National Library of Energy BETA

Sample records for thermal output commercial

  1. Table 8.6c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.6a)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu Commercial Sector 11<//td> 1989 711,212 202,091 600,653 – –

  2. Table 8.3c Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.3a; Billion Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.3a; Billion Btu) Year Fossil Fuels Renewable Energy Other 7 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Biomass Total Wood 5 Waste 6 Commercial Sector 8<//td> 1989 13,517 3,896 9,920 102 27,435 145 10,305 10,450 – 37,885 1990 14,670 5,406 15,515 118 35,709 387 10,193 10,580 – 46,289 1991 15,967 3,684 20,809 118 40,578 169 8,980 9,149 1 49,728 1992

  3. Novel Thermal Break with Simplified Manufacturing for R7 Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Break with Simplified Manufacturing for R7 Commercial Windows Novel Thermal Break with Simplified Manufacturing for R7 Commercial Windows Lead Performer: Alcoa - ...

  4. PROJECT PROFILE: Advanced Thermal Management for Higher Module Power Output

    Broader source: Energy.gov [DOE]

    Higher temperatures of photovoltaic (PV) modules are causing lower than projected module performance. For example, a free-standing Si PV module has 0.4% decrease in efficiency per degree Celsius. Reducing the module temperature to near ambient levels will increase yearly energy output by 8%. This project will enable lower operating temperatures for modules, resulting in higher module power output and lower levelized cost of electricity (LCOE).

  5. Vehicle Technologies Office Merit Review 2016: Commercial Vehicle Thermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Load Reduction and VTCab -- Rapid HVAC Load Estimation Tool | Department of Energy Commercial Vehicle Thermal Load Reduction and VTCab -- Rapid HVAC Load Estimation Tool Vehicle Technologies Office Merit Review 2016: Commercial Vehicle Thermal Load Reduction and VTCab -- Rapid HVAC Load Estimation Tool Presentation given by National Renewable Energy Laboratory (NREL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation

  6. Duct thermal performance models for large commercial buildings

    SciTech Connect (OSTI)

    Wray, Craig P.

    2003-10-01

    Despite the potential for significant energy savings by reducing duct leakage or other thermal losses from duct systems in large commercial buildings, California Title 24 has no provisions to credit energy-efficient duct systems in these buildings. A substantial reason is the lack of readily available simulation tools to demonstrate the energy-saving benefits associated with efficient duct systems in large commercial buildings. The overall goal of the Efficient Distribution Systems (EDS) project within the PIER High Performance Commercial Building Systems Program is to bridge the gaps in current duct thermal performance modeling capabilities, and to expand our understanding of duct thermal performance in California large commercial buildings. As steps toward this goal, our strategy in the EDS project involves two parts: (1) developing a whole-building energy simulation approach for analyzing duct thermal performance in large commercial buildings, and (2) using the tool to identify the energy impacts of duct leakage in California large commercial buildings, in support of future recommendations to address duct performance in the Title 24 Energy Efficiency Standards for Nonresidential Buildings. The specific technical objectives for the EDS project were to: (1) Identify a near-term whole-building energy simulation approach that can be used in the impacts analysis task of this project (see Objective 3), with little or no modification. A secondary objective is to recommend how to proceed with long-term development of an improved compliance tool for Title 24 that addresses duct thermal performance. (2) Develop an Alternative Calculation Method (ACM) change proposal to include a new metric for thermal distribution system efficiency in the reporting requirements for the 2005 Title 24 Standards. The metric will facilitate future comparisons of different system types using a common ''yardstick''. (3) Using the selected near-term simulation approach, assess the impacts of

  7. Commercial thermal distribution systems, Final report for CIEE/CEC

    SciTech Connect (OSTI)

    Xu, Tengfang; Bechu, Olivier; Carrie, Remi; Dickerhoff, Darryl; Fisk, William; Franconi, Ellen; Kristiansen, Oyvind; Levinson, Ronnen; McWilliams, Jennifer; Wang, Duo; Modera, Mark; Webster, Tom; Ring, Erik; Zhang, Qiang; Huizenga, Charlie; Bauman, Fred; Arens, Ed

    1999-12-01

    According to the California Energy Commission (CEC 1998a), California commercial buildings account for 35% of statewide electricity consumption, and 16% of statewide gas consumption. Space conditioning accounts for roughly 16,000 GWh of electricity and 800 million therms of natural gas annually, and the vast majority of this space conditioning energy passes through thermal distribution systems in these buildings. In addition, 8600 GWh per year is consumed by fans and pumps in commercial buildings, most of which is used to move the thermal energy through these systems. Research work at Lawrence Berkeley National Laboratory (LBNL) has been ongoing over the past five years to investigate the energy efficiency of these thermal distribution systems, and to explore possibilities for improving that energy efficiency. Based upon that work, annual savings estimates of 1 kWh/ft{sup 2} for light commercial buildings, and 1-2 kWh/ft{sup 2} in large commercial buildings have been developed for the particular aspects of thermal distribution system performance being addressed by this project. Those savings estimates, combined with a distribution of the building stock based upon an extensive stock characterization study (Modera et al. 1999a), and technical penetration estimates, translate into statewide saving potentials of 2000 GWh/year and 75 million thermal/year, as well as an electricity peak reduction potential of 0.7 GW. The overall goal of this research program is to provide new technology and application knowledge that will allow the design, construction, and energy services industries to reduce the energy waste associated with thermal distribution systems in California commercial buildings. The specific goals of the LBNL efforts over the past year were: (1) to advance the state of knowledge about system performance and energy losses in commercial-building thermal distribution systems; (2) to evaluate the potential of reducing thermal losses through duct sealing, duct

  8. Thermal energy storage for cooling of commercial buildings

    SciTech Connect (OSTI)

    Akbari, H. ); Mertol, A. )

    1988-07-01

    The storage of coolness'' has been in use in limited applications for more than a half century. Recently, because of high electricity costs during utilities' peak power periods, thermal storage for cooling has become a prime target for load management strategies. Systems with cool storage shift all or part of the electricity requirement from peak to off-peak hours to take advantage of reduced demand charges and/or off-peak rates. Thermal storage technology applies equally to industrial, commercial, and residential sectors. In the industrial sector, because of the lack of economic incentives and the custom design required for each application, the penetration of this technology has been limited to a few industries. The penetration rate in the residential sector has been also very limited due to the absence of economic incentives, sizing problems, and the lack of compact packaged systems. To date, the most promising applications of these systems, therefore, appear to be for commercial cooling. In this report, the current and potential use of thermal energy storage systems for cooling commercial buildings is investigated. In addition, a general overview of the technology is presented and the applicability and cost-effectiveness of this technology for developed and developing countries are discussed. 28 refs., 12 figs., 1 tab.

  9. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Landfill Gas: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,158 0 415 5 738 2005 994 0 519 212 263 2006 1,034 0 267 549 218 2007 985 0 226 532 228 2008 552 0 271 211 70 2009 440 0 313 91 37 2010 847 0 643 174 30 2011 1,635 0 1,422 165 48 2012 1,630 0 1,441 156 32 2013 414 0 132 206 76 2014 852 88 266 326 173

  10. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    6. Useful Thermal Output by Energy Source: Industrial Sector Combined Heat and Power, 2004 - 2014 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas ...

  11. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    C. Natural Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) ...

  12. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    F. Other Waste Biomass: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) ...

  13. SAS Output

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    F. Biogenic Municipal Solid Waste: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all ...

  14. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    F. Natural Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric ...

  15. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C. Petroleum Liquids: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Barrels) Electric Power Sector Period Total (all sectors) ...

  16. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    F. Wood Wood Waste Biomass: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all ...

  17. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C. Biogenic Municipal Solid Waste: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all ...

  18. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    F. Landfill Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric ...

  19. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    F. Petroleum Liquids: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) ...

  20. SAS Output

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    C. Coal: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric ...

  1. SAS Output

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    C. Landfill Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) ...

  2. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    F. Petroleum Coke: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric ...

  3. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    C. Petroleum Coke: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all sectors) ...

  4. SAS Output

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    F. Coal: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities ...

  5. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Biogenic Municipal Solid Waste: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities ...

  6. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Useful Thermal Output by Energy Source: Commercial Sector Combined Heat and Power, 2004 - 2014 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Renewable Sources Other Total Annual Totals 2004 22,450 4,118 165 21,851 0 8,936 6,350 63,871 2005 22,601 3,518 166 20,227 0 8,647 5,921 61,081 2006 22,186 2,092 172 19,370 0.22 9,359 6,242 59,422 2007 22,595 1,640 221 20,040 0 6,651 3,983 55,131 2008 22,991 1,822 177 20,183 0 8,863 6,054 60,091 2009 20,057 1,095 155

  7. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Coal: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 24,275 0 3,809 1,540 18,926 2005 23,833 0 3,918 1,544 18,371 2006 23,227 0 3,834 1,539 17,854 2007 22,810 0 3,795 1,566 17,449 2008 22,168 0 3,689 1,652 16,827 2009 20,507 0 3,935 1,481 15,091 2010 21,727 0 3,808 1,406 16,513 2011 21,532 0 3,628 1,321 16,584

  8. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Coal: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 564,497 0 87,981 34,538 441,978 2005 548,666 0 88,364 34,616 425,685 2006 532,561 0 84,335 34,086 414,140 2007 521,717 0 83,838 34,690 403,189 2008 503,096 0 81,416 36,163 385,517 2009 462,674 0 90,867 32,651 339,156 2010 490,931 0 90,184 30,725 370,022 2011

  9. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Petroleum Liquids: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Barrels) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 20,654 0 1,501 1,203 17,951 2005 20,494 0 1,392 1,004 18,097 2006 14,077 0 1,153 559 12,365 2007 13,462 0 1,303 441 11,718 2008 7,533 0 1,311 461 5,762 2009 8,128 0 1,301 293 6,534 2010 4,866 0 1,086 212 3,567 2011 3,826 0 1,004 168 2,654 2012

  10. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Petroleum Liquids: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 124,809 0 8,592 7,219 108,997 2005 125,689 0 8,134 6,145 111,410 2006 87,137 0 6,740 3,481 76,916 2007 82,768 0 7,602 2,754 72,412 2008 45,481 0 7,644 2,786 35,051 2009 48,912 0 7,557 1,802 39,552 2010 29,243 0 6,402 1,297 21,545 2011 22,799 0 5,927

  11. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Petroleum Coke: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,043 0 237 8 798 2005 783 0 206 8 568 2006 1,259 0 195 9 1,055 2007 1,262 0 162 11 1,090 2008 897 0 119 9 769 2009 1,007 0 126 8 873 2010 1,059 0 98 11 950 2011 1,080 0 112 6 962 2012 1,346 0 113 11 1,222 2013 1,486 0 96 11 1,379 2014 1,283 3 90 16

  12. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Petroleum Coke: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 29,342 0 6,768 226 22,347 2005 22,224 0 5,935 228 16,061 2006 38,169 0 5,672 236 32,262 2007 38,033 0 4,710 303 33,019 2008 27,100 0 3,441 243 23,416 2009 29,974 0 3,652 213 26,109 2010 31,303 0 2,855 296 28,152 2011 31,943 0 3,244 153 28,546 2012

  13. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Natural Gas: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,052,100 0 388,424 39,233 624,443 2005 984,340 0 384,365 34,172 565,803 2006 942,817 0 330,878 33,112 578,828 2007 872,579 0 339,796 35,987 496,796 2008 793,537 0 326,048 32,813 434,676 2009 816,787 0 305,542 41,275 469,970 2010 821,775 0 301,769

  14. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Natural Gas: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,085,191 0 398,476 40,122 646,593 2005 1,008,404 0 392,842 35,037 580,525 2006 968,574 0 339,047 33,928 595,599 2007 894,272 0 347,181 36,689 510,402 2008 813,794 0 333,197 33,434 447,163 2009 836,863 0 312,553 42,032 482,279 2010 841,521 0 308,246 47,001

  15. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Wood / Wood Waste Biomass: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,016,124 0 14,968 1,493 999,663 2005 997,331 0 19,193 1,028 977,111 2006 1,049,161 0 18,814 1,045 1,029,303 2007 982,486 0 21,435 1,756 959,296 2008 923,889 0 18,075 1,123 904,690 2009 816,285 0 19,587 1,135 795,563 2010 876,041 0 18,357

  16. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Landfill Gas: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 2,174 0 735 10 1,429 2005 1,923 0 965 435 522 2006 2,051 0 525 1,094 433 2007 1,988 0 386 1,102 501 2008 1,025 0 454 433 138 2009 793 0 545 176 72 2010 1,623 0 1,195 370 58 2011 3,195 0 2,753 351 91 2012 3,189 0 2,788 340 61 2013 831 0 261 423 147

  17. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Biogenic Municipal Solid Waste: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 19,991 0 4,746 12,295 2,950 2005 20,296 0 4,551 11,991 3,754 2006 21,729 0 5,347 12,654 3,728 2007 16,174 0 5,683 8,350 2,141 2008 18,272 0 6,039 12,174 59 2009 18,785 0 6,229 11,535 1,021 2010 17,502 0 6,031 10,333 1,138 2011 16,766 0

  18. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Other Waste Biomass: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 30,228 0 12,055 2,627 15,547 2005 38,010 0 10,275 2,086 25,649 2006 36,966 0 8,561 2,318 26,087 2007 41,757 0 10,294 2,643 28,820 2008 41,851 0 9,674 1,542 30,635 2009 41,810 0 10,355 1,638 29,817 2010 47,153 0 8,436 1,648 37,070 2011 43,483 0

  19. Novel Thermal Break with Simplified Manufacturing for R7 Commercial Windows

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Thermal Break with Simplified Manufacturing for R7 Commercial Windows Novel Thermal Break with Simplified Manufacturing for R7 Commercial Windows Image courtesy of Alcoa and BTO Peer Review. Image courtesy of Alcoa and BTO Peer Review. Lead Performer: Alcoa - Pittsburgh, PA DOE Funding: $1,123,838 Cost Share: $280,960 Project Term: October 2014 - September 2016 Funding Opportunity: Building Energy Efficiency Frontiers and Incubator Technologies (BENEFIT) - 2014

  20. Commercial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Commercial Incentive Pilot Program (CIPP). Final Impact Evaluation Report. Cambridge Systematics. (1292) Commercial Incentives Pilot Program (CIPP) Database for the...

  1. Scenario Analysis of Peak Demand Savings for Commercial Buildings with Thermal Mass in California

    SciTech Connect (OSTI)

    Yin, Rongxin; Kiliccote, Sila; Piette, Mary Ann; Parrish, Kristen

    2010-05-14

    This paper reports on the potential impact of demand response (DR) strategies in commercial buildings in California based on the Demand Response Quick Assessment Tool (DRQAT), which uses EnergyPlus simulation prototypes for office and retail buildings. The study describes the potential impact of building size, thermal mass, climate, and DR strategies on demand savings in commercial buildings. Sensitivity analyses are performed to evaluate how these factors influence the demand shift and shed during the peak period. The whole-building peak demand of a commercial building with high thermal mass in a hot climate zone can be reduced by 30percent using an optimized demand response strategy. Results are summarized for various simulation scenarios designed to help owners and managers understand the potential savings for demand response deployment. Simulated demand savings under various scenarios were compared to field-measured data in numerous climate zones, allowing calibration of the prototype models. The simulation results are compared to the peak demand data from the Commercial End-Use Survey for commercial buildings in California. On the economic side, a set of electricity rates are used to evaluate the impact of the DR strategies on economic savings for different thermal mass and climate conditions. Our comparison of recent simulation to field test results provides an understanding of the DR potential in commercial buildings.

  2. Commercial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a large efficiency program in Commercial and Industrial Lighting. BPA continues to invest in improving the lighting program as a critical component to achieving regional...

  3. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Net Generation from Renewable Sources: Commercial Sector, 2004 - 2014 (Thousand Megawatthours) Generation at Utility Scale Facilities Distributed Generation Net Generation From Utility Scale Facilities and Distributed Generation Period Wind Solar Photovoltaic Solar Thermal Wood and Wood-Derived Fuels Landfill Gas Biogenic Municipal Solid Waste Other Waste Biomass Geothermal Conventional Hydroelectric Total Renewable Generation at Utility Scale Facilities Estimated Distributed Solar

  4. COMMERCIALIZING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COMMERCIALIZING TECHNOLOGIES & CREATING JOBS Our location in the SS&TP plays a vital role in our ability to leverage the deep domain expertise of Sandia. Our proximity to the Labs has facilitated teaming with them on Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) efforts that develop cutting-edge technology in the areas of precision pointing and inertial measurement." Dan Gillings President Applied Technology Associates NMSBA reduced my

  5. Dish/Stirling systems: Overview of an emerging commercial solar thermal electric technology

    SciTech Connect (OSTI)

    Strachan, J.W.; Diver, R.B.; Estrada, C.

    1995-11-01

    Dish/Stirling is a solar thermal electric technology which couples parabolic, point-focusing solar collectors and heat engines which employ the Stirling thermodynamic cycle. Since the late 1970s, the development of Dish/Stirling systems intended for commercial use has been in progress in Germany, Japan, and the US. In the next several years it is expected that one or more commercial systems will enter the market place. This paper provides a general overview of this emerging technology, including: a description of the fundamental principles of operation of Dish/Stirling systems; a presentation of the major components of the systems (concentrator, receiver, engine/alternator, and controls); an overview of the actual systems under development around the world, with a discussion of some of the technical issues and challenges facing the Dish/Stirling developers. A brief discussion is also presented of potential applications for small Dish/Stirling systems in northern Mexico.

  6. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Useful Thermal Output by Energy Source: Total Combined Heat and Power (All Sectors), 2004 - 2014 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Renewable Sources Other Total Annual Totals 2004 351,871 80,824 16,659 654,242 126,157 667,341 45,456 1,942,550 2005 341,806 79,362 13,021 624,008 138,469 664,691 41,400 1,902,757 2006 332,548 54,224 24,009 603,288 126,049 689,549 49,308 1,878,973 2007 326,803 50,882 25,373 554,394 116,313 651,230 46,822 1,771,816

  7. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Useful Thermal Output by Energy Source: Electric Power Sector Combined Heat and Power, 2004 - 2014 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Renewable Sources Other Total Annual Totals 2004 39,014 5,731 2,486 239,416 18,200 17,347 3,822 326,017 2005 39,652 5,571 2,238 239,324 36,694 18,240 3,884 345,605 2006 38,133 4,812 2,253 207,095 22,567 17,284 4,435 296,579 2007 38,260 5,294 1,862 212,705 20,473 19,166 4,459 302,219 2008 37,220 5,479 1,353 204,167

  8. Demand Shifting with Thermal Mass in Light and Heavy Mass Commercial Buildings

    SciTech Connect (OSTI)

    Xu, Peng; Zagreus, Leah

    2009-05-01

    The potential for utilizing building thermal mass for load shifting and peak demand reduction has been demonstrated in a number of simulation, laboratory, and field studies. This project studied the potential of pre-cooling and demand limiting in a heavy mass and a light mass building in the Bay Area of California. The conclusion of the work to date is that pre-cooling has the potential to improve the demand responsiveness of commercial buildings while maintaining acceptable comfort conditions. Results indicate that pre-cooling increases the depth (kW) and duration (kWh) of the shed capacity of a given building, all other factors being equal. Due to the time necessary for pre-cooling, it is only applicable to day-ahead demand response programs. Pre-cooling can be very effective if the building mass is relatively heavy. The effectiveness of night pre-cooling under hot weather conditions has not been tested. Further work is required to quantify and demonstrate the effectiveness of pre-cooling in different climates. Research is also needed to develop screening tools that can be used to select suitable buildings and customers, identify the most appropriate pre-cooling strategies, and estimate the benefits to the customer and the utility.

  9. SAS Output

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    from Renewable Sources: Independent Power Producers, 2004 - 2014 (Thousand ... and Distributed Generation Period Wind Solar Photovoltaic Solar Thermal Wood and ...

  10. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    6. Energy Efficiency Category, by Sector, 2013 through 2014 Year Residential Commercial Industrial Transportation Total Incremental Annual Savings - Energy Savings (MWh) 2013 ...

  11. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Energy Efficiency - Life Cycle Category, by Sector, 2013 through 2014 Year Residential Commercial Industrial Transportation Total Life Cycle Savings - Energy Savings (MWh) 2013 ...

  12. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1. Total Electric Power Industry Summary Statistics, 2014 and 2013 Net Generation and Consumption of Fuels for ... Solar Thermal and Photovoltaic Utility Scale Facilities 17,691 ...

  13. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Residential Commercial Industrial Transportation Total Energy Efficiency - Energy Savings (Thousand MWh) 2004 17,185 24,290 11,137 50 52,663 2005 18,894 28,073 11,986 47 ...

  14. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Residential Commercial Industrial Transportation Total Energy Efficiency - Energy Savings (Thousand MWh) 2004 1,827 1,812 894 -- 4,532 2005 2,249 2,559 1,071 -- 5,879 2006 ...

  15. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel-Switching Capacity of Operable Generators Reporting Natural Gas as the Primary Fuel, by Year of Initial Commercial Operation, 2014 (Megawatts, Percent) Year of Initial Commercial Operation Number of Natural Gas-Fired Generators Reporting the Ability to Switch to Petroleum Liquids Net Summer Capacity of Natural Gas-Fired Generators Reporting the Ability to Switch to Petroleum Liquids Fuel Switchable Net Summer Capacity Reported to Have No Factors that Limit the Ability to Switch to

  16. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    6. U.S. Coal Consumption by End Use Sector, Census Division, and State, 2014 and 2013" "(thousand short tons)" ,2014,,,,2013,,,,"Total" "Census Division","Electric","Other","Coke","Commercial","Electric","Other","Coke","Commercial",2014,2013,"Percent" "and

  17. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Year-End Coal Stocks by Sector, Census Division, and State, 2014 and 2013" "(thousand short tons)" ,2014,,,,,2013,,,,,"Total" "Census Division","Electric","Other","Coke","Commercial","Producer","Electric","Other","Coke","Commercial","Producer",2014,2013,"Percent" "and

  18. Survey of thermal-hydraulic models of commercial nuclear power plants

    SciTech Connect (OSTI)

    Determan, J.C.; Hendrix, C.E.

    1992-12-01

    A survey of the thermal-hydraulic models of nuclear power plants has been performed to identify the NRC's current analytical capabilities for critical event response. The survey also supports ongoing research for accident management. The results of the survey are presented here. The PC database which records detailed data on each model is described.

  19. Survey of thermal-hydraulic models of commercial nuclear power plants

    SciTech Connect (OSTI)

    Determan, J.C.; Hendrix, C.E.

    1992-12-01

    A survey of the thermal-hydraulic models of nuclear power plants has been performed to identify the NRC`s current analytical capabilities for critical event response. The survey also supports ongoing research for accident management. The results of the survey are presented here. The PC database which records detailed data on each model is described.

  20. SAS Output

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    15.1% 5.6% 65.4% 60.8% 75.5% Values are final. NA Not Available Notes: Solar Thermal Capacity Factors include generation from plants using concentrated solar power energy storage

  1. Demand Shifting With Thermal Mass in Large Commercial Buildings:Field Tests, Simulation and Audits

    SciTech Connect (OSTI)

    Xu, Peng; Haves, Philip; Piette, Mary Ann; Zagreus, Leah

    2005-09-01

    The principle of pre-cooling and demand limiting is to pre-cool buildings at night or in the morning during off-peak hours, storing cooling in the building thermal mass and thereby reducing cooling loads and reducing or shedding related electrical demand during the peak periods. Cost savings are achieved by reducing on-peak energy and demand charges. The potential for utilizing building thermal mass for load shifting and peak demand reduction has been demonstrated in a number of simulation, laboratory, and field studies (Braun 1990, Ruud et al. 1990, Conniff 1991, Andresen and Brandemuehl 1992, Mahajan et al. 1993, Morris et al. 1994, Keeney and Braun 1997, Becker and Paciuk 2002, Xu et al. 2003). This technology appears to have significant potential for demand reduction if applied within an overall demand response program. The primary goal associated with this research is to develop information and tools necessary to assess the viability of and, where appropriate, implement demand response programs involving building thermal mass in buildings throughout California. The project involves evaluating the technology readiness, overall demand reduction potential, and customer acceptance for different classes of buildings. This information can be used along with estimates of the impact of the strategies on energy use to design appropriate incentives for customers.

  2. Development of a high-output dual-fuel engine

    SciTech Connect (OSTI)

    Danyluk, P.R. . Fairbanks Morse Engineering Division)

    1993-10-01

    This paper presents the results of a new dual-fuel engine development program. The engine is the largest commercially available in terms of power output (650 hp/cyl) and features very low emissions (1 g/hp-hr NO[sub x]) and excellent fuel consumption (43 percent thermal efficiency). A two-cylinder turbocharged prototype was designed and built for the initial development. Results from testing on 18-cylinder production versions are also reported.

  3. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Net Generation by Energy Source: Commercial Sector, 2004 - 2014 (Thousand Megawatthours) Generation at Utility Scale Facilities Distributed Generation Net Generation From Utility Scale Facilities and Distributed Generation Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Nuclear Hydroelectric Conventional Solar Renewable Sources Excluding Hydroelectric and Solar Hydroelectric Pumped Storage Other Total Generation at Utility Scale Facilities Estimated Distributed Solar

  4. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Net Metering Customers and Capacity by Technology Type, by End Use Sector, 2004 through 2014 Capacity (MW) Customers Year Residential Commercial Industrial Transportation Total Residential Commercial Industrial Transportation Total Historical Data 2004 N/A N/A N/A N/A N/A 14,114 1,494 215 3 15,826 2005 N/A N/A N/A N/A N/A 19,244 1,565 337 -- 21,146 2006 N/A N/A N/A N/A N/A 30,689 2,553 376 -- 33,618 2007 N/A N/A N/A N/A N/A 44,450 3,513 391 -- 48,354 2008 N/A N/A N/A N/A N/A 64,400 5,305 304

  5. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Utility Scale Facility Net Generation by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013 Percentage Change Year 2014 Year 2013

  6. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    8. Utility Scale Facility Net Generation from Coal by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013 Percentage Change Year 2014

  7. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Utility Scale Facility Net Generation from Petroleum Coke by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013 Percentage Change

  8. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Utility Scale Facility Net Generation from Natural Gas by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013 Percentage Change Year

  9. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Utility Scale Facility Net Generation from Other Gases by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013 Percentage Change Year

  10. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Utility Scale Facility Net Generation from Nuclear Energy by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013 Percentage Change

  11. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Utility Scale Facility Net Generation from Hydroelectric (Conventional) Power by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013

  12. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Utility Scale Facility Net Generation from Renewable Sources Excluding Hydroelectric by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year

  13. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Utility Scale Facility Net Generation from Other Energy Sources by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013 Percentage

  14. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    8. Utility Scale Facility Net Generation from Wind by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013 Percentage Change Year 2014

  15. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Utility Scale Facility Net Generation from Biomass by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013 Percentage Change Year 2014

  16. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Net Generation from Renewable Sources: Total (All Sectors), 2004 - 2014 (Thousand Megawatthours) Generation at Utility Scale Facilities Distributed Generation Net Generation From Utility Scale Facilities and Distributed Generation Period Wind Solar Photovoltaic Solar Thermal Wood and Wood-Derived Fuels Landfill Gas Biogenic Municipal Solid Waste Other Waste Biomass Geothermal Conventional Hydroelectric Total Renewable Generation at Utility Scale Facilities Estimated Distributed Solar

  17. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Net Generation from Renewable Sources: Electric Utilities, 2004 - 2014 (Thousand Megawatthours) Generation at Utility Scale Facilities Distributed Generation Net Generation From Utility Scale Facilities and Distributed Generation Period Wind Solar Photovoltaic Solar Thermal Wood and Wood-Derived Fuels Landfill Gas Biogenic Municipal Solid Waste Other Waste Biomass Geothermal Conventional Hydroelectric Total Renewable Generation at Utility Scale Facilities Estimated Distributed Solar

  18. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Net Generation from Renewable Sources: Industrial Sector, 2004 - 2014 (Thousand Megawatthours) Generation at Utility Scale Facilities Distributed Generation Net Generation From Utility Scale Facilities and Distributed Generation Period Wind Solar Photovoltaic Solar Thermal Wood and Wood-Derived Fuels Landfill Gas Biogenic Municipal Solid Waste Other Waste Biomass Geothermal Conventional Hydroelectric Total Renewable Generation at Utility Scale Facilities Estimated Distributed Solar

  19. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Net Summer Capacity Using Primarily Renewable Energy Sources and by State, 2014 and 2013 (Megawatts) Summer Capacity at Utility Scale Facilities Distributed Capacity Summer Capacity From Utility Scale Facilities and Distributed Capacity Census Division and State Wind Solar Photovoltaic Solar Thermal Conventional Hydroelectric Biomass Sources Geothermal Total Renewable Sources Estimated Distributed Solar Photovoltaic Capacity Estimated Total Solar Photovoltaic Capacity Estimated Total Solar

  20. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    SciTech Connect (OSTI)

    Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

    2008-05-15

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.

  1. Impact of tax incentives on the commercialization of solar thermal electric technologies. Volume II. Federal revenue considerations

    SciTech Connect (OSTI)

    Bos, P.B.; Morris, G.P.

    1985-11-01

    The purpose of this study was to quantify the impact of the Solar Thermal Central Receiver (STCR) tax incentives and commercialization on the federal treasury revenues. The initial STCR market penetration was assumed to take place in California, because of favorable local conditions. The initial financing was assumed to be underwritten by intermediary partnerships under long-term avoided cost contracts with the local utility companies with subsequent sale of the plants to utilities at competitive prices. To estimate the impacts of these various tax incentives associated with the commercialization of the STCR technology, the tax revenues and costs for the STCR plants were compared with the tax revenues and costs for the displaced conventional power plants. This differential analysis takes into account the different operating expenses, as well as the different depreciation charges, financing costs, and tax credits associated with STCR and conventional plants. The study also evaluated the impact of both the previous (1983) and current (1984) proposed federal energy tax credits. The resulting total annual tax cash flows were subsequently cumulated to determine the aggregate tax revenues and costs throughout the 1985 to 2034 time period. The results of this analysis indicate that the initial federal tax revenues are negative. With increasing market penetration, the installed costs of the STCR plants decrease rapidly and the net present values of the tax revenue cash flows associated with plants constructed after 1995 are positive, and become significantly larger than those for the corresponding displaced conventional plants.

  2. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Existing Capacity by Producer Type, 2014 (Megawatts) Producer Type Number of Generators Generator Nameplate Capacity Net Summer Capacity Net Winter Capacity Electric Power Sector Electric Utilities 9,510 675,675.4 616,631.5 637,857.0 Independent Power Producers, Non-Combined Heat and Power Plants 6,975 423,782.6 387,561.6 401,581.5 Independent Power Producers, Combined Heat and Power Plants 559 37,890.2 33,362.6 35,972.8 Total 17,044 1,137,348.2 1,037,555.7 1,075,411.3 Commercial and

  3. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Consumption of Petroleum Coke for Electricity Generation by State, by Sector, 2014 and 2013 (Thousand Tons) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2014 Year 2013 Percentage Change Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 New England 0 0 -- 0 0 0 0 0 0 0 0 Connecticut 0 0 -- 0 0 0 0 0 0 0 0 Maine 0 0 -- 0 0 0 0 0 0 0 0 Massachusetts 0 0 -- 0 0 0 0

  4. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Consumption of Nautral Gas for Electricity Generation by State, by Sector, 2014 and 2013 (Million Cubic Feet) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2014 Year 2013 Percentage Change Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 New England 356,658 388,323 -8.2% 3,585 2,587 330,872 354,489 9,416 8,407 12,786 22,839 Connecticut 108,833 115,211 -5.5% 121

  5. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Receipts, Average Cost, and Quality of Fossil Fuels: Commercial Sector, 2004 - 2014 Coal Petroleum Liquids Receipts Average Cost Receipts Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMBtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Barrels) (Dollars per MMBtu) (Dollars per Barrel) Average Sulfur Percent by Weight Percentage of Consumption Annual Totals 2004 10,682 451 2.08 49.32 2.48 23.5 3,066 527 6.19 35.96 0.20

  6. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Receipts of Petroleum Coke Delivered for Electricity Generation by State, 2014 and 2013 (Thousand Tons) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2014 Year 2013 Percentage Change Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 New England 0 0 -- 0 0 0 0 0 0 0 0 Connecticut 0 0 -- 0 0 0 0 0 0 0 0 Maine 0 0 -- 0 0 0 0 0 0 0 0 Massachusetts 0 0 -- 0 0 0 0 0 0

  7. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Demand Response - Program Costs Category, by Sector, 2013 through 2014 Year Residential Commercial Industrial Transportation Total Customer Incentives (thousand dollars) 2013 398,598 286,057 421,208 6,919 1,112,782 2014 345,894 345,435 514,751 11,716 1,217,796 All Other Costs (thousand dollars) 2013 338,353 95,748 50,982 50 485,133 2014 301,389 101,127 45,028 115 447,659

  8. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Supply and Disposition of Electricity, 2004 through 2014 (From Chapter 2.) Supply (Million Megawatthours) Generation Year Electric Utilities IPP (Non-CHP) IPP (CHP) Commercial Sector Industrial Sector Total Imports Total Supply 2004 2,505 1,119 184 8 154 34 4,005 2005 2,475 1,247 180 8 145 44 4,099 2006 2,484 1,259 165 8 148 43 4,107 2007 2,504 1,324 177 8 143 51 4,208 2008 2,475 1,332 167 8 137 57 4,176 2009 2,373 1,278 159 8 132 52 4,003 2010 2,472 1,339 162 9 144 45 4,170 2011 2,461 1,331

  9. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    . Number of Ultimate Customers Served by Sector, by Provider, 2004 through 2014 Year Residential Commercial Industrial Transportation Total Total Electric Industry 2004 118,763,768 16,606,783 747,600 1,025 136,119,176 2005 120,760,839 16,871,940 733,862 518 138,367,159 2006 122,471,071 17,172,499 759,604 791 140,403,965 2007 123,949,916 17,377,219 793,767 750 142,121,652 2008 125,037,837 17,582,382 774,808 726 143,395,753 2009 125,208,829 17,562,235 757,537 704 143,529,305 2010 125,717,935

  10. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Sales and Direct Use of Electricity to Ultimate Customers by Sector, by Provider, 2004 through 2014 (Megawatthours) Year Residential Commercial Industrial Transportation Total Direct Use Total End Use Total Electric Industry 2004 1,291,981,578 1,230,424,731 1,017,849,532 7,223,642 3,547,479,483 168,470,002 3,715,949,485 2005 1,359,227,107 1,275,079,020 1,019,156,065 7,506,321 3,660,968,513 150,015,531 3,810,984,044 2006 1,351,520,036 1,299,743,695 1,011,297,566 7,357,543 3,669,918,840

  11. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Revenue from Sales of Electricity to Ultimate Customers by Sector, by Provider, 2004 through 2014 (Million Dollars) Year Residential Commercial Industrial Transportation Total Total Electric Industry 2004 115,577 100,546 53,477 519 270,119 2005 128,393 110,522 58,445 643 298,003 2006 140,582 122,914 62,308 702 326,506 2007 148,295 128,903 65,712 792 343,703 2008 155,496 137,036 70,231 820 363,583 2009 157,044 132,747 62,670 828 353,289 2010 166,778 135,554 65,772 814 368,918 2011 166,714

  12. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Sales of Electricity to Ultimate Customers: Total by End-Use Sector, 2004 - December 2014 (Thousand Megawatthours) Period Residential Commercial Industrial Transportation All Sectors Annual Totals 2004 1,291,982 1,230,425 1,017,850 7,224 3,547,479 2005 1,359,227 1,275,079 1,019,156 7,506 3,660,969 2006 1,351,520 1,299,744 1,011,298 7,358 3,669,919 2007 1,392,241 1,336,315 1,027,832 8,173 3,764,561 2008 1,380,662 1,336,133 1,009,516 7,653 3,733,965 2009 1,364,758 1,306,853 917,416 7,768

  13. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    6. Revenue from Sales of Electricity to Ultimate Customers: Total by End-Use Sector, 2004 - December 2014 (Million Dollars) Period Residential Commercial Industrial Transportation All Sectors Annual Totals 2004 115,577 100,546 53,477 519 270,119 2005 128,393 110,522 58,445 643 298,003 2006 140,582 122,914 62,308 702 326,506 2007 148,295 128,903 65,712 792 343,703 2008 155,496 137,036 70,231 820 363,583 2009 157,044 132,747 62,670 828 353,289 2010 166,778 135,554 65,772 814 368,918 2011 166,714

  14. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Coal: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,020,523 772,224 240,235 377 7,687 2005 1,041,448 761,349 272,218 377 7,504 2006 1,030,556 753,390 269,412 347 7,408 2007 1,046,795 764,765 276,581 361 5,089 2008 1,042,335 760,326 276,565 369 5,075 2009 934,683 695,615 234,077 317 4,674 2010 979,684 721,431

  15. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    D. Coal: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 20,375,751 15,610,335 4,606,584 8,251 150,581 2005 20,801,716 15,397,688 5,250,824 8,314 144,889 2006 20,527,410 15,211,077 5,166,001 7,526 142,807 2007 20,841,871 15,436,110 5,287,202 7,833 110,727 2008 20,548,610 15,189,050 5,242,194 8,070 109,296 2009

  16. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Petroleum Liquids: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Thousand Barrels) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 165,107 103,793 56,342 760 4,212 2005 165,137 98,223 62,154 580 4,180 2006 73,821 53,529 17,179 327 2,786 2007 82,433 56,910 22,793 250 2,480 2008 53,846 38,995 13,152 160 1,538 2009 43,562 31,847 9,880 184 1,652 2010 40,103 30,806 8,278 164 855

  17. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    D. Petroleum Liquids: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,031,954 651,712 350,093 4,544 25,606 2005 1,035,045 618,811 387,355 3,469 25,410 2006 459,392 335,130 105,312 1,963 16,987 2007 512,423 355,999 139,977 1,505 14,942 2008 332,367 242,379 79,816 957 9,215 2009 266,508 196,346 59,277 1,101 9,784 2010

  18. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Petroleum Coke: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 7,677 4,150 2,985 1 541 2005 8,330 4,130 3,746 1 452 2006 7,363 3,619 3,286 1 456 2007 6,036 2,808 2,715 2 512 2008 5,417 2,296 2,704 1 416 2009 4,821 2,761 1,724 1 335 2010 4,994 3,325 1,354 2 313 2011 5,012 3,449 1,277 1 286 2012 3,675 2,105 756 1

  19. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    D. Petroleum Coke: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 216,047 116,086 83,979 33 15,949 2005 234,217 115,727 105,163 33 13,295 2006 208,518 102,117 92,643 33 13,726 2007 170,166 77,941 77,135 45 15,045 2008 152,933 64,843 76,416 37 11,638 2009 136,474 77,919 48,776 32 9,747 2010 141,774 94,331 38,235 44

  20. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Natural Gas: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 5,674,580 1,809,443 3,265,896 32,839 566,401 2005 6,036,370 2,134,859 3,349,921 33,785 517,805 2006 6,461,615 2,478,396 3,412,826 34,623 535,770 2007 7,089,342 2,736,418 3,765,194 34,087 553,643 2008 6,895,843 2,730,134 3,612,197 33,403 520,109 2009

  1. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    D. Natural Gas: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 5,827,470 1,857,247 3,351,469 33,623 585,132 2005 6,212,116 2,198,098 3,444,875 34,645 534,498 2006 6,643,926 2,546,169 3,508,597 35,473 553,687 2007 7,287,714 2,808,500 3,872,646 34,872 571,697 2008 7,087,191 2,803,283 3,712,872 34,138 536,899 2009

  2. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    D. Wood / Wood Waste Biomass: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 344,134 19,973 130,248 168 193,745 2005 355,250 27,373 138,407 207 189,263 2006 350,074 27,455 135,546 269 186,803 2007 353,025 31,568 132,953 284 188,220 2008 338,786 29,150 130,122 287 179,227 2009 320,444 29,565 130,894 274 159,712 2010

  3. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Landfill Gas: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 143,844 11,250 125,848 4,081 2,665 2005 141,899 11,490 123,064 4,797 2,548 2006 160,033 16,617 136,108 6,644 664 2007 166,774 17,442 144,104 4,598 630 2008 195,777 20,465 169,547 5,235 530 2009 206,792 19,583 180,689 5,931 589 2010 218,331 19,975

  4. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    D. Landfill Gas: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 69,331 5,373 60,514 2,093 1,351 2005 67,902 5,650 58,624 2,360 1,269 2006 75,970 8,287 63,950 3,388 345 2007 79,712 8,620 68,432 2,344 316 2008 94,215 10,242 81,029 2,668 276 2009 99,821 9,748 86,773 2,999 301 2010 105,835 10,029 92,763 2,837 205 2011

  5. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    D. Biogenic Municipal Solid Waste: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 141,577 3,705 124,815 12,909 146 2005 144,339 4,724 126,529 12,923 164 2006 146,987 4,078 129,779 12,964 165 2007 146,308 4,557 127,826 13,043 881 2008 148,452 4,476 130,041 13,934 0 2009 146,971 3,989 126,649 16,333 0 2010 144,934

  6. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    D. Other Waste Biomass: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 19,215 2,014 9,240 4,308 3,654 2005 17,852 2,485 7,365 4,677 3,325 2006 17,727 2,611 7,788 4,436 2,893 2007 19,083 2,992 8,861 4,049 3,181 2008 24,288 3,409 12,745 3,684 4,450 2009 24,847 3,679 13,231 3,760 4,177 2010 29,996 3,668 14,449 3,790

  7. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    8. Demand Response - Yearly Energy and Demand Savings Category, by Sector, 2013 through 2014 Year Residential Commercial Industrial Transportation Total Number of Customers Enrolled 2013 8,419,233 611,826 155,893 398 9,187,350 2014 8,603,402 605,094 57,129 4 9,265,629 Energy Savings (MWh) 2013 799,743 486,348 115,895 1 1,401,987 2014 881,563 462,337 92,549 -- 1,436,449 Potential Peak Demand Savings (MW) 2013 7,003 5,124 14,800 168 27,095 2014 8,118 6,215 16,505 353 31,191 Actual Peak Demand

  8. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Advanced Metering Count by Technology Type, 2007 through 2014 Year Residential Commercial Industrial Transportation Total Automated Meter Reading (AMR) 2007 25,785,782 2,322,329 44,015 109 28,152,235 2008 36,425,943 3,529,985 77,122 13 40,033,063 2009 41,462,111 4,239,531 107,033 11 45,808,686 2010 43,913,225 4,611,877 159,315 626 48,685,043 2011 41,451,888 4,341,105 172,692 77 45,965,762 2012 43,455,437 4,691,018 185,862 125 48,330,822 2013 42,491,242 4,632,744 196,132 1,202 47,321,320 2014

  9. Study of domestic social and economic impacts of ocean thermal energy conversion (OTEC) commercial development. Volume II. Industry profiles

    SciTech Connect (OSTI)

    1981-12-22

    Econoimc profiles of the industries most affected by the construction, deployment, and operation of Ocean Thermal Energy Conversion (OTEC) powerplants are presented. Six industries which will contribute materials and/or components to the construction of OTEC plants have been identified and are profiled here. These industries are: steel industry, concrete industry, titanium metal industry, fabricated structural metals industry, fiber glass-reinforced plastics industry, and electrical transmission cable industry. The economic profiles for these industries detail the industry's history, its financial and economic characteristics, its technological and production traits, resource constraints that might impede its operation, and its relation to OTEC. Some of the historical data collected and described in the profile include output, value of shipments, number of firms, prices, employment, imports and exports, and supply-demand forecasts. For most of the profiled industries, data from 1958 through 1980 were examined. In addition, profiles are included on the sectors of the economy which will actualy construct, deploy, and supply the OTEC platforms.

  10. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Existing Net Summer Capacity of Other Renewable Sources by Producer Type, 2004 through 2014 (Megawatts) Year Wind Solar Thermal and Photovoltaic Wood and Wood-Derived Fuels Geothermal Other Biomass Total (Other Renewable Sources) Total (All Sectors) 2004 6,456.0 398.0 6,182.0 2,152.0 3,529.0 18,717.0 2005 8,706.0 411.0 6,193.0 2,285.0 3,609.0 21,205.0 2006 11,329.0 411.0 6,372.0 2,274.0 3,727.0 24,113.0 2007 16,515.0 502.0 6,704.0 2,214.0 4,134.0 30,069.0 2008 24,651.0 536.0 6,864.0 2,229.0

  11. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Existing Capacity by Energy Source, 2014 (Megawatts) Energy Source Number of Generators Generator Nameplate Capacity Net Summer Capacity Net Winter Capacity Coal 1,145 325,831.5 299,094.2 300,699.8 Petroleum 3,573 46,897.8 41,135.4 44,739.7 Natural Gas 5,727 495,120.2 432,150.3 464,784.7 Other Gases 93 2,227.6 1,914.3 1,889.9 Nuclear 99 103,860.4 98,569.3 100,610.3 Hydroelectric Conventional 4,029 78,792.9 79,677.3 79,090.6 Wind 1,032 65,300.1 64,231.5 64,325.1 Solar Thermal and Photovoltaic

  12. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Average Price of Electricity to Ultimate Customers by End-Use Sectors 2004 through 2014 (Cents per kilowatthour) Year Residential Commercial Industrial Transportation Total Total Electric Industry 2004 8.95 8.17 5.25 7.18 7.61 2005 9.45 8.67 5.73 8.57 8.14 2006 10.40 9.46 6.16 9.54 8.90 2007 10.65 9.65 6.39 9.70 9.13 2008 11.26 10.26 6.96 10.71 9.74 2009 11.51 10.16 6.83 10.66 9.82 2010 11.54 10.19 6.77 10.56 9.83 2011 11.72 10.24 6.82 10.46 9.90 2012 11.88 10.09 6.67 10.21 9.84 2013 12.13

  13. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Average Price of Electricity to Ultimate Customers: Total by End-Use Sector, 2004 - December 2014 (Cents per Kilowatthour) Period Residential Commercial Industrial Transportation All Sectors Annual Totals 2004 8.95 8.17 5.25 7.18 7.61 2005 9.45 8.67 5.73 8.57 8.14 2006 10.40 9.46 6.16 9.54 8.90 2007 10.65 9.65 6.39 9.70 9.13 2008 11.26 10.26 6.96 10.71 9.74 2009 11.51 10.16 6.83 10.66 9.82 2010 11.54 10.19 6.77 10.56 9.83 2011 11.72 10.24 6.82 10.46 9.90 2012 11.88 10.09 6.67 10.21 9.84 2013

  14. Table 8.6a Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.6b and 8.6c)

    U.S. Energy Information Administration (EIA) Indexed Site

    a Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.6b and 8.6c) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu 1989 16,509,639 1,410,151 16,356,550 353,000 247,409 19,356,746

  15. Table 8.6b Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.6a)

    U.S. Energy Information Administration (EIA) Indexed Site

    b Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu 1989 638,798 119,640 1,471,031 762 – 1,591,433 81,669,945 2,804 24,182 5,687

  16. Commercialization and cost-sharing potential for Ocean Thermal Energy Conversion (OTEC) plantships and facilities by industry, utilities and government

    SciTech Connect (OSTI)

    Francis, E.J.

    1980-01-01

    Following the introduction and summary on the US energy situation and the potential for OTEC, the remaining chapters deal with the OTEC-ammonia model; legal aspects of OTEC commercialization; the formation of SOLARAMCO, a joint venture of ammonia companies; electric power from OTEC, fuel cells and direct cables, potential cost-sharing; and OTEC production of ammonia for fertilizer.

  17. Igniter and actuator output testing

    SciTech Connect (OSTI)

    Evans, N.A.

    1988-01-01

    Closed system mechanical work output measurements were made for five types of thermal battery igniters and one type of valve actuator. Each unit was fired into a high-precision fit piston/cylinder arrangement, and the work output was determined from measuring the rise of a known weight. The results showed that work output for an individual igniter type varied over a considerable range while the mean work output values of the various igniter types appeared to depend principally on the type of closure disc and the details of the charge mix. The large variability in igniter output was the principal inducement to build a second apparatus, with approximately 10 times the capacity of the first, to investigate the output actuators. Compared with igniters, the actuator work output was appropriately in scale, but the variability was considerably reduced (R=1.5), and was attributed to increase in scale. Motion picture photography at 8000 to 9000 frames per second was used to determine the motion of the rising weight and the associated output pressure, which exhibited three distinct phases. Initially, the average acceleration of the weight was of the order of 100 g during the first half-millisecond of weight rise and corresponded to average pressures of 15,000 to 37,000 psi, depending principally on the mass of the weight. This was followed by a significant weight rise at a constant pressure of approximately 150 to 450 psi. Finally, the weight decelerated to rest under gravity to reach the maximum recorded height. 2 refs., 9 figs., 2 tabs.

  18. Table 8.3a Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.3b and 8.3c; Billion Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    a Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.3b and 8.3c; Billion Btu) Year Fossil Fuels Renewable Energy Other 7 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Biomass Total Wood 5 Waste 6 1989 323,191 95,675 461,905 92,556 973,327 546,354 30,217 576,571 39,041 1,588,939 1990 362,524 127,183 538,063 140,695 1,168,465 650,572 36,433 687,005 40,149 1,895,619 1991 351,834 112,144 546,755 148,216 1,158,949 623,442 36,649

  19. Table 8.3b Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.3a; Billion Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    b Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.3a; Billion Btu) Year Fossil Fuels Renewable Energy Other 7 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Biomass Total Wood 5 Waste 6 1989 12,768 8,013 66,801 2,243 89,825 19,346 4,550 23,896 679 114,400 1990 20,793 9,029 79,905 3,822 113,549 18,091 6,418 24,509 28 138,086 1991 21,239 5,502 82,279 3,940 112,960 17,166 9,127 26,293 590 139,843 1992 27,545 6,123 101,923

  20. Operating experience feedback report -- Pressure locking and thermal binding of gate valves. Commercial power reactors: Volume 9

    SciTech Connect (OSTI)

    Hsu, C.

    1993-03-01

    The potential for valve inoperability caused by pressure locking and thermal binding has been known for many years in the nuclear industry. Pressure locking or thermal binding is a common-mode failure mechanism that can prevent a gate valve from opening, and could render redundant trains of safety systems or multiple safety systems inoperable. In spite of numerous generic communications issued in the past by the Nuclear Regulatory Commission (NRC) and industry, pressure locking and thermal binding continues to occur to gate valves installed in safety-related systems of both boding water reactors (BWRs) and pressurized water reactors (PWRs). The generic communications to date have not led to effective industry action to fully identify, evaluate, and correct the problem. This report provides a review of operating events involving these failure mechanisms. As a result of this review this report: (1) identifies conditions when the failure mechanisms have occurred, (2) identifies the spectrum of safety systems that have been subjected to the failure mechanisms, and (3) identifies conditions that may introduce the failure mechanisms under both normal and accident conditions. On the basis of the evaluation of the operating events, the Office for Analysis and Evaluation of Operational Data (AEOD) of the NRC concludes that the binding problems with gate valves are an important safety issue that needs priority NRC and industry attention. This report also provides AEOD`s recommendation for actions to effectively prevent the occurrence of valve binding failures.

  1. Central receiver solar thermal power system, Phase 1: CDRL Item 2, pilot plant preliminary design report. Volume VII. Pilot plant cost and commercial plant cost and performance

    SciTech Connect (OSTI)

    Hallet, Jr., R. W.; Gervais, R. L.

    1980-05-01

    Detailed cost and performance data for the proposed tower focus pilot plant and commercial plant are given. The baseline central receiver concept defined by the MDAC team consists of the following features: (A) an external receiver mounted on a tower, and located in a 360/sup 0/ array of sun-tracking heliostats which comprise the collector subsystem. (B) feedwater from the electrical power generation subsystem is pumped through a riser to the receiver, where the feedwater is converted to superheated steam in a single pass through the tubes of the receiver panels. (C) The steam from the receiver is routed through a downcomer to the ground and introduced to a turbine directly for expansion and generation of electricity, and/or to a thermal storage subsystem, where the steam is condensed in charging heat exchangers to heat a dual-medium oil and rock thermal storage unit (TSU). (D) Extended operation after daylight hours is facilitated by discharging the TSU to generate steam for feeding the admission port of the turbine. (E) Overall control of the system is provided by a master control unit, which handles the interactions between subsystems that take place during startup, shutdown, and transitions between operating modes. (WHK)

  2. Commercial Weatherization

    Broader source: Energy.gov [DOE]

    Commercial buildings consume 19 percent of the energy used in the U.S. Learn how the Energy Department is supporting research and deployment on commercial weatherization.

  3. Commercial Lighting

    Broader source: Energy.gov [DOE]

    Commercial lighting accounts for more than 20 percent of total commercial building energy use. The Energy Department works to reduce lighting energy use through research and deployment.

  4. Climate Model Output Rewriter

    Energy Science and Technology Software Center (OSTI)

    2004-06-21

    CMOR comprises a set of FORTRAN 90 dunctions that can be used to produce CF-compliant netCDF files. The structure of the files created by CMOR and the metadata they contain fulfill the requirements of many of the climate community’s standard model experiments (which are referred to here as "MIPS", which stands for "model intercomparison project", including, for example, AMIP, CMIP, CFMIP, PMIP, APE, and IPCC scenario runs), CMOR was not designed to serve as anmore » all-purpose wfiter of CF-compliant netCDF files, but simply to reduce the effort required to prepare and manage MIP data. Although MIPs encourage systematic analysis of results across models, this is only easy to do if the model output is written in a common format with files structured similarly and with sufficient metadata uniformly stored according to a common standard. Individual modeling groups store their data in different ways. but if a group can read its own data with FORTRAN, then it should easily be able to transform the data, using CMOR, into the common format required by the MIPs, The adoption of CMOR as a standard code for exchanging climate data will facilitate participation in MIPs because after learning how to satisfy the output requirements of one MIP, it will be easy to prepare output for the other MIPs.« less

  5. Commercial / Industrial Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Commercial Program Development Commercial Current Promotions Industrial Federal Agriculture Commercial & Industrial Lighting Efficiency Program The Commercial & Industrial...

  6. Multiple output timing and trigger generator

    SciTech Connect (OSTI)

    Wheat, Robert M.; Dale, Gregory E

    2009-01-01

    In support of the development of a multiple stage pulse modulator at the Los Alamos National Laboratory, we have developed a first generation, multiple output timing and trigger generator. Exploiting Commercial Off The Shelf (COTS) Micro Controller Units (MCU's), the timing and trigger generator provides 32 independent outputs with a timing resolution of about 500 ns. The timing and trigger generator system is comprised of two MCU boards and a single PC. One of the MCU boards performs the functions of the timing and signal generation (the timing controller) while the second MCU board accepts commands from the PC and provides the timing instructions to the timing controller. The PC provides the user interface for adjusting the on and off timing for each of the output signals. This system provides 32 output or timing signals which can be pre-programmed to be in an on or off state for each of 64 time steps. The width or duration of each of the 64 time steps is programmable from 2 {micro}s to 2.5 ms with a minimum time resolution of 500 ns. The repetition rate of the programmed pulse train is only limited by the time duration of the programmed event. This paper describes the design and function of the timing and trigger generator system and software including test results and measurements.

  7. OTEC (Ocean Thermal Energy Conversion) stationkeeping subsystems (SKSS). Review of conceptual and preliminary designs of Pilot Plant SKSS. Appendix. Recommendations for OTEC commercial plant SKSS

    SciTech Connect (OSTI)

    Not Available

    1980-09-15

    The aim of the study is primarily an assessment of the adequacy, accuracy, and practicality of the proposed designs, in order to make comment on the feasibility of developing a viable station-keeping subsystems (SKSS) for the OTEC Pilot Plant. Included in this report is information on: design criteria and safety factors; environmental data and response analysis; materials and components; deployment concept; maintenance and replacement concepts; concept evaluation - risk/reliability/cost; and recommendations for OTEC commercial plant station-keeping subsystems.

  8. Enhanced performance CCD output amplifier

    DOE Patents [OSTI]

    Dunham, Mark E.; Morley, David W.

    1996-01-01

    A low-noise FET amplifier is connected to amplify output charge from a che coupled device (CCD). The FET has its gate connected to the CCD in common source configuration for receiving the output charge signal from the CCD and output an intermediate signal at a drain of the FET. An intermediate amplifier is connected to the drain of the FET for receiving the intermediate signal and outputting a low-noise signal functionally related to the output charge signal from the CCD. The amplifier is preferably connected as a virtual ground to the FET drain. The inherent shunt capacitance of the FET is selected to be at least equal to the sum of the remaining capacitances.

  9. Experimental study of thermal resistance values (R-values) of low-density mineral-fiber building insulation batts commercially available in 1977

    SciTech Connect (OSTI)

    Tye, R.P.; Desjarlais, A.O.; Yarbrough, D.W.; McElroy, D.L.

    1980-04-01

    This study was initiated in June 1977 to obtain and evaluate full-thickness thermal performance data on mineral fiber, i.e., fiberglass and rock wool, batt-type insulations. The study aimed to obtain full-thickness thermal performance data and to assess other properties of mineral fiber building insulations. The physical property measurements discussed in this report provide a measure of the range of values for density, thickness, and R-value based on a sampling of low-density mineral-fiber building insulation batts purchased in the marketplace in 1977. The experimental data were used to establish mean R-values at nominal (label) thickness of R-11 and R-19 fiberglass batts and R-11 rock wool batts. The full-thickness and sliced testing techniques provided a set of R-values on the purchased samples that were converted to R-values at label thickness by using a particular correlation of apparent thermal conductivity and density. The full thickness results indicate surprisingly large percentages below labeled R-value for these four types of mineral fiber insulation. A statistical analysis of these data based on the assumption of normally distributed properties is included. This yielded estimates of similar magnitude for the population from which the samples were purchased. An urgency for continued sampling and further testing of mineral fiber insulations by many laboratories was identified. The differences between results obtained with the sliced technique and results obtained with full-thickness testing must be thoroughly understood and documented so that adjustment factors for the thickness effect can be accurately established. (LCL)

  10. Commercial Current Promotions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Commercial Program Development Commercial Current Promotions Industrial Federal Agriculture This page features all current special promotions for commercial programs....

  11. New Commercial Program Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Commercial Program Development Commercial Current Promotions Industrial Federal Agriculture Beginning in spring of 2015, the BPA Commercial Team will be working with utilities...

  12. Pennsylvania: Window Technology First of Its Kind for Commercial Buildings

    Broader source: Energy.gov [DOE]

    The Opti Ultra Thermal Window series introduces new high-performing windows to the commercial building industry and unlocks the potential to save energy in more of America's commercial building space.

  13. Market Assessment of Distributed Energy in New Commercial and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    efficiency of providing electrical and thermal energy through combined heat and power (CHP); reduced losses from ... energy technologies and systems in new commercial and ...

  14. Method for separating FEL output beams from long wavelength radiation

    DOE Patents [OSTI]

    Neil, George; Shinn, Michelle D.; Gubeli, Joseph

    2016-04-26

    A method for improving the output beam quality of a free electron laser (FEL) by reducing the amount of emission at wavelengths longer than the electron pulse length and reducing the amount of edge radiation. A mirror constructed of thermally conductive material and having an aperture therein is placed at an oblique angle with respect to the beam downstream of the bending magnet but before any sensitive use of the FEL beam. The aperture in the mirror is sized to deflect emission longer than the wavelength of the FEL output while having a minor impact on the FEL output beam. A properly sized aperture will enable the FEL radiation, which is coherent and generally at a much shorter wavelength than the bending radiations, to pass through the aperture mirror. The much higher divergence bending radiations will subsequently strike the aperture mirror and be reflected safely out of the way.

  15. Overload protection circuit for output driver

    DOE Patents [OSTI]

    Stewart, Roger G.

    1982-05-11

    A protection circuit for preventing excessive power dissipation in an output transistor whose conduction path is connected between a power terminal and an output terminal. The protection circuit includes means for sensing the application of a turn on signal to the output transistor and the voltage at the output terminal. When the turn on signal is maintained for a period of time greater than a given period without the voltage at the output terminal reaching a predetermined value, the protection circuit decreases the turn on signal to, and the current conduction through, the output transistor.

  16. 1999 Commercial Buildings Characteristics

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Reports > 2003 Building Characteristics Overview 1999 Commercial Buildings Energy Consumption SurveyCommercial Buildings Characteristics Released: May 2002 Topics: Energy...

  17. Midtemperature solar systems test facility predictions for thermal performance based on test data: solar kinetics T-600 solar collector with FEK 244 reflector surface

    SciTech Connect (OSTI)

    Harrison, T.D.

    1981-04-01

    Sandia National Laboratories, Albuquerque (SNLA), is currently conducting a program to predict the performance and measure the characteristics of commercially available solar collectors that have the potential for use in industrial process heat and enhanced oil recovery applications. The thermal performance predictions for the Solar Kinetics T-600 solar line-focusing parabolic trough collector are presented for three output temperatures at five cities in the US. (WHK)

  18. Commercialization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercialization Commercialization <a href="http://energy.gov/node/307033/">See an example of these steps in the commercialization process of Nickel Metal Hydride Batteries</a>. See an example of these steps in the commercialization process of Nickel Metal Hydride Batteries. Commercialization is the process by which technologies and innovations developed in the lab make their way to market. By licensing patents or using Energy Department facilities, researchers from the

  19. Heat transfer characteristics of igniter output plumes

    SciTech Connect (OSTI)

    Evans, N.A.; Durand, N.A.

    1989-01-01

    Seven types of pyrotechnic igniters were each mounted at one end of a closed cylindrical bore hole representative of the center hole in a thermal battery. Measurements of local bore wall temperature, T/sub w/, using commercially available, fast response (10 /mu/sec) sheathed chromel-constantan thermocouples allowed calculation of local heat transfer rates, q, and wall heat flows, Q. The principal charge constituents of all these igniters were titanium and potassium perchlorate, while three types also contained barium styphnate as an ignition sensitizer. Igniter closure disc materials included glass-ceramic, glass, metal (plain, scored, with and without capture cone), and kapton/RTV. All igniters produced the lowest values of T/sub w/ and q at the beginning of the bore, and, except for the igniter with the kapton/RTV closure disc, these quantities increased with distance along the bore. For igniters containing only titanium/potassium perchlorate, the rates of increase of Q along the bore length, compared with those for T/sub w/ and q, were generally lower and more variable. The inclusion of barium styphnate produced rates of change in Q that were essentially constant to the end of the bore. The highest overall average wall temperatures were achieved by two igniter types with metal closure discs and no capture cone. No clear correlation was established between peak bore pressure and maximum wall temperature. 3 refs., 8 figs., 1 tab.

  20. Commercial Buildings Characteristics, 1992

    SciTech Connect (OSTI)

    Not Available

    1994-04-29

    Commercial Buildings Characteristics 1992 presents statistics about the number, type, and size of commercial buildings in the United States as well as their energy-related characteristics. These data are collected in the Commercial Buildings Energy Consumption Survey (CBECS), a national survey of buildings in the commercial sector. The 1992 CBECS is the fifth in a series conducted since 1979 by the Energy Information Administration. Approximately 6,600 commercial buildings were surveyed, representing the characteristics and energy consumption of 4.8 million commercial buildings and 67.9 billion square feet of commercial floorspace nationwide. Overall, the amount of commercial floorspace in the United States increased an average of 2.4 percent annually between 1989 and 1992, while the number of commercial buildings increased an average of 2.0 percent annually.

  1. Thermal tolerant avicelase from acidothermus cellulolyticus ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Visit the NREL Commercialization and Technology Transfer Website Abstract: The invention provides a thermal tolerant (thermostable) cellulase that is a member of the...

  2. Thermal tolerant mannanase from acidothermus cellulolyticus ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Visit the NREL Commercialization and Technology Transfer Website Abstract: The invention provides a thermal tolerant mannanase that is a member of the glycoside hydrolase...

  3. Thermal tolerant exoglucanase from acidothermus cellulolyticus...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Visit the NREL Commercialization and Technology Transfer Website Abstract: The invention provides a thermal tolerant cellulase that is a member of the glycoside hydrolase...

  4. Thermal tolerant cellulase from acidothermus cellulolyticus ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Visit the NREL Commercialization and Technology Transfer Website Abstract: The invention provides a thermal tolerant cellulase that is a member of the glycoside hydrolase...

  5. Commercial Buildings Consortium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Association of State Energy Officials ...owners, the commercial real estate community, financial ... * Milestone: create marketing and deployment plan for ...

  6. Commercialization Assistance Program | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science & Innovation » Energy Efficiency » Commercial Buildings Commercial Buildings At an estimated cost of $38 billion a year, lighting represents the largest source of electricity consumption in U.S. commercial buildings. A new breakthrough by the Energy Department's <a href="/node/712411">National Renewable Energy Lab</a> could help commercial buildings save on lighting and ventilation costs by improving the accuracy of motion detection. At an estimated cost of

  7. High Performance Commercial Fenestration Framing Systems

    SciTech Connect (OSTI)

    Mike Manteghi; Sneh Kumar; Joshua Early; Bhaskar Adusumalli

    2010-01-31

    A major objective of the U.S. Department of Energy is to have a zero energy commercial building by the year 2025. Windows have a major influence on the energy performance of the building envelope as they control over 55% of building energy load, and represent one important area where technologies can be developed to save energy. Aluminum framing systems are used in over 80% of commercial fenestration products (i.e. windows, curtain walls, store fronts, etc.). Aluminum framing systems are often required in commercial buildings because of their inherent good structural properties and long service life, which is required from commercial and architectural frames. At the same time, they are lightweight and durable, requiring very little maintenance, and offer design flexibility. An additional benefit of aluminum framing systems is their relatively low cost and easy manufacturability. Aluminum, being an easily recyclable material, also offers sustainable features. However, from energy efficiency point of view, aluminum frames have lower thermal performance due to the very high thermal conductivity of aluminum. Fenestration systems constructed of aluminum alloys therefore have lower performance in terms of being effective barrier to energy transfer (heat loss or gain). Despite the lower energy performance, aluminum is the choice material for commercial framing systems and dominates the commercial/architectural fenestration market because of the reasons mentioned above. In addition, there is no other cost effective and energy efficient replacement material available to take place of aluminum in the commercial/architectural market. Hence it is imperative to improve the performance of aluminum framing system to improve the energy performance of commercial fenestration system and in turn reduce the energy consumption of commercial building and achieve zero energy building by 2025. The objective of this project was to develop high performance, energy efficient commercial

  8. High Energy Output Marx Generator Design

    SciTech Connect (OSTI)

    Monty Lehmann

    2011-07-01

    High Energy Output Marx Generator Design a design of a six stage Marx generator that has a unipolar pulse waveform of 200 kA in a 50500 microsecond waveform is presented. The difficulties encountered in designing the components to withstand the temperatures and pressures generated during the output pulse are discussed. The unique methods and materials used to successfully overcome these problems are given. The steps necessary to increase the current output of this Marx generator design to the meg-ampere region or higher are specified.

  9. Multimegawatt power sources for commercial space operations

    SciTech Connect (OSTI)

    Dearien, J.A.; Martinell, J.S.

    1988-01-01

    There is a great deal of interest in commercial operation in space today, but very little consideration of where the power to run such an operation is to come from. For any commercial operation in space, the power source, especially those involving kilowatts and megawatts of power, must be considered at the very onset of the venture. The Multimegawatt Space Reactor Program at the Idaho National Engineering Laboratory is working this problem in conjunction with the development of Strategic Defense Initiative needs. The same type of up-front power development program needs to be considered in all discussions associated with commercial development in space. A system developed for a commercial operation in space will most likely be a hybrid system utilizing both electrical and thermal energy. Even if the commercial process consists totally of high power thermal energy usage, there will be a certain amount of electricity required for controls, mass transport, environmental control (if manned), and communications. The optimum system will thus require a great deal of planning and coordination with the development of the commercial process. 2 refs., 4 figs.

  10. EERE Success Story—Pennsylvania: Window Technology First of Its Kind for Commercial Buildings

    Broader source: Energy.gov [DOE]

    The Opti Ultra Thermal Window series introduces new high-performing windows to the commercial building industry and unlocks the potential to save energy in more of America's commercial building space.

  11. Pennsylvania: New Series of Windows Has Potential to Save Energy for Commercial Buildings

    Broader source: Energy.gov [DOE]

    The OptiQ Ultra Thermal Window series introduces new high-performing windows to the commercial building industry and unlocks the potential to save energy in more of Americas commercial building space.

  12. Commercial Refrigeration Rebate Program

    Broader source: Energy.gov [DOE]

    Efficiency Vermont offers financial incentives to cover the incremental costs of energy efficient refrigeration for commercial, industrial, agricultural, and institutional buildings. 

  13. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    more comprehensive understanding of commercial lighting and the potential for lighting energy savings. Steps to build on this analysis can be taken in many directions. One...

  14. Transmission Commercial Project Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Expand Projects Skip navigation links Ancillary and Control Area Services (ACS) Practices Forum Attachment K Commercial Business Process Improvement (CBPI) Customer...

  15. Commercial & Industrial Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  16. Commercial Marketing Toolkit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial-Marketing-Toolkit Sign In About | Careers | Contact | Investors | bpa.gov Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE Sectors Technology...

  17. Commercial Buildings Integration (CBI)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... with industry: Better Buildings Alliance, federal and other partners 2. Developing core tools, guides and products * Energy data access and analysis: Commercial Building Asset ...

  18. Commercial Sector Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    the State Energy Data System (SEDS) historical commercial sector consumption, applying an additive correction term to ensure that simulated model results correspond to published...

  19. Advanced Commercial Buildings Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Current cost share percentage is 56%. Budget History Oct 1, 2014- FY2014 (past) FY2015 ... and GoNo-Go Criteria including: * Benchmarking existing small commercial buildings * ...

  20. NREL Commercialization & Technology Transfer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The NREL Industry Growth Forum accelerates the commercialization of clean energy technologies by: * Fostering hands-on-management and coaching for evolving clean energy companies * ...

  1. Symbiosis Biofeedstock Conference: Expanding Commercialization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofeedstock Conference: Expanding Commercialization of Mutualistic Microbes to Increase Feedstock Production Symbiosis Biofeedstock Conference: Expanding Commercialization of ...

  2. Dissemination of Climate Model Output to the Public and Commercial Sector

    SciTech Connect (OSTI)

    Robert Stockwell, PhD

    2010-09-23

    Climate is defined by the Glossary of Meteorology as the mean of atmospheric variables over a period of time ranging from as short as a few months to multiple years and longer. Although the term climate is often used to refer to long-term weather statistics, the broader definition of climate is the time evolution of a system consisting of the atmosphere, hydrosphere, lithosphere, and biosphere. Physical, chemical, and biological processes are involved in interactions among the components of the climate system. Vegetation, soil moisture, and glaciers are part of the climate system in addition to the usually considered temperature and precipitation (Pielke, 2008). Climate change refers to any systematic change in the long-term statistics of climate elements (such as temperature, pressure, or winds) sustained over several decades or longer. Climate change can be initiated by external forces, such as cyclical variations in the Earth's solar orbit that are thought to have caused glacial and interglacial periods within the last 2 million years (Milankovitch, 1941). However, a linear response to astronomical forcing does not explain many other observed glacial and interglacial cycles (Petit et al., 1999). It is now understood that climate is influenced by the interaction of solar radiation with atmospheric greenhouse gasses (e.g., carbon dioxide, chlorofluorocarbons, methane, nitrous oxide, etc.), aerosols (airborne particles), and Earth's surface. A significant aspect of climate are the interannual cycles, such as the El Nino La Nina cycle which profoundly affects the weather in North America but is outside the scope of weather forecasts. Some of the most significant advances in understanding climate change have evolved from the recognition of the influence of ocean circulations upon the atmosphere (IPCC, 2007). Human activity can affect the climate system through increasing concentrations of atmospheric greenhouse gases, air pollution, increasing concentrations of aerosol, and land alteration. A particular concern is that atmospheric levels of CO{sub 2} may be rising faster than at any time in Earth's history, except possibly following rare events like impacts from large extraterrestrial objects (AMS, 2007). Atmospheric CO{sub 2} concentrations have increased since the mid-1700s through fossil fuel burning and changes in land use, with more than 80% of this increase occurring since 1900. The increased levels of CO{sub 2} will remain in the atmosphere for hundreds to thousands of years. The complexity of the climate system makes it difficult to predict specific aspects of human-induced climate change, such as exactly how and where changes will occur, and their magnitude. The Intergovernmental Panel for Climate Change (IPCC) was established by World Meteorological Organization (WMO) and the United Nations in 1988. The IPCC was tasked with assessing the scientific, technical and socioeconomic information needed to understand the risk of human-induced climate change, its observed and projected impacts, and options for adaptation and mitigation. The IPCC concluded in its Fourth Assessment Report (AR4) that warming of the climate system is unequivocal, and that most of the observed increase in globally averaged temperatures since the mid-20th century is very likely due to the observed increased in anthropogenic greenhouse gas concentrations (IPCC, 2007).

  3. Expansion of the commercial output of Estonian oil shale mining and processing

    SciTech Connect (OSTI)

    Fraiman, J.; Kuzmiv, I. [Estonian Oil Shale State Co., Jyhvi (Estonia). Scientific Research Center

    1996-09-01

    Economic and ecological preconditions are considered for the transition from monoproduct oil shale mining to polyproduct Estonian oil shale deposits. Underground water, limestone, and underground heat found in oil shale mines with small reserves can be operated for a long time using chambers left after oil shale extraction. The adjacent fields of the closed mines can be connected to the operations of the mines that are still working. Complex usage of natural resources of Estonian oil shale deposits is made possible owing to the unique features of its geology and technology. Oil shale seam development is carried out at shallow depths (40--70 m) in stable limestones and does not require expensive maintenance. Such natural resources as underground water, carbonate rocks, heat of rock mass, and underground chambers are opened by mining and are ready for utilization. Room-and-pillar mining does not disturb the surface, and worked oil shale and greenery waste heaps do not breach its ecology. Technical decisions and economic evaluation are presented for the complex utilization of natural resources in the boundaries of mine take of the ``Tammiku`` underground mine and the adjacent closed mine N2. Ten countries have already experienced industrial utilization of oil shale in small volumes for many years. Usually oil shale deposits are not notable for complex geology of the strata and are not deeply bedded. Thus complex utilization of quite extensive natural resources of Estonian oil shale deposits is of both scientific and practical interest.

  4. PV output smoothing with energy storage.

    SciTech Connect (OSTI)

    Ellis, Abraham; Schoenwald, David Alan

    2012-03-01

    This report describes an algorithm, implemented in Matlab/Simulink, designed to reduce the variability of photovoltaic (PV) power output by using a battery. The purpose of the battery is to add power to the PV output (or subtract) to smooth out the high frequency components of the PV power that that occur during periods with transient cloud shadows on the PV array. The control system is challenged with the task of reducing short-term PV output variability while avoiding overworking the battery both in terms of capacity and ramp capability. The algorithm proposed by Sandia is purposely very simple to facilitate implementation in a real-time controller. The control structure has two additional inputs to which the battery can respond. For example, the battery could respond to PV variability, load variability or area control error (ACE) or a combination of the three.

  5. Thermal Simulation of Advanced Powertrain Systems

    Broader source: Energy.gov [DOE]

    Under this project, the Volvo complete vehicle model was modified to include engine and exhaust system thermal outputs and cooling system to enable WHR simulations from a system perspective.

  6. Commercial Items Test Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Attached for your information is a copy of Civilian Agency Acquisition Council (CAAC) Letter 2009-04. It advises that the National Defense Authorization Act for Fiscal Year 201 0, Section 8 16 authorizes extension of the Commercial Items Test Program from January 1,20 10 to January 1,20 12 and that an expedited FAR Case is being processed to insert the new date at FAR 13.500(d). Also attached is a class deviation authorizing the use of simplified acquisition procedures for commercial items up to $5.5 million [$I1 million for acquisitions of commercial items under FAR 13.500(e)

  7. Commercial Buildings Characteristics 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    The categories asked were thermal energy storage (TES) or pump storage; passive solar features; geothermal energy; well water for cooling; waste incineration to produce...

  8. Porous radiant burners having increased radiant output

    DOE Patents [OSTI]

    Tong, Timothy W.; Sathe, Sanjeev B.; Peck, Robert E.

    1990-01-01

    Means and methods for enhancing the output of radiant energy from a porous radiant burner by minimizing the scattering and increasing the adsorption, and thus emission of such energy by the use of randomly dispersed ceramic fibers of sub-micron diameter in the fabrication of ceramic fiber matrix burners and for use therein.

  9. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    5.2 152.6 160.5 54.6 Assembly Health Care Lodging Office 0 20 40 60 80 100 120 140 160 180 Energy Information Administration Energy Consumption Series: Lighting in Commercial...

  10. Commercial PACE Financing

    Broader source: Energy.gov [DOE]

    Senate Bill 221 of 2013 authorizes local governments to adopt Commercial* Property Assessed Clean Energy (C-PACE) financing programs. C-PACE allows property owners to finance energy efficiency and...

  11. Commercial Grade Dedication RM

    Broader source: Energy.gov [DOE]

    The objective of this Standard Review Plan (SRP) on Commercial Grade Dedication (CGD) is to provide guidance for a uniform review of the CGD activities for office of Environmental Management...

  12. Technology Commercialization Program 1991

    SciTech Connect (OSTI)

    Not Available

    1991-11-01

    This reference compilation describes the Technology Commercialization Program of the Department of Energy, Defense Programs. The compilation consists of two sections. Section 1, Plans and Procedures, describes the plans and procedures of the Defense Programs Technology Commercialization Program. The second section, Legislation and Policy, identifies legislation and policy related to the Program. The procedures for implementing statutory and regulatory requirements are evolving with time. This document will be periodically updated to reflect changes and new material.

  13. ERC commercialization activities

    SciTech Connect (OSTI)

    1995-08-01

    The ERC family of companies is anticipating market entry of their first commercial product, a 2.8-MW power plant, in the second quarter of 1999. The present Cooperative Agreement provides for: (1) Commercialization planning and organizational development, (2) Completion of the pre-commercial DFC technology development, (3) Systems and plant design, (4) Manufacturing processes` scale-up to full-sized stack components and assemblies, (5) Upgrades to ERC`s test facility for full-sized stack testing, (6) Sub-scale testing of a DFC Stack and BOP fueled with landfill gas. This paper discusses the first item, that of preparing for commercialization. ERC`s formal commercialization program began in 1990 with the selection of the 2-MW Direct Fuel Cell power plant by the American Public Power Association (APPA) for promotion to the over 2000 municipal utilities comprising APPA`s segment of the utility sector. Since that beginning, the APPA core group expanded to become the Fuel Cell Commercialization Group (FCCG) which includes representation from all markets - utilities and other power generation equipment buyers.

  14. Neutron light output and detector efficiency (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Neutron light output and detector efficiency Citation Details In-Document Search Title: Neutron light output and detector efficiency You are accessing a document from the ...

  15. Neutron light output and detector efficiency (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Neutron light output and detector efficiency Citation Details In-Document Search Title: Neutron light output and detector efficiency Authors: Taddeucci, Terry N 1 + Show Author ...

  16. Error estimates for fission neutron outputs (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Error estimates for fission neutron outputs Citation Details In-Document Search Title: Error estimates for fission neutron outputs You are accessing a document from the...

  17. Low Capital Photovoltaic Panel Electrical Output-Booster System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Capital Photovoltaic Panel Electrical Output-Booster System Low Capital Photovoltaic Panel Electrical Output-Booster System This presentation summarizes the information given ...

  18. Single Frequency Characterization of a Commercial Resin

    SciTech Connect (OSTI)

    Sauers, Isidor; Tuncer, Enis; Polizos, Georgios; James, David Randy; Ellis, Alvin R; Pace, Marshall O

    2009-10-01

    Electrical impedance measurement methods are extensively utilized to characterize dielectric materials. There are not many inexpensive commercially available measurement systems for low frequencies. In this paper an impedance measurement method using an electrometer is presented. The method can be employed for frequencies lower than 100 mHz. To illustrate the usefulness of the presented method, an epoxy resin is characterized and the influence of thermal aging is investigated.

  19. Multiple-Input Multiple-Output (MIMO) Linear Systems Extreme Inputs/Outputs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smallwood, David O.

    2007-01-01

    A linear structure is excited at multiple points with a stationary normal random process. The response of the structure is measured at multiple outputs. If the autospectral densities of the inputs are specified, the phase relationships between the inputs are derived that will minimize or maximize the trace of the autospectral density matrix of the outputs. If the autospectral densities of the outputs are specified, the phase relationships between the outputs that will minimize or maximize the trace of the input autospectral density matrix are derived. It is shown that other phase relationships and ordinary coherence less than one willmore » result in a trace intermediate between these extremes. Least favorable response and some classes of critical response are special cases of the development. It is shown that the derivation for stationary random waveforms can also be applied to nonstationary random, transients, and deterministic waveforms.« less

  20. IID Energy- Commercial Rebate Program

    Broader source: Energy.gov [DOE]

    Imperial Irrigation District (IID) offers incentives to its commercial customers to encourage the adoption of energy efficient technologies, including commercial heating and cooling equipment,...

  1. Lighting in Commercial Buildings, 1986

    U.S. Energy Information Administration (EIA) Indexed Site

    Lighting in Commercial Buildings --1986 Overview Full Report and Tables Detailed analysis of energy consumption for lighting for U.S. commercial buildings. previous page...

  2. SBSP Commercial Upstream Incentive Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and commercial sales) 1. EIA Commercial Buildings Energy Consumption Survey (2003) 2. Industry Research and Recommendations for Small Buildings and Small Portfolios, NREL 2013. ...

  3. Commercial Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation Energy Efficiency Commercial Buildings Commercial Buildings At an estimated cost of 38 ... questions -- from how to lower your cooling costs to ways ...

  4. Commercial Building Demonstration and Deployment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Building Demonstration and Deployment 2014 Building Technologies Office Peer ... April 23 rd 11:15-11:30 Commercial DemonstrationDeployment Overview Kristen Taddonio, ...

  5. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Ballast: See High-Efficiency Ballast. Btu: British thermal unit. A unit quantity of energy consumed by or delivered to a building. A Btu is defined as the amount of energy...

  6. High energy density thermal cell

    SciTech Connect (OSTI)

    Fletcher, A.N.

    1980-04-29

    A thermal battery is described that uses a calcium anode and a catholyte consisting of a mixture of lithium, potassium, nitrate and chloride ions. The device is operable over a temperature range of about 150 to 600/sup 0/C and produces a long lasting, high energy density output.

  7. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Exploration Basis Thermal gradient holes were drilled in an effort to determine the feasibility of commercial geothermal energy generation at Blue Mountain Notes Ten temperature...

  8. EERE Success Story—Pennsylvania: New Series of Windows Has Potential to Save Energy for Commercial Buildings

    Broader source: Energy.gov [DOE]

    The OptiQ™ Ultra Thermal Window series introduces new high-performing windows to the commercial building industry and unlocks the potential to save energy in more of America’s commercial building space.

  9. Off-set stabilizer for comparator output

    DOE Patents [OSTI]

    Lunsford, James S.

    1991-01-01

    A stabilized off-set voltage is input as the reference voltage to a comparator. In application to a time-interval meter, the comparator output generates a timing interval which is independent of drift in the initial voltage across the timing capacitor. A precision resistor and operational amplifier charge a capacitor to a voltage which is precisely offset from the initial voltage. The capacitance of the reference capacitor is selected so that substantially no voltage drop is obtained in the reference voltage applied to the comparator during the interval to be measured.

  10. Midstate Electric Cooperative - Commercial and Industrial Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial and Industrial Energy Efficiency Rebate Program Midstate Electric Cooperative - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial...

  11. World crude output overcomes Persian Gulf disruption

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    Several OPEC producers made good on their promises to replace 2.7 MMbpd of oil exports that vanished from the world market after Iraq took over Kuwait. Even more incredibly, they accomplished this while a breathtaking 1.2- MMbopd reduction in Soviet output took place during the course of 1991. After Abu Dhabi, Indonesia, Iran, Libya, Nigeria, Saudi Arabia and Venezuela turned the taps wide open, their combined output rose 2.95 MMbopd. Put together with a 282,000-bopd increase by Norway and contributions from smaller producers, this enabled world oil production to remain within 400,000 bopd of its 1990 level. The 60.5-MMbopd average was off by just 0.7%. This paper reports that improvement took place in five of eight regions. Largest increases were in Western Europe and Africa. Greatest reductions occurred in Eastern Europe and the Middle East. Fifteen nations produced 1 MMbopd or more last year, compared with 17 during 1990.

  12. Review of Thermally Activated Technologies, July 2004 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Thermally Activated Technologies, July 2004 Review of Thermally Activated Technologies, July 2004 At the request of the U.S. Department of Energy and Oak Ridge National Laboratory, TIAX reviewed the status of various Thermally Activated Technologies (TATs). This 2004 review includes both fuel-fired and waste-heat-fired applications of thermally-driven cooling systems, thermally-driven heat pumps, and thermally-driven bottoming cycles, primarily for use in commercial buildings.

  13. Average Commercial Price

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From

  14. Average Commercial Price

    U.S. Energy Information Administration (EIA) Indexed Site

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  15. Energy Use in Commercial Buildings - Energy Explained, Your Guide To

    U.S. Energy Information Administration (EIA) Indexed Site

    Understanding Energy - Energy Information Administration Commercial Buildings Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse

  16. Establish the Commercial Pacakge Air Conditioners and Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    commercial package air conditioners, heat pumps, and commercial warm air furnaces is an action issued by the Department of Energy. Though it is not intended or expected, should any...

  17. Room-return scattering in fission neutron outputs (Conference...

    Office of Scientific and Technical Information (OSTI)

    Room-return scattering in fission neutron outputs Citation Details In-Document Search Title: Room-return scattering in fission neutron outputs You are accessing a document from...

  18. Overview of Commercial Buildings, 2003

    Reports and Publications (EIA)

    2008-01-01

    The Energy Information Administration conducts the Commercial Buildings Energy Consumption Survey (CBECS) to collect information on energy-related building characteristics and types and amounts of energy consumed in commercial buildings in the United States.

  19. Aerogel commercialization: Technology, markets and costs

    SciTech Connect (OSTI)

    Carlson, G.; Lewis, D.; McKinley, K.; Richardson, J.; Tillotson, T.

    1994-10-07

    Commercialization of aerogels has been slow due to several factors including cost and manufacturability issues. The technology itself is well enough developed as a result of work over the past decade by an international-community of researchers. Several extensive substantial markets appear to exist for aerogels as thermal and sound insulators, if production costs can keep prices in line with competing established materials. The authors discuss here the elements which they have identified as key cost drivers, and they give a prognosis for the evolution of the technology leading to reduced cost aerogel production.

  20. Commercial Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation » Energy Efficiency » Commercial Buildings Commercial Buildings At an estimated cost of $38 billion a year, lighting represents the largest source of electricity consumption in U.S. commercial buildings. A new breakthrough by the Energy Department's <a href="/node/712411">National Renewable Energy Lab</a> could help commercial buildings save on lighting and ventilation costs by improving the accuracy of motion detection. At an estimated cost of

  1. Commercial Building Funding Opportunity Webinar

    Broader source: Energy.gov [DOE]

    This webinar provide an overview of the Commercial Building Technology Demonstrations Funding Opportunity Announcement DE-FOA-0001084.

  2. Aerocapacitor commercialization plan

    SciTech Connect (OSTI)

    1995-09-12

    The purpose of the Power-One Aerocapacitor Commercialization Plan is to communicate to members of management and to all employees the overall objectives of the corporation. Power-One, Inc., has participated in a US Federal Government Technology Reinvestment Project (TRP), entitled {open_quotes}Advanced Power Conversion based on the Aerocapacitor{close_quotes}: the project is a group effort, with Lawrence Livermore National Labs, GenCorp/Aerojet, PolyStor Corp. (a start-up company), and Power-One forming the consortium. The expected resulting technology is the {open_quotes}Aerocapacitor{close_quotes}, which possesses much higher performance levels than the usual capacitors on the market today. Power-One hopes to incorporate the Aerocapacitor into some of its products, hence enhancing their performance, as well as market privately-labeled aerocapacitors through its distribution channels. This document describes the details of Power-One`s plan to bring to market and commercialize the Aerocapacitor and Aerocapacitor-based products. This plan was formulated while Power-One was part of the Oerocap project. It has since pulled out of this project. What is presented in this plan is the work which was developed prior to the business decision to terminate this work.

  3. Commercial nuclear power 1990

    SciTech Connect (OSTI)

    Not Available

    1990-09-28

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.

  4. Commercialization of clean coal technologies

    SciTech Connect (OSTI)

    Bharucha, N.

    1994-12-31

    The steps to commercialization are reviewed in respect of their relative costs, the roles of the government and business sectors, and the need for scientific, technological, and economic viability. The status of commercialization of selected clean coal technologies is discussed. Case studies related to a clean coal technology are reviewed and conclusions are drawn on the factors that determine commercialization.

  5. Thermal Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Sciences NETL's Thermal Sciences competency provides the scientific, engineering, and technology development community with innovative and efficient approaches to measure, harness, and convert thermal energy. Research includes sensors, advanced energy concepts, and thermodynamic optimization, specifically: Sensors and Diagnostics Advanced sensor and diagnostic technology to develop and evaluate advanced methods for non-intrusive measurement and measurement in extreme environments.

  6. Thermal Imaging Control of Furnaces and Combustors

    SciTech Connect (OSTI)

    David M. Rue; Serguei Zelepouga; Ishwar K. Puri

    2003-02-28

    The object if this project is to demonstrate and bring to commercial readiness a near-infrared thermal imaging control system for high temperature furnaces and combustors. The thermal imaging control system, including hardware, signal processing, and control software, is designed to be rugged, self-calibrating, easy to install, and relatively transparent to the furnace operator.

  7. Commercializing solar hydrogen production

    SciTech Connect (OSTI)

    Holmes, J.T.; Prairie, M.R.

    1991-01-01

    This paper discusses the need for a government-supported program to commercialize hydrogen production methods which use solar energy as the main source of energy. Current methods use hydrocarbons and generate large amounts of carbon dioxide. The paper describes results from a literature survey performed to identify technologies using direct solar energy that were likely to succeed on an industrial scale in the near term. Critical parameters included calculated efficiencies, measured efficiencies, and development status. The cost of solar collectors is cited as the reason most promising solar hydrogen research is not taken to the pilot plant stage. The author recommends use of existing DOE facilities already in operation for pilot plant testing. 14 refs. (CK)

  8. Vermont Gas- Commercial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Vermont Gas (VGS) offers rebates for commercial customers who install high efficiency equipment in existing buildings. The Commercial Equipment Replacement Program is designed for commercial and...

  9. Method and apparatus for varying accelerator beam output energy

    DOE Patents [OSTI]

    Young, Lloyd M.

    1998-01-01

    A coupled cavity accelerator (CCA) accelerates a charged particle beam with rf energy from a rf source. An input accelerating cavity receives the charged particle beam and an output accelerating cavity outputs the charged particle beam at an increased energy. Intermediate accelerating cavities connect the input and the output accelerating cavities to accelerate the charged particle beam. A plurality of tunable coupling cavities are arranged so that each one of the tunable coupling cavities respectively connect an adjacent pair of the input, output, and intermediate accelerating cavities to transfer the rf energy along the accelerating cavities. An output tunable coupling cavity can be detuned to variably change the phase of the rf energy reflected from the output coupling cavity so that regions of the accelerator can be selectively turned off when one of the intermediate tunable coupling cavities is also detuned.

  10. High output lamp with high brightness

    DOE Patents [OSTI]

    Kirkpatrick, Douglas A.; Bass, Gary K.; Copsey, Jesse F.; Garber, Jr., William E.; Kwong, Vincent H.; Levin, Izrail; MacLennan, Donald A.; Roy, Robert J.; Steiner, Paul E.; Tsai, Peter; Turner, Brian P.

    2002-01-01

    An ultra bright, low wattage inductively coupled electrodeless aperture lamp is powered by a solid state RF source in the range of several tens to several hundreds of watts at various frequencies in the range of 400 to 900 MHz. Numerous novel lamp circuits and components are disclosed including a wedding ring shaped coil having one axial and one radial lead, a high accuracy capacitor stack, a high thermal conductivity aperture cup and various other aperture bulb configurations, a coaxial capacitor arrangement, and an integrated coil and capacitor assembly. Numerous novel RF circuits are also disclosed including a high power oscillator circuit with reduced complexity resonant pole configuration, parallel RF power FET transistors with soft gate switching, a continuously variable frequency tuning circuit, a six port directional coupler, an impedance switching RF source, and an RF source with controlled frequency-load characteristics. Numerous novel RF control methods are disclosed including controlled adjustment of the operating frequency to find a resonant frequency and reduce reflected RF power, controlled switching of an impedance switched lamp system, active power control and active gate bias control.

  11. Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes

    Fuel Cell Technologies Publication and Product Library (EERE)

    Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to

  12. Halbach array generator/motor having mechanically regulated output voltage and mechanical power output

    DOE Patents [OSTI]

    Post, Richard F.

    2005-06-14

    A motor/generator has its stationary portion, i.e., the stator, positioned concentrically within its rotatable element, i.e., the rotor, along the axis of rotation of the rotor. The rotor includes a Halbach array of magnets. The voltage and power outputs are regulated by varying the radial gap in between the stator windings and the rotating Halbach array. The gap is varied by extensible and retractable supports attached to the stator windings that can move the windings in a radial direction.

  13. Midtemperature solar systems test facility predictions for thermal performance of the Acurex solar collector with FEK 244 reflector surface

    SciTech Connect (OSTI)

    Harrison, T.D.

    1981-01-01

    Thermal performance predictions are presented for the Acurex solar collector, with FEK 244 reflector surface, for three output temperatures at five cities in the United States.

  14. Commercialization and Deployment at NREL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation to STEAB Commercialization and Deployment at NREL Casey Porto, Senior Vice President, Commercialization and Deployment June 8, 2011 National Renewable Energy Laboratory Innovation for Our Energy Future Outreach, Planning, and Analysis B. Garrett Sr. Vice President Science and Technology D. Christensen Dep. Lab. Director / CRO Operations W. Glover Dep. Lab. Director / COO Commercialization and Deployment C. Porto Sr. Vice President National Renewable Energy Laboratory D. Arvizu

  15. Output-Based Error Estimation and Adaptation for Uncertainty...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Output-Based Error Estimation and Adaptation for Uncertainty Quantification Isaac M. Asher and Krzysztof J. Fidkowski University of Michigan US National Congress on Computational...

  16. Factors Affecting Power Output by Photovoltaic Cells Lesson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Factors Affecting Power Output by Photovoltaic Cells Grade Level(s): IB 2 (Senior - 3 ... C.8 Photovoltaic cells and dye-sensitized solar cells (DSSC) Understandings: * Solar ...

  17. Compact waveguide power divider with multiple isolated outputs

    DOE Patents [OSTI]

    Moeller, Charles P. (Del Mar, CA)

    1987-01-01

    A waveguide power divider (10) for splitting electromagnetic microwave power and directionally coupling the divided power includes an input waveguide (21) and reduced height output waveguides (23) interconnected by axial slots (22) and matched loads (25) and (26) positioned at the unused ends of input and output guides (21) and (23) respectively. The axial slots are of a length such that the wave in the input waveguide (21) is directionally coupled to the output waveguides (23). The widths of input guide (21) and output guides (23) are equal and the width of axial slots (22) is one half of the width of the input guide (21).

  18. Spin-on-doping for output power improvement of silicon nanowire array based thermoelectric power generators

    SciTech Connect (OSTI)

    Xu, B. Fobelets, K.

    2014-06-07

    The output power of a silicon nanowire array (NWA)-bulk thermoelectric power generator (TEG) with Cu contacts is improved by spin-on-doping (SOD). The Si NWAs used in this work are fabricated via metal assisted chemical etching (MACE) of 0.010.02 ? cm resistivity n- and p-type bulk, converting ~4% of the bulk thickness into NWs. The MACE process is adapted to ensure crystalline NWs. Current-voltage and Seebeck voltage-temperature measurements show that while SOD mainly influences the contact resistance in bulk, it influences both contact resistance and power factor in NWA-bulk based TEGs. According to our experiments, using Si NWAs in combination with SOD increases the output power by an order of 3 under the same heating power due to an increased power factor, decreased thermal conductivity of the NWA and reduced Si-Cu contact resistance.

  19. SF 6432-CI Commercial Items

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    150,000 APPLY TO ALL CONTRACTS EXCEEDING 5,000,000 Control : SF 6432-CI Title: Standard Terms and Conditions for Commercial Items Owner: Procurement Policy Department...

  20. SF6432-CS Commercial Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with the Directorate of Defense Trade Control : SF 6432-CS Title: Standard Terms and Conditions for Commercial Services Owner: Procurement Policy & Quality Dept Release Date:...

  1. Commercial Kitchen Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    Efficiency Vermont offers rebates for ENERGY STAR certified fryers, griddles, convection ovens, and steam cookers. Custom rebates for other types of commercial cooking equipment may be available...

  2. Commercial & Industrial Renewable Energy Grants

    Broader source: Energy.gov [DOE]

    The New Hampshire Public Utilities Commission (PUC) offers grant funding for renewable energy projects installed at commercial, industrial, public, non-profit, municipal or school facilities, or ...

  3. Commercialization | OpenEI Community

    Open Energy Info (EERE)

    and ensure a safe and reliable energy future. Links: Check out the EDI on the EDG Big Data Commercialization Data Jam Datapalooza EDI Innovation Open Data Success Stories...

  4. Covered Product Category: Commercial Griddles

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial griddles, which is a product category covered by the ENERGY STAR program

  5. Covered Product Category: Commercial Fryers

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial fryers, which is a product category covered by the ENERGY STAR program.

  6. Portland's Commercial Solar Permitting Guide

    Broader source: Energy.gov [DOE]

    This program guide outlines the application and review procedures for obtaining the necessary permits to install a solar energy system on a new or existing commercial building.

  7. Energy analysis of facade-integrated photovoltaic systems applied to UAE commercial buildings

    SciTech Connect (OSTI)

    Radhi, Hassan

    2010-12-15

    Developments in the design and manufacture of photovoltaic cells have recently been a growing concern in the UAE. At present, the embodied energy pay-back time (EPBT) is the criterion used for comparing the viability of such technology against other forms. However, the impact of PV technology on the thermal performance of buildings is not considered at the time of EPBT estimation. If additional energy savings gained over the PV system life are also included, the total EPBT could be shorter. This paper explores the variation of the total energy of building integrated photovoltaic systems (BiPV) as a wall cladding system applied to the UAE commercial sector and shows that the ratio between PV output and saving in energy due to PV panels is within the range of 1:3-1:4. The result indicates that for the southern and western facades in the UAE, the embodied energy pay-back time for photovoltaic system is within the range of 12-13 years. When reductions in operational energy are considered, the pay-back time is reduced to 3.0-3.2 years. This study comes to the conclusion that the reduction in operational energy due to PV panels represents an important factor in the estimation of EPBT. (author)

  8. Webtrends Archives by Fiscal Year - Commercialization | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Corporate sites, Webtrends archives for the Commercialization site by fiscal year. Commercialization FY09 (2.49 MB) Commercialization FY10 (2.41 MB) Commercialization FY11 (2.81 ...

  9. Energy 101: Energy Efficient Commercial Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficient Commercial Buildings Energy 101: Energy Efficient Commercial Buildings

  10. Linkages from DOE's Geothermal R&D to Commercial Power Generation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Geothermal R&D to Commercial Power Generation Linkages from DOE's Geothermal R&D to Commercial Power Generation This study provides an evaluation of the Geothermal Technologies Program (GTP) of the U.S. Department of Energy (DOE). Specifically, for the period 1976 to 2008, it investigates the linkages between GTP's outputs and their downstream use by others to produce power from geothermal energy. The results are relevant for assessing DOE's past and future roles

  11. Trends in Commercial Buildings--Overview

    U.S. Energy Information Administration (EIA) Indexed Site

    Buildings > Commercial Buildings Energy Consumption Survey Survey Methodology Sampling Error, Standard Errors, and Relative Standard Errors The Commercial Buildings Energy...

  12. Overview of Commercial Buildings, 2003 - Full Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Introduction Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > Overview of Commercial Buildings Print Report: PDF Overview of...

  13. Commercialization of Bulk Thermoelectric Materials for Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercialization of Bulk Thermoelectric Materials for Power Generation Commercialization of Bulk Thermoelectric Materials for Power Generation Critical aspects of technology ...

  14. Commercial Building Demonstration and Deployment Overview - 2014...

    Broader source: Energy.gov (indexed) [DOE]

    Technologies Office's Commercial Building Demonstration and Deployment activities. ... View the Presentation Commercial Building Demonstration and Deployment Overview - 2014 BTO ...

  15. 2016-04-15 Energy Conservation Program for Certain Commercial...

    Energy Savers [EERE]

    Commercial and Industrial Equipment: Test Procedure for Commercial Water Heating ... Commercial and Industrial Equipment: Test Procedure for Commercial Water Heating ...

  16. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    SciTech Connect (OSTI)

    Marnay, Chris; Stadler, Michael; Lipman, Tim; Lai, Judy; Cardoso, Goncalo; Megel, Olivier

    2009-09-01

    The motivation and objective of this research is to determine the role of distributed generation (DG) in greenhouse gas reductions by: (1) applying the Distributed Energy Resources Customer Adoption Model (DER-CAM); (2) using the California Commercial End-Use Survey (CEUS) database for commercial buildings; (3) selecting buildings with electric peak loads between 100 kW and 5 MW; (4) considering fuel cells, micro-turbines, internal combustion engines, gas turbines with waste heat utilization, solar thermal, and PV; (5) testing of different policy instruments, e.g. feed-in tariff or investment subsidies.

  17. 1999 Commercial Buildings Characteristics--Trends in Commercial...

    U.S. Energy Information Administration (EIA) Indexed Site

    and floorspace from 1995 to 1999 continued the general trends noted since 1979 (Figures 1 and 2). The size of the commercial buildings has grown steadily over the twenty...

  18. Dual output acoustic wave sensor for molecular identification

    DOE Patents [OSTI]

    Frye, Gregory C.; Martin, Stephen J.

    1991-01-01

    A method of identification and quantification of absorbed chemical species by measuring changes in both the velocity and the attenuation of an acoustic wave traveling through a thin film into which the chemical species is sorbed. The dual output response provides two independent sensor responses from a single sensing device thereby providing twice as much information as a single output sensor. This dual output technique and analysis allows a single sensor to provide both the concentration and the identity of a chemical species or permits the number of sensors required for mixtures to be reduced by a factor of two.

  19. Device for frequency modulation of a laser output spectrum

    DOE Patents [OSTI]

    Beene, James R.; Bemis, Jr., Curtis E.

    1986-01-01

    A device is provided for fast frequency modulating the output spectrum of multimode lasers and single frequency lasers that are not actively stabilized. A piezoelectric transducer attached to a laser cavity mirror is driven in an unconventional manner to excite resonance vibration of the transducer to rapidly, cyclicly change the laser cavity length. The result is a cyclic sweeping of the output wavelength sufficient to fill the gaps in the laser output frequency spectrum. When such a laser is used to excite atoms or molecules, complete absorption line coverage is made possible.

  20. Device for frequency modulation of a laser output spectrum

    DOE Patents [OSTI]

    Beene, J.R.; Bemis, C.E. Jr.

    1984-07-17

    A device is provided for fast frequency modulating the output spectrum of multimode lasers and single frequency lasers that are not actively stabilized. A piezoelectric transducer attached to a laser cavity mirror is driven in an unconventional manner to excite resonance vibration of the tranducer to rapidly, cyclicly change the laser cavity length. The result is a cyclic sweeping of the output wavelength sufficient to fill the gaps in the laser output frequency spectrum. When a laser is used to excite atoms or molecules, complete absorption line coverage is made possible.

  1. Washington Gas- Commercial Rebate Program

    Broader source: Energy.gov [DOE]

    Washington Gas as a part of the Maryland EmPOWER program offers incentives to its commercial customer for making energy efficiency improvements. Rebates are available for qualifying water heaters,...

  2. Citizens Gas- Commercial Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Citizens Gas of Indiana offers rebates to commercial customers for the installation of numerous types of efficient natural gas appliances, equipment upgrades, and tune-up services. These rebates...

  3. M-C Power commercialization program overview

    SciTech Connect (OSTI)

    Camara, E.H.

    1996-12-31

    Competition in the electric generation market will increase, owing to unbundling and repackaging of electric energy services. One technology that will enable electric companies to expand their role in the energy services marketplace is the molten carbonate fuel cell (MCFC). Distributed power plants using MCFCs can fill the demand for localized, efficient, and environmentally friendly energy supplies at the lowest possible cost. This type of equipment will allow electric companies to supply the majority of a customer`s electric and thermal energy needs from small power plants located at the customer`s facilities. M-C Power`s mission is the development and commercialization of MCFC stacks. Advanced separator plates were designed, and cost of non-repeat hardware was reduced. In the technology development phase of the commercialization program, a 250 KW MCFC demonstration plant at the Naval Air Station Miramar in Sand Diego is the culminating event in the product development test project. Product requirements, economic analysis, and market entry are discussed. This is the 2nd year of a 5-year program.

  4. A simple line wave generator using commercial explosives

    SciTech Connect (OSTI)

    Morris, John S; Jackson, Scott I; Hill, Larry G

    2009-01-01

    We present a simple and inexpensive explosive line wave generator has been designed using commercial sheet explosive and plane wave lens concepts. The line wave generator is constructed using PETN and RDX based sheet explosive for the slow and fast components respectively. The design permits the creation of any desired line width. A series of experiments were performed on a 100 mm design, measuring the detonation arrival time at the output of the generator using a streak camera. An iterative technique was used to adjust the line wave generator's slow and fast components, so as to minimize the arrival time deviation. Designs, test results, and concepts for improvements will be discussed.

  5. Community Climate System Model (CCSM) Experiments and Output Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The CCSM web makes the source code of various versions of the model freely available and provides access to experiments that have been run and the resulting output data.

  6. Bayesian approaches for combining computational model output and physical

    Office of Scientific and Technical Information (OSTI)

    observations (Conference) | SciTech Connect Bayesian approaches for combining computational model output and physical observations Citation Details In-Document Search Title: Bayesian approaches for combining computational model output and physical observations Authors: Higdon, David M [1] ; Lawrence, Earl [1] ; Heitmann, Katrin [2] ; Habib, Salman [2] + Show Author Affiliations Los Alamos National Laboratory ANL Publication Date: 2011-07-25 OSTI Identifier: 1084581 Report Number(s):

  7. Low Capital Photovoltaic Panel Electrical Output-Booster System |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Low Capital Photovoltaic Panel Electrical Output-Booster System Low Capital Photovoltaic Panel Electrical Output-Booster System This presentation summarizes the information given during the DOE SunShot Grand Challenge: Summit and Technology Forum, June 13-14, 2012. ssgrandchallenge_finance_schrag.pdf (63.07 KB) More Documents & Publications The SunShot Vision Study SunShot Vision Study: February 2012 (Book), SunShot, Energy Efficiency & Renewable Energy (EERE)

  8. Midtemperature Solar Systems Test Facility predictions for thermal performance of the Suntec solar collector with heat-formed glass reflector surface

    SciTech Connect (OSTI)

    Harrison, T.D.

    1980-11-01

    Thermal performance predictions are presented for the Suntec solar collector, with heat-formed glass reflector surface, for three output temperatures at five cities in the United States.

  9. Analysis of institutional mechanisms affecting residential and commercial buildings retrofit

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    Barriers to energy conservation in the residential and commercial sectors influence (1) the willingness of building occupants to modify their energy usage habits, and (2) the willingness of building owners/occupants to upgrade the thermal characteristics of the structures within which they live or work and the appliances which they use. The barriers that influence the willingness of building owners/occupants to modify the thermal efficiency characteristics of building structures and heating/cooling systems are discussed. This focus is further narrowed to include only those barriers that impede modifications to existing buildings, i.e., energy conservation retrofit activity. Eight barriers selected for their suitability for Federal action in the residential and commercial sectors and examined are: fuel pricing policies that in the short term do not provide enough incentive to invest in energy conservation; high finance cost; inability to evaluate contractor performance; inability to evaluate retrofit products; lack of well-integrated or one-stop marketing systems (referred to as lack of delivery systems); lack of precise or customized information; lack of sociological/psychological incentives; and use of the first-cost decision criterion (expanded to include short-term payback criterion for the commercial sector). The impacts of these barriers on energy conservation are separately assessed for the residential and commercial sectors.

  10. Overview of Commercial Buildings, 2003 - Trends

    U.S. Energy Information Administration (EIA) Indexed Site

    Trends in Commercial Buildings Sector-1979 to 2003 Since the first CBECS in 1979, the commercial buildings sector has increased in size. From 1979 to 2003: The number of commercial...