Sample records for thermal neutron flux

  1. Thermal neutron flux perturbation due to indium foils in water

    E-Print Network [OSTI]

    Stinson, Ronald Calvin

    1961-01-01T23:59:59.000Z

    of MASTER OF SCIENCE August, i 96I Major Subject: Nuclear Engineering THERMAL NEUTRON FLUX PERTURBATION DUE TO INDIUM FOILS IN WATER A Thesis by Ronald C. Stinson, Jr. Approved as to style and content by: Chai man of Committee Head of Department.... 2. Tittle, C. N. , Nucleonics 8, (6), 5 (1951); Ibid 9 (1), 60 (1951). 3. Skyrme, T, H. R. , "Reduction in Neutron Density Caused by an Absorbing Disc. " MS-91 (N. D. ) 4. Dalton, G. R. and Osborn, R. K. , Nuclear Science and En ineerin 9, 19...

  2. An investigation of the elimination of detector perturbations in pure thermal neutron fluxes 

    E-Print Network [OSTI]

    Feltz, Donald Everett

    1963-01-01T23:59:59.000Z

    . INTRODUCTION II. THEORETICAL INVESTIGATION Elimination of Flux Perturbation Theoretically Predicted Flux Perturbations III. EXPERIMENTAL INVESTIGATION Introduction Test Section Positioning in Graphite Thermal Column Final Test Section Design... Thermal Column 3. Final Graphite Loading and Test Section Position 4, Test Section Assembly Thermal Neutron Flux Distribution m 4" x 4" x 4" Water Test Section Photograph of Thermal Column Shield Door, Test Section Assembly Positioned in Loading...

  3. Proposal of thermal neutron flux monitors based on vibrating wire

    E-Print Network [OSTI]

    Arutunian, S G; Chung, M; Harutyunyan, G S; Lazareva, E G

    2015-01-01T23:59:59.000Z

    Two types of neutron monitors with fine spatial resolution are proposed based on vibrating wire. In the first type, neutrons interact with the vibrating wire, heat it, and lead to the change of natural frequency, which can be precisely measured. To increase the heat deposition during the neutron scattering, use of gadolinium layer which has the highest thermal neutron capture cross section among all elements is proposed. The second type of the monitor uses vibrating wire as a resonant target. Besides the measurement of beam profile according to the average signal, the differential signal synchronized with the wire oscillations defines the gradient of beam profile. Spatial resolution of the monitor is defined by the diameter of the wire.

  4. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOE Patents [OSTI]

    Bowman, Charles D. (Los Alamos, NM)

    1992-01-01T23:59:59.000Z

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  5. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOE Patents [OSTI]

    Bowman, C.D.

    1992-11-03T23:59:59.000Z

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  6. An investigation of the elimination of detector perturbations in pure thermal neutron fluxes

    E-Print Network [OSTI]

    Feltz, Donald Everett

    1963-01-01T23:59:59.000Z

    of the requirements for the degree of MASTER OF SCIENCE August 1963 Major Subject Nuclear Engineering AN INVESTIGATION OF THE ELIMINATION OF DETECTOR PERTURBATIONS IN PURE THERMAL NEUTRON FLUXES A Thesis By Donald E~rerett Fettz Approx~ed as to style.... Randall and Jack V. Walker for their invaluable guidance and assistance during the course of this research, and to Dr. Robert G. Cochran for his suggestions and encouragement. Thanks is also extended to Mr, Floy W. Smith and the staff of the Nuclear...

  7. Thermal neutron detection system

    DOE Patents [OSTI]

    Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

    2000-01-01T23:59:59.000Z

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  8. Thermality of the Hawking flux

    E-Print Network [OSTI]

    Matt Visser

    2015-02-09T23:59:59.000Z

    Is the Hawking flux "thermal"? Unfortunately, the answer to this seemingly innocent question depends on a number of often unstated, but quite crucial, technical assumptions built into modern (mis-)interpretations of the word "thermal". The original 1850's notions of thermality --- based on classical thermodynamic reasoning applied to idealized "black bodies" or "lamp black surfaces" --- when supplemented by specific basic quantum ideas from the early 1900's, immediately led to the notion of the black-body spectrum, (the Planck-shaped spectrum), but "without" any specific assumptions or conclusions regarding correlations between the quanta. Many (not all) modern authors (often implicitly and unintentionally) add an extra, and quite unnecessary, assumption that there are no correlations in the black-body radiation; but such usage is profoundly ahistorical and dangerously misleading. Specifically, the Hawking flux from an evaporating black hole, (just like the radiation flux from a leaky furnace or a burning lump of coal), is only "approximately" Planck-shaped over a bounded frequency range. Standard physics (phase space and adiabaticity effects) explicitly bound the frequency range over which the Hawking flux is "approximately" Planck-shaped from both above and below --- the Hawking flux is certainly not exactly Planckian, and there is no compelling physics reason to assume the Hawking photons are uncorrelated.

  9. Dual neutron flux/temperature measurement sensor

    DOE Patents [OSTI]

    Mihalczo, J.T.; Simpson, M.L.; McElhaney, S.A.

    1994-10-04T23:59:59.000Z

    Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination. 3 figs.

  10. Modulating the Neutron Flux from a Mirror Neutron Source

    SciTech Connect (OSTI)

    Ryutov, D D

    2011-09-01T23:59:59.000Z

    A 14-MeV neutron source based on a Gas-Dynamic Trap will provide a high flux of 14 MeV neutrons for fusion materials and sub-component testing. In addition to its main goal, the source has potential applications in condensed matter physics and biophysics. In this report, the author considers adding one more capability to the GDT-based neutron source, the modulation of the neutron flux with a desired frequency. The modulation may be an enabling tool for the assessment of the role of non-steady-state effects in fusion devices as well as for high-precision, low-signal basic science experiments favoring the use of the synchronous detection technique. A conclusion is drawn that modulation frequency of up to 1 kHz and modulation amplitude of a few percent is achievable. Limitations on the amplitude of modulations at higher frequencies are discussed.

  11. Measurements of the Thermal Neutron Scattering Kernel

    E-Print Network [OSTI]

    Danon, Yaron

    Measurements of the Thermal Neutron Scattering Kernel Li (Emily) Liu, Yaron Danon, Bjorn Becker and discussions Problems and Future study Questions #12;3 M. Mattes and J. Keinert, Thermal Neutron Scattering experimental data used was from 1973-1974! M. Mattes and J. Keinert, Thermal Neutron Scattering Data

  12. TEMPERATURE DEPENDENCE OF THERMAL NEUTRONS FROM THE MOON

    SciTech Connect (OSTI)

    R.C. LITTLE; W. FELDMAN; ET AL

    2000-10-01T23:59:59.000Z

    Planetary thermal neutron fluxes provide a sensitive proxy for mafic and feldspathic terranes, and are also necessary for translating measured gamma-ray line strengths to elemental abundances. Both functions require a model for near surface temperatures and a knowledge of the dependence of thermal neutron flux on temperature. We have explored this dependence for a representative sample of lunar soil compositions and surface temperatures using MCNP{trademark}. For all soil samples, the neutron density is found to be independent of temperature, in accord with neutron moderation theory. The thermal neutron flux, however, does vary with temperature in a way that depends on {Delta}, the ratio of macroscopic absorption to energy-loss cross sections of soil compositions. The weakest dependence is for the largest {Delta} (which corresponds to the Apollo 17 high Ti basalt in our soil selection), and the largest dependence is for the lowest {Delta} (which corresponds to ferroan anorthosite, [FAN] in our selection). For the lunar model simulated, the depth at which the thermal neutron population is most sensitive to temperature is {approx}30 g/cm{sup 2}.

  13. Computational characterization and experimental validation of the thermal neutron source for neutron capture therapy research at the University of Missouri

    SciTech Connect (OSTI)

    Broekman, J. D. [University of Missouri, Research Reactor Center, 1513 Research Park Drive, Columbia, MO 65211-3400 (United States); Nigg, D. W. [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415 (United States); Hawthorne, M. F. [University of Missouri, International Institute of Nano and Molecular Medicine, 1514 Research Park Dr., Columbia, MO 65211-3450 (United States)

    2013-07-01T23:59:59.000Z

    Parameter studies, design calculations and neutronic performance measurements have been completed for a new thermal neutron beamline constructed for neutron capture therapy cell and small-animal radiobiology studies at the University of Missouri Research Reactor. The beamline features the use of single-crystal silicon and bismuth sections for neutron filtering and for reduction of incident gamma radiation. The computational models used for the final beam design and performance evaluation are based on coupled discrete-ordinates and Monte Carlo techniques that permit detailed modeling of the neutron transmission properties of the filtering crystals with very few approximations. Validation protocols based on neutron activation spectrometry measurements and rigorous least-square adjustment techniques show that the beam produces a neutron spectrum that has the anticipated level of thermal neutron flux and a somewhat higher than expected, but radio-biologically insignificant, epithermal neutron flux component. (authors)

  14. Thermal conductivity changes upon neutron transmutation of {sup 10}B doped diamond

    SciTech Connect (OSTI)

    Jagannadham, K., E-mail: jag-kasichainula@ncsu.edu [Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Verghese, K. [Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Butler, J. E. [Code 6174, Naval research Laboratory, Washington, District of Columbia 20375 (United States)

    2014-08-28T23:59:59.000Z

    {sup 10}B doped p-type diamond samples were subjected to neutron transmutation reaction using thermal neutron flux of 0.9 × 10{sup 13} cm{sup ?2} s{sup ?1} and fast neutron flux of 0.09 × 10{sup 13} cm{sup ?2} s{sup ?1}. Another sample of epilayer grown on type IIa (110) single crystal diamond substrate was subjected to equal thermal and fast neutron flux of 10{sup 14}?cm{sup ?2} s{sup ?1}. The defects in the diamond samples were previously characterized by different methods. In the present work, thermal conductivity of these diamond samples was determined at room temperature by transient thermoreflectance method. The thermal conductivity change in the samples as a function of neutron fluence is explained by the phonon scattering from the point defects and disordered regions. The thermal conductivity of the diamond samples decreased more rapidly initially and less rapidly for larger neutron fluence. In addition, the thermal conductivity in type IIb diamond decreased less rapidly with thermal neutron fluence compared to the decrease in type IIa diamond subjected to fast neutron fluence. It is concluded that the rate of production of defects during transmutation reaction is slower when thermal neutrons are used. The thermal conductivity of epilayer of diamond subjected to high thermal and fast neutron fluence is associated with the covalent carbon network in the composite structure consisting of disordered carbon and sp{sup 2} bonded nanocrystalline regions.

  15. A Novel Detector for High Neutron Flux Measurements

    SciTech Connect (OSTI)

    Singo, T. D.; Wyngaardt, S. M. [Department of Physics, University of Stellenbosch, Private bag X1, Matieland, Stellenbosch (South Africa); Papka, P. [Department of Physics, University of Stellenbosch, Private bag X1, Matieland, Stellenbosch (South Africa); Nuclear Physics group, iThemba labs, P. O. Box 722, Somerset West 7129 (South Africa); Dobson, R. T. [Department of Mechanical and Mechatronic Engineering, University of Stellenbosch, Private bag X1, Matieland, Stellenbosch (South Africa)

    2010-01-05T23:59:59.000Z

    Measuring alpha particles from a neutron induced break-up reaction with a mass spectrometer can be an excellent tool for detecting neutrons in a high neutron flux environment. Break-up reactions of {sup 6}Li and {sup 12}C can be used in the detection of slow and fast neutrons, respectively. A high neutron flux detection system that integrates the neutron energy sensitive material and helium mass spectrometer has been developed. The description of the detector configuration is given and it is soon to be tested at iThemba LABS, South Africa.

  16. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    SciTech Connect (OSTI)

    Hu, J. P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Holden, N. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Reciniello, R. N.

    2014-05-23T23:59:59.000Z

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4 - 7 % lower than the statistical mean derived from the Monte-Carlo modeling (5% uncertainty). The dose rate measured by ion chambers was 6 - 10 % lower than the output tallies (7% uncertainty). The detailed dosimetry that was performed at the TNIF for the NCT will be described.

  17. Development of a thermal neutron detector based on scintillating fibers and silicon photomultipliers

    SciTech Connect (OSTI)

    Barbagallo, Massimo; Greco, Giuseppe; Scire, Carlotta; Scire, Sergio [INFN Laboratori Nazionali del Sud, via S. Sofia 62, 95125 Catania (Italy); Ansaldo Nucleare S.p.A., corso Perrone 25, 16161 Genova (Italy); Cosentino, Luigi; Pappalardo, Alfio; Finocchiaro, Paolo [INFN Laboratori Nazionali del Sud, via S. Sofia 62, 95125 Catania (Italy); Montereali, Rosa Maria; Vincenti, Maria Aurora [ENEA C.R. Frascati, Via Enrico Fermi, 45, 00044 Frascati, Roma (Italy)

    2010-09-15T23:59:59.000Z

    We propose a technique for thermal neutron detection, based on a {sup 6}Li converter placed in front of scintillating fibers readout by means of silicon photomultipliers. Such a technique allows building cheap and compact detectors and dosimeters, thus possibly opening new perspectives in terms of granular monitoring of neutron fluxes as well as space-resolved neutron detection.

  18. Thermal neutron shield and method of manufacture

    DOE Patents [OSTI]

    Metzger, Bert Clayton; Brindza, Paul Daniel

    2014-03-04T23:59:59.000Z

    A thermal neutron shield comprising boron shielding panels with a high percentage of the element Boron. The panel is least 46% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of boron shielding panels which includes enriching the pre-cursor mixture with varying grit sizes of Boron Carbide.

  19. Thermal neutron shield and method of manufacture

    DOE Patents [OSTI]

    Brindza, Paul Daniel; Metzger, Bert Clayton

    2013-05-28T23:59:59.000Z

    A thermal neutron shield comprising concrete with a high percentage of the element Boron. The concrete is least 54% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of Boron loaded concrete which includes enriching the concrete mixture with varying grit sizes of Boron Carbide.

  20. Multidimensional thermal structure of magnetized neutron star envelopes

    E-Print Network [OSTI]

    Jeremy S. Heyl; Lars Hernquist

    1998-08-12T23:59:59.000Z

    Recently launched x-ray telescopes have discovered several candidate isolated neutron stars. The thermal radiation from these objects may potentially constrain our understanding of nuclear physics in a realm inaccessible to terrestrial experiments. To translate the observed fluxes from neutron stars into constraints, one needs precise calculations of the heat transfer through the thin insulating envelopes of neutron stars. We describe models of the thermal structure of the envelopes of neutron stars with magnetic fields up to 10^{14} G. Unlike earlier work, we infer the properties of envelope models in two dimensions and precisely account for the quantization of the electron phase space. Both dipole and uniformly magnetized envelopes are considered.

  1. A High Count Rate Beam Monitor for Thermal Neutrons

    SciTech Connect (OSTI)

    Barnett, Amanda [University of Tennessee, Knoxville (UTK); Crow, Lowell [ORNL; Diawara, Yacouba [ORNL; Funk, Loren L [ORNL; Hayward, J P [University of Tennessee, Knoxville (UTK); Menhard, Kocsis [European Synchrotron Radiation Facility (ESRF); Sedov, Vladislav N [ORNL

    2012-01-01T23:59:59.000Z

    Beam monitors are an important diagnostic tool in neutron science facilities. Present beam monitors use either ionization chambers in integration mode, which are slow and have no timing information, or pulse counters which can easily be saturated by high beam intensities. Neutron beam monitors indicate the number of neutrons incident on a scattering sample and allow neutron experimental data to be analyzed even when the source strength varies with time. At high flux neutron scattering facilities, neutron beam monitors with very low efficiency (10-5) are presently selected to keep the counting rate within a feasible range, even when a higher efficiency would improve the counting statistics and yield a better measurement of the incident beam. In this work, we report on a high count rate neutron beam monitor which also offers position sensitivity to provide a beam profile. This beam monitor offers good timing (less than 1 s) in addition to position resolution and will therefore improve the counting statistics at neutron energies up to 10 eV and allow moderator studies. The detector s main characteristics will be presented including its background rate, its count rate capability which is an order of magnitude higher than present counting monitors, and its efficiency for thermal neutrons.

  2. Determination of thermal neutron capture gamma yields.

    E-Print Network [OSTI]

    Harper, Thomas Lawrence

    1969-01-01T23:59:59.000Z

    A method of analysing Ge(Li) thermal neutron capture gamma spectra to obtain total gamma yields has been developed. Tie method determines both the yields from the well resolved gamma peaks in a spectrum as well as the gamma ...

  3. Determination of thermal neutron capture gamma yields

    E-Print Network [OSTI]

    Harper, Thomas Lawrence

    1969-01-01T23:59:59.000Z

    A method of analysing Ge(Li) thermal neutron capture gamma spectra to obtain total gamma yields has been developed. Tie method determines both the yields from the well resolved gamma peaks in a spectrum as well as the gamma ...

  4. Compound Refractive Lenses for Thermal Neutron Applications

    SciTech Connect (OSTI)

    Gary, Charles K.

    2013-11-12T23:59:59.000Z

    This project designed and built compound refractive lenses (CRLs) that are able to focus, collimate and image using thermal neutrons. Neutrons are difficult to manipulate compared to visible light or even x rays; however, CRLs can provide a powerful tool for focusing, collimating and imaging neutrons. Previous neutron CRLs were limited to long focal lengths, small fields of view and poor resolution due to the materials available and manufacturing techniques. By demonstrating a fabrication method that can produce accurate, small features, we have already dramatically improved the focal length of thermal neutron CRLs, and the manufacture of Fresnel lens CRLs that greatly increases the collection area, and thus efficiency, of neutron CRLs. Unlike a single lens, a compound lens is a row of N lenslets that combine to produce an N-fold increase in the refraction of neutrons. While CRLs can be made from a variety of materials, we have chosen to mold Teflon lenses. Teflon has excellent neutron refraction, yet can be molded into nearly arbitrary shapes. We designed, fabricated and tested Teflon CRLs for neutrons. We demonstrated imaging at wavelengths as short as 1.26 ? with large fields of view and achieved resolution finer than 250 ?m which is better than has been previously shown. We have also determined designs for Fresnel CRLs that will greatly improve performance.

  5. Type II superconductivity and magnetic flux transport in neutrons stars

    E-Print Network [OSTI]

    P. B. Jones

    2005-10-13T23:59:59.000Z

    The transition to a type II proton superconductor which is believed to occur in a cooling neutron star is accompanied by changes in the equation of hydrostatic equilibrium and by the formation of proton vortices with quantized magnetic flux. Analysis of the electron Boltzmann equation for this system and of the proton supercurrent distribution formed at the transition leads to the derivation of a simple expression for the transport velocity of magnetic flux in the liquid interior of a neutron star. This shows that flux moves easily as a consequence of the interaction between neutron and proton superfluid vortices during intervals of spin-down or spin-up in binary systems. The differences between the present analysis and those of previous workers are reviewed and an error in the paper of Jones (1991) is corrected.

  6. Imaging of Diesel Particulate Filters using a High-Flux Neutron...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Imaging of Diesel Particulate Filters using a High-Flux Neutron Source Imaging of Diesel Particulate Filters using a High-Flux Neutron Source Detailed images of deposits identified...

  7. Novel Boron Based Multilayer Thermal Neutron Detector

    E-Print Network [OSTI]

    M. SCHIEBER; O. KHAKHAN

    2010-06-09T23:59:59.000Z

    The detector contains four or more layers of natural Boron absorbing thermal neutrons. Thickness of a layer is 0.4 - 1.2 mg/cm2. The layers are deposited on one or on both sides of a metal surface used as contacts. Between the absorbing layers there are gas-filled gaps 3 - 6 mm thick. Electric field of 100 - 200 V/cm is applied to the gas-filled gaps. Natural Boron contains almost 20% of 10B isotope. When atoms of 10B capture a thermal neutron, nuclear reaction occurs, as a result of which two heavy particles - alpha particle and ion 7Li - from the thin absorber layer are emitted in opposing sides. One of the two particles penetrates into gas-filled gap between Boron layers and ionizes the gas. An impulse of electric current is created in the gas-filled gap actuated by the applied electric field. The impulse is registered by an electronic circuit. We have made and tested detectors containing from two to sixteen layers of natural Boron with an efficiency of thermal neutron registration from 2.9% to 12.5% accordingly.

  8. NEUTRON STAR ENVELOPES AND THERMAL RADIATION FROM THE MAGNETIC SURFACE

    E-Print Network [OSTI]

    NEUTRON STAR ENVELOPES AND THERMAL RADIATION FROM THE MAGNETIC SURFACE in: C. Kouveliotou, J. van.Petersburg, Russia Abstract. The thermal structure of neutron star envelopes is discussed with emphasis on analytic on the opacities and the thermal structure is further reviewed in view of the application to pulsar cooling

  9. High Flux Isotope Reactor cold neutron source reference design concept

    SciTech Connect (OSTI)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R. [and others

    1998-05-01T23:59:59.000Z

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  10. Thermal-neutron capture in light nuclei

    SciTech Connect (OSTI)

    Raman, S. [Oak Ridge National Lab., TN (United States); Jurney, E.T.; Lynn, J.E. [Los Alamos National Lab., NM (United States)

    1996-10-01T23:59:59.000Z

    We have made considerable progress toward the goal of carrying out thermal-neutron capture {gamma}-ray measurements on all stable isotopes below A=60. Information processed till now has significantly augmented the existing knowledge on the detailed nuclear level structure of many light nuclides. Most of this knowledge comes from our {gamma}-ray energies, level placements, and branching ratios of secondary transitions between low-lying states. Spectroscopic information is also contained in the cross sections of the primary transitions originating from the capturing state. This is deduced from the success of ``direct`` theories of neutron capture for many nuclides, especially those of light and near closed-shell character. 23 refs, 1 tab, 3 figs.

  11. Thermal neutron capture gamma-rays

    SciTech Connect (OSTI)

    Tuli, J.K.

    1983-01-01T23:59:59.000Z

    The energy and intensity of gamma rays as seen in thermal neutron capture are presented. Only those (n,..cap alpha..), E = thermal, reactions for which the residual nucleus mass number is greater than or equal to 45 are included. These correspond to evaluations published in Nuclear Data Sheets. The publication source data are contained in the Evaluated Nuclear Structure Data File (ENSDF). The data presented here do not involve any additional evaluation. Appendix I lists all the residual nuclides for which the data are included here. Appendix II gives a cumulated index to A-chain evaluations including the year of publication. The capture gamma ray data are given in two tables - the Table 1 is the list of all gamma rays seen in (n,..gamma..) reaction given in the order of increasing energy; the Table II lists the gamma rays according to the nuclide.

  12. High-flux neutron source based on a liquid-lithium target

    SciTech Connect (OSTI)

    Halfon, S. [Soreq NRC, Yavne, 81800 (Israel) and Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Feinberg, G. [Soreq NRC, Yavne, 81800 (Israel) and Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Arenshtam, A.; Berkovits, D.; Kijel, D.; Nagler, A.; Eliyahu, I.; Silverman, I. [Soreq NRC, Yavne, 81800 (Israel)

    2013-04-19T23:59:59.000Z

    A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the {sup 7}Li(p,n){sup 7}Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generate a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.

  13. Methods for absorbing neutrons

    DOE Patents [OSTI]

    Guillen, Donna P. (Idaho Falls, ID); Longhurst, Glen R. (Idaho Falls, ID); Porter, Douglas L. (Idaho Falls, ID); Parry, James R. (Idaho Falls, ID)

    2012-07-24T23:59:59.000Z

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  14. Thermal Neutron Capture y's (CapGam)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Nuclear Data Center (NNDC) presents two tables showing energy and photon intensity with uncertainties of gamma rays as seen in thermal-neutron capture.  One table is organized in ascending order of gamma energy, and the second is organized by Z, A of the target. In the energy-ordered table the three strongest transitions are indicated in each case. The nuclide given is the target nucleus in the capture reaction. The gamma energies given are in keV. The gamma intensities given are relative to 100 for the strongest transition. %I? (per 100 n-captures) for the strongest transition is given, where known. All data are taken from the Evaluated Nuclear Structure Data File (ENSDF), a computer file of evaluated nuclear structure data and from the eXperimental Unevaluated Nuclear Data List (XUNDL). (Specialized Interface)

  15. DIRECT MEASUREMENT OF HEAT FLUX FROM COOLING LAKE THERMAL IMAGERY

    SciTech Connect (OSTI)

    Garrett, A; Eliel Villa-Aleman, E; Robert Kurzeja, R; Malcolm Pendergast, M; Timothy Brown, T; Saleem Salaymeh, S

    2007-12-19T23:59:59.000Z

    Laboratory experiments show a linear relationship between the total heat flux from a water surface to air and the standard deviation of the surface temperature field, {sigma}, derived from thermal images of the water surface over a range of heat fluxes from 400 to 1800 Wm{sup -2}. Thermal imagery and surface data were collected at two power plant cooling lakes to determine if the laboratory relationship between heat flux and {sigma} exists in large heated bodies of water. The heat fluxes computed from the cooling lake data range from 200 to 1400 Wm{sup -2}. The linear relationship between {sigma} and Q is evident in the cooling lake data, but it is necessary to apply band pass filtering to the thermal imagery to remove camera artifacts and non-convective thermal gradients. The correlation between {sigma} and Q is improved if a correction to the measured {sigma} is made that accounts for wind speed effects on the thermal convection. Based on more than a thousand cooling lake images, the correlation coefficients between {sigma} and Q ranged from about 0.8 to 0.9.

  16. Measurement of delayed-neutron yield from {sup 237}Np fission induced by thermal neutrons

    SciTech Connect (OSTI)

    Gundorin, N. A.; Zhdanova, K. V.; Zhuchko, V. E.; Pikelner, L. B., E-mail: plb@nf.jinr.ru; Rebrova, N. V.; Salamatin, I. M.; Smirnov, V. I.; Furman, V. I. [Joint Institute for Nuclear Research (Russian Federation)

    2007-06-15T23:59:59.000Z

    The delayed-neutron yield from thermal-neutron-induced fission of the {sup 237}Np nucleus was measured using a sample periodically exposed to a pulsed neutron beam with subsequent detection of neutrons during the time intervals between pulses. The experiment was realized on an Isomer-M setup mounted in the IBR-2 pulsed reactor channel equipped with a mirror neutron guide. The setup and the experimental procedure are described, the background sources are thoroughly analyzed, and the experimental data are presented. The total delayed-neutron yield from {sup 237}Np fission induced by thermal neutrons is {nu}{sub d} = 0.0110 {+-} 0.0009. This study was performed at the Frank Laboratory of Neutron Physics (JINR, Dubna)

  17. Upper limits on the solar-neutron flux at the Yangbajing neutron monitor from BATSE-detected solar flares

    E-Print Network [OSTI]

    H. Tsuchiya; H. Miyasaka; E. Takahashi; S. Shimoda; Y. Yamada; I. Kondo; K. Makishima; F. Zhu; Y. Tan; H. Hu; Y. Tang; J. Zhang; H. Lu; X. Meng

    2007-03-16T23:59:59.000Z

    The purpose of this work is to search the Yangbajing neutron monitor data obtained between 1998 October and 2000 June for solar neutrons associated with solar flares. Using the onset times of 166 BATSE-detected flares with the GOES peak flux (1 -- 8 \\AA) higher than $1.0 \\times 10^{-5}$ $\\mathrm{Wm^{-2}}$, we prepare for each flare a light curve of the Yangbajing neutron monitor, spanning $\\pm$ 1.5 hours from the BATSE onset time. Based on the light curves, a systematic search for solar neutrons in energies above 100 MeV from the 166 flares was performed. No statistically significant signals due to solar neutrons were found in the present work. Therefore, we put upper limits on the $>$ 100 MeV solar-neutron flux for 18 events consisting of 2 X and 16 M class flares. The calculation assumed a power-law shaped neutron energy spectrum and three types of neutron emission profiles at the Sun. Compared with the other positive neutron detections associated with X-class flares, typical 95% confidence level upper limits for the two X-class flares are found to be comparable to the lowest and second lowest neutron fluxes at the top of the atmosphere.In addition, the upper limits for M-class flares scatter in the range of $10^{-2}$ to 1 neutrons $\\mathrm{cm^{-2}s^{-1}}$. This provides the first upper limits on the solar-neutron flux from M-class solar flares, using space observatories as well as ground-based neutron monitors.

  18. Shift-register coincidence electronics system for thermal neutron counters

    SciTech Connect (OSTI)

    Swansen, J.E.; Collinsworth, P.R.; Krick, M.S.

    1980-04-01T23:59:59.000Z

    An improved shift-register, coincidence-counting logic circuit, developed for use with thermal neutron well counters, is described in detail. A distinguishing feature of the circuit is its ability to operate usefully at neutron counting rates of several hundred kHz. A portable electronics package incorporating the new coincidence logic and support circuits is also described.

  19. Neutron star envelopes and thermal radiation from the magnetic surface

    E-Print Network [OSTI]

    J. Ventura; A. Y. Potekhin

    2001-03-31T23:59:59.000Z

    The thermal structure of neutron star envelopes is discussed with emphasis on analytic results. Recent progress on the effect of chemical constitution and high magnetic fields on the opacities and the thermal structure is further reviewed in view of the application to pulsar cooling and magnetars.

  20. Yields of delayed-neutron groups in thermal-neutron fission of sup 229 Th

    SciTech Connect (OSTI)

    Gudkov, A.N.; Koldobskii, A.B.; Krivasheev, S.V.; Lebedev, N.A.; Pchelin, V.A. (Moscow Engineering-Physics Institute (SU))

    1989-06-01T23:59:59.000Z

    Absolute yields of five delayed-neutron groups in thermal-neutron fission of {sup 229}Th have been determined for the first time. A significant discrepancy is noted between the experimental yields of delayed neutrons of the fourth group and the corresponding theoretical values. From the results of the experimental studies, corrections have been determined for even--odd effects in the charge distributions of the yields of fragment nuclides.

  1. Neutron-flux profile monitor for use in a fission reactor

    DOE Patents [OSTI]

    Kopp, M.K.; Valentine, K.H.

    1981-09-15T23:59:59.000Z

    A neutron flux monitor is provided which consists of a plurality of fission counters arranged as spaced-apart point detectors along a delay line. As a fission event occurs in any one of the counters, two delayed current pulses are generated at the output of the delay line. The time separation of the pulses identifies the counter in which the particular fission event occurred. Neutron flux profiles of reactor cores can be more accurately measured as a result.

  2. Gamma discrimination in pillar structured thermal neutron detectors

    SciTech Connect (OSTI)

    Shao, Q; Radev, R P; Conway, A M; Voss, L F; Wang, T F; Nikolic, R J; Deo, N; Cheung, C L

    2012-03-26T23:59:59.000Z

    Solid-state thermal neutron detectors are desired to replace {sup 3}He tube based technology for the detection of special nuclear materials. {sup 3}He tubes have some issues with stability, sensitivity to microphonics and very recently, a shortage of {sup 3}He. There are numerous solid-state approaches being investigated that utilize various architectures and material combinations. By using the combination of high-aspect-ratio silicon PIN pillars, which are 2 {micro}m wide with a 2 {micro}m separation, arranged in a square matrix, and surrounded by {sup 10}B, the neutron converter material, a high efficiency thermal neutron detector is possible. Besides intrinsic neutron detection efficiency, neutron to gamma discrimination is an important figure of merit for unambiguous signal identification. In this work, theoretical calculations and experimental measurements are conducted to determine the effect of structure design of pillar structured thermal neutron detectors including: intrinsic layer thickness, pillar height, substrate doping and incident gamma energy on neutron to gamma discrimination.

  3. A NOVEL MICROMEGAS DETECTOR FOR IN-CORE NUCLEAR REACTOR NEUTRON FLUX MEASUREMENTS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 A NOVEL MICROMEGAS DETECTOR FOR IN-CORE NUCLEAR REACTOR NEUTRON FLUX MEASUREMENTS S. ANDRIAMONJE Talence Cedex, France Future fast nuclear reactors designed for energy production and transmutation to neutron detection inside nuclear reactor is given. The advantage of this detector over conventional

  4. Optimizing Neutron Thermal Scattering Effects in very High Temperature Reactors

    SciTech Connect (OSTI)

    Hawari, Ayman; Ougouag, Abderrafi

    2014-07-08T23:59:59.000Z

    This project aims to develop a holistic understanding of the phenomenon of neutron thermalization in the VHTR. Neutron thermaliation is dependent on the type and structure of the moderating material. The fact that the moderator (and reflector) in the VHTR is a solid material will introduce new and interesting considerations that do not apply in other (e.g. light water) reactors. The moderator structure is expected to undergo radiation induced changes as the irradiation (or burnup) history progresses. In this case, the induced changes in structure will have a direct impact on many properties including the neutronic behavior. This can be easily anticipated if one recognizes the dependence of neutron thermalization on the scattering law of the moderator. For the pebble bed reactor, it is anticipated that the moderating behavior can be tailored, e.g. using moderators that consist of composite materials, which could allow improved optimization of the moderator-to-fuel ratio.

  5. Three-dimensional boron particle loaded thermal neutron detector

    DOE Patents [OSTI]

    Nikolic, Rebecca J.; Conway, Adam M.; Graff, Robert T.; Kuntz, Joshua D.; Reinhardt, Catherine; Voss, Lars F.; Cheung, Chin Li; Heineck, Daniel

    2014-09-09T23:59:59.000Z

    Three-dimensional boron particle loaded thermal neutron detectors utilize neutron sensitive conversion materials in the form of nano-powders and micro-sized particles, as opposed to thin films, suspensions, paraffin, etc. More specifically, methods to infiltrate, intersperse and embed the neutron nano-powders to form two-dimensional and/or three-dimensional charge sensitive platforms are specified. The use of nano-powders enables conformal contact with the entire charge-collecting structure regardless of its shape or configuration.

  6. Progress on the realization of a new GEM based neutron diagnostic concept for high flux neutron beams

    SciTech Connect (OSTI)

    Croci, G.; Tardocchi, M. [Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, Milano, Italy and INFN, Sez. di Milano-Bicocca, Milano (Italy); Rebai, M.; Cippo, E. Perelli; Gorini, G. [Dipartimento di Fisica, Università degli Studi di Milano-Bicocca, Milano, Italy and INFN, Sez. di Milano-Bicocca, Milano (Italy); Cazzaniga, C. [Dipartimento di Fisica, Università degli Studi di Milano-Bicocca, Milano (Italy); Palma, M. Dalla; Pasqualotto, R.; Tollin, M. [Consorzio RFX - Associazione Euratom-Enea sulla Fusione, Padova (Italy); Grosso, G.; Muraro, A. [Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, Milano (Italy); Murtas, F.; Claps, G. [INFN, Laboratori Nazionali di Frascati, Frascati (Roma) (Italy); Cavenago, M. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova) (Italy)

    2014-08-21T23:59:59.000Z

    Fusion reactors will need high flux neutron detectors to diagnose the deuterium-deuterium and deuterium-tritium. A candidate detection technique is the Gas Electron Multiplier (GEM). New GEM based detectors are being developed for application to a neutral deuterium beam test facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission due to interaction of the deuterium beam with the deuterons implanted in the beam dump surface. This is done by placing a detector in close contact, right behind the dump. CNESM uses nGEM detectors, i.e. GEM detectors equipped with a cathode that also serves as neutron-proton converter foil. After the realization and test of several small area prototypes, a full size prototype has been realized and tested with laboratory sources. Test on neutron beams are foreseen for the next months.

  7. Response of neutron-irradiated RPV steels to thermal annealing

    SciTech Connect (OSTI)

    Iskander, S.K.; Sokolov, M.A.; Nanstad, R.K.

    1997-03-01T23:59:59.000Z

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPVs) is to thermally anneal them to restore the fracture toughness properties that have been degraded by neutron irradiation. This paper summarizes experimental results of work performed at the Oak Ridge National Laboratory (ORNL) to study the annealing response of several irradiated RPV steels.

  8. Thermal structure and cooling of neutron stars with magnetized envelopes

    E-Print Network [OSTI]

    A. Y. Potekhin; D. G. Yakovlev

    2001-06-19T23:59:59.000Z

    The thermal structure of neutron stars with magnetized envelopes is studied using modern physics input. The relation between the internal (T_i) and local surface temperatures is calculated and fitted by analytic expressions for magnetic field strengths B from 0 to 10^{16} G and arbitrary inclination of the field lines to the surface. The luminosity of a neutron star with dipole magnetic field is calculated and fitted as a function of B, T_i, stellar mass and radius. In addition, we simulate cooling of neutron stars with magnetized envelopes. In particular, we analyse ultramagnetized envelopes of magnetars and also the effects of the magnetic field of the Vela pulsar on the determination of critical temperatures of neutron and proton superfluids in its core.

  9. Spin diffusive modes and thermal transport in neutron star crusts

    E-Print Network [OSTI]

    Sedrakian, Armen

    2015-01-01T23:59:59.000Z

    In this contribution we first review a method for obtaining the collective modes of pair-correlated neutron matter as found in a neutron star inner crust. We discuss two classes of modes corresponding to density and spin perturbations with energy spectra $\\omega = \\omega_0 + \\alpha q^2$, where $\\omega_0 = 2\\Delta$ is the threshold frequency and $\\Delta$ is the gap in the neutron fluid spectrum. For characteristic values of Landau parameters in neutron star crusts the exitonic density modes have $\\alpha 0$ and they exist above $\\omega_0$ which implies that these modes are damped. As an application of these findings we compute the thermal conductivity due to spin diffusive modes and show that it scales as $T^{1/2} \\exp(-2\\omega_0/T)$ in the case where their two-by-two scattering cross-section is weakly dependent on temperature.

  10. Fabrication and Characterization of a Conduction Cooled Thermal Neutron Filter

    SciTech Connect (OSTI)

    Heather Wampler; Adam Gerth; Heng Ban; Donna Post Guillen; Douglas Porter; Cynthia Papesch

    2010-06-01T23:59:59.000Z

    Installation of a conduction cooled thermal (low-energy) neutron filter in an existing domestic test reactor would provide the U.S. the capability to test new reactor fuels and materials for advanced fast (high-energy) reactor concepts. A composite consisting of Al3Hf-Al has been proposed for the neutron filter due to both the neutron filtering properties of hafnium and the conducting capabilities of aluminum. Knowledge of the thermal conductivity of the Al3Hf-Al composite is essential for the design of the filtering system. The present objectives are to identify a suitable fabrication technique and to measure the thermophysical properties of the Al3Hf intermetallic, which has not been done previous to this study. A centrifugal casting method was used to prepare samples of Al3Hf. X-ray diffraction and Rietveld analysis were conducted to determine the structural make-up of each of the samples. Thermophysical properties were measured as follows: specific heat by a differential scanning calorimeter (DSC), thermal diffusivity by a laser flash thermal diffusivity measuring system, thermal expansion by a dilatometer, and thermal conductivity was calculated based on the previous measurements. All measurements were acquired over a temperature range of 90°C - 375°C with some measurements outside these bounds. The average thermal conductivity of the intermetallic Al3Hf (~7 at.% Hf) was found to be ~ 41 W/m-K for the given temperature range. This information fills a knowledge gap in the thermophysical properties of the intermetallic Al3Hf with the specified percentage of hafnium. A model designed to predict composite properties was used to calculate a thermal conductivity of ~177 W/m-K for an Al3Hf-Al composite with 23 vol% Al3Hf. This calculation was based upon the average thermal conductivity of Al3Hf over the specified temperature range.

  11. Defect annealing and thermal desorption of deuterium in low dose HFIR neutron-irradiated tungsten

    SciTech Connect (OSTI)

    Masashi Shimada; M. Hara; T. Otsuka; Y. Oya; Y. Hatano

    2014-05-01T23:59:59.000Z

    Accurately estimating tritium retention in plasma facing components (PFCs) and minimizing its uncertainty are key safety issues for licensing future fusion power reactors. D-T fusion reactions produce 14.1 MeV neutrons that activate PFCs and create radiation defects throughout the bulk of the material of these components. Recent studies show that tritium migrates and is trapped in bulk (>> 10 µm) tungsten beyond the detection range of nuclear reaction analysis technique [1-2], and thermal desorption spectroscopy (TDS) technique becomes the only established diagnostic that can reveal hydrogen isotope behavior in in bulk (>> 10 µm) tungsten. Radiation damage and its recovery mechanisms in neutron-irradiated tungsten are still poorly understood, and neutron-irradiation data of tungsten is very limited. In this paper, systematic investigations with repeated plasma exposures and thermal desorption are performed to study defect annealing and thermal desorption of deuterium in low dose neutron-irradiated tungsten. Three tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) irradiated at High Flux Isotope Reactor at Oak Ridge National Laboratory were exposed to high flux (ion flux of (0.5-1.0)x1022 m-2s-1 and ion fluence of 1x1026 m-2) deuterium plasma at three different temperatures (100, 200, and 500 °C) in Tritium Plasma Experiment at Idaho National Laboratory. Subsequently, thermal desorption spectroscopy (TDS) was performed with a ramp rate of 10 °C/min up to 900 °C, and the samples were annealed at 900 °C for 0.5 hour. These procedures were repeated three (for 100 and 200 °C samples) and four (for 500 °C sample) times to uncover damage recovery mechanisms and its effects on deuterium behavior. The results show that deuterium retention decreases approximately 90, 75, and 66 % for 100, 200, and 500 °C, respectively after each annealing. When subjected to the same TDS recipe, the desorption temperature shifts from 800 °C to 600 °C after 1st annealing for the sample exposed to TPE at 500 °C. Tritium Migration Analysis Program (TMAP) analysis reveals that the detrapping energy decreases from 1.8 eV to 1.4 eV, indicating the changes in trapping mechanisms. This paper also summarizes deuterium behavior studies in HFIR neutron-irradiated tungsten under US-Japan TITAN program.

  12. Design and optimization of a high thermal flux research reactor via Kriging-based algorithm

    E-Print Network [OSTI]

    Kempf, Stephanie Anne

    2011-01-01T23:59:59.000Z

    In response to increasing demands for the services of research reactors, a 5 MW LEU-fueled research reactor core is developed and optimized to provide high thermal flux within specified limits upon thermal hydraulic ...

  13. Spallation-neutron sources

    SciTech Connect (OSTI)

    Michaudon, A.

    1997-09-01T23:59:59.000Z

    Of particular interest for neutron-physics studies are spallation-neutron sources (SNSs) using intense proton beams with energies in the GeV range. Some SNSs already provide average fluxes of thermal and cold neutrons comparable with those of high-flux reactors. Most SNSs are pulsed with high peak fluxes that can be used with the powerful time-of-flight (TOF) method. Also, SNSs could be developed to much higher performance.

  14. The effect of craters on the lunar neutron flux

    E-Print Network [OSTI]

    Eke, V R; Diserens, S; Ryder, M; Yeomans, P E L; Teodoro, L F A; Elphic, R C; Feldman, W C; Hermalyn, B; Lavelle, C M; Lawrence, D J

    2015-01-01T23:59:59.000Z

    The variation of remotely sensed neutron count rates is measured as a function of cratercentric distance using data from the Lunar Prospector Neutron Spectrometer. The count rate, stacked over many craters, peaks over the crater centre, has a minimum near the crater rim and at larger distances it increases to a mean value that is up to 1% lower than the mean count rate observed over the crater. A simple model is presented, based upon an analytical topographical profile for the stacked craters fitted to data from the Lunar Orbiter Laser Altimeter (LOLA). The effect of topography coupled with neutron beaming from the surface largely reproduces the observed count rate profiles. However, a model that better fits the observations can be found by including the additional freedom to increase the neutron emissivity of the crater area by ~0.35% relative to the unperturbed surface. It is unclear what might give rise to this effect, but it may relate to additional surface roughness in the vicinities of craters. The ampl...

  15. Method for manufacturing solid-state thermal neutron detectors with simultaneous high thermal neutron detection efficiency (>50%) and neutron to gamma discrimination (>1.0E4)

    DOE Patents [OSTI]

    Nikolic, Rebecca J.; Conway, Adam M.; Heineck, Daniel; Voss, Lars F.; Wang, Tzu Fang; Shao, Qinghui

    2013-10-15T23:59:59.000Z

    Methods for manufacturing solid-state thermal neutron detectors with simultaneous high thermal neutron detection efficiency (>50%) and neutron to gamma discrimination (>10.sup.4) are provided. A structure is provided that includes a p+ region on a first side of an intrinsic region and an n+ region on a second side of the intrinsic region. The thickness of the intrinsic region is minimized to achieve a desired gamma discrimination factor of at least 1.0E+04. Material is removed from one of the p+ region or the n+ region and into the intrinsic layer to produce pillars with open space between each pillar. The open space is filed with a neutron sensitive material. An electrode is placed in contact with the pillars and another electrode is placed in contact with the side that is opposite of the intrinsic layer with respect to the first electrode.

  16. Accurate Development of Thermal Neutron Scattering Cross Section Libraries

    SciTech Connect (OSTI)

    Hawari, Ayman; Dunn, Michael

    2014-06-10T23:59:59.000Z

    The objective of this project is to develop a holistic (fundamental and accurate) approach for generating thermal neutron scattering cross section libraries for a collection of important enutron moderators and reflectors. The primary components of this approach are the physcial accuracy and completeness of the generated data libraries. Consequently, for the first time, thermal neutron scattering cross section data libraries will be generated that are based on accurate theoretical models, that are carefully benchmarked against experimental and computational data, and that contain complete covariance information that can be used in propagating the data uncertainties through the various components of the nuclear design and execution process. To achieve this objective, computational and experimental investigations will be performed on a carefully selected subset of materials that play a key role in all stages of the nuclear fuel cycle.

  17. High Flux Isotope Reactor | Neutron Science at ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are here ‹FIRST CenterAboutHigh Flux

  18. Heat Flux Manipulation with Engineered Thermal Materials Supradeep Narayana and Yuki Sato

    E-Print Network [OSTI]

    Sato, Yuki

    Heat Flux Manipulation with Engineered Thermal Materials Supradeep Narayana and Yuki Sato and constructed a new class of artificial materials for thermal conduction. We show that an engineered material materials. We demonstrate this concept by engineer- ing a new class of artificial material for thermal

  19. Thermal Neutron Detectors with Discrete Anode Pad Readout

    SciTech Connect (OSTI)

    Yu,B.; Schaknowski, N.A., Smith, G.C., DeGeronimo, G., Vernon, E.O.

    2008-10-19T23:59:59.000Z

    A new two-dimensional thermal neutron detector concept that is capable of very high rates is being developed. It is based on neutron conversion in {sup 3}He in an ionization chamber (unity gas gain) that uses only a cathode and anode plane; there is no additional electrode such as a Frisch grid. The cathode is simply the entrance window, and the anode plane is composed of discrete pads, each with their own readout electronics implemented via application specific integrated circuits. The aim is to provide a new generation of detectors with key characteristics that are superior to existing techniques, such as higher count rate capability, better stability, lower sensitivity to background radiation, and more flexible geometries. Such capabilities will improve the performance of neutron scattering instruments at major neutron user facilities. In this paper, we report on progress with the development of a prototype device that has 48 x 48 anode pads and a sensitive area of 24cm x 24cm.

  20. Wide dynamic range neutron flux monitor having fast time response for the Large Helical Device

    SciTech Connect (OSTI)

    Isobe, M., E-mail: isobe@nifs.ac.jp; Takeiri, Y. [National Institute for Fusion Science, Toki 509-5292 (Japan); Department of Fusion Science, The Graduate University for Advanced Studies, Toki 509-5292 (Japan); Ogawa, K.; Miyake, H.; Hayashi, H.; Kobuchi, T. [National Institute for Fusion Science, Toki 509-5292 (Japan); Nakano, Y.; Watanabe, K.; Uritani, A. [Department of Materials, Physics and Energy Engineering, Nagoya University, Nagoya 464-8603 (Japan); Misawa, T. [Kyoto University Research Reactor Institute, Kumatori 590-0494 (Japan); Nishitani, T. [Japan Atomic Energy Agency, Rokkasho 039-3212 (Japan); Tomitaka, M.; Kumagai, T.; Mashiyama, Y.; Ito, D.; Kono, S. [Toshiba Corporation, Fuchu 183-8511 (Japan); Yamauchi, M. [Toshiba Nuclear Engineering Services Corporation, Yokohama 235-8523 (Japan)

    2014-11-15T23:59:59.000Z

    A fast time response, wide dynamic range neutron flux monitor has been developed toward the LHD deuterium operation by using leading-edge signal processing technologies providing maximum counting rate up to ?5 × 10{sup 9} counts/s. Because a maximum total neutron emission rate over 1 × 10{sup 16} n/s is predicted in neutral beam-heated LHD plasmas, fast response and wide dynamic range capabilities of the system are essential. Preliminary tests have demonstrated successful performance as a wide dynamic range monitor along the design.

  1. Measurement of Neutron and Muon Fluxes 100~m Underground with the SciBath Detector

    SciTech Connect (OSTI)

    Garrison, Lance

    2014-01-01T23:59:59.000Z

    The SciBath detector is an 80 liter liquid scintillator detector read out by a three dimensional grid of 768 wavelength-shifting fibers. Initially conceived as a fine-grained charged particle detector for neutrino studies that could image charged particle tracks in all directions, it is also sensitive to fast neutrons (15-200 MeV). In fall of 2011 the apparatus performed a three month run to measure cosmic-induced muons and neutrons 100~meters underground in the FNAL MINOS near-detector area. Data from this run has been analyzed and resulted in measurements of the cosmic muon flux as \

  2. Fiber optic thermal/fast neutron and gamma ray scintillation detector

    DOE Patents [OSTI]

    Neal, John S.; Mihalczo, John T.

    2006-11-28T23:59:59.000Z

    A detector system that combines a .sup.6Li loaded glass fiber scintillation thermal neutron detector with a fast scintillation detector in a single layered structure. Detection of thermal and fast neutrons and ionizing electromagnetic radiation is achieved in the unified detector structure. The fast scintillator replaces the polyethelene moderator layer adjacent the .sup.6Li loaded glass fiber panel of the neutron detector and acts as the moderator for the glass fibers. Fast neutrons, x-rays and gamma rays are detected in the fast scintillator. Thermal neutrons, x-rays and gamma rays are detected in the glass fiber scintillator.

  3. Neutron superfluidity in strongly magnetic interiors of neutron stars and its effect on thermal evolution

    E-Print Network [OSTI]

    Ch. Schaab; F. Weber; M. K. Weigel

    1998-04-20T23:59:59.000Z

    The possibility of a neutron m=2-superfluid in the interior of neutron stars is investigated. This pairing state is energetically favoured in strong magnetic fields ($H\\sim 10^{16}-10^{17}$ G). Because of the node in the angular-dependent energy gap along the field direction the neutrino emissivity is only suppressed polynomially as function in $T/T_{c}$ instead of exponentially, as it is obtained for a nodeless pairing state. The effect of this pairing state on the thermal evolution of neutron stars is studied, and its outcome is compared with the evolution of ``normal'', i.e. nodeless, superfluid and non-superfluid neutron stars, and also with observations. We find that particularly the predicted surface temperatures of the enhanced cooling scenario considerably change and come into agreement with temperatures deduced from observational data within the hydrogen atmosphere model. Furthermore the surface temperature depends on the magnetic field strength as an additional parameter aside from the neutron star mass. The latter is however only operative in the case of the intermediate cooling scenario.

  4. Feasibility study for measurement of insulation compaction in the cryogenic rocket fuel storage tanks at Kennedy Space Center by fast/thermal neutron techniques

    SciTech Connect (OSTI)

    Livingston, R. A. [Materials Science and Engineering Dept., U. of Maryland, College Park, MD (United States); Schweitzer, J. S. [Physics Dept., U. of Connecticut, Storrs (United States); Parsons, A. M. [Goddard Space Flight Center, Greenbelt (United States); Arens, E. E. [John F. Kennedy Space Center, FL (United States)

    2014-02-18T23:59:59.000Z

    The liquid hydrogen and oxygen cryogenic storage tanks at John F. Kennedy Space Center (KSC) use expanded perlite as thermal insulation. Some of the perlite may have compacted over time, compromising the thermal performance and also the structural integrity of the tanks. Neutrons can readily penetrate through the 1.75 cm outer steel shell and through the entire 120 cm thick perlite zone. Neutrons interactions with materials produce characteristic gamma rays which are then detected. In compacted perlite the count rates in the individual peaks in the gamma ray spectrum will increase. Portable neutron generators can produce neutron simultaneous fluxes in two energy ranges: fast (14 MeV) and thermal (25 meV). Fast neutrons produce gamma rays by inelastic scattering which is sensitive to Si, Al, Fe and O. Thermal neutrons produce gamma rays by radiative capture in prompt gamma neutron activation (PGNA), which is sensitive to Si, Al, Na, K and H among others. The results of computer simulations using the software MCNP and measurements on a test article suggest that the most promising approach would be to operate the system in time-of-flight mode by pulsing the neutron generator and observing the subsequent die away curve in the PGNA signal.

  5. Neutronic Analysis of an Advanced Fuel Design Concept for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Xoubi, Ned [ORNL; Primm, Trent [ORNL; Maldonado, G. Ivan [University of Tennessee, Knoxville (UTK)

    2009-01-01T23:59:59.000Z

    This study presents the neutronic analysis of an advanced fuel design concept for the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) that could significantly extend the current fuel cycle length under the existing design and safety criteria. A key advantage of the fuel design herein proposed is that it would not require structural changes to the present HFIR core, in other words, maintaining the same rated power and fuel geometry (i.e., fuel plate thickness and coolant channel dimensions). Of particular practical importance, as well, is the fact that the proposed change could be justified within the bounds of the existing nuclear safety basis. The simulations herein reported employed transport theory-based and exposure-dependent eigenvalue characterization to help improve the prediction of key fuel cycle parameters. These parameters were estimated by coupling a benchmarked three-dimensional MCNP5 model of the HFIR core to the depletion code ORIGEN via the MONTEBURNS interface. The design of an advanced HFIR core with an improved fuel loading is an idea that evolved from early studies by R. D. Cheverton, formerly of ORNL. This study contrasts a modified and increased core loading of 12 kg of 235U against the current core loading of 9.4 kg. The simulations performed predict a cycle length of 39 days for the proposed fuel design, which represents a 50% increase in the cycle length in response to a 25% increase in fissile loading, with an average fuel burnup increase of {approx}23%. The results suggest that the excess reactivity can be controlled with the present design and arrangement of control elements throughout the core's life. Also, the new power distribution is comparable or even improved relative to the current power distribution, displaying lower peak to average fission rate densities across the inner fuel element's centerline and bottom cells. In fact, the fission rate density in the outer fuel element also decreased at these key locations for the proposed design. Overall, it is estimated that the advanced core design could increase the availability of the HFIR facility by {approx}50% and generate {approx}33% more neutrons annually, which is expected to yield sizeable savings during the remaining life of HFIR, currently expected to operate through 2014. This study emphasizes the neutronics evaluation of a new fuel design. Although a number of other performance parameters of the proposed design check favorably against the current design, and most of the core design features remain identical to the reference, it is acknowledged that additional evaluations would be required to fully justify the thermal-hydraulic and thermal-mechanical performance of a new fuel design, including checks for cladding corrosion performance as well as for industrial and economic feasibility.

  6. Neutron and X-ray experiments at high temperature P. Aldebert (*)

    E-Print Network [OSTI]

    Boyer, Edmond

    neutron scattering have appeared as power- ful tools to get information, mainly structural temperature scattering devices compared to X-rays. At the present time thermal neutron high flux reactors be investigated by neutron scattering.

  7. Neutron-Deuteron System and Photon Polarization Parameter at Thermal Neutron Energies

    E-Print Network [OSTI]

    H. Sadeghi

    2007-04-28T23:59:59.000Z

    Effective Field Theory(EFT) is, the unique, model independent and systematic low-energy version of QCD for processes involving momenta below the pion mass. A low-energy photo-nuclear observable in three-body systems, photon polarization parameter at thermal neutron energies is calculated by using pionless EFT up to next-to-next to leading order(N$^2$LO). In order to make a comparative study of this model, we compared our results for photon polarization parameter with the realistic Argonne $v_{18}$ two-nucleon and Urbana IX or Tucson-Melbourne three-nucleon interactions. Three-body currents give small but significant contributions to some of the observables in the neutron-deuteron radiative capture cross section at thermal neutron energies. In this formalism the three-nucleon forces are needed up to N$^2$LO for cut-off independent results. Our result converges order by order in low energy expansion and also cut-off independent at this order.

  8. Thermal-neutron capture gamma-rays. Volume 1

    SciTech Connect (OSTI)

    Tuli, J.K. [National Nuclear Data Center, Upton, NY (United States)

    1997-05-01T23:59:59.000Z

    The energy and photon intensity of gamma rays as seen in thermal-neutron capture are presented in ascending order of gamma energy. All those gamma-rays with intensity of {ge} 2% of the strongest transition are included. The two strongest transitions seen for the target nuclide are indicated in each case. Where the target nuclide mass number is indicated as nat the natural target was used. The gamma energies given are in keV. The gamma intensities given are relative to 100 for the strongest transition. All data for A > 44 are taken from Evaluated Nuclear Structure Data File (4/97), a computer file of evaluated nuclear structure data maintained by the National Nuclear Data Center, Brookhaven National Laboratory, on behalf of the Nuclear Structure and Decay and Decay Data network, coordinated by the International Atomic Energy Agency, Vienna. These data are published in Nuclear Data Sheets, Academic Press, San Diego, CA. The data for A {le} 44 is taken from ``Prompt Gamma Rays from Thermal-Neutron Capture,`` M.A. Lone, R.A. Leavitt, D.A. Harrison, Atomic Data and Nuclear Data Tables 26, 511 (1981).

  9. Awareness, Preference, Utilization, and Messaging Research for the Spallation Neutron Source and High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Bryant, Rebecca [Bryant Research, LLC; Kszos, Lynn A [ORNL

    2011-03-01T23:59:59.000Z

    Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world, and the SNS is one of the world's most intense pulsed neutron beams. Management of these two resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD commissioned this survey research to develop baseline information regarding awareness of and perceptions about neutron science. Specific areas of investigative interest include the following: (1) awareness levels among those in the scientific community about the two neutron sources that ORNL offers; (2) the level of understanding members of various scientific communities have regarding benefits that neutron scattering techniques offer; and (3) any perceptions that negatively impact utilization of the facilities. NScD leadership identified users of two light sources in North America - the Advanced Photon Source (APS) at Argonne National Laboratory and the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory - as key publics. Given the type of research in which these scientists engage, they would quite likely benefit from including the neutron techniques available at SNS and HFIR among their scientific investigation tools. The objective of the survey of users of APS, NSLS, SNS, and HFIR was to explore awareness of and perceptions regarding SNS and HFIR among those in selected scientific communities. Perceptions of SNS and FHIR will provide a foundation for strategic communication plan development and for developing key educational messages. The survey was conducted in two phases. The first phase included qualitative methods of (1) key stakeholder meetings; (2) online interviews with user administrators of APS and NSLS; and (3) one-on-one interviews and traditional and online focus groups with scientists. The latter include SNS, HFIR, and APS users as well as scientists at ORNL, some of whom had not yet used HFIR and/or SNS. These approaches informed development of the second phase, a quantitative online survey. The survey consisted of 16 questions and 7 demographic categorizations, 9 open-ended queries, and 153 pre-coded variables and took an average time of 18 minutes to complete. The survey was sent to 589 SNS/HFIR users, 1,819 NSLS users, and 2,587 APS users. A total of 899 individuals provided responses for this study: 240 from NSLS; 136 from SNS/HFIR; and 523 from APS. The overall response rate was 18%.

  10. Yield of delayed neutrons in the thermal-neutron-induced reaction {sup 245}Cm(n, f)

    SciTech Connect (OSTI)

    Andrianov, V. R. [Joint Institute for Nuclear Research (Russian Federation); Vyachin, V. N. [All-Russia Scientific Research Institute of Experimental Physics (VNIIEF) (Russian Federation); Gundorin, N. A. [Joint Institute for Nuclear Research (Russian Federation); Druzhinin, A. A. [All-Russia Scientific Research Institute of Experimental Physics (VNIIEF) (Russian Federation); Zhdanova, K. V.; Lihachev, A. N.; Pikelner, L. B.; Rebrova, N. V.; Salamatin, I. M.; Furman, V. I. [Joint Institute for Nuclear Research (Russian Federation)

    2008-10-15T23:59:59.000Z

    The yield of delayed neutrons, v{sub d}, from thermal-neutron-induced fission of {sup 245}Cm is measured. Experiments aimed at studying the properties of delayed neutrons from the fission of some reactor isotopes and initiated in 1997 were continued at the upgraded Isomer-M facility by a method according to which a periodic irradiation of a sample with a pulsed neutron beam from the IBR-2 reactor was accompanied by recording emitted neutrons in the intervals between the pulses. The accuracy of the resulting total delayed-neutron yield v{sub d} = (0.64 {+-} 0.02)% is two times higher than that in previous measurements. This work was performed at the Frank Laboratory of Neutron Physics at the Joint Institute for Nuclear Research (JINR, Dubna).

  11. Spin-dependent scattering and absorption of thermal neutrons on dynamically polarized nuclei

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    957 Spin-dependent scattering and absorption of thermal neutrons on dynamically polarized nuclei H neutrons and polarized nuclei have been used to measure spin-dependent scattering lengths and absorption cross sections of slow (S-wave) neutrons on nuclei. In order to obtain those scattering lengths

  12. Characterization of a Li-6 loaded liquid organic scintillator for fast neutron spectrometry and thermal neutron detection

    E-Print Network [OSTI]

    C. D. Bass; E. J. Beise; H. Breuer; C. R. Heimbach; T. Langford; J. S. Nico

    2013-02-07T23:59:59.000Z

    The characterization of a liquid scintillator incorporating an aqueous solution of enriched lithium chloride to produce a scintillator with 0.40% Li-6 is presented, including the performance of the scintillator in terms of its optical properties and neutron response. The scintillator was incorporated into a fast neutron spectrometer, and the light output spectra from 2.5 MeV, 14.1 MeV, and Cf-252 neutrons were measured using capture-gated coincidence techniques. The spectrometer was operated without coincidence to perform thermal neutron measurements. Possible improvements in spectrometer performance are discussed.

  13. Thermal Neutron Computed Tomography of Soil Water and Plant Roots

    E-Print Network [OSTI]

    Leanne G. Tumlinson; Hungyuan Liu; Wendy K. Silk; Jan W. Hopmans

    2007-01-01T23:59:59.000Z

    2000. 3D neutron computed tomography: Requirements and2002. Using x-ray computed tomography in hydrology: Systems,of neutron computed tomography in the geosciences. Nucl.

  14. Effects of neutron flux and irradiation temperature on irradiation embrittlement of A533B steels

    SciTech Connect (OSTI)

    Suzuki, Masahide; Onizawa, Kunio; Kizaki, Minoru [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    1996-12-31T23:59:59.000Z

    Irradiation embrittlement of A533B steels with low copper contents were investigated from the point of dose rate and irradiation temperature effects. Change of neutron flux in the range from {minus}10{sup 12} to {minus}10{sup 13} n/cm{sup 2}/s (E > 1 MeV) did not have a significant effect on the embrittlement. Irradiation temperature change of 1 C resulted in the transition temperature shift ({Delta}T{sub 41J}) of about 1 C and yield stress change ({Delta}{sigma}{sub y}) of about 0.8 MPa. Factors that might affect the embrittlement of low copper steels are also discussed.

  15. Quantitative imaging of freezing at the millimeter scale using neutron radiography

    E-Print Network [OSTI]

    Deinert, Mark

    is capable of 1.1 MW steady state power. The thermal neutron imaging facility is located on a tangential to stay below regulatory limits. The beam port flux increases proportionally with reactor power neutron beam port in which the thermal neutron flux at 500 kW steady state operation has been previously

  16. Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574-4600. Proposals for beam time at Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR)

    E-Print Network [OSTI]

    Pennycook, Steve

    Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574-4600. Proposals for beam Wildgruber, wildgrubercu@ornl.gov. VISION CallforProposals neutrons.ornl.gov Neutron Scattering Science - Oak time at Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR) and Spallation Neutron Source

  17. Fiber optic thermal/fast neutron and gamma ray scintillation detector

    DOE Patents [OSTI]

    Neal, John S. (Knoxville, TN); Mihalczo, John T (Oak Ridge, TN)

    2007-10-30T23:59:59.000Z

    A system for detecting fissile and fissionable material originating external to the system includes: a .sup.6Li loaded glass fiber scintillator for detecting thermal neutrons, x-rays and gamma rays; a fast scintillator for detecting fast neutrons, x-rays and gamma rays, the fast scintillator conjoined with the glass fiber scintillator such that the fast scintillator moderates fast neutrons prior to their detection as thermal neutrons by the glass fiber scintillator; and a coincidence detection system for processing the time distributions of arriving signals from the scintillators.

  18. Thermal and Electric Conductivities of Coulomb Crystals in the Inner Crust of a Neutron Star

    E-Print Network [OSTI]

    D. A. Baiko; D. G. Yakovlev

    1996-04-28T23:59:59.000Z

    Thermal and electric conductivities of relativistic degenerate electrons are calculated for the case when electrons scatter by phonons in Coulomb crystals made of spherical finite--size nuclei at densities $10^{11}$~g/cm$^3 neutron star. In combination with the results of the previous article (for lower $\\rho$), simple unified fits are obtained which describe the kinetic coefficients in the range $10^3$~g/cm$^3 neutron stars and evolution of their magnetic fields. The difference between the kinetic coefficients in the neutron star crust composed of ground state and accreted matters is analyzed. Thermal drift of the magnetic field in the neutron star crust is discussed.

  19. THERMAL STRUCTURE AND COOLING OF SUPERFLUID NEUTRON STARS WITH ACCRETED MAGNETIZED ENVELOPES

    E-Print Network [OSTI]

    THERMAL STRUCTURE AND COOLING OF SUPERFLUID NEUTRON STARS WITH ACCRETED MAGNETIZED ENVELOPES envelopes composed of accreted material, using updated thermal conductivities of plasmas in quantizing is determined by the equation of state (EOS) and thermal conductivity of matter in the heat-blanketing envelope

  20. THERMAL STRUCTURE AND COOLING OF SUPERFLUID NEUTRON STARS WITH ACCRETED MAGNETIZED ENVELOPES

    E-Print Network [OSTI]

    THERMAL STRUCTURE AND COOLING OF SUPERFLUID NEUTRON STARS WITH ACCRETED MAGNETIZED ENVELOPES envelopes composed of accreted material, using updated thermal conductivities of plasmas in quantizing is determined by the equation of state (EOS) and thermal conductivity of matter in the heat­blanketing envelope

  1. Characterization of a Li-6 loaded liquid organic scintillator for fast neutron spectrometry and thermal neutron detection

    E-Print Network [OSTI]

    Bass, C D; Breuer, H; Heimbach, C R; Langford, T; Nico, J S

    2012-01-01T23:59:59.000Z

    We present the characterization of a liquid scintillator incorporating an aqueous solution of enriched lithium chloride to produce a scintillator with 0.40% Li-6. We report on its performance in terms of optical properties and neutron response. We incorporated the scintillator into a spectrometer and measured the light output spectra from 2.5 MeV, 14 MeV, and Cf-252 neutrons using capture-gated coincidence techniques. We operated the spectrometer without coincidence to perform thermal neutron measurements. We discuss possible improvements in spectrometer performance.

  2. Thermalization and Isotropization of Color-Electric Flux Tubes

    E-Print Network [OSTI]

    M. Ruggieri; A. Puglisi; L. Oliva; S. Plumari; F. Scardina; V. Greco

    2015-05-29T23:59:59.000Z

    In this study we model early times dynamics of the system produced in relativistic heavy ion collisions by an initial color electric field which then decays to a plasma by the Schwinger mechanism, coupling the dynamical evolution of the initial color field to the dynamics of the many particles system produced by the decay. The latter is described by relativistic kinetic theory in which we fix the ratio $\\eta/s$ rather than insisting on specific microscopic processes. We study isotropization and thermalization of the system produced by the field decay for a static box and for a $1+1$D expanding geometry. We find that regardless of the viscosity of the produced plasma, the initial color electric field decays within $1$ fm/c; however in the case $\\eta/s$ is large, oscillations of the field are effective along all the entire time evolution of the system, which affect the late times evolution of the ratio between longitudinal and transverse pressure. In case of small $\\eta/s$ ($\\eta/s\\lesssim0.3$) we find $\\tau_{isotropization}\\approx 0.8$ fm/c and $\\tau_{thermalization}\\approx 1$ fm/c in agreement with the common lore of hydrodynamics. Moreover we have investigated the effect of turning from the relaxation time approximation to the Chapman-Enskog one: we find that this improvement affects mainly the early times evolution of the physical quantities, the effect being milder in the late times evolution.

  3. NEUTRONIC AND THERMAL HYDRAULIC DESIGNS OF ANNULAR FUEL FOR HIGH POWER DENSITY BWRS

    E-Print Network [OSTI]

    Morra, P.

    As a promising new fuel for high power density light water reactors, the feasibility of using annular fuel for BWR services is explored from both thermal hydraulic and neutronic points of view. Keeping the bundle size ...

  4. Analysis of the OECD/NRC BWR Turbine Trip Transient Benchmark with the Coupled Thermal-Hydraulics and Neutronics Code TRAC-M/PARCS

    SciTech Connect (OSTI)

    Lee, Deokjung [Purdue University (United States); Downar, Thomas J. [Purdue University (United States); Ulses, Anthony [U.S. Nuclear Regulatory Commission (United States); Akdeniz, Bedirhan [Pennsylvania State University (United States); Ivanov, Kostadin N. [Pennsylvania State University (United States)

    2004-10-15T23:59:59.000Z

    An analysis of the Peach Bottom Unit 2 Turbine Trip 2 (TT2) experiment has been performed using the U.S. Nuclear Regulatory Commission coupled thermal-hydraulics and neutronics code TRAC-M/PARCS. The objective of the analysis was to assess the performance of TRAC-M/PARCS on a BWR transient with significance in two-phase flow and spatial variations of the neutron flux. TRAC-M/PARCS results are found to be in good agreement with measured plant data for both steady-state and transient phases of the benchmark. Additional analyses of four fictitious extreme scenarios are performed to provide a basis for code-to-code comparisons and comprehensive testing of the thermal-hydraulics/neutronics coupling. The obtained results of sensitivity studies on the effect of direct moderator heating on transient simulation indicate the importance of this modeling aspect.

  5. Event-by-event study of neutron observables in spontaneous and thermal fission

    E-Print Network [OSTI]

    R. Vogt; J. Randrup

    2011-09-17T23:59:59.000Z

    The event-by-event fission model FREYA is extended to spontaneous fission of actinides and a variety of neutron observables are studied for spontaneous fission and fission induced by thermal neutrons with a view towards possible applications for detection of special nuclear materials.

  6. Thermal response of a flat heat pipe sandwich structure to a localized heat flux

    E-Print Network [OSTI]

    Wadley, Haydn

    The temperature distribution across a flat heat pipe sandwich structure, subjected to an intense localized thermal metal foam wick and distilled water as the working fluid. Heat was applied via a propane torch and radiative heat transfer. A novel method was developed to estimate experimentally, the heat flux distribution

  7. Thermalization and Isotropization of Color-Electric Flux Tubes

    E-Print Network [OSTI]

    Ruggieri, M; Oliva, L; Plumari, S; Scardina, F; Greco, V

    2015-01-01T23:59:59.000Z

    In this study we model early times dynamics of the system produced in relativistic heavy ion collisions by an initial color electric field which then decays to a plasma by the Schwinger mechanism, coupling the dynamical evolution of the initial color field to the dynamics of the many particles system produced by the decay. The latter is described by relativistic kinetic theory in which we fix the ratio $\\eta/s$ rather than insisting on specific microscopic processes. We study isotropization and thermalization of the system produced by the field decay for a static box and for a $1+1$D expanding geometry. We find that regardless of the viscosity of the produced plasma, the initial color electric field decays within $1$ fm/c; however in the case $\\eta/s$ is large, oscillations of the field are effective along all the entire time evolution of the system, which affect the late times evolution of the ratio between longitudinal and transverse pressure. In case of small $\\eta/s$ ($\\eta/s\\lesssim0.3$) we find $\\tau_{i...

  8. Calculation of thermal fluxes of plasma torch reradiation under the action of laser radiation on a condensed target

    SciTech Connect (OSTI)

    Rudenko, V. V. [Russian Federation Ministry of Defense, 12th Central Scientific Research Institute (Russian Federation)

    2010-12-15T23:59:59.000Z

    The problem of laser deposition with allowance for thermal radiation transport inside and outside the laser torch is considered in a multigroup approximation. The energy fluxes of laser torch thermal radiation onto a target in the far and near zones are calculated as functions of time and the character of the exposure. It is shown that absorption of thermal fluxes in the substrate and target in the course of laser deposition results in their substantial heating. The possibility of diagnosing thermal radiation fluxes from the laser torch by using photodetectors is demonstrated.

  9. Description of TASHA: Thermal Analysis of Steady-State-Heat Transfer for the Advanced Neutron Source Reactor

    SciTech Connect (OSTI)

    Morris, D.G.; Chen, N.C.; Nelson, W.R.; Yoder, G.L.

    1996-10-01T23:59:59.000Z

    This document describes the code used to perform Thermal Analysis of Steady-State-Heat-Transfer for the Advanced Neutron Source (ANS) Reactor (TASHA). More specifically, the code is designed for thermal analysis of the fuel elements. The new code reflects changes to the High Flux Isotope Reactor steady-state thermal-hydraulics code. These changes were aimed at both improving the code`s predictive ability and allowing statistical thermal-hydraulic uncertainty analysis to be performed. A significant portion of the changes were aimed at improving the correlation package in the code. This involved incorporating more recent correlations for both single-phase flow and two-phase flow thermal limits, including the addition of correlations to predict the phenomenon of flow excursion. Since the code was to be used in the design of the ANS, changes were made to allow the code to predict limiting powers for a variety of thermal limits, including critical heat flux, flow excursion, incipient boiling, oxide spallation, maximum centerline temperature, and surface temperature equal to the saturation temperature. Statistical uncertainty analysis also required several changes to the code itself as well as changes to the code input format. This report describes these changes in enough detail to allow the reader to interpret code results and also to understand where the changes were made in the code programming. This report is not intended to be a stand alone report for running the code, however, and should be used in concert with the two previous reports published on the original code. Sample input and output files are also included to help accomplish these goals. In addition, a section is included that describes requirements for a new, more modem code that the project planned to develop.

  10. Practical demonstration of Boron Neutron Capture Therapy versus murine tumors via liposomal delivery of boron-rich agents and thermal neutron irradiation

    SciTech Connect (OSTI)

    Peter Kueffler; Charles Maitz; Aslam Khan; Satish Jalisatgi; John Brockman; M. Frederick Hawthorne; David Nigg

    2014-11-01T23:59:59.000Z

    Unilamellar liposomes formulated with an equimolar mixture of cholesterol and 1,2-distearoyl-sn-glycero-3-phosphocholine, incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the lipid bilayer, and encapsulating Na3[1-(2’-B10¬H9)-2-NH3B10H8] were prepared by probe sonication and investigated in vivo. Microwave assisted digestion followed by inductively coupled plasma-optical emission spectroscopy was utilized to determine the biodistribution of boron in various tissues following either a single tail vein injection or two identical injections (separated by 24 hours) of the liposomal suspension in BALB/c mice bearing EMT6 mammary adenocarcinomas in their right flank. Double-injection protocols resulted in a boron content in the tumor exceeding 50 µg of boron per gram of tissue for 48 to 72 hours subsequent to the initial injection while tumor:blood boron ratios were more ideal from 54 hours (1.9:1) to 96 hours (5.7:1) subsequent to the initial injection. Tumor bearing mice were given a double-injection of liposomes containing the 10B-enriched analogs of the aforementioned agents and subjected to a 30 minute irradiation by thermal neutrons with a flux of 8.8 x 108 (±7%) neutrons/cm2 s integrated over the energy range of 0.0 – 0.414 eV. Significant tumor response for a single BNCT treatment was demonstrated by growth curves versus a control group. Vastly diminished tumor growth was witnessed at 14 days (186% increase versus 1551% in controls) in mice that were given a second injection/radiation treatment 7 days after the first. Mice given a one hour neutron irradiation following the double-injection of liposomes had a similar response (169% increase at 14 days) suggesting that neutron fluence is the limiting factor towards BNCT efficacy in this study.

  11. Delayed neutron measurements for Th-232, Np-237, Pu-239, Pu-241 and depleted uranium

    E-Print Network [OSTI]

    Stone, Joseph C.

    2001-01-01T23:59:59.000Z

    The neutron emission rates from five very pure actinide samples (Th-232, Np-237, Pu-239, Pu-241 and depleted uranium) were measured following equilibrium irradiation in fast and thermal neutron fluxes. The relative abundances (alphas) for the first...

  12. NEUTRON CROSS SECTION COVARIANCES FROM THERMAL ENERGY TO 20 MeV.

    SciTech Connect (OSTI)

    ROCHMAN,D.; HERMAN, M.; OBLOZINSKY, P.; MUGHABGHAB, S.F.; PIGNI, M.; KAWANO, T.

    2007-04-27T23:59:59.000Z

    We describe new method for energy-energy covariance calculation from the thermal energy up to 20 MeV. It is based on three powerful basic components: (i) Atlas of Neutron Resonances in the resonance region; (ii) the nuclear reaction model code EMPIRE in the unresolved resonance and fast neutron regions, and (iii) the Bayesian code KALMAN for correlations and error propagation. Examples for cross section uncertainties and correlations on {sup 90}Zr and {sup 193}Ir illustrate this approach in the resonance and fast neutron regions.

  13. Heat blanketing envelopes and thermal radiation of strongly magnetized neutron stars

    E-Print Network [OSTI]

    A. Y. Potekhin; G. Chabrier; D. G. Yakovlev

    2007-09-04T23:59:59.000Z

    Strong (B >> 10^9 G) and superstrong (B > 10^{14} G) magnetic fields profoundly affect many thermodynamic and kinetic characteristics of dense plasmas in neutron star envelopes. In particular, they produce strongly anisotropic thermal conductivity in the neutron star crust and modify the equation of state and radiative opacities in the atmosphere, which are major ingredients of the cooling theory and spectral atmosphere models. As a result, both the radiation spectrum and the thermal luminosity of a neutron star can be affected by the magnetic field. We briefly review these effects and demonstrate the influence of magnetic field strength on the thermal structure of an isolated neutron star, putting emphasis on the differences brought about by the superstrong fields and high temperatures of magnetars. For the latter objects, it is important to take proper account of a combined effect of the magnetic field on thermal conduction and neutrino emission at densities \\rho > 10^{10} g cm^{-3}. We show that the neutrino emission puts a B-dependent upper limit on the effective surface temperature of a cooling neutron star.

  14. Neutron flux estimations based on niobium impurities in reactor pressure vessel steel

    SciTech Connect (OSTI)

    Baers, L.B.; Hasanen, E.K. [Technical Research Centre of Finland, Espoo (Finland). Reactor Lab.

    1994-12-31T23:59:59.000Z

    The use of (ppm level) niobium impurities in reactor pressure vessel (RPV) steel for neutron flux estimations based on the reaction {sup 93}Nb (n,n{prime}) {sup 93m}Nb has been reported previously. The method has now been further investigated and refined. Small niobium fractions in RPV steel ({approx} ppm) and plating ({approx} 1%) materials have been separated by ion exchange chromatography in one to three steps. The measured Nb fractions in samples from some four pressure vessel (RPV) base materials were 1 to 3 ppm. The purification of tens of milligrams of RPV material provides sufficient amounts of niobium for mass determination with a highly sensitive (10{sup {minus}5} ppm) Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The {sup 93m}Nb and small remaining {sup 54}Mn activities were measured with a Calibrated Liquid Scintillation Counter (LSC) based on dual label technique and almost 100% efficiency to {sup 93m}Nb. One purification is needed for plating materials ({approx}1% Nb) and two purifications of about one gram of steel with Nb impurities in order to resolve the needed activities ({approx}10 Bq {sup 93m}Nb/{mu}g Nb). The achieved accuracy of the measured specific {sup 93m}Nb activities was about {+-} 3% (1{sigma}) in irradiated RPV plating materials and about {+-} 4% for Nb ppm impurities.

  15. Measurement on the thermal neutron capture cross section of w-180

    E-Print Network [OSTI]

    W. G. Kang; Y. D. Kim; J. I. Lee; I. S. Hahn; A. R. Kim; H. J. Kim

    2007-04-24T23:59:59.000Z

    We have measured the thermal neutron capture cross section for w-180 nucleus. There is only one previous data on this cross section with a value of 30 $^{+300%}_{-100%}$ barn. To consider w-181 as a low energy neutrino source, the thermal neutron capture cross section should be measured more precisely to estimate the production rate of w-181 inside a nuclear reactor. We measured the cross section of w-180 with a natural tungsten foil and obtained a new value of 21.9 $\\pm$ 2.5 barn

  16. Measurement of the thermal neutron capture cross section of {sup 180}W

    SciTech Connect (OSTI)

    Kang, W. G.; Kim, Y. D.; Lee, J. I.; Hahn, I. S.; Kim, A. R.; Kim, H. J. [Department of Physics, Sejong University, Seoul 143-747 (Korea, Republic of); Department of Science Education, Ewha Woman's University, Seoul 120-750 (Korea, Republic of); Physics Department, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2007-12-15T23:59:59.000Z

    We measured the thermal neutron capture cross section for the {sup 180}W nucleus. There is only one previous measurement with regard to this cross section, and it yielded a value of 30 -100%+300% b. To determine whether {sup 181}W is an appropriate low energy neutrino source, the thermal neutron capture cross section should be measured more precisely to estimate the production rate of {sup 181}W inside a nuclear reactor. We measured the cross section of {sup 180}W using a natural tungsten foil and obtained a value of 22.6{+-}1.7 b.

  17. Study on generating of thermal neutron scattering cross sections for LiH

    SciTech Connect (OSTI)

    Wang, L.; Jiang, X.; Zhao, Z.; Chen, L. [Northwest Institute of Nuclear Technology, Xi'an 710024 (China)

    2013-07-01T23:59:59.000Z

    LiH is designated as a promising moderator and shielding material because of its low density, high melting point and large fraction of H atoms. However, lack of the thermal neutron cross sections of LiH makes numerical calculation deviate from experimental data to some extent. As a result, it is necessary to study LiH thermal kernel effect. The phonon property of LiH has been investigated by first-principles calculations using the plane-wave pseudo potential method with CASTEP code. The scattering law and the thermal neutron scattering cross sections for Li and H have been generated using this distribution. The results have been compared with zirconium hydride data. The GASKET and NJOY/LEAPR codes have been used in the calculation of scattering law, whose results have been compared with the reference; the discrepancy mainly comes from phonon spectrums and its expansion. LEAPR had the capability to compute scattering through larger energy and momentum transfers than GASKET did. By studying LiH phonon spectrum and constructing the model of LiH thermal kernel and scattering matrix, the ACE format LiH thermal neutron cross sections for MCNP software could be made and used for reactor Neutronics calculation. (authors)

  18. Condensed Surfaces of Magnetic Neutron Stars, Thermal Surface Emission, and Particle Acceleration Above Pulsar Polar Caps

    E-Print Network [OSTI]

    Zach Medin; Dong Lai

    2008-01-18T23:59:59.000Z

    For sufficiently strong magnetic fields and/or low temperatures, the neutron star surface may be in a condensed state with little gas or plasma above it. Such surface condensation can significantly affect the thermal emission from isolated neutron stars, and may lead to the formation of a charge-depleted acceleration zone ("vacuum gap") in the magnetosphere above the stellar polar cap. Using the latest results on the cohesive property of magnetic condensed matter, we quantitatively determine the conditions for surface condensation and vacuum gap formation in magnetic neutron stars. We find that condensation can occur if the thermal energy kT of the neutron star surface is less than about 8% of its cohesive energy Q_s, and that a vacuum gap can form if the neutron star's rotation axis and magnetic moment point in opposite directions and kT is less than about 4% of Q_s. Thus, vacuum gap accelerators may exist for some neutron stars. Motivated by this result, we also study the physics of pair cascades in the vacuum gap model for photon emission by accelerating electrons and positrons due to both curvature radiation and resonant/nonresonant inverse Compton scattering. Our calculations of the condition of cascade-induced vacuum breakdown and the related pulsar death line/boundary generalize previous works to the superstrong field regime. We find that inverse Compton scatterings do not produce a sufficient number of high energy photons in the gap and thus do not lead to pair cascades for most neutron star parameters. We discuss the implications of our results for the recent observations of neutron star thermal radiation as well as for the detection/non-detection of radio emission from high-B pulsars and magnetars.

  19. Thermal structure and cooling of superfluid neutron stars with accreted magnetized envelopes

    E-Print Network [OSTI]

    A. Y. Potekhin; D. G. Yakovlev; G. Chabrier; O. Y. Gnedin

    2003-09-17T23:59:59.000Z

    We study the thermal structure of neutron stars with magnetized envelopes composed of accreted material, using updated thermal conductivities of plasmas in quantizing magnetic fields, as well as equation of state and radiative opacities for partially ionized hydrogen in strong magnetic fields. The relation between the internal and local surface temperatures is calculated and fitted by an analytic function of the internal temperature, magnetic field strength, angle between the field lines and the normal to the surface, surface gravity, and the mass of the accreted material. The luminosity of a neutron star with a dipole magnetic field is calculated for various values of the accreted mass, internal temperature, and magnetic field strength. Using these results, we simulate cooling of superfluid neutron stars with magnetized accreted envelopes. We consider slow and fast cooling regimes, paying special attention to very slow cooling of low-mass superfluid neutron stars. In the latter case, the cooling is strongly affected by the combined effect of magnetized accreted envelopes and neutron superfluidity in the stellar crust. Our results are important for interpretation of observations of isolated neutron stars hottest for their age, such as RX J0822-43 and PSR B1055-52.

  20. Subsurface Temperature, Moisture, Thermal Conductivity and Heat Flux, Barrow, Area A, B, C, D

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cable, William; Romanovsky, Vladimir

    Subsurface temperature data are being collected along a transect from the center of the polygon through the trough (and to the center of the adjacent polygon for Area D). Each transect has five 1.5m vertical array thermistor probes with 16 thermistors each. This dataset also includes soil pits that have been instrumented for temperature, water content, thermal conductivity, and heat flux at the permafrost table. Area C has a shallow borehole of 2.5 meters depth is instrumented in the center of the polygon.

  1. Analysis of the effective delayed neutron fraction in the coupled fast-thermal system HERBE

    SciTech Connect (OSTI)

    Milosevic, M.; Pesic, M.; Avdic, S.; Nikolic, D. [Institute of Nuclear Sciences, Beograd (Yugoslavia)

    1994-12-31T23:59:59.000Z

    The results of measurements {beta}{sub eff} and {beta}{sub eff}/{Lambda} and calculation results based on various sets of evaluated six-group delayed neutron parameters for the coupled fast-thermal system HERBE are shown in this paper.

  2. Instrumentation for Neutron Scattering at the Missouri University Research Reactor Paul F. Miceli

    E-Print Network [OSTI]

    Montfrooij, Wouter

    Instrumentation for Neutron Scattering at the Missouri University Research Reactor Paul F. Miceli Research Reactor (MURR) provides significant thermal neutron flux, which enables neutron scattering]. There are presently 5 instruments located on the beam port floor that are dedicated to neutron scattering: (1) TRIAX

  3. Thermal insulating barrier and neutron shield providing integrated protection for a nuclear reactor vessel

    DOE Patents [OSTI]

    Schreiber, R.B.; Fero, A.H.; Sejvar, J.

    1997-12-16T23:59:59.000Z

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel to form a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive valving also includes bistable vents at the upper end of the thermal insulating barrier for releasing steam. A removable, modular neutron shield extending around the upper end of the reactor cavity below the nozzles forms with the upwardly and outwardly tapered transition on the outer surface of the reactor vessel, a labyrinthine channel which reduces neutron streaming while providing a passage for the escape of steam during a severe accident, and for the cooling air which is circulated along the reactor cavity walls outside the thermal insulating barrier during normal operation of the reactor. 8 figs.

  4. Thermal insulating barrier and neutron shield providing integrated protection for a nuclear reactor vessel

    DOE Patents [OSTI]

    Schreiber, Roger B. (Penn Twp., PA); Fero, Arnold H. (New Kensington, PA); Sejvar, James (Murrysville, PA)

    1997-01-01T23:59:59.000Z

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel to form a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive valving also includes bistable vents at the upper end of the thermal insulating barrier for releasing steam. A removable, modular neutron shield extending around the upper end of the reactor cavity below the nozzles forms with the upwardly and outwardly tapered transition on the outer surface of the reactor vessel, a labyrinthine channel which reduces neutron streaming while providing a passage for the escape of steam during a severe accident, and for the cooling air which is circulated along the reactor cavity walls outside the thermal insulating barrier during normal operation of the reactor.

  5. Imaging of Diesel Particulate Filters using a High-Flux Neutron...

    Broader source: Energy.gov (indexed) [DOE]

    Science Division Hassina Z. Bilheux & Sophie Voisin Oak Ridge National Laboratory Neutron Scattering Science Division Jens Gregor University of Tennessee - Knoxville Dept....

  6. Neutronic and thermal calculation of blanket for high power operating condition of fusion reactor

    SciTech Connect (OSTI)

    Sagawa, H.; Shimakawa, S.; Kuroda, T. [Oarai Research Establishement of JAERI, Ibaraki (Japan)] [and others

    1994-12-31T23:59:59.000Z

    Internal (breeding region) structures of ceramic breeder blanket to accommodate high power operating conditions such as a DEMO reactor have been investigated. The conditions considered here are the maximum neutron wall load of 2.8 MW/m{sup 2} at outboard midplane corresponding to a fusion power of 3.0 GW and the coolant temperature of 200{degrees}C. Structure of a blanket is based on the layered pebble bed concept, which has been proposed by Japan since the ITER CDA. Lithium oxide with 50% enriched {sup 6}Li is used in a shape of small spherical pebbles which are filled in a 316SS can avoid its compatibility issue with Be. Beryllium around the breeder can is filled also in a shape of spherical pebbles which works not only as a neutron multiplier but also as a thermal resistant layer to maintain breeder temperature for effective in-situ tritium recovery. Diameters and packing fractions of both pebbles are {<=} 1 mm and 65%, respectively. A layer of block Be between cooling panels is introduced as a neutron multiplier (not as the thermal resistant layer) to enhance tritium breeding performance. Inlet temperature of water coolant is 200{degrees}C to meet the high temperature conditioning requirement to the first wall which is one of walls of the blanket vessel. Neutronics calculations have been carried out by one-dimensional transport code, and thermal calculations have also been carried out by one-dimensional slab code.

  7. A Thermal Discrete Element Analysis of EU Solid Breeder Blanket subjected to Neutron Irradiation

    E-Print Network [OSTI]

    Yixiang Gan; Francisco Hernandez; Dorian Hanaor; Ratna Annabattula; Marc Kamlah; Pavel Pereslavtsev

    2014-06-17T23:59:59.000Z

    Due to neutron irradiation, solid breeder blankets are subjected to complex thermo-mechanical conditions. Within one breeder unit, the ceramic breeder bed is composed of spherical-shaped lithium orthosilicate pebbles, and as a type of granular material, it exhibits strong coupling between temperature and stress fields. In this paper, we study these thermo-mechanical problems by developing a thermal discrete element method (Thermal-DEM). This proposed simulation tool models each individual ceramic pebble as one element and considers grain-scale thermo-mechanical interactions between elements. A small section of solid breeder pebble bed in HCPB is modelled using thousands of individual pebbles and subjected to volumetric heating profiles calculated from neutronics under ITER-relevant conditions. We consider heat transfer at the grain-scale between pebbles through both solid-to-solid contacts and the interstitial gas phase, and we calculate stresses arising from thermal expansion of pebbles. The overall effective conductivity of the bed depends on the resulting compressive stress state during the neutronic heating. The thermal-DEM method proposed in this study provides the access to the grain-scale information, which is beneficial for HCPB design and breeder material optimization, and a better understanding of overall thermo-mechanical responses of the breeder units under fusion-relevant conditions.

  8. MCNP modeling of the Swiss LWRs for the calculation of the in- and ex-vessel neutron flux distributions

    SciTech Connect (OSTI)

    Pantelias, M.; Volmert, B.; Caruso, S. [National Cooperative for the Disposal of Radioactive Waste Nagra, Hardstrasse 73, 5430, Wettingen (Switzerland); Zvoncek, P. [Laboratory for Nuclear Energy Systems, ETH Zurich, Sonneggstrasse 3, 8092, Zurich (Switzerland); Bitterli, B. [Kernkraftwerk Goesgen-Daeniken AG, 4658 Daeniken (Switzerland); Neukaeter, E.; Nissen, W. [BKW FMB Energie AG-Kernkraftwerk Muehleberg, 3203 Muehleberg (Switzerland); Ledergerber, G. [Kernkraftwerk Leibstadt AG, 5325 Leibstadt (Switzerland); Vielma, R. [Axpo AG-Kernkraftwerk Beznau, 5312 Doettingen (Switzerland)

    2012-07-01T23:59:59.000Z

    MCNP models of all Swiss Nuclear Power Plants have been developed by the National Cooperative for the Disposal of Radioactive Waste (Nagra), in collaboration with the utilities and ETH Zurich, for the 2011 decommissioning cost study. The estimation of the residual radionuclide inventories and corresponding activity levels of irradiated structures and components following the NPP shut-down is of crucial importance for the planning of the dismantling process, the waste packaging concept and, consequently, for the estimation of the decommissioning costs. Based on NPP specific data, the neutron transport simulations lead to the best yet knowledge of the neutron spectra necessary for the ensuing activation calculations. In this paper, the modeling concept towards the MCNP-NPPs is outlined and the resulting flux distribution maps are presented. (authors)

  9. On the analysis method of effective delayed neutron fraction at thermal neutron systems

    SciTech Connect (OSTI)

    Nakajima, K.; Unesaki, H. [Research Reactor Inst., Kyoto Univ., Asashiro-Nishi 2, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)

    2006-07-01T23:59:59.000Z

    The effective delayed neutron fraction (beta-effective) was numerically analyzed with different analysis methods, and their effects on the results were investigated. The cores investigated in this study were light-water moderated low enriched UO{sub 2} lattices, of which the beta-effective had been reported. The effects of transport/diffusion calculation, energy group collapsing, and change of nuclear data library were studied. The study showed that the diffusion calculation with coarse group cross section gave smaller beta-effective than the transport one with fine group cross section, although the difference was not so large, about 2%. On the other hand, the change of nuclear data library from JENDL-3.3 to ENDF/B-VI.8 gave a significant difference, over than 4%. In comparisons with the experiments, it was indicated that the delayed neutron data in JENDL-3.3 are more reliable than those in ENDF/B-VI.8. (authors)

  10. In situ changes in the moisture content of heated, welded tuff based on thermal neutron measurements

    SciTech Connect (OSTI)

    Ramirez, A.L.; Carlson, R.C.; Buscheck, T.A.

    1991-07-01T23:59:59.000Z

    Thermal neutron logs were collected to monitor changes in moisture content within a welded tuff rock mass heated from a borehole containing an electrical heater which remained energized for 195 days. Thermal neutron measurements were made in sampling boreholes before, during and after heating. The results generally corroborated our conceptual understanding of hydrothermal flow as well as most of the numerical modeling conducting for this study. Conceptual models have been developed in conjunction with the numerical model calculations to explain differences in the drying and re-wetting behavior above and below the heater. Numerical modeling indicated that the re-wetting of the dried-out zone was dominated by the binary diffusion of water vapor through fractures. Saturation gradients in the rock matrix resulted in relative humidity gradients which drove water vapor (primarily along fractures) back to the dried-out zone where it condensed along the fracture walls and was imbibed by the matrix. 4 refs., 28 figs.

  11. Method of assaying uranium with prompt fission and thermal neutron borehole logging adjusted by borehole physical characteristics. [Patient application

    DOE Patents [OSTI]

    Barnard, R.W.; Jensen, D.H.

    1980-11-05T23:59:59.000Z

    Uranium formations are assayed by prompt fission neutron logging techniques. The uranium in the formation is proportional to the ratio of epithermal counts to thermal or epithermal dieaway. Various calibration factors enhance the accuracy of the measurement.

  12. High-efficiency scintillation detector for combined detection of thermal and fast neutrons and gamma radiation

    DOE Patents [OSTI]

    Chiles, M.M.; Mihalczo, J.T.; Blakeman, E.D.

    1987-02-27T23:59:59.000Z

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation event count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  13. Neutronic reactor

    DOE Patents [OSTI]

    Wende, Charles W. J. (Augusta, GA); Babcock, Dale F. (Wilmington, DE); Menegus, Robert L. (Wilmington, DE)

    1983-01-01T23:59:59.000Z

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  14. Verification and validation of the maximum entropy method for reconstructing neutron flux, with MCNP5, Attila-7.1.0 and the GODIVA experiment

    SciTech Connect (OSTI)

    Douglas S. Crawford; Tony Saad; Terry A. Ring

    2013-03-01T23:59:59.000Z

    Verification and validation of reconstructed neutron flux based on the maximum entropy method is presented in this paper. The verification is carried out by comparing the neutron flux spectrum from the maximum entropy method with Monte Carlo N Particle 5 version 1.40 (MCNP5) and Attila-7.1.0-beta (Attila). A spherical 100% 235U critical assembly is modeled as the test case to compare the three methods. The verification error range for the maximum entropy method is 15–21% where MCNP5 is taken to be the comparison standard. Attila relative error for the critical assembly is 20–35%. Validation is accomplished by comparing a neutron flux spectrum that is back calculated from foil activation measurements performed in the GODIVA experiment (GODIVA). The error range of the reconstructed flux compared to GODIVA is 0–10%. The error range of the neutron flux spectrum from MCNP5 compared to GODIVA is 0–20% and the Attila error range compared to the GODIVA is 0–35%. The maximum entropy method is shown to be a fast reliable method, compared to either Monte Carlo methods (MCNP5) or 30 multienergy group methods (Attila) and with respect to the GODIVA experiment.

  15. Event-by-event study of neutron observables in spontaneous and thermal fission

    SciTech Connect (OSTI)

    Vogt, R; Randrup, J

    2011-09-14T23:59:59.000Z

    The event-by-event fission model FREYA is extended to spontaneous fission of actinides and a variety of neutron observables are studied for spontaneous fission and fission induced by thermal neutrons with a view towards possible applications for SNM detection. We have shown that event-by-event models of fission, such as FREYA, provide a powerful tool for studying fission neutron correlations. Our results demonstrate that these correlations are significant and exhibit a dependence on the fissioning nucleus. Since our method is phenomenological in nature, good input data are especially important. Some of the measurements employed in FREYA are rather old and statistics limited. It would be useful to repeat some of these studies with modern detector techniques. In addition, most experiments made to date have not made simultaneous measurements of the fission products and the prompt observables, such as neutron and photons. Such data, while obviously more challenging to obtain, would be valuable for achieving a more complete understanding of the fission process.

  16. Comparison of discrete and continuous thermal neutron scattering treatments in MCNP5

    SciTech Connect (OSTI)

    Pavlou, A. T. [Univ. of Michigan, Dept. of Nuclear Engineering and Radiological Sciences, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Brown, F. B. [Los Alamos National Laboratory, Monte Carlo Codes Group, MS A143, PO Box 1663, Los Alamos, NM 87545 (United States); Martin, W. R. [Univ. of Michigan, Dept. of Nuclear Engineering and Radiological Sciences, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Kiedrowski, B. C. [Los Alamos National Laboratory, Monte Carlo Codes Group, MS A143, PO Box 1663, Los Alamos, NM 87545 (United States)

    2012-07-01T23:59:59.000Z

    The standard discrete thermal neutron S({alpha},{beta}) scattering treatment in MCNP5 is compared with a continuous S({alpha},{beta}) scattering treatment using a criticality suite of 119 benchmark cases and ENDF/B-VII.0 nuclear data. In the analysis, six bound isotopes are considered: beryllium metal, graphite, hydrogen in water, hydrogen in polyethylene, beryllium in beryllium oxide and oxygen in beryllium oxide. Overall, there are only small changes in the eigenvalue (k{sub eff}) between discrete and continuous treatments. In the comparison of 64 cases that utilize S({alpha},{beta}) scattering, 62 agreed at the 95% confidence level, and the 2 cases with differences larger than 3 {sigma} agreed within 1 {sigma} when more neutrons were run in the calculations. The results indicate that the changes in eigenvalue between continuous and discrete treatments are random, small, and well within the uncertainty of measured data for reactor criticality experiments. (authors)

  17. Neutronics and thermal design analyses of US solid breeder blanket for ITER

    SciTech Connect (OSTI)

    Gohar, Y.; Billone, M.; Attaya, H. (Argonne National Lab., IL (USA)); Sawan, M. (Wisconsin Univ., Madison, WI (USA))

    1990-09-01T23:59:59.000Z

    The US Solid Breeder Blanket is designed to produce the necessary tritium required for the ITER operation and to operate at power reactor conditions as much as possible. Safety, low tritium inventory, reliability, flexibility cost, and minimum R D requirements are the other design criteria. To satisfy these criteria, the produced tritium is recovered continuously during operation and the blanket coolant operates at low pressure. Beryllium multiplier material is used to control the solid-breeder temperature. Neutronics and thermal design analyses were performed in an integrated manner to define the blanket configuration. The reference parameters of ITER including the operating scenarios, the neutron wall loading distribution and the copper stabilizer are included in the design analyses. Several analyses were performed to study the impact of the reactor parameters, blanket dimensions, material characteristics, and heat transfer coefficient at the material interfaces on the blanket performance. The design analyses and the results from the different studies are summarized. 6 refs., 3 figs., 3 tabs.

  18. Coupled neutronic and thermal-hydraulic code benchmark activities at the International Nuclear Safety Center.

    SciTech Connect (OSTI)

    Podlazov, L. N.

    1998-07-29T23:59:59.000Z

    Two realistic benchmark problems are defined and used to assess the performance of coupled thermal-hydraulic and neutronic codes used in simulating dynamic processes in VVER-1000 and RBMK reactor systems. One of the problems simulates a design basis accident involving the ejection of three control and protection system rods from a VVER-1000 reactor. The other is based on a postulated rod withdrawal from an operating RBMK reactor. Preliminary results calculated by various codes are compared. While these results show significant differences, the intercomparisons performed so far provide a basis for further evaluation of code limitations and modeling assumptions.

  19. Measurement of neutron capture on $^{48}$Ca at thermal and thermonuclear energies

    E-Print Network [OSTI]

    H. Beer; C. Coceva; P. V. Sedyshev; Yu. P. Popov; H. Herndl; R. Hofinger; P. Mohr; H. Oberhummer

    1996-08-07T23:59:59.000Z

    At the Karlsruhe pulsed 3.75\\,MV Van de Graaff accelerator the thermonuclear $^{48}$Ca(n,$\\gamma$)$^{49}$Ca(8.72\\,min) cross section was measured by the fast cyclic activation technique via the 3084.5\\,keV $\\gamma$-ray line of the $^{49}$Ca-decay. Samples of CaCO$_3$ enriched in $^{48}$Ca by 77.87\\,\\% were irradiated between two gold foils which served as capture standards. The capture cross-section was measured at the neutron energies 25, 151, 176, and 218\\,keV, respectively. Additionally, the thermal capture cross-section was measured at the reactor BR1 in Mol, Belgium, via the prompt and decay $\\gamma$-ray lines using the same target material. The $^{48}$Ca(n,$\\gamma$)$^{49}$Ca cross-section in the thermonuclear and thermal energy range has been calculated using the direct-capture model combined with folding potentials. The potential strengths are adjusted to the scattering length and the binding energies of the final states in $^{49}$Ca. The small coherent elastic cross section of $^{48}$Ca+n is explained through the nuclear Ramsauer effect. Spectroscopic factors of $^{49}$Ca have been extracted from the thermal capture cross-section with better accuracy than from a recent (d,p) experiment. Within the uncertainties both results are in agreement. The non-resonant thermal and thermonuclear experimental data for this reaction can be reproduced using the direct-capture model. A possible interference with a resonant contribution is discussed. The neutron spectroscopic factors of $^{49}$Ca determined from shell-model calculations are compared with the values extracted from the experimental cross sections for $^{48}$Ca(d,p)$^{49}$Ca and $^{48}$Ca(n,$\\gamma$)$^{49}$Ca.

  20. Isolated thermal neutron stars, SGRs and AXPs: propellers and early accretors with conventional magnetic fields?

    E-Print Network [OSTI]

    M. Ali Alpar

    1999-12-10T23:59:59.000Z

    The similarity of rotation periods from three interesting classes of neutron stars, the anomalous X-ray pulsars (AXPs), the soft gamma ray repeaters (SGRs) and the dim isolated thermal neutron stars (DTNs) suggests a common mechanism with an asymptotic spindownphase, extending through the propeller and early accretion stages. The DTNs are interpreted as sources in the propeller stage. Their low luminosities arise from frictional heating in the neutron star. SGRs and AXPs are accreting at $\\dot{M} \\sim 10^{15} gm/s $. The limited range of near equilibrium periods corresponds to a limited range of mass inflow rates $\\dot{M}$. For lower rates the source of mass inflow may be depleted before the asymptotic stage is reached, while sources with higher $\\dot{M}$ or later ages possess circumstellar material that is optically thick to electron scattering, destroying the X-ray beaming and the modulation at the rotation period. The model works with conventional magnetic fields of 10$^{11}-10^{12}$ G, obviating the need to postulate magnetars. Frequently sampled timing observations of AXPs, SGRs and DTNs can distinguish between this explanation and the magnetar model.

  1. The Influence of Thermal Pressure on Equilibrium Models of Hypermassive Neutron Star Merger Remnants

    E-Print Network [OSTI]

    J. D. Kaplan; C. D. Ott; E. P. O'Connor; K. Kiuchi; L. Roberts; M. Duez

    2014-06-01T23:59:59.000Z

    The merger of two neutron stars leaves behind a rapidly spinning hypermassive object whose survival is believed to depend on the maximum mass supported by the nuclear equation of state, angular momentum redistribution by (magneto-)rotational instabilities, and spindown by gravitational waves. The high temperatures (~5-40 MeV) prevailing in the merger remnant may provide thermal pressure support that could increase its maximum mass and, thus, its life on a neutrino-cooling timescale. We investigate the role of thermal pressure support in hypermassive merger remnants by computing sequences of spherically-symmetric and axisymmetric uniformly and differentially rotating equilibrium solutions to the general-relativistic stellar structure equations. Using a set of finite-temperature nuclear equations of state, we find that hot maximum-mass critically spinning configurations generally do not support larger baryonic masses than their cold counterparts. However, subcritically spinning configurations with mean density of less than a few times nuclear saturation density yield a significantly thermally enhanced mass. Even without decreasing the maximum mass, cooling and other forms of energy loss can drive the remnant to an unstable state. We infer secular instability by identifying approximate energy turning points in equilibrium sequences of constant baryonic mass parametrized by maximum density. Energy loss carries the remnant along the direction of decreasing gravitational mass and higher density until instability triggers collapse. Since configurations with more thermal pressure support are less compact and thus begin their evolution at a lower maximum density, they remain stable for longer periods after merger.

  2. Proceedings of the OECD/CSNI workshop on transient thermal-hydraulic and neutronic codes requirements

    SciTech Connect (OSTI)

    Ebert, D.

    1997-07-01T23:59:59.000Z

    This is a report on the CSNI Workshop on Transient Thermal-Hydraulic and Neutronic Codes Requirements held at Annapolis, Maryland, USA November 5-8, 1996. This experts` meeting consisted of 140 participants from 21 countries; 65 invited papers were presented. The meeting was divided into five areas: (1) current and prospective plans of thermal hydraulic codes development; (2) current and anticipated uses of thermal-hydraulic codes; (3) advances in modeling of thermal-hydraulic phenomena and associated additional experimental needs; (4) numerical methods in multi-phase flows; and (5) programming language, code architectures and user interfaces. The workshop consensus identified the following important action items to be addressed by the international community in order to maintain and improve the calculational capability: (a) preserve current code expertise and institutional memory, (b) preserve the ability to use the existing investment in plant transient analysis codes, (c) maintain essential experimental capabilities, (d) develop advanced measurement capabilities to support future code validation work, (e) integrate existing analytical capabilities so as to improve performance and reduce operating costs, (f) exploit the proven advances in code architecture, numerics, graphical user interfaces, and modularization in order to improve code performance and scrutibility, and (g) more effectively utilize user experience in modifying and improving the codes.

  3. Thermal and Electric Conductivities of Coulomb Crystals in Neutron Stars and White Dwarfs

    E-Print Network [OSTI]

    D. A. Baiko; D. G. Yakovlev

    1996-04-28T23:59:59.000Z

    Thermal and electric conductivities are calculated for degenerate electrons scattered by phonons in a crystal made of atomic nuclei. The exact phonon spectrum and the Debye--Waller factor are taken into account. Monte Carlo calculations are performed for body-centered cubic (bcc) crystals made of C, O, Ne, Mg, Si, S, Ca, and Fe nuclei in the density range from $10^3$ to $10^{11}$ g cm$^{-3}$ at temperatures lower than the melting temperature but higher than the temperature at which the Umklapp processes begin to be "frozen out". A simplified method of calculation is proposed, which makes it possible to describe the results in terms of simple analytic expressions, to extend these expressions to any species of nucleus, and to consider face-centered cubic (fcc) crystals. The kinetic coefficients are shown to depend tangibly on the lattice type. The results are applicable to studies of heat transfer and evolution of the magnetic field in the cores of white dwarfs and in the crusts of neutron stars. The thermal drift of the magnetic field in the crust of a neutron star is discussed.

  4. (239)Pu neutron resonance parameters revisited and covariance matrix in the neutron energy range from thermal to 2.5 keV

    SciTech Connect (OSTI)

    Derrien, Herve [ORNL; Leal, Luiz C [ORNL; Larson, Nancy M [ORNL

    2008-01-01T23:59:59.000Z

    To obtain the resonance parameters in a single energy range up to 2.5 keV neutron energy and the corresponding covariance matrix, a reevaluation of 239Pu was performed with the analysis code SAMMY. The most recent experimental data were analyzed in the energy range thermal to 2.5 keV. The experimental data were renormalized, aligned on a common energy scale, and corrected for residual background. Average neutron transmission and cross sections calculated with the new resonance parameters were compared to the corresponding experimental data and to ENDF/B-VI.

  5. The measurement of absolute thermal neutron flux using liquid scintillation counting techniques

    E-Print Network [OSTI]

    Walker, Jack Vernon

    1960-01-01T23:59:59.000Z

    Standardization of Beta-emitting Isotopes with a Liquid Scintillation Counter", The Proceedin s of the Ph sical ~gociet (A) 69, 865 (1956) . 9 . Glasstone, S . , M. C . Edlund: The Elements of Nuclear Reactor Theor Van Nostrand, Princeton (1952) . 10, Wescott...

  6. As-Run Thermal Analysis of the GTL-1 Experiment Irradiated in the ATR South Flux Trap

    SciTech Connect (OSTI)

    Donna P. Guillen

    2011-05-01T23:59:59.000Z

    The GTL-1 experiment was conducted to assess corrosion the performance of the proposed Boosted Fast Flux Loop booster fuel at heat flux levels {approx}30% above the design operating condition. Sixteen miniplates fabricated from 25% enriched, high-density U3Si2/Al dispersion fuel with 6061 aluminum cladding were subjected to peak beginning of cycle (BOC) heat fluxes ranging from 411 W/cm2 to 593 W/cm2. Miniplates fabricated with three different fuel variations (without fines, annealed, and with standard powder) performed equally well, with negligible irradiation-induced swelling and a normal fission density gradient. Both the standard and the modified prefilm procedures produced hydroxide films that adequately protected the miniplates from failure. A detailed finite element model was constructed to calculate temperatures and heat flux for an as-run cycle average effective south lobe power of 25.4 MW(t). Results of the thermal analysis are given at four times during the cycle: BOC at 0 effective full power days (EFPD), middle of cycle (MOC) at 18 EFPD, MOC at 36 EFPD, and end of cycle at 48.9 EFPD. The highest temperatures and heat fluxes occur at the BOC and decrease in a linear manner throughout the cycle. Miniplate heat flux levels and fuel, cladding, hydroxide, and coolant-hydroxide interface temperatures were calculated using the average measured hydroxide thickness on each miniplate. The hydroxide layers are the largest on miniplates nearest to the core midplane, where heat flux and temperature are highest. The hydroxide layer thickness averages 20.4 {mu}m on the six hottest miniplates (B3, B4, C1, C2, C3, and C4). This tends to exacerbate the heating of these miniplates, since a thicker hydroxide layer reduces the heat transfer from the fuel to the coolant. These six hottest miniplates have the following thermal characteristics at BOC: (1) Peak fuel centerline temperature >300 C; (2) Peak cladding temperature >200 C; (3) Peak hydroxide temperature >190 C; (4) Peak hydroxide-water interface temperature >140 C; and (5) Peak heat flux >565 W/cm2.

  7. Heavy-baryon chiral perturbation theory approach to thermal neutron capture on {sup 3}He

    SciTech Connect (OSTI)

    Lazauskas, Rimantas [IPHC, IN2P3-CNRS/Universite Louis Pasteur, B.P. 28, F-67037 Strasbourg Cedex 2 (France); Song, Young-Ho [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208 (United States); Park, Tae-Sun [Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208 (United States); Department of Physics and BAERI, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2011-03-15T23:59:59.000Z

    The cross section for radiative thermal neutron capture on {sup 3}He ({sup 3}He+n{yields}{sup 4}He+{gamma}; known as the hen reaction) is calculated based on heavy-baryon chiral perturbation theory. The relevant M1 operators are derived up to next-to-next-to-next-to-leading order (N{sup 3}LO). The initial and final nuclear wave functions are obtained from the rigorous Faddeev-Yakubovski equations for five sets of realistic nuclear interactions. Up to N{sup 3}LO, the M1 operators contain two low-energy constants, which appear as the coefficients of nonderivative two-nucleon contact terms. After determining these two constants using the experimental values of the magnetic moments of the triton and {sup 3}He, we carry out a parameter-free calculation of the hen cross section. The results are in good agreement with the data.

  8. Space nuclear-power reactor design based on combined neutronic and thermal-fluid analyses

    SciTech Connect (OSTI)

    Koenig, D.R.; Gido, R.G.; Brandon, D.I.

    1985-01-01T23:59:59.000Z

    The design and performance analysis of a space nuclear-power system requires sophisticated analytical capabilities such as those developed during the nuclear rocket propulsion (Rover) program. In particular, optimizing the size of a space nuclear reactor for a given power level requires satisfying the conflicting requirements of nuclear criticality and heat removal. The optimization involves the determination of the coolant void (volume) fraction for which the reactor diameter is a minimum and temperature and structural limits are satisfied. A minimum exists because the critical diameter increases with increasing void fraction, whereas the reactor diameter needed to remove a specified power decreases with void fraction. The purpose of this presentation is to describe and demonstrate our analytical capability for the determination of minimum reactor size. The analysis is based on combining neutronic criticality calculations with OPTION-code thermal-fluid calculations.

  9. An evaporation-based model of thermal neutron induced ternary fission of plutonium

    E-Print Network [OSTI]

    J. P. Lestone

    2007-03-10T23:59:59.000Z

    Ternary fission probabilities for thermal neutron induced fission of plutonium are analyzed within the framework of an evaporation-based model where the complexity of time-varying potentials, associated with the neck collapse, are included in a simplistic fashion. If the nuclear temperature at scission and the fission-neck-collapse time are assumed to be ~1.2 MeV and ~10^-22 s, respectively, then calculated relative probabilities of ternary-fission light-charged-particle emission follow the trends seen in the experimental data. The ability of this model to reproduce ternary fission probabilities spanning seven orders of magnitude for a wide range of light-particle charges and masses implies that ternary fission is caused by the coupling of an evaporation-like process with the rapid re-arrangement of the nuclear fluid following scission.

  10. An evaporation-based model of thermal neutron induced ternary fission of plutonium

    E-Print Network [OSTI]

    Lestone, J P

    2007-01-01T23:59:59.000Z

    Ternary fission probabilities for thermal neutron induced fission of plutonium are analyzed within the framework of an evaporation-based model where the complexity of time-varying potentials, associated with the neck collapse, are included in a simplistic fashion. If the nuclear temperature at scission and the fission-neck-collapse time are assumed to be ~1.2 MeV and ~10^-22 s, respectively, then calculated relative probabilities of ternary-fission light-charged-particle emission follow the trends seen in the experimental data. The ability of this model to reproduce ternary fission probabilities spanning seven orders of magnitude for a wide range of light-particle charges and masses implies that ternary fission is caused by the coupling of an evaporation-like process with the rapid re-arrangement of the nuclear fluid following scission.

  11. Systematic Uncertainties in the Spectroscopic Measurements of Neutron-Star Masses and Radii from Thermonuclear X-ray Bursts. III. Absolute Flux Calibration

    E-Print Network [OSTI]

    Guver, Tolga; Marshall, Herman; Psaltis, Dimitrios; Guainazzi, Matteo; Diaz-Trigo, Maria

    2015-01-01T23:59:59.000Z

    Many techniques for measuring neutron star radii rely on absolute flux measurements in the X-rays. As a result, one of the fundamental uncertainties in these spectroscopic measurements arises from the absolute flux calibrations of the detectors being used. Using the stable X-ray burster, GS 1826-238, and its simultaneous observations by Chandra HETG/ACIS-S and RXTE/PCA as well as by XMM-Newton EPIC-pn and RXTE/PCA, we quantify the degree of uncertainty in the flux calibration by assessing the differences between the measured fluxes during bursts. We find that the RXTE/PCA and the Chandra gratings measurements agree with each other within their formal uncertainties, increasing our confidence in these flux measurements. In contrast, XMM-Newton EPIC-pn measures 14.0$\\pm$0.3% less flux than the RXTE/PCA. This is consistent with the previously reported discrepancy with the flux measurements of EPIC-pn, compared to EPIC-MOS1, MOS2 and ACIS-S detectors. We also address the calibration uncertainty in the RXTE/PCA int...

  12. Thermal neutron capture cross section of gadolinium by pile-oscillation measurements in MINERVE

    SciTech Connect (OSTI)

    Leconte, P.; Di-Salvo, J.; Antony, M.; Pepino, A. [CEA, DEN, DER, Cadarache, F-13108 Saint-Paul-Lez-Durance (France); Hentati, A. [International School in Nuclear Engineering, Cadarache, F-13108 Saint-Paul-Lez-Durance (France)

    2012-07-01T23:59:59.000Z

    Natural gadolinium is used as a burnable poison in most LWR to account for the excess of reactivity of fresh fuels. For an accurate prediction of the cycle length, its nuclear data and especially its neutron capture cross section needs to be known with a high precision. Recent microscopic measurements at Rensselaer Polytechnic Inst. (RPI) suggest a 11% smaller value for the thermal capture cross section of {sup 157}Gd, compared with most of evaluated nuclear data libraries. To solve this inconsistency, we have analyzed several pile-oscillation experiments, performed in the MINERVE reactor. They consist in the measurement of the reactivity variation involved by the introduction in the reactor of small-samples, containing different mass amounts of natural gadolinium. The analysis of these experiments is done through the exact perturbation theory, using the PIMS calculation tool, in order to link the reactivity effect to the thermal capture cross section. The measurement of reactivity effects is used to deduce the 2200 m.s-1 capture cross section of {sup nat}Gd which is (49360 {+-} 790) b. This result is in good agreement with the JEFF3.1.1 value (48630 b), within 1.6% uncertainty at 1{sigma}, but is strongly inconsistent with the microscopic measurements at RPI which give (44200 {+-} 500) b. (authors)

  13. Compact and high-particle-flux thermal-lithium-beam probe system for measurement of two-dimensional electron density profile

    SciTech Connect (OSTI)

    Shibata, Y., E-mail: shibata.yoshihide@jaea.go.jp; Manabe, T.; Ohno, N.; Takagi, M. [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Kajita, S. [EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Tsuchiya, H.; Morisaki, T. [National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292 (Japan)

    2014-09-15T23:59:59.000Z

    A compact and high-particle-flux thermal-lithium-beam source for two-dimensional measurement of electron density profiles has been developed. The thermal-lithium-beam oven is heated by a carbon heater. In this system, the maximum particle flux of the thermal lithium beam was ?4 × 10{sup 19} m{sup ?2} s{sup ?1} when the temperature of the thermal-lithium-beam oven was 900 K. The electron density profile was evaluated in the small tokamak device HYBTOK-II. The electron density profile was reconstructed using the thermal-lithium-beam probe data and this profile was consistent with the electron density profile measured with a Langmuir electrostatic probe. We confirm that the developed thermal-lithium-beam probe can be used to measure the two-dimensional electron density profile with high time and spatial resolutions.

  14. On the heat flux and entropy produced by thermal fluctuations S. Ciliberto1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    by an elastic force. Our results set strong constrains on the energy exchanged between coupled nano-systems held kept at different temperatures and coupled by an elastic force [13, 19]. Thus it gives more insight into the properties of the heat flux produced by mechanical coupling, in the famous Feymann ratchet [22­24] widely

  15. A New On-the-Fly Sampling Method for Incoherent Inelastic Thermal Neutron Scattering Data in MCNP6

    SciTech Connect (OSTI)

    Pavlou, Andrew Theodore [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ji, Wei [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2014-09-02T23:59:59.000Z

    At thermal energies, the scattering of neutrons in a system is complicated by the comparable velocities of the neutron and target, resulting in competing upscattering and downscattering events. The neutron wavelength is also similar in size to the target's interatomic spacing making the scattering process a quantum mechanical problem. Because of the complicated nature of scattering at low energies, the thermal data files in ACE format used in continuous-energy Monte Carlo codes are quite large { on the order of megabytes for a single temperature and material. In this paper, a new storage and sampling method is introduced that is orders of magnitude less in size and is used to sample scattering parameters at any temperature on-the-fly. In addition to the reduction in storage, the need to pre-generate thermal scattering data tables at fine temperatures has been eliminated. This is advantageous for multiphysics simulations which may involve temperatures not known in advance. A new module was written for MCNP6 that bypasses the current S(?,?) table lookup in favor of the new format. The new on-the-fly sampling method was tested for graphite for two benchmark problems at ten temperatures: 1) an eigenvalue test with a fuel compact of uranium oxycarbide fuel homogenized into a graphite matrix, 2) a surface current test with a \\broomstick" problem with a monoenergetic point source. The largest eigenvalue difference was 152pcm for T= 1200K. For the temperatures and incident energies chosen for the broomstick problem, the secondary neutron spectrum showed good agreement with the traditional S(?,?) sampling method. These preliminary results show that sampling thermal scattering data on-the-fly is a viable option to eliminate both the storage burden of keeping thermal data at discrete temperatures and the need to know temperatures before simulation runtime.

  16. Study on in situ calibration for neutron flux monitor in the Large Helical Device based on Monte Carlo calculations

    SciTech Connect (OSTI)

    Nakano, Y., E-mail: nakano.yuuji@c.mbox.nagoya-u.ac.jp; Yamazaki, A.; Watanabe, K.; Uritani, A. [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Ogawa, K.; Isobe, M. [National Institute for Fusion Science, Toki-city, GIFU 509-5292 (Japan)

    2014-11-15T23:59:59.000Z

    Neutron monitoring is important to manage safety of fusion experiment facilities because neutrons are generated in fusion reactions. Monte Carlo simulations play an important role in evaluating the influence of neutron scattering from various structures and correcting differences between deuterium plasma experiments and in situ calibration experiments. We evaluated these influences based on differences between the both experiments at Large Helical Device using Monte Carlo simulation code MCNP5. A difference between the both experiments in absolute detection efficiency of the fission chamber between O-ports is estimated to be the biggest of all monitors. We additionally evaluated correction coefficients for some neutron monitors.

  17. BWR transient analysis using neutronic / thermal hydraulic coupled codes including uncertainty quantification

    SciTech Connect (OSTI)

    Hartmann, C.; Sanchez, V. [Karlsruhe Inst. of Technology (KIT), Inst. for Neutron Physics and Reactor Technology INR, Hermann-vom-Helmholtz-Platz-1, D-76344 Eggenstein-Leopoldshafen (Germany); Tietsch, W. [Westinghouse Electric Germany GmbH, Mannheim (Germany); Stieglitz, R. [Karlsruhe Inst. of Technology (KIT), Inst. for Neutron Physics and Reactor Technology INR, Hermann-vom-Helmholtz-Platz-1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2012-07-01T23:59:59.000Z

    The KIT is involved in the development and qualification of best estimate methodologies for BWR transient analysis in cooperation with industrial partners. The goal is to establish the most advanced thermal hydraulic system codes coupled with 3D reactor dynamic codes to be able to perform a more realistic evaluation of the BWR behavior under accidental conditions. For this purpose a computational chain based on the lattice code (SCALE6/GenPMAXS), the coupled neutronic/thermal hydraulic code (TRACE/PARCS) as well as a Monte Carlo based uncertainty and sensitivity package (SUSA) has been established and applied to different kind of transients of a Boiling Water Reactor (BWR). This paper will describe the multidimensional models of the plant elaborated for TRACE and PARCS to perform the investigations mentioned before. For the uncertainty quantification of the coupled code TRACE/PARCS and specifically to take into account the influence of the kinetics parameters in such studies, the PARCS code has been extended to facilitate the change of model parameters in such a way that the SUSA package can be used in connection with TRACE/PARCS for the U and S studies. This approach will be presented in detail. The results obtained for a rod drop transient with TRACE/PARCS using the SUSA-methodology showed clearly the importance of some kinetic parameters on the transient progression demonstrating that the coupling of a best-estimate coupled codes with uncertainty and sensitivity tools is very promising and of great importance for the safety assessment of nuclear reactors. (authors)

  18. A Combined Neutronic-Thermal Hydraulic Model of CERMET NTR Reactor

    SciTech Connect (OSTI)

    Jonathan A. Webb; Brian Gross; William T. Taitano

    2011-02-01T23:59:59.000Z

    Abstract. Two different CERMET fueled Nuclear Thermal Propulsion reactors were modeled to determine the optimum coolant channel surface area to volume ratio required to cool a 25,000 lbf rocket engine operating at a specific impulse of 940 seconds. Both reactor concepts were computationally fueled with hexagonal cross section fuel elements having a flat-to-flat distance of 3.51 cm and containing 60 vol.% UO2 enriched to 93wt.%U235 and 40 vol.% tungsten. Coolant channel configuration consisted of a 37 coolant channel fuel element and a 61 coolant channel model representing 0.3 and 0.6 surface area to volume ratios respectively. The energy deposition from decelerating fission products and scattered neutrons and photons was determined using the MCNP monte carlo code and then imported into the STAR-CCM+ computational fluid dynamics code. The 37 coolant channel case was shown to be insufficient in cooling the core to a peak temperature of 3000 K; however, the 61 coolant channel model shows promise for maintaining a peak core temperature of 3000 K, with no more refinements to the surface area to volume ratio. The core was modeled to have a power density of 9.34 GW/m3 with a thrust to weight ratio of 5.7.

  19. Flux reversal in a two-state symmetric optical thermal ratchet

    E-Print Network [OSTI]

    Sang-Hyuk Lee; David G. Grier

    2005-06-13T23:59:59.000Z

    A Brownian particle's random motions can be rectified by a periodic potential energy landscape that alternates between two states, even if both states are spatially symmetric. If the two states differ only by a discrete translation, the direction of the ratchet-driven current can be reversed by changing their relative durations. We experimentally demonstrate flux reversal in a symmetric two-state ratchet by tracking the motions of colloidal spheres moving through large arrays of discrete potential energy wells created with dynamic holographic optical tweezers. The model's simplicity and high degree of symmetry suggest possible applications in molecular-scale motors.

  20. Mixing in thermally stratified nonlinear spin-up with uniform boundary fluxes

    SciTech Connect (OSTI)

    Baghdasarian, Meline; Pacheco-Vega, Arturo [Department of Mechanical Engineering, California State University, Los Angeles, Los Angeles, California 90032 (United States); Pacheco, J. Rafael, E-mail: rpacheco@asu.edu [SAP Americas Inc., Scottsdale, Arizona 85251 (United States); School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona 85287 (United States); Environmental Fluid Dynamics Laboratories, Department of Civil Engineering and Geological Sciences, The University of Notre Dame, South Bend, Indiana 46556 (United States); Verzicco, Roberto [Dipartimento di Ingegneria Meccanica, Universita di Roma “Tor Vergata”, Via del Politecnico 1, 00133, Roma (Italy); PoF, University of Twente, 7500 AE Enschede (Netherlands)

    2014-09-15T23:59:59.000Z

    Studies of stratified spin-up experiments in enclosed cylinders have reported the presence of small pockets of well-mixed fluids but quantitative measurements of the mixedness of the fluid has been lacking. Previous numerical simulations have not addressed these measurements. Here we present numerical simulations that explain how the combined effect of spin-up and thermal boundary conditions enhances or hinders mixing of a fluid in a cylinder. The energy of the system is characterized by splitting the potential energy into diabatic and adiabatic components, and measurements of efficiency of mixing are based on both, the ratio of dissipation of available potential energy to forcing and variance of temperature. The numerical simulations of the Navier–Stokes equations for the problem with different sets of thermal boundary conditions at the horizontal walls helped shed some light on the physical mechanisms of mixing, for which a clear explanation was absent.

  1. Thermal up-scattering of very cold and ultra-cold neutrons in solid deuterium

    E-Print Network [OSTI]

    Kasprzak, M

    2004-01-01T23:59:59.000Z

    The work presented in this thesis forms part of a program at the Paul Scherrer Institute (PSI) to construct a high intensity superthermal ultra-cold neutron (UCN) source based on solid deuterium as UCN production medium. We carried out a set of experiments to gain a better understanding of the properties and the behaviour of solid deuterium as a cold neutron moderator and ultra-cold neutron converter. We present the measurements of the total neutron cross section as obtained by transmission studies with very cold neutrons and ultra-cold neutrons in solid deuterium. The experimental set-up and the methods of data analysis are described and also the procedure of preparing the solid deuterium samples is given. The neutron transmission studies are supported by optical investigation of the crystal and by Raman spectroscopy. We have thus characterised the temperature dependence of the neutron transmission through solid deuterium and we have been able to identify the role that coherent neutron scattering plays for t...

  2. Thermal up-scattering of very cold and ultra-cold neutrons in solid deuterium

    E-Print Network [OSTI]

    Malgorzata Kasprzak

    2004-07-26T23:59:59.000Z

    The work presented in this thesis forms part of a program at the Paul Scherrer Institute (PSI) to construct a high intensity superthermal ultra-cold neutron (UCN) source based on solid deuterium as UCN production medium. We carried out a set of experiments to gain a better understanding of the properties and the behaviour of solid deuterium as a cold neutron moderator and ultra-cold neutron converter. We present the measurements of the total neutron cross section as obtained by transmission studies with very cold neutrons and ultra-cold neutrons in solid deuterium. The experimental set-up and the methods of data analysis are described and also the procedure of preparing the solid deuterium samples is given. The neutron transmission studies are supported by optical investigation of the crystal and by Raman spectroscopy. We have thus characterised the temperature dependence of the neutron transmission through solid deuterium and we have been able to identify the role that coherent neutron scattering plays for the investigated deuterium samples.

  3. SIGNATURES OF PHOTON-AXION CONVERSION IN THE THERMAL SPECTRA AND POLARIZATION OF NEUTRON STARS

    SciTech Connect (OSTI)

    Perna, Rosalba [JILA and Department of Astrophysical and Planetary Science, University of Colorado at Boulder, 440 UCB, Boulder, CO 80304 (United States); Ho, Wynn C. G. [School of Mathematics, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Verde, Licia; Jimenez, Raul [ICREA and ICC, University of Barcelona (IEEC-UB) (Spain); Van Adelsberg, Matthew [Center for Relativistic Astrophysics and School of Physics Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2012-04-01T23:59:59.000Z

    Conversion of photons into axions under the presence of a strong magnetic field can dim the radiation from magnetized astrophysical objects. Here we perform a detailed calculation aimed at quantifying the signatures of photon-axion conversion in the spectra, light curves, and polarization of neutron stars (NSs). We take into account the energy and angle dependence of the conversion probability and the surface thermal emission from NSs. The latter is computed from magnetized atmosphere models that include the effect of photon polarization mode conversion due to vacuum polarization. The resulting spectral models, inclusive of the general-relativistic effects of gravitational redshift and light deflection, allow us to make realistic predictions for the effects of photon to axion conversion on observed NS spectra, light curves, and polarization signals. We identify unique signatures of the conversion, such as an increase of the effective area of a hot spot as it rotates away from the observer line of sight. For a star emitting from the entire surface, the conversion produces apparent radii that are either larger or smaller (depending on axion mass and coupling strength) than the limits set by NS equations of state. For an emission region that is observed phase-on, photon-axion conversion results in an inversion of the plane of polarization with respect to the no-conversion case. While the quantitative details of the features that we identify depend on NS properties (magnetic field strength and temperature) and axion parameters, the spectral and polarization signatures induced by photon-axion conversion are distinctive enough to make NSs very interesting and promising probes of axion physics.

  4. NON-THERMAL RESPONSE OF THE CORONA TO THE MAGNETIC FLUX DISPERSAL IN THE PHOTOSPHERE OF A DECAYING ACTIVE REGION

    SciTech Connect (OSTI)

    Harra, L. K. [UCL-Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey, RH5 6NT (United Kingdom); Abramenko, V. I. [Big Bear Solar Observatory, 40386 N. Shore Lane, Big Bear City, CA 92314 (United States)

    2012-11-10T23:59:59.000Z

    We analyzed Solar Dynamics Observatory line-of-sight magnetograms for a decaying NOAA active region (AR) 11451 along with co-temporal Extreme-Ultraviolet Imaging Spectrometer (EIS) data from the Hinode spacecraft. The photosphere was studied via time variations of the turbulent magnetic diffusivity coefficient, {eta}(t), and the magnetic power spectrum index, {alpha}, through analysis of magnetogram data from the Helioseismic and Magnetic Imager (HMI). These measure the intensity of the random motions of magnetic elements and the state of turbulence of the magnetic field, respectively. The time changes of the non-thermal energy release in the corona was explored via histogram analysis of the non-thermal velocity, v {sub nt}, in order to highlight the largest values at each time, which may indicate an increase in energy release in the corona. We used the 10% upper range of the histogram of v {sub nt} (which we called V {sup upp} {sub nt}) of the coronal spectral line of Fe XII 195 A. A 2 day time interval was analyzed from HMI data, along with the EIS data for the same field of view. Our main findings are the following. (1) The magnetic turbulent diffusion coefficient, {eta}(t), precedes the upper range of the v {sub nt} with the time lag of approximately 2 hr and the cross-correlation coefficient of 0.76. (2) The power-law index, {alpha}, of the magnetic power spectrum precedes V {sup upp} {sub nt} with a time lag of approximately 3 hr and the cross-correlation coefficient of 0.5. The data show that the magnetic flux dispersal in the photosphere is relevant to non-thermal energy release dynamics in the above corona. The results are consistent with the nanoflare mechanism of the coronal heating, due to the time lags being consistent with the process of heating and cooling the loops heated by nanoflares.

  5. 598 IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, VOL. 26, NO. 3, SEPTEMBER 2003 Thermal Design Methodology for High-Heat-Flux

    E-Print Network [OSTI]

    Qu, Weilin

    598 IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, VOL. 26, NO. 3, SEPTEMBER 2003 Thermal Design Methodology for High-Heat-Flux Single-Phase and Two-Phase Micro-Channel Heat Sinks Weilin of single-phase and two-phase micro-channel heat sinks. The first part of the paper concerns single

  6. Neutron spectrometer for fast nuclear reactors

    E-Print Network [OSTI]

    Osipenko, M; Ricco, G; Caiffi, B; Pompili, F; Pillon, M; Angelone, M; Verona-Rinati, G; Cardarelli, R; Mila, G; Argiro, S

    2015-01-01T23:59:59.000Z

    In this paper we describe the development and first tests of a neutron spectrometer designed for high flux environments, such as the ones found in fast nuclear reactors. The spectrometer is based on the conversion of neutrons impinging on $^6$Li into $\\alpha$ and $t$ whose total energy comprises the initial neutron energy and the reaction $Q$-value. The $^6$LiF layer is sandwiched between two CVD diamond detectors, which measure the two reaction products in coincidence. The spectrometer was calibrated at two neutron energies in well known thermal and 3 MeV neutron fluxes. The measured neutron detection efficiency varies from 4.2$\\times 10^{-4}$ to 3.5$\\times 10^{-8}$ for thermal and 3 MeV neutrons, respectively. These values are in agreement with Geant4 simulations and close to simple estimates based on the knowledge of the $^6$Li(n,$\\alpha$)$t$ cross section. The energy resolution of the spectrometer was found to be better than 100 keV when using 5 m cables between the detector and the preamplifiers.

  7. Neutron spectrometer for fast nuclear reactors

    E-Print Network [OSTI]

    M. Osipenko; M. Ripani; G. Ricco; B. Caiffi; F. Pompili; M. Pillon; M. Angelone; G. Verona-Rinati; R. Cardarelli; G. Mila; S. Argiro

    2015-05-25T23:59:59.000Z

    In this paper we describe the development and first tests of a neutron spectrometer designed for high flux environments, such as the ones found in fast nuclear reactors. The spectrometer is based on the conversion of neutrons impinging on $^6$Li into $\\alpha$ and $t$ whose total energy comprises the initial neutron energy and the reaction $Q$-value. The $^6$LiF layer is sandwiched between two CVD diamond detectors, which measure the two reaction products in coincidence. The spectrometer was calibrated at two neutron energies in well known thermal and 3 MeV neutron fluxes. The measured neutron detection efficiency varies from 4.2$\\times 10^{-4}$ to 3.5$\\times 10^{-8}$ for thermal and 3 MeV neutrons, respectively. These values are in agreement with Geant4 simulations and close to simple estimates based on the knowledge of the $^6$Li(n,$\\alpha$)$t$ cross section. The energy resolution of the spectrometer was found to be better than 100 keV when using 5 m cables between the detector and the preamplifiers.

  8. Separate determination of the amplitude of thermal vibrations and static atomic displacements in titanium carbide by neutron diffraction

    SciTech Connect (OSTI)

    Khidirov, I., E-mail: khidirov@inp.uz; Parpiev, A. S. [Uzbekistan Academy of Sciences, Institute of Nuclear Physics (Uzbekistan)

    2011-05-15T23:59:59.000Z

    The amplitude of thermal (dynamic) atomic vibrations and meansquare static atomic displacements in titanium carbide TiC{sub x} (x = 0.97, 0.88, 0.70) have been separately determined by measuring neutron diffraction patterns at two temperatures (T{sub 1} = 300 K and T{sub 2} = 80 K). The static lattice distortions in stoichiometric titanium carbide are experimentally found to be negligible. In the TiC{sub x} homogeneity range, the amplitude {radical}u{sup 2}{sub dyn} of thermal atomic vibrations significantly increases with a decrease in the carbon concentration. The Debye temperature has been determined for the first time in the TiC{sub x} homogeneity range at both room and liquid-nitrogen temperatures.

  9. Wavelength-Shifting-Fiber Scintillation Detectors for Thermal Neutron Imaging at SNS

    SciTech Connect (OSTI)

    Clonts, Lloyd G [ORNL; Cooper, Ronald G [ORNL; Crow, Lowell [ORNL; Diawara, Yacouba [ORNL; Ellis, E Darren [ORNL; Funk, Loren L [ORNL; Hannan, Bruce W [ORNL; Hodges, Jason P [ORNL; Richards, John D [ORNL; Riedel, Richard A [ORNL; Wang, Cai-Lin [ORNL

    2012-01-01T23:59:59.000Z

    We have developed wavelength-Shifting-fiber Scintillator Detector (SSD) with 0.3 m2 area per module. Each module has 154 x 7 pixels and a 5 mm x 50 mm pixel size. Our goal is to design a large area neutron detector offering higher detection efficiency and higher count-rate capability for Time-Of-Flight (TOF) neutron diffraction in Spallation Neutron Source (SNS). A ZnS/6LiF scintillator combined with a novel fiber encoding scheme was used to record the neutron events. A channel read-out-card (CROC) based digital-signal processing electronics and position-determination algorithm was applied for neutron imaging. Neutron-gamma discrimination was carried out using pulse-shape discrimination (PSD). A sandwich flat-scintillator detector can have detection efficiency close to He-3 tubes (about 10 atm). A single layer flat-scintillator detector has count rate capability of 6,500 cps/cm2, which is acceptable for powder diffractometers at SNS.

  10. Contribution of nano-scale effects to the total efficiency of converters of thermal neutrons on the basis of gadolinium foils

    E-Print Network [OSTI]

    D. A. Abdushukurov; D. V. Bondarenko; Kh. Kh. Muminov; D. Yu. Chistyakov

    2008-02-04T23:59:59.000Z

    We study the influence of nano-scale layers of converters made from natural gadolinium and its 157 isotope into the total efficiency of registration of thermal neutrons. Our estimations show that contribution of low-energy Auger electrons with the runs about nanometers in gadolinium, to the total efficiency of neutron converters in this case is essential and results in growth of the total efficiency of converters. The received results are in good consent to the experimental data.

  11. The energy spectrum of delayed neutrons from thermal neutron induced fission of sup 2 sup 3 sup 5 U and its analytical approximation

    E-Print Network [OSTI]

    Doroshenko, A Y; Tarasko, M Z

    2001-01-01T23:59:59.000Z

    The energy spectrum of the delayed neutrons is the poorest known of all input data required in the calculation of the effective delayed neutron fractions. In addition to delayed neutron spectra based on the aggregate spectrum measurements there are two different approaches for deriving the delayed neutron energy spectra. Both of them are based on the data related to the delayed neutron spectra from individual precursors of delayed neutrons. In present work these two different data sets were compared with the help of an approximation by gamma-function. The choice of this approximation function instead of the Maxwellian or evaporation type of distribution is substantiated.

  12. On the “direct” calculation of thermal rate constants. II. The flux-flux autocorrelation function with absorbing potentials, with application to the O+HCl?OH+Cl reaction

    E-Print Network [OSTI]

    Thompson, Ward H.; Miller, William H.

    1997-01-01T23:59:59.000Z

    value of J and K . In practice, though, things are greatly simplified because the dependence of kJK on J and K is very simple. For example, if the J-shifting approximation were accurate, then Eq. ~3.3! shows the J and K dependence is ln kJK~T !5constant2... of the Boltzmannized flux operator used to cal- culate the trace! at T5400 K. FIG. 5. The partial rate constant kJK ~within the helicity conserving approxi- mation! vs J(J11) for K50. Results for T5400 K ~solid line with circles! and T5250 K ~dashed line with squares...

  13. The new cold neutron chopper spectrometer at the Spallation Neutron Source: Design and performance

    SciTech Connect (OSTI)

    Ehlers, G.; Podlesnyak, A. A.; Niedziela, J. L.; Iverson, E. B. [Neutron Scattering Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Sokol, P. E. [Department of Physics, Indiana University, Bloomington, Indiana 47405 (United States)

    2011-08-15T23:59:59.000Z

    The design and performance of the new cold neutron chopper spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge are described. CNCS is a direct-geometry inelastic time-of-flight spectrometer, designed essentially to cover the same energy and momentum transfer ranges as IN5 at ILL, LET at ISIS, DCS at NIST, TOFTOF at FRM-II, AMATERAS at J-PARC, PHAROS at LANSCE, and NEAT at HZB, at similar energy resolution. Measured values of key figures such as neutron flux at sample position and energy resolution are compared between measurements and ray tracing Monte Carlo simulations, and good agreement (better than 20% of absolute numbers) has been achieved. The instrument performs very well in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments.

  14. The new Cold Neutron Chopper Spectrometer at the Spallation Neutron Source -- Design and Performance

    SciTech Connect (OSTI)

    Ehlers, Georg [ORNL; Podlesnyak, Andrey A [ORNL; Niedziela, Jennifer L [ORNL; Iverson, Erik B [ORNL; Sokol, Paul E [ORNL

    2011-01-01T23:59:59.000Z

    The design and performance of the new cold neutron chopper spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge are described. CNCS is a direct-geometry inelastic time-of-flight spectrometer, designed essentially to cover the same energy and momentum transfer ranges as IN5 at ILL, LET at ISIS, DCS at NIST, TOFTOF at FRM-II, AMATERAS at J-PARC, PHAROS at LANSCE, and NEAT at HZB, at similar energy resolution. Measured values of key figures such as neutron flux at sample position and energy resolution are compared between measurements and ray tracing Monte Carlo simulations, and good agreement (better than 20% of absolute numbers) has been achieved. The instrument performs very well in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments.

  15. CSRL-V ENDF/B-V 227-group neutron cross-section library and its application to thermal-reactor and criticality safety benchmarks

    SciTech Connect (OSTI)

    Ford, W.E. III; Diggs, B.R.; Knight, J.R.; Greene, N.M.; Petrie, L.M.; Webster, C.C.; Westfall, R.M.; Wright, R.Q.; Williams, M.L.

    1982-01-01T23:59:59.000Z

    Characteristics and contents of the CSRL-V (Criticality Safety Reference Library based on ENDF/B-V data) 227-neutron-group AMPX master and pointwise cross-section libraries are described. Results obtained in using CSRL-V to calculate performance parameters of selected thermal reactor and criticality safety benchmarks are discussed.

  16. Improved Calculation of Thermal Fission Energy

    E-Print Network [OSTI]

    Ma, X B; Wang, L Z; Chen, Y X; Cao, J

    2013-01-01T23:59:59.000Z

    Thermal fission energy is one of the basic parameters needed in the calculation of antineutrino flux for reactor neutrino experiments. It is useful to improve the precision of the thermal fission energy calculation for current and future reactor neutrino experiments, which are aimed at more precise determination of neutrino oscillation parameters. In this article, we give new values for thermal fission energies of some common thermal reactor fuel iso-topes, with improvements on two aspects. One is more recent input data acquired from updated nuclear databases. The other, which is unprecedented, is a consideration of the production yields of fission fragments from both thermal and fast incident neutrons for each of the four main fuel isotopes. The change in calculated antineutrino flux due to the new values of thermal fission energy is about 0.33%, and the uncertainties of the new values are about 30% smaller.

  17. In-Pile Experiment of a New Hafnium Aluminide Composite Material to Enable Fast Neutron Testing in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Donna Post Guillen; Douglas L. Porter; James R. Parry; Heng Ban

    2010-06-01T23:59:59.000Z

    A new hafnium aluminide composite material is being developed as a key component in a Boosted Fast Flux Loop (BFFL) system designed to provide fast neutron flux test capability in the Advanced Test Reactor. An absorber block comprised of hafnium aluminide (Al3Hf) particles (~23% by volume) dispersed in an aluminum matrix can absorb thermal neutrons and transfer heat from the experiment to pressurized water cooling channels. However, the thermophysical properties, such as thermal conductivity, of this material and the effect of irradiation are not known. This paper describes the design of an in-pile experiment to obtain such data to enable design and optimization of the BFFL neutron filter.

  18. The development and demonstration of a thermal neutron radiography facility utilizing the TAMU NSC TRIGA reactor

    E-Print Network [OSTI]

    Lorenz, Robert Wayne

    1972-01-01T23:59:59.000Z

    an object without permanently changing or destroying the object being inspected. X ? rays and gamma rays are probably the most widely used radiations in the above applications; however, the use of beams of neutrons is becoming more prevalent. Radiography... useful results, the attenuation of radiation per unit thickness of material must depend upon the physical or atomic characteristics of the material. X-rays and gamma rays are absorbed within the objects by various interactions with the elec- tronic...

  19. Radiative neutron capture on 9be, 14c, 14n, 15n and 16o at thermal and astrophysical energies

    E-Print Network [OSTI]

    Sergey Dubovichenko; Albert Dzhazairov-Kakhramanov; Nadezhda Afanasyeva

    2014-01-28T23:59:59.000Z

    The total cross sections of the radiative neutron capture processes on 9Be, 14C, 14N, 15N, and 16O are described in the framework of the modified potential cluster model with the classification of orbital states according to Young tableaux. The continued interest in the study of these reactions is due, on the one hand, to the important role played by this process in the analysis of many fundamental properties of nuclei and nuclear reactions, and, on the other hand, to the wide use of the capture cross section data in the various applications of nuclear physics and nuclear astrophysics, and, also, to the importance of the analysis of primordial nucleosynthesis in the Universe. This article is devoted to the description of results for the processes of the radiative neutron capture on certain light atomic nuclei at thermal and astrophysical energies. The considered capture reactions are not part of stellar thermonuclear cycles, but involve in the reaction chains of inhomogeneous Big Bang models.

  20. Effects of neutron irradiation on thermal conductivity of SiC-based composites and monolithic ceramics

    SciTech Connect (OSTI)

    Senor, D.J.; Youngblood, G.E. [Pacific Northwest National Lab., Richland, WA (United States); Moore, C.E. [Auburn Univ., AL (United States); Trimble, D.J. [Westinghouse Hanford Co., Richland, WA (United States); Woods, J.J. [Lockheed Martin, Schenectady, NY (United States)

    1996-06-01T23:59:59.000Z

    A variety of SiC-based composites and monolithic ceramics were characterized by measuring their thermal diffusivity in the unirradiated, thermal annealed, and irradiated conditions over the temperature range 400 to 1,000 C. The irradiation was conducted in the EBR-II to doses of 33 and 43 dpa-SiC (185 EFPD) at a nominal temperature of 1,000 C. The annealed specimens were held at 1,010 C for 165 days to approximately duplicate the thermal exposure of the irradiated specimens. Thermal diffusivity was measured using the laser flash method, and was converted to thermal conductivity using density data and calculated specific heat values. Exposure to the 165 day anneal did not appreciably degrade the conductivity of the monolithic or particulate-reinforced composites, but the conductivity of the fiber-reinforced composites was slightly degraded. The crystalline SiC-based materials tested in this study exhibited thermal conductivity degradation of irradiation, presumably caused by the presence of irradiation-induced defects. Irradiation-induced conductivity degradation was greater at lower temperatures, and was typically more pronounced for materials with higher unirradiated conductivity. Annealing the irradiated specimens for one hour at 150 C above the irradiation temperature produced an increase in thermal conductivity, which is likely the result of interstitial-vacancy pair recombination. Multiple post-irradiation anneals on CVD {beta}-SiC indicated that a portion of the irradiation-induced damage was permanent. A possible explanation for this phenomenon was the formation of stable dislocation loops at the high irradiation temperature and/or high dose that prevented subsequent interstitial/vacancy recombination.

  1. Effects of neutron irradiation on thermal conductivity of SiC-based composites and monolithic ceramics

    SciTech Connect (OSTI)

    Senor, D.J.; Youngblood, G.E. [Pacific Northwest National Lab., Richland, WA (United States); Moore, C.E. [Auburn Univ., AL (United States); Trimble, D.J. [Westinghouse Hanford Co., Richland, WA (United States); Woods, J.J. [Lockheed Martin, Schenectady, NY (United States)

    1997-05-01T23:59:59.000Z

    A variety of SiC-based composites and monolithic ceramics were characterized by measuring their thermal diffusivity in the unirradiated, thermal annealed, and irradiated conditions over the temperature range 400 to 1,000 C. The irradiation was conducted in the EBR-II to doses of 33 and 43 dpa-SiC (185 EFPD) at a nominal temperature of 1,000 C. The annealed specimens were held at 1,010 C for 165 days to approximately duplicate the thermal exposure of the irradiated specimens. Thermal diffusivity was measured using the laser flash method, and was converted to thermal conductivity using density data and calculated specific heat values. Exposure to the 165 day anneal did not appreciably degrade the conductivity of the monolithic or particulate-reinforced composites, but the conductivity of the fiber-reinforced composites was slightly degraded. The crystalline SiC-based materials tested in this study exhibited thermal conductivity degradation after irradiation, presumably caused by the presence of irradiation-induced defects. Irradiation-induced conductivity degradation was greater at lower temperatures, and was typically more pronounced for materials with higher unirradiated conductivity. Annealing the irradiated specimens for one hour at 150 C above the irradiation temperature produced an increase in thermal conductivity, which is likely the result of interstitial-vacancy pair recombination. Multiple post-irradiation anneals on CVD {beta}-SiC indicated that a portion of the irradiation-induced damage was permanent. A possible explanation for this phenomenon was the formation of stable dislocation loops at the high irradiation temperature and/or high dose that prevented subsequent interstitial/vacancy recombination.

  2. Neutron Irradiation Measurement for Superconducting Magnet

    E-Print Network [OSTI]

    McDonald, Kirk

    close to reactor core · Sample cool down by He gas loop: 10K ­ 20K · Fast neutron flux (En>0.1MeV): 1.4x. Materials, 49, p161 (1973&74) Reactor n on Al Reactor n on Cu fluence up to 2*1022 n/m2 (En>0.1MeV) RRR Irradiation at KUR · Kyoto Univ. Research Reactor Institute · MW max. thermal power · Irradiation cryostat

  3. Format requirements of thermal neutron scattering data in a nuclear data format to succeed the ENDF format

    SciTech Connect (OSTI)

    Brown, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-03-31T23:59:59.000Z

    In November 2012, the Working Party on Evaluation Cooperation Subgroup 38 (WPEC-SG38) began with the task of developing a nuclear data format and supporting infrastructure to replace the now nearly 50 year old ENDF format. The first step in this process is to develop requirements for the new format and infrastructure. In this talk, I will review the status of ENDF's Thermal Scattering Law (TSL) formats as well as support for this data in the GND format (from which the new format is expected to evolve). Finally, I hope to begin a dialog with members of the thermal neutron scattering community so that their data needs can be accurately and easily accommodated by the new format and tools, as captured by the requirements document. During this discussion, we must keep in mind that the new tools and format must; Support what is in existing data files; Support new things we want to put in data files; and Be flexible enough for us to adapt it to future unanticipated challenges.

  4. Cryogenic hydrogen circulation system of neutron source

    SciTech Connect (OSTI)

    Qiu, Y. N. [Institute of Physics and Chemistry, Chinese Academy of Sciences, BJ100190 China and University of Chinese Academy of Sciences, Chinese Academy of Sciences, BJ100049 (China); Hu, Z. J.; Wu, J. H.; Li, Q.; Zhang, Y. [Institute of Physics and Chemistry, Chinese Academy of Sciences, BJ100190 (China); Zhang, P. [School of Energy and Power Engineering, HuaZhong University of Science and Technology, WH430074 (China); Wang, G. P. [Institute of High Energy Physics, Chinese Academy of Sciences, BJ100049 (China)

    2014-01-29T23:59:59.000Z

    Cold neutron sources of reactors and spallation neutron sources are classic high flux neutron sources in operation all over the world. Cryogenic fluids such as supercritical or supercooled hydrogen are commonly selected as a moderator to absorb the nuclear heating from proton beams. By comparing supercritical hydrogen circulation systems and supercooled hydrogen circulation systems, the merits and drawbacks in both systems are summarized. When supercritical hydrogen circulates as the moderator, severe pressure fluctuations caused by temperature changes will occur. The pressure control system used to balance the system pressure, which consists of a heater as an active controller for thermal compensation and an accumulator as a passive volume controller, is preliminarily studied. The results may provide guidelines for design and operation of other cryogenic hydrogen system for neutron sources under construction.

  5. R-MATRIX ANALYSIS of 232Th NEUTRON TRANSMISSIONS and CAPTURE CROSS SECTIONS in the ENERGY RANGE THERMAL to 4 keV

    SciTech Connect (OSTI)

    Derrien, Herve [ORNL; Leal, Luiz C [ORNL; Larson, Nancy M [ORNL

    2008-01-01T23:59:59.000Z

    Neutron resonance parameters of 232Th were obtained from the Reich-Moore SAMMY analysis of high-resolution neutron transmission measurements performed at the Oak Ridge Electron Linear Accelerator (ORELA) by Olsen in 1981, along with the high-resolution neutron capture measurements performed in 2005 at the Geel Linear Accelerator (GELINA, Belgium) by Schillebeeckx and at the n-TOF facility (CERN, Switzerland) by Aerts. The ORELA data were analyzed previously by Olsen with the Breit-Wigner multilevel code SIOB, and the results were used in the ENDF/B-VI evaluation. In the new analysis of the Olsen neutron transmissions by the modern computer code SAMMY, better accuracy is obtained for the resonance parameters by including in the experimental data base the recent experimental neutron capture data. The experimental data base and the method of analysis are described in the report. The neutron transmissions and the capture cross sections calculated with the resonance parameters are compared to the experimental values. A description is given of the statistical properties of the resonance parameters. The new evaluation results in a decrease in the capture resonance integral and improves the prediction of integral thermal benchmarks.

  6. Critical experiments on an enriched uranium solution system containing periodically distributed strong thermal neutron absorbers

    SciTech Connect (OSTI)

    Rothe, R.E.

    1996-09-30T23:59:59.000Z

    A series of 62 critical and critical approach experiments were performed to evaluate a possible novel means of storing large volumes of fissile solution in a critically safe configuration. This study is intended to increase safety and economy through use of such a system in commercial plants which handle fissionable materials in liquid form. The fissile solution`s concentration may equal or slightly exceed the minimum-critical-volume concentration; and experiments were performed for high-enriched uranium solution. Results should be generally applicable in a wide variety of plant situations. The method is called the `Poisoned Tube Tank` because strong neutron absorbers (neutron poisons) are placed inside periodically spaced stainless steel tubes which separate absorber material from solution, keeping the former free of contamination. Eight absorbers are investigated. Both square and triangular pitched lattice patterns are studied. Ancillary topics which closely model typical plant situations are also reported. They include the effect of removing small bundles of absorbers as might occur during inspections in a production plant. Not taking the tank out of service for these inspections would be an economic advantage. Another ancillary topic studies the effect of the presence of a significant volume of unpoisoned solution close to the Poisoned Tube Tank on the critical height. A summary of the experimental findings is that boron compounds were excellent absorbers, as expected. This was true for granular materials such as Gerstley Borate and Borax; but it was also true for the flexible solid composed of boron carbide and rubber, even though only thin sheets were used. Experiments with small bundles of absorbers intentionally removed reveal that quite reasonable tanks could be constructed that would allow a few tubes at a time to be removed from the tank for inspection without removing the tank from production service.

  7. Seismology of adolescent neutron stars: Accounting for thermal effects and crust elasticity

    E-Print Network [OSTI]

    C. J. Krüger; W. C. G. Ho; N. Andersson

    2014-08-20T23:59:59.000Z

    We study the oscillations of relativistic stars, incorporating key physics associated with internal composition, thermal gradients and crust elasticity. Our aim is to develop a formalism which is able to account for the state-of-the-art understanding of the complex physics associated with these systems. As a first step, we build models using a modern equation of state including composition gradients and density discontinuities associated with internal phase-transitions (like the crust-core transition and the point where muons first appear in the core). In order to understand the nature of the oscillation spectrum, we carry out cooling simulations to provide realistic snapshots of the temperature distribution in the interior as the star evolves through adolescence. The associated thermal pressure is incorporated in the perturbation analysis, and we discuss the presence of $g$-modes arising as a result of thermal effects. We also consider interface modes due to phase-transitions and the gradual formation of the star's crust and the emergence of a set of shear modes.

  8. Neutron detector

    DOE Patents [OSTI]

    Stephan, Andrew C. (Knoxville, TN); Jardret; Vincent D. (Powell, TN)

    2011-04-05T23:59:59.000Z

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  9. Innovative and Advanced Coupled Neutron Transport and Thermal Hydraulic Method (Tool) for the Design, Analysis and Optimization of VHTR/NGNP Prismatic Reactors

    SciTech Connect (OSTI)

    Rahnema, Farzad; Garimeela, Srinivas; Ougouag, Abderrafi; Zhang, Dingkang

    2013-11-29T23:59:59.000Z

    This project will develop a 3D, advanced coarse mesh transport method (COMET-Hex) for steady- state and transient analyses in advanced very high-temperature reactors (VHTRs). The project will lead to a coupled neutronics and thermal hydraulic (T/H) core simulation tool with fuel depletion capability. The computational tool will be developed in hexagonal geometry, based solely on transport theory without (spatial) homogenization in complicated 3D geometries. In addition to the hexagonal geometry extension, collaborators will concurrently develop three additional capabilities to increase the code’s versatility as an advanced and robust core simulator for VHTRs. First, the project team will develop and implement a depletion method within the core simulator. Second, the team will develop an elementary (proof-of-concept) 1D time-dependent transport method for efficient transient analyses. The third capability will be a thermal hydraulic method coupled to the neutronics transport module for VHTRs. Current advancements in reactor core design are pushing VHTRs toward greater core and fuel heterogeneity to pursue higher burn-ups, efficiently transmute used fuel, maximize energy production, and improve plant economics and safety. As a result, an accurate and efficient neutron transport, with capabilities to treat heterogeneous burnable poison effects, is highly desirable for predicting VHTR neutronics performance. This research project’s primary objective is to advance the state of the art for reactor analysis.

  10. Neutron and nuclear data revised for the 1997/98 handbook of chemistry and physics

    SciTech Connect (OSTI)

    Holden, N.E. [Brookhaven National Lab., Upton, NY (United States). Reactor Div.

    1997-07-01T23:59:59.000Z

    The 1997/98 Handbook of Chemistry and Physics will contain revised nuclear data information dealing with scattering and absorption properties of neutrons. All of these nuclear data were recently reevaluated. The 2,200 meter per second neutron cross sections and the neutron resonance integrals evaluation was performed in conjunction with the 1997 KAPL Wall-Chart of the Nuclides to insure consistency in the recommended values in the Handbook and on the Chart. The 2,200 meters per second neutron cross sections presented in the Handbook correspond to room temperature neutrons, 20.43 C, or a thermal neutron energy of 0.0253 electron volts, (eV). Neutron resonance integrals are defined over the energy range from 0.5 eV up to 0.1 {times} 10{sup 6} eV. They are averaged over a flux spectrum with a 1/E shape. Evaluated experimental data are derived from either a direct measurement or from 1/E spectrum averaged resonance parameter information. Resonance integrals are presented for neutron capture, charged particle or neutron fission reactions. Thermal neutron scattering is used for the investigation of the static and dynamic properties of condensed matter and it requires a knowledge of neutron scattering lengths. The Handbook presents bound atom neutron coherent scattering lengths in units of fentometers. Stellar slow neutron capture processes occur in a thermal neutron spectrum with temperatures approximately 30 keV. 30 keV Maxwellian averaged neutron cross sections for astrophysical applications are a new parameter presented in the 78th edition of the Handbook. No new parameters will be added to the Table of Isotopes` nuclear information but revised values will be provided for parameters of all known nuclides of the 112 chemical elements.

  11. Proton recoil scintillator neutron rem meter

    DOE Patents [OSTI]

    Olsher, Richard H. (Los Alamos, NM); Seagraves, David T. (Los Alamos, NM)

    2003-01-01T23:59:59.000Z

    A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

  12. Thermal Gravitational Waves from Primordial Black Holes

    E-Print Network [OSTI]

    C. Sivaram; Kenath Arun

    2010-05-19T23:59:59.000Z

    Thermal gravitational waves can be generated in various sources such as, in the cores of stars, white dwarfs and neutron stars due to the fermion collisions in the dense degenerate Fermi gas. Such high frequency thermal gravitational waves can also be produced during the collisions in a gamma ray burst or during the final stages of the evaporation of primordial black holes. Here we estimate the thermal gravitational waves from primordial black holes and estimate the integrated energy of the gravitational wave emission over the entire volume of the universe and over Hubble time. We also estimate the gravitational wave flux from gamma ray bursts and jets.

  13. The DOS 1 neutron dosimetry experiment at the HB-4-A key 7 surveillance site on the HFIR pressure vessel

    SciTech Connect (OSTI)

    Farrell, K.; Kam, F.B.; Baldwin, C.A. [and others

    1994-01-01T23:59:59.000Z

    A comprehensive neutron dosimetry experiment was made at one of the prime surveillance sites at the High Flux Isotope Reactor (HFIR) pressure vessel to aid radiation embrittlement studies of the vessel and to benchmark neutron transport calculations. The thermal neutron flux at the key 7, position 5 site was found, from measurements of radioactivation of four cobalt wires and four silver wires, to be 2.4 {times} 10{sup 12} n{center_dot}m{sup {minus}2}{center_dot}s{sup {minus}1}. The thermal flux derived from two helium accumulation monitors was 2.3 {times} 10{sup 12} n{center_dot}m{sup {minus}2}{center_dot}{sup {minus}1}. The thermal flux estimated by neutron transport calculations was 3.7 {times} 10{sup 12} n{center_dot}m{sup {minus}2}s{sup {minus}1}. The fast flux, >1 MeV, determined from two nickel activation wires, was 1.5 {times} 10{sup 12} n{center_dot}m{sup {minus}2}{center_dot}s{sup {minus}1}, in keeping with values obtained earlier from stainless steel surveillance monitors and with a computed value of 1.2 {times} 10{sup 13} n{center_dot}m{sup {minus}2}{center_dot}{sup {minus}1}. The fast fluxes given by two reaction-product-type monitors, neptunium-237 and beryllium, were 2.6 {times} 10{sup 13} n{center_dot}m{sup {minus}2}{center_dot}s {sup {minus}1} and 2.2 {times} 10{sup 13} n{center_dot}m{sup {minus}2}s{sup {minus}1}, respectively. Follow-up experiments indicate that these latter high values of fast flux are reproducible but are false; they are due to the creation of greater levels of reaction products by photonuclear events induced by an exceptionally high ratio of gamma flux to fast neutron flux at the vessel.

  14. Solid state neutron detector array

    DOE Patents [OSTI]

    Seidel, J.G.; Ruddy, F.H.; Brandt, C.D.; Dulloo, A.R.; Lott, R.G.; Sirianni, E.; Wilson, R.O.

    1999-08-17T23:59:59.000Z

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors. 7 figs.

  15. Solid state neutron detector array

    DOE Patents [OSTI]

    Seidel, John G. (Pittsburgh, PA); Ruddy, Frank H. (Monroeville, PA); Brandt, Charles D. (Mount Lebanon, PA); Dulloo, Abdul R. (Pittsburgh, PA); Lott, Randy G. (Pittsburgh, PA); Sirianni, Ernest (Monroeville, PA); Wilson, Randall O. (Greensburg, PA)

    1999-01-01T23:59:59.000Z

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors.

  16. Flexible Macroscopic Models for Dense-Fluid Shockwaves: Partitioning Heat and Work; Delaying Stress and Heat Flux; Two-Temperature Thermal Relaxation

    E-Print Network [OSTI]

    Wm. G. Hoover; Carol G. Hoover; Francisco J. Uribe

    2010-05-10T23:59:59.000Z

    Macroscopic models which distinguish the longitudinal and transverse temperatures can provide improved descriptions of the microscopic shock structures as revealed by molecular dynamics simulations. Additionally, we can include three relaxation times in the models, two based on Maxwell's viscoelasticity and its Cattaneo-equation analog for heat flow, and a third thermal, based on the Krook-Boltzmann equation. This approach can replicate the observed lags of stress (which lags behind the strain rate) and heat flux (which lags behind the temperature gradient), as well as the eventual equilibration of the two temperatures. For profile stability the time lags cannot be too large. By partitioning the longitudinal and transverse contributions of work and heat and including a tensor heat conductivity and bulk viscosity, all the qualitative microscopic features of strong simple-fluid shockwave structures can be reproduced.

  17. Paul Langan to lead ORNL's Neutron Sciences Directorate | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science activities, which include two leading DOE Office of Science user facilities for neutron scattering analysis: The Spallation Neutron Source (SNS) and the High Flux Isotope...

  18. PHYSICAL REVIEW C 83, 064612 (2011) Advanced Monte Carlo modeling of prompt fission neutrons for thermal and fast neutron-induced

    E-Print Network [OSTI]

    Danon, Yaron

    . Chadwick,3 and Y. Danon2 1 T-2 Nuclear Theory Group, Los Alamos National Laboratory, Los Alamos, New Mexico-CP, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA (Received 4 April 2011; published 23, evaluated with the Madland-Nix model. In particular, we predict more neutrons in the low-energy tail

  19. R-matrix analysis of the {sup 240}Pu neutron cross sections in the thermal to 5700 eV energy range

    SciTech Connect (OSTI)

    Derrien, H. [OECD, Paris (France). Nuclear Energy Agency Data Bank; Bouland, O. [Commissariat Energie Atomique, Saint Paul-lez-Durance (France). Centre d`Etudes; Larson, N.M.; Leal, L.C. [Oak Ridge National Lab., TN (United States)

    1997-08-01T23:59:59.000Z

    Resonance analysis of high resolution neutron transmission data and of fission cross sections were performed in the neutron energy range from the thermal regions to 5,700 eV by using the Reich-Moore Bayesian code SAMMY. The experimental data base is described and the method of analysis is given. The experimental data were carefully examined in order to identify more resonances than those found in the current evaluated data files. The statistical properties of the resonance parameters are given. A new set of the average values of the parameters is proposed, which could be used for calculation of the average cross sections in the unresolved resonance region. The resonance parameters are available IN ENDF-6 format at the national or international data centers.

  20. Three Mile Island Unit 1 Main Steam Line Break Three-Dimensional Neutronics/Thermal-Hydraulics Analysis: Application of Different Coupled Codes

    SciTech Connect (OSTI)

    D'Auria, Francesco [Universita di Pisa (Italy); Moreno, Jose Luis Gago [Universidad Politecnica de Barcelona (Spain); Galassi, Giorgio Maria [Universita di Pisa (Italy); Grgic, Davor [University of Zagreb (Croatia); Spadoni, Antonino [Universita di Pisa (Italy)

    2003-05-15T23:59:59.000Z

    A comprehensive analysis of the double ended main steam line break (MSLB) accident assumed to occur in the Babcock and Wilcox Three Mile Island Unit 1 (TMI-1) has been carried out at the Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione of the University of Pisa, Italy, in cooperation with the University of Zagreb, Croatia. The overall activity has been completed within the framework of the participation in the Organization for Economic Cooperation and Development-Committee on the Safety of Nuclear Installations-Nuclear Science Committee pressurized water reactor MSLB benchmark.Thermal-hydraulic system codes (various versions of Relap5), three-dimensional (3-D) neutronics codes (Parcs, Quabbox, and Nestle), and one subchannel code (Cobra) have been adopted for the analysis. Results from the following codes (or code versions) are assumed as reference:1. Relap5/mod3.2.2, beta version, coupled with the 3-D neutron kinetics Parcs code parallel virtual machine (PVM) coupling2. Relap5/mod3.2.2, gamma version, coupled with the 3-D neutron kinetics Quabbox code (direct coupling)3. Relap5/3D code coupled with the 3-D neutron kinetics Nestle code.The influence of PVM and of direct coupling is also discussed.Boundary and initial conditions of the system, including those relevant to the fuel status, have been supplied by Pennsylvania State University in cooperation with GPU Nuclear Corporation (the utility, owner of TMI) and the U.S. Nuclear Regulatory Commission. The comparison among the results obtained by adopting the same thermal-hydraulic nodalization and the coupled code version is discussed in this paper.The capability of the control rods to recover the accident has been demonstrated in all the cases as well as the capability of all the codes to predict the time evolution of the assigned transient. However, one stuck control rod caused some 'recriticality' or 'return to power' whose magnitude is largely affected by boundary and initial conditions.

  1. Review of the Development and Testing of a New Family of Boron and Gadolinium-Bearing Dual Thermal Neutron Absorbing Alloys - 13026

    SciTech Connect (OSTI)

    Schmidt, M.L.; Del Corso, G.J.; Klankowski, K.A. [Carpenter Tech., Corp., P.O. Box 14662, Reading PA 19612-4662 (United States)] [Carpenter Tech., Corp., P.O. Box 14662, Reading PA 19612-4662 (United States); Lherbier, L.W.; Novotnak, D.J. [Carpenter Powder Products, 600 Mayer St., Bridgeville, PA 15017 (United States)] [Carpenter Powder Products, 600 Mayer St., Bridgeville, PA 15017 (United States)

    2013-07-01T23:59:59.000Z

    The development of a new class of Fe-based thermal neutron absorbing alloys (patent pending) containing both natural boron (B) and gadolinium (Gd) is reviewed. Testing has shown that Ar and N inert gas atomized powder metallurgy (PM) variants offer superior processability coupled with improved mechanical properties that exhibit reduced anisotropy and reduced corrosion rates compared to conventional cast/wrought processed material. PM processing results in a microstructure containing a uniform distribution of second phase borides and gadolinides, and the morphology of the gadolinides prevents the formation low melting point Gd-bearing phases at solidifying austenite boundaries. The new T316-based materials containing both B and Gd exhibit superior corrosion resistance compared to straight B-bearing T304 materials. By keeping the B content < 1 weight percent (%) and using Gd to attain an equivalent B (B{sub Eq}) content higher than that achievable through the use of B only, the new materials exhibit superior ductility, toughness and bendability as a result of significantly reduced area fraction of Cr-rich M{sub 2}B borides. Limiting the total area fraction of second phase particles to < 22% insures a product with superior bendability. By restricting B to < 1% and using Gd up to 2.5%, B{sub Eq} levels approaching 12% can be attained that provide a cost effective improvement in thermal neutron absorption capability compared to using B-10 enriched boron. The new materials can be easily bent during fabrication compared to existing metal matrix composite materials while offering similar thermal neutron absorption capability. Production lots containing B{sub Eq} levels of 4.0 and 7.5% (Micro-Melt{sup R} DuoSorb{sup TM} 316NU-40 and 75, respectively) are in the process of being fabricated for customer trial material. (authors)

  2. A study of the morphological and cytological changes in Century Patna 231 and Bluebonnet 50 rice varieties resulting from X-ray and thermal neutron radiation

    E-Print Network [OSTI]

    Hasanuzzaman, Shah Muhammad

    1959-01-01T23:59:59.000Z

    a PQ > I CQ *H -P 1 oas2 a O ? > ir\\ 1x1 oS E?*i U 0 1 S . N c o uYOf to C\\i vD O rH vO ?? c^ \\ 0^ o in m ?? COvflOn ? ? ? ?lA v?> t> "* CV O C V - J to H ( ^ O tO to% ? ? ? ? 0? 0 0 r H >4- C\\ v O C ^ v O........................................ 40 1 E. Century Patna 231 - Thermal Neutrons for 25 hours...................................4*5 DISCUSSION.............................................48 Meiotic disturbance in normal Century Patna 231....... 4*8 Types of chromosome pairing...

  3. The tokamak as a neutron source

    SciTech Connect (OSTI)

    Hendel, H.W.; Jassby, D.L.

    1989-11-01T23:59:59.000Z

    This paper describes the tokamak in its role as a neutron source, with emphasis on experimental results for D-D neutron production. The sections summarize tokamak operation, sources of fusion and non-fusion neutrons, principal neutron detection methods and their calibration, neutron energy spectra and fluxes outside the tokamak plasma chamber, history of neutron production in tokamaks, neutron emission and fusion power gain from JET and TFTR (the largest present-day tokamaks), and D-T neutron production from burnup of D-D tritons. This paper also discusses the prospects for future tokamak neutron production and potential applications of tokamak neutron sources. 100 refs., 16 figs., 4 tabs.

  4. High Flux Isotope Reactor (HFIR) | U.S. DOE Office of Science...

    Office of Science (SC) Website

    (SUF) Division SUF Home About User Facilities User Facilities Dev X-Ray Light Sources Neutron Scattering Facilities High Flux Isotope Reactor (HFIR) Lujan Neutron Scattering...

  5. Consideration of a ultracold neutron source in two-dimensional cylindrical geometry by taking simulated boundaries

    SciTech Connect (OSTI)

    Gheisari, R., E-mail: gheisari@pgu.ac.ir [Physics Department, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Nuclear Energy Research Center, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Firoozabadi, M. M.; Mohammadi, H. [Department of Physics, University of Birjand, Birjand 97175 (Iran, Islamic Republic of)] [Department of Physics, University of Birjand, Birjand 97175 (Iran, Islamic Republic of)

    2014-01-15T23:59:59.000Z

    A new idea to calculate ultracold neutron (UCN) production by using Monte Carlo simulation method to calculate the cold neutron (CN) flux and an analytical approach to calculate the UCN production from the simulated CN flux was given. A super-thermal source (UCN source) was modeled based on an arrangement of D{sub 2}O and solid D{sub 2} (sD{sub 2}). The D{sub 2}O was investigated as the neutron moderator, and sD{sub 2} as the converter. In order to determine the required parameters, a two-dimensional (2D) neutron balance equation written in Matlab was combined with the MCNPX simulation code. The 2D neutron-transport equation in cylindrical (? ? z) geometry was considered for 330 neutron energy groups in the sD{sub 2}. The 2D balance equation for UCN and CN was solved using simulated CN flux as boundary value. The UCN source dimensions were calculated for the development of the next UCN source. In the optimal condition, the UCN flux and the UCN production rate (averaged over the sD{sub 2} volume) equal to 6.79?×?10{sup 6} cm{sup ?2}s{sup ?1} and 2.20 ×10{sup 5} cm{sup ?3}s{sup ?1}, respectively.

  6. HYSPEC : A CRYSTAL TIME OF FLIGHT HYBRID SPECTROMETER FOR THE SPALLATION NEUTRON SOURCE.

    SciTech Connect (OSTI)

    SHAPIRO,S.M.; ZALIZNYAK,I.A.

    2002-12-30T23:59:59.000Z

    This document lays out a proposal by the Instrument Development Team (IDT) composed of scientists from leading Universities and National Laboratories to design and build a conceptually new high-flux inelastic neutron spectrometer at the pulsed Spallation Neutron Source (SNS) at Oak Ridge. This instrument is intended to supply users of the SNS and scientific community, of which the IDT is an integral part, with a platform for ground-breaking investigations of the low-energy atomic-scale dynamical properties of crystalline solids. It is also planned that the proposed instrument will be equipped with a polarization analysis capability, therefore becoming the first polarized beam inelastic spectrometer in the SNS instrument suite, and the first successful polarized beam inelastic instrument at a pulsed spallation source worldwide. The proposed instrument is designed primarily for inelastic and elastic neutron spectroscopy of single crystals. In fact, the most informative neutron scattering studies of the dynamical properties of solids nearly always require single crystal samples, and they are almost invariably flux-limited. In addition, in measurements with polarization analysis the available flux is reduced through selection of the particular neutron polarization, which puts even more stringent limits on the feasibility of a particular experiment. To date, these investigations have mostly been carried out on crystal spectrometers at high-flux reactors, which usually employ focusing Bragg optics to concentrate the neutron beam on a typically small sample. Construction at Oak Ridge of the high-luminosity spallation neutron source, which will provide intense pulsed neutron beams with time-averaged fluxes equal to those at medium-flux reactors, opens entirely new opportunities for single crystal neutron spectroscopy. Drawing upon experience acquired during decades of studies with both crystal and time-of-flight (TOF) spectrometers, the IDT has developed a conceptual design for a focused-beam, hybrid time-of-flight instrument with a crystal monochromator for the SNS called HYSPEC (an acronym for hybrid spectrometer). The proposed instrument has a potential to collect data more than an order of magnitude faster than existing steady-source spectrometers over a wide range of energy transfer ({h_bar}{omega}) and momentum transfer (Q) space, and will transform the way that data in elastic and inelastic single-crystal spectroscopy are collected. HYSPEC is optimized to provide the highest neutron flux on sample in the thermal and epithermal neutron energy ranges at a good-to-moderate energy resolution. By providing a flux on sample several times higher than other inelastic instruments currently planned for the SNS, the proposed instrument will indeed allow unique ground-breaking measurements, and will ultimately make polarized beam studies at a pulsed spallation source a realistic possibility.

  7. Test of a prototype neutron spectrometer based on diamond detectors in a fast reactor

    E-Print Network [OSTI]

    M. Osipenko; F. Pompili; M. Ripani; M. Pillon; G. Ricco; B. Caiffi; R. Cardarelli; G. Verona-Rinati; S. Argiro

    2015-05-23T23:59:59.000Z

    A prototype of neutron spectrometer based on diamond detectors has been developed. This prototype consists of a $^6$Li neutron converter sandwiched between two CVD diamond crystals. The radiation hardness of the diamond crystals makes it suitable for applications in low power research reactors, while a low sensitivity to gamma rays and low leakage current of the detector permit to reach good energy resolution. A fast coincidence between two crystals is used to reject background. The detector was read out using two different electronic chains connected to it by a few meters of cable. The first chain was based on conventional charge-sensitive amplifiers, the other used a custom fast charge amplifier developed for this purpose. The prototype has been tested at various neutron sources and showed its practicability. In particular, the detector was calibrated in a TRIGA thermal reactor (LENA laboratory, University of Pavia) with neutron fluxes of $10^8$ n/cm$^2$s and at the 3 MeV D-D monochromatic neutron source named FNG (ENEA, Rome) with neutron fluxes of $10^6$ n/cm$^2$s. The neutron spectrum measurement was performed at the TAPIRO fast research reactor (ENEA, Casaccia) with fluxes of 10$^9$ n/cm$^2$s. The obtained spectra were compared to Monte Carlo simulations, modeling detector response with MCNP and Geant4.

  8. Experiments and Simulations of the Use of Time-Correlated Thermal Neutron Counting to Determine the Multiplication of an Assembly of Highly Enriched Uranium

    SciTech Connect (OSTI)

    David L. Chichester; Mathew T. Kinlaw; Scott M. Watson; Jeffrey M. Kalter; Eric C. Miller; William A. Noonan

    2014-11-01T23:59:59.000Z

    A series of experiments and numerical simulations using thermal-neutron time-correlated measurements has been performed to determine the neutron multiplication, M, of assemblies of highly enriched uranium available at Idaho National Laboratory. The experiments used up to 14.4 kg of highly-enriched uranium, including bare assemblies and assemblies reflected with high-density polyethylene, carbon steel, and tungsten. A small 252Cf source was used to initiate fission chains within the assembly. Both the experiments and the simulations used 6-channel and 8-channel detector systems, each consisting of 3He proportional counters moderated with polyethylene; data was recorded in list mode for analysis. 'True' multiplication values for each assembly were empirically derived using basic neutron production and loss values determined through simulation. A total of one-hundred and sixteen separate measurements were performed using fifty-seven unique measurement scenarios, the multiplication varied from 1.75 to 10.90. This paper presents the results of these comparisons and discusses differences among the various cases.

  9. Neutron beam characterization at the Neutron Radiography Reactor (NRAD)

    SciTech Connect (OSTI)

    Imel, G.R.; Urbatsch, T.; Pruett, D.P.; Ross, J.R.

    1990-01-01T23:59:59.000Z

    The Neutron Radiography Reactor (NRAD) is a 250-kW TRIGA Reactor operated by Argonne National Laboratory and is located near Idaho Falls, Idaho. The reactor and its facilities regarding radiography are detailed in another paper at this conference; this paper summarizes neutron flux measurements and calculations that have been performed to better understand and potentially improve the neutronics characteristics of the reactor.

  10. Temperature and heat flux datasets of a complex object in a fire plume for the validation of fire and thermal response codes.

    SciTech Connect (OSTI)

    Jernigan, Dann A.; Blanchat, Thomas K.

    2010-09-01T23:59:59.000Z

    It is necessary to improve understanding and develop temporally- and spatially-resolved integral scale validation data of the heat flux incident to a complex object in addition to measuring the thermal response of said object located within the fire plume for the validation of the SIERRA/FUEGO/SYRINX fire and SIERRA/CALORE codes. To meet this objective, a complex calorimeter with sufficient instrumentation to allow validation of the coupling between FUEGO/SYRINX/CALORE has been designed, fabricated, and tested in the Fire Laboratory for Accreditation of Models and Experiments (FLAME) facility. Validation experiments are specifically designed for direct comparison with the computational predictions. Making meaningful comparison between the computational and experimental results requires careful characterization and control of the experimental features or parameters used as inputs into the computational model. Validation experiments must be designed to capture the essential physical phenomena, including all relevant initial and boundary conditions. This report presents the data validation steps and processes, the results of the penlight radiant heat experiments (for the purpose of validating the CALORE heat transfer modeling of the complex calorimeter), and the results of the fire tests in FLAME.

  11. Rapidly pulsed TRIGA reactor: an intense source for neutron scattering experiments

    SciTech Connect (OSTI)

    Whittemore, William L. [General Atomics, San Diego, CA (United States)

    1994-07-01T23:59:59.000Z

    The need for ever increasing intensities of thermal neutron beams for neutron scattering experiments has stimulated the development of intense steady state research reactors such as the 53-MW ILL reactor at Grenoble. The source flux at the reactor end of the beam ports is typically 10{sup 15}n/cm{sup 2}.s for its thermal neutron beams. To achieve still higher source fluxes of neutrons, the family of pulsing IBR was developed. In this type of facility the pulse repetition rate is low ({approx}5/sec) typically but the instantaneous peak fluxes are high, ranging up to 5 x 10{sup 15}n/cm{sup 2}.s at the surface of the moderator. Another type of intense neutron source is that exemplified by the proton synchrotron accelerators with their spallation targets. The first of these has been the IPNS at Argonne National laboratory. This neutron source produces 30 pulses per second with an individual peak thermal neutron intensity of 4 x 10{sup 14}n/cm{sup 2}.s from the moderator. An equivalent, alternative intense neutron source can be based on a rapidly pulsed TRIGA reactor. With a pulsed thermal neutron intensity of more than 10{sup 15}n/cm{sup 2}.s occurring 50 times per second at the source end of beam ports, the rapidly pulsed TRIGA reactor combines some of the best features of the pulsed fast reactors such as IBR-2 and the spallation neutron sources but with the safety of a thermal neutron reactor with a large, prompt, negative temperature coefficient of reactivity. The initial concept of the rapidly pulsed TRIGA reactor was developed and initially reported in 1966. Subsequently, the standard fuel format for U-ZrH{sub x} fuel has been developed to include a small diameter fuel particularly well suited for the rapidly pulsed application. This fuel is LEU, satisfying all the requirements for non proliferation, and has a very long core life time. In the proposed application, the peak fuel temperature does not vary more than 1 deg. C from the average peak fuel temperatures during each pulse. Hence long term metallurgical stability is thus assured. With a core lifetime that can be designed for up to 10,000 MWD, operation at an average power of 10 MW (with peak pulsed powers of {approx}50 MW) with an equilibrium core can be conducted for 1000 full power days. (author)

  12. EIS-0247: Construction and Operation of the Spallation Neutron Source

    Broader source: Energy.gov [DOE]

    The United States needs a high-flux, short- pulsed neutron source to provide its scientific and industrial research communities with a much more intense source of pulsed neutrons for neutron...

  13. Thermal neutron diffraction determination of the magnetic structure of EuCu{sub 2}Ge{sub 2}

    SciTech Connect (OSTI)

    Rowan-Weetaluktuk, W. N.; Ryan, D. H., E-mail: dhryan@physics.mcgill.ca [Department of Physics, and Centre for the Physics of Materials, McGill University, 3600 University Street, Montreal, Quebec H3A 2T8 (Canada); Lemoine, P. [Laboratoire CRISMAT, ENSICAEN, UMR 6508 CNRS, 6 Boulevard du Maréchal Juin, 14050 Caen Cedex 4 (France); Cadogan, J. M. [School of Physical, Environmental and Mathematical Sciences, UNSW Canberra at the Australian Defence Force Academy, Canberra BC 2610 (Australia)

    2014-05-07T23:59:59.000Z

    The magnetic structure of EuCu{sub 2}Ge{sub 2} has been determined by flat-plate neutron powder diffraction. Two magnetic phases are present in the neutron diffraction pattern at 3.5?K. They have the same moment, within error, and a common transition temperature. Both {sup 151}Eu and {sup 153}Eu Mössbauer spectroscopy show that the two magnetic phases belong to the same crystallographic phase. Both phases can be modelled by planar helimagnetic structures: one with a propagation vector of [0.654(1), 0, 0], the other with a propagation vector of [0.410(1), 0.225(1), 0].

  14. Report to the DOE nuclear data committee. [EV RANGE 10-100; CROSS SECTIONS; PHOTONEUTRONS; NEUTRONS; GAMMA RADIATION; COUPLED CHANNEL THEORY; DIFFERENTIAL CROSS SECTIONS; MEV RANGE 01-10; ; CAPTURE; GAMMA SPECTRA; THERMAL NEUTRONS; COMPUTER CALCULATIONS; DECAY; FISSION PRODUCTS; FISSION YIELD; SHELL MODELS; NUCLEAR DATA COLLECTIONS

    SciTech Connect (OSTI)

    Struble, G.L.; Haight, R.C.

    1981-03-01T23:59:59.000Z

    Topics covered include: studies of (n, charged particle) reactions with 14 to 15 MeV neutrons; photoneutron cross sections for /sup 15/N; neutron radiative capture; Lane-model analysis of (p,p) and (n,n) scattering on the even tin isotopes; neutron scattering cross sections for /sup 181/Ta, /sup 197/Au, /sup 209/Bi, /sup 232/Th, and /sup 238/U inferred from proton scattering and charge exchange cross sections; neutron-induced fission cross sections of /sup 245/Cm and /sup 242/Am; fission neutron multiplicities for /sup 245/Cm and /sup 242/Am; the transport of 14 MeV neutrons through heavy materials 150 < A < 208; /sup 249/Cm energy levels from measurement of thermal neutron capture gamma rays; /sup 231/Th energy levels from neutron capture gamma ray and conversion electron spectroscopy; new measurements of conversion electron binding energies in berkelium and californium; nuclear level densities; relative importance of statistical vs. valence neutron capture in the mass-90 region; determination of properties of short-lived fission products; fission yield of /sup 87/Br and /sup 137/I from 15 nuclei ranging from /sup 232/Th to /sup 249/Cf; evaluation of charged particle data for the ECPL library; evaluation of secondary charged-particle energy and angular distributions for ENDL; and evaluated nuclear structure libraries derived from the table of isotopes. (GHT)

  15. E-Print Network 3.0 - argonne high flux reactor Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for: argonne high flux reactor Page: << < 1 2 3 4 5 > >> 1 Thirteenth National School on Neutron and X-ray Scattering Summary: Neutron Source and High Flux Isotope Reactor...

  16. Analytical and experimental investigations of the behavior of thermal neutrons in lattices of uranium metal rods in heavy water

    E-Print Network [OSTI]

    Simms, Richard

    1963-01-01T23:59:59.000Z

    Measurements of the intracellular distribution of the activation of foils by neutrons were made in lattices of 1/4-inch diameter, 1.03% U-235, uranium rods moderated by heavy water, with bare and cadmium-covered foils of ...

  17. High conduction neutron absorber to simulate fast reactor environment in an existing test reactor

    SciTech Connect (OSTI)

    Donna Post Guillen; Larry R. Greenwood; James R. Parry

    2014-06-22T23:59:59.000Z

    A new metal matrix composite material has been developed to serve as a thermal neutron absorber for testing fast reactor fuels and materials in an existing pressurized water reactor. The performance of this material was evaluated by placing neutron fluence monitors within shrouded and unshrouded holders and irradiating for up to four cycles. The monitor wires were analyzed by gamma and X-ray spectrometry to determine the activities of the activation products. Adjusted neutron fluences were calculated and grouped into three bins—thermal, epithermal, and fast—to evaluate the spectral shift created by the new material. A comparison of shrouded and unshrouded fluence monitors shows a thermal fluence decrease of ~11 % for the shielded monitors. Radioisotope activity and mass for each of the major activation products is given to provide insight into the evolution of thermal absorption cross-section during irradiation. The thermal neutron absorption capability of the composite material appears to diminish at total neutron fluence levels of ~8 × 1025 n/m2. Calculated values for dpa in excess of 2.0 were obtained for two common structural materials (iron and nickel) of interest for future fast flux experiments.

  18. advanced spallation neutron: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments....

  19. absorber neutronics performance: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments....

  20. Thermal Total Cross Sections of Europium from Neutron Capture and Transmission Measurements G.Leinweber, D.P. Barry, R.C. Block, M.J. Rapp, and J.G. Hoole

    E-Print Network [OSTI]

    Danon, Yaron

    Thermal Total Cross Sections of Europium from Neutron Capture and Transmission Measurements G 14052 INTRODUCTION Europium is a fission product in the low-yield tail at the high end of the fission, europium is the most reactive in air, making it a challenge to prepare samples in metallic form. 151 Eu

  1. ATRC Neutron Detector Testing Quick Look Report

    SciTech Connect (OSTI)

    Troy C. Unruh; Benjamin M. Chase; Joy L. Rempe

    2013-08-01T23:59:59.000Z

    As part of the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) program, a joint Idaho State University (ISU) / French Alternative Energies and Atomic Energy Commission (CEA) / Idaho National Laboratory (INL) project was initiated in FY-10 to investigate the feasibility of using neutron sensors to provide online measurements of the neutron flux and fission reaction rate in the ATR Critical Facility (ATRC). A second objective was to provide initial neutron spectrum and flux distribution information for physics modeling and code validation using neutron activation based techniques in ATRC as well as ATR during depressurized operations. Detailed activation spectrometry measurements were made in the flux traps and in selected fuel elements, along with standard fission rate distribution measurements at selected core locations. These measurements provide additional calibration data for the real-time sensors of interest as well as provide benchmark neutronics data that will be useful for the ATR Life Extension Program (LEP) Computational Methods and V&V Upgrade project. As part of this effort, techniques developed by Prof. George Imel will be applied by Idaho State University (ISU) for assessing the performance of various flux detectors to develop detailed procedures for initial and follow-on calibrations of these sensors. In addition to comparing data obtained from each type of detector, calculations will be performed to assess the performance of and reduce uncertainties in flux detection sensors and compare data obtained from these sensors with existing integral methods employed at the ATRC. The neutron detectors required for this project were provided to team participants at no cost. Activation detectors (foils and wires) from an existing, well-characterized INL inventory were employed. Furthermore, as part of an on-going ATR NSUF international cooperation, the CEA sent INL three miniature fission chambers (one for detecting fast flux and two for detecting thermal flux) with associated electronics for assessment. In addition, Prof. Imel, ISU, has access to an inventory of Self-Powered Neutron Detectors (SPNDs) with a range of response times as well as Back-to-Back (BTB) fission chambers from prior research he conducted at the Transient REActor Test Facility (TREAT) facility and Neutron RADiography (NRAD) reactors. Finally, SPNDs from the National Atomic Energy Commission of Argentina (CNEA) were provided in connection with the INL effort to upgrade ATR computational methods and V&V protocols that are underway as part of the ATR LEP. Work during fiscal year 2010 (FY10) focussed on design and construction of Experiment Guide Tubes (EGTs) for positioning the flux detectors in the ATRC N-16 locations as well as obtaining ATRC staff concurrence for the detector evaluations. Initial evaluations with CEA researchers were also started in FY10 but were cut short due to reactor reliability issues. Reactor availability issues caused experimental work to be delayed during FY11/12. In FY13, work resumed; and evaluations were completed. The objective of this "Quick Look" report is to summarize experimental activities performed from April 4, 2013 through May 16, 2013.

  2. Negative Thermal Expansion in ZrW{sub 2}O{sub 8}: Mechanisms, Rigid Unit Modes, and Neutron Total Scattering

    SciTech Connect (OSTI)

    Tucker, Matthew G. [Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ (United Kingdom); ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Goodwin, Andrew L.; Dove, Martin T. [Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ (United Kingdom); Keen, David A. [Physics Department, Oxford University, Clarendon Laboratory, Parks Road, Oxford OX1 3PU (United Kingdom); ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Wells, Stephen A. [Biological Physics, Bateman Physical Sciences Building, Arizona State University, Tempe, Arizona 85287-1504 (United States); Evans, John S.O. [Department of Chemistry, University Science Laboratories, South Road, Durham DH1 3LE (United Kingdom)

    2005-12-16T23:59:59.000Z

    The local structure of the low-temperature ordered phase of the negative thermal expansion (NTE) material ZrW{sub 2}O{sub 8} has been investigated by reverse Monte Carlo (RMC) modeling of neutron total scattering data. We obtain, for the first time, quantitative measurements of the extent to which the WO{sub 4} and ZrO{sub 6} polyhedra move as rigid units, and we show that these values are consistent with the predictions of rigid unit mode theory. We suggest that rigid unit modes are associated with the NTE. Our results do not support a recent interpretation of x-ray-absorption fine structure spectroscopy data in terms of a larger rigid structural component involving the Zr-O-W linkage.

  3. Neutron capture therapy with deep tissue penetration using capillary neutron focusing

    DOE Patents [OSTI]

    Peurrung, Anthony J. (Richland, WA)

    1997-01-01T23:59:59.000Z

    An improved method for delivering thermal neutrons to a subsurface cancer or tumor which has been first doped with a dopant having a high cross section for neutron capture. The improvement is the use of a guide tube in cooperation with a capillary neutron focusing apparatus, or neutron focusing lens, for directing neutrons to the tumor, and thereby avoiding damage to surrounding tissue.

  4. Coulomb and even-odd effects in cold and super-asymmetric fragmentation for thermal neutron induced fission of 235U

    E-Print Network [OSTI]

    Modesto Montoya

    2015-03-23T23:59:59.000Z

    The Coulomb effects hypothesis is used to interpret even-odd effects of maximum total kinetic energy as a function of mass and charge of fragments from thermal neutron induced fission of 235U. Assuming spherical fragments at scission, the Coulomb interaction energy between fragments (C_sph) is higher than the Q-value, the available energy. Therefore at scission the fragments must be deformed, so that the Coulomb interaction energy does not exceed the Q-value. The fact that the even-odd effects in the maximum total kinetic energy as a function of the charge and mass, respectively, are lower than the even-odd effects of Q is consistent with the assumption that odd mass fragments are softer than the even-even fragments. Even-odd effects of charge distribution in super asymmetric fragmentation also are interpreted with the Coulomb effect hypothesis. Because the difference between C_sph and Q increases with asymmetry, fragmentations require higher total deformation energy to occur. Higher deformation energy of the fragments implies lower free energy to break pairs of nucleons. This explains why in the asymmetric fragmentation region, the even-odd effects of the distribution of proton number and neutron number increases with asymmetry. Based on a similar reasoning, a prediction of a relatively high even-odd effect in symmetric fragmentations is proposed.

  5. Gamma and neutron detection modeling in the nuclear detection figure of merit (NDFOM) portal

    SciTech Connect (OSTI)

    Stroud, Phillip D [Los Alamos National Laboratory; Saeger, Kevin J [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    The Nuclear Detection Figure Of Merit (NDFOM) portal is a database of objects and algorithms for evaluating the performance of radiation detectors to detect nuclear material. This paper describes the algorithms used to model the physics and mathematics of radiation detection. As a first-principles end-to-end analysis system, it starts with the representation of the gamma and neutron spectral fluxes, which are computed with the particle and radiation transport code MCNPX. The gamma spectra emitted by uranium, plutonium, and several other materials of interest are described. The impact of shielding and other intervening material is computed by the method of build-up factors. The interaction of radiation with the detector material is computed by a detector response function approach. The construction of detector response function matrices based on MCNPX simulation runs is described in detail. Neutron fluxes are represented in a three group formulation to treat differences in detector sensitivities to thermal, epithermal, and fast neutrons.

  6. Spallation Neutron Source (SNS) | U.S. DOE Office of Science...

    Office of Science (SC) Website

    (SUF) Division SUF Home About User Facilities User Facilities Dev X-Ray Light Sources Neutron Scattering Facilities High Flux Isotope Reactor (HFIR) Lujan Neutron Scattering...

  7. accelerator-based neutron source: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    moderator is in agreement with simulation and the cold neutron flux is sufficient for neutron scattering studies of materials. We describe some possible modifications to the...

  8. accelerator-based neutron sources: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    moderator is in agreement with simulation and the cold neutron flux is sufficient for neutron scattering studies of materials. We describe some possible modifications to the...

  9. New neutron physics using spallation sources

    SciTech Connect (OSTI)

    Bowman, C.D.

    1988-01-01T23:59:59.000Z

    The extraordinary neutron intensities available from the new spallation pulsed neutron sources open up exciting opportunities for basic and applied research in neutron nuclear physics. The energy range of neutron research which is being explored with these sources extends from thermal energies to almost 800 MeV. The emphasis here is on prospective experiments below 100 keV neutron energy using the intense neutron bursts produced by the Proton Storage Ring (PSR) at Los Alamos. 30 refs., 10 figs.

  10. High Thermal Conductivity UO2-BeO Nulcear Fuel: Neutronic Performance Assessments and Overview of Fabrication

    E-Print Network [OSTI]

    Naramore, Michael J

    2010-08-03T23:59:59.000Z

    The objective of this work was to evaluate a new high conductivity nuclear fuel form. Uranium dioxide (UO2) is a very effective nuclear fuel, but it’s performance is limited by its low thermal conductivity. The fuel concept considered here is a...

  11. High Thermal Conductivity UO2-BeO Nulcear Fuel: Neutronic Performance Assessments and Overview of Fabrication 

    E-Print Network [OSTI]

    Naramore, Michael J

    2010-08-03T23:59:59.000Z

    The objective of this work was to evaluate a new high conductivity nuclear fuel form. Uranium dioxide (UO2) is a very effective nuclear fuel, but it’s performance is limited by its low thermal conductivity. The fuel concept considered here is a...

  12. Determining Reactor Neutrino Flux

    E-Print Network [OSTI]

    Jun Cao

    2012-03-08T23:59:59.000Z

    Flux is an important source of uncertainties for a reactor neutrino experiment. It is determined from thermal power measurements, reactor core simulation, and knowledge of neutrino spectra of fuel isotopes. Past reactor neutrino experiments have determined the flux to (2-3)% precision. Precision measurements of mixing angle $\\theta_{13}$ by reactor neutrino experiments in the coming years will use near-far detector configurations. Most uncertainties from reactor will be canceled out. Understanding of the correlation of uncertainties is required for $\\theta_{13}$ experiments. Precise determination of reactor neutrino flux will also improve the sensitivity of the non-proliferation monitoring and future reactor experiments. We will discuss the flux calculation and recent progresses.

  13. Neutrino transport and hydrodynamic stability of rotating proto-neutron stars

    E-Print Network [OSTI]

    V. Urpin

    2007-04-24T23:59:59.000Z

    We consider stability of differentially rotating non-magnetic proto-neutron stars. When neutrino transport is efficient, the star can be subject to a diffusive instability that can occur even in the convectively stable region. The instability arises on the time-scale comparable to the time-scale of thermal diffusion. Hydrodynamic motions driven by the instability can lead to anisotropy in the neutrino flux since the instability is suppressed near the equator and rotation axis.

  14. Wolter mirror microscope : novel neutron focussing and imaging optic

    E-Print Network [OSTI]

    Bagdasarova, Yelena S. (Yelena Sergeyevna)

    2010-01-01T23:59:59.000Z

    In this thesis, I investigated the effectiveness of a Wolter Type I neutron microscope as a focusing and imaging device for thermal and cold neutrons sources by simulating the performance of the optics in a standard neutron ...

  15. Determination of cross section for production of low energy gamma-rays by thermal neutron capture in silver and antimony

    E-Print Network [OSTI]

    Edens, Donald Lee

    1959-01-01T23:59:59.000Z

    ~ -', : - - . , 40-, :. . . =-;=. a =-'Sped%'ea. QM@&e8 fn. AgiegiP4 4O gbetryi:Niyz&eh = C@A&4 6@CNfLvl'S@S lg Nlv1klCk5g s s e e 0 ~ ~ ~ -a a a a'? a a e ~ s s, e ~ i' g~+ @@~cob, in. Attiny~e=4ba~. X~~-. -~=-~ ? ':":;, =::? , . g@P'fQg 5 QEC~~Q~ l. @ Qi, l~l" e...'praises ' The a'esrags'neutron energy ie about four'xdevx These nsutxone' ars 'eaei~l $l". erma1iged '@ paraffin~ . , jeti~ation ewperlments sith indium foils. using the oadm'Lum 1 I therma%tee plant)Gully apl Qf ths xerutrene from 'the plutonium beryllium...

  16. Boron nitride solid state neutron detector

    DOE Patents [OSTI]

    Doty, F. Patrick

    2004-04-27T23:59:59.000Z

    The present invention describes an apparatus useful for detecting neutrons, and particularly for detecting thermal neutrons, while remaining insensitive to gamma radiation. Neutrons are detected by direct measurement of current pulses produced by an interaction of the neutrons with hexagonal pyrolytic boron nitride.

  17. Hand Held Neutron Detector Development for Physics and Security Applications

    E-Print Network [OSTI]

    Campbell, Caitlin E

    2013-10-04T23:59:59.000Z

    neutrons are slowed to thermal using hydrogenous material such as polyethylene where the thermal neutrons are easily captured by either a gadolinium or boron source. Both boron and gadolinium release ionizing radiation in the form of alpha and gammas upon...

  18. Test of the consistency of various linearized semiclassical initial value time correlation functions in application to inelastic neutron scattering from liquid para-hydrogen

    E-Print Network [OSTI]

    Liu, Jian

    2008-01-01T23:59:59.000Z

    Theory of Thermal Neutron Scattering. (Dover Publications,S. W. Lovesey, Theory of Neutron Scattering from Condensedwith the inelastic neutron scattering experiment results.

  19. The High Flux Beam Reactor at Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Shapiro, S.M.

    1994-12-31T23:59:59.000Z

    Brookhaven National Laboratory`s High Flux Beam Reactor (HFBR) was built because of the need of the scientist to always want `more`. In the mid-50`s the Brookhaven Graphite reactor was churning away producing a number of new results when the current generation of scientists, led by Donald Hughes, realized the need for a high flux reactor and started down the political, scientific and engineering path that led to the BFBR. The effort was joined by a number of engineers and scientists among them, Chemick, Hastings, Kouts, and Hendrie, who came up with the novel design of the HFBR. The two innovative features that have been incorporated in nearly all other research reactors built since are: (i) an under moderated core arrangement which enables the thermal flux to peak outside the core region where beam tubes can be placed, and (ii) beam tubes that are tangential to the core which decrease the fast neutron background without affecting the thermal beam intensity. Construction began in the fall of 1961 and four years later, at a cost of $12 Million, criticality was achieved on Halloween Night, 1965. Thus began 30 years of scientific accomplishments.

  20. Conversion feasibility studies for the Grenoble high flux reactor

    SciTech Connect (OSTI)

    Mo, S.C.; Matos, J.E.

    1989-01-01T23:59:59.000Z

    Feasibility studies for conversion of the High Flux Reactor (RHF) at Grenoble France have been performed at the Argonne National Laboratory in cooperation with the Institut Laue-Langevin (ILL). The uranium densities required for conversion of the RHF to reduced enrichment fuels were computed to be 7.9 g/cm{sup 3} with 20% enrichment, 4.8 g/cm{sup 3} with 29% enrichment, and 2.8 g/cm{sup 3} with 45% enrichment. Thermal flux reductions at the peak in the heavy water reflector were computed to be 3% with 45% enriched fuel and 7% with 20% enriched fuel. In each case, the reactor's 44 day cycle length was preserved and no changes were made in the fuel element geometry. If the cladding thickness could be reduced from 0.38 mm to 0.30 mm, the required uranium density with 20% enrichment would be about 6.0 g/cm{sup 3} and the thermal flux reduction at the peak in the heavy water reflector would be about 7%. Significantly higher uranium densities are required in the RHF than in heavy water reactors with more conventional designs because the neutron spectrum is much harder in the RHF. Reduced enrichment fuels with the uranium densities required for use in the RHF are either not available or are not licensable at the present time. 6 refs., 6 figs., 3 tabs.

  1. FAST FLUX TEST FACILITY (FFTF) A HISTORY OF SAFETY & OPERATIONAL EXCELLENCE

    SciTech Connect (OSTI)

    NIELSEN, D L

    2004-02-26T23:59:59.000Z

    The Fast Flux Test Facility (FFTF) is a 400-megawatt (thermal) sodium-cooled, high temperature, fast neutron flux, loop-type test reactor. The facility was constructed to support development and testing of fuels, materials and equipment for the Liquid Metal Fast Breeder Reactor program. FFTF began operation in 1980 and over the next 10 years demonstrated its versatility to perform experiments and missions far beyond the original intent of its designers. The reactor had several distinctive features including its size, flux, core design, extensive instrumentation, and test features that enabled it to simultaneously carry out a significant array of missions while demonstrating its features that contributed to a high level of plant safety and availability. FFTF is currently being deactivated for final closure.

  2. Coulomb and even-odd effects in cold and super-asymmetric fragmentation for thermal neutron induced fission of 235U

    E-Print Network [OSTI]

    Montoya, Modesto

    2015-01-01T23:59:59.000Z

    The Coulomb effects hypothesis is used to interpret even-odd effects of maximum total kinetic energy as a function of mass and charge of fragments from thermal neutron induced fission of 235U. Assuming spherical fragments at scission, the Coulomb interaction energy between fragments (C_sph) is higher than the Q-value, the available energy. Therefore at scission the fragments must be deformed, so that the Coulomb interaction energy does not exceed the Q-value. The fact that the even-odd effects in the maximum total kinetic energy as a function of the charge and mass, respectively, are lower than the even-odd effects of Q is consistent with the assumption that odd mass fragments are softer than the even-even fragments. Even-odd effects of charge distribution in super asymmetric fragmentation also are interpreted with the Coulomb effect hypothesis. Because the difference between C_sph and Q increases with asymmetry, fragmentations require higher total deformation energy to occur. Higher deformation energy of the...

  3. Utilization of the High Flux Isotope Reactor at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Selby, Douglas L [ORNL; Bilheux, Hassina Z [ORNL; Meilleur, Flora [ORNL; Jones, Amy [ORNL; Bailey, William Barton [ORNL; Vandergriff, David H [ORNL

    2015-01-01T23:59:59.000Z

    This paper addresses several aspects of the scientific utilization of the Oak Ridge National Laboratory High Flux Isotope Reactor (HFIR). Topics to be covered will include: 1) HFIR neutron scattering instruments and the formal instrument user program; 2) Recent upgrades to the neutron scattering instrument stations at the reactor, and 3) eMod a new tool for addressing instrument modifications and providing configuration control and design process for scientific instruments at HFIR and the Spallation Neutron Source (SNS). There are 15 operating neutron instrument stations at HFIR with 12 of them organized into a formal user program. Since the last presentation on HFIR instruments at IGORR we have installed a Single Crystal Quasi-Laue Diffractometer instrument called IMAGINE; and we have made significant upgrades to HFIR neutron scattering instruments including the Cold Triple Axis Instrument, the Wide Angle Neutron Diffractometer, the Powder Diffractometer, and the Neutron Imaging station. In addition, we have initiated upgrades to the Thermal Triple Axis Instrument and the Bio-SANS cold neutron instrument detector system. All of these upgrades are tied to a continuous effort to maintain a high level neutron scattering user program at the HFIR. For the purpose of tracking modifications such as those mentioned and configuration control we have been developing an electronic system for entering instrument modification requests that follows a modification or instrument project through concept development, design, fabrication, installation, and commissioning. This system, which we call eMod, electronically leads the task leader through a series of questions and checklists that then identifies such things as ES&H and radiological issues and then automatically designates specific individuals for the activity review process. The system has been in use for less than a year and we are still working out some of the inefficiencies, but we believe that this will become a very effective tool for achieving the configuration and process control believed to be necessary for scientific instrument systems.

  4. Comparison of different experimental and analytical measures of the thermal annealing response of neutron-irradiated RPV steels

    SciTech Connect (OSTI)

    Iskander, S.K.; Sokolov, M.A.; Nanstad, R.K. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-05-01T23:59:59.000Z

    The thermal annealing response of several materials as indicated by Charpy transition temperature (TT) and upper-shelf energy (USE), crack initiation toughness, K{sub Jc}, predictive models, and automated-ball indentation (ABI) testing are compared. The materials investigated are representative reactor pressure vessel (RPV) steels (several welds and a plate) that were irradiated for other tasks of the Heavy-Section Steel Irradiation (HSSI) Program and are relatively well characterized in the unirradiated and irradiated conditions. They have been annealed at two temperatures, 343 and 454 C (650 and 850 F) for varying lengths of time. The correlation of the Charpy response and the fracture toughness, ABI, and the response predicted by the annealing model of Eason et al. for these conditions and materials appears to be reasonable. The USE after annealing at the temperature of 454 C appears to recover at a faster rate than the TT, and even over-recovers (i.e., the recovered USE exceeds that of the unirradiated material).

  5. Comparison of different experimental and analytical measures of the thermal annealing response of neutron-irradiated RPV steels

    SciTech Connect (OSTI)

    Iskander, S.K.; Sokolov, M.A.; Nanstad, R.K. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1999-10-01T23:59:59.000Z

    The thermal annealing response of several materials as indicated by Charpy transition temperature (TT) and upper-shelf energy (USE), crack initiation toughness, K{sub Jc}, predictive models, and automated-ball indentation (ABI) testing are compared. The materials investigated are representative reactor pressure vessel (RPV) steels (several welds and a plate) that were irradiated for other tasks of the Heavy-Section Steel Irradiation (HSSI) Program and are relatively well characterized in the unirradiated and irradiated conditions. They have been annealed at two temperatures, 343 and 454 C (650 and 850 F) for varying lengths of time. The correlation of the Charpy response and the fracture toughness, ABI, and the response predicted by the annealing model of Eason et al. for these conditions and materials appears to be reasonable. The USE after annealing at the temperature of 454 C appears to recover at a faster rate than the TT, and even over-recovers (i.e., the recovered USE exceeds that of the unirradiated material).

  6. NEUTRON AND NON-NEUTRON NUCLEAR DATA FOR RADIATION DOSIMETRY

    SciTech Connect (OSTI)

    HOLDEN,N.E.

    1999-09-10T23:59:59.000Z

    NEUTRON NUCLEAR DATA THAT IS USED IN REACTOR DOSIMETRY INCLUDE THERMAL NEUTRON CROSS SECTIONS AND NEUTRON RESONANCE INTEGRALS, FISSION SPECTRUM AVERAGED CROSS SECTIONS FOR REACTIONS ON A TARGET NUCLEUS. NON-NEUTRON NUCLEAR DATA USED IN REACTOR DOSIMETRY INCLUDE ISOTOPIC COMPOSITIONS OF TARGET NUCLIDES AND RADIOACTIVE HALF-LIVES, GAMMA-RAY ENERGIES AND INTENSITIES OF REACTION PRODUCT NUCLIDES. ALL OF THESE DATA ARE PERIODICALLY EVALUATED AND RECOMMENDED VALUES ARE PROVIDED IN THE HANDBOOK OF CHEMISTRY AND PHYSICS. THE LATEST RECOMMENDED VALUES ARE DISCUSSED AND THEY ARE CONTRASTED WITH SOME EARLIER NUCLEAR DATA, WHICH WAS PROVIDED WITH NEUTRON DETECTOR FOILS.

  7. absolute neutron spectrum: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    indicate that the use of this design should increase the neutron flux of prompt gamma-ray neutron activation analysis significantly. Zhang, Jinzhao 2013-01-01 188 New...

  8. accelerator neutron source: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    indicate that the use of this design should increase the neutron flux of prompt gamma-ray neutron activation analysis significantly. Zhang, Jinzhao 2013-01-01 37 Detection of...

  9. atmospheric neutron environments: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    component of the atmospheric neutron flux are considered separately. The energy spectra calculated using these equations were found to be in good agreement with data...

  10. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    2008-04-22T23:59:59.000Z

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  11. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    2009-12-29T23:59:59.000Z

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  12. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2005-06-14T23:59:59.000Z

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  13. Neutron capture therapy with deep tissue penetration using capillary neutron focusing

    DOE Patents [OSTI]

    Peurrung, A.J.

    1997-08-19T23:59:59.000Z

    An improved method is disclosed for delivering thermal neutrons to a subsurface cancer or tumor which has been first doped with a dopant having a high cross section for neutron capture. The improvement is the use of a guide tube in cooperation with a capillary neutron focusing apparatus, or neutron focusing lens, for directing neutrons to the tumor, and thereby avoiding damage to surrounding tissue. 1 fig.

  14. Neutron capture therapies

    DOE Patents [OSTI]

    Yanch, Jacquelyn C. (Cambridge, MA); Shefer, Ruth E. (Newton, MA); Klinkowstein, Robert E. (Winchester, MA)

    1999-01-01T23:59:59.000Z

    In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  15. Optical heat flux gauge

    DOE Patents [OSTI]

    Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MacArthur, C.D.; Cala, G.C.

    1991-04-09T23:59:59.000Z

    A heat flux gauge is disclosed comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable. 9 figures.

  16. Neutrino-Nucleon Interactions in Magnetized Neutron-Star Matter: The Effects of Parity Violation

    E-Print Network [OSTI]

    Phil Arras; Dong Lai

    1998-11-24T23:59:59.000Z

    We study neutrino-nucleon scattering and absorption in a dense, magnetized nuclear medium. These are the most important sources of neutrino opacity governing the cooling of a proto-neutron star in the first tens of seconds after its formation. Because the weak interaction is parity violating, the absorption and scattering cross-sections depend asymmetrically on the directions of the neutrino momenta with respect to the magnetic field. We develop the moment formalism of neutrino transport in the presence of such asymmetric opacities and derive explicit expressions for the neutrino flux and other angular moments of the Boltzmann transport equation. For a given neutrino species, there is a drift flux of neutrinos along the magnetic field in addition to the usual diffusive flux. This drift flux depends on the deviation of the neutrino distribution function from thermal equilibrium. Hence, despite the fact that the neutrino cross-sections are asymmetric throughout the star, asymmetric neutrino flux can be generated only in the outer region of the proto-neutron star where the neutrino distribution deviates significantly from thermal equilibrium. In addition to the asymmetric absorption opacity arising from nucleon polarization, we find the contribution of the electron (or positron) ground state Landau level. For neutrinos of energy less than a few times the temperature, this is the dominant source of asymmetric opacity. Lastly, we discuss the implication of our result to the origin of pulsar kicks: in order to generate kick velocity of a few hundred km/s from asymmetric neutrino emission using the parity violation effect, the proto-neutron star must have a dipole magnetic field of at least $10^{15}-10^{16}$ G.

  17. Resonant Cyclotron Scattering and Comptonization in Neutron Star Magnetospheres

    E-Print Network [OSTI]

    Maxim Lyutikov; Fotis P. Gavriil

    2006-02-10T23:59:59.000Z

    Resonant cyclotron scattering of the surface radiation in the magnetospheres of neutron stars may considerably modify the emergent spectra and impede efforts to constraint neutron star properties. Resonant cyclotron scattering by a non-relativistic warm plasma in an inhomogeneous magnetic field has a number of unusual characteristics: (i) in the limit of high resonant optical depth, the cyclotron resonant layer is half opaque, in sharp contrast to the case of non-resonant scattering. (ii) The transmitted flux is on average Compton up-scattered by ~ $1+ 2 beta_T$, where $\\beta_T$ is the typical thermal velocity in units of the velocity of light; the reflected flux has on average the initial frequency. (iii) For both the transmitted and reflected fluxes the dispersion of intensity decreases with increasing optical depth. (iv) The emergent spectrum is appreciably non-Plankian while narrow spectral features produced at the surface may be erased. We derive semi-analytically modification of the surface Plankian emission due to multiple scattering between the resonant layers and apply the model to anomalous X-ray pulsar 1E 1048.1--5937. Our simple model fits just as well as the ``canonical'' magnetar spectra model of a blackbody plus power-law.

  18. Advanced Neutron Source (ANS) Project progress report, FY 1994

    SciTech Connect (OSTI)

    Campbell, J.H.; King-Jones, K.H. [eds.; Selby, D.L.; Harrington, R.M. [Oak Ridge National Lab., TN (United States); Thompson, P.B. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States). Central Engineering Services

    1995-01-01T23:59:59.000Z

    The President`s budget request for FY 1994 included a construction project for the Advanced Neutron Source (ANS). However, the budget that emerged from the Congress did not, and so activities during this reporting period were limited to continued research and development and to advanced conceptual design. A significant effort was devoted to a study, requested by the US Department of Energy (DOE) and led by Brookhaven National Laboratory, of the performance and cost impacts of reducing the uranium fuel enrichment below the baseline design value of 93%. The study also considered alternative core designs that might mitigate those impacts. The ANS Project proposed a modified core design, with three fuel elements instead of two, that would allow operation with only 50% enriched uranium and use existing fuel technology. The performance penalty would be 15--20% loss of thermal neutron flux; the flux would still just meet the minimum design requirement set by the user community. At the time of this writing, DOE has not established an enrichment level for ANS, but two advisory committees have recommended adopting the new core design, provided the minimum flux requirements are still met.

  19. THERMAL HYDRAULICS KEYWORDS: neutron activation,

    E-Print Network [OSTI]

    Pázsit, Imre

    measurements of pro- duced heat. This is also true for power reactors, especially pressurized water reactors determination of the feedwater flow. The ca- lorimetric measurement of the total power is also used to normalize for deter- mining both gross power and nuclear parameters. Flow measurements can be based on intrusive meth

  20. Carriers mobility of InAs- and InP- rich InAs-InP solid solutions irradiated by fast neutrons

    SciTech Connect (OSTI)

    Khutsishvili, Elza; Khomasuridze, David; Gabrichidze, Leonti [Ferdinand Tavadze Institute of Metallurgy and Materials Science,15 Kazbegi str, 0160 Tbilisi (Georgia); Kvirkvelia, Bella; Kekelidze, David; Guguchia, Zurab [Iv.Javakhishvili Tbilisi State University, 1 Chavchavadze Ave., 0179 Tbilisi (Georgia); Aliyev, Vugar [Institute of Physics of National Academy of Sciences, 33 H. Cavid Avenue, 1143 Baku (Azerbaijan); Kekelidze, Nodar [Ferdinand Tavadze Institute of Metallurgy and Materials Science,15 Kazbegi str, 0160 Tbilisi (Georgia); Iv.Javakhishvili Tbilisi State University, 1 Chavchavadze Ave., 0179 Tbilisi (Georgia)

    2013-12-04T23:59:59.000Z

    We have studied the low temperature charge carriers mobility in bulk single crystals of InAs- and InP- rich InAs-InP solid solutions irradiated with maximum integral flux 2?10{sup 18} n/cm{sup 2} of fast neutrons. Influence of minor component small addition in InAs-InP solid solutions has been revealed. There are also presented data of radiation defects thermal stability.

  1. Neutronic Characterization of the Megapie Target

    E-Print Network [OSTI]

    Stefano Panebianco; Olivier Bringer; Pavel Bokov; Sebastien Chabod; Frederic Chartier; Emmeric Dupont; Diane Dore; Xavier Ledoux; Alain Letourneau; Ludovic Oriol; Aurelien Prevost; Danas Ridikas; Jean-Christian Toussaint

    2007-10-31T23:59:59.000Z

    The MEGAPIE project is one of the key experiments towards the feasibility of Accelerator Driven Systems. On-line operation and post-irradiation analysis will provide the scientific community with unique data on the behavior of a liquid spallation target under realistic irradiation conditions. A good neutronics performance of such a target is of primary importance towards an intense neutron source, where an extended liquid metal loop requires some dedicated verifications related to the delayed neutron activity of the irradiated PbBi. In this paper we report on the experimental characterization of the MEGAPIE neutronics in terms of the prompt neutron (PN) flux inside the target and the delayed neutron (DN) flux on the top of it. For the PN measurements, a complex detector, made of 8 microscopic fission chambers, has been built and installed in the central part of the target to measure the absolute neutron flux and its spatial distribution. Moreover, integral information on the neutron energy distribution as a function of the position along the beam axis could be extracted, providing integral constraints on the neutron production models implemented in transport codes such as MCNPX. For the DN measurement, we used a standard 3He counter and we acquired data during the start-up phase of the target irradiation in order to take sufficient statistics at variable beam power. Experimental results obtained on the PN flux characteristics and their comparison with MCNPX simulations are presented, together with a preliminary analysis of the DN decay time spectrum.

  2. SINGLE CRYSTAL NEUTRON DIFFRACTION.

    SciTech Connect (OSTI)

    KOETZLE,T.F.

    2001-03-13T23:59:59.000Z

    Single-crystal neutron diffraction measures the elastic Bragg reflection intensities from crystals of a material, the structure of which is the subject of investigation. A single crystal is placed in a beam of neutrons produced at a nuclear reactor or at a proton accelerator-based spallation source. Single-crystal diffraction measurements are commonly made at thermal neutron beam energies, which correspond to neutron wavelengths in the neighborhood of 1 Angstrom. For high-resolution studies requiring shorter wavelengths (ca. 0.3-0.8 Angstroms), a pulsed spallation source or a high-temperature moderator (a ''hot source'') at a reactor may be used. When complex structures with large unit-cell repeats are under investigation, as is the case in structural biology, a cryogenic-temperature moderator (a ''cold source'') may be employed to obtain longer neutron wavelengths (ca. 4-10 Angstroms). A single-crystal neutron diffraction analysis will determine the crystal structure of the material, typically including its unit cell and space group, the positions of the atomic nuclei and their mean-square displacements, and relevant site occupancies. Because the neutron possesses a magnetic moment, the magnetic structure of the material can be determined as well, from the magnetic contribution to the Bragg intensities. This latter aspect falls beyond the scope of the present unit; for information on magnetic scattering of neutrons see Unit 14.3. Instruments for single-crystal diffraction (single-crystal diffractometers or SCDs) are generally available at the major neutron scattering center facilities. Beam time on many of these instruments is available through a proposal mechanism. A listing of neutron SCD instruments and their corresponding facility contacts is included in an appendix accompanying this unit.

  3. Shifting scintillator neutron detector

    DOE Patents [OSTI]

    Clonts, Lloyd G; Cooper, Ronald G; Crow, Jr., Morris Lowell; Hannah, Bruce W; Hodges, Jason P; Richards, John D; Riedel, Richard A

    2014-03-04T23:59:59.000Z

    Provided are sensors and methods for detecting thermal neutrons. Provided is an apparatus having a scintillator for absorbing a neutron, the scintillator having a back side for discharging a scintillation light of a first wavelength in response to the absorbed neutron, an array of wavelength-shifting fibers proximate to the back side of the scintillator for shifting the scintillation light of the first wavelength to light of a second wavelength, the wavelength-shifting fibers being disposed in a two-dimensional pattern and defining a plurality of scattering plane pixels where the wavelength-shifting fibers overlap, a plurality of photomultiplier tubes, in coded optical communication with the wavelength-shifting fibers, for converting the light of the second wavelength to an electronic signal, and a processor for processing the electronic signal to identify one of the plurality of scattering plane pixels as indicative of a position within the scintillator where the neutron was absorbed.

  4. System and apparatus for neutron radiography

    SciTech Connect (OSTI)

    Whittemore, W.L.

    1991-07-02T23:59:59.000Z

    This patent describes a neutron radiography apparatus. It comprises an imaging plane; a neutron moderator having a cavity defining a convergent collimator, the cavity having a base and converging walls of neutron moderating material terminating at an aperture; a divergent collimator coaxially joined to the cavity at the aperture, the divergent collimator having diverging walls of radiation- absorbing material extending from the aperture to an expanded distal opening for irradiating the imaging plane; sources of neutrons disposed symmetrically about the base of the cavity; a neutron moderating material disposed for maximum neutron thermalization between the sources and the base of the cavity; and means for substantially shielding the plane from electromagnetic energy.

  5. FLUX SENSOR EVALUATIONS AT THE ATR CRITICAL FACILITY

    SciTech Connect (OSTI)

    Troy Unruh; Joy Rempe; David Nigg; George Imel; Jason Harris; Eric Bonebrake

    2010-11-01T23:59:59.000Z

    The Advanced Test Reactor (ATR) and the ATR Critical (ATRC) facilities lack real-time methods for detecting thermal neutron flux and fission reaction rates for irradiation capsules. Direct measurements of the actual power deposited into a test are now possible without resorting to complicated correction factors. In addition, it is possible to directly measure minor actinide fission reaction rates and to provide time-dependent monitoring of the fission reaction rate or fast/thermal flux during transient testing. A joint Idaho State University /Idaho National Laboratory ATR National Scientific User Facility (ATR NSUF) project was recently initiated to evaluate new real-time state-of-the-art in-pile flux detection sensors. Initially, the project is comparing the accuracy, response time, and long duration performance of French Atomic Energy Commission (CEA)-developed miniature fission chambers, specialized self-powered neutron detectors (SPNDs) by the Argentinean National Energy Commission (CNEA), specially developed commercial SPNDs, and back-to-back fission (BTB) chambers developed by Argonne National Laboratory (ANL). As discussed in this paper, specialized fixturing and software was developed by INL to facilitate these joint ISU/INL evaluations. Calculations were performed by ISU to assess the performance of and reduce uncertainties in flux detection sensors and compare data obtained from these sensors with existing integral methods employed at the ATRC. Ultimately, project results will be used to select the detector that can provide the best online regional ATRC power measurement. It is anticipated that project results may offer the potential to increase the ATRC’s current power limit and its ability to perform low-level irradiation experiments. In addition, results from this effort will provide insights about the viability of using these detectors in the ATR. Hence, this effort complements current activities to improve ATR software tools, computational protocols and in-core instrumentation under the ATR Modeling, Simulation and V&V Upgrade initiative, as well as the work to replace nuclear instrumentation under the ATR Life Extension Project (LEP) and provide support to the ATR NSUF.

  6. Study of the neutron and proton capture reactions 10,11b(n, g), 11b(p, g), 14c(p, g), and 15n(p, g) at thermal and astrophysical energies

    E-Print Network [OSTI]

    Sergey Dubovichenko; Albert Dzhazairov-Kakhramanov

    2014-05-24T23:59:59.000Z

    We have studied the neutron-capture reactions 10,11B(n, g) and the role of the 11B(n, g) reaction in seeding r-process nucleosynthesis. The possibility of the description of the available experimental data for cross sections of the neutron capture reaction on 10B at thermal and astrophysical energies, taking into account the resonance at 475 keV, was considered within the framework of the modified potential cluster model (MPCM) with forbidden states and accounting for the resonance behavior of the scattering phase shifts. In the framework of the same model the possibility of describing the available experimental data for the total cross sections of the neutron radiative capture on 11B at thermal and astrophysical energies were considered with taking into account the 21 and 430 keV resonances. Description of the available experimental data on the total cross sections and astrophysical S-factor of the radiative proton capture on 11B to the ground state of 12C was treated at astrophysical energies. The possibility of description of the experimental data for the astrophysical S-factor of the radiative proton capture on 14C to the ground state of 15N at astrophysical energies, and the radiative proton capture on 15N at the energies from 50 to 1500 keV was considered in the framework of the MPCM with the classification of the orbital states according to Young tableaux. It was shown that, on the basis of the M1 and the E1 transitions from different states of the p15N scattering to the ground state of 16O in the p15N channel, it is quite succeed to explain general behavior of the S-factor in the considered energy range in the presence of two resonances.

  7. Time-resolved neutron imaging at ANTARES cold neutron beamline

    E-Print Network [OSTI]

    Tremsin, A S; Tittelmeier, K; Schillinger, B; Schulz, M; Lerche, M; Feller, W B

    2015-01-01T23:59:59.000Z

    In non-destructive evaluation with X-rays light elements embedded in dense, heavy (or high-Z) matrices show little contrast and their structural details can hardly be revealed. Neutron radiography, on the other hand, provides a solution for those cases, in particular for hydrogenous materials, owing to the large neutron scattering cross section of hydrogen and uncorrelated dependency of neutron cross section on the atomic number. The majority of neutron imaging experiments at the present time is conducted with static objects mainly due to the limited flux intensity of neutron beamline facilities and sometimes due to the limitations of the detectors. However, some applications require the studies of dynamic phenomena and can now be conducted at several high intensity beamlines such as the recently rebuilt ANTARES beam line at the FRM-II reactor. In this paper we demonstrate the capabilities of time resolved imaging for repetitive processes, where different phases of the process can be imaged simultaneously and...

  8. Thermally driven circulation

    E-Print Network [OSTI]

    Nelken, Haim

    1987-01-01T23:59:59.000Z

    Several problems connected by the theme of thermal forcing are addressed herein. The main topic is the stratification and flow field resulting from imposing a specified heat flux on a fluid that is otherwise confined to a ...

  9. Variable control of neutron albedo in toroidal fusion devices

    DOE Patents [OSTI]

    Jassby, Daniel L. (Princeton, NJ); Micklich, Bradley J. (Princeton, NJ)

    1986-01-01T23:59:59.000Z

    An arrangement is provided for controlling neutron albedo in toroidal fusion devices having inboard and outboard vacuum vessel walls for containment of the neutrons of a fusion plasma. Neutron albedo material is disposed immediately adjacent the inboard wall, and is movable, preferably in vertical directions, so as to be brought into and out of neutron modifying communication with the fusion neutrons. Neutron albedo material preferably comprises a liquid form, but may also take pebble, stringer and curtain-like forms. A neutron flux valve, rotatable about a vertical axis is also disclosed.

  10. The Upscattering of Ultracold Neutrons from the polymer $[C_6 H_{12}]_n$

    E-Print Network [OSTI]

    Sharapov, E I; Makela, M; Saunders, A; Adamek, Evan R; Broussard, L J; Cude-Woods, C B; Fellers, Deion E; Geltenbort, Peter; Hartl, M; Hasan, S I; Hickerson, K P; Hogan, G; Holley, A T; Lavelle, C M; Liu, Chen-Yu; Mendenhall, M P; Ortiz, J; Pattie, R W; Ramsey, J; Salvat, D J; Seestrom, S J; Shaw, E; Sjue, Sky; Sondheim, W E; VornDick, B; Wang, Z; Womack, T L; Young, A R; Zeck, Bryan A; Phillips, D G

    2013-01-01T23:59:59.000Z

    It is generally accepted that the main cause of ultracold neutron (UCN) losses in storage traps is the upscattering to the thermal energy range by hydrogen adsorbed on the surface of the trap walls. However, the data on which this conclusion is based are poor and contradictory. Here, we report a measurement, performed at the Los Alamos National Laboratory UCN source, of the average energy of the flux of upscattered neutrons after the interaction of UCN with hydrogen bound in semicrystalline polymer PMP (tradename TPX), [C$_{6}$H$_{12}$]$_n$. Our analysis, performed with the MCNP code based on the application of the neutron scattering law to UCN upscattered by bound hydrogen in semicrystalline polyethylene, [C$_{2}$H$_{4}$]$_n$, leads us to a flux average energy value of 26$\\pm3$ meV in contradiction with previously reported experimental values of 10 to 13 meV and in agreement with the theoretical models of neutron heating implemented in the MCNP code.

  11. Information from leading neutrons at HERA

    E-Print Network [OSTI]

    V. A. Khoze; A. D. Martin; M. G. Ryskin

    2006-06-20T23:59:59.000Z

    In principle, leading neutrons produced in photoproduction and deep-inelastic scattering at HERA have the potential to determine the pion structure function, the neutron absorptive cross section and the form of the pion flux. To explore this potential we compare theoretical predictions for the x_L and p_t spectra of leading neutrons, and the Q^2 dependence of the cross section, with the existing ZEUS data.

  12. Fiber/Matrix Interfacial Thermal Conductance Effect on the Thermal Conductivity of SiC/SiC Composites

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Henager, Charles H.

    2013-04-20T23:59:59.000Z

    SiC/SiC composites used in fusion reactor applications are subjected to high heat fluxes and require knowledge and tailoring of their in-service thermal conductivity. Accurately predicting the thermal conductivity of SiC/SiC composites as a function of temperature will guide the design of these materials for their intended use, which will eventually include the effects of 14-MeV neutron irradiations. This paper applies an Eshelby-Mori-Tanaka approach (EMTA) to compute the thermal conductivity of unirradiated SiC/SiC composites. The homogenization procedure includes three steps. In the first step EMTA computes the homogenized thermal conductivity of the unidirectional (UD) SiC fiber embraced by its coating layer. The second step computes the thermal conductivity of the UD composite formed by the equivalent SiC fibers embedded in a SiC matrix, and finally the thermal conductivity of the as-formed SiC/SiC composite is obtained by averaging the solution for the UD composite over all possible fiber orientations using the second-order fiber orientation tensor. The EMTA predictions for the transverse thermal conductivity of several types of SiC/SiC composites with different fiber types and interfaces are compared to the predicted and experimental results by Youngblood et al.

  13. Neutron skins and neutron stars

    SciTech Connect (OSTI)

    Piekarewicz, J. [Department of Physics, Florida State University, Tallahassee, FL 32306-4350 (United States)

    2013-11-07T23:59:59.000Z

    The neutron-skin thickness of heavy nuclei provides a fundamental link to the equation of state of neutron-rich matter, and hence to the properties of neutron stars. The Lead Radius Experiment ('PREX') at Jefferson Laboratory has recently provided the first model-independence evidence on the existence of a neutron-rich skin in {sup 208}Pb. In this contribution we examine how the increased accuracy in the determination of neutron skins expected from the commissioning of intense polarized electron beams may impact the physics of neutron stars.

  14. analysis neutron activation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sr'tn thermal reactor neutrons gamma ? ray spec . rometry . The ana' ysis o-. cccc- in... Analysis Gamma-Ray Spectrometry Peak Area Computation Peak Energy Determination...

  15. Facility for fast neutron irradiation tests of electronics at the ISIS spallation neutron source

    SciTech Connect (OSTI)

    Andreani, C.; Pietropaolo, A.; Salsano, A. [Centro NAST, Universita degli Studi di Roma Tor Vergata (Italy); Gorini, G.; Tardocchi, M. [Dipartimento di Fisica 'G. Occhialini', Universita degli Studi di Milano-Bicocca (Italy); Paccagnella, A.; Gerardin, S. [Dipartimento di Ingegneria dell'Informazione, Universita di Padova (Italy); Frost, C. D.; Ansell, S. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Platt, S. P. [School of Computing, Engineering and Physical Sciences, University of Central Lancashire, Preston, Lancs. PR1 2HE (United Kingdom)

    2008-03-17T23:59:59.000Z

    The VESUVIO beam line at the ISIS spallation neutron source was set up for neutron irradiation tests in the neutron energy range above 10 MeV. The neutron flux and energy spectrum were shown, in benchmark activation measurements, to provide a neutron spectrum similar to the ambient one at sea level, but with an enhancement in intensity of a factor of 10{sup 7}. Such conditions are suitable for accelerated testing of electronic components, as was demonstrated here by measurements of soft error rates in recent technology field programable gate arrays.

  16. Neutron guide

    DOE Patents [OSTI]

    Greene, Geoffrey L. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    A neutron guide in which lengths of cylindrical glass tubing have rectangular glass plates properly dimensioned to allow insertion into the cylindrical glass tubing so that a sealed geometrically precise polygonal cross-section is formed in the cylindrical glass tubing. The neutron guide provides easier alignment between adjacent sections than do the neutron guides of the prior art.

  17. Delayed neutrons measurement at the MEGAPIE target

    E-Print Network [OSTI]

    Stefano Panebianco; Pavel Bokov; Diane Dore; Xavier Ledoux; Alain Letourneau; Aurelien Prevost; Danas Ridikas

    2007-05-25T23:59:59.000Z

    In the framework of the Neutronic and Nuclear Assessment Task Group of the MEGAPIE experiment we measured the delayed neutron (DN) flux at the top of the target. The measurement was proposed mainly for radioprotection purposes since the DN flux at the top of the target has been estimated to be of the same order of magnitude as the prompt neutron flux. Given the strong model-dependence of DN predictions, the measurement of DN contribution to the total neutron activity at the top of the target was thus desired. Moreover, this measurement is complementary to the DN experiments performed at PNPI (Gatchina) on solid lead and bismuth targets. The DN measurement at MEGAPIE was performed during the start-up phase of the target. In this paper we present a detailed description of the experimental setup and some preliminary results on decay spectra.

  18. Delayed neutrons measurement at the MEGAPIE target

    E-Print Network [OSTI]

    Panebianco, Stefano; Dore, Diane; Ledoux, Xavier; Letourneau, Alain; Prevost, Aurelien; Ridikas, Danas

    2007-01-01T23:59:59.000Z

    In the framework of the Neutronic and Nuclear Assessment Task Group of the MEGAPIE experiment we measured the delayed neutron (DN) flux at the top of the target. The measurement was proposed mainly for radioprotection purposes since the DN flux at the top of the target has been estimated to be of the same order of magnitude as the prompt neutron flux. Given the strong model-dependence of DN predictions, the measurement of DN contribution to the total neutron activity at the top of the target was thus desired. Moreover, this measurement is complementary to the DN experiments performed at PNPI (Gatchina) on solid lead and bismuth targets. The DN measurement at MEGAPIE was performed during the start-up phase of the target. In this paper we present a detailed description of the experimental setup and some preliminary results on decay spectra.

  19. Diagnostic of fusion neutrons on JET tokamak using diamond detector

    SciTech Connect (OSTI)

    Nemtsev, G.; Amosov, V.; Marchenko, N.; Meshchaninov, S.; Rodionov, R. [Institution Project center ITER, Moscow (Russian Federation); Popovichev, S. [EURATOM-CCFE Fusion Association, Culham Science Centre, Abingdon, OXON, OX14 3DB (United Kingdom); Collaboration: JET EFDA Conbributors

    2014-08-21T23:59:59.000Z

    In 2011-2012, an experimental campaign with a significant yield of fusion neutrons was carried out on the JET tokamak. During this campaign the facility was equipped with two diamond detectors based on natural and artificial CVD diamond. These detectors were designed and manufactured in State Research Center of Russian Federation TRINITI. The detectors measure the flux of fast neutrons with energies above 0.2 MeV. They have been installed in the torus hall and the distance from the center of plasma was about 3 m. For some of the JET pulses in this experiment, the neutron flux density corresponded to the operational conditions in collimator channels of ITER Vertical Neutron Camera. The main objective of diamond monitors was the measurement of total fast neutron flux at the detector location and the estimation of the JET total neutron yield. The detectors operate as threshold counters. Additionally a spectrometric measurement channel has been configured that allowed us to distinguish various energy components of the neutron spectrum. In this paper we describe the neutron signal measuring and calibration procedure of the diamond detector. Fluxes of DD and DT neutrons at the detector location were measured. It is shown that the signals of total neutron yield measured by the diamond detector correlate with signals measured by the main JET neutron diagnostic based on fission chambers with high accuracy. This experiment can be considered as a successful test of diamond detectors in ITER-like conditions.

  20. Test of a prototype neutron spectrometer based on diamond detectors in a fast reactor

    E-Print Network [OSTI]

    Osipenko, M; Ripani, M; Pillon, M; Ricco, G; Caiffi, B; Cardarelli, R; Verona-Rinati, G; Argiro, S

    2015-01-01T23:59:59.000Z

    A prototype of neutron spectrometer based on diamond detectors has been developed. This prototype consists of a $^6$Li neutron converter sandwiched between two CVD diamond crystals. The radiation hardness of the diamond crystals makes it suitable for applications in low power research reactors, while a low sensitivity to gamma rays and low leakage current of the detector permit to reach good energy resolution. A fast coincidence between two crystals is used to reject background. The detector was read out using two different electronic chains connected to it by a few meters of cable. The first chain was based on conventional charge-sensitive amplifiers, the other used a custom fast charge amplifier developed for this purpose. The prototype has been tested at various neutron sources and showed its practicability. In particular, the detector was calibrated in a TRIGA thermal reactor (LENA laboratory, University of Pavia) with neutron fluxes of $10^8$ n/cm$^2$s and at the 3 MeV D-D monochromatic neutron source na...

  1. Analytical applications for delayed neutrons

    SciTech Connect (OSTI)

    Eccleston, G.W.

    1983-01-01T23:59:59.000Z

    Analytical formulations that describe the time dependence of neutron populations in nuclear materials contain delayed-neutron dependent terms. These terms are important because the delayed neutrons, even though their yields in fission are small, permit control of the fission chain reaction process. Analytical applications that use delayed neutrons range from simple problems that can be solved with the point reactor kinetics equations to complex problems that can only be solved with large codes that couple fluid calculations with the neutron dynamics. Reactor safety codes, such as SIMMER, model transients of the entire reactor core using coupled space-time neutronics and comprehensive thermal-fluid dynamics. Nondestructive delayed-neutron assay instruments are designed and modeled using a three-dimensional continuous-energy Monte Carlo code. Calculations on high-burnup spent fuels and other materials that contain a mix of uranium and plutonium isotopes require accurate and complete information on the delayed-neutron periods, yields, and energy spectra. A continuing need exists for delayed-neutron parameters for all the fissioning isotopes.

  2. Performance of a Clad Tungsten Rod Spallation Neutron Source Target

    SciTech Connect (OSTI)

    Sommer, Walter F. [Los Alamos National Laboratory (United States); Maloy, Stuart A. [Los Alamos National Laboratory (United States); Louthan, McIntyre R. [Savannah River National Laboratory (United States); Willcutt, Gordon J. [Los Alamos National Laboratory (United States); Ferguson, Phillip D. [Oak Ridge National Laboratory (United States); James, Michael R. [Los Alamos National Laboratory (United States)

    2005-09-15T23:59:59.000Z

    Tungsten rods, slip-clad with Type 304L stainless steel, performed successfully as a spallation neutron source target operating to a peak fluence of {approx}4 x 10{sup 21} p/cm{sup 2}. The target was used as a neutron source during the Accelerator Production of Tritium (APT) materials irradiation program at the Los Alamos Neutron Science Center. Tungsten rods of 2.642-mm diameter were slip-fit in Type 304L stainless steel tubes that had an inner diameter of 2.667 mm. The radial gap was filled with helium at atmospheric pressure and room temperature. Los Alamos High Energy Transport (LAHET) calculations suggest a time-averaged peak power deposition in the W of 2.25 kW/cm{sup 3}. Thermal-hydraulic calculations indicate that the peak centerline W temperature reached 271 deg. C. The LAHET calculations were also used to predict neutron and proton fluxes and spectra for the complex geometry used in the irradiation program. Activation foil sets distributed throughout the experiment were used to determine target neutronics performance as a comparison to the LAHET calculations. Examination of the irradiated target assemblies revealed no significant surface degradation or corrosion on either the Type 304L or the W surfaces. However, it was clear that the irradiation changed material properties because post-proton-irradiation measurements on Type 304L test samples from the APT program demonstrated increases in the yield strength and decreases in the ductility and fracture toughness with increasing dose, and the wrought W rod samples became brittle. Fortunately, the slip-clad target design subjects the materials to very low stress.

  3. X-Ray spectra from protons illuminating a neutron star

    E-Print Network [OSTI]

    B. Deufel; C. P. Dullemond; H. C. Spruit

    2001-08-28T23:59:59.000Z

    We consider the interaction of a slowly rotating unmagnetized neutron star with a hot (ion supported, ADAF) accretion flow. The virialized protons of the ADAF penetrate into the neutron star atmosphere, heating a surface layer. Detailed calculations are presented of the equilibrium between heating by the protons, electron thermal conduction, bremsstrahlung and multiple Compton scattering in this layer. Its temperature is of the order 40-70 keV. Its optical depth increases with the incident proton energy flux, and is of the order unity for accretion at $10^{-2}$--$10^{-1}$ of the Eddington rate. At these rates, the X-ray spectrum produced by the layer has a hard tail extending to 100 keV, and is similar to the observed spectra of accreting neutron stars in their hard states. The steep gradient at the base of the heated layer gives rise to an excess of photons at the soft end of the spectrum (compared to a blackbody) through an `inverse photosphere effect'. The differences with respect to previous studies of similar problems are discussed, they are due mostly to a more accurate treatment of the proton penetration process and the vertical structure of the heated layer.

  4. Neutronic calculations for the conversion to LEU of a research reactor core

    SciTech Connect (OSTI)

    Varvayanni, M.; Catsaros, N.; Stakakis, E. [National Center for Scientific Research 'DEMOKRITOS', 153 10 Aghia Paraskevi (Greece); Grigoriadis, D. [National Center for Scientific Research 'DEMOKRITOS', 153 10 Aghia Paraskevi (Greece); Department of Mechanical and Manufacturing Engineering, University of Cyprus, P.O. Box 20537, Nicosia 1678 (Cyprus)

    2008-07-15T23:59:59.000Z

    For a five-year transitional period the Greek Research Reactor (GRR-1) was operating with a mixed core, containing both Low Enrichment (LEU) and High Enrichment (HEU) Uranium MTR- type fuel assemblies. The neutronic study of the GRR-1 conversion to LEU has been performed using a code system comprising the core-analysis code CITATION-LDI2 and the cell-calculation modules XSDRNPM and NITAWL-II of the SCALE code. A conceptual LEU core configuration was defined and analyzed with respect to the three dimensional multi-group neutron fluxes, the power distribution, the control-rod worth and the compliance with pre-defined Operation Limiting Conditions. Perturbation calculations and reactivity feedback computations were also carried out to provide input to a subsequent thermal-hydraulic study. (author)

  5. Fast flux locked loop

    DOE Patents [OSTI]

    Ganther, Jr., Kenneth R. (Olathe, KS); Snapp, Lowell D. (Independence, MO)

    2002-09-10T23:59:59.000Z

    A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.

  6. Neutron Scattering Tutorials | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron Scattering Tutorials SHARE Neutron Scattering Tutorials The following lectures were presented at the 2011 and 2010 National School on Neutron & X-Ray Scattering. This...

  7. Thermo-mechanical and neutron lifetime modeling and design of Be pebbles in the neutron multiplier for the LIFE engine

    SciTech Connect (OSTI)

    DeMange, P; Marian, J; de Caro, M S; Caro, A

    2009-03-16T23:59:59.000Z

    Concept designs for the laser-initiated fusion/fission engine (LIFE) include a neutron multiplication blanket containing Be pebbles flowing in a molten salt coolant. These pebbles must be designed to withstand the extreme irradiation and temperature conditions in the blanket to enable a safe and cost-effective operation of LIFE. In this work, we develop design criteria for spherical Be pebbles on the basis of their thermomechanical behavior under continued neutron exposure. We consider the effects of high fluence/fast flux on the elastic, thermal and mechanical properties of nuclear-grade Be. Our results suggest a maximum pebble diameter of 30 mm to avoid tensile failure, coated with an anti-corrosive, high-strength metallic shell to avoid failure by pebble contact. Moreover, we find that the operation temperature must always be kept above 450 C to enable creep to relax the stresses induced by swelling, which we estimate to be at least 16 months if uncoated and up to six years when coated. We identify the sources of uncertainty on the properties used and discuss the advantages of new intermetallic beryllides and their use in LIFE's neutron multiplier. To establish Be-pebble lifetimes with improved confidence, reliable experiments to measure irradiation creep must be performed.

  8. Investigations of low-temperature neutron embrittlement of ferritic steels

    SciTech Connect (OSTI)

    Farrell, K.; Mahmood, S.T.; Stoller, R.E.; Mansur, L.K.

    1992-12-31T23:59:59.000Z

    Investigations were made into reasons for accelerated embrittlement of surveillance specimens of ferritic steels irradiated at 50C at the High Flux Isotope Reactor (HFIR) pressure vessel. Major suspects for the precocious embrittlement were a highly thermalized neutron spectrum,a low displacement rate, and the impurities boron and copper. None of these were found guilty. A dosimetry measurement shows that the spectrum at a major surveillance site is not thermalized. A new model of matrix hardening due to point defect clusters indicates little effect of displacement rate at low irradiation temperature. Boron levels are measured at 1 wt ppM or less, inadequate for embrittlement. Copper at 0.3 wt % and nickel at 0.7 wt % are shown to promote radiation strengthening in iron binary alloys irradiated at 50 to 60C, but no dependence on copper and nickel was found in steels with 0.05 to 0.22% Cu and 0.07 to 3.3% Ni. It is argued that copper impurity is not responsible for the accelerated embrittlement of the HFIR surveillance specimens. The dosimetry experiment has revealed the possibility that the fast fluence for the surveillance specimens may be underestimated because the stainless steel monitors in the surveillance packages do not record an unexpected component of neutrons in the spectrum at energies just below their measurement thresholds of 2 to 3 MeV.

  9. Tracking heat flux sensors for concentrating solar applications

    DOE Patents [OSTI]

    Andraka, Charles E; Diver, Jr., Richard B

    2013-06-11T23:59:59.000Z

    Innovative tracking heat flux sensors located at or near the solar collector's focus for centering the concentrated image on a receiver assembly. With flux sensors mounted near a receiver's aperture, the flux gradient near the focus of a dish or trough collector can be used to precisely position the focused solar flux on the receiver. The heat flux sensors comprise two closely-coupled thermocouple junctions with opposing electrical polarity that are separated by a thermal resistor. This arrangement creates an electrical signal proportional to heat flux intensity, and largely independent of temperature. The sensors are thermally grounded to allow a temperature difference to develop across the thermal resistor, and are cooled by a heat sink to maintain an acceptable operating temperature.

  10. Neutron sources: Present practice and future potential

    SciTech Connect (OSTI)

    Cierjacks, S.; Smith, A.B.

    1988-01-01T23:59:59.000Z

    The present capability and future potential of accelerator-based monoenergetic and white neutron sources are outlined in the context of fundamental and applied neutron-nuclear research. The neutron energy range extends from thermal to 500 MeV, and the time domain from steady-state to pico-second pulsed sources. Accelerator technology is summarized, including the production of intense light-ion, heavy-ion and electron beams. Target capabilities are discussed with attention to neutron-producing efficiency and power-handling capabilities. The status of underlying neutron-producing reactions is summarized. The present and future use of neutron sources in: fundamental neutron-nuclear research, nuclear data acquisition, materials damage studies, engineering tests, and biomedical applications are discussed. Emphasis is given to current status, near-term advances well within current technology, and to long-range projections. 90 refs., 4 figs.

  11. Neutron Diffraction and Optics of a Noncentrosymmetric Crystal. New Feasibility of a Search for Neutron EDM

    E-Print Network [OSTI]

    V. V. Fedorov; V. V. Voronin

    2005-05-03T23:59:59.000Z

    Recently strong electric fields (up to 10^9 V/cm) have been discovered, which affect the neutrons moving in noncentrosymmetric crystals. Such fields allow new polarization phenomena in neutron diffraction and optics and provide, for instance, a new feasibility of a search for the neutron electric dipole moment (EDM). A series of experiments was carried out in a few last years on study of the dynamical diffraction of polarized neutrons in thick (1-10 cm) quartz crystals, using the forward diffraction beam and Bragg angles close to 90^0. As well new neutron optics phenomena were investigated. The feasibility of experiment on a search for neutron EDM using Laue diffraction in crystals without a center of symmetry was tested at the reactors: WWR-M in Gatchina and HFR in Grenoble. It was shown that the sensitivity can reach (3 - 6)\\cdot 10^{-25}e cm per day for the available quartz crystal and cold neutron beam flux.

  12. Plasma momentum meter for momentum flux measurements

    DOE Patents [OSTI]

    Zonca, Fulvio (Rome, IT); Cohen, Samuel A. (Hopewell, NJ); Bennett, Timothy (Princeton, NJ); Timberlake, John R. (Allentown, NJ)

    1993-01-01T23:59:59.000Z

    Invention comprises an instrument in which momentum flux onto a biasable target plate is transferred via a suspended quartz tube onto a sensitive force transducer--a capacitance-type pressure gauge. The transducer is protected from thermal damage, arcing and sputtering, and materials used in the target and pendulum are electrically insulating, rigid even at elevated temperatures, and have low thermal conductivity. The instrument enables measurement of small forces (10.sup.-5 to 10.sup.3 N) accompanied by high heat fluxes which are transmitted by energetic particles with 10's of eV of kinetic energy in a intense magnetic field and pulsed plasma environment.

  13. Neutron tubes

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Lou, Tak Pui (Berkeley, CA); Reijonen, Jani (Oakland, CA)

    2008-03-11T23:59:59.000Z

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  14. Covariance Evaluation Methodology for Neutron Cross Sections

    SciTech Connect (OSTI)

    Herman,M.; Arcilla, R.; Mattoon, C.M.; Mughabghab, S.F.; Oblozinsky, P.; Pigni, M.; Pritychenko, b.; Songzoni, A.A.

    2008-09-01T23:59:59.000Z

    We present the NNDC-BNL methodology for estimating neutron cross section covariances in thermal, resolved resonance, unresolved resonance and fast neutron regions. The three key elements of the methodology are Atlas of Neutron Resonances, nuclear reaction code EMPIRE, and the Bayesian code implementing Kalman filter concept. The covariance data processing, visualization and distribution capabilities are integral components of the NNDC methodology. We illustrate its application on examples including relatively detailed evaluation of covariances for two individual nuclei and massive production of simple covariance estimates for 307 materials. Certain peculiarities regarding evaluation of covariances for resolved resonances and the consistency between resonance parameter uncertainties and thermal cross section uncertainties are also discussed.

  15. Neutron-driven gamma-ray laser

    DOE Patents [OSTI]

    Bowman, Charles D. (Los Alamos, NM)

    1990-01-01T23:59:59.000Z

    A lasing cylinder emits laser radiation at a gamma-ray wavelength of 0.87 .ANG. when subjected to an intense neutron flux of about 400 eV neutrons. A 250 .ANG. thick layer of Be is provided between two layers of 100 .ANG. thick layer of .sup.57 Co and these layers are supported on a foil substrate. The coated foil is coiled to form the lasing cylinder. Under the neutron flux .sup.57 Co becomes .sup.58 Co by neutron absorption. The .sup.58 Co then decays to .sup.57 Fe by 1.6 MeV proton emission. .sup.57 Fe then transitions by mesne decay to a population inversion for lasing action at 14.4 keV. Recoil from the proton emission separates the .sup.57 Fe from the .sup.57 Co and into the Be, where Mossbauer emission occurs at a gamma-ray wavelength.

  16. Method and apparatus for detecting neutrons

    DOE Patents [OSTI]

    Perkins, Richard W. (Richland, WA); Reeder, Paul L. (Richland, WA); Wogman, Ned A. (Richland, WA); Warner, Ray A. (Benton City, WA); Brite, Daniel W. (Richland, WA); Richey, Wayne C. (Richland, WA); Goldman, Don S. (Orangevale, CA)

    1997-01-01T23:59:59.000Z

    The instant invention is a method for making and using an apparatus for detecting neutrons. Scintillating optical fibers are fabricated by melting SiO.sub.2 with a thermal neutron capturing substance and a scintillating material in a reducing atmosphere. The melt is then drawn into fibers in an anoxic atmosphere. The fibers may then be coated and used directly in a neutron detection apparatus, or assembled into a geometrical array in a second, hydrogen-rich, scintillating material such as a polymer. Photons generated by interaction with thermal neutrons are trapped within the coated fibers and are directed to photoelectric converters. A measurable electronic signal is generated for each thermal neutron interaction within the fiber. These electronic signals are then manipulated, stored, and interpreted by normal methods to infer the quality and quantity of incident radiation. When the fibers are arranged in an array within a second scintillating material, photons generated by kinetic neutrons interacting with the second scintillating material and photons generated by thermal neutron capture within the fiber can both be directed to photoelectric converters. These electronic signals are then manipulated, stored, and interpreted by normal methods to infer the quality and quantity of incident radiation.

  17. FY 1993 progress report on the ANS thermal-hydraulic test loop operation and results

    SciTech Connect (OSTI)

    Siman-Tov, M.; Felde, D.K.; Farquharson, G. [and others

    1994-07-01T23:59:59.000Z

    The Thermal-Hydraulic Test Loop (THTL) is an experimental facility constructed to support the development of the Advanced Neutron Source Reactor (ANSR) at Oak Ridge National Laboratory (ORNL). Highly subcooled heavy-water coolant flows vertically upward at a very high mass flux of almost 27 MG/m{sup 2}-s. In a parallel fuel plate configuration as in the ANSR, the flow is subject to a potential excursive static-flow instability that can very rapidly lead to flow starvation and departure from nucleate boiling (DNB) in the ``hot channel``. The current correlations and experimental data bases for flow excursion (FE) and critical heat flux (CHF) seldom evaluate the specific combination of ANSR operating parameters. The THTL facility was designed and built to provide known thermal-hydraulic (T/H) conditions for a simulated full-length coolant subchannel of the ANS reactor core, thus facilitating experimental determination of FE and CHF thermal limits under expected ANSR T/H conditions. A series of FE tests with water flowing vertically upward was completed over a nominal heat flux range of 6 to 17 MW/m{sup 2}, a mass flux range of 8 to 28 Mg/m{sup 2}-s, an exit pressure range of 1.4 to 2.1 MPa, and an inlet temperature range of 40 to 50 C. FE experiments were also conducted using as ``soft`` a system as possible to secure a true FE phenomena (actual secondary burnout). True DNB experiments under similar conditions were also conducted. To the author`s knowledge, no other FE data have been reported in the literature to date that dover such a combination of conditions of high mass flux, high heat flux, and moderately high pressure.

  18. Characterization of a Thermo Scientific D711 D-T Neutron Generator Located in a Low-Scatter Facility

    SciTech Connect (OSTI)

    Hayes, John W.; Finn, Erin C.; Greenwood, Lawrence R.; Wittman, Richard S.

    2014-03-21T23:59:59.000Z

    Pacific Northwest National Laboratory (PNNL) purchased and installed a D711 D-T neutron generator (“D-T”) from Thermo Scientific in August 2011. The D-T nominally produces 14 MeV neutrons which are important for research in matters of national security. Fast neutrons provide the capability of harnessing threshold reactions for the production of rare isotopes, which are of interest to radiochemistry groups at PNNL concerned with validating radioanalytical techniques for the separation of these isotopes. Rare fission product isotopes from fast fission of 235U, 238U, and 239Pu are also desired to further develop these techniques. Experiments with 14 MeV neutrons are also of interest because nuclear data for fast fission has not been researched as extensively as it has been for thermal fission. Analyses of these applications require first that the source spectrum be well characterized. Neutron fluences in Fe, Ni, Al, In, and Au were measured in 21 locations near the generator head. STAYSL PNNL and MCNP codes were used to produce flux spectra based on experimental fluences.

  19. Cyclotron-based neutron source for BNCT

    SciTech Connect (OSTI)

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K. [Sumitomo Heavy Industries, Ltd (Japan); Tanaka, H.; Sakurai, Y.; Maruhashi, A. [Kyoto University Research Reactor Institute (Japan)

    2013-04-19T23:59:59.000Z

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation and treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8 Multiplication-Sign 109 neutrons/cm{sup 2}/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with {sup 10}B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  20. Delayed neutrons as a probe of nuclear charge distribution in fission of heavy nuclei by neutrons

    E-Print Network [OSTI]

    Isaev, S G; Piksaikin, V M; Roshchenko, V A

    2001-01-01T23:59:59.000Z

    A method of the determination of cumulative yields of delayed neutron precursors is developed. This method is based on the iterative least-square procedure applied to delayed neutron decay curves measured after irradiation of sup 2 sup 3 sup 5 U sample by thermal neutrons. Obtained cumulative yields in turns were used for deriving the values of the most probable charge in low-energy fission of the above-mentioned nucleus.

  1. Computational neutronics analysis of TRIGA reactors during power pulsing

    E-Print Network [OSTI]

    Bean, Malcolm (Malcolm K.)

    2011-01-01T23:59:59.000Z

    Training, Research, Isotopes, General Atomics (TRIGA) reactors have the unique capability of generating high neutron flux environments with the removal of a transient control rod, creating conditions observed in fast fission ...

  2. Analysis of a rod withdrawal accident in a BWR with the neutronic-thermalhydraulic coupled code TRAC-BF1/VALKIN and TRACE/PARCS

    SciTech Connect (OSTI)

    Miro, R.; Verdu, G.; Sanchez, A. M.; Barrachina, T. [Chemical and Nuclear Engineering Dept., Polytechnic Univ. of Valencia, Cami de Vera s/n, 46022 Valencia (Spain); Gomez, A. [Iberinco, Avenida de Burgos, Madrid (Spain)

    2006-07-01T23:59:59.000Z

    The control rod withdrawal accident at hot zero power (HZP) is characterized by a single rod withdrawal from a core position with high reactivity worth, starting at criticality with a very low power level. The evolution consists basically of a continuous reactivity insertion. The main factor limiting the consequences of the accident is a mixed void-Doppler feedback in BWR. The peak power occurs while important power distribution changes take place in the core and also the rod extraction continues. To check the performance of the coupled codes TRAC-BF1/VALKIN and TRACE/PARCS against complex 3D neutronic transients, a rod withdrawal accident in COFRENTES NPP is simulated. This transient is a dynamically complex event, where neutron kinetics is coupled with thermal hydraulics in the reactor primary system, and reactor variables change very rapidly. TRAC-BF1/VALKIN code uses the best estimate TRAC-BF1 code to give account of the heat transfer and thermalhydraulic processes, and a 3D neutronic module. This module has two options, MODKIN that makes use of a modal method based on the assumption that the neutronic flux can be approximately expanded in terms of the dominant lambda modes associated with a static configuration of the core, and the NOKIN option that uses a one-step backward discretization of the neutron diffusion equation. TRACE is a code to study also transients in LWR reactors. This code used as a neutronic module the PARCS code. (authors)

  3. Modeling high-energy cosmic ray induced terrestrial muon flux: A lookup table

    E-Print Network [OSTI]

    Dimitra Atri; Adrian L. Melott

    2011-05-09T23:59:59.000Z

    On geological timescales, the Earth is likely to be exposed to an increased flux of high energy cosmic rays (HECRs) from astrophysical sources such as nearby supernovae, gamma ray bursts or by galactic shocks. Typical cosmic ray energies may be much higher than the ~ 1 GeV flux which normally dominates. These high-energy particles strike the Earth's atmosphere initiating an extensive air shower. As the air shower propagates deeper, it ionizes the atmosphere by producing charged secondary particles. Secondary particles such as muons and thermal neutrons produced as a result of nuclear interactions are able to reach the ground, enhancing the radiation dose. Muons contribute 85% to the radiation dose from cosmic rays. This enhanced dose could be potentially harmful to the biosphere. This mechanism has been discussed extensively in literature but has never been quantified. Here, we have developed a lookup table that can be used to quantify this effect by modeling terrestrial muon flux from any arbitrary cosmic ray spectra with 10 GeV - 1 PeV primaries. This will enable us to compute the radiation dose on terrestrial planetary surfaces from a number of astrophysical sources.

  4. Tailoring the Neutron Spectrum from a 14-MeV Neutron Generator to Approximate a Spontaneous-Fission Spectrum

    SciTech Connect (OSTI)

    James Simpson; David Chichester

    2011-06-01T23:59:59.000Z

    Many applications of neutrons for non-invasive measurements began with isotopic sources such as AmBe or Cf-252. Political factors have rendered AmBe undesirable in the United States and other countries, and the supply of Cf-252 is limited and significantly increasing in price every few years. Compact and low-power deuterium-tritium (DT) electronic neutron generators can often provide sufficient flux, but the 14-MeV neutron spectrum is much more energetic (harder) than an isotopic neutron source. A series of MCNP simulations were run to examine the extent to which the 14-MeV DT neutron spectrum could be softened through the use of high-Z and low-Z materials. Some potential concepts of operation require a portable neutron generator system, so the additional weight of extra materials is also a trade-off parameter. Using a reference distance of 30 cm from the source, the average neutron energy can be lowered to be less than that of either AmBe or Cf-252, while obtaining an increase in flux at the reference distance compared to a bare neutron generator. This paper discusses the types and amounts of materials used, the resulting neutron spectra, neutron flux levels, and associated photon production.

  5. Neutron cameras for ITER

    SciTech Connect (OSTI)

    Johnson, L.C.; Barnes, C.W.; Batistoni, P. [ITER San Diego Joint Work Site, La Jolla, CA (United States)] [and others

    1998-12-31T23:59:59.000Z

    Neutron cameras with horizontal and vertical views have been designed for ITER, based on systems used on JET and TFTR. The cameras consist of fan-shaped arrays of collimated flight tubes, with suitably chosen detectors situated outside the biological shield. The sight lines view the ITER plasma through slots in the shield blanket and penetrate the vacuum vessel, cryostat, and biological shield through stainless steel windows. This paper analyzes the expected performance of several neutron camera arrangements for ITER. In addition to the reference designs, the authors examine proposed compact cameras, in which neutron fluxes are inferred from {sup 16}N decay gammas in dedicated flowing water loops, and conventional cameras with fewer sight lines and more limited fields of view than in the reference designs. It is shown that the spatial sampling provided by the reference designs is sufficient to satisfy target measurement requirements and that some reduction in field of view may be permissible. The accuracy of measurements with {sup 16}N-based compact cameras is not yet established, and they fail to satisfy requirements for parameter range and time resolution by large margins.

  6. Neutron range spectrometer

    DOE Patents [OSTI]

    Manglos, S.H.

    1988-03-10T23:59:59.000Z

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

  7. Lithium-6 filter for a fission converter-based Boron Neutron Capture Therapy irradiation facility beam

    E-Print Network [OSTI]

    Gao, Wei, Ph. D.

    2005-01-01T23:59:59.000Z

    (cont.) A storage system was designed to contain the lithium-6 filter safely when it is not in use. A mixed field dosimetry method was used to measure the photon, thermal neutron and fast neutron dose. The measured advantage ...

  8. Investigation of the "summation" method for predicting group dependent delayed neutron data

    E-Print Network [OSTI]

    Angers, Laetitia Genevieve

    1998-01-01T23:59:59.000Z

    of the average delayed neutron lifetime by 15% for U-235 thermal fission, which agrees more closely with Keepin's results. The modified delayed neutron data set also improves the calculated reactor period (relative to the reactor period calculated using Keepin...

  9. Cadmium Depletion Impacts on Hardening Neutron6 Spectrum for Advanced Fuel Testing in ATR

    SciTech Connect (OSTI)

    Gray S. Chang

    2011-05-01T23:59:59.000Z

    For transmuting long-lived isotopes contained in spent nuclear fuel into shorter-lived fission products effectively is in a fast neutron spectrum reactor. In the absence of a fast spectrum test reactor in the United States of America (USA), initial irradiation testing of candidate fuels can be performed in a thermal test reactor that has been modified to produce a test region with a hardened neutron spectrum. A test region is achieved with a Cadmium (Cd) filter which can harden the neutron spectrum to a spectrum similar (although still somewhat softer) to that of the liquid metal fast breeder reactor (LMFBR). A fuel test loop with a Cd-filter has been installed within the East Flux Trap (EFT) of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). A detailed comparison analyses between the cadmium (Cd) filter hardened neutron spectrum in the ATR and the LMFBR fast neutron spectrum have been performed using MCWO. MCWO is a set of scripting tools that are used to couple the Monte Carlo transport code MCNP with the isotope depletion and buildup code ORIGEN-2.2. The MCWO-calculated results indicate that the Cd-filter can effectively flatten the Rim-Effect and reduce the linear heat rate (LHGR) to meet the advanced fuel testing project requirements at the beginning of irradiation (BOI). However, the filtering characteristics of Cd as a strong absorber quickly depletes over time, and the Cd-filter must be replaced for every two typical operating cycles within the EFT of the ATR. The designed Cd-filter can effectively depress the LHGR in experimental fuels and harden the neutron spectrum enough to adequately flatten the Rim Effect in the test region.

  10. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01T23:59:59.000Z

    designs (relatively) Photovoltaic Solar P a n e l AtmosphereCALIFORNIA, SAN DIEGO Photovoltaic Roof Heat Flux A ThesisABSTRACT OF T H E THESIS Photovoltaic Roof Heat Flux by

  11. Ion sources for sealed neutron tubes

    SciTech Connect (OSTI)

    Burns, E.J.T. [Sandia National Labs., Albuquerque, NM (United States). Neutron Tube Dept.; Bischoff, G.C. [Lockheed Martin Specialty Components, Largo, FL (United States)

    1996-11-01T23:59:59.000Z

    Fast and thermal neutron activation analysis with sealed neutron generators has been used to detect oil (oil logging), hazardous waste, fissile material, explosives, and contraband (drugs). Sealed neutron generators, used in the above applications, must be small and portable, have good electrical efficiency and long life. The ion sources used in the sealed neutron tubes require high gas utilization efficiencies or low pressure operation with high ionization efficiencies. In this paper, the authors compare a number of gas ion sources that can be used in sealed neutron tubes. The characteristics of the most popular ion source, the axial Penning discharge will be discussed as part of the zetatron neutron generator. Other sources to be discussed include the SAMIS source and RF ion source.

  12. Method and apparatus for determination of temperature, neutron absorption cross section and neutron moderating power

    DOE Patents [OSTI]

    Vagelatos, Nicholas (San Diego, CA); Steinman, Donald K. (San Diego, CA); John, Joseph (San Diego, CA); Young, Jack C. (Escondido, CA)

    1981-01-01T23:59:59.000Z

    A nuclear method and apparatus determines the temperature of a medium by injecting fast neutrons into the medium and detecting returning slow neutrons in three first energy ranges by producing three respective detection signals. The detection signals are combined to produce three derived indicia each systematically related to the population of slow neutrons returning from the medium in a respective one of three second energy ranges, specifically exclusively epithermal neutrons, exclusively substantially all thermal neutrons and exclusively a portion of the thermal neutron spectrum. The derived indicia are compared with calibration indicia similarly systematically related to the population of slow neutrons in the same three second energy ranges returning from similarly irradiated calibration media for which the relationships temperature, neutron absorption cross section and neutron moderating power to such calibration indicia are known. The comparison indicates the temperature at which the calibration indicia correspond to the derived indicia and consequently the temperature of the medium. The neutron absorption cross section and moderating power of the medium can be identified at the same time.

  13. Variable control of neutron albedo in toroidal fusion devices

    DOE Patents [OSTI]

    Jassby, D.L.; Micklich, B.J.

    1983-06-01T23:59:59.000Z

    This invention pertains to methods of controlling in the steady state, neutron albedo in toroidal fusion devices, and in particular, to methods of controlling the flux and energy distribution of collided neutrons which are incident on an outboard wall of a toroidal fusion device.

  14. Neutron irradiation effects on gallium nitride-based Schottky diodes

    SciTech Connect (OSTI)

    Lin, Chung-Han; Katz, Evan J.; Zhang, Zhichun [Department of Electrical and Computer Engineering, The Ohio State University, Columbus Ohio 43210 (United States)] [Department of Electrical and Computer Engineering, The Ohio State University, Columbus Ohio 43210 (United States); Qiu, Jie; Cao, Lei [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210 (United States)] [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Mishra, Umesh K. [Departments of Electrical and Computer Engineering and Materials Science and Engineering, University of California, Santa Barbara, California 93106 (United States)] [Departments of Electrical and Computer Engineering and Materials Science and Engineering, University of California, Santa Barbara, California 93106 (United States); Brillson, Leonard J. [Department of Electrical and Computer Engineering, The Ohio State University, Columbus Ohio 43210 (United States) [Department of Electrical and Computer Engineering, The Ohio State University, Columbus Ohio 43210 (United States); Department of Physics and Center for Materials Research, The Ohio State University, Columbus, Ohio 43210 (United States)

    2013-10-14T23:59:59.000Z

    Depth-resolved cathodoluminescence spectroscopy (DRCLS), time-resolved surface photovoltage spectroscopy, X-ray photoemission spectroscopy (XPS), and current-voltage measurements together show that fast versus thermal neutrons differ strongly in their electronic and morphological effects on metal-GaN Schottky diodes. Fast and thermal neutrons introduce GaN displacement damage and native point defects, while thermal neutrons also drive metallurgical reactions at metal/GaN interfaces. Defect densities exhibit a threshold neutron fluence below which thermal neutrons preferentially heal versus create new native point defects. Scanning XPS and DRCLS reveal strong fluence- and metal-dependent electronic and chemical changes near the free surface and metal interfaces that impact diode properties.

  15. Microscopic description of neutron emission rates in compound nuclei

    E-Print Network [OSTI]

    Yi Zhu; Junchen Pei

    2014-11-02T23:59:59.000Z

    The neutron emission rates in thermal excited nuclei are conventionally described by statistical models with a phenomenological level density parameter that depends on excitation energies, deformations and mass regions. In the microscopic view of hot nuclei, the neutron emission rates can be determined by the external neutron gas densities without any free parameters. Therefore the microscopic description of thermal neutron emissions is desirable that can impact several understandings such as survival probabilities of superheavy compound nuclei and neutron emissivity in reactors. To describe the neutron emission rates microscopically, the external thermal neutron gases are self-consistently obtained based on the Finite-Temperature Hartree-Fock-Bogoliubov (FT-HFB) approach. The results are compared with the statistical model to explore the connections between the FT-HFB approach and the statistical model. The Skyrme FT-HFB equation is solved by HFB-AX in deformed coordinate spaces. Based on the FT-HFB approach, the thermal properties and external neutron gas are properly described with the self-consistent gas substraction procedure. Then neutron emission rates can be obtained based on the densities of external neutron gases. The thermal statistical properties of $^{238}$U and $^{258}$U are studied in detail in terms of excitation energies. The thermal neutron emission rates in $^{238, 258}$U and superheavy compound nuclei $_{112}^{278}$Cn and $_{114}^{292}$Fl are calculated, which agree well with the statistical model by adopting an excitation-energy-dependent level density parameter. The coordinate-space FT-HFB approach can provide reliable microscopic descriptions of neutron emission rates in hot nuclei, as well as microscopic constraints on the excitation energy dependence of level density parameters for statistical models.

  16. Use of a moments method for the analysis of flux distributions in subcritical assemblies

    E-Print Network [OSTI]

    Cheng, Hsiang-Shou

    1968-01-01T23:59:59.000Z

    A moments method has been developed for the analysis of flux distributions in subcritical neutron-multiplying assemblies. The method determines values of the asymptotic axial and radial buckling, and of the extrapolated ...

  17. Neutron scattering study of underdoped Ba1-xKxFe?As? (x=0.09 and 0.17) self-flux-grown single crystals and the universality of the tricritical point

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rotundu, C. R.; Tian, W.; Rule, K. C.; Forrest, T. R.; Zhao, J.; Zarestky, J. L.; Birgeneau, R. J.

    2012-04-01T23:59:59.000Z

    We present a combination of elastic neutron scattering measurements in zero and 14.5 T and magnetization measurements in zero and 14 T on underdoped superconducting Ba1-xKxFe?As? (x=0.17), and the same measurements in zero field on a nonsuperconducting crystal with x=0.09. The data suggest that the underdoped materials may not be electronic phase separated but rather have slightly inhomogeneous potassium doping. The temperature dependence of the magnetic order parameter below the transition of the sample with x=0.09 is more gradual than that for the case of the undoped BaFe?As?, suggesting that this doping may be in the vicinity of a tricriticalmore »point. We advance therefore the hypothesis that the tricritical point is a common feature of all superconducting 122s. For the x=0.17 sample, while Tc is suppressed from ?17 to ?8 K by a magnetic field of 14 T, the intensity of the magnetic Bragg peaks (1 0 3) at 1.2 K is enhanced by 10%, showing competition of superconductivity and antiferromagnetism. The intensity of the magnetic Bragg peaks (1 0 3) in the (Tc, TN) temperature interval remain practically unchanged in 14.5 T within a 10% statistical error. The present results are discussed in the context of the existing literature.« less

  18. Neutron scattering study of underdoped Ba1-xKxFe?As? (x=0.09 and 0.17) self-flux-grown single crystals and the universality of the tricritical point

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rotundu, C. R.; Tian, W.; Rule, K. C.; Forrest, T. R.; Zhao, J.; Zarestky, J. L.; Birgeneau, R. J.

    2012-04-01T23:59:59.000Z

    We present a combination of elastic neutron scattering measurements in zero and 14.5 T and magnetization measurements in zero and 14 T on underdoped superconducting Ba1-xKxFe?As? (x=0.17), and the same measurements in zero field on a nonsuperconducting crystal with x=0.09. The data suggest that the underdoped materials may not be electronic phase separated but rather have slightly inhomogeneous potassium doping. The temperature dependence of the magnetic order parameter below the transition of the sample with x=0.09 is more gradual than that for the case of the undoped BaFe?As?, suggesting that this doping may be in the vicinity of a tricritical point. We advance therefore the hypothesis that the tricritical point is a common feature of all superconducting 122s. For the x=0.17 sample, while Tc is suppressed from ?17 to ?8 K by a magnetic field of 14 T, the intensity of the magnetic Bragg peaks (1 0 3) at 1.2 K is enhanced by 10%, showing competition of superconductivity and antiferromagnetism. The intensity of the magnetic Bragg peaks (1 0 3) in the (Tc, TN) temperature interval remain practically unchanged in 14.5 T within a 10% statistical error. The present results are discussed in the context of the existing literature.

  19. Neutron scattering study of underdoped Ba1-xKxFe?As? (x=0.09 and 0.17) self-flux-grown single crystals and the universality of the tricritical point

    SciTech Connect (OSTI)

    Rotundu, C. R.; Tian, W.; Rule, K. C.; Forrest, T. R.; Zhao, J.; Zarestky, J. L.; Birgeneau, R. J.

    2012-04-01T23:59:59.000Z

    We present a combination of elastic neutron scattering measurements in zero and 14.5 T and magnetization measurements in zero and 14 T on underdoped superconducting Ba1-xKxFe?As? (x=0.17), and the same measurements in zero field on a nonsuperconducting crystal with x=0.09. The data suggest that the underdoped materials may not be electronic phase separated but rather have slightly inhomogeneous potassium doping. The temperature dependence of the magnetic order parameter below the transition of the sample with x=0.09 is more gradual than that for the case of the undoped BaFe?As?, suggesting that this doping may be in the vicinity of a tricritical point. We advance therefore the hypothesis that the tricritical point is a common feature of all superconducting 122s. For the x=0.17 sample, while Tc is suppressed from ?17 to ?8 K by a magnetic field of 14 T, the intensity of the magnetic Bragg peaks (1 0 3) at 1.2 K is enhanced by 10%, showing competition of superconductivity and antiferromagnetism. The intensity of the magnetic Bragg peaks (1 0 3) in the (Tc, TN) temperature interval remain practically unchanged in 14.5 T within a 10% statistical error. The present results are discussed in the context of the existing literature.

  20. Identifying and bounding uncertainties in nuclear reactor thermal power calculations

    SciTech Connect (OSTI)

    Phillips, J.; Hauser, E.; Estrada, H. [Cameron, 1000 McClaren Woods Drive, Coraopolis, PA 15108 (United States)

    2012-07-01T23:59:59.000Z

    Determination of the thermal power generated in the reactor core of a nuclear power plant is a critical element in the safe and economic operation of the plant. Direct measurement of the reactor core thermal power is made using neutron flux instrumentation; however, this instrumentation requires frequent calibration due to changes in the measured flux caused by fuel burn-up, flux pattern changes, and instrumentation drift. To calibrate the nuclear instruments, steam plant calorimetry, a process of performing a heat balance around the nuclear steam supply system, is used. There are four basic elements involved in the calculation of thermal power based on steam plant calorimetry: The mass flow of the feedwater from the power conversion system, the specific enthalpy of that feedwater, the specific enthalpy of the steam delivered to the power conversion system, and other cycle gains and losses. Of these elements, the accuracy of the feedwater mass flow and the feedwater enthalpy, as determined from its temperature and pressure, are typically the largest contributors to the calorimetric calculation uncertainty. Historically, plants have been required to include a margin of 2% in the calculation of the reactor thermal power for the licensed maximum plant output to account for instrumentation uncertainty. The margin is intended to ensure a cushion between operating power and the power for which safety analyses are performed. Use of approved chordal ultrasonic transit-time technology to make the feedwater flow and temperature measurements (in place of traditional differential-pressure- based instruments and resistance temperature detectors [RTDs]) allows for nuclear plant thermal power calculations accurate to 0.3%-0.4% of plant rated power. This improvement in measurement accuracy has allowed many plant operators in the U.S. and around the world to increase plant power output through Measurement Uncertainty Recapture (MUR) up-rates of up to 1.7% of rated power, while also decreasing the probability of significant over-power events. This paper will examine the basic elements involved in calculation of thermal power using ultrasonic transit-time technology and will discuss the criteria for bounding uncertainties associated with each element in order to achieve reactor thermal power calculations to within 0.3% to 0.4%. (authors)

  1. Neutron Interactions: Q-Equation, Elastic Scattering

    E-Print Network [OSTI]

    unknown authors

    Since a neutron has no charge it can easily enter into a nucleus and cause a reaction. Neutrons interact primarily with the nucleus of an atom, except in the special case of magnetic scattering where the interaction involves the neutron spin and the magnetic moment of the atom. Because magnetic scattering is of no interest in this class, we can neglect the interaction between neutrons and electrons and think of atoms and nuclei interchangeably. Neutron reactions can take place at any energy, so one has to pay particular attention to the energy variation of the interaction cross section. In a nuclear reactor neutrons can have energies ranging from 10-3 ev (1 mev) to 10 7 ev (10 Mev). This means our study of neutron interactions, in principle, will have to cover an energy range of 10 ten orders of magnitude. In practice we will limit ourselves to two energy ranges, the slowing down region (ev to Kev) and the thermal region (around 0.025 ev). For a given energy region – thermal, epithermal, resonance, fast – not all the possible reactions are equally important. Which reaction is important depends on the target nucleus and the neutron energy. Generally speaking the important types of interactions, in the order of increasing complexity from the standpoint of theoretical

  2. Neutron Repulsion

    E-Print Network [OSTI]

    Oliver K. Manuel

    2011-02-08T23:59:59.000Z

    Earth is connected gravitationally, magnetically and electrically to its heat source - a neutron star that is obscured from view by waste products in the photosphere. Neutron repulsion is like the hot filament in an incandescent light bulb. Excited neutrons are emitted from the solar core and decay into hydrogen that glows in the photosphere like a frosted light bulb. Neutron repulsion was recognized in nuclear rest mass data in 2000 as the overlooked source of energy, the keystone of an arch that locked together these puzzling space-age observations: 1.) Excess 136Xe accompanied primordial helium in the stellar debris that formed the solar system (Fig. 1); 2.) The Sun formed on the supernova core (Fig. 2); 3.) Waste products from the core pass through an iron-rich mantle, selectively carrying lighter elements and lighter isotopes of each element into the photosphere (Figs. 3-4); and 4.) Neutron repulsion powers the Sun and sustains life (Figs. 5-7). Together these findings offer a framework for understanding how: a.) The Sun generates and releases neutrinos, energy and solar-wind hydrogen and helium; b.) An inhabitable planet formed and life evolved around an ordinary-looking star; c.) Continuous climate change - induced by cyclic changes in gravitational interactions of the Sun's energetic core with planets - has favored survival by adaptation.

  3. Neutron Repulsion

    E-Print Network [OSTI]

    Manuel, Oliver K

    2011-01-01T23:59:59.000Z

    Earth is connected gravitationally, magnetically and electrically to its heat source - a neutron star that is obscured from view by waste products in the photosphere. Neutron repulsion is like the hot filament in an incandescent light bulb. Excited neutrons are emitted from the solar core and decay into hydrogen that glows in the photosphere like a frosted light bulb. Neutron repulsion was recognized in nuclear rest mass data in 2000 as the overlooked source of energy, the keystone of an arch that locked together these puzzling space-age observations: 1.) Excess 136Xe accompanied primordial helium in the stellar debris that formed the solar system (Fig. 1); 2.) The Sun formed on the supernova core (Fig. 2); 3.) Waste products from the core pass through an iron-rich mantle, selectively carrying lighter elements and lighter isotopes of each element into the photosphere (Figs. 3-4); and 4.) Neutron repulsion powers the Sun and sustains life (Figs. 5-7). Together these findings offer a framework for understanding...

  4. Behaviour of Magnetic Tubes in Neutron Star's Interior

    E-Print Network [OSTI]

    R. S. Singh; B. K. Sinha; N. K. Lohani

    2002-12-31T23:59:59.000Z

    It is found from Maxwell's equations that the magnetic field lines are good analogues of relativistic strings. It is shown that the super-conducting current in the neutron star's interior causes local rotation of magnetic flux tubes carrying quantized flux.

  5. Thermal Analysis of a Uranium Silicide Miniplate Irradiation Experiment

    SciTech Connect (OSTI)

    Donna Post Guillen

    2009-09-01T23:59:59.000Z

    This paper outlines the thermal analysis for the irradiation of high density uranium-silicide (U3Si2 dispersed in an aluminum matrix and clad in aluminum) booster fuel for a Boosted Fast Flux Loop designed to provide fast neutron flux test capability in the ATR. The purpose of this experiment (designated as Gas Test Loop-1 [GTL-1]) is two-fold: (1) to assess the adequacy of the U3Si2/Al dispersion fuel and the aluminum alloy 6061 cladding, and (2) to verify stability of the fuel cladding boehmite pre-treatment at nominal power levels in the 430 to 615 W/cm2 (2.63 to 3.76 Btu/s•in2) range. The GTL-1 experiment relies on a difficult balance between achieving a high heat flux, yet keeping fuel centerline temperature below a specified maximum value throughout an entire operating cycle of the reactor. A detailed finite element model was constructed to calculate temperatures and heat flux levels and to reveal which experiment parameters place constraints on reactor operations. Analyses were performed to determine the bounding lobe power level at which the experiment could be safely irradiated, yet still provide meaningful data under nominal operating conditions. Then, simulations were conducted for nominal and bounding lobe power levels under steady-state and transient conditions with the experiment in the reactor. Reactivity changes due to a loss of commercial power with pump coast-down to emergency flow or a standard in-pile tube pump discharge break were evaluated. The time after shutdown for which the experiment can be adequately cooled by natural convection cooling was determined using a system thermal hydraulic model. An analysis was performed to establish the required in-reactor cooling time prior to removal of the experiment from the reactor. The inclusion of machining tolerances in the numerical model has a large effect on heat transfer.

  6. Neutron Generators for Spent Fuel Assay

    SciTech Connect (OSTI)

    Ludewigt, Bernhard A

    2010-12-30T23:59:59.000Z

    The Next Generation Safeguards Initiative (NGSI) of the U.S. DOE has initiated a multi-lab/university collaboration to quantify the plutonium (Pu) mass in, and detect the diversion of pins from, spent nuclear fuel (SNF) assemblies with non-destructive assay (NDA). The 14 NDA techniques being studied include several that require an external neutron source: Delayed Neutrons (DN), Differential Die-Away (DDA), Delayed Gammas (DG), and Lead Slowing-Down Spectroscopy (LSDS). This report provides a survey of currently available neutron sources and their underlying technology that may be suitable for NDA of SNF assemblies. The neutron sources considered here fall into two broad categories. The term 'neutron generator' is commonly used for sealed devices that operate at relatively low acceleration voltages of less than 150 kV. Systems that employ an acceleration structure to produce ion beam energies from hundreds of keV to several MeV, and that are pumped down to vacuum during operation, rather than being sealed units, are usually referred to as 'accelerator-driven neutron sources.' Currently available neutron sources and future options are evaluated within the parameter space of the neutron generator/source requirements as currently understood and summarized in section 2. Applicable neutron source technologies are described in section 3. Commercially available neutron generators and other source options that could be made available in the near future with some further development and customization are discussed in sections 4 and 5, respectively. The pros and cons of the various options and possible ways forward are discussed in section 6. Selection of the best approach must take a number of parameters into account including cost, size, lifetime, and power consumption, as well as neutron flux, neutron energy spectrum, and pulse structure that satisfy the requirements of the NDA instrument to be built.

  7. Retention of Hydrogen Isotopes in Neutron Irradiated Tungsten

    SciTech Connect (OSTI)

    Yuji Hatano; Masashi Shimada; Yasuhisa Oya; Guoping Cao; Makoto Kobayashi; Masanori Hara; Brad J. Merrill; Kenji Okuno; Mikhail A. Sokolov; Yutai Katoh

    2013-03-01T23:59:59.000Z

    To investigate the effects of neutron irradiation on hydrogen isotope retention in tungsten, disk-type specimens of pure tungsten were irradiated in the High Flux Isotope Reactor in Oak Ridge National Laboratory followed by exposure to high flux deuterium (D) plasma in Idaho National Laboratory. The results obtained for low dose n-irradiated specimens (0.025 dpa for tungsten) are reviewed in this paper. Irradiation at coolant temperature of the reactor (around 50 degrees C) resulted in the formation of strong trapping sites for D atoms. The concentrations of D in n-irradiated specimens were ranging from 0.1 to 0.4 mol% after exposure to D plasma at 200 and 500 degrees C and significantly higher than those in non-irradiated specimens because of D-trapping by radiation defects. Deep penetration of D up to a depth of 50-100 µm was observed at 500 degrees C. Release of D in subsequent thermal desorption measurements continued up to 900 degrees C. These results were compared with the behaviour of D in ion-irradiated tungsten, and distinctive features of n-irradiation were discussed.

  8. Neutron Imaging Reveals Internal Plant Hydraulic Dynamics

    SciTech Connect (OSTI)

    Warren, Jeffrey [ORNL; Bilheux, Hassina Z [ORNL; Kang, Misun [ORNL; Voisin, Sophie [ORNL; Cheng, Chu-Lin [ORNL; Horita, Jusuke [ORNL; Perfect, Edmund [ORNL

    2013-01-01T23:59:59.000Z

    Many terrestrial ecosystem processes are constrained by water availability and transport within the soil. Knowledge of plant water fluxes is thus critical for assessing mechanistic processes linked to biogeochemical cycles, yet resolution of root structure and xylem water transport dynamics has been a particularly daunting task for the ecologist. Through neutron imaging, we demonstrate the ability to non-invasively monitor individual root functionality and water fluxes within Zea mays L. (maize) and Panicum virgatum L. (switchgrass) seedlings growing in a sandy medium. Root structure and growth were readily imaged by neutron radiography and neutron computed tomography. Seedlings were irrigated with water or deuterium oxide and imaged through time as a growth lamp was cycled on to alter leaf demand for water. Sub-millimeter scale resolution reveals timing and magnitudes of root water uptake, redistribution within the roots, and root-shoot hydraulic linkages, relationships not well characterized by other techniques.

  9. 2002 REVIEW OF NEUTRON AND NON NEUTRON NUCLEAR DATA.

    SciTech Connect (OSTI)

    HOLDEN,N.E.

    2002-08-18T23:59:59.000Z

    Review articles are in preparation for the 2003 edition of the CRC's Handbook of Chemistry and Physics dealing with both non-neutron and neutron nuclear data. Highlights include: withdrawal of the claim for discovery of element 118; new measurements of isotopic abundances have led to changes for many elements; a new set of recommended standards for calibration of {gamma}-ray energies have been published for many nuclides; new half-life measurements reported for very short lived isotopes, many long-lived nuclides and {beta}{beta} decay measurements for quasi-stable nuclides; a new reassessment of spontaneous fission (sf) half-lives for ground state nuclides, distinguishing half-lives from sf decay and cluster decay half-lives and the new cluster-fission decay; charged particle cross sections, (n,p) and (n,{alpha}) measurements for thermal neutrons incident on light nuclides; new thermal (n,{gamma}) cross sections and neutron resonance integrals measured. Details are presented.

  10. Atmospheric Neutrino Fluxes

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2005-02-18T23:59:59.000Z

    Starting with an historical review, I summarize the status of calculations of the flux of atmospheric neutrinos and how they compare to measurements.

  11. Non-Destructive Spent Fuel Characterization with Semi-Conducting Gallium Arsinde Neutron Imaging Arrays

    SciTech Connect (OSTI)

    Douglas S. McGregor; Holly K. Gersch; Jeffrey D. Sanders; John C. Lee; Mark D. Hammig; Michael R. Hartman; Yong Hong Yang; Raymond T. Klann; Brian Van Der Elzen; John T. Lindsay; Philip A. Simpson

    2002-01-30T23:59:59.000Z

    High resistivity bulk grown GaAs has been used to produce thermal neutron imaging devices for use in neutron radiography and characterizing burnup in spent fuel. The basic scheme utilizes a portable Sb/Be source for monoenergetic (24 keV) neutron radiation source coupled to an Fe filter with a radiation hard B-coated pixellated GaAs detector array as the primary neutron detector. The coated neutron detectors have been tested for efficiency and radiation hardness in order to determine their fitness for the harsh environments imposed by spent fuel. Theoretical and experimental results are presented, showing detector radiation hardness, expected detection efficiency and the spatial resolution from such a scheme. A variety of advanced neutron detector designs have been explored, with experimental results achieving 13% thermal neutron detection efficiency while projecting the possibility of over 30% thermal neutron detection efficiency.

  12. Safety control circuit for a neutronic reactor

    DOE Patents [OSTI]

    Ellsworth, Howard C. (Richland, WA)

    2004-04-27T23:59:59.000Z

    A neutronic reactor comprising an active portion containing material fissionable by neutrons of thermal energy, means to control a neutronic chain reaction within the reactor comprising a safety device and a regulating device, a safety device including means defining a vertical channel extending into the reactor from an aperture in the upper surface of the reactor, a rod containing neutron-absorbing materials slidably disposed within the channel, means for maintaining the safety rod in a withdrawn position relative to the active portion of the reactor including means for releasing said rod on actuation thereof, a hopper mounted above the active portion of the reactor having a door disposed at the bottom of the hopper opening into the vertical channel, a plurality of bodies of neutron-absorbing materials disposed within the hopper, and means responsive to the failure of the safety rod on actuation thereof to enter the active portion of the reactor for opening the door in the hopper.

  13. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, James L. (Drayton Plains, MI)

    1992-01-01T23:59:59.000Z

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.

  14. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, J.L.

    1992-12-01T23:59:59.000Z

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.

  15. Uncertainty Quantification on Prompt Fission Neutrons Spectra

    SciTech Connect (OSTI)

    Talou, P. [T-16, Nuclear Physics Group, Los Alamos National Laboratory, NM 87545 (United States)], E-mail: talou@lanl.gov; Madland, D.G.; Kawano, T. [T-16, Nuclear Physics Group, Los Alamos National Laboratory, NM 87545 (United States)

    2008-12-15T23:59:59.000Z

    Uncertainties in the evaluated prompt fission neutrons spectra present in ENDF/B-VII.0 are assessed in the framework of the Los Alamos model. The methodology used to quantify the uncertainties on an evaluated spectrum is introduced. We also briefly review the Los Alamos model and single out the parameters that have the largest influence on the calculated results. Using a Kalman filter, experimental data and uncertainties are introduced to constrain model parameters, and construct an evaluated covariance matrix for the prompt neutrons spectrum. Preliminary results are shown in the case of neutron-induced fission of {sup 235}U from thermal up to 15 MeV incident energies.

  16. Self-regulating neutron coincidence counter

    DOE Patents [OSTI]

    Baron, N.

    1980-06-16T23:59:59.000Z

    A device for accurately measuring the mass of /sup 240/Pu and /sup 239/Pu in a sample having arbitrary moderation and mixed with various contaminants. The device utilizes a thermal neutron well counter which has two concentric rings of neutron detectors separated by a moderating material surrounding the well. Neutron spectroscopic information derived by the two rings of detectors is used to measure the quantity of /sup 239/Pu and /sup 240/Pu in device which corrects for background radiation, deadtime losses of the detector and electronics and various other constants of the system.

  17. Neutron irradiation effects on metal-gallium nitride contacts

    SciTech Connect (OSTI)

    Katz, Evan J.; Lin, Chung-Han; Zhang, Zhichun [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Qiu, Jie; Cao, Lei [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Mishra, Umesh K. [Departments of Electrical and Computer Engineering and Materials Science and Engineering University of California, Santa Barbara, California 93106 (United States); Brillson, Leonard J., E-mail: brillson.1@osu.edu [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Department of Physics and Center for Materials Research, The Ohio State University, Columbus, Ohio 43210 (United States)

    2014-03-28T23:59:59.000Z

    We have measured the effect of fast and thermal neutrons on GaN Schottky barriers and ohmic contacts using current–voltage and transmission line method electrical techniques, optical, atomic force and scanning electron microscopy morphological techniques, and X-ray photoemission spectroscopy chemical techniques. These studies reveal a 10{sup 15}?n/cm{sup 2} neutron threshold for Schottky barrier ideality factor increases, a 10{sup 15}?n/cm{sup 2} fast plus thermal neutron threshold for ohmic contact sheet and contact resistance increases, and 10{sup 16}?n/cm{sup 2} neutron fluence threshold for major device degradation identified with thermally driven diffusion of Ga and N into the metal contacts and surface phase changes. These results demonstrate the need for protecting metal-GaN contacts in device applications subject to neutron radiation.

  18. Neutron total cross section measurements of gold and tantalum at the nELBE photoneutron source

    E-Print Network [OSTI]

    Roland Hannaske; Zoltan Elekes; Roland Beyer; Arnd Junghans; Daniel Bemmerer; Evert Birgersson; Anna Ferrari; Eckart Grosse; Mathias Kempe; Toni Kögler; Michele Marta; Ralph Massarczyk; Andrija Matic; Georg Schramm; Ronald Schwengner; Andreas Wagner

    2013-11-05T23:59:59.000Z

    Neutron total cross sections of $^{197}$Au and $^\\text{nat}$Ta have been measured at the nELBE photoneutron source in the energy range from 0.1 - 10 MeV with a statistical uncertainty of up to 2 % and a total systematic uncertainty of 1 %. This facility is optimized for the fast neutron energy range and combines an excellent time structure of the neutron pulses (electron bunch width 5 ps) with a short flight path of 7 m. Because of the low instantaneous neutron flux transmission measurements of neutron total cross sections are possible, that exhibit very different beam and background conditions than found at other neutron sources.

  19. Enhanced reaction rates in NDP analysis with neutron scattering

    SciTech Connect (OSTI)

    Downing, R. Gregory, E-mail: gregory.downing@nist.gov [National Institute of Standards and Technology, Chemical Sciences Division, Gaithersburg, Maryland 20899 (United States)

    2014-04-15T23:59:59.000Z

    Neutron depth profiling (NDP) makes accessible quantitative information on a few isotopic concentration profiles ranging from the surface into the sample a few micrometers. Because the candidate analytes for NDP are few, there is little interference encountered. Furthermore, neutrons have no charge so mixed chemical states in the sample are of no direct concern. There are a few nuclides that exhibit large probabilities for neutron scattering. The effect of neutron scattering on NDP measurements has not previously been evaluated as a basis for either enhancing the reaction rates or as a source of measurement error. Hydrogen is a common element exhibiting large neutron scattering probability found in or around sample volumes being analyzed by NDP. A systematic study was conducted to determine the degree of signal change when neutron scattering occurs during analysis. The relative signal perturbation was evaluated for materials of varied neutron scattering probability, concentration, total mass, and geometry. Signal enhancements up to 50% are observed when the hydrogen density is high and in close proximity to the region of analysis with neutron beams of sub thermal energies. Greater signal enhancements for the same neutron number density are reported for thermal neutron beams. Even adhesive tape used to position the sample produces a measureable signal enhancement. Because of the shallow volume, negligible distortion of the NDP measured profile shape is encountered from neutron scattering.

  20. Design of the Mechanical Parts for the Neutron Guide System at HANARO

    SciTech Connect (OSTI)

    Shin, J. W.; Cho, Y. G.; Cho, S. J.; Ryu, J. S. [Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2008-03-17T23:59:59.000Z

    The research reactor HANARO (High-flux Advanced Neutron Application ReactOr) in Korea will be equipped with a neutron guide system, in order to transport cold neutrons from the neutron source to the neutron scattering instruments in the neutron guide hall near the reactor building. The neutron guide system of HANARO consists of the in-pile plug assembly with in-pile guides, the primary shutter with in-shutter guides, the neutron guides in the guide shielding room with dedicated secondary shutters, and the neutron guides connected to the instruments in the neutron guide hall. Functions of the in-pile plug assembly are to shield the reactor environment from nuclear radiation and to support the neutron guides and maintain them precisely oriented. The primary shutter is a mechanical structure to be installed just after the in-pile plug assembly, which stops neutron flux on demand. This paper describes the design of the in-pile assembly and the primary shutter for the neutron guide system at HANARO. The design of the guide shielding assembly for the primary shutter and the neutron guides is also presented.

  1. Deuterium trapping at defects created with neutron and ion irradiations in tungsten

    SciTech Connect (OSTI)

    Y. Hatano; M. Shimada; T. Otsuka; Y. Oya; V.Kh. Alimov; M. Hara; J. Shi; M. Kobayashi; T. Oda; G. Cao; K. Okuno; T. Tanaka; K. Sugiyama; J. Roth; B. Tyburska-Püschel; J. Dorner; N. Yoshida; N. Futagami; H. Watanabe; M. Hatakeyama; H. Kurishita; M. Sokolov; Y. Katoh

    2013-07-01T23:59:59.000Z

    The effects of neutron and ion irradiations on deuterium (D) retention in tungsten (W) were investigated. Specimens of pure W were irradiated with neutrons to 0.3 dpa at around 323 K and then exposed to high-flux D plasma at 473 and 773 K. The concentration of D significantly increased by neutron irradiation and reached 0.8 at% at 473 K and 0.4 at% at 773 K. Annealing tests for the specimens irradiated with 20 MeV W ions showed that the defects which play a dominant role in the trapping at high temperature were stable at least up to 973 K, while the density decreased at temperatures equal to or above 1123 K. These observations of the thermal stability of traps and the activation energy for D detrapping examined in a previous study (˜1.8 eV) indicated that the defects which contribute predominantly to trapping at 773 K were small voids. The higher concentration of trapped D at 473 K was explained by additional contributions of weaker traps. The release of trapped D was clearly enhanced by the exposure to atomic hydrogen at 473 K, though higher temperatures are more effective for using this effect for tritium removal in fusion reactors.

  2. Development of a three-dimensional two-fluid code with transient neutronic feedback for LWR applications

    E-Print Network [OSTI]

    Griggs, D. P.

    1981-01-01T23:59:59.000Z

    The development of a three-dimensional coupled neutronics/thermalhydraulics code for LWR safety analysis has been initiated. The transient neutronics code QUANDRY has been joined to the two-fluid thermal-hydraulics code ...

  3. Neutron production enhancements for the Intense Pulsed Neutron Source.

    SciTech Connect (OSTI)

    Iverson, E. B.

    1999-01-04T23:59:59.000Z

    The Intense Pulsed Neutron Source (IPNS) was the first high energy spallation neutron source in the US dedicated to materials research. It has operated for sixteen years, and in that time has had a very prolific record concerning the development of new target and moderator systems for pulsed spallation sources. IPNS supports a very productive user program on its thirteen instruments, which are oversubscribed by more than two times, meanwhile having an excellent overall reliability of 95%. Although the proton beam power is relatively low at 7 kW, the target and moderator systems are very efficient. The typical beam power which gives an equivalent flux for long-wavelength neutrons is about 60 kW, due to the use of a uranium target and liquid and solid methane moderators, precluded at some sources due to a higher accelerator power. The development of new target and moderator systems is by no means stagnant at IPNS. They are presently considering numerous enhancements to the target and moderators that offer prospects for increasing the useful neutron production by substantial factors. Many of these enhancements could be combined, although their combined benefit has not yet been well established. Meanwhile, IPNS is embarking on a coherent program of study concerning these improvements and their possible combination and implementation. Moreover, any improvements accomplished at IPNS would immediately increase the performance of IPNS instruments.

  4. Contactless heat flux control with photonic devices

    E-Print Network [OSTI]

    Ben-Abdallah, Philippe

    2015-01-01T23:59:59.000Z

    The ability to control electric currents in solids using diodes and transistors is undoubtedly at the origin of the main developments in modern electronics which have revolutionized the daily life in the second half of 20th century. Surprisingly, until the year 2000 no thermal counterpart for such a control had been proposed. Since then, based on pioneering works on the control of phononic heat currents new devices were proposed which allow for the control of heat fluxes carried by photons rather than phonons or electrons. The goal of the present paper is to summarize the main advances achieved recently in the field of thermal energy control with photons.

  5. Magnetic Field Evolution in Superconducting Neutron Stars

    E-Print Network [OSTI]

    Graber, Vanessa; Glampedakis, Kostas; Lander, Samuel K

    2015-01-01T23:59:59.000Z

    The presence of superconducting and superfluid components in the core of mature neutron stars calls for the rethinking of a number of key magnetohydrodynamical notions like resistivity, the induction equation, magnetic energy and flux-freezing. Using a multi-fluid magnetohydrodynamics formalism, we investigate how the magnetic field evolution is modified when neutron star matter is composed of superfluid neutrons, type-II superconducting protons and relativistic electrons. As an application of this framework, we derive an induction equation where the resistive coupling originates from the mutual friction between the electrons and the vortex/fluxtube arrays of the neutron and proton condensates. The resulting induction equation allows the identification of two timescales that are significantly different from those of standard magnetohydrodynamics. The astrophysical implications of these results are briefly discussed.

  6. 22.54 Neutron Interactions and Applications, Spring 2002

    E-Print Network [OSTI]

    Yip, Sidney

    Comprehensive treatment of neutron interactions in condensed matter at energies from thermal to MeV, focusing on aspects most relevant to radiation therapy, industrial imaging, and materials research applications. Comparative ...

  7. Real-Time Active Cosmic Neutron Background Reduction Methods

    SciTech Connect (OSTI)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald; Mitchell, Stephen; Guss, Paul

    2013-09-01T23:59:59.000Z

    Neutron counting using large arrays of pressurized 3He proportional counters from an aerial system or in a maritime environment suffers from the background counts from the primary cosmic neutrons and secondary neutrons caused by cosmic ray?induced mechanisms like spallation and charge-exchange reaction. This paper reports the work performed at the Remote Sensing Laboratory–Andrews (RSL-A) and results obtained when using two different methods to reduce the cosmic neutron background in real time. Both methods used shielding materials with a high concentration (up to 30% by weight) of neutron-absorbing materials, such as natural boron, to remove the low-energy neutron flux from the cosmic background as the first step of the background reduction process. Our first method was to design, prototype, and test an up-looking plastic scintillator (BC-400, manufactured by Saint Gobain Corporation) to tag the cosmic neutrons and then create a logic pulse of a fixed time duration (~120 ?s) to block the data taken by the neutron counter (pressurized 3He tubes running in a proportional counter mode). The second method examined the time correlation between the arrival of two successive neutron signals to the counting array and calculated the excess of variance (Feynman variance Y2F)1 in the neutron count distribution from Poisson distribution. The dilution of this variance from cosmic background values ideally would signal the presence of man-made neutrons.2 The first method has been technically successful in tagging the neutrons in the cosmic-ray flux and preventing them from being counted in the 3He tube array by electronic veto—field measurement work shows the efficiency of the electronic veto counter to be about 87%. The second method has successfully derived an empirical relationship between the percentile non-cosmic component in a neutron flux and the Y2F of the measured neutron count distribution. By using shielding materials alone, approximately 55% of the neutron flux from man-made sources like 252Cf or Am-Be was removed.

  8. A novel solid-state self powered neutron detector Nicholas LiCausi*a

    E-Print Network [OSTI]

    Danon, Yaron

    A novel solid-state self powered neutron detector Nicholas LiCausi*a , Justin Dingleyb , Yaron procedures. Keywords: Neutron detector, thermal neutrons, solid-state detector, DRIE, computer simulations 1 source and could be entirely self-powered. With no moving parts it would be robust and work in a variety

  9. SPIN-DEPENDENT SCATTERING LENGTHS OF SLOW NEUTRONS WITH NUCLEI BY PSEUDOMAGNETIC MEASUREMENTS

    E-Print Network [OSTI]

    Boyer, Edmond

    L-263 SPIN-DEPENDENT SCATTERING LENGTHS OF SLOW NEUTRONS WITH NUCLEI BY PSEUDOMAGNETIC MEASUREMENTS vu par les noyaux. Abstract. - The spin-dependent scattering length of slow neutrons by the nuclei 23 can be of practical importance in many thermal neutron scattering experiments. A new method, called

  10. Ground water and snow sensor based on directional detection of cosmogenic neutrons.

    SciTech Connect (OSTI)

    Cooper, Robert Lee; Marleau, Peter; Griffin, Patrick J.

    2011-06-01T23:59:59.000Z

    A fast neutron detector is being developed to measure the cosmic ray neutron flux in order to measure soil moisture. Soil that is saturated with water has an enhanced ability to moderate fast neutrons, removing them from the backscatter spectrum. The detector is a two-element, liquid scintillator detector. The choice of liquid scintillator allows rejection of gamma background contamination from the desired neutron signal. This enhances the ability to reconstruct the energy and direction of a coincident neutron event. The ability to image on an event-by-event basis allows the detector to selectively scan the neutron flux as a function of distance from the detector. Calibrations, simulations, and optimization have been completed to understand the detector response to neutron sources at variable distances and directions. This has been applied to laboratory background measurements in preparation for outdoor field tests.

  11. Composite neutron absorbing coatings for nuclear criticality control

    DOE Patents [OSTI]

    Wright, Richard N.; Swank, W. David; Mizia, Ronald E.

    2005-07-19T23:59:59.000Z

    Thermal neutron absorbing composite coating materials and methods of applying such coating materials to spent nuclear fuel storage systems are provided. A composite neutron absorbing coating applied to a substrate surface includes a neutron absorbing layer overlying at least a portion of the substrate surface, and a corrosion resistant top coat layer overlying at least a portion of the neutron absorbing layer. An optional bond coat layer can be formed on the substrate surface prior to forming the neutron absorbing layer. The neutron absorbing layer can include a neutron absorbing material, such as gadolinium oxide or gadolinium phosphate, dispersed in a metal alloy matrix. The coating layers may be formed by a plasma spray process or a high velocity oxygen fuel process.

  12. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01T23:59:59.000Z

    e l Atmosphere ceiling, back panel roof, exposed roof insideSAN DIEGO Photovoltaic Roof Heat Flux A Thesis submitted i no n Convection Exposed Roof Temperature Seasonal Temperature

  13. Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method

    DOE Patents [OSTI]

    Yoon, W.Y.; Jones, J.L.; Nigg, D.W.; Harker, Y.D.

    1999-05-11T23:59:59.000Z

    A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0{times}10{sup 9} neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use. 3 figs.

  14. Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method

    DOE Patents [OSTI]

    Yoon, Woo Y. (Idaho Falls, ID); Jones, James L. (Idaho Falls, ID); Nigg, David W. (Idaho Falls, ID); Harker, Yale D. (Idaho Falls, ID)

    1999-01-01T23:59:59.000Z

    A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0.times.10.sup.9 neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use.

  15. SHARP Neutronics Expanded

    Broader source: Energy.gov [DOE]

    The SHARP neutronics module, PROTEUS, includes neutron and gamma transport solvers and cross-section processing tools as well as the capability for depletion and fuel cycle analysis.

  16. PHELIX for flux compression studies

    SciTech Connect (OSTI)

    Turchi, Peter J [Los Alamos National Laboratory; Rousculp, Christopher L [Los Alamos National Laboratory; Reinovsky, Robert E [Los Alamos National Laboratory; Reass, William A [Los Alamos National Laboratory; Griego, Jeffrey R [Los Alamos National Laboratory; Oro, David M [Los Alamos National Laboratory; Merrill, Frank E [Los Alamos National Laboratory

    2010-06-28T23:59:59.000Z

    PHELIX (Precision High Energy-density Liner Implosion eXperiment) is a concept for studying electromagnetic implosions using proton radiography. This approach requires a portable pulsed power and liner implosion apparatus that can be operated in conjunction with an 800 MeV proton beam at the Los Alamos Neutron Science Center. The high resolution (< 100 micron) provided by proton radiography combined with similar precision of liner implosions driven electromagnetically can permit close comparisons of multi-frame experimental data and numerical simulations within a single dynamic event. To achieve a portable implosion system for use at high energy-density in a proton laboratory area requires sub-megajoule energies applied to implosions only a few cms in radial and axial dimension. The associated inductance changes are therefore relatively modest, so a current step-up transformer arrangement is employed to avoid excessive loss to parasitic inductances that are relatively large for low-energy banks comprising only several capacitors and switches. We describe the design, construction and operation of the PHELIX system and discuss application to liner-driven, magnetic flux compression experiments. For the latter, the ability of strong magnetic fields to deflect the proton beam may offer a novel technique for measurement of field distributions near perturbed surfaces.

  17. Nanoengineered surfaces for advanced thermal management

    E-Print Network [OSTI]

    Xiao, Rong, S.M. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    Thermal management is a critical challenge for a variety of applications including integrated circuits (ICs) and energy conversion devices. As the heat fluxes exceed 100 W/cm2, novel cooling solutions need to be developed. ...

  18. Neutron activation analysis applied to perspiration electrolytes

    E-Print Network [OSTI]

    McAndrew, Robert Gavin

    1969-01-01T23:59:59.000Z

    . In the choice of the polyethylene sheeting used, nine commercial polyethylene sheets or bags were analyzed for their sodium content by neutron activation analysis. A small sax:. .pie of each material was weighed and then irradiated in the reactor for one... 3. 46 3. 76 4. 2 1. 15 1. 16 . 59 1. 19 1. 82 1. 89 1. 50 . 54 1. 88 . 74 1. 20 1. 29 43 which were irradiated unshielded by cadmium in the center tube of the reactor where the fast neutron flux was much greater than at the reactor...

  19. Production of Ultra-Cold-Neutrons in Solid ?-Oxygen

    E-Print Network [OSTI]

    E. Gutsmiedl; A. Frei; F. Boehle; A. Maier; S. Paul; H. Schober; A. Orecchini

    2010-07-30T23:59:59.000Z

    Our recent neutron scattering measurements of phonons and magnons in solid \\alpha-oxygen have led us to a new understanding of the production mechanismen of ultra-cold-neutrons (UCN) in this super-thermal converter. The UCN production in solid \\alpha-oxygen is dominated by the excitation of phonons. The contribution of magnons to UCN production becomes only slightly important above E >10 meV and at E >4 meV. Solid \\alpha-oxygen is in comparison to solid deuterium less effcient in the down-scattering of thermal or cold neutrons into the UCN energy regime.

  20. Neutron capture cross section standards for BNL 325, Fourth Edition

    SciTech Connect (OSTI)

    Holden, N.E.

    1981-01-01T23:59:59.000Z

    This report evaluates the experimental data and recommends values for the thermal neutron cross sections and resonance integrals for the neutron capture reactions: /sup 55/Mn(n,..gamma..), /sup 59/Co(n,..gamma..) and /sup 197/Au(n,..gamma..). The failure of lithium and boron as standards due to the natural variation of the absorption cross sections of these elements is discussed. The Westcott convention, which describes the neutron spectrum as a thermal Maxwellian distribution with an epithermal component, is also discussed.

  1. Neutron counter based on beryllium activation

    SciTech Connect (OSTI)

    Bienkowska, B.; Prokopowicz, R.; Kaczmarczyk, J.; Paducha, M. [Institute of Plasma Physics and Laser Microfusion (IPPLM), Hery 23, 01-497 Warsaw (Poland); Scholz, M.; Igielski, A. [Institute of Nuclear Physics PAS (IFJPAN), Radzikowskiego 152, 31-342 Krakow (Poland); Karpinski, L. [Faculty of Electrical Engineering, Rzeszow University of Technology, Pola 2, 35-959 Rzeszow (Poland); Pytel, K. [National Centre for Nuclear Research (NCBJ), Soltana 7, 05-400 Otwock - Swierk (Poland)

    2014-08-21T23:59:59.000Z

    The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction {sup 9}Be(n, ?){sup 6}He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, {sup 6}He, decays with half-life T{sub 1/2} = 0.807 s emitting ?{sup ?} particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of ?–particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known ?–source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5–the Monte Carlo transport code. It allowed proper application of the results of transport calculations of ?{sup ?} particles emitted from radioactive {sup 6}He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.

  2. Maximally incompressible neutron star matter

    E-Print Network [OSTI]

    Timothy S. Olson

    2000-12-07T23:59:59.000Z

    Relativistic kinetic theory, based on the Grad method of moments as developed by Israel and Stewart, is used to model viscous and thermal dissipation in neutron star matter and determine an upper limit on the maximum mass of neutron stars. In the context of kinetic theory, the equation of state must satisfy a set of constraints in order for the equilibrium states of the fluid to be thermodynamically stable and for perturbations from equilibrium to propagate causally via hyperbolic equations. Application of these constraints to neutron star matter restricts the stiffness of the most incompressible equation of state compatible with causality to be softer than the maximally incompressible equation of state that results from requiring the adiabatic sound speed to not exceed the speed of light. Using three equations of state based on experimental nucleon-nucleon scattering data and properties of light nuclei up to twice normal nuclear energy density, and the kinetic theory maximally incompressible equation of state at higher density, an upper limit on the maximum mass of neutron stars averaging 2.64 solar masses is derived.

  3. Experimental neutronics tests for a neutron activation system for the European ITER TBM

    SciTech Connect (OSTI)

    Klix, A.; Fischer, U. [Karlsruhe Institute of Technology (KIT), INR, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Gehre, D. [Technical University of Dresden, IKTP, Zellescher Weg 19, 01062 Dresden (Germany); Kleizer, G. [Karlsruhe Institute of Technology (KIT), INR, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany and Budapest University of Technology and Economics, M?egyetem rkp. 3-9. H-1111 Budapest (Hungary); Raj, P. [Karlsruhe Institute of Technology (KIT), INR, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany and Université Paris-Sud, 15 rue Georges Clemenceau, F-91405 Paris (France); Rovni, I. [Budapest University of Technology and Economics, M?egyetem rkp. 3-9. H-1111 Budapest (Hungary); Ruecker, Tom [Karlsruhe Institute of Technology (KIT), INR, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany and University of Applied Sciences Zittau-Goerlitz, Theodor-Körner-Allee 16, D-02754 Zittau (Germany)

    2014-08-21T23:59:59.000Z

    We are investigating methods for neutron flux measurement in the ITER TBM. In particular we have tested sets of activation materials leading to induced gamma activities with short half-lives of the order of tens of seconds up to minutes and standard activation materials. Packages of activation foils have been irradiated with the intense neutron generator of Technical University of Dresden in a pure DT neutron field as well as in a neutronics mock-up of the European ITER HCLL TBM. An important aim was to check whether the gamma activity induced in the activation foils in these packages could be measured simultaneously. It was indeed possible to identify gamma lines of interest in gamma-ray measurements immediately after extraction from the irradiation.

  4. A High Count Rate Neutron Beam Monitor for Neutron Scattering Facilities

    SciTech Connect (OSTI)

    Barnett, Amanda [University of Tennessee, Knoxville (UTK); Crow, Lowell [ORNL; Diawara, Yacouba [ORNL; Hayward, J P [University of Tennessee, Knoxville (UTK); Hayward, Jason P [ORNL; Menhard, Kocsis [European Synchrotron Radiation Facility (ESRF); Sedov, Vladislav N [ORNL; Funk, Loren L [ORNL

    2013-01-01T23:59:59.000Z

    Abstract Beam monitors are an important diagnostic tool in neutron science facilities. Present beam monitors use either ionization chambers in integration mode, which are slow and have no timing information, or pulse counters which can easily be saturated by high beam intensities. At high flux neutron scattering facilities, neutron beam monitors with very low intrinsic efficiency (10-5) are presently selected to keep the counting rate within a feasible range, even when a higher efficiency would improve the counting statistics and yield a better measurement of the incident beam. In this work, we report on a high count rate neutron beam monitor. This beam monitor offers good timing with an intrinsic efficiency of 10-3 and a counting rate capability of over 1,000,000 cps without saturation.

  5. Downstream Heat Flux Profile vs. Midplane T Profile in Tokamaks

    SciTech Connect (OSTI)

    Robert J. Goldston

    2009-08-20T23:59:59.000Z

    The relationship between the midplane scrape-off-layer electron temperature profile and the parallel heat flux profile at the divertor in tokamaks is investigated. A model is applied which takes into account anisotropic thermal diffusion, in a rectilinear geometry with constant density. Eigenmode analysis is applied to the simplified problem with constant thermal diffusivities. A self-similar nonlinear solution is found for the more realistic problem with anisotropically temperature-dependent thermal diffusivities. Numerical solutions are developed for both cases, with spatially dependent heat flux emerging from the plasma. For both constant and temperature-dependent thermal diffusivities it is found that, below about one-half of its peak, the heat flux profile shape at the divertor, compared with the midplane temperature profile shape, is robustly described by the simplest two-point model. However the physical processes are not those assumed in the simplest two-point model, nor is the numerical coefficient relating q||div to Tmp ?||mp/L|| as predicted. For realistic parameters the peak in the heat flux, moreover, can be reduced by a factor of two or more from the two-point model scaling which fits the remaining profile. For temperature profiles in the SOL region above the x-point set by marginal stability, the heat flux profile to the divertor can be largely decoupled from the prediction of the two-point model. These results suggest caveats for data interpretation, and possibly favorable outcomes for divertor configurations with extended field lines.

  6. Neutrostriction in Neutron stars

    E-Print Network [OSTI]

    V. K. Ignatovich

    2006-06-29T23:59:59.000Z

    It is demonstrated that not only gravity, but also neutrostriction forces due to optical potential created by coherent elastic neutron-neutron scattering can hold a neutron star together. The latter forces can be stronger than gravitational ones. The effect of these forces on mass, radius and structure of the neutron star is estimated.

  7. Neutron-photon multigroup cross sections for neutron energies less than or equal to400 MeV. Revision 1

    SciTech Connect (OSTI)

    Alsmiller, R.G. Jr.; Barnes, J.M.; Drischler, J.D.

    1986-01-01T23:59:59.000Z

    For a variety of applications, e.g., accelerator shielding design, neutrons in radiotherapy, radiation damage studies, etc., it is necessary to carry out transport calculations involving medium-energy (greater than or equal to20 MeV) neutrons. A previous paper described neutron-photon multigroup cross sections in the ANISN format for neutrons from thermal to 400 MeV. In the present paper the cross-section data presented previously have been revised to make them agree with available experimental data. 7 refs., 1 fig.

  8. The resonance absorption probability function for neutron and multiplicative integral

    E-Print Network [OSTI]

    V. D. Rusov; V. A. Tarasov; S. I. Kosenko; S. A. Chernegenko

    2012-08-05T23:59:59.000Z

    The analytical approximations for the moderating neutrons flux density like Fermi spectra, widely used in reactor physics, involve the probability function for moderating neutron to avoid the resonant absorption obtained using some restrictive assumptions regarding the acceptable resonances width. By means of multiplicative integral (Volterra integral) theory for a commutative algebra an analytical expression for the probability function is obtained rigorously without any restrictive assumptions.

  9. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, James L. (Drayton Plains, MI)

    1992-01-01T23:59:59.000Z

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. One layer of each set of bilayers consist of titanium, and the second layer of each set of bilayers consist of an alloy of nickel with carbon interstitially present in the nickel alloy.

  10. neutronlethargyflux(n.cm2 neutron energy (MeV)

    E-Print Network [OSTI]

    powerful research fast reactors. Once built, the MTS will be the only fast spectrum irradiation facility operating outside the Asian continent. · As in a fast reactor, the lack of thermal neutrons in MTS yields shroud around fuel thermal reactor with Cd shroud around fuel MTS or fast reactor Normalized

  11. Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2006

    SciTech Connect (OSTI)

    Primm, R. T. [ORNL] [ORNL; Ellis, R. J. [ORNL] [ORNL; Gehin, J. C. [ORNL] [ORNL; Clarno, K. T. [ORNL] [ORNL; Williams, K. A. [ORNL] [ORNL; Moses, D. L. [ORNL] [ORNL

    2006-11-01T23:59:59.000Z

    Neutronics and thermal-hydraulics studies show that, for equivalent operating power [85 MW(t)], a low-enriched uranium (LEU) fuel cycle based on uranium-10 wt % molybdenum (U-10Mo) metal foil with radially, “continuously graded” fuel meat thickness results in a 15% reduction in peak thermal flux in the beryllium reflector of the High Flux Isotope Reactor (HFIR) as compared to the current highly enriched uranium (HEU) cycle. The uranium-235 content of the LEU core is almost twice the amount of the HEU core when the length of the fuel cycle is kept the same for both fuels. Because the uranium-238 content of an LEU core is a factor of 4 greater than the uranium-235 content, the LEU HFIR core would weigh 30% more than the HEU core. A minimum U-10Mo foil thickness of 84 ?m is required to compensate for power peaking in the LEU core although this value could be increased significantly without much penalty. The maximum U-10Mo foil thickness is 457?m. Annual plutonium production from fueling the HFIR with LEU is predicted to be 2 kg. For dispersion fuels, the operating power for HFIR would be reduced considerably below 85 MW due to thermal considerations and due to the requirement of a 26-d fuel cycle. If an acceptable fuel can be developed, it is estimated that $140 M would be required to implement the conversion of the HFIR site at Oak Ridge National Laboratory from an HEU fuel cycle to an LEU fuel cycle. To complete the conversion by fiscal year 2014 would require that all fuel development and qualification be completed by the end of fiscal year 2009. Technological development areas that could increase the operating power of HFIR are identified as areas for study in the future.

  12. Imaging with Scattered Neutrons

    E-Print Network [OSTI]

    H. Ballhausen; H. Abele; R. Gaehler; M. Trapp; A. Van Overberghe

    2006-10-30T23:59:59.000Z

    We describe a novel experimental technique for neutron imaging with scattered neutrons. These scattered neutrons are of interest for condensed matter physics, because they permit to reveal the local distribution of incoherent and coherent scattering within a sample. In contrast to standard attenuation based imaging, scattered neutron imaging distinguishes between the scattering cross section and the total attenuation cross section including absorption. First successful low-noise millimeter-resolution images by scattered neutron radiography and tomography are presented.

  13. Method and apparatus for determining vertical heat flux of geothermal field

    DOE Patents [OSTI]

    Poppendiek, Heinz F. (LaJolla, CA)

    1982-01-01T23:59:59.000Z

    A method and apparatus for determining vertical heat flux of a geothermal field, and mapping the entire field, is based upon an elongated heat-flux transducer (10) comprised of a length of tubing (12) of relatively low thermal conductivity with a thermopile (20) inside for measuring the thermal gradient between the ends of the transducer after it has been positioned in a borehole for a period sufficient for the tube to reach thermal equilibrium. The transducer is thermally coupled to the surrounding earth by a fluid annulus, preferably water or mud. A second transducer comprised of a length of tubing of relatively high thermal conductivity is used for a second thermal gradient measurement. The ratio of the first measurement to the second is then used to determine the earth's thermal conductivity, k.sub..infin., from a precalculated graph, and using the value of thermal conductivity thus determined, then determining the vertical earth temperature gradient, b, from predetermined steady state heat balance equations which relate the undisturbed vertical earth temperature distributions at some distance from the borehole and earth thermal conductivity to the temperature gradients in the transducers and their thermal conductivity. The product of the earth's thermal conductivity, k.sub..infin., and the earth's undisturbed vertical temperature gradient, b, then determines the earth's vertical heat flux. The process can be repeated many times for boreholes of a geothermal field to map vertical heat flux.

  14. Radiative Flux Analysis

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Long, Chuck [NOAA

    The Radiative Flux Analysis is a technique for using surface broadband radiation measurements for detecting periods of clear (i.e. cloudless) skies, and using the detected clear-sky data to fit functions which are then used to produce continuous clear-sky estimates. The clear-sky estimates and measurements are then used in various ways to infer cloud macrophysical properties.

  15. Porcelain enamel neutron absorbing material

    DOE Patents [OSTI]

    Iverson, D.C.

    1987-11-20T23:59:59.000Z

    A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compound of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved. 2 figs.

  16. Porcelain enamel neutron absorbing material

    DOE Patents [OSTI]

    Iverson, Daniel C. (Aiken, SC)

    1990-01-01T23:59:59.000Z

    A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compounds of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved.

  17. Space Science: Atmosphere Thermal Structure

    E-Print Network [OSTI]

    Johnson, Robert E.

    Space Science: Atmosphere Part -2 Thermal Structure Review tropospheres Absorption of Radiation Adiabatic Lapse Rate ~ 9 K/km Slightly smaller than our estimate Pressure ~3000ft under ocean surface thickness (positive up) is the solar zenith angle Fs is the solar energy flux at frequency (when

  18. Validation of multigroup neutron cross sections and calculational methods for the advanced neutron source against the FOEHN critical experiments measurements

    SciTech Connect (OSTI)

    Smith, L.A.; Gallmeier, F.X. [Oak Ridge Institute for Science and Energy, TN (United States); Gehin, J.C. [Oak Ridge National Lab., TN (United States)] [and others

    1995-05-01T23:59:59.000Z

    The FOEHN critical experiment was analyzed to validate the use of multigroup cross sections and Oak Ridge National Laboratory neutronics computer codes in the design of the Advanced Neutron Source. The ANSL-V 99-group master cross section library was used for all the calculations. Three different critical configurations were evaluated using the multigroup KENO Monte Carlo transport code, the multigroup DORT discrete ordinates transport code, and the multigroup diffusion theory code VENTURE. The simple configuration consists of only the fuel and control elements with the heavy water reflector. The intermediate configuration includes boron endplates at the upper and lower edges of the fuel element. The complex configuration includes both the boron endplates and components in the reflector. Cross sections were processed using modules from the AMPX system. Both 99-group and 20-group cross sections were created and used in two-dimensional models of the FOEHN experiment. KENO calculations were performed using both 99-group and 20-group cross sections. The DORT and VENTURE calculations were performed using 20-group cross sections. Because the simple and intermediate configurations are azimuthally symmetric, these configurations can be explicitly modeled in R-Z geometry. Since the reflector components cannot be modeled explicitly using the current versions of these codes, three reflector component homogenization schemes were developed and evaluated for the complex configuration. Power density distributions were calculated with KENO using 99-group cross sections and with DORT and VENTURE using 20-group cross sections. The average differences between the measured values and the values calculated with the different computer codes range from 2.45 to 5.74%. The maximum differences between the measured and calculated thermal flux values for the simple and intermediate configurations are {approx} 13%, while the average differences are < 8%.

  19. Crystal Driven Neutron Source: A New Paradigm for Miniature Neutron Sources

    SciTech Connect (OSTI)

    Tang, V; Morse, J; Meyer, G; Falabella, S; Guethlein, G; Kerr, P; Park, H G; Rusnak, B; Sampayan, S; Schmid, G; Spadaccini, C; Wang, L

    2008-08-08T23:59:59.000Z

    Neutron interrogation techniques have specific advantages for detection of hidden, shielded, or buried threats over other detection modalities in that neutrons readily penetrate most materials providing backscattered gammas indicative of the elemental composition of the potential threat. Such techniques have broad application to military and homeland security needs. Present neutron sources and interrogation systems are expensive and relatively bulky, thereby making widespread use of this technique impractical. Development of a compact, high intensity crystal driven neutron source is described. The crystal driven neutron source approach has been previously demonstrated using pyroelectric crystals that generate extremely high voltages when thermal cycled [1-4]. Placement of a sharpened needle on the positively polarized surface of the pyroelectric crystal results in sufficient field intensification to field ionize background deuterium molecules in a test chamber, and subsequently accelerate the ions to energies in excess of {approx}100 keV, sufficient for either D-D or D-T fusion reactions with appropriate target materials. Further increase in ion beam current can be achieved through optimization of crystal thermal ramping, ion source and crystal accelerator configuration. The advantage of such a system is the compact size along with elimination of large, high voltage power supplies. A novel implementation discussed incorporates an independently controlled ion source in order to provide pulsed neutron operation having microsecond pulse width.

  20. A transient thermal cloak made of engineered thermal materials

    E-Print Network [OSTI]

    Ma, Yungui; Jiang, Wei; Sun, Fei; He, Sailing

    2013-01-01T23:59:59.000Z

    Transformation optics originating from the invariance of Maxwell's equations under the coordinate mapping has enabled the design and demonstration of many fascinating electromagnetic devices that were unconceivable or deemed impossible before [1-11], and has greatly contributed to the advancement of modern electromagnetism and related researches assisted with the development of metamaterials [12-15]. This technique has been extended to apply to other partial differential equations governing different waves [16-23] or flux [24-28], and has produced various novel functional devices such as acoustic cloaks [20-23] and Schrodinger's 'hat' [19]. In the present work we applied the coordinate transformation to the time-dependent heat diffusion equation [24-28] and achieved the manipulation of the heat flux by predefined diffusion paths. In the experiment we demonstrated a transient thermal cloaking device engineered with thermal metamaterials and successfully hid a centimeter sized strong 'scatter' (thermal disturbe...

  1. Neutron streak camera

    DOE Patents [OSTI]

    Wang, C.L.

    1981-05-14T23:59:59.000Z

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  2. Layered semiconductor neutron detectors

    DOE Patents [OSTI]

    Mao, Samuel S; Perry, Dale L

    2013-12-10T23:59:59.000Z

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  3. Neutron streak camera

    DOE Patents [OSTI]

    Wang, C.L.

    1983-09-13T23:59:59.000Z

    Disclosed is an apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon. 4 figs.

  4. Evaluation of the delayed neutron characteristic for transmutation of the high-level waste using fast reactor technology

    SciTech Connect (OSTI)

    Ignatjev, S.V. [State Scientific Centre of Russian Federation, Obninsk (Russian Federation). Inst. of Physics and Power Engineering

    1995-12-31T23:59:59.000Z

    The method for evaluation of delayed fission neutron time and energy distributions is proposed. The method is tested for the case of U-235 thermal fission and used for Pu-238, Am-241, and Np-237 fission by the fast reactor spectrum neutrons. In the last case new data on different types of the delayed neutron spectra have been obtained.

  5. PHYSICAL REVIEW C 85, 065503 (2012) Quasielastic scattering in the interaction of ultracold neutrons with a liquid wall and application

    E-Print Network [OSTI]

    Steyerl, Albert

    2012-01-01T23:59:59.000Z

    20 June 2012) We develop a theory of ultracold and very cold neutron scattering on viscoelastic-order approach to quasielastic UCN and very cold neutron (VCN) scattering and loss at a liquid wall. This allowed is organized as follows. In Sec. II we describe the basics of neutron quasielastic scattering by thermally

  6. Los Alamos National Laboratory | Science and people highlights from the Lujan Neutron Scattering Center at LANSCE CENTER SCIENCE & PEOPLE

    E-Print Network [OSTI]

    Los Alamos National Laboratory | Science and people highlights from the Lujan Neutron Scattering tuning: a new approach for making zero thermal expansion materials 8 Neutron scattering enables- Preferred Orientation beamline at the Los Ala- mos Neutron Scattering Center. In the back- ground

  7. Low-frequency Vibrational Anomalies in -Lactoglobulin: Contribution of Different Hydrogen Classes Revealed by Inelastic Neutron Scattering

    E-Print Network [OSTI]

    Tuscia, Università Degli Studi Della

    Revealed by Inelastic Neutron Scattering A. Orecchini, A. Paciaroni, A. R. Bizzarri, and S. Cannistraro -lactoglobulin has been investigated by inelastic neutron scattering, on both dry and D2O-hydrated samples. Both typically accessible energy and momentum transfers, inelastic thermal neutron scattering is probably

  8. Neutron capture and 2.2 MeV emission in the atmosphere of the secondary of an X-ray binary

    E-Print Network [OSTI]

    P. Jean; N. Guessoum

    2001-09-12T23:59:59.000Z

    We consider the production of 2.22 MeV radiation resulting from the capture of neutrons in the atmosphere of the secondary in an X-ray binary system, where the neutrons are produced in the accretion disk around the compact primary star and radiated in all directions. We have considered several accretion disk models (ADAF, ADIOS, SLE, Uniform-Temperature) and a varity of parameters (accretion rate, mass of the compact object, mass, temperature and composition of the secondary star, distance between the two objects, etc.). The neutron rates are calculated by a network of nuclear reactions in the accretion disk, and this is handled by a reaction-rate formulation taking into account the structure equations given by each accretion model. The processes undergone by the neutrons in the atmosphere of the companion star are studied in great detail, including thermalization, elastic and inelastic scatterings, absorption, escape from the surface, decay, and capture by protons. The radiative transfer of the 2.22 MeV photons is treated separately, taking into consideration the composition and density of the star's atmosphere. The final flux of the 2.22 MeV radiation that can be detected from earth is calculated taking into account the distance to the source, the direction of observation with respect to the binary system frame, and the rotation of the source, as this can lead to an observable periodicity in the flux. We produce phasograms of the 2.22 MeV intensity as well as spectra of the line, where rotational Doppler shift effects can lead to changes in the spectra that are measurable by INTEGRAL's spectrometer (SPI).

  9. Neutrons for Catalysis: A Workshop on Neutron Scattering Techniques for Studies in Catalysis

    SciTech Connect (OSTI)

    Overbury, Steven {Steve} H [ORNL; Coates, Leighton [ORNL; Herwig, Kenneth W [ORNL; Kidder, Michelle [ORNL

    2011-10-01T23:59:59.000Z

    This report summarizes the Workshop on Neutron Scattering Techniques for Studies in Catalysis, held at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) on September 16 and 17, 2010. The goal of the Workshop was to bring experts in heterogeneous catalysis and biocatalysis together with neutron scattering experimenters to identify ways to attack new problems, especially Grand Challenge problems in catalysis, using neutron scattering. The Workshop locale was motivated by the neutron capabilities at ORNL, including the High Flux Isotope Reactor (HFIR) and the new and developing instrumentation at the SNS. Approximately 90 researchers met for 1 1/2 days with oral presentations and breakout sessions. Oral presentations were divided into five topical sessions aimed at a discussion of Grand Challenge problems in catalysis, dynamics studies, structure characterization, biocatalysis, and computational methods. Eleven internationally known invited experts spoke in these sessions. The Workshop was intended both to educate catalyst experts about the methods and possibilities of neutron methods and to educate the neutron community about the methods and scientific challenges in catalysis. Above all, it was intended to inspire new research ideas among the attendees. All attendees were asked to participate in one or more of three breakout sessions to share ideas and propose new experiments that could be performed using the ORNL neutron facilities. The Workshop was expected to lead to proposals for beam time at either the HFIR or the SNS; therefore, it was expected that each breakout session would identify a few experiments or proof-of-principle experiments and a leader who would pursue a proposal after the Workshop. Also, a refereed review article will be submitted to a prominent journal to present research and ideas illustrating the benefits and possibilities of neutron methods for catalysis research.

  10. Systematic investigation of the effects of hydrophilic porosity on boiling heat transfer and critical heat flux

    E-Print Network [OSTI]

    Tetreault-Friend, Melanie

    2014-01-01T23:59:59.000Z

    Predicting the conditions of critical heat flux (CHF) is of considerable importance for safety and economic reasons in heat transfer units, such as in nuclear power plants. It is greatly advantageous to increase this thermal ...

  11. Steady state thermal hydraulic analysis of hydride fueled BWRs

    E-Print Network [OSTI]

    Ferroni, Paolo, Ph. D. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    (cont.) Since the results obtained in the main body of the analysis account only for thermal-hydraulic constraints, an estimate of the power reduction due to the application of neutronic constraints is also performed. This ...

  12. Ultrafast neutron detector

    DOE Patents [OSTI]

    Wang, C.L.

    1985-06-19T23:59:59.000Z

    A neutron detector of very high temporal resolution is described. It may be used to measure distributions of neutrons produced by fusion reactions that persist for times as short as about 50 picoseconds.

  13. Neutron dose equivalent meter

    DOE Patents [OSTI]

    Olsher, Richard H. (Los Alamos, NM); Hsu, Hsiao-Hua (Los Alamos, NM); Casson, William H. (Los Alamos, NM); Vasilik, Dennis G. (Los Alamos, NM); Kleck, Jeffrey H. (Menlo Park, CA); Beverding, Anthony (Foster City, CA)

    1996-01-01T23:59:59.000Z

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  14. Pulsed-neutron monochromator

    DOE Patents [OSTI]

    Mook, Jr., Herbert A. (Oak Ridge, TN)

    1985-01-01T23:59:59.000Z

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The wave are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  15. Pulsed-neutron monochromator

    DOE Patents [OSTI]

    Mook, H.A. Jr.

    1984-01-01T23:59:59.000Z

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The waves are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  16. ORNL Neutron Sciences Annual Report for 2007

    SciTech Connect (OSTI)

    Anderson, Ian S [ORNL; Horak, Charlie M [ORNL; Counce, Deborah Melinda [ORNL; Ekkebus, Allen E [ORNL

    2008-07-01T23:59:59.000Z

    This is the first annual report of the Oak Ridge National Laboratory Neutron Sciences Directorate for calendar year 2007. It describes the neutron science facilities, current developments, and future plans; highlights of the year's activities and scientific research; and information on the user program. It also contains information about education and outreach activities and about the organization and staff. The Neutron Sciences Directorate is responsible for operation of the High Flux Isotope Reactor and the Spallation Neutron Source. The main highlights of 2007 were highly successful operation and instrument commissioning at both facilities. At HFIR, the year began with the reactor in shutdown mode and work on the new cold source progressing as planned. The restart on May 16, with the cold source operating, was a significant achievement. Furthermore, measurements of the cold source showed that the performance exceeded expectations, making it one of the world's most brilliant sources of cold neutrons. HFIR finished the year having completed five run cycles and 5,880 MWd of operation. At SNS, the year began with 20 kW of beam power on target; and thanks to a highly motivated staff, we reached a record-breaking power level of 183 kW by the end of the year. Integrated beam power delivered to the target was 160 MWh. Although this is a substantial accomplishment, the next year will bring the challenge of increasing the integrated beam power delivered to 887 MWh as we chart our path toward 5,350 MWh by 2011.

  17. Beam Characterization at the Neutron Radiography Facility

    SciTech Connect (OSTI)

    Sarah Morgan; Jeffrey King

    2013-01-01T23:59:59.000Z

    The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam’s effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This project characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam’s effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the model’s energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.

  18. In-core flux sensor evaluations at the ATR critical facility

    SciTech Connect (OSTI)

    Troy Unruh; Benjamin Chase; Joy Rempe; David Nigg; George Imel; Jason Harris; Todd Sherman; Jean-Francois Villard

    2014-09-01T23:59:59.000Z

    Flux detector evaluations were completed as part of a joint Idaho State University (ISU) / Idaho National Laboratory (INL) / French Atomic Energy commission (CEA) ATR National Scientific User Facility (ATR NSUF) project to compare the accuracy, response time, and long duration performance of several flux detectors. Special fixturing developed by INL allows real-time flux detectors to be inserted into various ATRC core positions and perform lobe power measurements, axial flux profile measurements, and detector cross-calibrations. Detectors initially evaluated in this program include the French Atomic Energy Commission (CEA)-developed miniature fission chambers; specialized self-powered neutron detectors (SPNDs) developed by the Argentinean National Energy Commission (CNEA); specially developed commercial SPNDs from Argonne National Laboratory. As shown in this article, data obtained from this program provides important insights related to flux detector accuracy and resolution for subsequent ATR and CEA experiments and flux data required for bench-marking models in the ATR V&V Upgrade Initiative.

  19. Simulation of a D-T Neutron Source for Neutron Scattering Experiments

    E-Print Network [OSTI]

    Lou, T.P.; Ludewigt, B.A.; Vujic, J.L.; Leung, K.-N.

    2003-01-01T23:59:59.000Z

    T Neutron Source for Neutron Scattering Experiments T.P. Louor cold neutrons for neutron scattering experiments. Thisto simulate a neutron scattering setup and to estimate

  20. Stabilization of moduli by fluxes

    SciTech Connect (OSTI)

    Behrndt, Klaus [Albert-Einstein-Institute, Am Muehlenberg 1, 14476 Golm (Germany)

    2004-12-10T23:59:59.000Z

    In order to fix the moduli, non-trivial fluxes might the essential input. We summarize different aspects of compactifications in the presence of fluxes, as there is the relation to generalized Scherk-Schwarz reductions and gauged supergravity but also the description of flux-deformed geometries in terms of G-structures and intrinsic torsion.

  1. Bouncing Neutrons and the Neutron Centrifuge

    E-Print Network [OSTI]

    P. J. S. Watson

    2003-02-26T23:59:59.000Z

    The recent observation of the quantum state of the neutron bouncing freely under gravity allows some novel experiments. A method of purifying the ground state is given, and possible applications to the measurement of the electric dipole moment of the neutron and the short distance behaviour of gravity are discussed.

  2. Plasmoid impacts on neutron stars and highest energy cosmic rays

    E-Print Network [OSTI]

    C. Litwin; R. Rosner

    2001-04-04T23:59:59.000Z

    Particle acceleration by electrostatic polarization fields that arise in plasmas streaming across magnetic fields is discussed as a possible acceleration mechanism of highest-energy cosmic rays. Specifically, plasmoids arising in planetoid impacts onto neutron star magnetospheres are considered. We find that such impacts at plausible rates may account for the observed flux and energy spectrum of the highest energy cosmic rays.

  3. An increased estimate of the merger rate of double neutron

    E-Print Network [OSTI]

    Sarkissian, John M.

    -star merger rate in the Galaxy is crucial in order to predict whether current gravity wave detectors of only a few double-neutron-star binaries with merger times less than the age of the Universe. Here we position and flux density for the pulsar. Knowledge of the pulsar position with subarcsecond precision

  4. Advanced neutron absorber materials

    DOE Patents [OSTI]

    Branagan, Daniel J. (Idaho Falls, ID); Smolik, Galen R. (Idaho Falls, ID)

    2000-01-01T23:59:59.000Z

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  5. Arsenic activation neutron detector

    DOE Patents [OSTI]

    Jacobs, E.L.

    1980-01-28T23:59:59.000Z

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5-MeV neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  6. The Dense Matter Equation of State from Neutron Star Radius and Mass Measurements

    E-Print Network [OSTI]

    Ozel, Feryal; Guver, Tolga; Baym, Gordon; Heinke, Craig; Guillot, Sebastien

    2015-01-01T23:59:59.000Z

    We present a comprehensive study of spectroscopic radius measurements of twelve neutron stars obtained during thermonuclear bursts or in quiescence. We incorporate, for the first time, a large number of systematic uncertainties in the measurement of the apparent angular sizes, Eddington fluxes, and distances, in the composition of the interstellar medium, and in the flux calibration of X-ray detectors. We also take into account the results of recent theoretical calculations of rotational effects on neutron star radii, of atmospheric effects on surface spectra, and of relativistic corrections to the Eddington critical flux. We employ Bayesian statistical frameworks to obtain neutron star radii from the spectroscopic measurements as well as to infer the equation of state from the radius measurements. Combining these with the results of experiments in the vicinity of nuclear saturation density and the observations of ~2 Msun neutron stars, we place strong and quantitative constraints on the properties of the equ...

  7. Scientific opportunities with advanced facilities for neutron scattering

    SciTech Connect (OSTI)

    Lander, G.H.; Emery, V.J. (eds.)

    1984-01-01T23:59:59.000Z

    The present report documents deliberations of a large group of experts in neutron scattering and fundamental physics on the need for new neutron sources of greater intensity and more sophisticated instrumentation than those currently available. An additional aspect of the Workshop was a comparison between steady-state (reactor) and pulsed (spallation) sources. The main conclusions were: (1) the case for a new higher flux neutron source is extremely strong and such a facility will lead to qualitatively new advances in condensed matter science and fundamental physics; (2) to a large extent the future needs of the scientific community could be met with either a 5 x 10/sup 15/ n cm/sup -2/s/sup -1/ steady state source or a 10/sup 17/ n cm/sup -2/s/sup -1/ peak flux spallation source; and (3) the findings of this Workshop are consistent with the recommendations of the Major Materials Facilities Committee.

  8. Physics design of a cold neutron source for KIPT neutron source facility.

    SciTech Connect (OSTI)

    Zhong, Z.; Gohar, Y.; Kellogg, R.; Nuclear Engineering Division

    2009-02-17T23:59:59.000Z

    Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of a neutron source facility. It is based on the use of an electron accelerator driven subcritical (ADS) facility with low enriched uranium fuel, using the existing electron accelerators at KIPT of Ukraine [1]. The neutron source of the subcritical assembly is generated from the interaction of 100-KW electron beam, which has a uniform spatial distribution and the electron energy in the range of 100 to 200 MeV, with a natural uranium target [2]. The main functions of the facility are the production of medical isotopes and the support of the Ukraine nuclear power industry. Neutron beam experiments and material studies are also included. Over the past two-three decades, structures with characteristic lengths of 100 {angstrom} and correspondingly smaller vibrational energies have become increasingly important for both science and technology [3]. The characteristic dimensions of the microstructures can be well matched by neutrons with longer vibrational wavelength and lower energy. In the accelerator-driven subcritical facility, most of the neutrons are generated from fission reactions with energy in the MeV range. They are slowed down to the meV energy range through scattering reactions in the moderator and reflector materials. However, the fraction of neutrons with energies less than 5 meV in a normal moderator spectrum is very low because of up-scattering caused by the thermal motion of moderator or reflector molecules. In order to obtain neutrons with energy less than 5 meV, cryogenically cooled moderators 'cold neutron sources' should be used to slow down the neutrons. These cold moderators shift the neutron energy spectrum down because the thermal motion of moderator molecules as well as the up-scattering is very small, which provides large gains in intensity of low energy neutrons, E < 5 meV. The accelerator driven subcritical facility is designed with a provision to add a cryogenically cooled moderator system. This cold neutron source could provide the neutrons beams with lower energy, which could be utilized in scattering experiment and material structures analysis. This study describes the performed physics analyses to define and characterize the cold neutron source of the KIPT neutron source facility. The cold neutron source is designed to optimize the cold neutron brightness to the experimental instruments outside the radial heavy concrete shield of the facility. Liquid hydrogen or solid methane with 20 K temperature is used as a cold moderator. Monte Carlo computer code MCNPX [4], with ENDF/B-VI nuclear data libraries, is utilized to calculate the cold neutron source performance and estimate the nuclear heat load to the cold moderator. The surface source generation capability of MCNPX code has been used to provide the possibility of analyzing different design configurations and perform design optimization analyses with reasonable computer resources. Several design configurations were analyzed and their performance were characterized and optimized.

  9. JOURNAL DE PHYSIQUE Colloque C6, suppldment au no 8, Tome 39, aolit 1978, page C6-1334 RECENT NEUTRON STUDIES OF ELEMENTARY EXCITATIONS IN LIQUID 3 ~ eAND 4 ~ e

    E-Print Network [OSTI]

    Boyer, Edmond

    . INTRODUCTION.- After more than twenty years ofin- tensive study by neutron inelastic scattering (N. I. S, there is the innate attraction of this unique substance. The hope that neutron scattering would help provide-atomic distances are very similar to the wavelengths of thermal neutrons. Although neutron scattering yields

  10. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    SciTech Connect (OSTI)

    Campbell, J.H. [ed.] [Oak Ridge National Lab., TN (United States); Selby, D.L.; Harrington, R.M. [Oak Ridge National Lab., TN (United States); Thompson, P.B. [Martin Marietta Energy Systems, Inc., (United States). Engineering Division

    1992-01-01T23:59:59.000Z

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I & C Research and Development; Design; and Safety.

  11. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    SciTech Connect (OSTI)

    Campbell, J.H. (ed.) (Oak Ridge National Lab., TN (United States)); Selby, D.L.; Harrington, R.M. (Oak Ridge National Lab., TN (United States)); Thompson, P.B. (Martin Marietta Energy Systems, Inc., (United States). Engineering Division)

    1992-01-01T23:59:59.000Z

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I C Research and Development; Design; and Safety.

  12. Radioactive targets for neutron-induced cross section measurements

    SciTech Connect (OSTI)

    Kronenberg, A. (Andreas); Bond, E. M. (Evelyn M.); Glover, S. E. (Samuel E.); Rundberg, R. S. (Robert S.); Vieira, D. J. (David J.); Esch, E. I. (Ernst-Ingo); Reifarth, R. (Rene); Ullmann, J. L. (John L.); Haight, Robert C.; Rochmann, D. (Dimitri)

    2004-01-01T23:59:59.000Z

    Measurements using radioactive targets are important for the determination of key reaction path ways associated with the synthesis of the elements in nuclear astrophysics (sprocess), advanced fuel cycle initiative (transmutation of radioactive waste), and stockpile stewardship. High precision capture cross-section measurements are needed to interpret observations, predict elemental or isotopical ratios, and unobserved abundances. There are two new detector systems that are presently being commissioned at Los Alamos National Laboratory for very precise measurements of (n,{gamma}) and (n,f) cross-sections using small quantities of radioactive samples. DANCE (Detector for Advanced Neutron-Capture Experiments), a 4 {pi} gamma array made up of 160 BaF{sub 2} detectors, is designed to measure neutron capture cross-sections of unstable nuclei in the low-energy range (thermal to {approx}500 keV). The high granularity and high detection efficiency of DANCE, combined with the high TOF-neutron flux available at the Lujan Center provides a versatile tool for measuring many important cross section data using radioactive and isotopically enriched targets of about 1 milligram. Another powerful instrument is the Lead-slowing down spectrometer (LSDS), which will enable the measurement of neutron-induced fission cross-section of U-235m and other short-lived actinides in a energy range from 1-200 keV with sample sizes down to 10 nanograms. Due to the short half-life of the U-235m isomer (T{sub 1/2} = 26 minutes), the samples must be rapidly and repeatedly extracted from its {sup 239}Pu parent. Since {sup 239}Pu is itself highly fissile, the separation must not only be rapid, but must also be of very high purity (the Pu must be removed from the U with a decontamination factor >10{sup 12}). Once extracted and purified, the {sup 235m}U isomer would be electrodeposited on solar cells as a fission detector and placed within the LSDS for direct (n,f) cross section measurements. The production of radioactive targets of a few milligrams will be described as well as the containment for safe handling of these targets at the Lujan Center at LANSCE. To avoid any contamination, the targets are electrochemically fixed onto thin Ti foils and two foils are placed back to back to contain the radioactive material within. This target sandwich is placed in a cylinder made of aluminum with thin translucent windows made of Kapton. Actinides targets, such as {sup 234,235,236,238}U, {sup 237}Np, and {sup 239}Pu are prepared by electrodeposition or molecular plating techniques. Target thicknesses of 1-2 mg/cm{sup 2} with sizes of 1 cm{sup 2} or more have been made. Other targets will be fabricated from separation of irradiated isotopically enriched targets, such as {sup 155}Eu from {sup 154}Sm,{sup 171}Tm from {sup 170}Er, and {sup 147}Pm from {sup 146}Nd, which has been irradiated in the high flux reactor at ILL, Grenoble. A radioactive sample isotope separator (RSIS) is in the process of being commissioned for the preparation of other radioactive targets. A brief summary of these experiments and the radioactive target preparation technique will be given.

  13. Neutron scatter camera

    DOE Patents [OSTI]

    Mascarenhas, Nicholas; Marleau, Peter; Brennan, James S.; Krenz, Kevin D.

    2010-06-22T23:59:59.000Z

    An instrument that will directly image the fast fission neutrons from a special nuclear material source has been described. This instrument can improve the signal to background compared to non imaging neutron detection techniques by a factor given by ratio of the angular resolution window to 4.pi.. In addition to being a neutron imager, this instrument will also be an excellent neutron spectrometer, and will be able to differentiate between different types of neutron sources (e.g. fission, alpha-n, cosmic ray, and D-D or D-T fusion). Moreover, the instrument is able to pinpoint the source location.

  14. High energy neutron dosimeter

    DOE Patents [OSTI]

    Sun, Rai Ko S.F. (Albany, CA)

    1994-01-01T23:59:59.000Z

    A device for measuring dose equivalents in neutron radiation fields. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning.

  15. Semiconductor neutron detector

    DOE Patents [OSTI]

    Ianakiev, Kiril D. (Los Alamos, NM); Littlewood, Peter B. (Cambridge, GB); Blagoev, Krastan B. (Arlington, VA); Swinhoe, Martyn T. (Los Alamos, NM); Smith, James L. (Los Alamos, NM); Sullivan, Clair J. (Los Alamos, NM); Alexandrov, Boian S. (Los Alamos, NM); Lashley, Jason Charles (Santa Fe, NM)

    2011-03-08T23:59:59.000Z

    A neutron detector has a compound of lithium in a single crystal form as a neutron sensor element. The lithium compound, containing improved charge transport properties, is either lithium niobate or lithium tantalate. The sensor element is in direct contact with a monitor that detects an electric current. A signal proportional to the electric current is produced and is calibrated to indicate the neutrons sensed. The neutron detector is particularly useful for detecting neutrons in a radiation environment. Such radiation environment may, e.g. include gamma radiation and noise.

  16. High energy neutron dosimeter

    DOE Patents [OSTI]

    Rai, K.S.F.

    1994-01-11T23:59:59.000Z

    A device for measuring dose equivalents in neutron radiation fields is described. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning. 2 figures.

  17. Exotic fission properties of highly neutron-rich Uranium isotopes

    E-Print Network [OSTI]

    L. Satpathy; S. K. Patra; R. K. Choudhury

    2007-03-05T23:59:59.000Z

    The series of Uranium isotopes with $N=154 \\sim 172$ around the magic number N=162/164 are identified to be thermally fissile. The thermal neutron fission of a typical representative $^{249}$U of this region amenable to synthesis in the radioactive ion beam facilities is considered here. Semiempirical study of fission barrier height and width shows this nucleus to be infinitely stable against spontaneous fission due to increase in barrier width arising out of excess neutrons. Calculation of probability of fragment mass yields and microscopic study in relativistic mean field theory, show this nucleus to undergo a new mode of thermal fission decay termed {\\it multifragmentation fission} where a number of prompt scission neutrons are simultaneously released along with the two heavy fission fragments.

  18. Characterization of water-based liquid scintillator response to gammas and neutrons at varying scintillator-surfactant concentrations

    E-Print Network [OSTI]

    Chilton, Lauren (Lauren M.)

    2012-01-01T23:59:59.000Z

    Large scale solar neutron and neutrino flux experiments require many tons of bulk liquid organic scintillator to take spectroscopic data of these energetic particles. However, material and chemical concerns make such ...

  19. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    4.3.3.4 Chamber Radius and Fusion Neutron Flux . . . . .1.1.3.2 Fusion Energy . . . . . . . . .1.1.3.3 Fission-Fusion Hybrids . . . . 1.2 Scope and Purpose

  20. The Neutron Lifetime

    E-Print Network [OSTI]

    F. E. Wietfeldt

    2014-11-13T23:59:59.000Z

    The decay of the free neutron into a proton, electron, and antineutrino is the prototype semileptonic weak decay and the simplest example of nuclear beta decay. The nucleon vector and axial vector weak coupling constants G_V and G_A determine the neutron lifetime as well as the strengths of weak interaction processes involving free neutrons and protons that are important in astrophysics, cosmology, solar physics and neutrino detection. In combination with a neutron decay angular correlation measurement, the neutron lifetime can be used to determine the first element of the CKM matrix Vud. Unfortunately the two main experimental methods for measuring the neutron lifetime currently disagree by almost 4 sigma. I will present a brief review of the status of the neutron lifetime and prospects for the future.

  1. Dark matter transport properties and rapidly rotating neutron stars

    E-Print Network [OSTI]

    C. J. Horowitz

    2012-05-16T23:59:59.000Z

    Neutron stars are attractive places to look for dark matter because their high densities allow repeated interactions. Weakly interacting massive particles (WIMPs) may scatter efficiently in the core or in the crust of a neutron star. In this paper we focus on WIMP contributions to transport properties, such as shear viscosity or thermal conductivity, because these can be greatly enhanced by long mean free paths. We speculate that WIMPs increase the shear viscosity of neutron star matter and help stabilize r-mode oscillations. These are collective oscillations where the restoring force is the Coriolis force. At present r-modes are thought to be unstable in many observed rapidly rotating stars. If WIMPs stabilize the r-modes, this would allow neutron stars to spin rapidly. This likely requires WIMP-nucleon cross sections near present experimental limits and an appropriate density of WIMPs in neutron stars.

  2. Temperature-dependent pulsations of superfluid neutron stars

    E-Print Network [OSTI]

    M. E. Gusakov; N. Andersson

    2006-11-01T23:59:59.000Z

    We examine radial oscillations of superfluid neutron stars at finite internal temperatures. For this purpose we generalize the description of relativistic superfluid hydrodynamics to the case of superfluid mixtures. We show that in a neutron star at hydrostatic and beta-equilibrium the red-shifted temperature gradient is smoothed out by neutron superfluidity (but not by proton superfluidity). We calculate radial oscillation modes of neutron stars assuming "frozen" nuclear composition in the pulsating matter. The resulting pulsation frequencies show a strong temperature dependence in the temperature range (0.1-1) T_cn, where T_cn is the critical temperature of neutron superfluidity. Combining our results with thermal evolution, we obtain a significant evolution of the pulsation spectrum, associated with highly efficient Cooper pairing neutrino emission, for 20 years after superfluidity onset.

  3. Position sensitive detection of neutrons in high radiation background field

    SciTech Connect (OSTI)

    Vavrik, D., E-mail: vavrik@itam.cas.cz [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, Prague (Czech Republic); Institute of Theoretical and Applied Mechanics, Academy of Sciences of the Czech Republic, Prosecka 76, 190 00 Prague 9 (Czech Republic); Jakubek, J.; Pospisil, S. [Institute of Theoretical and Applied Mechanics, Academy of Sciences of the Czech Republic, Prosecka 76, 190 00 Prague 9 (Czech Republic)] [Institute of Theoretical and Applied Mechanics, Academy of Sciences of the Czech Republic, Prosecka 76, 190 00 Prague 9 (Czech Republic); Vacik, J. [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Rez, 250 68 Prague, Czech Republic (Czech Republic)] [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Rez, 250 68 Prague, Czech Republic (Czech Republic)

    2014-01-15T23:59:59.000Z

    We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high ? and e{sup ?} radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 ?m{sup 2}) spectroscopic Timepix detector adapted for neutron detection utilizing very thin {sup 10}B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane) and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10{sup ?4}.

  4. Measurements of prompt gamma-rays from fast-neutron induced fission with the LICORNE directional neutron source

    E-Print Network [OSTI]

    Wilson, J N; Halipre, P; Oberstedt, S; Oberstedt, A

    2014-01-01T23:59:59.000Z

    At the IPN Orsay we have developed a unique, directional, fast neutron source called LICORNE, intended initially to facilitate prompt fission gamma measurements. The ability of the IPN Orsay tandem accelerator to produce intense beams of $^7$Li is exploited to produce quasi-monoenergetic neutrons between 0.5 - 4 MeV using the p($^7$Li,$^7$Be)n inverse reaction. The available fluxes of up to 7 × 10$^7$ neutrons/second/steradian for the thickest hydrogen-rich targets are comparable to similar installations, but with two added advantages: (i) The kinematic focusing produces a natural neutron beam collimation which allows placement of gamma detectors adjacent to the irradiated sample unimpeded by source neutrons. (ii) The background of scattered neutrons in the experimental hall is drastically reduced. The dedicated neutron converter was commissioned in June 2013. Some preliminary results from the first experiment using the LICORNE neutron source at the IPN Orsay are presented. Prompt fission gamma rays from fas...

  5. The study of neutron spectra in water bath from Pb target irradiated by 250MeV/u protons

    E-Print Network [OSTI]

    Yanyan Li; Xueying Zhang; Yongqin Ju; Fei Ma; Hongbin Zhang; Liang Chen; Honglin Ge; Peng Luo; Bin Zhou; Yanbin Zhang; Jianyang Li; Junkui Xu; Songlin Wang; Yongwei Yang; Lei Yang

    2014-09-05T23:59:59.000Z

    The spallation neutrons were produced by the irradiation of Pb with 250 MeV protons. The Pb target was surrounded by water which was used to slow down the emitted neutrons. The moderated neutrons in the water bath were measured by using the resonance detectors of Au, Mn and In with Cd cover. According to the measured activities of the foils, the neutron flux at different resonance energy were deduced and the epithermal neutron spectra were proposed. Corresponding results calculated with the Monte Carlo code MCNPX were compared with the experimental data to check the validity of the code.

  6. Surface Emission Properties of Strongly Magnetic Neutron Stars

    E-Print Network [OSTI]

    Feryal Ozel

    2001-09-18T23:59:59.000Z

    We construct radiative equilibrium models for strongly magnetized (B > 10^13 G) neutron-star atmospheres taking into account magnetic free-free absorption and scattering processes computed for two polarization modes. We include the effects of vacuum polarization in our calculations. We present temperature profiles and the angle-, photon energy-, and polarization-dependent emerging intensity for a range of magnetic field strengths and effective temperatures of the atmospheres. We find that for B neutron star surface, and find that T_c/T_eff ranges between 1.1-1.8. We discuss the implications of our results for various thermally emitting neutron star models.

  7. Measurement of delayed neutron yields from {sup 235}U and {sup 238}U

    SciTech Connect (OSTI)

    Kellett, M.A.; Weaver, D.R. [Univ. of Birmingham (United Kingdom); Filip, A. [CEN Cadarache, St. Paul-les-Durance (France)

    1994-12-31T23:59:59.000Z

    Work is in progress at the University of Birmingham, UK, on the preliminary calibration of detectors and neutron beam characterisation required in order to carry out the accurate measurement of the total and absolute delayed neutron yields from the fast fission of uranium 235 and 238. The work is being undertaken in order to try and resolve the discrepancies that exist in the yield for the uranium 238 isotope. The University`s 3 MV Dynamitron accelerator is being used to produce the required neutron fluxes of 10{sup 9} neutrons per steradian per second, as generated via the D(d,n){sup 3}He reaction.

  8. LOS ALAMOS NEUTRON SCIENCE CENTER CONTRIBUTIONS TO THE DEVELOPMENT OF FUTURE POWER REACTORS

    SciTech Connect (OSTI)

    GAVRON, VICTOR I. [Los Alamos National Laboratory; HILL, TONY S. [Los Alamos National Laboratory; PITCHER, ERIC J. [Los Alamos National Laboratory; TOVESSON, FREDERIK K. [Los Alamos National Laboratory

    2007-01-09T23:59:59.000Z

    The Los Alamos Neutron Science Center (LANSCE) is a large spallation neutron complex centered around an 800 MeV high-currently proton accelerator. Existing facilities include a highly-moderated neutron facility (Lujan Center) where neutrons between thermal and keV energies are produced, and the Weapons Neutron Research Center (WNR), where a bare spallation target produces neutrons between 0.1 and several hundred MeV.The LANSCE facility offers a unique capability to provide high precision nuclear data over a large energy region, including that for fast reactor systems. In an ongoing experimental program the fission and capture cross sections are being measured for a number of minor actinides relevant for Generation-IV reactors and transmutation technology. Fission experiments makes use of both the highly moderated spallation neutron spectrum at the Lujan Center, and the unmoderated high energy spectrum at WNR. By combininb measurements at these two facilities the differential fission cross section is measured relative to the {sup 235}U(n,f) standard from subthermal energies up to about 200 MeV. An elaborate data acquisition system is designed to deal with all the different types of background present when spanning 10 energy decades. The first isotope to be measured was {sup 237}Np, and the results were used to improve the current ENDF/B-VII evaluation. Partial results have also been obtained for {sup 240}Pu and {sup 242}Pu, and the final results are expected shortly. Capture cross sections are measured at LANSCE using the Detector for Advanced Neutron Capture Experiments (DANCE). This unique instrument is highly efficient in detecting radiative capture events, and can thus handle radioactive samples of half-lives as low as 100 years. A number of capture cross sections important to fast reaction applications have been measured with DANCE. The first measurement was on {sup 237}Np(n,{gamma}), and the results have been submitted for publication. Other capture measurements in progress include {sup 240}Pu and {sup 242}Pu. The United States recently announced the Global Nuclear Energy Partnership (GNEP), with the goal of closing the commercial nuclear fuel cycle while minimizing proliferation risk. GNEP achieves these goals using fast-spectrum nuclear reactors powered by new transmutation fuels that contain significant quantities of minor actinides. The proposed Materials Test Station (MTS) will provide the GNEP with a cost-effective means of obtaining domestic fast-spectrum irradiations of advanced transmutation fuel forms and structural materials, which is an important step in the fuels qualification process. The MTS will be located at the LANSCE, and will be driven by a 1.08-MW proton beam. Th epeak neutron flux in the irradiation region is 1.67 x 10{sup 15} n/cm{sup 2}/s, and the energy spectrum is similar to that of a fast reactor, with the addition of a high-energy tail. The facility is expected to operate at least 4,400 hours per year. Fuel burnup rates will exceed 4% per year, and the radiation damage rate in iron will be 18 dpa (displacements per atom) per year. The construction cost is estimated to be $73M (including 25% contingency), with annual operating costs in the range of $6M to $10M. Appropriately funded, the MTS could begin operation in 2010.

  9. Magnetars as cooling neutron stars with internal heating

    E-Print Network [OSTI]

    A. D. Kaminker; D. G. Yakovlev; A. Y. Potekhin; N. Shibazaki; P. S. Shternin; O. Y. Gnedin

    2006-05-18T23:59:59.000Z

    We study thermal structure and evolution of magnetars as cooling neutron stars with a phenomenological heat source in a spherical internal layer. We explore the location of this layer as well as the heating rate that could explain high observable thermal luminosities of magnetars and would be consistent with the energy budget of neutron stars. We conclude that the heat source should be located in an outer magnetar's crust, at densities rho heat intensity of the order of 1e20 erg/s/cm^3. Otherwise the heat energy is mainly emitted by neutrinos and cannot warm up the surface.

  10. Advanced Online Flux Mapping of CANDU PHWR by Least-Squares Method

    SciTech Connect (OSTI)

    Hong, In Seob [Seoul National University (Korea, Republic of); Kim, Chang Hyo [Seoul National University (Korea, Republic of); Suk, Ho Chun [Korea Atomic Energy Research Institute (Korea, Republic of)

    2005-07-15T23:59:59.000Z

    A least-squares method that solves both the core neutronics design equations and the in-core detector response equations on the least-squares principle is presented as a new advanced online flux-mapping method for CANada Deuterium Uranium (CANDU) pressurized heavy water reactors (PHWRs). The effectiveness of the new flux-mapping method is examined in terms of online flux-mapping calculations with numerically simulated true flux distribution and detector signals and those with the actual core-follow data for the Wolsong CANDU PHWRs in Korea. The effects of core neutronics models as well as the detector failures and uncertainties of measured detector signals on the effectiveness of the least-squares flux-mapping calculations are also examined.The following results are obtained. The least-squares method predicts the flux distribution in better agreement with the simulated true flux distribution than the standard core neutronics calculations by the finite difference method (FDM) computer code without using the detector signals. The adoption of the nonlinear nodal method based on the unified nodal method formulation instead of the FDM results in a significant improvement in prediction accuracy of the flux-mapping calculations. The detector signals estimated from the least-squares flux-mapping calculations are much closer to the measured detector signals than those from the flux synthesis method (FSM), the current online flux-mapping method for CANDU reactors. The effect of detector failures is relatively small so that the plant can tolerate up to 25% of detector failures without seriously affecting the plant operation. The detector signal uncertainties aggravate accuracy of the flux-mapping calculations, yet the effects of signal uncertainties of the order of 1% standard deviation can be tolerable without seriously degrading the prediction accuracy of the least-squares method. The least-squares method is disadvantageous because it requires longer CPU time than the existing FSM. Considering ever-increasing computer speed and the improved operational safety margin of CANDU reactors gained by accurate flux-mapping calculations, however, it is concluded that the least-squares method presents an effective alternative to the existing flux-mapping method for CANDU reactors.

  11. Recent Developments In Fast Neutron Detection And Multiplicity Counting With Verification With Liquid Scintillator

    SciTech Connect (OSTI)

    Nakae, L; Chapline, G; Glenn, A; Kerr, P; Kim, K; Ouedraogo, S; Prasad, M; Sheets, S; Snyderman, N; Verbeke, J; Wurtz, R

    2011-09-30T23:59:59.000Z

    For many years at LLNL, we have been developing time-correlated neutron detection techniques and algorithms for applications such as Arms Control, Threat Detection and Nuclear Material Assay. Many of our techniques have been developed specifically for the relatively low efficiency (a few percent) attainable by detector systems limited to man-portability. Historically, we used thermal neutron detectors (mainly {sup 3}He), taking advantage of the high thermal neutron interaction cross-sections. More recently, we have been investigating the use of fast neutron detection with liquid scintillators, inorganic crystals, and in the near future, pulse-shape discriminating plastics which respond over 1000 times faster (nanoseconds versus tens of microseconds) than thermal neutron detectors. Fast neutron detection offers considerable advantages, since the inherent nanosecond production time-scales of spontaneous fission and neutron-induced fission are preserved and measured instead of being lost by thermalization required for thermal neutron detectors. We are now applying fast neutron technology to the safeguards regime in the form of fast portable digital electronics as well as faster and less hazardous scintillator formulations. Faster detector response times and sensitivity to neutron momentum show promise for measuring, differentiating, and assaying samples that have modest to very high count rates, as well as mixed fission sources like Cm and Pu. We report on measured results with our existing liquid scintillator array, and progress on the design of a nuclear material assay system that incorporates fast neutron detection, including the surprising result that fast liquid scintillator detectors become competitive and even surpass the precision of {sup 3}He-based counters measuring correlated pairs in modest (kg) samples of plutonium.

  12. Measurement of the Neutron Spectrum of a DD Electronic Neutron Generator

    SciTech Connect (OSTI)

    D. L. Chichester; J. T. Johnson; E. H. Seabury

    2010-08-01T23:59:59.000Z

    A Cuttler-Shalev (C-S) 3He proportional counter has been used to measure the energy spectrum of neutrons from a portable deuterium-deuterium electronic neutron generator. To improve the analysis of results from the C-S detector digital pulse shape analysis techniques have been used to eliminate neutron recoil artifacts in the recorded data. Data was collected using a 8-GHz, 10-bit waveform digitizer with its full scale corresponding to approximately 6-MeV neutrons. The measurements were made with the detector axis perpendicular to the direction of ions in the ENG in a plane 0.5-m to the side of the ENG, measuring neutrons emitted at an angle from 87.3? to 92.7? with respect to the path of ions in the ENG. The system demonstrated an energy resolution of approximately 0.040 MeV for the thermal peak and approximately 0.13 MeV at the DD neutron energy. In order to achieve the ultimate resolution capable with this type of detector it is clear that a higher-precision digitizer will be needed.

  13. Physics of String Flux Compactifications

    E-Print Network [OSTI]

    Frederik Denef; Michael R. Douglas; Shamit Kachru

    2007-01-06T23:59:59.000Z

    We provide a qualitative review of flux compactifications of string theory, focusing on broad physical implications and statistical methods of analysis.

  14. Fluxes, Gaugings and Gaugino Condensates

    E-Print Network [OSTI]

    J. -P. Derendinger; C. Kounnas; P. M. Petropoulos

    2006-02-10T23:59:59.000Z

    Based on the correspondence between the N = 1 superstring compactifications with fluxes and the N = 4 gauged supergravities, we study effective N = 1 four-dimensional supergravity potentials arising from fluxes and gaugino condensates in the framework of orbifold limits of (generalized) Calabi-Yau compactifications. We give examples in heterotic and type II orientifolds in which combined fluxes and condensates lead to vacua with small supersymmetry breaking scale. We clarify the respective roles of fluxes and condensates in supersymmetry breaking, and analyze the scaling properties of the gravitino mass.

  15. Conceptual Designs for a Spallation Neutron Target Constructed of a Helium-Cooled, Packed Bed of Tungsten Particles

    E-Print Network [OSTI]

    McDonald, Kirk

    Transmutation of Waste (ATW) concept involves using a high-power accelerator to produce neutrons to drive a sub (neutrons per proton and flux maps). The target of an ATW system must couple effectively with the transmuter be refined as requirements become better defined. II. BASIC REQUIREMENTS The ATW facility has at its

  16. Nominal effective radiation doses delivered during clinical trials of boron neutron capture therapy

    SciTech Connect (OSTI)

    Capala, J.; Diaz, A.Z.; Chanana, A.D.

    1997-12-31T23:59:59.000Z

    Boron neutron capture therapy (BNCT) is a binary system that, in theory, should selectively deliver lethal, high linear energy transfer (LET) radiation to tumor cells dispersed within normal tissues. It is based on the nuclear reaction 10-B(n, {alpha})7-Li, which occurs when the stable nucleus of boron-10 captures a thermal neutron. Due to the relatively high cross-section of the 10-B nucleus for thermal neutron capture and short ranges of the products of this reaction, tumor cells in the volume exposed to thermal neutrons and containing sufficiently high concentration of 10-B would receive a much higher radiation dose than the normal cells contained within the exposed volume. Nevertheless, radiation dose deposited in normal tissue by gamma and fast neutron contamination of the neutron beam, as well as neutron capture in nitrogen, 14-N(n,p)14-C, hydrogen, 1-H(n,{gamma})2-H, and in boron present in blood and normal cells, limits the dose that can be delivered to tumor cells. It is, therefore, imperative for the success of the BNCT the dosed delivered to normal tissues be accurately determined in order to optimize the irradiation geometry and to limit the volume of normal tissue exposed to thermal neutrons. These are the major objectives of BNCT treatment planning.

  17. Neutron monitoring systems including gamma thermometers and methods of calibrating nuclear instruments using gamma thermometers

    DOE Patents [OSTI]

    Moen, Stephan Craig; Meyers, Craig Glenn; Petzen, John Alexander; Foard, Adam Muhling

    2012-08-07T23:59:59.000Z

    A method of calibrating a nuclear instrument using a gamma thermometer may include: measuring, in the instrument, local neutron flux; generating, from the instrument, a first signal proportional to the neutron flux; measuring, in the gamma thermometer, local gamma flux; generating, from the gamma thermometer, a second signal proportional to the gamma flux; compensating the second signal; and calibrating a gain of the instrument based on the compensated second signal. Compensating the second signal may include: calculating selected yield fractions for specific groups of delayed gamma sources; calculating time constants for the specific groups; calculating a third signal that corresponds to delayed local gamma flux based on the selected yield fractions and time constants; and calculating the compensated second signal by subtracting the third signal from the second signal. The specific groups may have decay time constants greater than 5.times.10.sup.-1 seconds and less than 5.times.10.sup.5 seconds.

  18. Neutron sources and applications

    SciTech Connect (OSTI)

    Price, D.L. [ed.] [Argonne National Lab., IL (United States); Rush, J.J. [ed.] [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

    1994-01-01T23:59:59.000Z

    Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications.

  19. Life Extinction Due To Neutron Star Mergers

    E-Print Network [OSTI]

    Arnon Dar; Ari Laor; Nir J. Shaviv

    1996-11-24T23:59:59.000Z

    Cosmic ray bursts (CRBs) from mergers or accretion induced collapse of neutron stars that hit an Earth-like planet closer than $\\sim 1 kpc$ from the explosion produce lethal fluxes of atmospheric muons at ground level, underground and underwater. These CRBs also destroy the ozone layer and radioactivate the environment. The mean rate of such life devastating CRBs is one in 100 million years (Myr), consistent with the observed 5 ``great'' extinctions in the past 600 Myr. Unlike the previously suggested extraterrestrial extinction mechanisms the CRBs explain massive life extinction on the ground, underground and underwater and the higher survival levels of radiation resistant species and of terrain sheltered species. More distant mergers can cause smaller extinctions. Biological mutations caused by ionizing radiation produced by the CRB may explain a fast appearance of new species after mass extinctions. The CRB extinction predicts detectable enrichment of rock layers which formed during the extinction periods with cosmogenically produced radioactive nucleides such as $^{129}$I, $^{146}$Sm, $^{205}$Pb with and $^{244}$Pu. Tracks of high energy particles in rock layers on Earth and on the moon may also contain records of intense CRBs. An early warning of future extinctions due to neutron star mergers can be obtained by identifying, mapping and timing all the nearby binary neutron stars systems. A final warning of an approaching CRB from a nearby neutron stars merger will be provided by a gamma ray burst a few days before the arrival of the CRB.

  20. Solar Thermal Reactor Materials Characterization

    SciTech Connect (OSTI)

    Lichty, P. R.; Scott, A. M.; Perkins, C. M.; Bingham, C.; Weimer, A. W.

    2008-03-01T23:59:59.000Z

    Current research into hydrogen production through high temperature metal oxide water splitting cycles has created a need for robust high temperature materials. Such cycles are further enhanced by the use of concentrated solar energy as a power source. However, samples subjected to concentrated solar radiation exhibited lifetimes much shorter than expected. Characterization of the power and flux distributions representative of the High Flux Solar Furnace(HFSF) at the National Renewable Energy Laboratory(NREL) were compared to ray trace modeling of the facility. In addition, samples of candidate reactor materials were thermally cycled at the HFSF and tensile failure testing was performed to quantify material degradation. Thermal cycling tests have been completed on super alloy Haynes 214 samples and results indicate that maximum temperature plays a significant role in reduction of strength. The number of cycles was too small to establish long term failure trends for this material due to the high ductility of the material.

  1. Final Report on Actinide Glass Scintillators for Fast Neutron Detection

    SciTech Connect (OSTI)

    Bliss, Mary; Stave, Jean A.

    2012-10-01T23:59:59.000Z

    This is the final report of an experimental investigation of actinide glass scintillators for fast-neutron detection. It covers work performed during FY2012. This supplements a previous report, PNNL-20854 “Initial Characterization of Thorium-loaded Glasses for Fast Neutron Detection” (October 2011). The work in FY2012 was done with funding remaining from FY2011. As noted in PNNL-20854, the glasses tested prior to July 2011 were erroneously identified as scintillators. The decision was then made to start from “scratch” with a literature survey and some test melts with a non-radioactive glass composition that could later be fabricated with select actinides, most likely thorium. The normal stand-in for thorium in radioactive waste glasses is cerium in the same oxidation state. Since cerium in the 3+ state is used as the light emitter in many scintillating glasses, the next most common substitute was used: hafnium. Three hafnium glasses were melted. Two melts were colored amber and a third was clear. It barely scintillated when exposed to alpha particles. The uses and applications for a scintillating fast neutron detector are important enough that the search for such a material should not be totally abandoned. This current effort focused on actinides that have very high neutron capture energy releases but low neutron capture cross sections. This results in very long counting times and poor signal to noise when working with sealed sources. These materials are best for high flux applications and access to neutron generators or reactors would enable better test scenarios. The total energy of the neutron capture reaction is not the only factor to focus on in isotope selection. Many neutron capture reactions result in energetic gamma rays that require large volumes or high densities to detect. If the scintillator is to separate neutrons from gamma rays, the capture reactions should produce heavy particles and few gamma rays. This would improve the detection of a signal for fast neutron capture.

  2. Neutrinos from Decaying Muons, Pions, Kaons and Neutrons in Gamma Ray Bursts

    E-Print Network [OSTI]

    Reetanjali Moharana; Nayantara Gupta

    2012-05-27T23:59:59.000Z

    In the internal shock model of gamma ray bursts ultrahigh energy muons, pions, neutrons and kaons are likely to be produced in the interactions of shock accelerated relativistic protons with low energy photons (KeV-MeV). These particles subsequently decay to high energy neutrinos/antineutrinos and other secondaries. In the high internal magnetic fields of gamma ray bursts, the ultrahigh energy charged particles ($\\mu^+$, $\\pi^+$, $K^+$) lose energy significantly due to synchrotron radiations before decaying into secondary high energy neutrinos and antineutrinos. The relativistic neutrons decay to high energy antineutrinos, protons and electrons. We have calculated the total neutrino flux (neutrino and antineutrino) considering the decay channels of ultrahigh energy muons, pions, neutrons and kaons. We have shown that the total neutrino flux generated in neutron decay can be higher than that produced in $\\mu^+$ and $\\pi^+$ decay. The charged kaons being heavier than pions, lose energy slowly and their secondary total neutrino flux is more than that from muons and pions at very high energy. Our detailed calculations on secondary particle production in $p\\gamma$ interactions give the total neutrino fluxes and their flavour ratios expected on earth. Depending on the values of the parameters (luminosity, Lorentz factor, variability time, spectral indices and break energy in the photon spectrum) of a gamma ray burst the contributions to the total neutrino flux from the decay of different particles (muon, pion, neutron and kaon) may vary and they would also be reflected on the neutrino flavour ratios.

  3. Neutron Science Forum | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    environment for discussion, innovation, and dissemination of information within the neutron scattering community as well as engaging closely related disciplines through...

  4. Lujan Neutron Scattering Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the inadvertent spread of Technetium 99 by employees and contractors at the Lujan Neutron Scattering Center August 27, 2012-The Laboratory is investigating the inadvertent...

  5. Neutronic fuel element fabrication

    DOE Patents [OSTI]

    Korton, George (Cincinnati, OH)

    2004-02-24T23:59:59.000Z

    This disclosure describes a method for metallurgically bonding a complete leak-tight enclosure to a matrix-type fuel element penetrated longitudinally by a multiplicity of coolant channels. Coolant tubes containing solid filler pins are disposed in the coolant channels. A leak-tight metal enclosure is then formed about the entire assembly of fuel matrix, coolant tubes and pins. The completely enclosed and sealed assembly is exposed to a high temperature and pressure gas environment to effect a metallurgical bond between all contacting surfaces therein. The ends of the assembly are then machined away to expose the pin ends which are chemically leached from the coolant tubes to leave the coolant tubes with internal coolant passageways. The invention described herein was made in the course of, or under, a contract with the U.S. Atomic Energy Commission. It relates generally to fuel elements for neutronic reactors and more particularly to a method for providing a leak-tight metal enclosure for a high-performance matrix-type fuel element penetrated longitudinally by a multiplicity of coolant tubes. The planned utilization of nuclear energy in high-performance, compact-propulsion and mobile power-generation systems has necessitated the development of fuel elements capable of operating at high power densities. High power densities in turn require fuel elements having high thermal conductivities and good fuel retention capabilities at high temperatures. A metal clad fuel element containing a ceramic phase of fuel intimately mixed with and bonded to a continuous refractory metal matrix has been found to satisfy the above requirements. Metal coolant tubes penetrate the matrix to afford internal cooling to the fuel element while providing positive fuel retention and containment of fission products generated within the fuel matrix. Metal header plates are bonded to the coolant tubes at each end of the fuel element and a metal cladding or can completes the fuel-matrix enclosure by encompassing the sides of the fuel element between the header plates.

  6. Simulation of neutrons produced by high-energy muons underground

    E-Print Network [OSTI]

    A. Lindote; H. M. Araujo; V. A. Kudryavtsev; M. Robinson

    2009-02-12T23:59:59.000Z

    This article describes the Monte Carlo simulation used to interpret the measurement of the muon-induced neutron flux in the Boulby Underground Laboratory (North Yorkshire, UK), recently performed using a large scintillator veto deployed around the ZEPLIN-II WIMP detector. Version 8.2 of the GEANT4 toolkit was used after relevant benchmarking and validation of neutron production models. In the direct comparison between Monte Carlo and experimental data, we find that the simulation produces a 1.8 times higher neutron rate, which we interpret as over-production in lead by GEANT4. The dominance of this material in neutron production allows us to estimate the absolute neutron yield in lead as (1.31 +/- 0.06) x 10^(-3) neutrons/muon/(g/cm^2) for a mean muon energy of 260 GeV. Simulated nuclear recoils due to muon-induced neutrons in the ZEPLIN-II target volume (~1 year exposure) showed that, although a small rate of events is expected from this source of background in the energy range of interest for dark matter searches, no event survives an anti-coincidence cut with the veto.

  7. JOURNAL DE PHYSIQUE Colloque C4, supplment au n" 4, Tome 40, avril 1979, page C4-142 Magnetic neutron scattering on intermetallic uranium compounds (*)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    neutron scattering on intermetallic uranium compounds (*) M. Loewenhaupt (f ), S. Horn (**), F. Steglich.- Abstract. -- We report on inelastic neutron scattering experiments performed in the temperature range 5 K quasielastic line. Using thermal neutrons, no inelastic contributions to the magnetic scattering could

  8. Physics of Intrinsic Rotation in Flux-Driven ITG Turbulence

    SciTech Connect (OSTI)

    Ku, S; Dimond, P H; Dif-Pradalier, G; Kwon, J M; Sarazin, Y; Hahm, T S; Garbet, X; Chang, C S; Latu, G; Yoon, E S; Ghendrih, Ph; Yi, S; Strugarek, A; Solomon, W

    2012-02-23T23:59:59.000Z

    Global, heat flux-driven ITG gyrokinetic simulations which manifest the formation of macroscopic, mean toroidal flow profiles with peak thermal Mach number 0.05, are reported. Both a particle-in-cell (XGC1p) and a semi-Lagrangian (GYSELA) approach are utilized without a priori assumptions of scale-separation between turbulence and mean fields. Flux-driven ITG simulations with different edge flow boundary conditions show in both approaches the development of net unidirectional intrinsic rotation in the co-current direction. Intrinsic torque is shown to scale approximately linearly with the inverse scale length of the ion temperature gradient. External momentum input is shown to effectively cancel the intrinsic rotation profile, thus confirming the existence of a local residual stress and intrinsic torque. Fluctuation intensity, intrinsic torque and mean flow are demonstrated to develop inwards from the boundary. The measured correlations between residual stress and two fluctuation spectrum symmetry breakers, namely E x B shear and intensity gradient, are similar. Avalanches of (positive) heat flux, which propagate either outwards or inwards, are correlated with avalanches of (negative) parallel momentum flux, so that outward transport of heat and inward transport of parallel momentum are correlated and mediated by avalanches. The probability distribution functions of the outward heat flux and the inward momentum flux show strong structural similarity

  9. Investigation of the $^{37}Ar(n,p)$ $^{37}Cl$ and $^{37}Ar(n,\\alpha)$ $^{34}S$ reactions as a function of the neutron energy

    E-Print Network [OSTI]

    Wagemans, C; Wagemans, J; Bieber, R; Loiselet, M; Gaelens, M; Denecke, B; Geltenbort, P; Kolen, F; Wagemans, Cyriel; Goeminne, Gert; Wagemans, Jan; Bieber, Ronald; Loiselet, Marc; Gaelens, Michel; Denecke, Bruno; Geltenbort, Peter; Kolen, Filip

    1999-01-01T23:59:59.000Z

    The energy dependent 37Ar(n,p)37Cl and 37Ar(n,alpha)34S reaction cross sections were determined for the first time in an experimental effort involving three large facilities: the cyclotron of the UCL (Louvain-la-Neuve, Belgium) where implanted 37Ar samples were produced; the high flux reactor of the ILL (Grenoble, France) where thermal (n,p), (n,alpha_0) and (n,alpha_1) cross sections of (37+/-4)b, (1070+/-80)b and (290+/-50)mb respectively could be determined, and the GELINA neutron time-of-flight facility of the IRMM (Geel, Belgium) where strong resonances were observed in the keV region.

  10. Investigation of the 37Ar(n,p)37Cl and 37Ar(n,alpha)34S reactions as a function of the neutron energy

    E-Print Network [OSTI]

    Cyriel Wagemans; Gert Goeminne; Jan Wagemans; Ronald Bieber; Marc Loiselet; Michel Gaelens; Bruno Denecke; Peter Geltenbort; Filip Kolen

    1999-02-09T23:59:59.000Z

    The energy dependent 37Ar(n,p)37Cl and 37Ar(n,alpha)34S reaction cross sections were determined for the first time in an experimental effort involving three large facilities: the cyclotron of the UCL (Louvain-la-Neuve, Belgium) where implanted 37Ar samples were produced; the high flux reactor of the ILL (Grenoble, France) where thermal (n,p), (n,alpha_0) and (n,alpha_1) cross sections of (37+/-4)b, (1070+/-80)b and (290+/-50)mb respectively could be determined, and the GELINA neutron time-of-flight facility of the IRMM (Geel, Belgium) where strong resonances were observed in the keV region.

  11. A SECOND NEUTRON STAR IN M4?

    SciTech Connect (OSTI)

    Kaluzny, J.; Rozanska, A.; Rozyczka, M.; Krzeminski, W. [Nicolaus Copernicus Astronomical Center, Bartycka 18, 00-716 Warsaw (Poland); Thompson, Ian B. [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2012-05-01T23:59:59.000Z

    We show that the optical counterpart of the X-ray source CX 1 in M4 is a {approx}20th magnitude star, located in the color-magnitude diagram on (or very close to) the main sequence of the cluster, and exhibiting sinusoidal variations of the flux. We find the X-ray flux to be also periodically variable, with X-ray and optical minima coinciding. Stability of the optical light curve, lack of UV-excess, and unrealistic mean density resulting from period-density relation for semidetached systems speak against the original identification of CX 1 as a cataclysmic variable. We argue that the X-ray active component of this system is a neutron star (probably a millisecond pulsar).

  12. Ultraslow Wave Nuclear Burning of Uranium-Plutonium Fissile Medium on Epithermal Neutrons

    E-Print Network [OSTI]

    V. D. Rusov; V. A. Tarasov; M. V. Eingorn; S. A. Chernezhenko; A. A. Kakaev; V. M. Vashchenko; M. E. Beglaryan

    2014-09-29T23:59:59.000Z

    For a fissile medium, originally consisting of uranium-238, the investigation of fulfillment of the wave burning criterion in a wide range of neutron energies is conducted for the first time, and a possibility of wave nuclear burning not only in the region of fast neutrons, but also for cold, epithermal and resonance ones is discovered for the first time. For the first time the results of the investigation of the Feoktistov criterion fulfillment for a fissile medium, originally consisting of uranium-238 dioxide with enrichments 4.38%, 2.00%, 1.00%, 0.71% and 0.50% with respect to uranium-235, in the region of neutron energies 0.015-10.0eV are presented. These results indicate a possibility of ultraslow wave neutron-nuclear burning mode realization in the uranium-plutonium media, originally (before the wave initiation by external neutron source) having enrichments with respect to uranium-235, corresponding to the subcritical state, in the regions of cold, thermal, epithermal and resonance neutrons. In order to validate the conclusions, based on the slow wave neutron-nuclear burning criterion fulfillment depending on the neutron energy, the numerical modeling of ultraslow wave neutron-nuclear burning of a natural uranium in the epithermal region of neutron energies (0.1-7.0eV) was conducted for the first time. The presented simulated results indicate the realization of the ultraslow wave neutron-nuclear burning of the natural uranium for the epithermal neutrons.

  13. GEANIE at WNR/LANSCE -- A new instrument for neutron science

    SciTech Connect (OSTI)

    Nelson, R.O.; Becker, J.A.; Archer, D.E. [and others

    1997-09-01T23:59:59.000Z

    GEANIE, an array of escape-suppressed high-resolution Ge detectors now installed at the white-neutron source at the Los Alamos Neutron Science Center, is the first large Ge detector array to be used at a high-energy spallation neutron source. GEANIE consists of 20 Ge detectors including both coaxial Ge detectors and planar Ge detectors to enhance capabilities for low-energy {gamma}-ray spectroscopy. The array is located on a 20 m flight path with a neutron flux spanning the energy range from 1 to over 200 MeV. Installation of the first phase of GEANIE was recently completed and data were acquired on a number of samples, including actinides. The unique combination of GEANIE with the neutron source at LANSCE provides new capabilities for neutron science. The status of the array and recent results are presented, and new opportunities for physics and nuclear data are discussed.

  14. BNL ACTIVITIES IN ADVANCED NEUTRON SOURCE DEVELOPMENT: PAST AND PRESENT

    SciTech Connect (OSTI)

    HASTINGS,J.B.; LUDEWIG,H.; MONTANEZ,P.; TODOSOW,M.; SMITH,G.C.; LARESE,J.Z.

    1998-06-14T23:59:59.000Z

    Brookhaven National Laboratory has been involved in advanced neutron sources almost from its inception in 1947. These efforts have mainly focused on steady state reactors beginning with the construction of the first research reactor for neutron beams, the Brookhaven Graphite Research Reactor. This was followed by the High Flux Beam Reactor that has served as the design standard for all the subsequent high flux reactors constructed worldwide. In parallel with the reactor developments BNL has focused on the construction and use of high energy proton accelerators. The first machine to operate over 1 GeV in the world was the Cosmotron. The machine that followed this, the AGS, is still operating and is the highest intensity proton machine in the world and has nucleated an international collaboration investigating liquid metal targets for next generation pulsed spallation sources. Early work using the Cosmotron focused on spallation product studies for both light and heavy elements into the several GeV proton energy region. These original studies are still important today. In the sections below the authors discuss the facilities and activities at BNL focused on advanced neutron sources. BNL is involved in the proton source for the Spallation Neutron source, spectrometer development at LANSCE, target studies using the AGS and state-of-the-art neutron detector development.

  15. BNL Activities in Advanced Neutron Source Development: Past and Present

    SciTech Connect (OSTI)

    Hastings, J.B.; Ludewig, H.; Montanez, P.; Todosow, M.; Smith, G.C.; Larese, J.Z.

    1998-06-14T23:59:59.000Z

    Brookhaven National Laboratory has been involved in advanced neutron sources almost from its inception in 1947. These efforts have mainly focused on steady state reactors beginning with the construction of the first research reactor for neutron beams, the Brookhaven Graphite Research Reactor. This was followed by the High Flux Beam Reactor that has served as the design standard for all the subsequent high flux reactors constructed worldwide. In parallel with the reactor developments BNL has focused on the construction and use of high energy proton accelerators. The first machine to operate over 1 GeV in the world was the Cosmotron. The machine that followed this, the AGS, is still operating and is the highest intensity proton machine in the world and has nucleated an international collaboration investigating liquid metal targets for next generation pulsed spallation sources. Early work using the Cosmotron focused on spallation product studies for both light and heavy elements into the several GeV proton energy region. These original studies are still important today. In this report we discuss the facilities and activities at BNL focused on advanced neutron sources. BNL is involved in the proton source for the Spallation Neutron source, spectrometer development at LANSCE, target studies using the AGS and state-of-the-art neutron detector development.

  16. Magnetic fields in Neutron Stars

    E-Print Network [OSTI]

    Viganò, Daniele; Miralles, Juan A; Rea, Nanda

    2015-01-01T23:59:59.000Z

    Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.

  17. HFIR History - ORNL Neutron Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    has grown to include materials irradiation, neutron activation, and, most recently, neutron scattering. In 2007, HFIR completed the most dramatic transformation in its...

  18. Traveling-wave device with mass flux suppression

    DOE Patents [OSTI]

    Swift, Gregory W. (Santa Fe, NM); Backhaus, Scott N. (Los Alamos, NM); Gardner, David L. (White Rock, NM)

    2000-01-01T23:59:59.000Z

    A traveling-wave device is provided with the conventional moving pistons eliminated. Acoustic energy circulates in a direction through a fluid within a torus. A side branch may be connected to the torus for transferring acoustic energy into or out of the torus. A regenerator is located in the torus with a first heat exchanger located on a first side of the regenerator downstream of the regenerator relative to the direction of the circulating acoustic energy; and a second heat exchanger located on an upstream side of the regenerator. The improvement is a mass flux suppressor located in the torus to minimize time-averaged mass flux of the fluid. In one embodiment, the device further includes a thermal buffer column in the torus to thermally isolate the heat exchanger that is at the operating temperature of the device.

  19. Solid state neutron detector and method for use

    DOE Patents [OSTI]

    Doty, F. Patrick (Livermore, CA); Zwieback, Ilya (New Milford, NJ); Ruderman, Warren (Demarest, NJ)

    2002-01-01T23:59:59.000Z

    Crystals of lithium tetraborate or alpha-barium borate had been found to be neutron detecting materials. The crystals are prepared using known crystal growing techniques, wherein the process does not include the common practice of using a fluxing agent, such as sodium oxide or sodium fluoride, to reduce the melting temperature of the crystalline compound. Crystals prepared by this method can be sliced into thin single or polycrystalline wafers, or ground to a powder and prepared as a sintered compact or a print paste, and then configured with appropriate electronic hardware, in order to function as neutron detectors.

  20. Compact neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22T23:59:59.000Z

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  1. Turbulent Fluxes in Stably Stratified Boundary Layers

    E-Print Network [OSTI]

    L'vov, Victor S; Rudenko, Oleksii; 10.1088/0031-8949/2008/T132/014010

    2008-01-01T23:59:59.000Z

    We present an extended version of an invited talk given on the International Conference "Turbulent Mixing and Beyond". The dynamical and statistical description of stably stratified turbulent boundary layers with the important example of the stable atmospheric boundary layer in mind is addressed. Traditional approaches to this problem, based on the profiles of mean quantities, velocity second-order correlations, and dimensional estimates of the turbulent thermal flux run into a well known difficulty, predicting the suppression of turbulence at a small critical value of the Richardson number, in contradiction with observations. Phenomenological attempts to overcome this problem suffer from various theoretical inconsistencies. Here we present an approach taking into full account all the second-order statistics, which allows us to respect the conservation of total mechanical energy. The analysis culminates in an analytic solution of the profiles of all mean quantities and all second-order correlations removing t...

  2. neutron density. The neutron density (nn) of the source was modeled by solving the simul-

    E-Print Network [OSTI]

    West, Stuart

    into the galactic chem- ical evolution of Os. The extractable Os either condensed into acid-soluble minerals from linear equations describing s-process flow with b­ decay branching to yield bsÀNsð Þ186Os bsÀNsð Þ188Os 0T is the thermal neutron velocity, l is the decay constant, Ns is the s-process abun- dance, bsÀ is the maxwellian

  3. Pocked surface neutron detector

    DOE Patents [OSTI]

    McGregor, Douglas (Whitmore Lake, MI); Klann, Raymond (Bolingbrook, IL)

    2003-04-08T23:59:59.000Z

    The detection efficiency, or sensitivity, of a neutron detector material such as of Si, SiC, amorphous Si, GaAs, or diamond is substantially increased by forming one or more cavities, or holes, in its surface. A neutron reactive material such as of elemental, or any compound of, .sup.10 B, .sup.6 Li, .sup.6 LiF, U, or Gd is deposited on the surface of the detector material so as to be disposed within the cavities therein. The portions of the neutron reactive material extending into the detector material substantially increase the probability of an energetic neutron reaction product in the form of a charged particle being directed into and detected by the neutron detector material.

  4. Pulsed neutron detector

    DOE Patents [OSTI]

    Robertson, deceased, J. Craig (late of Albuquerque, NM); Rowland, Mark S. (Livermore, CA)

    1989-03-21T23:59:59.000Z

    A pulsed neutron detector and system for detecting low intensity fast neutron pulses has a body of beryllium adjacent a body of hydrogenous material the latter of which acts as a beta particle detector, scintillator, and moderator. The fast neutrons (defined as having En>1.5 MeV) react in the beryllium and the hydrogenous material to produce larger numbers of slow neutrons than would be generated in the beryllium itself and which in the beryllium generate hellium-6 which decays and yields beta particles. The beta particles reach the hydrogenous material which scintillates to yield light of intensity related to the number of fast neutrons. A photomultiplier adjacent the hydrogenous material (scintillator) senses the light emission from the scintillator. Utilization means, such as a summing device, sums the pulses from the photo-multiplier for monitoring or other purposes.

  5. Effect of combined nanoparticle and polymeric dispersions on critical heat flux, nucleate boiling heat transfer coefficient, and coating adhesion

    E-Print Network [OSTI]

    Edwards, Bronwyn K

    2009-01-01T23:59:59.000Z

    An experimental study was performed to determine thermal performance and adhesion effects of a combined nanoparticle and polymeric dispersion coating. The critical heat flux (CHF) values and nucleate boiling heat transfer ...

  6. Research on fusion neutron sources M. P. Gryaznevich

    E-Print Network [OSTI]

    proportional to plasma volume) can be large enough so that the plasma can be sufficiently hot for thermal, OXON, OX133DB UK Abstract. The use of fusion devices as powerful neutron sources has been discussed for decades. Whereas the successful route to a commercial fusion power reactor demands steady state stable

  7. Gamma Spectrum from Neutron Capture on Tungsten Isotopes

    SciTech Connect (OSTI)

    Hurst, Aaron; Summers, Neil; Sleaford, Brad; Firestone, Richard B; Belgya, T.; Revay, Z.S.

    2010-04-29T23:59:59.000Z

    An evaluation of thermal neutron capture on the stable tungsten isotopes is presented, with preliminary results for the compound systems 183;184;185;187W. The evaluation procedure compares the g-ray cross-section data collected at the Budapest reactor, with Monte Carlo simulations of g-ray emission following the thermal neutron-capture process. The statistical-decay code DICEBOX was used for the Monte Carlo simulations. The evaluation yields new gamma rays in 185W and the confirmation of spins in 187W, raising the number of levels below which the level schemes are considered complete, thus increasing the number of levels that can be used in neutron data libraries.

  8. Thermonuclear Burning on Rapidly Accreting Neutron Stars

    E-Print Network [OSTI]

    Lars Bildsten

    1997-09-10T23:59:59.000Z

    Neutron stars in mass-transferring binaries are accreting the hydrogen and helium rich matter from the surfaces of their companions. This article simply explains the physics associated with how that material eventually fuses to form heavier nuclei and the observations of the time dependent phenomena (such as Type I X-ray bursts) associated with the thermally unstable thermonuclear reactions. We explain how the outcome depends on the composition of the accreting matter, the accretion rate and the mass, radius and thermal state of the neutron star. We also introduce many new analytic relations that are convenient for comparisons to both observations and computational results. After explaining nuclear burning for spherically symmetric accretion onto neutron stars, we discuss the possibility of asymmetric burning. In particular, we discuss some of the mysteries from EXOSAT observations of Type I X-Ray bursts and how the solution to these puzzles may lie in considering the lateral propagation of nuclear burning fronts around the star. Fully understanding this problem requires knowledge of parameters previously neglected such as the distribution of fresh fuel on the star, the magnetic field strength, and the stellar rotation. Recent RXTE observations of bursters may finally tell us some of these parameters.

  9. Directional measurements for sources of fission neutrons

    SciTech Connect (OSTI)

    Byrd, R.C.; Auchampaugh, G.F.; Feldman, W.C.

    1993-11-01T23:59:59.000Z

    Although penetrating neutron and gamma-ray emissions arguably provide the most effective signals for locating sources of nuclear radiation, their relatively low fluxes make searching for radioactive materials a tedious process. Even assuming lightly shielded sources and detectors with large areas and high efficiencies, estimated counting times can exceed several minutes for source separations greater than ten meters. Because determining the source position requires measurements at several locations, each with its own background, the search procedure can be lengthy and difficult to automate. Although directional measurements can be helpful, conventional collimation reduces count rates and increases the detector size and weight prohibitively, especially for neutron instruments. We describe an alternative approach for locating radiation sources that is based on the concept of a polarized radiation field. In this model, the presence of a source adds a directional component to the randomly oriented background radiation. The net direction of the local field indicates the source angle, and the magnitude provides an estimate of the distance to the source. The search detector is therefore seen as a device that responds to this polarized radiation field. Our proposed instrument simply substitutes segmented detectors for conventional single-element ones, so it requires little or no collimating material or additional weight. Attenuation across the detector creates differences in the count rates for opposite segments, whose ratios can be used to calculate the orthogonal components of the polarization vector. Although this approach is applicable to different types of radiation and detectors, in this report we demonstrate its use for sources of fission neutrons by using a prototype fast-neutron detector, which also provides background-corrected energy spectra for the incident neutrons.

  10. High Heat Flux Components Program

    SciTech Connect (OSTI)

    Whitley, J.B.

    1983-01-01T23:59:59.000Z

    Purpose is the development of the technologies necessary to design, build and operate high heat flux components such as actively cooled limiters, divertor collector plates, R.F. antennas, mirror end cells, mirror halo collectors, direct convertor collectors, and neutral beam dumps. These components require an integrated design that considers the plasma-materials interaction (PMI) issues, heat removal problems and materials issues (including possible low Z coatings and claddings). As a general definition, high heat flux components see heat fluxes ranging from 1 to 100 MW/m/sup 2/. Suitable materials include copper and copper alloys.

  11. Advanced Neutron Source: Plant Design Requirements

    SciTech Connect (OSTI)

    Not Available

    1990-07-01T23:59:59.000Z

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS.

  12. SmAHTR-CTC Neutronic Design

    SciTech Connect (OSTI)

    Ilas, Dan [ORNL; Holcomb, David Eugene [ORNL; Gehin, Jess C [ORNL

    2014-01-01T23:59:59.000Z

    Building on prior experience for the 2010 initial SmAHTR neutronic design and on 2012 neutronic design for the advanced high temperature reactor (AHTR), this paper presents the main results of the neutronic design effort for the newly re-purposed SmAHTR-CTC reactor concept. The results are obtained based on full-core simulations performed with SCALE6.1. The dimensionality of the SmAHTR design space is reduced by using constraints originating in material fabricability, fuel licensing, molten salt chemistry, thermal-hydraulic and mechanical considerations. The new design represents in many regards a substantial improvement from the neutronic performance standpoint over the 2010 SmAHTR concept. Among other results, it is shown that fuel cycle length of over 2 years or discharged fuel burnup of 40GWd/MTHM are possible with a low, 8% fuel enrichment in a once-through fuel cycle, while 8-year once-through fuel cycle lengths are possible at higher fuel enrichments.

  13. Delayed neutron emission measurements from fast fission of U-235 and Np-237

    SciTech Connect (OSTI)

    Charlton, W.S.; Parish, T.A. [Texas A and M Univ., College Station, TX (United States); Raman, S. [Oak Ridge National Lab., TN (United States); Shinohara, Nubuo; Andoh, Masaki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    1996-09-01T23:59:59.000Z

    Experiments have been designed and conducted to measure the periods and yields of delayed neutrons from fast fission of {sup 235}U and {sup 237}Np. These measurements were performed in a pool type reactor using a fast flux in-core irradiation device. The energy dependent neutron flux spectrum within the irradiation device was characterized using a foil activation technique and the SAND-II unfolding code. Five delayed neutron groups were measured. The total yield (sum of the five group yields) for {sup 235}U was found to be 0.0141 {+-} 0. 0009. The total yield for {sup 237}Np was found to be 0.0102 {+-} 0. 0008. The total delayed neutron yield data were found to be in good agreement with previous measurements. The individual group yields reported here are preliminary and are being further refined.

  14. An aerogel Cherenkov detector for multi-GeV photon detection with low sensitivity to neutrons

    E-Print Network [OSTI]

    Y. Maeda; N. Kawasaki; T. Masuda; H. Morii; D. Naito; Y. Nakajima; H. Nanjo; T. Nomura; N. Sasao; S. Seki; K. Shiomi; T. Sumida; Y. Tajima

    2014-12-22T23:59:59.000Z

    We describe a novel photon detector which operates under an intense flux of neutrons. It is composed of lead-aerogel sandwich counter modules. Its salient features are high photon detection efficiency and blindness to neutrons. As a result of Monte Carlo (MC) simulations, the efficiency for photons with the energy larger than 1 GeV is expected to be higher than 99.5% and that for 2 GeV/$c$ neutrons less than 1%. The performance on the photon detection under such a large flux of neutrons was measured for a part of the detector. It was confirmed that the efficiency to photons with the energy $>$1 GeV was consistent with the MC expectation within 8.2% uncertainty.

  15. An aerogel Cherenkov detector for multi-GeV photon detection with low sensitivity to neutrons

    E-Print Network [OSTI]

    Maeda, Y; Masuda, T; Morii, H; Naito, D; Nakajima, Y; Nanjo, H; Nomura, T; Sasao, N; Seki, S; Shiomi, K; Sumida, T; Tajima, Y

    2014-01-01T23:59:59.000Z

    We describe a novel photon detector which operates under an intense flux of neutrons. It is composed of lead-aerogel sandwich counter modules. Its salient features are high photon detection efficiency and blindness to neutrons. As a result of Monte Carlo (MC) simulations, the efficiency for photons with the energy larger than 1 GeV is expected to be higher than 99.5% and that for 2 GeV/$c$ neutrons less than 1%. The performance on the photon detection under such a large flux of neutrons was measured for a part of the detector. It was confirmed that the efficiency to photons with the energy $>$1 GeV was consistent with the MC expectation within 8.2% uncertainty.

  16. Neutron and gamma irradiation damage to organic materials.

    SciTech Connect (OSTI)

    White, Gregory Von, II; Bernstein, Robert

    2012-04-01T23:59:59.000Z

    This document discusses open literature reports which investigate the damage effects of neutron and gamma irradiation on polymers and/or epoxies - damage refers to reduced physical chemical, and electrical properties. Based on the literature, correlations are made for an SNL developed epoxy (Epon 828-1031/DDS) with an expected total fast-neutron fluence of {approx}10{sup 12} n/cm{sup 2} and a {gamma} dosage of {approx}500 Gy received over {approx}30 years at < 200 C. In short, there are no gamma and neutron irradiation concerns for Epon 828-1031/DDS. To enhance the fidelity of our hypotheses, in regards to radiation damage, we propose future work consisting of simultaneous thermal/irradiation (neutron and gamma) experiments that will help elucidate any damage concerns at these specified environmental conditions.

  17. application facility baf: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    its characteristics have been investigated. In order to obtain a sufficient thermal neutron flux with a low level contamination of fast neutrons and gamma-rays, a radiation...

  18. Thermal Processes

    Broader source: Energy.gov [DOE]

    Some thermal processes use the energy in various resources, such as natural gas, coal, or biomass, to release hydrogen, which is part of their molecular structure. In other processes, heat, in...

  19. Low-Energy X-ray Emission from Young Isolated Neutron Stars

    E-Print Network [OSTI]

    M. Ruderman

    2003-10-28T23:59:59.000Z

    A young neutron star with large spin-down power is expected to be closely surrounded by an e+/- pair plasma maintained by the conversion of gamma-rays associated with the star's polar-cap and/or outer-gap accelerators. Cyclotron-resonance scattering by the e- and e+ within several radii of such neutron stars prevents direct observations of thermal X-rays from the stellar surface. Estimates are presented for the parameters of the Planck-like X-radiation which ultimately diffuses out through this region. Comparisons with observations, especially of apparent blackbody emission areas as a function of neutron star age, support the proposition that we are learning about a neutron star's magnetosphere rather than about its surface from observations of young neutron star thermal X-rays.

  20. The Solar Wind Energy Flux

    E-Print Network [OSTI]

    Chat, G Le; Meyer-Vernet, N

    2012-01-01T23:59:59.000Z

    The solar-wind energy flux measured near the ecliptic is known to be independent of the solar-wind speed. Using plasma data from Helios, Ulysses, and Wind covering a large range of latitudes and time, we show that the solar-wind energy flux is independent of the solar-wind speed and latitude within 10%, and that this quantity varies weakly over the solar cycle. In other words the energy flux appears as a global solar constant. We also show that the very high speed solar-wind (VSW > 700 km/s) has the same mean energy flux as the slower wind (VSW < 700 km/s), but with a different histogram. We use this result to deduce a relation between the solar-wind speed and density, which formalizes the anti-correlation between these quantities.

  1. Inverse three-dimensional method for fast evaluation of temperature and heat flux fields during rolling process

    E-Print Network [OSTI]

    Boyer, Edmond

    is therefore needed. Therefore highly heterogeneous temperature fields and heat fluxes can be evaluating. Asymptotic developments enable to take into account variations of thermal properties depending on temperatureInverse three-dimensional method for fast evaluation of temperature and heat flux fields during

  2. Deuterium Depth Profile in Neutron-Irradiated Tungsten Exposed to Plasma

    SciTech Connect (OSTI)

    Masashi Shimada; G. Cao; Y. Hatano; T. Oda; Y. Oya; M. Hara; P. Calderoni

    2011-05-01T23:59:59.000Z

    The effect of radiation damage has been mainly simulated using high-energy ion bombardment. The ions, however, are limited in range to only a few microns into the surface. Hence, some uncertainty remains about the increase of trapping at radiation damage produced by 14 MeV fusion neutrons, which penetrate much farther into the bulk material. With the Japan-US joint research project: Tritium, Irradiations, and Thermofluids for America and Nippon (TITAN), the tungsten samples (99.99 % pure from A.L.M.T., 6mm in diameter, 0.2mm in thickness) were irradiated to high flux neutrons at 50 C and to 0.025 dpa in the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL). Subsequently, the neutron-irradiated tungsten samples were exposed to a high-flux deuterium plasma (ion flux: 1021-1022 m-2s-1, ion fluence: 1025-1026 m-2) in the Tritium Plasma Experiment (TPE) at the Idaho National Laboratory (INL). First results of deuterium retention in neutron-irradiated tungsten exposed in TPE have been reported previously. This paper presents the latest results in our on-going work of deuterium depth profiling in neutron-irradiated tungsten via nuclear reaction analysis. The experimental data is compared with the result from non neutron-irradiated tungsten, and is analyzed with the Tritium Migration Analysis Program (TMAP) to elucidate the hydrogen isotope behavior such as retention and depth distribution in neutron-irradiated and non neutron-irradiated tungsten.

  3. Fukushima plutonium effect and blow-up regimes in neutron-multiplying media

    E-Print Network [OSTI]

    Rusov, V D; Vaschenko, V M; Linnik, E P; Zelentsova, T N; Beglaryan, M E; Chernegenko, S A; Kosenko, S I; Molchinikolov, P A; Smolyar, V P; Grechan, E V

    2012-01-01T23:59:59.000Z

    It is shown that the capture and fission cross-sections of 238U and 239Pu increase with temperature within 1000-3000K range, in contrast to those of 235U, that under certain conditions may lead to the so-called blow-up modes, stimulating the anomalous neutron flux and nuclear fuel temperature growth. Some features of the blow-up regimes in neutron-multiplying media are discussed.

  4. Optimization of the Ballistic Guide Design for the SNS FNPB 8.9 A Neutron Line

    E-Print Network [OSTI]

    Takeyasu M. Ito; Christopher B. Crawford; Geoffrey L. Greene

    2006-04-28T23:59:59.000Z

    The optimization of the ballistic guide design for the SNS Fundamental Neutron Physics Beamline 8.9 A line is described. With a careful tuning of the shape of the curve for the tapered section and the width of the straight section, this optimization resulted in more than 75% increase in the neutron flux exiting the 33 m long guide over a straight m=3.5 guide with the same length.

  5. Fukushima plutonium effect and blow-up regimes in neutron-multiplying media

    E-Print Network [OSTI]

    V. D. Rusov; V. A. Tarasov; V. M. Vaschenko; E. P. Linnik; T. N. Zelentsova; M. E. Beglaryan; S. A. Chernegenko; S. I. Kosenko; P. A. Molchinikolov; V. P. Smolyar; E. V. Grechan

    2013-04-28T23:59:59.000Z

    It is shown that the capture and fission cross-sections of 238U and 239Pu increase with temperature within 1000-3000 K range, in contrast to those of 235U, that under certain conditions may lead to the so-called blow-up modes, stimulating the anomalous neutron flux and nuclear fuel temperature growth. Some features of the blow-up regimes in neutron-multiplying media are discussed.

  6. Hypernuclear Physics for Neutron Stars

    E-Print Network [OSTI]

    Jurgen Schaffner-Bielich

    2008-01-24T23:59:59.000Z

    The role of hypernuclear physics for the physics of neutron stars is delineated. Hypernuclear potentials in dense matter control the hyperon composition of dense neutron star matter. The three-body interactions of nucleons and hyperons determine the stiffness of the neutron star equation of state and thereby the maximum neutron star mass. Two-body hyperon-nucleon and hyperon-hyperon interactions give rise to hyperon pairing which exponentially suppresses cooling of neutron stars via the direct hyperon URCA processes. Non-mesonic weak reactions with hyperons in dense neutron star matter govern the gravitational wave emissions due to the r-mode instability of rotating neutron stars.

  7. A SEARCH FOR POINT SOURCES OF EeV NEUTRONS

    SciTech Connect (OSTI)

    Abreu, P.; Andringa, S. [LIP and Instituto Superior Tecnico, Technical University of Lisbon (Portugal); Aglietta, M. [Istituto di Fisica dello Spazio Interplanetario (INAF), Universita di Torino and Sezione INFN, Torino (Italy); Ahlers, M. [University of Wisconsin, Madison, WI (United States); Ahn, E. J. [Fermilab, Batavia, IL (United States); Albuquerque, I. F. M. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, SP (Brazil); Allard, D. [Laboratoire AstroParticule et Cosmologie (APC), Universite Paris 7, CNRS-IN2P3, Paris (France); Allekotte, I. [Centro Atomico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), San Carlos de Bariloche (Argentina); Allen, J. [New York University, New York, NY (United States); Allison, P. [Ohio State University, Columbus, OH (United States); Almela, A. [Facultad Regional Buenos Aires, Universidad Tecnologica Nacional, Buenos Aires (Argentina); Alvarez Castillo, J. [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico); Alvarez-Muniz, J. [Universidad de Santiago de Compostela (Spain); Alves Batista, R. [IFGW, Universidade Estadual de Campinas, Campinas, SP (Brazil); Ambrosio, M.; Aramo, C. [Universita di Napoli 'Federico II' and Sezione INFN, Napoli (Italy); Aminaei, A. [IMAPP, Radboud University Nijmegen (Netherlands); Anchordoqui, L. [University of Wisconsin, Milwaukee, WI (United States); Antici'c, T. [Rudjer Boskovi'c Institute, 10000 Zagreb (Croatia); Arganda, E. [IFLP, Universidad Nacional de La Plata and CONICET, La Plata (Argentina); Collaboration: Pierre Auger Collaboration; and others

    2012-12-01T23:59:59.000Z

    A thorough search of the sky exposed at the Pierre Auger Cosmic Ray Observatory reveals no statistically significant excess of events in any small solid angle that would be indicative of a flux of neutral particles from a discrete source. The search covers from -90 Degree-Sign to +15 Degree-Sign in declination using four different energy ranges above 1 EeV (10{sup 18} eV). The method used in this search is more sensitive to neutrons than to photons. The upper limit on a neutron flux is derived for a dense grid of directions for each of the four energy ranges. These results constrain scenarios for the production of ultrahigh energy cosmic rays in the Galaxy.

  8. Gamma-rays from the vicinity of accreting neutron stars inside compact high-mass X-ray binaries

    E-Print Network [OSTI]

    W. Bednarek

    2008-11-25T23:59:59.000Z

    Dense wind of a massive star can be partially captured by a neutron star (NS) inside a compact binary system. Depending on the parameters of NS and the wind, the matter can penetrate the inner NS magnetosphere. At some distance from the NS a very turbulent and magnetized transition region is formed due to the balance between the magnetic pressure and the pressure inserted by accreting matter. This region provides good conditions for acceleration of particles to relativistic energies. The matter at the transition region can farther accrete onto the NS surface (the accretor phase) or is expelled from the NS vicinity (the propeller phase). We consider the consequences of acceleration of electrons at the transition region concentrating on the situation in which at least part of the matter falls onto the NS surface. This matter creates a hot spot on the NS surface which emits thermal radiation. Relativistic electrons lose energy on the synchrotron process and the inverse Compton (IC) scattering of this thermal radiation. We calculate the synchrotron spectra (from X-rays to soft $\\gamma$-rays) and IC spectra (above a few tens MeV) expected in such a scenario. It is argued that a population of recently discovered massive binaries by the INTEGRAL observatory, which contain neutron stars hidden inside dense stellar winds of massive stars, can be detectable by the recently launched {\\it Fermi} LAT telescope at GeV energy range. As an example, we predict the expected $\\gamma$-ray flux from recently discovered source IGR J19140+0951.

  9. Switchable radioactive neutron source device

    DOE Patents [OSTI]

    Stanford, G.S.; Rhodes, E.A.; Devolpi, A.; Boyar, R.E.

    1987-11-06T23:59:59.000Z

    This invention is a switchable neutron generating apparatus comprised of a pair of plates, the first plate having an alpha emitter section on it and the second plate having a target material portion on it which generates neutrons when its nuclei absorb an alpha particle. In operation, the alpha portion of the first plate is aligned with the neutron portion of the second plate to produce neutrons and brought out of alignment to cease production of neutrons. 3 figs.

  10. Switchable radioactive neutron source device

    DOE Patents [OSTI]

    Boyar, Robert E. (La Grange, IL); DeVolpi, Alexander (Bolingbrook, IL); Stanford, George S. (Downers Grove, IL); Rhodes, Edgar A. (Woodridge, IL)

    1989-01-01T23:59:59.000Z

    This invention is a switchable neutron generating apparatus comprised of a pair of plates, the first plate having an alpha emitter section on it and the second plate having a target material portion on it which generates neutrons when its nuclei absorb an alpha particle. In operation, the alpha portion of the first plate is aligned with the neutron portion of the second plate to produce neutrons and brought out of alignment to cease production of neutrons.

  11. Neutron tomography of axially symmetric objects using 14 MeV neutrons from a portable neutron generator

    SciTech Connect (OSTI)

    Andersson, P., E-mail: peter.andersson@physics.uu.se; Andersson-Sunden, E.; Sjöstrand, H.; Jacobsson-Svärd, S. [Department of Physics and Astronomy, Division of Applied Nuclear Physics, Uppsala University, Lägerhyddsgatan 1, 751 20 Uppsala (Sweden)

    2014-08-01T23:59:59.000Z

    In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantage of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm{sup ?1}, solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful indication on the flow mode, and a visualization of the radial material distribution can be obtained. A benefit of this system is its potential to be mounted at any axial height of a two-phase test section without requirements for pre-fabricated entrances or windows. This could mean a significant increase in flexibility of the void distribution assessment capability at many existing two-phase test loops.

  12. Production of high-energy ?neutrinos from young neutron stars

    E-Print Network [OSTI]

    G. F. Burgio; B. Link

    2006-09-20T23:59:59.000Z

    Young, rapidly rotating neutron stars could accelerate protons to energies of $\\sim 1$ PeV close to the stellar surface, which scatter with x-rays from the stellar surface through the $\\Delta$ resonance and produce pions. The pions subsequently decay to produce muon neutrinos. We find that the energy spectrum of muon neutrinos consists of a sharp rise at $\\sim 50$ TeV, corresponding to the onset of the resonance, above which the flux drops as $\\epsilon_\

  13. Signatures of Energy Flux in Particle Production: A Black Hole Birth Cry and Death Gasp

    E-Print Network [OSTI]

    Good, Michael R R

    2015-01-01T23:59:59.000Z

    It is recently argued that if the Hawking radiation process is unitary, then a black hole's mass cannot be monotonically decreasing. We examine the time dependent particle count and negative energy flux in the non-trivial conformal vacuum via the moving mirror approach. A new, exactly unitary solution is presented which emits a characteristic above-thermal positive energy burst, a thermal plateau, and negative energy flux. It is found that the characteristic positive energy flare and thermal plateau is observed in the particle outflow. However, the results of time dependent particle production show no overt indication of negative energy flux. Therefore, a black hole's birth cry is detectable by asymptotic observers via particle count, whereas its death gasp is not.

  14. Modeling epoxy foams exposed to fire-like heat fluxes.

    SciTech Connect (OSTI)

    Hobbs, Michael L.

    2004-11-01T23:59:59.000Z

    A decomposition chemistry and heat transfer model to predict the response of removable epoxy foam (REF) exposed to fire-like heat fluxes is described. The epoxy foam was created using a perfluorohexane blowing agent with a surfactant. The model includes desorption of the blowing agent and surfactant, thermal degradation of the epoxy polymer, polymer fragment transport, and vapor-liquid equilibrium. An effective thermal conductivity model describes changes in thermal conductivity with reaction extent. Pressurization is modeled assuming: (1) no strain in the condensed-phase, (2) no resistance to gas-phase transport, (3) spatially uniform stress fields, and (4) no mass loss from the system due to venting. The model has been used to predict mass loss, pressure rise, and decomposition front locations for various small-scale and large-scale experiments performed by others. The framework of the model is suitable for polymeric foams with absorbed gases.

  15. Modeling epoxy foams exposed to fire-like heat fluxes.

    SciTech Connect (OSTI)

    Hobbs, Michael L.

    2004-10-01T23:59:59.000Z

    A decomposition chemistry and heat transfer model to predict the response of removable epoxy foam (REF) exposed to fire-like heat fluxes is described. The epoxy foam was created using a perfluorohexane blowing agent with a surfactant. The model includes desorption of the blowing agent and surfactant, thermal degradation of the epoxy polymer, polymer fragment transport, and vapor-liquid equilibrium. An effective thermal conductivity model describes changes in thermal conductivity with reaction extent. Pressurization is modeled assuming: (1) no strain in the condensed-phase, (2) no resistance to gas-phase transport, (3) spatially uniform stress fields, and (4) no mass loss from the system due to venting. The model has been used to predict mass loss, pressure rise, and decomposition front locations for various small-scale and large-scale experiments performed by others. The framework of the model is suitable for polymeric foams with absorbed gases.

  16. Strangeness in Neutron Stars

    E-Print Network [OSTI]

    Fridolin Weber; Alexander Ho; Rodrigo P. Negreiros; Philip Rosenfield

    2006-04-20T23:59:59.000Z

    It is generally agreed on that the tremendous densities reached in the centers of neutron stars provide a high-pressure environment in which several intriguing particles processes may compete with each other. These range from the generation of hyperons to quark deconfinement to the formation of kaon condensates and H-matter. There are theoretical suggestions of even more exotic processes inside neutron stars, such as the formation of absolutely stable strange quark matter. In the latter event, neutron stars would be largely composed of strange quark matter possibly enveloped in a thin nuclear crust. This paper gives a brief overview of these striking physical possibilities with an emphasis on the role played by strangeness in neutron star matter, which constitutes compressed baryonic matter at ultra-high baryon number density but low temperature which is no accessible to relativistic heavy ion collision experiments.

  17. Observations of Electrons from the Decay of Solar Flare Neutrons

    E-Print Network [OSTI]

    W. Dröge; D. Ruffolo; B. Klecker

    1996-04-03T23:59:59.000Z

    We have found evidence for fluxes of energetic electrons in interplanetary space on board the ISEE-3 spacecraft which we interpret as the decay products of neutrons generated in a solar flare on 1980 June 21. The decay electrons arrived at the s/c shortly before the electrons from the flare and can be distinguished from the latter by their distinctive energy spectrum. The time profile of the decay electrons is in good agreement with the results from a simulation based on a scattering mean free path derived from a fit to the flare electron data. The comparison with simultaneously observed decay protons and a published direct measurement of high-energy neutrons places important constraints on the parent neutron spectrum.

  18. High energy gamma rays from old accreting neutron stars

    E-Print Network [OSTI]

    P. Blasi

    1996-06-28T23:59:59.000Z

    We consider a magnetized neutron star with accretion from a companion star or a gas cloud around it, as a possible source of gamma rays with energy between $100$ $MeV$ and $10^{14}-10^{16}~eV$. The flow of the accreting plasma is terminated by a shock at the Alfv\\'en surface. Such a shock is the site for the acceleration of particles up to energies of $\\sim 10^{15}-10^{17}~eV$; gamma photons are produced in the inelastic $pp$ collisions between shock-accelerated particles and accreting matter. The model is applied to old neutron stars both isolated or in binary systems. The gamma ray flux above $100~MeV$ is not easily detectable, but we propose that gamma rays with very high energy could be used by Cherenkov experiments as a possible signature of isolated old neutron stars in dense clouds in our galaxy.

  19. Commissioning of the new high-intensity ultracold neutron source at the Paul Scherrer Institut

    E-Print Network [OSTI]

    Bernhard Lauss

    2010-11-17T23:59:59.000Z

    Commissioning of the new high-intensity ultracold neutron (UCN) source at the Paul Scherrer Institut (PSI) has started in 2009. The design goal of this new generation high intensity UCN source is to surpass by a factor of ~100 the current ultracold neutron densities available for fundamental physics research, with the greatest thrust coming from the search for a neutron electric dipole moment. The PSI UCN source is based on neutron production via proton induced lead spallation, followed by neutron thermalization in heavy water and neutron cooling in a solid deuterium crystal to cold and ultracold energies. A successful beam test with up to 2 mA proton beam on the spallation target was conducted recently. Most source components are installed, others being finally mounted. The installation is on the track for the first cool-down and UCN production in 2010.

  20. Measurements of thermal accommodation coefficients.

    SciTech Connect (OSTI)

    Rader, Daniel John; Castaneda, Jaime N.; Torczynski, John Robert; Grasser, Thomas W.; Trott, Wayne Merle

    2005-10-01T23:59:59.000Z

    A previously-developed experimental facility has been used to determine gas-surface thermal accommodation coefficients from the pressure dependence of the heat flux between parallel plates of similar material but different surface finish. Heat flux between the plates is inferred from measurements of temperature drop between the plate surface and an adjacent temperature-controlled water bath. Thermal accommodation measurements were determined from the pressure dependence of the heat flux for a fixed plate separation. Measurements of argon and nitrogen in contact with standard machined (lathed) or polished 304 stainless steel plates are indistinguishable within experimental uncertainty. Thus, the accommodation coefficient of 304 stainless steel with nitrogen and argon is estimated to be 0.80 {+-} 0.02 and 0.87 {+-} 0.02, respectively, independent of the surface roughness within the range likely to be encountered in engineering practice. Measurements of the accommodation of helium showed a slight variation with 304 stainless steel surface roughness: 0.36 {+-} 0.02 for a standard machine finish and 0.40 {+-} 0.02 for a polished finish. Planned tests with carbon-nanotube-coated plates will be performed when 304 stainless-steel blanks have been successfully coated.

  1. Neutron Compound Refractive Prisms - DOE SBIR Phase II Final Report

    SciTech Connect (OSTI)

    Dr. Jay Theodore Cremer, Jr

    2011-06-25T23:59:59.000Z

    The results of the research led to a pulsed electromagnetic periodic magnetic field array (PMF), which coupled with a pair of collimation slits, and a mechanical chopper slit, were able to deflect spin-up neutrons to a band of line-fused neutrons a focal plane heights that correspond to the time-varying magnetic field amplitude. The electromagnetic field PMF produced 5.4 pulses per minute in which each pulse was 50 msec in duration with a full width half maximum (FWHM) of 7.5 msec. The calculated 7.7 mm vertical height of the band of focused spin-up neutrons corresponded closely to the measured 7.5 mm height of the center line of the imaged band of neutrons. The band of deflected spin-up neutrons was 5 mm in vertical width and the bottom of the band was 5 mm above the surface of the PMF pole. The limited exposure time of 3 hours and the smaller 0.78 T magnetic field allowed focused and near focused neutrons of 1.8 ���� to 2.6 ���� neutrons, which were in the tails of the McClellan Nuclear Radiation Center Bay 4 Maxwell Boltzmann distribution of neutrons with peak flux at 1.1-1.2 ����. The electromagnetic PMF was expected to produces a 2.0 T peak magnetic field amplitude, which would be operational at a higher duty factor, rather than the as built 7.5 msec FWHM with pulse repetition frequency of 5.4 pulses per minute. The fabricated pulsed electromagnetic PMF with chopper is expected to perform well on a cold, very cold or ultra cold beam line as a spectrometer or monochromator source of spin-up polarized neutron. In fact there may be a possible use of the PMF to do ultra-cold neutron trapping, see paper by A. I. Frank1, V. G. Nosov, Quantum Effects in a One-Dimensional Magnetic Gravitational Trap for Ultracold Neutrons, JETP Letters, Vol. 79, No. 7, 2004, pp. 313�¢����315. The next step is to find a cold or very cold neutron facility, where further testing or use of the pulsed magnetic field PMF can be pursued.

  2. Neutrons from multifragmentation reactions

    E-Print Network [OSTI]

    W. Trautmann; A. S. Botvina; J. Brzychczyk; N. Buyukcizmeci; I. N. Mishustin; P. Pawlowski; ALADIN2000 Collaboration

    2011-08-29T23:59:59.000Z

    The neutron emission in the fragmentation of stable and radioactive Sn and La projectiles of 600 MeV per nucleon has been studied with the Large Neutron Detector LAND coupled to the ALADIN forward spectrometer at SIS. A cluster-recognition algorithm is used to identify individual particles within the hit distributions registered with LAND. The obtained momentum distributions are extrapolated over the full phase space occupied by the neutrons from the projectile-spectator source. The mean multiplicities of spectator neutrons reach values of up to 12 and depend strongly on the isotopic composition of the projectile. An effective source temperature of T approx. 3 - 4 MeV is deduced from the transverse momentum distributions. For the interpretation of the data, calculations with the Statistical Multifragmentation Model for a properly chosen ensemble of excited sources were performed. The possible modification of the liquid-drop parameters of the fragment description in the hot environment is studied, and a significant reduction of the symmetry-term coefficient is found necessary to simultaneously reproduce the neutron multiplicities and the mean neutron-to-proton ratios /Z of Z <= 10 fragments. Because of the similarity of the freeze-out conditions with those encountered in supernova scenarios, this is of astrophysical interest.

  3. Prompt gamma ray neutron activation analysis of cadmium in municipal solid waste

    E-Print Network [OSTI]

    Dendahl, Katherine Hoge

    1991-01-01T23:59:59.000Z

    was reduced from 20% to 13%. Gamma-ray spectroscopy using a Ge(Li) detector was used to measure the 559 keV photopeak emitted from Cd via the Cd(n, y) Cd reaction. The optimal sample size was determined to be 15 x 15 x 6 cm. The neutron flux throughout... setup. requirements for shielding of the germanium detectors. Some of the following matrix effects can be anticipated: additional neutron moderation due to moisture content of the sample (H moderates the neutrons); gamma-ray attenuation due...

  4. Interpretation of the neutron quantum gravitational states in terms of isospectral potentials

    E-Print Network [OSTI]

    S. Kondratyuk; P. G. Blunden

    2009-09-21T23:59:59.000Z

    The recently observed quantum states of neutrons bound in a gravitational field are analyzed in the framework of one-parameter isospectral hamiltonians. Potentials isospectral to the usual Newton potential are explicitly constructed for the first time, then constrained using measured properties of the neutron gravitational states. The corresponding wave functions and the neutron fluxes are also calculated and analyzed in a simple model, including the ground state and the excited state contributions. The constructed isospectral potentials are discussed as candidates for a possible modification of Newton's law at a submillimetre scale. Our results indicate that significant deviations from the Newtonian gravity at submillimetre distances could be compatible with experiment.

  5. Comparative study of 2-group P1 and diffusion theories for the calculation of the neutron noise in 1D 2-region systems

    E-Print Network [OSTI]

    Demazière, Christophe

    Comparative study of 2-group P1 and diffusion theories for the calculation of the neutron noise of the neutron flux around its mean value, is calculated in 2-group P1 and diffusion theories for a 2-region slab reactor using Green's function technique. The applicability of diffusion theory for different types

  6. atlas thermal-hydraulic integral: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    multiplier assembly has been developed with a thermal power of 100 MW. A high-energy proton beam (600 MeV5 MW) is fed to the spallation target for neutron production. In...

  7. Improvements of the Variable Thermal Resistance

    E-Print Network [OSTI]

    Székely, V; Kollar, E

    2008-01-01T23:59:59.000Z

    A flat mounting unit with electronically variable thermal resistance [1] has been presented in the last year [2]. The design was based on a Peltier cell and the appropriate control electronics and software. The device is devoted especially to the thermal characterization of packages, e.g. in dual cold plate arrangements. Although this design meets the requirements of the static measurement we are intended to improve its parameters as the settling time and dynamic thermal impedance and the range of realized thermal resistance. The new design applies the heat flux sensor developed by our team as well [3], making easier the control of the device. This development allows even the realization of negative thermal resistances.

  8. Improvements of the Variable Thermal Resistance

    E-Print Network [OSTI]

    V. Szekely; S. Torok; E. Kollar

    2008-01-07T23:59:59.000Z

    A flat mounting unit with electronically variable thermal resistance [1] has been presented in the last year [2]. The design was based on a Peltier cell and the appropriate control electronics and software. The device is devoted especially to the thermal characterization of packages, e.g. in dual cold plate arrangements. Although this design meets the requirements of the static measurement we are intended to improve its parameters as the settling time and dynamic thermal impedance and the range of realized thermal resistance. The new design applies the heat flux sensor developed by our team as well [3], making easier the control of the device. This development allows even the realization of negative thermal resistances.

  9. A boron nitride nanotube peapod thermal rectifier

    SciTech Connect (OSTI)

    Loh, G. C., E-mail: jgloh@mtu.edu [Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States); Institute of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632 (Singapore); Baillargeat, D. [CNRS-International-NTU-Thales Research Alliance (CINTRA), 50 Nanyang Drive, Singapore 637553 (Singapore)

    2014-06-28T23:59:59.000Z

    The precise guidance of heat from one specific location to another is paramount in many industrial and commercial applications, including thermal management and thermoelectric generation. One of the cardinal requirements is a preferential conduction of thermal energy, also known as thermal rectification, in the materials. This study introduces a novel nanomaterial for rectifying heat—the boron nitride nanotube peapod thermal rectifier. Classical non-equilibrium molecular dynamics simulations are performed on this nanomaterial, and interestingly, the strength of the rectification phenomenon is dissimilar at different operating temperatures. This is due to the contingence of the thermal flux on the conductance at the localized region around the scatterer, which varies with temperature. The rectification performance of the peapod rectifier is inherently dependent on its asymmetry. Last but not least, the favourable rectifying direction in the nanomaterial is established.

  10. Preliminary measurements of neutrons from the D-D reaction in the COMPASS tokamak

    SciTech Connect (OSTI)

    Dankowski, J., E-mail: jan.dankowski@ifj.edu.pl; Kurowski, A.; Twarog, D. [The Henryk Niewodnicza?ski Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152 Str., PL-31-342 Kraków (Poland); Janky, F.; Stockel, J. [Institute of Plasma Physics AS CR, v.v.i. Za Slovankou 1782/3, 182 00 Prague 8 (Czech Republic)

    2014-08-21T23:59:59.000Z

    Recent results of measured fast neutrons created in the D-D reaction on the COMPASS tokamak during ohmic discharges are presented in this paper. Two different type detectors were used during experiment. He-3 detectors and bubble detectors as a support. The measurements are an introduction for neutron diagnostic on tokamak COMPASS and monitoring neutrons during discharges with Neutral Beam Injection (NBI). The He-3 counters and bubble detectors were located in two positions near tokamak vacuum chamber at a distance less than 40 cm to the centre of plasma. The neutrons flux was observed in ohmic discharges. However, analysis of our results does not indicate any clear source of neutrons production during ohmic discharges.

  11. Irradiation effect on deuterium behaviour in low-dose HFIR neutron-irradiated tungsten

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shimada, Masashi; Cao, G.; Otsuka, T.; Hara, M.; Kobayashi, M.; Oya, Y.; Hatano, Y.

    2015-01-01T23:59:59.000Z

    Tungsten samples were irradiated by neutrons in the High Flux Isotope Reactor (HFIR), Oak Ridge National Laboratory at reactor coolant temperatures of 50–70 ?C to low displacement damage of 0.025 and 0.3 dpa. After cooling down, the HFIR neutronirradiated tungsten samples were exposed to deuterium plasmas in the Tritium Plasma Experiment, Idaho National Laboratory at 100, 200 and 500 ?C twice at the ion fluence of 5×1025 m-2 to reach the total ion fluence of 1×1026 m-2 in order to investigate maximum near-surface (more »in 0.3 dpa samples. The large discrepancy between the total retention via thermal desorption spectroscopy and the nearsurface retention via nuclear reaction analysis indicated the deuterium was trapped in bulk (at least 50µm depth for 0.025 dpa and 35µm depth for 0.3 dpa) at 500 ?C cases even in the relatively low ion fluence of 1026 m-2.« less

  12. Irradiation effect on deuterium behaviour in low-dose HFIR neutron-irradiated tungsten

    SciTech Connect (OSTI)

    Shimada, Masashi [Idaho National Lab. (INL), Idaho Falls, ID (United States).Fusion Safety Program; Cao, G. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics; Otsuka, T. [Kyushu Univ., Fukuoka (Japan). Interdisciplinary Graduate School of Engineering Science; Hara, M. [Univ. of Toyama (Japan). Hydrogen Isotope Center; Kobayashi, M. [Shizuoka Univ. (Japan). Radioscience Research Lab.; Oya, Y. [Shizuoka Univ. (Japan). Radioscience Research Lab.; Hatano, Y. [Shizuoka Univ. (Japan). Radioscience Research Lab.

    2015-01-01T23:59:59.000Z

    Tungsten samples were irradiated by neutrons in the High Flux Isotope Reactor (HFIR), Oak Ridge National Laboratory at reactor coolant temperatures of 50–70 ?C to low displacement damage of 0.025 and 0.3 dpa. After cooling down, the HFIR neutronirradiated tungsten samples were exposed to deuterium plasmas in the Tritium Plasma Experiment, Idaho National Laboratory at 100, 200 and 500 ?C twice at the ion fluence of 5×1025 m-2 to reach the total ion fluence of 1×1026 m-2 in order to investigate maximum near-surface (<5µm depth) deuterium concentration increased from 0.5 at% D/W in 0.025 dpa samples to 0.8 at% D/W in 0.3 dpa samples. The large discrepancy between the total retention via thermal desorption spectroscopy and the nearsurface retention via nuclear reaction analysis indicated the deuterium was trapped in bulk (at least 50µm depth for 0.025 dpa and 35µm depth for 0.3 dpa) at 500 ?C cases even in the relatively low ion fluence of 1026 m-2.

  13. Quantitative method for measuring heat flux emitted from a cryogenic object

    DOE Patents [OSTI]

    Duncan, R.V.

    1993-03-16T23:59:59.000Z

    The present invention is a quantitative method for measuring the total heat flux, and of deriving the total power dissipation, of a heat-fluxing object which includes the steps of placing an electrical noise-emitting heat-fluxing object in a liquid helium bath and measuring the superfluid transition temperature of the bath. The temperature of the liquid helium bath is thereafter reduced until some measurable parameter, such as the electrical noise, exhibited by the heat-fluxing object or a temperature-dependent resistive thin film in intimate contact with the heat-fluxing object, becomes greatly reduced. The temperature of the liquid helum bath is measured at this point. The difference between the superfluid transition temperature of the liquid helium bath surrounding the heat-fluxing object, and the temperature of the liquid helium bath when the electrical noise emitted by the heat-fluxing object becomes greatly reduced, is determined. The total heat flux from the heat-fluxing object is determined as a function of this difference between these temperatures. In certain applications, the technique can be used to optimize thermal design parameters of cryogenic electronics, for example, Josephson junction and infrared sensing devices.

  14. Quantitative method for measuring heat flux emitted from a cryogenic object

    DOE Patents [OSTI]

    Duncan, Robert V. (Tijeras, NM)

    1993-01-01T23:59:59.000Z

    The present invention is a quantitative method for measuring the total heat flux, and of deriving the total power dissipation, of a heat-fluxing object which includes the steps of placing an electrical noise-emitting heat-fluxing object in a liquid helium bath and measuring the superfluid transition temperature of the bath. The temperature of the liquid helium bath is thereafter reduced until some measurable parameter, such as the electrical noise, exhibited by the heat-fluxing object or a temperature-dependent resistive thin film in intimate contact with the heat-fluxing object, becomes greatly reduced. The temperature of the liquid helum bath is measured at this point. The difference between the superfluid transition temperature of the liquid helium bath surrounding the heat-fluxing object, and the temperature of the liquid helium bath when the electrical noise emitted by the heat-fluxing object becomes greatly reduced, is determined. The total heat flux from the heat-fluxing object is determined as a function of this difference between these temperatures. In certain applications, the technique can be used to optimize thermal design parameters of cryogenic electronics, for example, Josephson junction and infra-red sensing devices.

  15. Photodegradation effects in materials exposed to high flux solar and solar simulated radiation

    SciTech Connect (OSTI)

    Ignatiev, A. [Houston Univ., TX (United States)

    1992-04-01T23:59:59.000Z

    This report contains study results about photodegradation effects in materials exposed to high flux solar and solar simulated radiation. The studies show that high flux photoirradiation of materials can result in significant changes in the stability of materials. Photodesorption and photo-enhanced oxidation were determined to be the major mechanisms. These mechanisms were shown to affect, in extremely adverse ways, the expected thermal stability of solar relevant materials, especially stainless steels, (It is expected that related high temperature alloy steels will be similarly affected.) An analytical expression was generated to predict the flux behavior of the steels using {number_sign}304 as a prototypical stainless steel system.

  16. Photodegradation effects in materials exposed to high flux solar and solar simulated radiation

    SciTech Connect (OSTI)

    Ignatiev, A [Houston Univ., TX (United States)

    1992-04-01T23:59:59.000Z

    This report contains study results about photodegradation effects in materials exposed to high flux solar and solar simulated radiation. The studies show that high flux photoirradiation of materials can result in significant changes in the stability of materials. Photodesorption and photo-enhanced oxidation were determined to be the major mechanisms. These mechanisms were shown to affect, in extremely adverse ways, the expected thermal stability of solar relevant materials, especially stainless steels, (It is expected that related high temperature alloy steels will be similarly affected.) An analytical expression was generated to predict the flux behavior of the steels using {number sign}304 as a prototypical stainless steel system.

  17. High flux solar energy transformation

    DOE Patents [OSTI]

    Winston, Roland (Chicago, IL); Gleckman, Philip L. (Chicago, IL); O'Gallagher, Joseph J. (Flossmoor, IL)

    1991-04-09T23:59:59.000Z

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes.

  18. High flux solar energy transformation

    DOE Patents [OSTI]

    Winston, R.; Gleckman, P.L.; O'Gallagher, J.J.

    1991-04-09T23:59:59.000Z

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes. 7 figures.

  19. Beta ray flux measuring device

    DOE Patents [OSTI]

    Impink, Jr., Albert J. (Murrysville, PA); Goldstein, Norman P. (Murrysville, PA)

    1990-01-01T23:59:59.000Z

    A beta ray flux measuring device in an activated member in-core instrumentation system for pressurized water reactors. The device includes collector rings positioned about an axis in the reactor's pressure boundary. Activated members such as hydroballs are positioned within respective ones of the collector rings. A response characteristic such as the current from or charge on a collector ring indicates the beta ray flux from the corresponding hydroball and is therefore a measure of the relative nuclear power level in the region of the reactor core corresponding to the specific exposed hydroball within the collector ring.

  20. Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Niobium

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2008-01-01T23:59:59.000Z

    1.1 This test method describes procedures for measuring reaction rates by the activation reaction 93Nb(n,n?)93mNb. 1.2 This activation reaction is useful for monitoring neutrons with energies above approximately 0.5 MeV and for irradiation times up to about 30 years. 1.3 With suitable techniques, fast-neutron reaction rates for neutrons with energy distribution similar to fission neutrons can be determined in fast-neutron fluences above about 1016cm?2. In the presence of high thermal-neutron fluence rates (>1012cm?2·s?1), the transmutation of 93mNb due to neutron capture should be investigated. In the presence of high-energy neutron spectra such as are associated with fusion and spallation sources, the transmutation of 93mNb by reactions such as (n,2n) may occur and should be investigated. 1.4 Procedures for other fast-neutron monitors are referenced in Practice E 261. 1.5 Fast-neutron fluence rates can be determined from the reaction rates provided that the appropriate cross section information ...