities into the selection and design of the new runners. The alterations being made to Unit 4, in addition to replacing the turbine runner, include modifying the draft tube-liners, increasing the wicket-gate stroke, replacing the turbine discharge ring (to accommodate longer blades), making various electrical modifications to the generator, and replacing the transformer. But the key to the retrofit is the computer-designed runner. Charles Grose, senior project manager, New York Power Authority, White Plains, NY, emphasizes that such computer design techniques were not available a few years ago; neither were the computer-controlled machining techniques necessary to manufacture the new runners. Other aspects of the upgrading that were analyzed include runner stability, resonance, shaft torsional stress, and runaway speed.

  3. Thermal Energy Storage

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Cooperman, Alissa; Bouza, Antonio

    2013-06-05

    The article discusses thermal energy storage technologies. This article addresses benefits of TES at both the building site and the electricity generation source. The energy savings and market potential of thermal energy store are reviewed as well.

  4. thermal energy power conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility Nuclear ... Climate & Earth Systems Climate Measurement & Modeling ... Tribal Energy Program Intellectual Property Current EC ...

  5. Thermal neutron detection system

    DOE Patents [OSTI]

    Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

    2000-01-01

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  6. Thermal Performance Benchmarking (Presentation)

    SciTech Connect (OSTI)

    Moreno, G.

    2014-11-01

    This project will benchmark the thermal characteristics of automotive power electronics and electric motor thermal management systems. Recent vehicle systems will be benchmarked to establish baseline metrics, evaluate advantages and disadvantages of different thermal management systems, and identify areas of improvement to advance the state-of-the-art.

  7. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4 Average thermal performance rating of solar thermal collectors by type shipped in 2009 ... Administration, Form EIA-63A, "Annual Solar Thermal Collector Manufacturers Survey." ...

  8. Community Climate System Model (CCSM) Experiments and Output Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    -limited" experiment, in which emissions are assumed to be constrained, so that the concentration of carbon dioxide levels off at 550 parts per million by volume (ppmv) shortly after 2100. The CCSM web makes the source code of various versions of the model freely available and provides access to experiments that have been run and the resulting output data.

  9. Thermal Effusivity Tomography from Pulsed Thermal Imaging

    Energy Science and Technology Software Center (OSTI)

    2006-12-01

    The software program generates 3D volume distribution of thermal effusivity within a test material from one-sided pulsed thermal imaging data. Thsi is the first software capable of accurate, fast and automated thermal tomographic imaging of inhomogeneous materials to produce 3D images similar to those obtained from 3D X-ray CT (all previous thermal-imaging software can only produce 2D results). Because thermal effusivity is an intrisic material property that is related to material constituent, density, conductivity, etc.,more » quantitative imaging of effusivity allowed direct visualization of material's internal constituent/structure and damage distributions, thereby potentially leading to quantitative prediction of other material properties such as strength. I can be therefre be used for 3D imaging of material structure in fundamental material studies, nondestructive characterization of defects/flaws in structural engineering components, health monitoring of material damage and degradation during service, and medical imaging and diagnostics. This technology is one-sided, non contact and sensitive to material's thermal property and discontinuity. One major advantage of this tomographic technology over x-ray CT and ultrasounds is its natural efficiency for 3D imaging of the volume under a large surface area. This software is implemented with a method for thermal computed tomography of thermal effusivity from one-sided pulsed thermal imaging (or thermography) data. The method is based on several solutions of the governing heat transfer equation under pulsed thermography test condition. In particular, it consists of three components. 1) It utilized the thermal effusivity as the imaging parameter to construct the 3D image. 2) It established a relationship between the space (depth) and the time, because thermography data are in the time domain. 3) It incorporated a deconvolution algorithm to solve the depth porfile of the material thermal effusivity from the measured

  10. Effluent treatment options for nuclear thermal propulsion system ground tests

    SciTech Connect (OSTI)

    Shipers, L.R.; Brockmann, J.E.

    1992-10-16

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests.

  11. Development of a 402.5 MHz 140 kW Inductive Output Tube (Technical...

    Office of Scientific and Technical Information (OSTI)

    The SBIR effort was refocused on improving the IOT design codes to more accurately simulate the time dependent behavior of the input cavity, electron gun, output cavity, and ...

  12. Double Power Output for GaAs Solar Cells Embedded in Luminescent...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Double power output of bifacial thin-film GaAs microscale solar cells is achieved by embedding in luminescent waveguides (LSCs) with light- trapping backside reflectors (BSRs). ...

  13. Pretest Caluculations of Temperature Changes for Field Thermal Conductivity Tests

    SciTech Connect (OSTI)

    N.S. Brodsky

    2002-07-17

    A large volume fraction of the potential monitored geologic repository at Yucca Mountain may reside in the Tptpll (Tertiary, Paintbrush Group, Topopah Spring Tuff, crystal poor, lower lithophysal) lithostratigraphic unit. This unit is characterized by voids, or lithophysae, which range in size from centimeters to meters. A series of thermal conductivity field tests are planned in the Enhanced Characterization of the Repository Block (ECRB) Cross Drift. The objective of the pretest calculation described in this document is to predict changes in temperatures in the surrounding rock for these tests for a given heater power and a set of thermal transport properties. The calculation can be extended, as described in this document, to obtain thermal conductivity, thermal capacitance (density x heat capacity, J {center_dot} m{sup -3} {center_dot} K{sup -1}), and thermal diffusivity from the field data. The work has been conducted under the ''Technical Work Plan For: Testing and Monitoring'' (BSC 2001). One of the outcomes of this analysis is to determine the initial output of the heater. This heater output must be sufficiently high that it will provide results in a reasonably short period of time (within several weeks or a month) and be sufficiently high that the heat increase is detectable by the instruments employed in the test. The test will be conducted in stages and heater output will be step increased as the test progresses. If the initial temperature is set too high, the experiment will not have as many steps and thus fewer thermal conductivity data points will result.

  14. Damage of MEMS thermal actuators heated by laser irradiation.

    SciTech Connect (OSTI)

    Walraven, Jeremy Allen; Klody, Kelly Anne; Sackos, John T.; Phinney, Leslie Mary

    2005-01-01

    Optical actuation of microelectromechanical systems (MEMS) is advantageous for applications for which electrical isolation is desired. Thirty-two polycrystalline silicon opto-thermal actuators, optically-powered MEMS thermal actuators, were designed, fabricated, and tested. The design of the opto-thermal actuators consists of a target for laser illumination suspended between angled legs that expand when heated, providing the displacement and force output. While the amount of displacement observed for the opto-thermal actuators was fairly uniform for the actuators, the amount of damage resulting from the laser heating ranged from essentially no damage to significant amounts of damage on the target. The likelihood of damage depended on the target design with two of the four target designs being more susceptible to damage. Failure analysis of damaged targets revealed the extent and depth of the damage.

  15. Damage of MEMS thermal actuators heated by laser irradiation.

    SciTech Connect (OSTI)

    Walraven, Jeremy Allen; Klody, Kelly Anne; Sackos, John T.; Phinney, Leslie Mary

    2004-11-01

    Optical actuation of microelectromechanical systems (MEMS) is advantageous for applications for which electrical isolation is desired. Thirty-two polycrystalline silicon opto-thermal actuators, optically-powered MEMS thermal actuators, were designed, fabricated, and tested. The design of the opto-thermal actuators consists of a target for laser illumination suspended between angled legs that expand when heated, providing the displacement and force output. While the amount of displacement observed for the opto-thermal actuators was fairly uniform for the actuators, the amount of damage resulting from the laser heating ranged from essentially no damage to significant amounts of damage on the target. The likelihood of damage depended on the target design with two of the four target designs being more susceptible to damage. Failure analysis of damaged targets revealed the extent and depth of the damage.

  16. Midtemperature solar systems test facility predictions for thermal performance based on test data. Polisolar Model POL solar collector with glass reflector surface

    SciTech Connect (OSTI)

    Harrison, T.D.

    1981-05-01

    Thermal performance predictions based on test data are presented for the Polisolar Model POL solar collector, with glass reflector surfaces, for three output temperatures at five cities in the United States.

  17. Midtemperature solar systems test facility predictions for thermal performance based on test data. Toltec two-axis tracking solar collector with 3M acrylic polyester film reflector surface

    SciTech Connect (OSTI)

    Harrison, T.D.

    1981-06-01

    Thermal performance predictions based on test data are presented for the Toltec solar collector, with acrylic film reflector surface, for three output temperatures at five cities in the United States.

  18. Midtemperature Solar Systems Test Facility predictions for thermal performance of the Solar Kinetics T-700 solar collector with FEK 244 reflector surface

    SciTech Connect (OSTI)

    Harrison, T.D.

    1980-11-01

    Thermal performance predictions are presented for the Solar Kinetics T-700 solar collector, with FEK 244 reflector surface, for three output temperatures at five cities in the United States.

  19. Thermal Effusivity Tomography from Pulsed Thermal Imaging

    Energy Science and Technology Software Center (OSTI)

    2008-11-05

    The software program generates 3D volume distribution of thermal effusivity within a test material from one—sided pulsed thermal imaging data. Thsi is the first software capable of accurate, fast and automated thermal tomographic imaging of inhomogeneoirs materials to produce 3D images similar to those obtained from 3D X—ray CT (all previous thepnal—imaging software can only produce 20 results) . Because thermal effusivity is an Intrisic material property that is related to material constituent, density, conductivity,more » etc., quantitative imaging of eftusivity allowed direct visualization of material’s internal constituent/structure and damage distributions, thereby potentially leading to quantitative prediction of other material properties such as strength. I can be therefre be used for 3D imaging of material structure in fundamental material studies, nondestructive characterization of defects/flaws in structural engineering components, health monitoring of material damage and degradation during service, and medical imaging and diagnostics. This technology is one—sided, non contact and sensitive to material’s thermal property and discontinuity. One major advantage of this tomographic technology over x-ray CT and ultrasounds is its natural efficiency for 3D imaging of the volume under a large surface area. This software is implemented with a method for thermal computed tomography of thermal effusivity from one—sided pulsed thermal imaging (or thermography) data. The method is based on several solutions of the governing heat transfer equation under pulsed thermography test condition. In particular, it consists of three components. 1) It utilized the thermal effusivity as the imaging parameter to construct the 3D image. 2) It established a relationship between the space (depth) and the time, because thermography data are in the time domain. 3) It incorporated a deconvolution algorithm to solve the depth porfile of the material thermal effusivity from the

  20. Catalytic thermal barrier coatings

    DOE Patents [OSTI]

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  1. Estimating Solar PV Output Using Modern Space/Time Geostatistics (Presentation)

    SciTech Connect (OSTI)

    Lee, S. J.; George, R.; Bush, B.

    2009-04-29

    This presentation describes a project that uses mapping techniques to predict solar output at subhourly resolution at any spatial point, develop a methodology that is applicable to natural resources in general, and demonstrate capability of geostatistical techniques to predict the output of a potential solar plant.

  2. ARM: ARSCL: multiple outputs from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Karen Johnson; Michael Jensen

    ARSCL: multiple outputs from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

  3. ARM: ARSCL: multiple outputs from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

    SciTech Connect (OSTI)

    Karen Johnson; Michael Jensen

    1996-11-08

    ARSCL: multiple outputs from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

  4. Solid state thermal rectifier

    DOE Patents [OSTI]

    None

    2016-07-05

    Thermal rectifiers using linear nanostructures as core thermal conductors have been fabricated. A high mass density material is added preferentially to one end of the nanostructures to produce an axially non-uniform mass distribution. The resulting nanoscale system conducts heat asymmetrically with greatest heat flow in the direction of decreasing mass density. Thermal rectification has been demonstrated for linear nanostructures that are electrical insulators, such as boron nitride nanotubes, and for nanostructures that are conductive, such as carbon nanotubes.

  5. Method for leveling the power output of an electromechanical battery as a function of speed

    DOE Patents [OSTI]

    Post, R.F.

    1999-03-16

    The invention is a method of leveling the power output of an electromechanical battery during its discharge, while at the same time maximizing its power output into a given load. The method employs the concept of series resonance, employing a capacitor the parameters of which are chosen optimally to achieve the desired near-flatness of power output over any chosen charged-discharged speed ratio. Capacitors are inserted in series with each phase of the windings to introduce capacitative reactances that act to compensate the inductive reactance of these windings. This compensating effect both increases the power that can be drawn from the generator before inductive voltage drops in the windings become dominant and acts to flatten the power output over a chosen speed range. The values of the capacitors are chosen so as to optimally flatten the output of the generator over the chosen speed range. 3 figs.

  6. Method for leveling the power output of an electromechanical battery as a function of speed

    DOE Patents [OSTI]

    Post, Richard F.

    1999-01-01

    The invention is a method of leveling the power output of an electromechanical battery during its discharge, while at the same time maximizing its power output into a given load. The method employs the concept of series resonance, employing a capacitor the parameters of which are chosen optimally to achieve the desired near-flatness of power output over any chosen charged-discharged speed ratio. Capacitors are inserted in series with each phase of the windings to introduce capacitative reactances that act to compensate the inductive reactance of these windings. This compensating effect both increases the power that can be drawn from the generator before inductive voltage drops in the windings become dominant and acts to flatten the power output over a chosen speed range. The values of the capacitors are chosen so as to optimally flatten the output of the generator over the chosen speed range.

  7. System for adjusting frequency of electrical output pulses derived from an oscillator

    DOE Patents [OSTI]

    Bartholomew, David B.

    2006-11-14

    A system for setting and adjusting a frequency of electrical output pulses derived from an oscillator in a network is disclosed. The system comprises an accumulator module configured to receive pulses from an oscillator and to output an accumulated value. An adjustor module is configured to store an adjustor value used to correct local oscillator drift. A digital adder adds values from the accumulator module to values stored in the adjustor module and outputs their sums to the accumulator module, where they are stored. The digital adder also outputs an electrical pulse to a logic module. The logic module is in electrical communication with the adjustor module and the network. The logic module may change the value stored in the adjustor module to compensate for local oscillator drift or change the frequency of output pulses. The logic module may also keep time and calculate drift.

  8. Technique for enhancing the power output of an electrostatic generator employing parametric resonance

    DOE Patents [OSTI]

    Post, Richard F.

    2016-02-23

    A circuit-based technique enhances the power output of electrostatic generators employing an array of axially oriented rods or tubes or azimuthal corrugated metal surfaces for their electrodes. During generator operation, the peak voltage across the electrodes occurs at an azimuthal position that is intermediate between the position of minimum gap and maximum gap. If this position is also close to the azimuthal angle where the rate of change of capacity is a maximum, then the highest rf power output possible for a given maximum allowable voltage at the minimum gap can be attained. This rf power output is then coupled to the generator load through a coupling condenser that prevents suppression of the dc charging potential by conduction through the load. Optimized circuit values produce phase shifts in the rf output voltage that allow higher power output to occur at the same voltage limit at the minimum gap position.

  9. Sandia Thermal Program

    Energy Science and Technology Software Center (OSTI)

    2005-11-23

    Thermal analysis in 1-D planar, cylindrical and spherical geometries using control volume finite element spatial discretization with 1st and 2nd order implicit time integrators.

  10. Scattering Solar Thermal Concentrators

    Office of Environmental Management (EM)

    sunshot DOEGO-102012-3669 * September 2012 MOTIVATION All thermal concentrating solar power (CSP) systems use solar tracking, which involves moving large mirror surfaces...

  11. Battery Thermal Characterization

    SciTech Connect (OSTI)

    Saxon, Aron; Powell, Mitchell; Shi, Ying

    2015-06-09

    This presentation provides an update of NREL's battery thermal characterization efforts for the 2015 U.S. Department of Energy Annual Merit Reviews.

  12. Ambient temperature thermal battery

    SciTech Connect (OSTI)

    Fletcher, A. N.; Bliss, D. E.; McManis III

    1985-11-26

    An ambient temperature thermal battery having two relatively high temperature melting electrolytes which form a low melting temperature electrolyte upon activation.

  13. Variable pressure thermal insulating jacket

    DOE Patents [OSTI]

    Nelson, P.A.; Malecha, R.F.; Chilenskas, A.A.

    1994-09-20

    A device for controlled insulation of a thermal device is disclosed. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communication with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket. 10 figs.

  14. Variable pressure thermal insulating jacket

    DOE Patents [OSTI]

    Nelson, Paul A. (Wheaton, IL); Malecha, Richard F. (Naperville, IL); Chilenskas, Albert A. (Chicago, IL)

    1994-01-01

    A device for controlled insulation of a thermal device. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communcation with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket.

  15. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, Gloria A.; Elder, Michael G.; Kemme, Joseph E.

    1985-01-01

    An apparatus which thermally protects sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components to a heat sink such as ice.

  16. Thermally actuated wedge block

    DOE Patents [OSTI]

    Queen, Jr., Charles C.

    1980-01-01

    This invention relates to an automatically-operating wedge block for maintaining intimate structural contact over wide temperature ranges, including cryogenic use. The wedging action depends on the relative thermal expansion of two materials having very different coefficients of thermal expansion. The wedge block expands in thickness when cooled to cryogenic temperatures and contracts in thickness when returned to room temperature.

  17. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, G.A.; Elder, M.G.; Kemme, J.E.

    1984-03-20

    The disclosure is directed to an apparatus for thermally protecting sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components such as electronics to a heat sink such as ice.

  18. Tunable thermal link

    DOE Patents [OSTI]

    Chang, Chih-Wei; Majumdar, Arunava; Zettl, Alexander K.

    2014-07-15

    Disclosed is a device whereby the thermal conductance of a multiwalled nanostructure such as a multiwalled carbon nanotube (MWCNT) can be controllably and reversibly tuned by sliding one or more outer shells with respect to the inner core. As one example, the thermal conductance of an MWCNT dropped to 15% of the original value after extending the length of the MWCNT by 190 nm. The thermal conductivity returned when the tube was contracted. The device may comprise numbers of multiwalled nanotubes or other graphitic layers connected to a heat source and a heat drain and various means for tuning the overall thermal conductance for applications in structure heat management, heat flow in nanoscale or microscale devices and thermal logic devices.

  19. Thermal treatment wall

    DOE Patents [OSTI]

    Aines, Roger D.; Newmark, Robin L.; Knauss, Kevin G.

    2000-01-01

    A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.

  20. Solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  1. Study on durability for thermal cycle of planar SOFC

    SciTech Connect (OSTI)

    Ando, Motoo; Nakata, Kei-ichi; Wakayama, Sin-ichi

    1996-12-31

    TONEN CORPORATION has developed planar type SOFC since 1986. We demonstrated the output of 1.3 kW in 1991 and 5.1 kW in 1995. Simultaneously we have studied how to raise electric efficiency and reliability utilizing hydrogen and propane as fuel. Durability for thermal cycle is one of the most important problems of planar SOFC to make it more practical. The planar type SOFC is made up of separator, zirconia electrolyte and glass sealant. The thermal expansion of these components are expected to be the same value, however, they still possess small differences. In this situation, a thermal cycle causes a thermal stress due to the difference of the cell components and is often followed by a rupture in cell components, therefore, the analysis of the thermal stress should give us much useful information. The thermal cycle process consists of a heating up and cooling down procedure. Zirconia electrolyte is not bonded to the separator under the condition of the initial heating up procedure, and glass sealant becomes soft or melts and glass seals spaces between the zirconia and separator. The glass sealant becomes harder with the cooling down procedure. Moreover, zirconia is tightly bonded with separator below a temperature which is defined as a constraint temperature and thermal stress also occurs. This indicates that the heating up process relaxes the thermal stress and the cooling down increases it. In this paper, we simulated dependence of the stress on the sealing configuration, thermal expansion of sealant and constraint temperature of sealant glass. Furthermore, we presented SOFC electrical properties after a thermal cycle.

  2. X-ray source assembly having enhanced output stability, and fluid stream analysis applications thereof

    DOE Patents [OSTI]

    Radley, Ian; Bievenue, Thomas J.; Burdett, John H.; Gallagher, Brian W.; Shakshober, Stuart M.; Chen, Zewu; Moore, Michael D.

    2008-06-08

    An x-ray source assembly and method of operation are provided having enhanced output stability. The assembly includes an anode having a source spot upon which electrons impinge and a control system for controlling position of the anode source spot relative to an output structure. The control system can maintain the anode source spot location relative to the output structure notwithstanding a change in one or more operating conditions of the x-ray source assembly. One aspect of the disclosed invention is most amenable to the analysis of sulfur in petroleum-based fuels.

  3. X-ray source assembly having enhanced output stability, and fluid stream analysis applications thereof

    DOE Patents [OSTI]

    Radley, Ian; Bievenue, Thomas J.; Burdett Jr., John H.; Gallagher, Brian W.; Shakshober, Stuart M.; Chen, Zewu; Moore, Michael D.

    2007-04-24

    An x-ray source assembly (2700) and method of operation are provided having enhanced output stability. The assembly includes an anode (2125) having a source spot upon which electrons (2120) impinge and a control system (2715/2720) for controlling position of the anode source spot relative to an output structure. The control system can maintain the anode source spot location relative to the output structure (2710) notwithstanding a change in one or more operating conditions of the x-ray source assembly. One aspect of the disclosed invention is most amenable to the analysis of sulfur in petroleum-based fuels.

  4. Thermally-related safety issues associated with thermal batteries.

    SciTech Connect (OSTI)

    Guidotti, Ronald Armand

    2006-06-01

    Thermal batteries can experience thermal runaway under certain usage conditions. This can lead to safety issues for personnel and cause damage to associated test equipment if the battery thermally self destructs. This report discusses a number of thermal and design related issues that can lead to catastrophic destruction of thermal batteries under certain conditions. Contributing factors are identified and mitigating actions are presented to minimize or prevent undesirable thermal runaway.

  5. EIA Energy Efficiency-Table 4e. Gross Output by Selected Industries...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    e Page Last Modified: May 2010 Table 4e. Gross Output1by Selected Industries, 1998, 2002, and 2006 (Billion 2000 Dollars 2) MECS Survey Years NAICS Subsector and Industry 1998 2002...

  6. EIA Energy Efficiency-Table 3e. Gross Output by Selected Industries...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    e Page Last Modified: May 2010 Table 3e. Gross Output1 by Selected Industries, 1998, 2002, and 2006 (Current Billion Dollars) MECS Survey Years NAICS Subsector and Industry 1998...

  7. New Research Center to Increase Safety and Power Output of U...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Center to Increase Safety and Power Output of U.S. Nuclear Reactors New Research ... at a fraction of the cost of building new reactors, while providing continued ...

  8. Examining the Variability of Wind Power Output in the Regulation Time Frame: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Shedd, S.; Florita, A.

    2012-08-01

    This work examines the distribution of changes in wind power for different time scales in the regulation time frame as well as the correlation of changes in power output for individual wind turbines in a wind plant.

  9. Geek-Up[04.01.2011]: Charting Wind, Thermal, Hydro Generation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Check out Bonneville Power Administration’s new near real-time energy monitoring – it displays the output of all wind, thermal and hydro generation in the agency’s balancing authority against its load. Updated every five minutes, it’s a great resource for universities, research laboratories and other utilities.

  10. Phasing surface emitting diode laser outputs into a coherent laser beam

    DOE Patents [OSTI]

    Holzrichter, John F.

    2006-10-10

    A system for generating a powerful laser beam includes a first laser element and at least one additional laser element having a rear laser mirror, an output mirror that is 100% reflective at normal incidence and <5% reflective at an input beam angle, and laser material between the rear laser mirror and the output mirror. The system includes an injector, a reference laser beam source, an amplifier and phase conjugater, and a combiner.

  11. Summary of the Output from the VTP Advanced Materials Workshop | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy the Output from the VTP Advanced Materials Workshop Summary of the Output from the VTP Advanced Materials Workshop 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vtpn04_lm_schutte_2012_o.pdf (461.49 KB) More Documents & Publications Materials Lightweight Materials Overview Overview of Lightweight Materials

  12. Water Power Calculator Temperature and Analog Input/Output Module Ambient Temperature Testing

    SciTech Connect (OSTI)

    Mark D. McKay

    2011-02-01

    Water Power Calculator Temperature and Analog input/output Module Ambient Temperature Testing A series of three ambient temperature tests were conducted for the Water Power Calculator development using the INL Calibration Laboratorys Tenney Environmental Chamber. The ambient temperature test results demonstrate that the Moore Industries Temperature Input Modules, Analog Input Module and Analog Output Module, ambient temperature response meet or exceed the manufactures specifications

  13. Multilayer thermal barrier coating systems

    DOE Patents [OSTI]

    Vance, Steven J.; Goedjen, John G.; Sabol, Stephen M.; Sloan, Kelly M.

    2000-01-01

    The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

  14. Thermal insulations using vacuum panels

    DOE Patents [OSTI]

    Glicksman, Leon R.; Burke, Melissa S.

    1991-07-16

    Thermal insulation vacuum panels are formed of an inner core of compressed low thermal conductivity powders enclosed by a ceramic/glass envelope evaluated to a low pressure.

  15. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility HomeNational Solar Thermal Test Facility Permalink Pratt Whitney Rocketdyne Testing Concentrating Solar Power, EC, Energy, Facilities, ...

  16. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers National Solar Thermal Test Facility HomeTag:National Solar Thermal Test Facility Permalink Air Force Research Laboratory Testing ...

  17. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility HomeNational Solar Thermal Test Facility Permalink High-Efficiency Solar Thermochemical Reactor for Hydrogen Production Center for ...

  18. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2 Solar thermal collector shipments by type, quantity, revenue, and average price, 2008 ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  19. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1 Distribution of domestic solar thermal collector shipments (thousand square feet) 2008 ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  20. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Annual shipments of solar thermal collectors by type, 2000 - 2009 (thousand square feet) ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  1. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Shipments of solar thermal collectors ranked by origin and destination, 2009 Origin Top ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  2. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Annual shipments of solar thermal collectors by source, 2000 - 2009 Imports Domestically ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  3. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Annual shipments of solar thermal collectors by disposition, 2000 - 2009 (thousand square ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  4. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    7 Percent of solar thermal collector shipments by the 10 largest companies, 2000 - 2009 ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  5. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5 Shipments of complete solar thermal collector systems, 2008 and 2009 Shipment ... Administration, Form EIA-63A, "Annual Solar Thermal Collector Manufacturers Survey."

  6. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    8 Import shipments of solar thermal collectors by country, 2008 and 2009 (square feet) ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  7. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    7 Import shipments of solar thermal collectors by type, 2000 - 2009 (thousand square feet) ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  8. Thermal Properties Measurement Report

    SciTech Connect (OSTI)

    Carmack, Jon; Braase, Lori; Papesch, Cynthia; Hurley, David; Tonks, Michael; Zhang, Yongfeng; Gofryk, Krzysztof; Harp, Jason; Fielding, Randy; Knight, Collin; Meyer, Mitch

    2015-08-01

    The Thermal Properties Measurement Report summarizes the research, development, installation, and initial use of significant experimental thermal property characterization capabilities at the INL in FY 2015. These new capabilities were used to characterize a U3Si2 (candidate Accident Tolerant) fuel sample fabricated at the INL. The ability to perform measurements at various length scales is important and provides additional data that is not currently in the literature. However, the real value of the data will be in accomplishing a phenomenological understanding of the thermal conductivity in fuels and the ties to predictive modeling. Thus, the MARMOT advanced modeling and simulation capability was utilized to illustrate how the microstructural data can be modeled and compared with bulk characterization data. A scientific method was established for thermal property measurement capability on irradiated nuclear fuel samples, which will be installed in the Irradiated Material Characterization Laboratory (IMCL).

  9. Underhood Thermal Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Underhood Thermal Performance This email address is being protected from spambots. You need JavaScript enabled to view it. - Computational Fluid Dynamics Project Leader Background As vehicle technology advances, automakers need a better understanding of underhood heat loads, especially as they relate to emissions and fuel efficiency. Manufacturers of heavy-duty vehicles and off-road machines have similar concerns. Ineffective underhood thermal management can lead to higher emissions, reduced

  10. Turbine Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine Thermal Management Fact Sheets Research Team Members Key Contacts Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances to current land-based turbines are directly linked to our country's economic and energy security. Technical advancement for any type of gas turbine generally implies better performance, greater efficiency, and extended component life. From the standpoint of cycle efficiency and durability, this suggests that a continual

  11. Photovoltaic-thermal collectors

    DOE Patents [OSTI]

    Cox, III, Charles H.

    1984-04-24

    A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

  12. Video and thermal imaging system for monitoring interiors of high temperature reaction vessels

    DOE Patents [OSTI]

    Saveliev, Alexei V.; Zelepouga, Serguei A.; Rue, David M.

    2012-01-10

    A system and method for real-time monitoring of the interior of a combustor or gasifier wherein light emitted by the interior surface of a refractory wall of the combustor or gasifier is collected using an imaging fiber optic bundle having a light receiving end and a light output end. Color information in the light is captured with primary color (RGB) filters or complimentary color (GMCY) filters placed over individual pixels of color sensors disposed within a digital color camera in a BAYER mosaic layout, producing RGB signal outputs or GMCY signal outputs. The signal outputs are processed using intensity ratios of the primary color filters or the complimentary color filters, producing video images and/or thermal images of the interior of the combustor or gasifier.

  13. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Coal Production by State and Mining Method, 2014" "(thousand short tons)" "Coal-Producing State and Region1","Continuous2","Conventional and","Longwall4","Total" ,,"Other3" "Alabama",435,"-",12081,12516 "Arkansas",87,"-","-",87 "Colorado",971,10,17142,18123 "Illinois",16944,1634,34136,52713

  14. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Average Sales Price of Coal by State, County, and Number of Mines, 2014" "Coal-Producing State and County","Number of Mines","Sales","Average Sales Price" ,,"(thousand short tons)","(dollars per short ton)" "Alabama",32,17359,87.17 " Bibb",1,"w","w" " Franklin",2,"w","w" " Jefferson",9,5764,103.31 " Shelby",2,"w","w"

  15. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Average Sales Price of U.S. Coal by State and Disposition, 2014" "(dollars per short ton)" "Coal-Producing State","Open Market1","Captive2","Total3" "Alabama",84.48,"-",87.17 "Alaska","w","-","w" "Arizona","w","-","w" "Arkansas","w","w","w" "Colorado",35.68,44.28,38.64

  16. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Production by Coalbed Thickness and Mine Type, 2014" "(thousand short tons)" "Coal Thickness (inches)","Underground","Surface","Total" "Under 7","-",922,922 "7 - Under 13","-",2518,2518 "13 - Under 19",343,6236,6579 "19 - Under 25",197,11075,11273 "25 - Under 31",2693,10632,13324 "31 - Under 37",15604,14557,30161 "37 - Under 43",20075,13504,33580

  17. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Production and Number of Mines by State and Coal Rank, 2014" "(thousand short tons)" ,"Bituminous",,"Subbituminous",,"Lignite",,"Anthracite",,"Total" "Coal-Producing","Number of Mines","Production","Number of Mines","Production","Number of Mines","Production","Number of Mines","Production","Number of

  18. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    . Coal Production by State, Mine Type, and Union Status, 2014" "(thousand short tons)" ,"Union",,"Nonunion",,"Total" "Coal-Producing","Underground","Surface","Underground","Surface","Underground","Surface" "State and Region1" "Alabama",12081,327,435,3486,12516,3813 "Alaska","-",1502,"-","-","-",1502

  19. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Disposition by State, 2014" "(thousand short tons)" "Coal-Producing State","Open Market Sales1","Captive Sales / Transactions2","Exports3","Total" "Alabama",5310,"-",12049,17359 "Alaska",954,"-",554,1508 "Arizona",8182,"-","-",8182 "Arkansas",1,104,9,114 "Colorado",10602,11844,2089,24536 "Illinois",39533,6139,10170,55842

  20. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Major U.S. Coal Mines, 2014" "Rank","Mine Name / Operating Company","Mine Type","State","Production (short tons)" 1,"North Antelope Rochelle Mine / Peabody Powder River Mining LLC","Surface","Wyoming",117965515 2,"Black Thunder / Thunder Basin Coal Company LLC","Surface","Wyoming",101016860 3,"Cordero Mine / Cordero Mining

  1. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    5. Revenue and Expense Statistics for U.S. Cooperative Borrower-Owned Electric Utilities, 2003 through 2013 (Million Dollars) Description 2003 2004 2005 2006 2007 2008 Operating...

  2. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    State","Continuous1","Conventional and","Longwall3","Total" ,,"Other2" "Alabama","w","-","w",89.68 "Arkansas","w","-","-","w" "Colorado","w","-","w",37.28 "Illinois",44.23,"w",4...

  3. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    mile. Some structures were designed and then built to carry future transmission circuits in order to handle expected growth in new capability requirements. Lines are taken...

  4. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Average Sales Price of Coal by State and Coal Rank, 2014" "(dollars per short ton)" "Coal-Producing State","Bituminous","Subbituminous","Lignite","Anthracite","Total" ...

  5. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. U.S. Transformer Outages by Type and NERC region, 2013 Outage Type Eastern Interconnection TRE WECC Contiguous U.S. Circuit Outage Counts Automatic Outages (Sustained) 59.00 --...

  6. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. U.S. Transformer Sustained Automatic Outage Counts and Hours by High-Voltage Size and NERC Region, 2013 Sustained Automatic Outage Counts High-Side Voltage (kV) Eastern...

  7. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. U.S. Transmission Circuit Sustained Automatic Outage Counts and Hours by High-Voltage Size and NERC Region, 2013 Sustained Automatic Outage Counts Voltage Region Type Operating...

  8. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    ... equal to Internal Demand less Direct Control Load Management and Interruptible Demand. ... Capacity Margin is the amount of unused available capability of an electric power system at ...

  9. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    ...nation",2016,2015,2015,,,"Change" "North America Total",294.8,204.63,276.27,294.8,276.27,6...,355.59,611.72,791.78,611.72,29.4 "South America Total",501.14,"-",702.17,501.14,702.17,-2...

  10. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    ...nation",2016,2015,2015,,,"Change" "North America Total",72167,239165,99293,72167,99293,-27... Other**",215,167,303,215,303,-29 "South America Total",21,"-",78,21,78,-73.1 " ...

  11. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    -- -- -- -- -- -- -- 1.00 1.00 Fire -- -- -- -- -- -- -- -- -- Vandalism, Terrorism, or Malicious Acts -- -- -- -- 2.00 -- -- -- 2.00 Failed AC Substation Equipment --...

  12. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    28.00 2.00 2.00 23.00 89.00 Fire 1.00 -- 1.00 1.00 3.00 -- -- 50.00 56.00 Vandalism, Terrorism, or Malicious Acts -- -- -- -- 7.00 -- -- -- 7.00 Failed AC Substation Equipment...

  13. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Flue Gas Desulfurization Systems Electrostatic Precipitators Baghouses Select Catalytic and Non-Catalytic Reduction Systems Activated Carbon Injection Systems Direct Sorbent ...

  14. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Biogenic Municipal Solid Waste: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric ...

  15. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Demand-Side Management Program Incremental Effects by Program Category, 2004 through 2012 (Table Discontinued) Energy Efficiency Load Management Total Year Energy Savings (Thousand ...

  16. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Management Program Direct and Indirect Costs, 2004 through 2012 (Thousand Dollars) (Table Discontinued) Year Energy Efficiency Load Management Direct Cost Indirect Cost ...

  17. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    . Demand-Side Management Program Annual Effects by Program Category, 2004 through 2012 (Table Discontinued) Energy Efficiency Load Management Total Year Energy Savings (Thousand ...

  18. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    6. Energy Efficiency Category, by Sector, 2013 through 2014 Year Residential Commercial Industrial Transportation Total Incremental Annual Savings - Energy Savings (MWh) 2013 ...

  19. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Energy Efficiency - Life Cycle Category, by Sector, 2013 through 2014 Year Residential Commercial Industrial Transportation Total Life Cycle Savings - Energy Savings (MWh) 2013 ...

  20. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Residential Commercial Industrial Transportation Total Energy Efficiency - Energy Savings (Thousand MWh) 2004 17,185 24,290 11,137 50 52,663 2005 18,894 28,073 11,986 47 ...

  1. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Residential Commercial Industrial Transportation Total Energy Efficiency - Energy Savings (Thousand MWh) 2004 1,827 1,812 894 -- 4,532 2005 2,249 2,559 1,071 -- 5,879 2006 ...

  2. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    Notes: NERC region and reliability assessment area maps are provided on EIA's Electricity Reliability web page: http:www.eia.govcneafelectricitypageeia411eia411.html Net ...

  3. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    Notes: NERC region and reliability assessment area maps are provided on EIA's Electricity Reliability web page: http:www.eia.govcneafelectricitypageeia411eia411.html Circuit ...

  4. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Production and Number of Mines by State and Mine Type, 2014 and 2013" "(thousand short tons)" ,2014,,2013,,"Percent Change" "Coal-Producing","Number of Mines","Production","Number of Mines","Production","Number of Mines","Production" "State and Region1" "Alabama",36,16363,39,18620,-7.7,-12.1 " Underground",7,12516,8,13515,-12.5,-7.4 "

  5. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Major U.S. Coal Producers, 2014" "Rank","Controlling Company Name","Production (thousand short tons)","Percent of Total Production" 1,"Peabody Energy Corp",189531,19 2,"Arch Coal Inc",135801,13.6 3,"Cloud Peak Energy",85794,8.6 4,"Alpha Natural Resources",80153,8 5,"Murray Energy Corp",62815,6.3 6,"Alliance Resource Partners LP",40964,4.1 7,"Westmoreland Coal Company",35580,3.6

  6. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Productive Capacity of Coal Mines by State, 2014 and 2013" "(thousand short tons)" ,2014,,,2013,,,"Percent Change" "Coal-Producing","Underground","Surface","Total","Underground","Surface","Total","Underground","Surface","Total" "State" "Alabama",13915,5530,19445,15121,7633,22754,-8,-27.6,-14.5

  7. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity Utilization of Coal Mines by State, 2014 and 2013" "(percent)" ,2014,,,2013 "Coal-Producing","Underground","Surface","Total","Underground","Surface","Total" "State" "Alabama",89.95,68.96,83.98,89.38,66.73,81.78 "Alaska","-",50.06,50.06,"-",54.39,54.39 "Arizona","-",94.71,94.71,"-",89.44,89.44

  8. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Productive Capacity and Capacity Utilization of Underground Coal Mines by State and Mining Method, 2014" "(thousand short tons)" ,"Continuous1",,"Conventional and Other2",,"Longwall3",,"Total" "Coal-Producing","Productive","Capacity","Productive","Capacity","Productive","Capacity","Productive","Capacity"

  9. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Recoverable Coal Reserves and Average Recovery Percentage at Producing Mines by State, 2014 and 2013" "(million short tons)" ,2014,,2013 "Coal-Producing","Recoverable Coal","Average Recovery","Recoverable Coal","Average Recovery","Percent Change" "State","Reserves","Percentage","Reserves","Percentage","Recoverable Coal" ,,,,,"Reserves"

  10. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve Base by Mining Method, 2014" "(million short tons)" ,"Underground - Minable Coal",,,"Surface - Minable Coal",,,"Total"

  11. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method, 2014" "(million short tons)" ,"Continuous1",,"Conventional and Other2",,"Longwall3",,"Total" "Coal-Producing","Recoverable","Average Recovery","Recoverable","Average Recovery","Recoverable","Average Recovery","Recoverable","Average

  12. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Recoverable Coal Reserves and Average Recovery Percentage at Producing U.S. Mines by Mine Production Range and Mine Type, 2014" "(million short tons)" ,"Underground",,"Surface",,"Total" "Mine Production Range","Recoverable Coal","Average Recovery","Recoverable Coal","Average Recovery","Recoverable Coal","Average Recovery" "(thousand short

  13. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Average Number of Employees by State and Mine Type, 2014 and 2013" ,2014,,,2013,,,"Percent Change" "Coal-Producing","Underground","Surface","Total","Underground","Surface","Total","Underground","Surface","Total" "State and Region1" "Alabama",2852,842,3694,3077,1135,4212,-7.3,-25.8,-12.3

  14. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Number of Employees at Underground and Surface Mines by State and Mine Production Range, 2014" ,"Mine Production Range (thousand short tons)" "Coal-Producing State, Region1","Above 1,000","Above 500","Above 200","Above 100","Above 50","Above 10","Above 0","Zero2","Total Number" "and Mine Type",,"to 1,000","to 500","to 200","to

  15. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    and Number of Mines by State, County, and Mine Type, 2014" "(thousand short tons)" ,"Underground",,"Surface",,"Total" "Coal-Producing","Number of Mines","Production","Number of Mines","Production","Number of Mines","Production" "State and County" "Alabama",7,12516,29,3847,36,16363 " Bibb","-","-",1,72,1,72 "

  16. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Average Number of Employees at Underground and Surface Mines by State and Union Status, 2014" ,"Union",,"Nonunion" "Coal-Producing State","Underground","Surface","Underground","Surface" "and Region1" "Alabama",2653,57,199,743 "Alaska","-",120,"-","-" "Arizona","-",387,"-","-"

  17. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Productivity by State and Mine Type, 2014 and 2013" ,"Number of Mining Operations2",,,"Number of Employees3",,,"Average Production per Employee Hour" ,,,,,,,"(short tons)4" "Coal-Producing State, Region1",2014,2013,"Percent",2014,2013,"Percent",2014,2013,"Percent" "and Mine Type",,,"Change",,,"Change",,,"Change"

  18. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Underground Coal Mining Productivity by State and Mining Method, 2014" "(short tons produced per employee hour)" "Coal-Producing State, Region1 and Mine Type","Continuous2","Conventional and","Longwall4","Total" ,,"Other3" "Alabama",0.92,"-",1.92,1.84 "Arkansas",0.49,"-","-",0.49 "Colorado",3.44,"-",6.49,6.19 "Illinois",4.43,6.73,7.6,6.16

  19. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Coal Mining Productivity by State, Mine Type, and Mine Production Range, 2014" "(short tons produced per employee hour)" ,"Mine Production Range (thousand short tons)" "Coal-Producing State,","Above 1,000","Above 500","Above 200","Above 100","Above 50","Above 10","10 or Under","Total2" "Region1 and Mine Type",,"to 1,000","to 500","to

  20. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Coal Mining Productivity by State, Mine Type, and Union Status, 2014" "(short tons produced per employee hour)" ,"Union",,"Nonunion" "Coal-Producing State and Region1","Underground","Surface","Underground","Surface" "Alabama",1.92,2.31,0.85,2 "Alaska","-",5.43,"-","-" "Arizona","-",8.06,"-","-"

  1. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Coal Consumers in the Manufacturing and Coke Sectors, 2014" "Company Name","Plant Location" "Top Ten Manufacturers" "American Crystal Sugar Co","MN, ND" "Archer Daniels Midland","IA, IL, MN, NE" "Carmeuse Lime Stone Inc","AL, IN, KY, MI, OH, PA, TN, WI" "Cemex Inc","AL, CA, CO, FL, GA, KY, OH, TN, TX" "Dakota Gasification Company","ND" "Eastman Chemical

  2. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    6. U.S. Coal Consumption by End Use Sector, Census Division, and State, 2014 and 2013" "(thousand short tons)" ,2014,,,,2013,,,,"Total" "Census Division","Electric","Other","Coke","Commercial","Electric","Other","Coke","Commercial",2014,2013,"Percent" "and

  3. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Year-End Coal Stocks by Sector, Census Division, and State, 2014 and 2013" "(thousand short tons)" ,2014,,,,,2013,,,,,"Total" "Census Division","Electric","Other","Coke","Commercial","Producer","Electric","Other","Coke","Commercial","Producer",2014,2013,"Percent" "and

  4. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    8. Average Sales Price of Coal by State and Mine Type, 2014 and 2013" "(dollars per short ton)" ,2014,,,2013,,,"Percent Change" "Coal-Producing","Underground","Surface","Total","Underground","Surface","Total","Underground","Surface","Total" "State" "Alabama",89.68,79.42,87.17,88.19,88.24,88.2,1.7,-10,-1.2

  5. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    the former utility members joined RFC. Reliability First Corporation (RFC) came into existence on January 1, 2006. RFC submitted a consolidated filing covering the historical NERC...

  6. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    9.B. Winter Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Assessment Area, 2013 Actual, 2014-2018 Projected Net...

  7. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    8.B. Summer Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Assessment Area, 2013 Actual, 2014-2018 Projected Net...

  8. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Average Price of U.S. Steam Coal Exports" "(dollars per short ton)" ,,,,"Year to Date" "Continent and Country","January - March","October - December","January - March",2016,2015,"Percent" "of Destination",2016,2015,2015,,,"Change" "North America Total",40.85,44.62,71.22,40.85,71.22,-42.6 " Canada*",85.43,69.79,74.16,85.43,74.16,15.2 " Dominican

  9. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Metallurgical Coal Exports" "(short tons)" ,,,,"Year to Date" "Continent and Country","January - March","October - December","January - March",2016,2015,"Percent" "of Destination",2016,2015,2015,,,"Change" "North America Total",586002,1478020,446185,586002,446185,31.3 " Canada*",440922,1341068,339057,440922,339057,30 "

  10. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Average Price of U.S. Metallurgical Coal Exports" "(dollars per short ton)" ,,,,"Year to Date" "Continent and Country","January - March","October - December","January - March",2016,2015,"Percent" "of Destination",2016,2015,2015,,,"Change" "North America Total",91.86,102.82,92.36,91.86,92.36,-0.5 " Canada*",88.1,104.16,87.3,88.1,87.3,0.9 "

  11. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Coal Exports by Customs District" "(short tons)" ,,,,"Year to Date" "Customs District","January - March","October - December","January - March",2016,2015,"Percent" ,2016,2015,2015,,,"Change" "Eastern Total",9472145,9165858,13595691,9472145,13595691,-30.3 " Baltimore, MD",3850539,2991709,4886468,3850539,4886468,-21.2 " Buffalo, NY",3381,570146,96786,3381,96786,-96.5 " New

  12. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Metallurgical Coal Exports by Customs District" "(short tons)" ,,,,"Year to Date" "Customs District","January - March","October - December","January - March",2016,2015,"Percent" ,2016,2015,2015,,,"Change" "Eastern Total",7922195,7044057,10183046,7922195,10183046,-22.2 " Baltimore, MD",2990819,1811937,3344676,2990819,3344676,-10.6 " Buffalo, NY",196,566999,95591,196,95591,-99.8

  13. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Coal Imports" "(short tons)" ,,,,"Year to Date" "Continent and Country","January - March","October - December","January - March",2016,2015,"Percent" "of Origin",2016,2015,2015,,,"Change" "North America Total",240168,341205,171698,240168,171698,39.9 " Canada",239440,341189,171631,239440,171631,39.5 " Mexico",728,16,67,728,67,"NM" "South America

  14. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Price of U.S. Coal Imports" "(dollars per short ton)" ,,,,"Year to Date" "Continent and Country","January - March","October - December","January - March",2016,2015,"Percent" "of Origin",2016,2015,2015,,,"Change" "North America Total",71.92,104.33,107.02,71.92,107.02,-32.8 " Canada",71.93,104.32,107.01,71.93,107.01,-32.8 " Mexico",66.79,360.25,113.43,66.79,113.43,-41.1

  15. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Production, 2010 - 2016" "(thousand short tons)" "Year","January - March","April - June","July - September","October - December","Total" 2010,265702,264982,277505,276180,1084368 2011,273478,264291,275006,282853,1095628 2012,266865,241047,258956,249591,1016458 2013,244867,243211,257595,239169,984842 2014,245271,245844,255377,253557,1000049 2015,240189,211130,237263,207355,895936

  16. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Imports by Customs District" "(short tons)" ,,,,"Year to Date" "Customs District","January - March","October - December","January - March",2016,2015,"Percent" ,2016,2015,2015,,,"Change" "Eastern Total",312200,225584,520059,312200,520059,-40 " Baltimore, MD","-",10410,"-","-","-","-" " Boston,

  17. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    1. U.S. Coke Imports" "(short tons)" ,,,,"Year to Date" "Continent and Country","January - March","October - December","January - March",2016,2015,"Percent" "of Origin",2016,2015,2015,,,"Change" "North America Total",2763,52115,2035,2763,2035,35.8 " Canada",2763,52115,2035,2763,2035,35.8 "Europe Total",1056,1156,14,1056,14,"NM" "

  18. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Average Price of U.S. Coke Imports" "(dollars per short ton)" ,,,,"Year to Date" "Continent and Country","January - March","October - December","January - March",2016,2015,"Percent" "of Origin",2016,2015,2015,,,"Change" "North America Total",181.85,113.11,213.82,181.85,213.82,-15 " Canada",181.85,113.11,213.82,181.85,213.82,-15 "Europe

  19. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    by State" "(thousand short tons)" ,,,,"Year to Date" "Coal-Producing Region","January - March","October - December","January - March",2016,2015,"Percent" "and State",2016,2015,2015,,,"Change" "Alabama",2446,2298,4022,2446,4022,-39.2 "Alaska",310,328,265,310,265,16.7 "Arizona",1335,1376,1755,1335,1755,-23.9 "Arkansas",11,18,21,11,21,-48

  20. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Coal Exports and Imports, 2010 - 2016" "(thousand short tons)" ,"January - March",,"April - June",,"July - September",,"October - December",,"Total" "Year","Exports","Imports","Exports","Imports","Exports","Imports","Exports","Imports","Exports","Imports" 2010,17807,4803,21965,5058,21074,4680,20870,4811,81716,19353

  1. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Average Price of U.S. Coal Exports and Imports, 2010 - 2016" "(dollars per short ton)" ,"January - March",,"April - June",,"July - September",,"October - December",,"Total" "Year","Exports","Imports","Exports","Imports","Exports","Imports","Exports","Imports","Exports","Imports"

  2. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Quantity and Average Price of U.S. Coal Imports by Origin, 2010 - 2016" "(short tons and dollars per short ton)" "Year and Quarter","Australia","Canada","Colombia","Indonesia","China","Venezuela","Other","Total" ,,,,,,,"Countries" 2010,380404,1766896,14583950,1904040,52869,581700,82828,19352687 2011,61745,1680490,9500387,856038,22128,778887,187931,13087606

  3. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Coal Exports" "(short tons)" ,,,,"Year to Date" "Continent and Country","January - March","October - December","January - March",2016,2015,"Percent" "of Destination",2016,2015,2015,,,"Change" "North America Total",1373100,2359203,1865247,1373100,1865247,-26.4 " Canada*",608869,1671121,715703,608869,715703,-14.9 " Dominican Republic",19,"-",1745,19,1745,-98.9

  4. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Average Price of U.S. Coal Exports" "(dollars per short ton)" ,,,,"Year to Date" "Continent and Country","January - March","October - December","January - March",2016,2015,"Percent" "of Destination",2016,2015,2015,,,"Change" "North America Total",62.62,81.09,76.28,62.62,76.28,-17.9 " Canada*",87.37,97.37,80.39,87.37,80.39,8.7 " Dominican

  5. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Steam Coal Exports" "(short tons)" ,,,,"Year to Date" "Continent and Country","January - March","October - December","January - March",2016,2015,"Percent" "of Destination",2016,2015,2015,,,"Change" "North America Total",787098,881183,1419062,787098,1419062,-44.5 " Canada*",167947,330053,376646,167947,376646,-55.4 " Dominican

  6. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Supply and Disposition of Electricity, 2004 through 2014 (From Chapter 2.) Supply (Million Megawatthours) Generation Year Electric Utilities IPP (Non-CHP) IPP (CHP) Commercial Sector Industrial Sector Total Imports Total Supply 2004 2,505 1,119 184 8 154 34 4,005 2005 2,475 1,247 180 8 145 44 4,099 2006 2,484 1,259 165 8 148 43 4,107 2007 2,504 1,324 177 8 143 51 4,208 2008 2,475 1,332 167 8 137 57 4,176 2009 2,373 1,278 159 8 132 52 4,003 2010 2,472 1,339 162 9 144 45 4,170 2011 2,461 1,331

  7. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    . Number of Ultimate Customers Served by Sector, by Provider, 2004 through 2014 Year Residential Commercial Industrial Transportation Total Total Electric Industry 2004 118,763,768 16,606,783 747,600 1,025 136,119,176 2005 120,760,839 16,871,940 733,862 518 138,367,159 2006 122,471,071 17,172,499 759,604 791 140,403,965 2007 123,949,916 17,377,219 793,767 750 142,121,652 2008 125,037,837 17,582,382 774,808 726 143,395,753 2009 125,208,829 17,562,235 757,537 704 143,529,305 2010 125,717,935

  8. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Sales and Direct Use of Electricity to Ultimate Customers by Sector, by Provider, 2004 through 2014 (Megawatthours) Year Residential Commercial Industrial Transportation Total Direct Use Total End Use Total Electric Industry 2004 1,291,981,578 1,230,424,731 1,017,849,532 7,223,642 3,547,479,483 168,470,002 3,715,949,485 2005 1,359,227,107 1,275,079,020 1,019,156,065 7,506,321 3,660,968,513 150,015,531 3,810,984,044 2006 1,351,520,036 1,299,743,695 1,011,297,566 7,357,543 3,669,918,840

  9. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Revenue from Sales of Electricity to Ultimate Customers by Sector, by Provider, 2004 through 2014 (Million Dollars) Year Residential Commercial Industrial Transportation Total Total Electric Industry 2004 115,577 100,546 53,477 519 270,119 2005 128,393 110,522 58,445 643 298,003 2006 140,582 122,914 62,308 702 326,506 2007 148,295 128,903 65,712 792 343,703 2008 155,496 137,036 70,231 820 363,583 2009 157,044 132,747 62,670 828 353,289 2010 166,778 135,554 65,772 814 368,918 2011 166,714

  10. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Average Price of Electricity to Ultimate Customers by End-Use Sectors 2004 through 2014 (Cents per kilowatthour) Year Residential Commercial Industrial Transportation Total Total Electric Industry 2004 8.95 8.17 5.25 7.18 7.61 2005 9.45 8.67 5.73 8.57 8.14 2006 10.40 9.46 6.16 9.54 8.90 2007 10.65 9.65 6.39 9.70 9.13 2008 11.26 10.26 6.96 10.71 9.74 2009 11.51 10.16 6.83 10.66 9.82 2010 11.54 10.19 6.77 10.56 9.83 2011 11.72 10.24 6.82 10.46 9.90 2012 11.88 10.09 6.67 10.21 9.84 2013 12.13

  11. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Sales of Electricity to Ultimate Customers: Total by End-Use Sector, 2004 - December 2014 (Thousand Megawatthours) Period Residential Commercial Industrial Transportation All Sectors Annual Totals 2004 1,291,982 1,230,425 1,017,850 7,224 3,547,479 2005 1,359,227 1,275,079 1,019,156 7,506 3,660,969 2006 1,351,520 1,299,744 1,011,298 7,358 3,669,919 2007 1,392,241 1,336,315 1,027,832 8,173 3,764,561 2008 1,380,662 1,336,133 1,009,516 7,653 3,733,965 2009 1,364,758 1,306,853 917,416 7,768

  12. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    6. Revenue from Sales of Electricity to Ultimate Customers: Total by End-Use Sector, 2004 - December 2014 (Million Dollars) Period Residential Commercial Industrial Transportation All Sectors Annual Totals 2004 115,577 100,546 53,477 519 270,119 2005 128,393 110,522 58,445 643 298,003 2006 140,582 122,914 62,308 702 326,506 2007 148,295 128,903 65,712 792 343,703 2008 155,496 137,036 70,231 820 363,583 2009 157,044 132,747 62,670 828 353,289 2010 166,778 135,554 65,772 814 368,918 2011 166,714

  13. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Average Price of Electricity to Ultimate Customers: Total by End-Use Sector, 2004 - December 2014 (Cents per Kilowatthour) Period Residential Commercial Industrial Transportation All Sectors Annual Totals 2004 8.95 8.17 5.25 7.18 7.61 2005 9.45 8.67 5.73 8.57 8.14 2006 10.40 9.46 6.16 9.54 8.90 2007 10.65 9.65 6.39 9.70 9.13 2008 11.26 10.26 6.96 10.71 9.74 2009 11.51 10.16 6.83 10.66 9.82 2010 11.54 10.19 6.77 10.56 9.83 2011 11.72 10.24 6.82 10.46 9.90 2012 11.88 10.09 6.67 10.21 9.84 2013

  14. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Electric Power Industry - Electricity Purchases, 2004 through 2014 (Thousand Megawatthours) Year Electric Utilities Energy-Only Providers Independent Power Producers Combined Heat and Power U.S. Total 2005 2,760,043 3,250,298 12,201 69,744 6,092,285 2006 2,605,315 2,793,288 26,628 77,353 5,502,584 2007 2,504,002 2,805,833 24,942 76,646 5,411,422 2008 2,483,927 3,024,730 25,431 78,693 5,612,781 2009 2,364,648 2,564,407 27,922 71,669 5,028,647 2010 2,353,086 3,319,211 23,976 73,861 5,770,134

  15. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Electric Power Industry - Electricity Sales for Resale, 2004 through 2014 (Thousand Megawatthours) Year Electric Utilities Energy-Only Providers Independent Power Producers Combined Heat and Power U.S. Total 2004 1,923,440 3,756,175 1,053,364 25,996 6,758,975 2005 1,925,710 2,867,048 1,252,796 26,105 6,071,659 2006 1,698,389 2,446,104 1,321,342 27,638 5,493,473 2007 1,603,179 2,476,740 1,368,310 31,165 5,479,394 2008 1,576,976 2,718,661 1,355,017 30,079 5,680,733 2009 1,495,636 2,240,399

  16. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Electric Power Industry - U.S. Electricity Imports from and Electricity Exports to Canada and Mexico, 2004-2014 (Megawatthours) Canada Mexico U.S. Total Year Imports from Exports to Imports from Exports to Imports Exports 2004 33,007,487 22,482,109 1,202,576 415,754 34,210,063 22,897,863 2005 42,332,039 18,680,237 1,597,275 470,731 43,929,314 19,150,968 2006 41,544,052 23,405,387 1,147,258 865,948 42,691,310 24,271,335 2007 50,118,056 19,559,417 1,277,646 584,175 51,395,702 20,143,592 2008

  17. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Net Generation by Energy Source: Total (All Sectors), 2004 - 2014 (Thousand Megawatthours) Generation at Utility Scale Facilities Distributed Generation Net Generation From Utility Scale Facilities and Distributed Generation Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Nuclear Hydroelectric Conventional Solar Renewable Sources Excluding Hydroelectric and Solar Hydroelectric Pumped Storage Other Total Generation at Utility Scale Facilities Estimated Distributed Solar

  18. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Net Generation by Energy Source: Electric Utilities, 2004 - 2014 (Thousand Megawatthours) Generation at Utility Scale Facilities Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Nuclear Hydroelectric Conventional Solar Renewable Sources Excluding Hydroelectric and Solar Hydroelectric Pumped Storage Other Total Annual Totals 2004 1,513,641 62,196 11,498 199,662 374 475,682 245,546 6 3,686 -7,526 467 2,505,231 2005 1,484,855 58,572 11,150 238,204 10 436,296 245,553 16 4,930

  19. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Net Generation by Energy Source: Commercial Sector, 2004 - 2014 (Thousand Megawatthours) Generation at Utility Scale Facilities Distributed Generation Net Generation From Utility Scale Facilities and Distributed Generation Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Nuclear Hydroelectric Conventional Solar Renewable Sources Excluding Hydroelectric and Solar Hydroelectric Pumped Storage Other Total Generation at Utility Scale Facilities Estimated Distributed Solar

  20. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Net Generation by Energy Source: Industrial Sector, 2004 - 2014 (Thousand Megawatthours) Generation at Utility Scale Facilities Distributed Generation Net Generation From Utility Scale Facilities and Distributed Generation Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Nuclear Hydroelectric Conventional Solar Renewable Sources Excluding Hydroelectric and Solar Hydroelectric Pumped Storage Other Total Generation at Utility Scale Facilities Estimated Distributed Solar

  1. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    6. Net Generation by Energy Source: Residential Sector, 2014 (Thousand Megawatthours) Distributed Generation Period Estimated Distributed Solar Photovoltaic Generation Annual Totals 2014 4,243 Year 2014 January 226 February 238 March 328 April 361 May 402 June 410 July 431 August 431 September 404 October 382 November 319 December 311 See Glossary for definitions. Values are final. See Technical Notes for a discussion of the sample design for the Form EIA-923 and predecessor forms. Totals may

  2. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Utility Scale Facility Net Generation by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013 Percentage Change Year 2014 Year 2013

  3. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    8. Utility Scale Facility Net Generation from Coal by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013 Percentage Change Year 2014

  4. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Utility Scale Facility Net Generation from Petroleum Coke by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013 Percentage Change

  5. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Utility Scale Facility Net Generation from Natural Gas by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013 Percentage Change Year

  6. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Utility Scale Facility Net Generation from Other Gases by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013 Percentage Change Year

  7. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Utility Scale Facility Net Generation from Nuclear Energy by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013 Percentage Change

  8. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Utility Scale Facility Net Generation from Hydroelectric (Conventional) Power by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013

  9. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Utility Scale Facility Net Generation from Renewable Sources Excluding Hydroelectric by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year

  10. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Utility Scale Facility Net Generation from Other Energy Sources by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013 Percentage

  11. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    8. Utility Scale Facility Net Generation from Wind by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013 Percentage Change Year 2014

  12. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Utility Scale Facility Net Generation from Biomass by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013 Percentage Change Year 2014

  13. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    . Count of Electric Power Industry Power Plants, by Sector, by Predominant Energy Sources within Plant, 2004 through 2014 Year Coal Petroleum Natural Gas Other Gases Nuclear Hydroelectric Conventional Other Renewables Hydroelectric Pumped Storage Other Energy Sources Total (All Sectors) 2004 625 1,143 1,670 46 66 1,425 749 39 28 2005 619 1,133 1,664 44 66 1,422 781 39 29 2006 616 1,148 1,659 46 66 1,421 843 39 29 2007 606 1,163 1,659 46 66 1,424 929 39 25 2008 598 1,170 1,655 43 66 1,423 1,076

  14. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Existing Net Summer Capacity by Energy Source and Producer Type, 2004 through 2014 (Megawatts) Year Coal Petroleum Natural Gas Other Gases Nuclear Hydroelectric Conventional Other Renewable Sources Hydroelectric Pumped Storage Other Energy Sources Total Total (All Sectors) 2004 313,020.0 59,119.0 371,011.0 2,296.0 99,628.0 77,641.0 18,717.0 20,764.0 746.0 962,942.0 2005 313,380.0 58,548.0 383,061.0 2,063.0 99,988.0 77,541.0 21,205.0 21,347.0 887.0 978,020.0 2006 312,956.0 58,097.0 388,294.0

  15. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Existing Capacity by Producer Type, 2014 (Megawatts) Producer Type Number of Generators Generator Nameplate Capacity Net Summer Capacity Net Winter Capacity Electric Power Sector Electric Utilities 9,510 675,675.4 616,631.5 637,857.0 Independent Power Producers, Non-Combined Heat and Power Plants 6,975 423,782.6 387,561.6 401,581.5 Independent Power Producers, Combined Heat and Power Plants 559 37,890.2 33,362.6 35,972.8 Total 17,044 1,137,348.2 1,037,555.7 1,075,411.3 Commercial and

  16. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Planned Generating Capacity Changes, by Energy Source, 2015-2019 Generator Additions Generator Retirements Net Capacity Additions Energy Source Number of Generators Net Summer Capacity Number of Generators Net Summer Capacity Number of Generators Net Summer Capacity Year 2015 U.S. Total 704 21,965.9 234 18,351.4 470 3,614.5 Coal 2 52.2 95 13,325.5 -93 -13,273.3 Petroleum 24 24.2 44 902.8 -20 -878.6 Natural Gas 76 6,192.8 61 3,964.2 15 2,228.6 Other Gases -- -- -- -- -- -- Nuclear 1 1,122.0 --

  17. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    6. Capacity Additions, Retirements and Changes by Energy Source, 2014 (Count, Megawatts) Generator Additions Generator Retirements Energy Source Number of Generators Generator Nameplate Capacity Net Summer Capacity Net Winter Capacity Number of Generators Generator Nameplate Capacity Net Summer Capacity Net Winter Capacity Coal 1 106.2 52.0 52.0 53 5,083.4 4,489.7 4,552.3 Petroleum 28 62.2 62.0 62.0 55 1,261.0 1,018.6 1,120.0 Natural Gas 92 9,275.2 8,300.8 8,849.5 87 4,184.5 3,834.4 3,918.8

  18. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    7.A. Net Summer Capacity of Utility Scale Units by Technology and by State, 2014 and 2013 (Megawatts) Census Division and State Renewable Sources Fossil Fuels Hydroelectric Pumped Storage Other Energy Storage Nuclear All Other Sources All Sources Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 New England 4,577.6 4,403.4 22,853.0 23,564.2 1,775.4 1,753.4 3.0 3.0 4,046.3 4,645.4 52.9 52.9 33,308.2 34,422.3

  19. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Total Capacity of Distributed and Dispersed Generators by Technology Type, 2005 through 2014 Capacity (MW) Year Internal Combustion Combustion Turbine Steam Turbine Hydro Wind Photovoltaic Storage Other Wind and Other Total Number of Generators Distributed Generators 2005 4,025.0 1,917.0 1,830.0 999.0 -- -- -- -- 995.0 9,766.0 17,371 2006 3,646.0 1,298.0 2,582.0 806.0 -- -- -- -- 1,081.0 9,411.0 5,044 2007 4,624.0 1,990.0 3,596.0 1,051.0 -- -- -- -- 1,441.0 12,702.0 7,103 2008 5,112.0 1,949.0

  20. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Net Metering Customers and Capacity by Technology Type, by End Use Sector, 2004 through 2014 Capacity (MW) Customers Year Residential Commercial Industrial Transportation Total Residential Commercial Industrial Transportation Total Historical Data 2004 N/A N/A N/A N/A N/A 14,114 1,494 215 3 15,826 2005 N/A N/A N/A N/A N/A 19,244 1,565 337 -- 21,146 2006 N/A N/A N/A N/A N/A 30,689 2,553 376 -- 33,618 2007 N/A N/A N/A N/A N/A 44,450 3,513 391 -- 48,354 2008 N/A N/A N/A N/A N/A 64,400 5,305 304

  1. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Fuel-Switching Capacity of Operable Generators Reporting Natural Gas as the Primary Fuel, by Producer Type, 2014 (Megawatts, Percent) Fuel-Switchable Part of Total Producer Type Total Net Summer Capacity of All Generators Reporting Natural Gas as the Primary Fuel Net Summer Capacity of Natural Gas-Fired Generators Reporting the Ability to Switch to Petroleum Liquids Fuel Switchable Capacity as Percent of Total Maximum Achievable Net Summer Capacity Using Petroleum Liquids Fuel Switchable Net

  2. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Fuel-Switching Capacity of Operable Generators Reporting Petroleum Liquids as the Primary Fuel, by Producer Type, 2014 (Megawatts, Percent) Fuel-Switchable Part of Total Producer Type Total Net Summer Capacity of All Generators Reporting Petroleum Liquids as the Primary Fuel Net Summer Capacity of Petroleum Liquids-Fired Generators Reporting the Ability to Switch to Natural Gas Fuel Switchable Capacity as Percent of Total Maximum Achievable Net Summer Capacity Using Natural Gas Electric

  3. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Fuel-Switching Capacity of Operable Generators Reporting Natural Gas as the Primary Fuel, by Type of Prime Mover, 2014 (Megawatts, Percent) Prime Mover Type Number of Natural Gas-Fired Generators Reporting the Ability to Switch to Petroleum Liquids Net Summer Capacity of Natural Gas-Fired Generators Reporting the Ability to Switch to Petroleum Liquids Fuel Switchable Net Summer Capacity Reported to Have No Factors that Limit the Ability to Switch to Petroleum Liquids Steam Generator 178

  4. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel-Switching Capacity of Operable Generators Reporting Natural Gas as the Primary Fuel, by Year of Initial Commercial Operation, 2014 (Megawatts, Percent) Year of Initial Commercial Operation Number of Natural Gas-Fired Generators Reporting the Ability to Switch to Petroleum Liquids Net Summer Capacity of Natural Gas-Fired Generators Reporting the Ability to Switch to Petroleum Liquids Fuel Switchable Net Summer Capacity Reported to Have No Factors that Limit the Ability to Switch to

  5. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Coal: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,020,523 772,224 240,235 377 7,687 2005 1,041,448 761,349 272,218 377 7,504 2006 1,030,556 753,390 269,412 347 7,408 2007 1,046,795 764,765 276,581 361 5,089 2008 1,042,335 760,326 276,565 369 5,075 2009 934,683 695,615 234,077 317 4,674 2010 979,684 721,431

  6. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    D. Coal: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 20,375,751 15,610,335 4,606,584 8,251 150,581 2005 20,801,716 15,397,688 5,250,824 8,314 144,889 2006 20,527,410 15,211,077 5,166,001 7,526 142,807 2007 20,841,871 15,436,110 5,287,202 7,833 110,727 2008 20,548,610 15,189,050 5,242,194 8,070 109,296 2009

  7. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Petroleum Liquids: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Thousand Barrels) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 165,107 103,793 56,342 760 4,212 2005 165,137 98,223 62,154 580 4,180 2006 73,821 53,529 17,179 327 2,786 2007 82,433 56,910 22,793 250 2,480 2008 53,846 38,995 13,152 160 1,538 2009 43,562 31,847 9,880 184 1,652 2010 40,103 30,806 8,278 164 855

  8. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    D. Petroleum Liquids: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,031,954 651,712 350,093 4,544 25,606 2005 1,035,045 618,811 387,355 3,469 25,410 2006 459,392 335,130 105,312 1,963 16,987 2007 512,423 355,999 139,977 1,505 14,942 2008 332,367 242,379 79,816 957 9,215 2009 266,508 196,346 59,277 1,101 9,784 2010

  9. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Petroleum Coke: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 7,677 4,150 2,985 1 541 2005 8,330 4,130 3,746 1 452 2006 7,363 3,619 3,286 1 456 2007 6,036 2,808 2,715 2 512 2008 5,417 2,296 2,704 1 416 2009 4,821 2,761 1,724 1 335 2010 4,994 3,325 1,354 2 313 2011 5,012 3,449 1,277 1 286 2012 3,675 2,105 756 1

  10. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    D. Petroleum Coke: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 216,047 116,086 83,979 33 15,949 2005 234,217 115,727 105,163 33 13,295 2006 208,518 102,117 92,643 33 13,726 2007 170,166 77,941 77,135 45 15,045 2008 152,933 64,843 76,416 37 11,638 2009 136,474 77,919 48,776 32 9,747 2010 141,774 94,331 38,235 44

  11. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Natural Gas: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 5,674,580 1,809,443 3,265,896 32,839 566,401 2005 6,036,370 2,134,859 3,349,921 33,785 517,805 2006 6,461,615 2,478,396 3,412,826 34,623 535,770 2007 7,089,342 2,736,418 3,765,194 34,087 553,643 2008 6,895,843 2,730,134 3,612,197 33,403 520,109 2009

  12. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    D. Natural Gas: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 5,827,470 1,857,247 3,351,469 33,623 585,132 2005 6,212,116 2,198,098 3,444,875 34,645 534,498 2006 6,643,926 2,546,169 3,508,597 35,473 553,687 2007 7,287,714 2,808,500 3,872,646 34,872 571,697 2008 7,087,191 2,803,283 3,712,872 34,138 536,899 2009

  13. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    D. Wood / Wood Waste Biomass: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 344,134 19,973 130,248 168 193,745 2005 355,250 27,373 138,407 207 189,263 2006 350,074 27,455 135,546 269 186,803 2007 353,025 31,568 132,953 284 188,220 2008 338,786 29,150 130,122 287 179,227 2009 320,444 29,565 130,894 274 159,712 2010

  14. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Landfill Gas: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 143,844 11,250 125,848 4,081 2,665 2005 141,899 11,490 123,064 4,797 2,548 2006 160,033 16,617 136,108 6,644 664 2007 166,774 17,442 144,104 4,598 630 2008 195,777 20,465 169,547 5,235 530 2009 206,792 19,583 180,689 5,931 589 2010 218,331 19,975

  15. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    D. Landfill Gas: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 69,331 5,373 60,514 2,093 1,351 2005 67,902 5,650 58,624 2,360 1,269 2006 75,970 8,287 63,950 3,388 345 2007 79,712 8,620 68,432 2,344 316 2008 94,215 10,242 81,029 2,668 276 2009 99,821 9,748 86,773 2,999 301 2010 105,835 10,029 92,763 2,837 205 2011

  16. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    D. Biogenic Municipal Solid Waste: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 141,577 3,705 124,815 12,909 146 2005 144,339 4,724 126,529 12,923 164 2006 146,987 4,078 129,779 12,964 165 2007 146,308 4,557 127,826 13,043 881 2008 148,452 4,476 130,041 13,934 0 2009 146,971 3,989 126,649 16,333 0 2010 144,934

  17. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    D. Other Waste Biomass: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 19,215 2,014 9,240 4,308 3,654 2005 17,852 2,485 7,365 4,677 3,325 2006 17,727 2,611 7,788 4,436 2,893 2007 19,083 2,992 8,861 4,049 3,181 2008 24,288 3,409 12,745 3,684 4,450 2009 24,847 3,679 13,231 3,760 4,177 2010 29,996 3,668 14,449 3,790

  18. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Consumption of Petroleum Coke for Electricity Generation by State, by Sector, 2014 and 2013 (Thousand Tons) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2014 Year 2013 Percentage Change Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 New England 0 0 -- 0 0 0 0 0 0 0 0 Connecticut 0 0 -- 0 0 0 0 0 0 0 0 Maine 0 0 -- 0 0 0 0 0 0 0 0 Massachusetts 0 0 -- 0 0 0 0

  19. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Consumption of Nautral Gas for Electricity Generation by State, by Sector, 2014 and 2013 (Million Cubic Feet) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2014 Year 2013 Percentage Change Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 New England 356,658 388,323 -8.2% 3,585 2,587 330,872 354,489 9,416 8,407 12,786 22,839 Connecticut 108,833 115,211 -5.5% 121

  20. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Stocks of Coal, Petroleum Liquids, and Petroleum Coke: Electric Power Sector, 2004 - 2014 Electric Power Sector Electric Utilities Independent Power Producers Period Coal (Thousand Tons) Petroluem Liquids (Thousand Barrels) Petroleum Coke (Thousand Tons) Coal (Thousand Tons) Petroluem Liquids (Thousand Barrels) Petroleum Coke (Thousand Tons) Coal (Thousand Tons) Petroluem Liquids (Thousand Barrels) Petroleum Coke (Thousand Tons) End of Year Stocks 2004 106,669 46,750 937 84,917 29,144 627

  1. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Stocks of Coal, Petroleum Liquids, and Petroleum Coke: Electric Power Sector, by Census Divison, 2014 and 2013 Electric Power Sector Electric Utilities Independent Power Producers Census Division December 2014 December 2013 Percentage Change December 2014 December 2013 December 2014 December 2013 Coal (Thousand Tons) New England 1,611 1,129 42.7% W W W W Middle Atlantic 8,079 5,973 35.3% W 0 W 5,973 East North Central 33,839 28,279 19.7% 23,394 22,076 10,446 6,203 West North Central 20,648

  2. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Stocks of Coal by Coal Rank: Electric Power Sector, 2004 - 2014 Electric Power Sector Period Bituminous Coal Subbituminous Coal Lignite Coal Total End of Year Stocks 2004 49,022 53,618 4,029 106,669 2005 52,923 44,377 3,836 101,137 2006 67,760 68,408 4,797 140,964 2007 63,964 82,692 4,565 151,221 2008 65,818 91,214 4,556 161,589 2009 91,922 92,448 5,097 189,467 2010 81,108 86,915 6,894 174,917 2011 82,056 85,151 5,179 172,387 2012 86,437 93,833 4,846 185,116 2013 73,113 69,720 5,051 147,884

  3. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    . Receipts, Average Cost, and Quality of Fossil Fuels for the Electric Power Industry, 2004 through 2014 Coal Petroleum Natural Gas All Fossil Fuels Average Cost Average Cost Average Cost Average Cost Period Receipts (Thousand Tons) Average Sulfur Percent by Weight (Dollars per MMBtu) (Dollars per Ton) Receipts (Thousand Barrels) Average Sulfur Percent by Weight (Dollars per MMBtu) (Dollars per Barrel) Receipts (Thousand Mcf) (Dollars per MMBtu) (Dollars per MMBtu) 2004 1,002,032 0.97 1.36 27.42

  4. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    . Receipts and Quality of Coal Delivered for the Electric Power Industry, 2004 through 2014 Bituminous Subbituminous Lignite Period Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight 2004 470,619 1.52 10.4 445,603 0.36 6.0 78,268 1.05 14.2 2005 480,179 1.56 10.5 456,856 0.36 6.2 77,677

  5. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Average Quality of Fossil Fuel Receipts for the Electric Power Industry, 2004 through 2014 Coal Petroleum Natural Gas Period Average Btu per Pound Average Sulfur Percent by Weight Average Ash Percent by Weight Average Btu per Gallon Average Sulfur Percent by Weight Average Ash Percent by Weight Average Btu per Cubic Foot 2004 10,074 0.97 9.0 147,286 1.66 0.2 1,027 2005 10,107 0.98 9.0 146,481 1.61 0.2 1,028 2006 10,063 0.97 9.0 143,883 2.31 0.2 1,027 2007 10,028 0.96 8.8 144,546 2.10 0.1

  6. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Weighted Average Cost of Fossil Fuels for the Electric Power Industry, 2004 through 2014 Coal Petroleum Natural Gas Total Fossil Bituminous Subbituminous Lignite All Coal Ranks Period Receipts (Trillion Btu) Average Cost (Dollars per MMBtu) Receipts (Trillion Btu) Average Cost (Dollars per MMBtu) Receipts (Trillion Btu) Average Cost (Dollars per MMBtu) Receipts (Trillion Btu) Average Cost (Dollars per MMBtu) Receipts (Trillion Btu) Average Cost (Dollars per MMBtu) Receipts (Trillion Btu)

  7. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Receipts, Average Cost, and Quality of Fossil Fuels: Electric Utilities, 2004 - 2014 Coal Petroleum Liquids Receipts Average Cost Receipts Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMBtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Barrels) (Dollars per MMBtu) (Dollars per Barrel) Average Sulfur Percent by Weight Percentage of Consumption Annual Totals 2004 15,440,681 758,557 1.34 27.30 0.91 98.2 592,478 93,034 4.80

  8. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    6. Receipts, Average Cost, and Quality of Fossil Fuels: Electric Utilities, 2004 - 2014 (continued) Petroleum Coke Natural Gas All Fossil Fuels Receipts Average Cost Receipts Average Cost Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMbtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Mcf) (Dollars per MMBtu) (Dollars per Mcf) Percentage of Consumption (Dollars per MMBtu) Annual Totals 2004 107,985 3,817 0.89 25.15 5.10

  9. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Receipts, Average Cost, and Quality of Fossil Fuels: Independent Power Producers, 2004 - 2014 Coal Petroleum Liquids Receipts Average Cost Receipts Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMBtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Barrels) (Dollars per MMBtu) (Dollars per Barrel) Average Sulfur Percent by Weight Percentage of Consumption Annual Totals 2004 4,410,775 227,700 1.41 27.27 1.13 93.3 337,011

  10. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    8. Receipts, Average Cost, and Quality of Fossil Fuels: Independent Power Producers, 2004 - 2014 (continued) Petroleum Coke Natural Gas All Fossil Fuels Receipts Average Cost Receipts Average Cost Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMbtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Mcf) (Dollars per MMBtu) (Dollars per Mcf) Percentage of Consumption (Dollars per MMBtu) Annual Totals 2004 73,745 2,609 0.72 20.30

  11. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Receipts, Average Cost, and Quality of Fossil Fuels: Commercial Sector, 2004 - 2014 Coal Petroleum Liquids Receipts Average Cost Receipts Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMBtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Barrels) (Dollars per MMBtu) (Dollars per Barrel) Average Sulfur Percent by Weight Percentage of Consumption Annual Totals 2004 10,682 451 2.08 49.32 2.48 23.5 3,066 527 6.19 35.96 0.20

  12. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Receipts, Average Cost, and Quality of Fossil Fuels: Commerical Sector, 2004 - 2014 (continued) Petroleum Coke Natural Gas All Fossil Fuels Receipts Average Cost Receipts Average Cost Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMbtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Mcf) (Dollars per MMBtu) (Dollars per Mcf) Percentage of Consumption (Dollars per MMBtu) Annual Totals 2004 0 0 -- -- -- 0.0 16,176 15,804

  13. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Receipts, Average Cost, and Quality of Fossil Fuels: Industrial Sector, 2004 - 2014 Coal Petroleum Liquids Receipts Average Cost Receipts Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMBtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Barrels) (Dollars per MMBtu) (Dollars per Barrel) Average Sulfur Percent by Weight Percentage of Consumption Annual Totals 2004 326,495 15,324 1.63 34.79 1.43 57.6 25,491 4,107 4.98 30.93

  14. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Receipts, Average Cost, and Quality of Fossil Fuels: Industrial Sector, 2004 - 2014 (continued) Petroleum Coke Natural Gas All Fossil Fuels Receipts Average Cost Receipts Average Cost Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMbtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Mcf) (Dollars per MMBtu) (Dollars per Mcf) Percentage of Consumption (Dollars per MMBtu) Annual Totals 2004 14,876 540 0.98 27.01 5.59 40.4

  15. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Receipts of Petroleum Coke Delivered for Electricity Generation by State, 2014 and 2013 (Thousand Tons) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2014 Year 2013 Percentage Change Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 New England 0 0 -- 0 0 0 0 0 0 0 0 Connecticut 0 0 -- 0 0 0 0 0 0 0 0 Maine 0 0 -- 0 0 0 0 0 0 0 0 Massachusetts 0 0 -- 0 0 0 0 0 0

  16. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    8.1. Average Operating Heat Rate for Selected Energy Sources, 2004 through 2014 (Btu per Kilowatthour) Year Coal Petroleum Natural Gas Nuclear 2004 10331 10571 8647 10428 2005 10373 10631 8551 10436 2006 10351 10809 8471 10435 2007 10375 10794 8403 10489 2008 10378 11015 8305 10452 2009 10414 10923 8160 10459 2010 10415 10984 8185 10452 2011 10444 10829 8152 10464 2012 10498 10991 8039 10479 2013 10459 10713 7948 10449 2014 10428 10814 7907 10459 Coal includes anthracite, bituminous,

  17. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Average Tested Heat Rates by Prime Mover and Energy Source, 2007 - 2014 (Btu per Kilowatthour) Prime Mover Coal Petroluem Natural Gas Nuclear 2007 Steam Generator 10,158 10,398 10,440 10,489 Gas Turbine -- 13,217 11,632 -- Internal Combustion -- 10,447 10,175 -- Combined Cycle W 10,970 7,577 -- 2008 Steam Generator 10,138 10,356 10,377 10,452 Gas Turbine -- 13,311 11,576 -- Internal Combustion -- 10,427 9,975 -- Combined Cycle W 10,985 7,642 -- 2009 Steam Generator 10,150 10,349 10,427 10,459

  18. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Revenue and Expense Statistics for Major U.S. Investor-Owned Electric Utilities, 2004 through 2014 (Million Dollars) Description 2004 2005 2006 2007 2008 2009 Utility Operating Revenues 238,759 265,652 275,501 270,964 298,962 276,124 ......Electric Utility 213,012 234,909 246,736 240,864 266,124 249,303 ......Other Utility 25,747 30,743 28,765 30,100 32,838 26,822 Utility Operating Expenses 206,960 236,786 245,589 241,198 267,263 244,243 ......Electric Utility 183,121 207,830 218,445 213,076

  19. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Average Power Plant Operating Expenses for Major U.S. Investor-Owned Electric Utilities, 2004 through 2014 (Mills per Kilowatthour) Operation Maintenance Year Nuclear Fossil Steam Hydro-electric Gas Turbine and Small Scale Nuclear Fossil Steam Hydro-electric Gas Turbine and Small Scale 2004 8.97 3.13 3.83 4.27 5.38 2.96 2.76 2.14 2005 8.26 3.21 3.95 3.69 5.27 2.98 2.73 1.89 2006 9.03 3.57 3.76 3.51 5.69 3.19 2.70 2.16 2007 9.54 3.63 5.44 3.26 5.79 3.37 3.87 2.42 2008 9.89 3.72 5.78 3.77 6.20

  20. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Emissions from Energy Consumption at Conventional Power Plants and Combined-Heat-and-Power Plants 2004 through 2014 (Thousand Metric Tons) Year Carbon Dioxide (CO2) Sulfur Dioxide (SO2) Nitrogen Oxides (NOx) 2004 2,486,982 10,309 4,143 2005 2,543,838 10,340 3,961 2006 2,488,918 9,524 3,799 2007 2,547,032 9,042 3,650 2008 2,484,012 7,830 3,330 2009 2,269,508 5,970 2,395 2010 2,388,596 5,400 2,491 2011 2,287,071 4,845 2,406 2012 2,156,875 3,704 2,148 2013 2,172,355 3,609 2,188 2014 2,166,603

  1. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Quantity and Net Summer Capacity of Operable Cooling Systems, by Energy Source and Cooling System Type, 2004 - 2014 Once-Through Cooling Systems Recirculating Cooling Systems Cooling Ponds Dry Cooling Systems Hybrid Wet and Dry Cooling Systems Other Cooling System Types Energy Source Quantity Associated Net Summer Capacity (MW) Quantity Associated Net Summer Capacity (MW) Quantity Associated Net Summer Capacity (MW) Quantity Associated Net Summer Capacity (MW) Quantity Associated Net Summer

  2. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Average Costs of Existing Flue Gas Desulfurization Units Operating in Electric Power Sector, 2004 - 2014 Year Average Operation and Maintenance Costs (Dollars per Megawatthour) Average Installed Capital Costs (Dollars per Kilowatt) 2004 1.25 43.25 2005 1.37 142.67 2006 -- 149.62 2007 1.26 240.68 2008 1.44 265.83 2009 1.44 357.46 2010 1.52 360.69 2011 1.79 410.62 2012 1.87 275.49 2013 1.74 235.42 2014 1.84 227.29 Notes: Average Installed Capital Costs reflect units which began operating in the

  3. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    8. Demand Response - Yearly Energy and Demand Savings Category, by Sector, 2013 through 2014 Year Residential Commercial Industrial Transportation Total Number of Customers Enrolled 2013 8,419,233 611,826 155,893 398 9,187,350 2014 8,603,402 605,094 57,129 4 9,265,629 Energy Savings (MWh) 2013 799,743 486,348 115,895 1 1,401,987 2014 881,563 462,337 92,549 -- 1,436,449 Potential Peak Demand Savings (MW) 2013 7,003 5,124 14,800 168 27,095 2014 8,118 6,215 16,505 353 31,191 Actual Peak Demand

  4. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Demand Response - Program Costs Category, by Sector, 2013 through 2014 Year Residential Commercial Industrial Transportation Total Customer Incentives (thousand dollars) 2013 398,598 286,057 421,208 6,919 1,112,782 2014 345,894 345,435 514,751 11,716 1,217,796 All Other Costs (thousand dollars) 2013 338,353 95,748 50,982 50 485,133 2014 301,389 101,127 45,028 115 447,659

  5. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Advanced Metering Count by Technology Type, 2007 through 2014 Year Residential Commercial Industrial Transportation Total Automated Meter Reading (AMR) 2007 25,785,782 2,322,329 44,015 109 28,152,235 2008 36,425,943 3,529,985 77,122 13 40,033,063 2009 41,462,111 4,239,531 107,033 11 45,808,686 2010 43,913,225 4,611,877 159,315 626 48,685,043 2011 41,451,888 4,341,105 172,692 77 45,965,762 2012 43,455,437 4,691,018 185,862 125 48,330,822 2013 42,491,242 4,632,744 196,132 1,202 47,321,320 2014

  6. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Sulfur Dioxide Uncontrolled Emission Factors Fuel, Code, Source and Emission Units Combustion System Type / Firing Configuration Fuel EIA Fuel Code Source and Tables (As Appropriate) Emissions Units Lbs = Pounds MMCF = Million Cubic Feet MG = Thousand Gallons Cyclone Firing Boiler Fluidized Bed Firing Boiler Stoker Boiler Tangential Firing Boiler All Other Boiler Types Combustion Turbine Internal Combustion Engine Distillate Fuel Oil* DFO Source: 2, Table 3.1-2a, 3.4-1 & 1.3-1 Lbs per MG

  7. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Nitrogen Oxides Uncontrolled Emission Factors Fuel, Code, Source and Emission Units Combustion System Type / Firing Configuration Tangential Boiler All Other Boiler Types Fuel EIA Fuel Code Source and Tables (As Appropriate) Emissions Units Lbs = Pounds MMCF = Million Cubic Feet MG = Thousand Gallons Cyclone Firing Boiler Fluidized Bed Firing Boiler Stoker Boiler Dry-Bottom Boilers Wet-Bottom Boilers Dry-Bottom Boilers Wet-Bottom Boilers Combustion Turbine Internal Combustion Engine

  8. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Carbon Dioxide Uncontrolled Emission Factors Fuel EIA Fuel Code Factor (Kilograms of CO2 Per Million Btu)*** Notes Bituminous Coal BIT 93.3 Distillate Fuel Oil DFO 73.16 Geothermal GEO 7.71 Jet Fuel JF 70.9 Kerosene KER 72.3 Lignite Coal LIG 97.7 Municipal Solid Waste MSW 41.69 Natural Gas NG 53.07 Petroleum Coke PC 102.1 Propane Gas PG 63.07 Residual Fuel Oil RFO 78.79 Coal-Derived Synthesis Gas SGC 53.07 Assumed to have emissions similar to Natural Gas Synthesis Gas from Petroleum Coke SGP

  9. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Nitrogen Oxides Control Technology Emissions Reduction Factors Reduction Factor Nitrogen Oxides Control Technology EIA Code Coal Residual Fuel Oil and Distallate Fuel Oil Natural Gas Wood Other Solids Other Liquids Other Gases Other Fuels Burner Out of Service BO 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 Low Excess Air LA 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 Biased Firing (Alternative Burners) BF 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 Overfire Air OV 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

  10. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Unit of Measure Equivalents Unit Equivalent Kilowatt (kW) 1,000 (One Thousand) Watts Megawatt (MW) 1,000,000 (One Million) Watts Gigawatt (GW) 1,000,000,000 (One Billion) Watts Terawatt (TW) 1,000,000,000,000 (One Trillion) Watts Gigawatt 1,000,000 (One Million) Kilowatts Thousand Gigawatts 1,000,000,000 (One Billion) Kilowatts Kilowatthours (kWh) 1,000 (One Thousand) Watthours Megawatthours (MWh) 1,000,000 (One Million) Watthours Gigawatthours (GWh) 1,000,000,000 (One Billion) Watthours

  11. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Reliability web page: http:www.eia.govcneafelectricitypageeia411eia411.html Projected data are updated annually. Net Energy for Load represents net Balancing...

  12. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Weeks Ended" "Coal-Producing Region & State","applicationvnd.ms-excel","applicationvnd.ms-excel","applicationvnd.ms-excel","applicationvnd.ms-excel","application...

  13. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    per short ton)" "Mine Production Range (thousand short tons)","Underground","Surface","Total" "Over 1,000",53.25,18.86,30.21 "Over 500 to 1,000",71.1,54.14,63.75 "Over 200 ...

  14. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    Generation by Energy Source: Independent Power Producers, 2004 - 2014 (Thousand ... Gas Nuclear Hydroelectric Conventional Solar Renewable Sources Excluding Hydroelectric ...

  15. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    A. U.S. Transmission Circuit Outages by Type and NERC region, 2013 Outage Type FRCC MRO NPCC RFC SERC SPP TRE WECC Contiguous U.S. Circuit Outage Counts Automatic Outages...

  16. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    ...1,2730243,2501775,10875372,11870666,-8.4 " Charleston, SC",124,148,1030,563,2223,-74.7 " El Paso, TX",25988,44883,167,122862,7508,"NM" " Houston-Galveston, TX",113426,232428,225146...

  17. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 0 1,518 1,406 Massachusetts 3,491 3,282 3,827 2,521 1,014 2,169 32 47 8,364 8,020 New Hampshire 791 744 640 611 235 225 0 0 1,666 1,579 Rhode Island 527 481 533 474 114 109 4 3 ...

  18. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 0 0 0 0 0 0 Maine 0 0 -- 0 0 0 0 0 0 0 0 Massachusetts 2 2 -10.6% 0 0 2 2 0 0 0 0 New Hampshire 0 0 -- 0 0 0 0 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0 Vermont 0 0 -- 0 0 0 0 ...

  19. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    0 -- -- 0 -- -- Maine 0 -- -- 0 -- -- 0 -- -- Massachusetts 0 -- -- 0 -- -- 0 -- -- New Hampshire 526 2.29 7.8 0 -- -- 0 -- -- Rhode Island 0 -- -- 0 -- -- 0 -- -- Vermont 0 -- -- ...

  20. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    8,726 2 3 8 9 Maine 3,403 3,675 10 12 8 9 Massachusetts 12,917 14,735 6 11 13 14 New Hampshire 3,458 3,447 3 3 4 5 Rhode Island 2,566 2,838 0.09 1 1 1 Vermont 14 15 0.06 0.07 1 ...

  1. SAS Output

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0 -- -- 0 -- -- Maine 0 -- -- 0 -- -- 0 -- -- Massachusetts 0 -- -- 0 -- -- 0 -- -- New Hampshire 0 -- -- 0 -- -- 0 -- -- Rhode Island 0 -- -- 0 -- -- 0 -- -- Vermont 0 -- -- 0 -- ...

  2. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    W W Maine W W W -- -- W W Massachusetts 18.09 18.16 -0.4% 19.94 21.91 17.75 17.68 New Hampshire W W W 15.16 16.84 W W Rhode Island W W W -- -- W W Vermont -- -- -- -- -- -- -- ...

  3. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    0 0 -- Maine 0 0 -- W W W 0 0 -- Massachusetts W 582 W 1,965 1,496 31.3% 0 0 -- New Hampshire W W W W W W 0 0 -- Rhode Island W 0 W W W W 0 0 -- Vermont 0 0 -- 57 NM NM 0 0 -- ...

  4. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 0 0 0 0 0 0 0 Maine 0 0 -- 0 0 0 0 0 0 0 0 Massachusetts 0 0 -- 0 0 0 0 0 0 0 0 New Hampshire 0 0 -- 0 0 0 0 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0 Vermont 0 0 -- 0 0 0 0 ...

  5. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    829 3.8% 0 0 860 829 0 0 0 0 Massachusetts 4,233 4,087 3.6% 0 0 4,233 4,087 0 0 0 0 New Hampshire 1,871 1,839 1.7% 0 0 1,195 1,128 676 711 0 0 Rhode Island 3,980 956 316% 0 0 3,980 ...

  6. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -- Maine 85 0.85 8.2 0 -- -- 0 -- -- Massachusetts 1,225 0.72 11.3 0 -- -- 0 -- -- New Hampshire 526 2.29 7.8 0 -- -- 0 -- -- Rhode Island 0 -- -- 254 0.09 2.0 0 -- -- Vermont 0 ...

  7. SAS Output

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    14% 1 1 476 424 6 6 43 30 Massachusetts 1,646 713 131% 240 126 1,324 546 80 39 1 2 New Hampshire 454 187 143% 216 135 222 41 16 11 0.05 0.19 Rhode Island 113 75 50% 21 22 83 38 NM ...

  8. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    19 15 27% 0 0 10 7 0 0 9 8 Massachusetts 1,248 1,723 -28% 0 0 1,244 1,718 0 0 5 5 New Hampshire 544 616 -12% 544 616 0 0 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0 Vermont 0 0 ...

  9. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    -- 0 -- -- Maine 32 0.94 8.4 0 -- -- 0 -- -- Massachusetts 0 -- -- 0 -- -- 0 -- -- New Hampshire 0 -- -- 0 -- -- 0 -- -- Rhode Island 0 -- -- 0 -- -- 0 -- -- Vermont 0 -- -- 0 -- ...

  10. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11.86 Massachusetts 17.39 15.83 14.68 14.23 12.74 13.18 8.76 13.06 15.35 14.51 New Hampshire 17.53 16.33 14.34 13.52 11.93 11.40 -- -- 15.22 14.30 Rhode Island 17.17 15.20 ...

  11. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -- -- -- -- -- -- -- Maine -- -- -- -- -- -- -- Massachusetts -- -- -- -- -- -- -- New Hampshire -- -- -- -- -- -- -- Rhode Island -- -- -- -- -- -- -- Vermont -- -- -- -- -- -- ...

  12. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    W W Connecticut W W W -- -- W W Maine W W W -- -- W W Massachusetts W W W -- -- W W New Hampshire 4.27 4.21 1.4% 4.27 4.21 -- -- Rhode Island W -- W -- -- W -- Vermont -- -- -- -- ...

  13. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    66 30% 0 0 53 38 0 0 32 28 Massachusetts 1,225 1,805 -32% 0 0 1,225 1,805 0 0 0 0 New Hampshire 526 726 -28% 526 726 0 0 0 0 0 0 Rhode Island 254 0 -- 0 0 254 0 0 0 0 0 Vermont 0 ...

  14. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Maine 0 0 -- 0 0 0 0 0 0 0 0 Massachusetts -458 -368 24.5% 0 0 -458 -368 0 0 0 0 New Hampshire 0 0 -- 0 0 0 0 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0 Vermont 0 0 -- 0 0 0 0 ...

  15. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -- 6.65 6.06 Maine W W W -- -- W W Massachusetts 6.46 5.75 12% 5.54 6.84 6.47 5.74 New Hampshire W W W 6.05 8.85 W W Rhode Island W 5.67 W -- -- W 5.67 Vermont -- -- -- -- -- -- ...

  16. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 0 Maine 0 0 -- 0 0 0 0 0 0 0 0 Massachusetts 305 105 191.3% 11 4 289 100 5 1 0 0 New Hampshire 0 0 -- 0 0 0 0 0 0 0 0 Rhode Island 10 2 388.5% 0 0 10 2 0 0 0 0 Vermont 24 17 ...

  17. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    " Massachusetts","w","w","-","-","w","w","-","-",-7.4,"s","-","-" " New Hampshire",108.29,"-","-","-",108.33,"-","-","-","s","-","-","-" " Rhode ...

  18. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    27.6% 1 1 261 204 2 2 41 32 Massachusetts 1,005 390 157.4% 131 71 793 287 80 31 1 1 New Hampshire 287 105 175.0% 108 62 163 28 16 14 0.07 0.26 Rhode Island 88 51 74.9% 11 11 60 26 ...

  19. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5,409 14,249 Massachusetts 126,810 148,736 -15% 1,544 1,245 125,265 147,491 0 0 0 0 New Hampshire 31,309 29,644 5.6% 424 355 30,885 29,289 0 0 0 0 Rhode Island 44,839 46,035 -2.6% ...

  20. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -- Maine 53 0.80 8.0 0 -- -- 0 -- -- Massachusetts 1,225 0.72 11.3 0 -- -- 0 -- -- New Hampshire 0 -- -- 0 -- -- 0 -- -- Rhode Island 0 -- -- 254 0.09 2.0 0 -- -- Vermont 0 -- -- ...

  1. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11,855 Massachusetts 20,071 20,728 26,076 17,713 7,961 16,463 361 361 54,469 55,265 New Hampshire 4,510 4,554 4,465 4,517 1,969 1,973 0 0 10,944 11,043 Rhode Island 3,070 3,165 ...

  2. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 0 587 873 0 0 50 25 Massachusetts 1,867 1,300 44% 301 154 1,566 1,146 0 0 0 0 New Hampshire 741 354 110% 455 268 287 86 0 0 0 0 Rhode Island 217 31 594% 0 0 217 31 0 0 0 0 ...

  3. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.1% 0 0 112 115 200 196 0 0 Massachusetts 2,071 2,029 2.1% 0 0 2,071 2,029 0 0 0 0 New Hampshire 125 156 -20% 0 0 125 156 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0 Vermont 0 0 ...

  4. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    Peak Load by North American Electric Reliability Corporation Assessment Area, 2004 - ... Notes: NERC region and reliability assessment area maps are provided on EIA's Electricity ...

  5. SAS Output

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Margins by North American Electric Reliability Assessment Area, 2004 - 2014, Actual ... Notes: NERC region and reliability assessment area maps are provided on EIA's Electricity ...

  6. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Receipts of coal include imported coal. NA Not available. ... Dual-fired capacity returned to respective fuel categories ... EIA-767, 'Steam-Electric Plant Operation and Design ...

  7. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    In 2006 the single largest provider of green pricing services in the country discontinued ... Source: U.S. Energy Information Administration, Form EIA-861, "Annual Electric Power ...

  8. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Rosebud","-",12756,12756,250,186,276 "1787 Roland","-",12094,12094,464,384,495 "1701 Smith","-",12069,12069,912,912,912 "0280 Blue Creek",11738,190,11928,50,12,52 "1570 ...

  9. Midtemperature Solar Systems Test Facility predictions for thermal performance based on test data. Alpha Solarco Model 104 solar collector with 0. 125-inch Schott low-iron glass reflector surface

    SciTech Connect (OSTI)

    Harrison, T.D.

    1981-04-01

    Thermal performance predictions based on test data are presented for the Alpha Solarco Model 104 solar collector, with 0.125-inch Schott low-iron glass reflector surface, for three output temperatures at five cities in the United States.

  10. Design of solar cells for use in photovoltaic/thermal collectors

    SciTech Connect (OSTI)

    Cox, C.H. III

    1980-01-01

    A promising design development for combined photovoltaic/thermal (PV/T) collectors is one in which the photovoltaic cell is both the conversion device for electrical energy and the absorber of thermal energy. To accomplish this, the PV cell design is modified to use the approximately 25 percent of the air mass 1 spectrum at lambda > 1.1 ..mu..m that is currently rejected by the cell. The parameters investigated are: cell back metallization, back surface field, texture etching and anti-reflective coating. A model indicating the increase in absorptance as a function of these parameters is presented, together with the results of experimental measurements. Discussion closes with the presentation of a PV/T collector design that incorporates the improved cells, has 10 percent greater thermal output than current PV/T collectors, and exhibits no degradation in electrical output.

  11. A combined compensation method for the output voltage of an insulated core transformer power supply

    SciTech Connect (OSTI)

    Yang, L.; Yang, J. Liu, K. F.; Qin, B.; Chen, D. Z.

    2014-06-15

    An insulated core transformer (ICT) power supply is an ideal high-voltage generator for irradiation accelerators with energy lower than 3 MeV. However, there is a significant problem that the structure of the segmented cores leads to an increase in the leakage flux and voltage differences between rectifier disks. A high level of consistency in the output of the disks helps to achieve a compact structure by improving the utilization of both the rectifier components and the insulation distances, and consequently increase the output voltage of the power supply. The output voltages of the disks which are far away from the primary coils need to be improved to reduce their inhomogeneity. In this study, by investigating and comparing the existing compensation methods, a new combined compensation method is proposed, which increases the turns on the secondary coils and employs parallel capacitors to improve the consistency of the disks, while covering the entire operating range of the power supply. This method turns out to be both feasible and effective during the development of an ICT power supply. The non-uniformity of the output voltages of the disks is less than 3.5% from no-load to full-load, and the power supply reaches an output specification of 350 kV/60 mA.

  12. Article for thermal energy storage

    DOE Patents [OSTI]

    Salyer, Ival O.

    2000-06-27

    A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

  13. Highly directional thermal emitter

    DOE Patents [OSTI]

    Ribaudo, Troy; Shaner, Eric A; Davids, Paul; Peters, David W

    2015-03-24

    A highly directional thermal emitter device comprises a two-dimensional periodic array of heavily doped semiconductor structures on a surface of a substrate. The array provides a highly directional thermal emission at a peak wavelength between 3 and 15 microns when the array is heated. For example, highly doped silicon (HDSi) with a plasma frequency in the mid-wave infrared was used to fabricate nearly perfect absorbing two-dimensional gratings structures that function as highly directional thermal radiators. The absorption and emission characteristics of the HDSi devices possessed a high degree of angular dependence for infrared absorption in the 10-12 micron range, while maintaining high reflectivity of solar radiation (.about.64%) at large incidence angles.

  14. Thermal insulated glazing unit

    DOE Patents [OSTI]

    Selkowitz, S.E.; Arasteh, D.K.; Hartmann, J.L.

    1988-04-05

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas. 2 figs.

  15. Thermal insulated glazing unit

    DOE Patents [OSTI]

    Selkowitz, Stephen E. (Piedmont, CA); Arasteh, Dariush K. (Oakland, CA); Hartmann, John L. (Seattle, WA)

    1991-01-01

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas.

  16. Thermal trim for luminaire

    DOE Patents [OSTI]

    Bazydola, Sarah; Ghiu, Camil-Daniel; Harrison, Robert; Jeswani, Anil

    2013-11-19

    A luminaire with a thermal pathway to reduce the junction temperature of the luminaire's light source, and methods for so doing, are disclosed. The luminaire includes a can, a light engine, and a trim, that define a substantially continuous thermal pathway from the light engine to a surrounding environment. The can defines a can cavity and includes a can end region. The light engine is within the can cavity and includes a light source and a heat sink, including a heat sink end region, coupled thereto. The trim is at least partially disposed within the can cavity and includes a first trim end region coupled to the heat sink end region and a second trim end region coupled to the can end region. Thermal interface material may be located between: the heat sink and the trim, the trim and the can, and/or the heat sink and the light source.

  17. System and method for cancelling the effects of stray magnetic fields from the output of a variable reluctance sensor

    DOE Patents [OSTI]

    Chen, Chingchi; Degner, Michael W.

    2002-11-19

    A sensor system for sensing a rotation of a sensing wheel is disclosed. The sensor system has a sensing coil in juxtaposition with the sensing wheel. Moreover, the sensing coil has a sensing coil output signal indicative of the rotational speed of the sensing wheel. Further, a cancellation coil is located remotely from the sensing coil and connected in series therewith. Additionally, the cancellation coil has a cancellation coil output signal indicative of an environmental disturbance which is effecting the sensing coil output signal. The cancellation coil output signal operates to cancel the effects of the environmental disturbance on the sensing coil output signal.

  18. Input-output model for MACCS nuclear accident impacts estimation¹

    SciTech Connect (OSTI)

    Outkin, Alexander V.; Bixler, Nathan E.; Vargas, Vanessa N

    2015-01-27

    Since the original economic model for MACCS was developed, better quality economic data (as well as the tools to gather and process it) and better computational capabilities have become available. The update of the economic impacts component of the MACCS legacy model will provide improved estimates of business disruptions through the use of Input-Output based economic impact estimation. This paper presents an updated MACCS model, bases on Input-Output methodology, in which economic impacts are calculated using the Regional Economic Accounting analysis tool (REAcct) created at Sandia National Laboratories. This new GDP-based model allows quick and consistent estimation of gross domestic product (GDP) losses due to nuclear power plant accidents. This paper outlines the steps taken to combine the REAcct Input-Output-based model with the MACCS code, describes the GDP loss calculation, and discusses the parameters and modeling assumptions necessary for the estimation of long-term effects of nuclear power plant accidents.

  19. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

    1988-04-19

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

  20. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, Roy; Kakwani, Ramesh M.; Valdmanis, Edgars; Woods, Melvins E.

    1988-01-01

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m.degree. C. and a specific heat greater than 480 J/kg.degree. C. with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber.

  1. Using Economic Input/Output Tables to Predict a Countrys Nuclear Status

    SciTech Connect (OSTI)

    Weimar, Mark R.; Daly, Don S.; Wood, Thomas W.

    2010-07-15

    Both nuclear power and nuclear weapons programs should have (related) economic signatures which are detectible at some scale. We evaluated this premise in a series of studies using national economic input/output (IO) data. Statistical discrimination models using economic IO tables predict with a high probability whether a country with an unknown predilection for nuclear weapons proliferation is in fact engaged in nuclear power development or nuclear weapons proliferation. We analyzed 93 IO tables, spanning the years 1993 to 2005 for 37 countries that are either members or associates of the Organization for Economic Cooperation and Development (OECD). The 2009 OECD input/output tables featured 48 industrial sectors based on International Standard Industrial Classification (ISIC) Revision 3, and described the respective economies in current country-of-origin valued currency. We converted and transformed these reported values to US 2005 dollars using appropriate exchange rates and implicit price deflators, and addressed discrepancies in reported industrial sectors across tables. We then classified countries with Random Forest using either the adjusted or industry-normalized values. Random Forest, a classification tree technique, separates and categorizes countries using a very small, select subset of the 2304 individual cells in the IO table. A nations efforts in nuclear power, be it for electricity or nuclear weapons, are an enterprise with a large economic footprint -- an effort so large that it should discernibly perturb coarse country-level economics data such as that found in yearly input-output economic tables. The neoclassical economic input-output model describes a countrys or regions economy in terms of the requirements of industries to produce the current level of economic output. An IO table row shows the distribution of an industrys output to the industrial sectors while a table column shows the input required of each industrial sector by a given

  2. Job and Output Benefits of Stationary Fuel Cells (JOBS FC): An Economic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact Tool Developed for USDOE | Department of Energy and Output Benefits of Stationary Fuel Cells (JOBS FC): An Economic Impact Tool Developed for USDOE Job and Output Benefits of Stationary Fuel Cells (JOBS FC): An Economic Impact Tool Developed for USDOE Presented at the Technology Transition Corporation and U.S. Department of Energy Webinar: Where the Jobs Are: Hydrogen and Fuel Cells in Your Area, July 19, 2011. webinarjul19_mintz.pdf (213.56 KB) More Documents & Publications DOE

  3. Rising U.S. oil output leads world oil supply growth

    U.S. Energy Information Administration (EIA) Indexed Site

    Rising U.S. oil output leads world oil supply growth U.S. crude oil production reached 7 million barrels per day at the end of 2012 for the first time in two decades and is well on its way to topping 8 million barrels per day by 2014. In its new monthly forecast, the U.S. Energy Information Administration expects daily oil output will average 7.3 million barrels this year and then increase to 8.1 million barrels next year. The increase in U.S. and other North American oil production will account

  4. High-output microwave detector using voltage-induced ferromagnetic resonance

    SciTech Connect (OSTI)

    Shiota, Yoichi Suzuki, Yoshishige; Miwa, Shinji; Tamaru, Shingo; Nozaki, Takayuki; Kubota, Hitoshi; Fukushima, Akio; Yuasa, Shinji

    2014-11-10

    We investigated the voltage-induced ferromagnetic resonance (FMR) with various DC bias voltage and input RF power in magnetic tunnel junctions. We found that the DC bias monotonically increases the homodyne detection voltage due to the nonlinear FMR originating in an asymmetric magnetization-potential in the free layer. In addition, the linear increase of an output voltage to the input RF power in the voltage-induced FMR is more robust than that in spin-torque FMR. These characteristics enable us to obtain an output voltage more than ten times than that of microwave detectors using spin-transfer torque.

  5. Thermal Reactor Safety

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

  6. Thermal barrier coating

    DOE Patents [OSTI]

    Bowker, Jeffrey Charles; Sabol, Stephen M.; Goedjen, John G.

    2001-01-01

    A thermal barrier coating for hot gas path components of a combustion turbine based on a zirconia-scandia system. A layer of zirconium scandate having the hexagonal Zr.sub.3 Sc.sub.4 O.sub.12 structure is formed directly on a superalloy substrate or on a bond coat formed on the substrate.

  7. Ocean thermal energy conversion

    SciTech Connect (OSTI)

    Avery, W.H.

    1983-03-17

    A brief explanation of the Ocean Thermal Energy Conversion (OTEC) concept and an estimate of the amount of energy that can be produced from the ocean resource without introducing environmental concerns are presented. Use of the OTEC system to generate electric power and products which can replace fossil fuels is shown. The OTEC program status and its prospects for the future are discussed.

  8. Apparatus and method for measurement of weak optical absorptions by thermally induced laser pulsing

    DOE Patents [OSTI]

    Cremers, David A.; Keller, Richard A.

    1985-01-01

    The thermal lensing phenomenon is used as the basis for measurement of weak optical absorptions when a cell containing the sample to be investigated is inserted into a normally continuous-wave operation laser-pumped dye laser cavity for which the output coupler is deliberately tilted relative to intracavity circulating laser light, and pulsed laser output ensues, the pulsewidth of which can be related to the sample absorptivity by a simple algorithm or calibration curve. A minimum detection limit of less than 10.sup.-5 cm.sup.-1 has been demonstrated using this technique.

  9. Apparatus and method for measurement of weak optical absorptions by thermally induced laser pulsing

    DOE Patents [OSTI]

    Cremers, D.A.; Keller, R.A.

    1985-10-01

    The thermal lensing phenomenon is used as the basis for measurement of weak optical absorptions when a cell containing the sample to be investigated is inserted into a normally continuous-wave operation laser-pumped dye laser cavity for which the output coupler is deliberately tilted relative to intracavity circulating laser light, and pulsed laser output ensues, the pulsewidth of which can be related to the sample absorptivity by a simple algorithm or calibration curve. A minimum detection limit of less than 10[sup [minus]5] cm[sup [minus]1] has been demonstrated using this technique. 6 figs.

  10. Apparatus and method for measurement of weak optical absorptions by thermally induced laser pulsing

    DOE Patents [OSTI]

    Cremers, D.A.; Keller, R.A.

    1982-06-08

    The thermal lensing phenomenon is used as the basis for measurement of weak optical absorptions when a cell containing the sample to be investigated is inserted into a normally continuous-wave operation laser-pumped dye laser cavity for which the output coupler is deliberately tilted relative to intracavity circulating laser light, and pulsed laser output ensues, the pulsewidth of which can be rlated to the sample absorptivity by a simple algorithm or calibration curve. A minimum detection limit of less than 10/sup -5/ cm/sup -1/ has been demonstrated using this technique.

  11. Soliton quenching NLTL impulse circuit with a pulse forming network at the output

    DOE Patents [OSTI]

    McEwan, T.E.; Dallum, G.E.

    1998-09-08

    An impulse forming circuit is disclosed which produces a clean impulse from a nonlinear transmission line compressed step function without customary soliton ringing by means of a localized pulse shaping and differentiating network which shunts the nonlinear transmission line output to ground. 5 figs.

  12. Soliton quenching NLTL impulse circuit with a pulse forming network at the output

    DOE Patents [OSTI]

    McEwan, Thomas E.; Dallum, Gregory E.

    1998-01-01

    An impulse forming circuit is disclosed which produces a clean impulse from a nonlinear transmission line compressed step function without customary soliton ringing by means of a localized pulse shaping and differentiating network which shunts the nonlinear transmission line output to ground.

  13. Development of Regional Wind Resource and Wind Plant Output Datasets for the Hawaiian Islands

    SciTech Connect (OSTI)

    Manobianco, J.; Alonge, C.; Frank, J.; Brower, M.

    2010-07-01

    In March 2009, AWS Truepower was engaged by the National Renewable Energy Laboratory (NREL) to develop a set of wind resource and plant output data for the Hawaiian Islands. The objective of this project was to expand the methods and techniques employed in the Eastern Wind Integration and Transmission Study (EWITS) to include the state of Hawaii.

  14. PHI.VCS.P8.01 VERAOUT - VERA HDF5 Output Specification Andrew...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HDFView shows the "C" ordering. CASL-U-2014-0043-001 Milestone L3:PHI.VCS.P8.01 8 H5Dump H5Dump produces output consistent with HDFView. H5Dump also uses "C" order when...

  15. Characteristic operator functions for quantum input-plant-output models and coherent control

    SciTech Connect (OSTI)

    Gough, John E.

    2015-01-15

    We introduce the characteristic operator as the generalization of the usual concept of a transfer function of linear input-plant-output systems to arbitrary quantum nonlinear Markovian input-output models. This is intended as a tool in the characterization of quantum feedback control systems that fits in with the general theory of networks. The definition exploits the linearity of noise differentials in both the plant Heisenberg equations of motion and the differential form of the input-output relations. Mathematically, the characteristic operator is a matrix of dimension equal to the number of outputs times the number of inputs (which must coincide), but with entries that are operators of the plant system. In this sense, the characteristic operator retains details of the effective plant dynamical structure and is an essentially quantum object. We illustrate the relevance to model reduction and simplification definition by showing that the convergence of the characteristic operator in adiabatic elimination limit models requires the same conditions and assumptions appearing in the work on limit quantum stochastic differential theorems of Bouten and Silberfarb [Commun. Math. Phys. 283, 491-505 (2008)]. This approach also shows in a natural way that the limit coefficients of the quantum stochastic differential equations in adiabatic elimination problems arise algebraically as Schur complements and amounts to a model reduction where the fast degrees of freedom are decoupled from the slow ones and eliminated.

  16. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers National Solar Thermal Test Facility HomeTag:National Solar Thermal Test Facility Molten Nitrate Salt Initial Flow Testing is a ...

  17. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9 Companies involved in solar thermal collector related activities by type, 2008 and 2009 ... 26 32 Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal

  18. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    8 Employment in the solar thermal collector industry, 2000 - 2009 2000 284 2001 256 2002 ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal

  19. Underground Coal Thermal Treatment

    SciTech Connect (OSTI)

    Smith, P.; Deo, M.; Eddings, E.; Sarofim, A.; Gueishen, K.; Hradisky, M.; Kelly, K.; Mandalaparty, P.; Zhang, H.

    2012-01-11

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal's carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO2 sequestration.

  20. Thermally stable diamond brazing

    DOE Patents [OSTI]

    Radtke, Robert P.

    2009-02-10

    A cutting element and a method for forming a cutting element is described and shown. The cutting element includes a substrate, a TSP diamond layer, a metal interlayer between the substrate and the diamond layer, and a braze joint securing the diamond layer to the substrate. The thickness of the metal interlayer is determined according to a formula. The formula takes into account the thickness and modulus of elasticity of the metal interlayer and the thickness of the TSP diamond. This prevents the use of a too thin or too thick metal interlayer. A metal interlayer that is too thin is not capable of absorbing enough energy to prevent the TSP diamond from fracturing. A metal interlayer that is too thick may allow the TSP diamond to fracture by reason of bending stress. A coating may be provided between the TSP diamond layer and the metal interlayer. This coating serves as a thermal barrier and to control residual thermal stress.

  1. Thermal synthesis apparatus

    DOE Patents [OSTI]

    Fincke, James R [Idaho Falls, ID; Detering, Brent A [Idaho Falls, ID

    2009-08-18

    An apparatus for thermal conversion of one or more reactants to desired end products includes an insulated reactor chamber having a high temperature heater such as a plasma torch at its inlet end and, optionally, a restrictive convergent-divergent nozzle at its outlet end. In a thermal conversion method, reactants are injected upstream from the reactor chamber and thoroughly mixed with the plasma stream before entering the reactor chamber. The reactor chamber has a reaction zone that is maintained at a substantially uniform temperature. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle, which "freezes" the desired end product(s) in the heated equilibrium reaction stage, or is discharged through an outlet pipe without the convergent-divergent nozzle. The desired end products are then separated from the gaseous stream.

  2. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers National Solar Thermal Test Facility Home/Tag:National Solar Thermal Test Facility Illuminated receiver on top of tower Permalink Gallery High-Temperature Falling Particle Receiver Reaches New Limits Concentrating Solar Power, Energy, National Solar Thermal Test Facility, News, Renewable Energy, Solar, SunShot High-Temperature Falling Particle Receiver Reaches New Limits At its National Solar Thermal Test Facility, Sandia National Laboratories

  3. Liquid metal thermal electric converter

    DOE Patents [OSTI]

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1989-01-01

    A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

  4. Thermally actuated thermionic switch

    DOE Patents [OSTI]

    Barrus, Donald M.; Shires, Charles D.

    1988-01-01

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  5. THERMAL NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Spinrad, B.I.

    1960-01-12

    A novel thermal reactor was designed in which a first reflector formed from a high atomic weight, nonmoderating material is disposed immediately adjacent to the reactor core. A second reflector composed of a moderating material is disposed outwardly of the first reflector. The advantage of this novel reflector arrangement is that the first reflector provides a high slow neutron flux in the second reflector, where irradiation experiments may be conducted with a small effect on reactor reactivity.

  6. Thermal reactor safety

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport.

  7. Thermally actuated thermionic switch

    DOE Patents [OSTI]

    Barrus, D.M.; Shires, C.D.

    1982-09-30

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  8. Solar Thermal Electric | Open Energy Information

    Open Energy Info (EERE)

    Thermal Electric Jump to: navigation, search TODO: Add description List of Solar Thermal Electric Incentives Retrieved from "http:en.openei.orgwindex.php?titleSolarThermalEl...

  9. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Motor Thermal Control Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Integrated Vehicle Thermal Management

  10. Ocean Thermal Extractable Energy Visualization: Final Technical...

    Office of Environmental Management (EM)

    Ocean Thermal Extractable Energy Visualization: Final Technical Report Ocean Thermal Extractable Energy Visualization: Final Technical Report Report about the Ocean Thermal ...

  11. Methods of forming thermal management systems and thermal management methods

    DOE Patents [OSTI]

    Gering, Kevin L.; Haefner, Daryl R.

    2012-06-05

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  12. Identifying and bounding uncertainties in nuclear reactor thermal power calculations

    SciTech Connect (OSTI)

    Phillips, J.; Hauser, E.; Estrada, H.

    2012-07-01

    Determination of the thermal power generated in the reactor core of a nuclear power plant is a critical element in the safe and economic operation of the plant. Direct measurement of the reactor core thermal power is made using neutron flux instrumentation; however, this instrumentation requires frequent calibration due to changes in the measured flux caused by fuel burn-up, flux pattern changes, and instrumentation drift. To calibrate the nuclear instruments, steam plant calorimetry, a process of performing a heat balance around the nuclear steam supply system, is used. There are four basic elements involved in the calculation of thermal power based on steam plant calorimetry: The mass flow of the feedwater from the power conversion system, the specific enthalpy of that feedwater, the specific enthalpy of the steam delivered to the power conversion system, and other cycle gains and losses. Of these elements, the accuracy of the feedwater mass flow and the feedwater enthalpy, as determined from its temperature and pressure, are typically the largest contributors to the calorimetric calculation uncertainty. Historically, plants have been required to include a margin of 2% in the calculation of the reactor thermal power for the licensed maximum plant output to account for instrumentation uncertainty. The margin is intended to ensure a cushion between operating power and the power for which safety analyses are performed. Use of approved chordal ultrasonic transit-time technology to make the feedwater flow and temperature measurements (in place of traditional differential-pressure- based instruments and resistance temperature detectors [RTDs]) allows for nuclear plant thermal power calculations accurate to 0.3%-0.4% of plant rated power. This improvement in measurement accuracy has allowed many plant operators in the U.S. and around the world to increase plant power output through Measurement Uncertainty Recapture (MUR) up-rates of up to 1.7% of rated power, while also

  13. Thermal modeling of Bakken Formation of Williston basin

    SciTech Connect (OSTI)

    Anderson, D.

    1986-08-01

    Organic geochemical analyses provide a quantitative basis on which conceptual models of thermal maturation may be built. Contour maps of maturation indices of the Mississippian-Devonian Bakken Formation of the Williston basin show anomalous patterns that are not dependent on burial depth. One such area is on the western side of the Nesson anticline. One-dimensional modeling incorporating a uniform, constant heat flow, lithology-dependent thermal conductivities, and decompaction factors indicates that these areas are less mature than surrounding regions. This is due primarily to decreasing burial depth and thinning of low-thermal-conductivity Tertiary and Cretaceous shales. Additional heat transfer to these regions may be due in part to heat transfer by fluid movement through aquifers or vertical fractures. The influence of these fluid systems is simulated through the use of a two-dimensional finite difference program. Basic assumptions are made concerning heat flow, thermal properties, and ground-water flow rates through time. Modeling of the time-temperature history is simplified by restricting the study to the time of greatest maturation, the post-Jurassic.

  14. Thermal control structure and garment

    DOE Patents [OSTI]

    Klett, James W.; Cameron, Christopher Stan

    2012-03-13

    A flexible thermally conductive structure. The structure generally includes a plurality of thermally conductive yarns, at least some of which are at least partially disposed adjacent to an elastomeric material. Typically, at least a portion of the plurality of thermally conductive yarns is configured as a sheet. The yarns may be constructed from graphite, metal, or similar materials. The elastomeric material may be formed from urethane or silicone foam that is at least partially collapsed, or from a similar material. A thermal management garment is provided, the garment incorporating a flexible thermally conductive structure.

  15. Boosting CSP Production with Thermal Energy Storage

    SciTech Connect (OSTI)

    Denholm, P.; Mehos, M.

    2012-06-01

    Combining concentrating solar power (CSP) with thermal energy storage shows promise for increasing grid flexibility by providing firm system capacity with a high ramp rate and acceptable part-load operation. When backed by energy storage capability, CSP can supplement photovoltaics by adding generation from solar resources during periods of low solar insolation. The falling cost of solar photovoltaic (PV) - generated electricity has led to a rapid increase in the deployment of PV and projections that PV could play a significant role in the future U.S. electric sector. The solar resource itself is virtually unlimited; however, the actual contribution of PV electricity is limited by several factors related to the current grid. The first is the limited coincidence between the solar resource and normal electricity demand patterns. The second is the limited flexibility of conventional generators to accommodate this highly variable generation resource. At high penetration of solar generation, increased grid flexibility will be needed to fully utilize the variable and uncertain output from PV generation and to shift energy production to periods of high demand or reduced solar output. Energy storage is one way to increase grid flexibility, and many storage options are available or under development. In this article, however, we consider a technology already beginning to be used at scale - thermal energy storage (TES) deployed with concentrating solar power (CSP). PV and CSP are both deployable in areas of high direct normal irradiance such as the U.S. Southwest. The role of these two technologies is dependent on their costs and relative value, including how their value to the grid changes as a function of what percentage of total generation they contribute to the grid, and how they may actually work together to increase overall usefulness of the solar resource. Both PV and CSP use solar energy to generate electricity. A key difference is the ability of CSP to utilize high

  16. Experimental investigation of a relativistic magnetron with diffraction output on a repetitive short pulse generator

    SciTech Connect (OSTI)

    Li, Wei; Zhang, Jun; Zhang, Zi-cheng; Sun, Xiao-liang; Liu, Yong-gui

    2014-04-15

    An experimental investigation of a relativistic Magnetron with Diffraction Output (MDO) on a short voltage pulse generator, which has maximum repetition rate of 100?Hz and plateau of 2.5?ns, is detailed in this paper. Compared to the conversional solid cathode, a direct Density Modulation Cathode is capable for desired microwave radiation. When applied voltage is 200?kV and axial magnetic field is ?0.12?T, the MDO radiates 120?MW of microwave with 2.3?GHz of central frequency. Power conversion efficiency reaches 22%. Pulse duration is 3?ns. At repetition rates of 50?Hz and 100?Hz, output microwave powers range from 90?MW to 120?MW. Life time is up to 10{sup 4} shots.

  17. Using Weather Data and Climate Model Output in Economic Analyses of Climate Change

    SciTech Connect (OSTI)

    Auffhammer, Maximilian; Hsiang, Solomon M.; Schlenker, Wolfram; Sobel, Adam H.

    2013-06-28

    Economists are increasingly using weather data and climate model output in analyses of the economic impacts of climate change. This article introduces a set of weather data sets and climate models that are frequently used, discusses the most common mistakes economists make in using these products, and identifies ways to avoid these pitfalls. We first provide an introduction to weather data, including a summary of the types of datasets available, and then discuss five common pitfalls that empirical researchers should be aware of when using historical weather data as explanatory variables in econometric applications. We then provide a brief overview of climate models and discuss two common and significant errors often made by economists when climate model output is used to simulate the future impacts of climate change on an economic outcome of interest.

  18. Development of a 402.5 MHz 140 kW Inductive Output Tube

    SciTech Connect (OSTI)

    R. Lawrence Ives; Michael Read, Robert Jackson

    2012-05-09

    This report contains the results of Phase I of an SBIR to develop a Pulsed Inductive Output Tube (IOT) with 140 kW at 400 MHz for powering H-proton beams. A number of sources, including single beam and multiple beam klystrons, can provide this power, but the IOT provides higher efficiency. Efficiencies exceeding 70% are routinely achieved. The gain is typically limited to approximately 24 dB; however, the availability of highly efficient, solid state drivers reduces the significance of this limitation, particularly at lower frequencies. This program initially focused on developing a 402 MHz IOT; however, the DOE requirement for this device was terminated during the program. The SBIR effort was refocused on improving the IOT design codes to more accurately simulate the time dependent behavior of the input cavity, electron gun, output cavity, and collector. Significant improvement was achieved in modeling capability and simulation accuracy.

  19. Variable gas spring for matching power output from FPSE to load of refrigerant compressor

    DOE Patents [OSTI]

    Chen, Gong; Beale, William T.

    1990-01-01

    The power output of a free piston Stirling engine is matched to a gas compressor which it drives and its stroke amplitude is made relatively constant as a function of power by connecting a gas spring to the drive linkage from the engine to the compressor. The gas spring is connected to the compressor through a passageway in which a valve is interposed. The valve is linked to the drive linkage so it is opened when the stroke amplitude exceeds a selected limit. This allows compressed gas to enter the spring, increase its spring constant, thus opposing stroke increase and reducing the phase lead of the displacer ahead of the piston to reduce power output and match it to a reduced load power demand.

  20. Variable gas spring for matching power output from FPSE to load of refrigerant compressor

    DOE Patents [OSTI]

    Chen, G.; Beale, W.T.

    1990-04-03

    The power output of a free piston Stirling engine is matched to a gas compressor which it drives and its stroke amplitude is made relatively constant as a function of power by connecting a gas spring to the drive linkage from the engine to the compressor. The gas spring is connected to the compressor through a passageway in which a valve is interposed. The valve is linked to the drive linkage so it is opened when the stroke amplitude exceeds a selected limit. This allows compressed gas to enter the spring, increase its spring constant, thus opposing stroke increase and reducing the phase lead of the displacer ahead of the piston to reduce power output and match it to a reduced load power demand. 6 figs.

  1. Suppression of beam induced pulse shortening modes in high power RF generator TW output structures

    SciTech Connect (OSTI)

    Haimson, J.; Mecklenburg, B.

    1992-12-31

    Several different style 11.4 GHz relativistic klystrons, operating with beam pulse widths of 50 ns and using large aperture, tapered phase-velocity TW structures,` have recently demonstrated output RF power levels in the range of 100 to 300 MW without breakdown or pulse shortening. To extend this performance into the long pulse regime (1 {mu}s) or to demonstrate a threefold increase in output power by using higher currents, the existing TW circuit designs must be modified (a) to reduce the cavity maximum surface E-fields by a factor of 2 to 3, and (b) to elevate the current threshold values of the beam induced higher order modes (HOM) to ensure avoidance of RF pulse shortening and associated instabilities. A technique for substantially elevating this threshold current is described, and microwave data and photographs are presented showing the degree of HOM damping achieved in a recently constructed 11.4 GHz TW structure.

  2. Thermal management systems and methods

    DOE Patents [OSTI]

    Gering, Kevin L.; Haefner, Daryl R.

    2006-12-12

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  3. Input/Output of ab-initio nuclear structure calculations for improved performance and portability

    SciTech Connect (OSTI)

    Laghave, Nikhil

    2010-01-01

    Many modern scientific applications rely on highly computation intensive calculations. However, most applications do not concentrate as much on the role that input/output operations can play for improved performance and portability. Parallelizing input/output operations of large files can significantly improve the performance of parallel applications where sequential I/O is a bottleneck. A proper choice of I/O library also offers a scope for making input/output operations portable across different architectures. Thus, use of parallel I/O libraries for organizing I/O of large data files offers great scope in improving performance and portability of applications. In particular, sequential I/O has been identified as a bottleneck for the highly scalable MFDn (Many Fermion Dynamics for nuclear structure) code performing ab-initio nuclear structure calculations. We develop interfaces and parallel I/O procedures to use a well-known parallel I/O library in MFDn. As a result, we gain efficient I/O of large datasets along with their portability and ease of use in the down-stream processing. Even situations where the amount of data to be written is not huge, proper use of input/output operations can boost the performance of scientific applications. Application checkpointing offers enormous performance improvement and flexibility by doing a negligible amount of I/O to disk. Checkpointing saves and resumes application state in such a manner that in most cases the application is unaware that there has been an interruption to its execution. This helps in saving large amount of work that has been previously done and continue application execution. This small amount of I/O provides substantial time saving by offering restart/resume capability to applications. The need for checkpointing in optimization code NEWUOA has been identified and checkpoint/restart capability has been implemented in NEWUOA by using simple file I/O.

  4. METHOD OF MEASURING THE INTEGRATED ENERGY OUTPUT OF A NEUTRONIC CHAIN REACTOR

    DOE Patents [OSTI]

    Sturm, W.J.

    1958-12-01

    A method is presented for measuring the integrated energy output of a reactor conslsting of the steps of successively irradiating calibrated thin foils of an element, such as gold, which is rendered radioactive by exposure to neutron flux for periods of time not greater than one-fifth the mean life of the induced radioactlvity and producing an indication of the radioactivity induced in each foil, each foil belng introduced into the reactor immediately upon removal of its predecessor.

  5. Simulation of one-minute power output from utility-scale photovoltaic generation systems.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Ellis, Abraham; Hansen, Clifford W.

    2011-08-01

    We present an approach to simulate time-synchronized, one-minute power output from large photovoltaic (PV) generation plants in locations where only hourly irradiance estimates are available from satellite sources. The approach uses one-minute irradiance measurements from ground sensors in a climatically and geographically similar area. Irradiance is translated to power using the Sandia Array Performance Model. Power output is generated for 2007 in southern Nevada are being used for a Solar PV Grid Integration Study to estimate the integration costs associated with various utility-scale PV generation levels. Plant designs considered include both fixed-tilt thin-film, and single-axis-tracked polycrystalline Si systems ranging in size from 5 to 300 MW{sub AC}. Simulated power output profiles at one-minute intervals were generated for five scenarios defined by total PV capacity (149.5 MW, 222 WM, 292 MW, 492 MW, and 892 MW) each comprising as many as 10 geographically separated PV plants.

  6. Controlling output pulse and prepulse in a resonant microwave pulse compressor

    SciTech Connect (OSTI)

    Shlapakovski, A.; Artemenko, S.; Chumerin, P.; Yushkov, Yu.

    2013-02-07

    A resonant microwave pulse compressor with a waveguide H-plane-tee-based energy extraction unit was studied in terms of its capability to produce output pulses that comprise a low-power long-duration (prepulse) and a high-power short-duration part. The application of such combined pulses with widely variable prepulse and high-power pulse power and energy ratios is of interest in the research area of electronic hardware vulnerability. The characteristics of output radiation pulses are controlled by the variation of the H-plane tee transition attenuation at the stage of microwave energy storage in the compressor cavity. Results of theoretical estimations of the parameters tuning range and experimental investigations of the prototype S-band compressor (1.5 MW, 12 ns output pulse; {approx}13.2 dB gain) are presented. The achievable maximum in the prepulse power is found to be about half the power of the primary microwave source. It has been shown that the energy of the prepulse becomes comparable with that of the short-duration (nanosecond) pulse, while the power of the latter decreases insignificantly. The possible range of variation of the prepulse power and energy can be as wide as 40 dB. In the experiments, the prepulse level control within the range of {approx}10 dB was demonstrated.

  7. Neutron light output response and resolution functions in EJ-309 liquid scintillation detectors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Enqvist, Andreas; Lawrence, Christopher C.; Wieger, Brian M.; Pozzi, Sara A.; Massey, Thomas N.

    2013-03-26

    Here, the neutron light output response functions and detector resolution functions were measured at Ohio University's tandem Van de Graaff generator for three cylindrical EJ-309 liquid scintillator cells, having dimensions 12.7(circle divide)-by-12.7, 7.6-by-7.6, and 7.6-by-5.1 cm. A 7.44 MeV deuteron beam was used on an Al-27 target generating a continuous spectrum over the energy range from a few hundred keV to over 10 MeV. The light output response functions are determined using an exponential fit. Detector resolution functions are obtained for the 12.7-by-12.7 and 7.6-by-7.6 cm detectors. It is demonstrated that the dependence on detector size is important for themore » light output response functions, but not to the same extent for the resolution function, even when photomultiplier tubes, detector material, and other detector characteristics are carefully matched.« less

  8. Increasing output power of an 850 MHz tetrode with a floating-deck modulator

    SciTech Connect (OSTI)

    Rees, D.; Friedrichs, C.

    1990-01-01

    Designers of high-power amplifiers generally regard the region above 300 MHz as a domain dominated by velocity-modulated (klystron/TWT) devices. However, as the power requirements diminish, there are attractive alternatives. The high-power 850-MHz requirements of the ground test accelerator (GTA) program can be filled by 1-MW klystrons, but it would be more efficient to use a lower-power device for a 50-kW requirement. To meet the 850-MHz medium-power requirements, Los Alamos National Laboratory is developing an 850-MHz tetrode amplifier. These amplifiers will provide rf power to the momentum compactor and bunch rotator cavities of the GTA. Available tubes provide only a limited safety margin for a low-risk design at the power levels and duty factor required for GTA cavities. At 850 MHz, the output power capability of available tubes is reduced because of transit time effects and limited anode voltage holdoff. Pulsing the anode of the output tetrode amplifier will allow higher output power with minimum design risk. A floating-deck modulator acts as a high-voltage/high-current switch, so voltage is applied to the anode of the gridded tube only during the rf pulse. The anode voltage holdoff capability of the tube is substantially enhanced by operating in this mode. This paper will describe the design of the floating deck modulator and its impact on the design risk of the 850-MHz tetrode amplifier.

  9. An accurate system for onsite calibration of electronic transformers with digital output

    SciTech Connect (OSTI)

    Zhi Zhang; Li Hongbin

    2012-06-15

    Calibration systems with digital output are used to replace conventional calibration systems because of principle diversity and characteristics of digital output of electronic transformers. But precision and unpredictable stability limit their onsite application even development. So fully considering the factors influencing accuracy of calibration system and employing simple but reliable structure, an all-digital calibration system with digital output is proposed in this paper. In complicated calibration environments, precision and dynamic range are guaranteed by A/D converter with 24-bit resolution, synchronization error limit is nanosecond by using the novelty synchronization method. In addition, an error correction algorithm based on the differential method by using two-order Hanning convolution window has good inhibition of frequency fluctuation and inter-harmonics interference. To verify the effectiveness, error calibration was carried out in the State Grid Electric Power Research Institute of China and results show that the proposed system can reach the precision class up to 0.05. Actual onsite calibration shows that the system has high accuracy, and is easy to operate with satisfactory stability.

  10. Use of Advanced Meteorological Model Output for Coastal Ocean Modeling in Puget Sound

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Khangaonkar, Tarang; Wang, Taiping

    2011-06-01

    It is a great challenge to specify meteorological forcing in estuarine and coastal circulation modeling using observed data because of the lack of complete datasets. As a result of this limitation, water temperature is often not simulated in estuarine and coastal modeling, with the assumption that density-induced currents are generally dominated by salinity gradients. However, in many situations, temperature gradients could be sufficiently large to influence the baroclinic motion. In this paper, we present an approach to simulate water temperature using outputs from advanced meteorological models. This modeling approach was applied to simulate annual variations of water temperatures of Puget Sound, a fjordal estuary in the Pacific Northwest of USA. Meteorological parameters from North American Region Re-analysis (NARR) model outputs were evaluated with comparisons to observed data at real-time meteorological stations. Model results demonstrated that NARR outputs can be used to drive coastal ocean models for realistic simulations of long-term water-temperature distributions in Puget Sound. Model results indicated that the net flux from NARR can be further improved with the additional information from real-time observations.

  11. Hydromechanical transmission with two planetary assemblies that are clutchable to both the input and output shafts

    DOE Patents [OSTI]

    Orshansky, Jr., deceased, Elias; Weseloh, William E.

    1979-01-01

    A power transmission having two planetary assemblies, each having its own carrier and its own planet, sun, and ring gears. A speed-varying module is connected in driving relation to the input shaft and in driving relationship to the two sun gears, which are connected together. The speed-varying means may comprise a pair of hydraulic units hydraulically interconnected so that one serves as a pump while the other serves as a motor and vice versa, one of the units having a variable stroke and being connected in driving relation to the input shaft, the other unit, which may have a fixed stroke, being connected in driving relation to the sun gears. A brake grounds the first carrier in the first range and in reverse and causes drive to be delivered to the output shaft through the first ring gear in a hydrostatic mode, the first ring gear being rigidly connected to the output shaft. The input shaft also is clutchable to either the carrier or the ring gear of the second planetary assembly. The output shaft is also clutchable to the carrier of the second planetary assembly when the input is clutched to the ring gear of the second planetary assembly, and is clutchable to the ring gear of the second planetary assembly when the input is clutched to the carrier thereof.

  12. Ota City : characterizing output variability from 553 homes with residential PV systems on a distribution feeder.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Miyamoto, Yusuke; Nakashima, Eichi; Lave, Matthew

    2011-11-01

    This report describes in-depth analysis of photovoltaic (PV) output variability in a high-penetration residential PV installation in the Pal Town neighborhood of Ota City, Japan. Pal Town is a unique test bed of high-penetration PV deployment. A total of 553 homes (approximately 80% of the neighborhood) have grid-connected PV totaling over 2 MW, and all are on a common distribution line. Power output at each house and irradiance at several locations were measured once per second in 2006 and 2007. Analysis of the Ota City data allowed for detailed characterization of distributed PV output variability and a better understanding of how variability scales spatially and temporally. For a highly variable test day, extreme power ramp rates (defined as the 99th percentile) were found to initially decrease with an increase in the number of houses at all timescales, but the reduction became negligible after a certain number of houses. Wavelet analysis resolved the variability reduction due to geographic diversity at various timescales, and the effect of geographic smoothing was found to be much more significant at shorter timescales.

  13. Thermally cleavable surfactants

    DOE Patents [OSTI]

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2009-09-29

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  14. Thermally cleavable surfactants

    DOE Patents [OSTI]

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2009-11-24

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  15. Thermal network reduction

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1983-01-01

    A method is presented for reducing the number of elements required in a thermal network representation of a building. The method is based on matching the actual building response at two frequencies, the diurnal response and 3-day response. The procedure provides a straightforward methodology for combining all the various materials inside a discrete building zone into a few nodes while retaining a high degree of accuracy in the dynamic response. An example is given showing a comparison between a large network and the reduced network.

  16. Thermal network reduction

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1983-06-01

    A method is presented for reducing the number of elements required in a thermal network representation of a building. The method is based on matching the actual building response at two frequencies, the diurnal response and 3-day response. The procedure provides a straightforward methodology for combining all the various materials inside a discrete building zone into a few nodes while retaining a high degree of accuracy in the dynamic response. An example is given showing a comparison between a large network and the reduced network.

  17. Thermally switchable dielectrics

    DOE Patents [OSTI]

    Dirk, Shawn M.; Johnson, Ross S.

    2013-04-30

    Precursor polymers to conjugated polymers, such as poly(phenylene vinylene), poly(poly(thiophene vinylene), poly(aniline vinylene), and poly(pyrrole vinylene), can be used as thermally switchable capacitor dielectrics that fail at a specific temperature due to the non-conjugated precursor polymer irreversibly switching from an insulator to the conjugated polymer, which serves as a bleed resistor. The precursor polymer is a good dielectric until it reaches a specific temperature determined by the stability of the leaving groups. Conjugation of the polymer backbone at high temperature effectively disables the capacitor, providing a `built-in` safety mechanism for electronic devices.

  18. Response microcantilever thermal detector

    DOE Patents [OSTI]

    Cunningham, Joseph P.; Rajic, Slobodan; Datskos, Panagiotis G.; Evans III, Boyd M.

    2004-10-19

    A "folded leg" thermal detector microcantilever constructed of a substrate with at least one leg interposed between a fixed end and a deflective end, each leg having at least three essentially parallel leg segments interconnected on alternate opposing ends and aligned in a serpentine pattern with only the first leg segment attached to the fixed end and only the last leg segment attached to the deflective end. Alternate leg segment are coated on the pentalever with coating applied to the top of the first, third, and fifth leg segments of each leg and to the bottom of the second and fourth leg segments of each leg.

  19. Thermally cleavable surfactants

    DOE Patents [OSTI]

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2006-04-04

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments and the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  20. Thermal transient anemometer

    DOE Patents [OSTI]

    Bailey, James L.; Vresk, Josip

    1989-01-01

    A thermal transient anemometer having a thermocouple probe which is utilized to measure the change in temperature over a period of time to provide a measure of fluid flow velocity. The thermocouple probe is located in the fluid flow path and pulsed to heat or cool the probe. The cooling of the heated probe or the heating of the cooled probe from the fluid flow over a period of time is measured to determine the fluid flow velocity. The probe is desired to be locally heated near the tip to increase the efficiency of devices incorporating the probe.

  1. Thermal transient anemometer

    DOE Patents [OSTI]

    Bailey, J.L.; Vresk, J.

    1989-07-18

    A thermal transient anemometer is disclosed having a thermocouple probe which is utilized to measure the change in temperature over a period of time to provide a measure of fluid flow velocity. The thermocouple probe is located in the fluid flow path and pulsed to heat or cool the probe. The cooling of the heated probe or the heating of the cooled probe from the fluid flow over a period of time is measured to determine the fluid flow velocity. The probe is desired to be locally heated near the tip to increase the efficiency of devices incorporating the probe. 12 figs.

  2. Thermal indicator for wells

    DOE Patents [OSTI]

    Gaven, Jr., Joseph V.; Bak, Chan S.

    1983-01-01

    Minute durable plate-like thermal indicators are employed for precision measuring static and dynamic temperatures of well drilling fluids. The indicators are small enough and sufficiently durable to be circulated in the well with drilling fluids during the drilling operation. The indicators include a heat resistant indicating layer, a coacting meltable solid component and a retainer body which serves to unitize each indicator and which may carry permanent indicator identifying indicia. The indicators are recovered from the drilling fluid at ground level by known techniques.

  3. Thermomechanical measurements on thermal microactuators. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Thermal and mechanical measurements for the bent-beam polycrystalline silicon thermal ... SANDIA NATIONAL LABORATORIES; SILICON; VALIDATION Microactuators.; Ceramic ...

  4. Integrated Vehicle Thermal Management Systems (VTMS) Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Integrated Vehicle Thermal Management Power Electronic Thermal System Performance and Integration Characterization and Development of Advanced...

  5. Combining Multiple-Module Output Boundary Conditions to Produce a Single-Input-Module Boundary Condition in FRAMES

    SciTech Connect (OSTI)

    Whelan, Gene; Castleton, Karl J.; Buck, John W.; Taira, Randal Y.; Gelston, Gariann M.; Strenge, Dennis L.

    2006-10-03

    The Plus Operator thus provides a mechanism to group modules of similar output so that the output can be combined and supplied to downstream modules. This document provides requirements, the design, data-file specifications, the test plan, and the quality assurance/quality control (QA/QC) protocol for the Plus Operator.

  6. Solar thermal power system

    SciTech Connect (OSTI)

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  7. SOLCOST - Version 3. 0. Solar energy design program for non-thermal specialists

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    The SOLCOST solar energy design program is a public domain computerized design tool intended for use by non-thermal specialists to size solar systems with a methodology based on life cycle cost. An overview of SOLCOST capabilities and options is presented. A detailed guide to the SOLCOST input parameters is included. Sample problems showing typical imput decks and resulting SOLCOST output sheets are given. Details of different parts of the analysis are appended. (MHR)

  8. Electric Vehicle Battery Thermal Issues and Thermal Management Techniques (Presentation)

    SciTech Connect (OSTI)

    Rugh, J. P.; Pesaran, A.; Smith, K.

    2013-07-01

    This presentation examines the issues concerning thermal management in electric drive vehicles and management techniques for improving the life of a Li-ion battery in an EDV.

  9. 6Li foil thermal neutron detector

    SciTech Connect (OSTI)

    Ianakiev, Kiril D; Swinhoe, Martyn T; Favalli, Andrea; Chung, Kiwhan; Macarthur, Duncan W

    2010-01-01

    In this paper we report on the design of a multilayer thermal neutron detector based on {sup 6}Li reactive foil and thin film plastic scintillators. The {sup 6}Li foils have about twice the intrinsic efficiency of {sup 10}B films and about four times higher light output due to a unique combination of high energy of reaction particles, low self absorption, and low ionization density of tritons. The design configuration provides for double sided readout of the lithium foil resulting in a doubling of the efficiency relative to a classical reactive film detector and generating a pulse height distribution with a valley between neutron and gamma signals similar to {sup 3}He tubes. The tens of microns thickness of plastic scintillator limits the energy deposited by gamma rays, which provides the necessary neutron/gamma discrimination. We used MCNPX to model a multilayer Li foil detector design and compared it with the standard HLNCC-II (18 {sup 3}He tubes operated at 4 atm). The preliminary results of the {sup 6}Li configuration show higher efficiency and one third of the die-away time. These properties, combined with the very short dead time of the plastic scintillator, offer the potential of a very high performance detector.

  10. Calibrating thermal behavior of electronics

    DOE Patents [OSTI]

    Chainer, Timothy J.; Parida, Pritish R.; Schultz, Mark D.

    2016-05-31

    A method includes determining a relationship between indirect thermal data for a processor and a measured temperature associated with the processor, during a calibration process, obtaining the indirect thermal data for the processor during actual operation of the processor, and determining an actual significant temperature associated with the processor during the actual operation using the indirect thermal data for the processor during actual operation of the processor and the relationship.

  11. Actively driven thermal radiation shield

    DOE Patents [OSTI]

    Madden, Norman W. (Livermore, CA); Cork, Christopher P. (Pleasant Hill, CA); Becker, John A. (Alameda, CA); Knapp, David A. (Livermore, CA)

    2002-01-01

    A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

  12. Overview of solar thermal technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The solar-thermal overview section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  13. THERMALLY OPERATED VAPOR VALVE

    DOE Patents [OSTI]

    Dorward, J.G. Jr.

    1959-02-10

    A valve is presented for use in a calutron to supply and control the vapor to be ionized. The invention provides a means readily operable from the exterior of the vacuum tank of the apparatuss without mechanical transmission of forces for the quick and accurate control of the ionizing arc by a corresponding control of gas flow theretos thereby producing an effective way of carefully regulating the operation of the calutron. The invention consists essentially of a tube member extending into the charge bottle of a calutron devices having a poppet type valve closing the lower end of the tube. An electrical heating means is provided in the valve stem to thermally vary the length of the stem to regulate the valve opening to control the flow of material from the charge bottle.

  14. SUPERFAST THERMALIZATION OF PLASMA

    DOE Patents [OSTI]

    Chang, C.C.

    1962-06-12

    A method is given for the superfast thermalization of plasma by shock conversion of the kinetic energy stored in rotating plasma rings or plasmoids colliding at near supersonic speeds in a containment field to heat energy in the resultant confined plasma mass. The method includes means for generating rotating plasmoids at the opposite ends of a Pyrotron or Astron containment field. The plasmoids are magnetically accelerated towards each other into the opposite ends of time containment field. During acceleration of the plasmoids toward the center of the containment field, the intensity of the field is sequentially increased to adiabatically compress the plasmoids and increase the plasma energy. The plasmoids hence collide with a violent shock at the eenter of the containment field, causing the substantial kinetic energy stored in the plasmoids to be converted to heat in the resultant plasma mass. (AEC)

  15. Thermally stabilized heliostat

    DOE Patents [OSTI]

    Anderson, Alfred J.

    1983-01-01

    An improvement in a heliostat having a main support structure and pivoting and tilting motors and gears and a mirror module for reflecting solar energy onto a collector, the improvement being characterized by an internal support structure within each mirror module and front and back sheets attached to the internal support structure, the front and back sheets having the same coefficient of thermal expansion such that no curvature is induced by temperature change, and a layer of adhesive adhering the mirror to the front sheet. The adhesive is water repellent and has adequate set strength to support the mirror but has sufficient shear tolerance to permit the differential expansion of the mirror and the front sheet without inducing stresses or currature effect. The adhesive also serves to dampen fluttering of the mirror and to protect the mirror backside against the adverse effects of weather. Also disclosed are specific details of the preferred embodiment.

  16. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, Gloria A.; Moore, Troy K.

    1988-01-01

    An apparatus for thermally protecting heat sensitive components of tools. The apparatus comprises a Dewar for holding the heat sensitive components. The Dewar has spaced-apart inside and outside walls, an open top end and a bottom end. An insulating plug is located in the top end. The inside wall has portions defining an inside wall aperture located at the bottom of the Dewar and the outside wall has portions defining an outside wall aperture located at the bottom of the Dewar. A bottom connector has inside and outside components. The inside component sealably engages the inside wall aperture and the outside component sealably engages the outside wall aperture. The inside component is operatively connected to the heat sensitive components and to the outside component. The connections can be made with optical fibers or with electrically conducting wires.

  17. Methods to Register Models and Input/Output Parameters for Integrated Modeling

    SciTech Connect (OSTI)

    Droppo, James G.; Whelan, Gene; Tryby, Michael E.; Pelton, Mitchell A.; Taira, Randal Y.; Dorow, Kevin E.

    2010-07-10

    Significant resources can be required when constructing integrated modeling systems. In a typical application, components (e.g., models and databases) created by different developers are assimilated, requiring the framework’s functionality to bridge the gap between the user’s knowledge of the components being linked. The framework, therefore, needs the capability to assimilate a wide range of model-specific input/output requirements as well as their associated assumptions and constraints. The process of assimilating such disparate components into an integrated modeling framework varies in complexity and difficulty. Several factors influence the relative ease of assimilating components, including, but not limited to, familiarity with the components being assimilated, familiarity with the framework and its tools that support the assimilation process, level of documentation associated with the components and the framework, and design structure of the components and framework. This initial effort reviews different approaches for assimilating models and their model-specific input/output requirements: 1) modifying component models to directly communicate with the framework (i.e., through an Application Programming Interface), 2) developing model-specific external wrappers such that no component model modifications are required, 3) using parsing tools to visually map pre-existing input/output files, and 4) describing and linking models as dynamic link libraries. Most of these approaches are illustrated using the widely distributed modeling system called Framework for Risk Analysis in Multimedia Environmental Systems (FRAMES). The review concludes that each has its strengths and weakness, the factors that determine which approaches work best in a given application.

  18. Dosimetric characterization and output verification for conical brachytherapy surface applicators. Part I. Electronic brachytherapy source

    SciTech Connect (OSTI)

    Fulkerson, Regina K. Micka, John A.; DeWerd, Larry A.

    2014-02-15

    Purpose: Historically, treatment of malignant surface lesions has been achieved with linear accelerator based electron beams or superficial x-ray beams. Recent developments in the field of brachytherapy now allow for the treatment of surface lesions with specialized conical applicators placed directly on the lesion. Applicators are available for use with high dose rate (HDR){sup 192}Ir sources, as well as electronic brachytherapy sources. Part I of this paper will discuss the applicators used with electronic brachytherapy sources; Part II will discuss those used with HDR {sup 192}Ir sources. Although the use of these applicators has gained in popularity, the dosimetric characteristics including depth dose and surface dose distributions have not been independently verified. Additionally, there is no recognized method of output verification for quality assurance procedures with applicators like these. Existing dosimetry protocols available from the AAPM bookend the cross-over characteristics of a traditional brachytherapy source (as described by Task Group 43) being implemented as a low-energy superficial x-ray beam (as described by Task Group 61) as observed with the surface applicators of interest. Methods: This work aims to create a cohesive method of output verification that can be used to determine the dose at the treatment surface as part of a quality assurance/commissioning process for surface applicators used with HDR electronic brachytherapy sources (Part I) and{sup 192}Ir sources (Part II). Air-kerma rate measurements for the electronic brachytherapy sources were completed with an Attix Free-Air Chamber, as well as several models of small-volume ionization chambers to obtain an air-kerma rate at the treatment surface for each applicator. Correction factors were calculated using MCNP5 and EGSnrc Monte Carlo codes in order to determine an applicator-specific absorbed dose to water at the treatment surface from the measured air-kerma rate. Additionally

  19. System and method to improve the power output and longetivity of a radioisotope thermoelectric generator

    DOE Patents [OSTI]

    Mowery, Jr., Alfred L.

    1993-01-01

    By using the helium generated by the alpha emissions of a thermoelectric generator during space travel for cooling, the thermal degradation of the thermoelectric generator can be slowed. Slowing degradation allows missions to be longer with little additional expense or payload.

  20. Metallic phase change material thermal storage for Dish Stirling

    SciTech Connect (OSTI)

    Andraka, C. E.; Kruizenga, A. M.; Hernandez-Sanchez, B. A.; Coker, E. N.

    2015-06-05

    Dish-Stirling systems provide high-efficiency solar-only electrical generation and currently hold the world record at 31.25%. This high efficiency results in a system with a high possibility of meeting the DOE SunShot goal of $0.06/kWh. However, current dish-Stirling systems do not incorporate thermal storage. For the next generation of non-intermittent and cost-competitive solar power plants, we propose adding a thermal energy storage system that combines latent (phase-change) energy transport and latent energy storage in order to match the isothermal input requirements of Stirling engines while also maximizing the exergetic efficiency of the entire system. This paper reports current findings in the area of selection, synthesis and evaluation of a suitable high performance metallic phase change material (PCM) as well as potential interactions with containment alloy materials. The metallic PCM's, while more expensive than salts, have been identified as having substantial performance advantages primarily due to high thermal conductivity, leading to high exergetic efficiency. Systems modeling has indicated, based on high dish Stirling system performance, an allowable cost of the PCM storage system that is substantially higher than SunShot goals for storage cost on tower systems. Several PCM's are identified with suitable melting temperature, cost, and performance.

  1. Metallic phase change material thermal storage for Dish Stirling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Andraka, C. E.; Kruizenga, A. M.; Hernandez-Sanchez, B. A.; Coker, E. N.

    2015-06-05

    Dish-Stirling systems provide high-efficiency solar-only electrical generation and currently hold the world record at 31.25%. This high efficiency results in a system with a high possibility of meeting the DOE SunShot goal of $0.06/kWh. However, current dish-Stirling systems do not incorporate thermal storage. For the next generation of non-intermittent and cost-competitive solar power plants, we propose adding a thermal energy storage system that combines latent (phase-change) energy transport and latent energy storage in order to match the isothermal input requirements of Stirling engines while also maximizing the exergetic efficiency of the entire system. This paper reports current findings in themore » area of selection, synthesis and evaluation of a suitable high performance metallic phase change material (PCM) as well as potential interactions with containment alloy materials. The metallic PCM's, while more expensive than salts, have been identified as having substantial performance advantages primarily due to high thermal conductivity, leading to high exergetic efficiency. Systems modeling has indicated, based on high dish Stirling system performance, an allowable cost of the PCM storage system that is substantially higher than SunShot goals for storage cost on tower systems. Several PCM's are identified with suitable melting temperature, cost, and performance.« less

  2. Enhanced piezoelectric output voltage and Ohmic behavior in Cr-doped ZnO nanorods

    SciTech Connect (OSTI)

    Sinha, Nidhi; Ray, Geeta; Godara, Sanjay; Gupta, Manoj K.; Kumar, Binay

    2014-11-15

    Highlights: • Low cost highly crystalline Cr-doped ZnO nanorods were synthesized. • Enhancement in dielectric, piezoelectric and ferroelectric properties were observed. • A high output voltage was obtained in AFM. • Cr-doping resulted in enhanced conductivity and better Ohmic behavior in ZnO/Ag contact. - Abstract: Highly crystalline Cr-doped ZnO nanorods (NRs) were synthesized by solution technique. The size distribution was analyzed by high resolution tunneling electron microscope (HRTEM) and particle size analyzer. In atomic force microscope (AFM) studies, peak to peak 8 mV output voltage was obtained on the application of constant normal force of 25 nN. It showed high dielectric constant (980) with phase transition at 69 °C. Polarization vs. electric field (P–E) loops with remnant polarization (6.18 μC/cm{sup 2}) and coercive field (0.96 kV/cm) were obtained. In I–V studies, Cr-doping was found to reduce the rectifying behavior in the Ag/ZnO Schottky contact which is useful for field effect transistor (FET) and solar cell applications. With these excellent properties, Cr-doped ZnO NRs can be used in nanopiezoelectronics, charge storage and ferroelectric applications.

  3. Peg supported thermal insulation panel

    DOE Patents [OSTI]

    Nowobilski, J.J.; Owens, W.J.

    1985-04-30

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprises high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure. 2 figs.

  4. Peg supported thermal insulation panel

    DOE Patents [OSTI]

    Nowobilski, Jeffert J.; Owens, William J.

    1985-01-01

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprising high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure.

  5. Package-interface thermal switch

    SciTech Connect (OSTI)

    Hyman, N.L.

    1995-05-24

    The package-interface thermal switch (PITS) is an active temperature control device for modulating the flow of thermal energy from satellite equipment, such as electronic modules or batteries, to the satellite mounting deck which serves as a heat sink. PITS comprises a mounting bolt made of a shaped memory alloy (SMA) actuating bolt and a non-metallic rod with a helical spring surrounding it forming a mounting bolt for a satellite equipment package. At least four mounting bolts are used for installing the equipment package and are preloaded to a predetermined stress representing the desired thermal conductance between the heat sink and the package. The SMA actuating bolt is in thermal contact with the component or package and expands or contracts as the result of changing package temperature and the helical return spring forces against the SMA actuating bolt portion of the PITS, increasing (hot-on`1 condition) or decreasing (cold-off condition) the pressure of the package against the mounting deck. As the PITS changes its total length, the thermal conductance between the two objects is increased or decreased. Thus thermal conductance changes as a direct function of package temperature, resulting in active temperature control. The simple design of the PITS reduces the cost and weight of the thermal control subsystem in satellites and its high reliability eliminates the requirement for thermal design verification testing.

  6. Thermal energy storage apparatus

    SciTech Connect (OSTI)

    Thoma, P.E.

    1980-04-22

    A thermal energy storage apparatus and method employs a container formed of soda lime glass and having a smooth, defectfree inner wall. The container is filled substantially with a material that can be supercooled to a temperature greater than 5* F., such as ethylene carbonate, benzophenone, phenyl sulfoxide, di-2-pyridyl ketone, phenyl ether, diphenylmethane, ethylene trithiocarbonate, diphenyl carbonate, diphenylamine, 2benzoylpyridine, 3-benzoylpyridine, 4-benzoylpyridine, 4methylbenzophenone, 4-bromobenzophenone, phenyl salicylate, diphenylcyclopropenone, benzyl sulfoxide, 4-methoxy-4prmethylbenzophenone, n-benzoylpiperidine, 3,3pr,4,4pr,5 pentamethoxybenzophenone, 4,4'-bis-(Dimethylamino)-benzophenone, diphenylboron bromide, benzalphthalide, benzophenone oxime, azobenzene. A nucleating means such as a seed crystal, a cold finger or pointed member is movable into the supercoolable material. A heating element heats the supercoolable material above the melting temperature to store heat. The material is then allowed to cool to a supercooled temperature below the melting temperature, but above the natural, spontaneous nucleating temperature. The liquid in each container is selectively initiated into nucleation to release the heat of fusion. The heat may be transferred directly or through a heat exchange unit within the material.

  7. Microelectromechanical (MEM) thermal actuator

    DOE Patents [OSTI]

    Garcia, Ernest J.; Fulcher, Clay W. G.

    2012-07-31

    Microelectromechanical (MEM) buckling beam thermal actuators are disclosed wherein the buckling direction of a beam is constrained to a desired direction of actuation, which can be in-plane or out-of-plane with respect to a support substrate. The actuators comprise as-fabricated, linear beams of uniform cross section supported above the substrate by supports which rigidly attach a beam to the substrate. The beams can be heated by methods including the passage of an electrical current through them. The buckling direction of an initially straight beam upon heating and expansion is controlled by incorporating one or more directional constraints attached to the substrate and proximal to the mid-point of the beam. In the event that the beam initially buckles in an undesired direction, deformation of the beam induced by contact with a directional constraint generates an opposing force to re-direct the buckling beam into the desired direction. The displacement and force generated by the movement of the buckling beam can be harnessed to perform useful work, such as closing contacts in an electrical switch.

  8. Thermal Enhancer - Airless Exhaust Thermal Management Device | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Enhancer - Airless Exhaust Thermal Management Device Thermal Enhancer - Airless Exhaust Thermal Management Device Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_coker.pdf (1.85 MB) More Documents & Publications Heavy Duty Vehicle In-Use Emission Performance Why Light Duty Diesels Make Sense in the North American Market Scalable, Low-Cost, High

  9. Thermal to electricity conversion using thermal magnetic properties

    DOE Patents [OSTI]

    West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID

    2010-04-27

    A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.

  10. Mercury reduction studies to facilitate the thermal decontamination of phosphor powder residues from spent fluorescent lamps

    SciTech Connect (OSTI)

    Alves Durao, Walter; Andreva de Castro, Camila; Carvalhinho Windmoeller, Claudia

    2008-11-15

    This work investigates the thermal release of mercury from phosphor powder of spent fluorescent lamps. The treatment conditions and the ability of various reducing agents (primarily sodium borohydride) to lower the overall heating temperature required to improve the release of Hg have been evaluated. Hg species in samples were monitored in a thermal desorption atomic absorption spectrometer system, and total mercury was analyzed in a cold vapor atomic absorption spectrometer. Sodium borohydride was the best reducing agent among the ones studied. However, citric acid presented a high capacity to weaken mercury bonds with the matrix. When the sample was crushed with sodium borohydride for 40 min in a mass ratio of 10:1 (sample:reducing agent) and submitted to thermal treatment at 300 deg. C for 2 h, the concentration of mercury in a phosphor powder sample with 103 mg kg{sup -1} of mercury reached 6.6 mg kg{sup -1}.

  11. Scattering Solar Thermal Concentrators

    SciTech Connect (OSTI)

    Giebink, Noel C.

    2015-01-31

    This program set out to explore a scattering-based approach to concentrate sunlight with the aim of improving collector field reliability and of eliminating wind loading and gross mechanical movement through the use of a stationary collection optic. The approach is based on scattering sunlight from the focal point of a fixed collection optic into the confined modes of a sliding planar waveguide, where it is transported to stationary tubular heat transfer elements located at the edges. Optical design for the first stage of solar concentration, which entails focusing sunlight within a plane over a wide range of incidence angles (>120 degree full field of view) at fixed tilt, led to the development of a new, folded-path collection optic that dramatically out-performs the current state-of-the-art in scattering concentration. Rigorous optical simulation and experimental testing of this collection optic have validated its performance. In the course of this work, we also identified an opportunity for concentrating photovoltaics involving the use of high efficiency microcells made in collaboration with partners at the University of Illinois. This opportunity exploited the same collection optic design as used for the scattering solar thermal concentrator and was therefore pursued in parallel. This system was experimentally demonstrated to achieve >200x optical concentration with >70% optical efficiency over a full day by tracking with <1 cm of lateral movement at fixed latitude tilt. The entire scattering concentrator waveguide optical system has been simulated, tested, and assembled at small scale to verify ray tracing models. These models were subsequently used to predict the full system optical performance at larger, deployment scale ranging up to >1 meter aperture width. Simulations at an aperture widths less than approximately 0.5 m with geometric gains ~100x predict an overall optical efficiency in the range 60-70% for angles up to 50 degrees from normal. However, the

  12. Ceramic thermal barrier coating for rapid thermal cycling applications

    DOE Patents [OSTI]

    Scharman, Alan J.; Yonushonis, Thomas M.

    1994-01-01

    A thermal barrier coating for metal articles subjected to rapid thermal cycling includes a metallic bond coat deposited on the metal article, at least one MCrAlY/ceramic layer deposited on the bond coat, and a ceramic top layer deposited on the MCrAlY/ceramic layer. The M in the MCrAlY material is Fe, Ni, Co, or a mixture of Ni and Co. The ceramic in the MCrAlY/ceramic layer is mullite or Al.sub.2 O.sub.3. The ceramic top layer includes a ceramic with a coefficient of thermal expansion less than about 5.4.times.10.sup.-6 .degree.C.sup.-1 and a thermal conductivity between about 1 J sec.sup.-1 m.sup.-1 .degree.C.sup.-1 and about 1.7 J sec.sup.-1 m.sup.-1 .degree.C.sup.-1.

  13. REACTOR GROUT THERMAL PROPERTIES

    SciTech Connect (OSTI)

    Steimke, J.; Qureshi, Z.; Restivo, M.; Guerrero, H.

    2011-01-28

    Savannah River Site has five dormant nuclear production reactors. Long term disposition will require filling some reactor buildings with grout up to ground level. Portland cement based grout will be used to fill the buildings with the exception of some reactor tanks. Some reactor tanks contain significant quantities of aluminum which could react with Portland cement based grout to form hydrogen. Hydrogen production is a safety concern and gas generation could also compromise the structural integrity of the grout pour. Therefore, it was necessary to develop a non-Portland cement grout to fill reactors that contain significant quantities of aluminum. Grouts generate heat when they set, so the potential exists for large temperature increases in a large pour, which could compromise the integrity of the pour. The primary purpose of the testing reported here was to measure heat of hydration, specific heat, thermal conductivity and density of various reactor grouts under consideration so that these properties could be used to model transient heat transfer for different pouring strategies. A secondary purpose was to make qualitative judgments of grout pourability and hardened strength. Some reactor grout formulations were unacceptable because they generated too much heat, or started setting too fast, or required too long to harden or were too weak. The formulation called 102H had the best combination of characteristics. It is a Calcium Alumino-Sulfate grout that contains Ciment Fondu (calcium aluminate cement), Plaster of Paris (calcium sulfate hemihydrate), sand, Class F fly ash, boric acid and small quantities of additives. This composition afforded about ten hours of working time. Heat release began at 12 hours and was complete by 24 hours. The adiabatic temperature rise was 54 C which was within specification. The final product was hard and displayed no visible segregation. The density and maximum particle size were within specification.

  14. Dramatic enhancement of xuv laser output using a multimode gas-filled capillary waveguide

    SciTech Connect (OSTI)

    Mocek, T.; Sebban, S.; Bettaibi, I.; Vorontsov, V.; McKenna, C.M.; Spence, D.J.; Gonsavles, A.J.; Hooker, S.M.; Cros, B.; Maynard, G.

    2005-01-01

    We report a significant increase of the output of a 41.8-nm Xe{sup 8+} laser achieved by means of multimode guiding of high-intensity femtosecond laser pulses in a gas-filled dielectric capillary tube. The optimized lasing signal from a 15-mm-long capillary was nearly an order of magnitude higher than that from a gas cell of the same length. Simulations of the propagation of the pump laser pulse in the capillary confirmed that this enhancement is due to reflections from the capillary wall, which increase the length of the Xe{sup 8+} plasma column generated. The influence of gas pressure and focusing position on the lasing is also presented.

  15. A 350 MHz, 200 kW CW, Multiple Beam Inductive Output Tube - Final Report

    SciTech Connect (OSTI)

    R.Lawrece Ives; George Collins; David Marsden Michael Read; Edward Eisen; Takuchi Kamura, Philipp Borchard

    2012-11-28

    This program developed a 200 kW CW, 350 MHz, multiple beam inductive output tube (MBIOT) for driving accelerator cavities. The MBIOT operates at 30 kV with a gain of 23 dB. The estimated efficiency is 70%. The device uses seven electron beams, each transmitting 1.4 A of current. The tube is approximately six feet long and weighs approximately 400 lbs. The prototype device will be evaluated as a potential RF source for the Advanced Photon Source at Argonne National Laboratory (ANL). Because of issues related to delivery of the electron guns, it was not possible to complete assembly and test of the MBIOT during the Phase II program. The device is being completed with support from Calabazas Creek Research, Inc., Communications & Power Industries, LLC. and the Naval Surface Weapons Center (NSWC) in Dahlgren, VA. The MBIOT will be initially tested at NSWC before delivery to ANL. The testing at NSWC is scheduled for February 2013.

  16. A 30 MW, 200 MHz Inductive Output Tube for RF Accelerators

    SciTech Connect (OSTI)

    R. Lawrence Ives; Michael Read

    2008-06-19

    This program investigated development of a multiple beam inductive output tube (IOT) to produce 30 MW pulses at 200 MHz. The program was successful in demonstrating feasibility of developing the source to achieve the desired power in microsecond pulses with 70% efficiency. The predicted gain of the device is 24 dB. Consequently, a 200 kW driver would be required for the RF input. Estimated cost of this driver is approximately $1.25 M. Given the estimated development cost of the IOT of approximately $750K and the requirements for a test set that would significantly increase the cost, it was determined that development could not be achieved within the funding constraints of a Phase II program.

  17. Updated Eastern Interconnect Wind Power Output and Forecasts for ERGIS: July 2012

    SciTech Connect (OSTI)

    Pennock, K.

    2012-10-01

    AWS Truepower, LLC (AWST) was retained by the National Renewable Energy Laboratory (NREL) to update wind resource, plant output, and wind power forecasts originally produced by the Eastern Wind Integration and Transmission Study (EWITS). The new data set was to incorporate AWST's updated 200-m wind speed map, additional tall towers that were not included in the original study, and new turbine power curves. Additionally, a primary objective of this new study was to employ new data synthesis techniques developed for the PJM Renewable Integration Study (PRIS) to eliminate diurnal discontinuities resulting from the assimilation of observations into mesoscale model runs. The updated data set covers the same geographic area, 10-minute time resolution, and 2004?2006 study period for the same onshore and offshore (Great Lakes and Atlantic coast) sites as the original EWITS data set.

  18. Multiple station thermal diffusivity instrument

    SciTech Connect (OSTI)

    Wang, H.; Dinwiddie, R.B.; Gaal, P.S.

    1995-12-31

    A multiple furnace laser flash thermal diffusivity system has been developed. The system is equipped with a movable Nd:Glass laser unit, two IR detectors and furnaces for precise measurements of thermal diffusivity over the temperature range from {minus}150{degree}C to 2500{degree}C. All furnaces can operate in vacuum and inert gas; the environmental effects furnace also supports oxidizing and reducing environments. To increase testing speed the graphite and aluminum furnaces are both equipped with six-sample carousels. Thermal diffusivity measurements of three standard reference materials show excellent results over the entire temperature range.

  19. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Energy Conversion Efficiency/Solar Energy/Concentrating Solar Power (CSP)/National Solar Thermal Test Facility National Solar Thermal Test Facility admin 2016-04-14T21:34:04+00:00 Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility of this type in the United States. The NSTTF's primary goal is to provide experimental engineering data for the design, construction, and

  20. Ocean Thermal Extractable Energy Visualization

    SciTech Connect (OSTI)

    Ascari, Matthew

    2012-10-28

    The Ocean Thermal Extractable Energy Visualization (OTEEV) project focuses on assessing the Maximum Practicably Extractable Energy (MPEE) from the world’s ocean thermal resources. MPEE is defined as being sustainable and technically feasible, given today’s state-of-the-art ocean energy technology. Under this project the OTEEV team developed a comprehensive Geospatial Information System (GIS) dataset and software tool, and used the tool to provide a meaningful assessment of MPEE from the global and domestic U.S. ocean thermal resources.