National Library of Energy BETA

Sample records for thermal neutron detector

  1. Pillar Structured Thermal Neutron Detector

    SciTech Connect (OSTI)

    Nikolic, R; Conway, A; Reinhardt, C; Graff, R; Wang, T; Deo, N; Cheung, C

    2008-06-10

    This work describes an innovative solid state device structure that leverages advanced semiconductor fabrication technology to produce an efficient device for thermal neutron detection which we have coined the 'Pillar Detector'. State-of-the-art thermal neutron detectors have shortcomings in simultaneously achieving high efficiency, low operating voltage while maintaining adequate fieldability performance. By using a three dimensional silicon PIN diode pillar array filled with isotopic {sup 10}boron ({sup 10}B), a high efficiency device is theoretically possible. Here we review the design considerations for going from a 2-D to 3-D device and discuss the materials trade-offs. The relationship between the geometrical features and efficiency within our 3-D device is investigated by Monte Carlo radiation transport method coupled with finite element drift-diffusion carrier transport simulations. To benchmark our simulations and validate the predicted efficiency scaling, experimental results of a prototype device are illustrated. The fabricated pillar structures reported in this work are composed of 2 {micro}m diameter silicon pillars with a 2 {micro}m spacing and pillar height of 12 {micro}m. The pillar detector with a 12 {micro}m height achieved a thermal neutron detection efficiency of 7.3% at a reverse bias of -2 V.

  2. Novel Boron Based Multilayer Thermal Neutron Detector

    E-Print Network [OSTI]

    M. SCHIEBER; O. KHAKHAN

    2010-06-09

    The detector contains four or more layers of natural Boron absorbing thermal neutrons. Thickness of a layer is 0.4 - 1.2 mg/cm2. The layers are deposited on one or on both sides of a metal surface used as contacts. Between the absorbing layers there are gas-filled gaps 3 - 6 mm thick. Electric field of 100 - 200 V/cm is applied to the gas-filled gaps. Natural Boron contains almost 20% of 10B isotope. When atoms of 10B capture a thermal neutron, nuclear reaction occurs, as a result of which two heavy particles - alpha particle and ion 7Li - from the thin absorber layer are emitted in opposing sides. One of the two particles penetrates into gas-filled gap between Boron layers and ionizes the gas. An impulse of electric current is created in the gas-filled gap actuated by the applied electric field. The impulse is registered by an electronic circuit. We have made and tested detectors containing from two to sixteen layers of natural Boron with an efficiency of thermal neutron registration from 2.9% to 12.5% accordingly.

  3. Three-dimensional boron particle loaded thermal neutron detector

    DOE Patents [OSTI]

    Nikolic, Rebecca J.; Conway, Adam M.; Graff, Robert T.; Kuntz, Joshua D.; Reinhardt, Catherine; Voss, Lars F.; Cheung, Chin Li; Heineck, Daniel

    2014-09-09

    Three-dimensional boron particle loaded thermal neutron detectors utilize neutron sensitive conversion materials in the form of nano-powders and micro-sized particles, as opposed to thin films, suspensions, paraffin, etc. More specifically, methods to infiltrate, intersperse and embed the neutron nano-powders to form two-dimensional and/or three-dimensional charge sensitive platforms are specified. The use of nano-powders enables conformal contact with the entire charge-collecting structure regardless of its shape or configuration.

  4. Neutron detector

    DOE Patents [OSTI]

    Stephan, Andrew C. (Knoxville, TN); Jardret; Vincent D. (Powell, TN)

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  5. Double helix boron-10 powder thermal neutron detector

    DOE Patents [OSTI]

    Wang, Zhehui; Morris, Christopher L.; Bacon, Jeffrey D.

    2015-06-02

    A double-helix Boron-10 powder detector having intrinsic thermal neutron detection efficiency comparable to 36'' long, 2-in diameter, 2-bar Helium-3 detectors, and which can be used to replace such detectors for use in portal monitoring, is described. An embodiment of the detector includes a metallic plate coated with Boron-10 powder for generating alpha and Lithium-7 particles responsive to neutrons impinging thereon supported by insulators affixed to at least two opposing edges; a grounded first wire wound in a helical manner around two opposing insulators; and a second wire having a smaller diameter than that of the first wire, wound in a helical manner around the same insulators and spaced apart from the first wire, the second wire being positively biased. A gas, disposed within a gas-tight container enclosing the plate, insulators and wires, and capable of stopping alpha and Lithium-7 particles and generating electrons produces a signal on the second wire which is detected and subsequently related to the number of neutrons impinging on the plate.

  6. Fiber optic thermal/fast neutron and gamma ray scintillation detector

    DOE Patents [OSTI]

    Neal, John S.; Mihalczo, John T.

    2006-11-28

    A detector system that combines a .sup.6Li loaded glass fiber scintillation thermal neutron detector with a fast scintillation detector in a single layered structure. Detection of thermal and fast neutrons and ionizing electromagnetic radiation is achieved in the unified detector structure. The fast scintillator replaces the polyethelene moderator layer adjacent the .sup.6Li loaded glass fiber panel of the neutron detector and acts as the moderator for the glass fibers. Fast neutrons, x-rays and gamma rays are detected in the fast scintillator. Thermal neutrons, x-rays and gamma rays are detected in the glass fiber scintillator.

  7. Design and performance considerations for perforated semiconductor thermal-neutron detectors

    E-Print Network [OSTI]

    Shultis, J. Kenneth

    Design and performance considerations for perforated semiconductor thermal-neutron detectors J neutron detectors Solid state neutron detectors a b s t r a c t Perforated silicon structures backfilled. Although many perforated structures are possible, there are three fundamental designs that are studied

  8. Thermal neutron detection system

    DOE Patents [OSTI]

    Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

    2000-01-01

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  9. Thermal neutron detection using a silicon pad detector and {sup 6}LiF removable converters

    SciTech Connect (OSTI)

    Barbagallo, Massimo; Cosentino, Luigi; Marchetta, Carmelo; Pappalardo, Alfio; Scire, Carlotta; Scire, Sergio; Schillaci, Maria; Vecchio, Gianfranco; Finocchiaro, Paolo; Forcina, Vittorio; Peerani, Paolo; Vaccaro, Stefano

    2013-03-15

    A semiconductor detector coupled with a neutron converter is a good candidate for neutron detection, especially for its compactness and reliability if compared with other devices, such as {sup 3}He tubes, even though its intrinsic efficiency is rather lower. In this paper we show a neutron detector design consisting of a 3 cm Multiplication-Sign 3 cm silicon pad detector coupled with one or two external {sup 6}LiF layers, enriched in {sup 6}Li at 95%, placed in contact with the Si active surfaces. This prototype, first characterized and tested at INFN Laboratori Nazionali del Sud and then at JRC Ispra, was successfully shown to detect thermal neutrons with the expected efficiency and an outstanding gamma rejection capability.

  10. TPC-like readout for thermal neutron detection using a GEM-detector

    E-Print Network [OSTI]

    Flierl, Bernhard; Hertenberger, Ralf; Zeitelhack, Karl

    2015-01-01

    Spatial resolution of less than 200 um is challenging for thermal neutron detection. A novel readout scheme based on the time-projection-chamber (TPC) concept is used in a gaseous electron multiplier (GEM) detector. Thermal neutrons are captured in a single 2 um thick Boron-10 converter cathode and secondary Helium and Lithium ions are produced with a combined energy of 2.8 MeV. These ions have sufficient energy to form straight tracks of several mm length. With a time resolving 2-dimensional readout of 400 um pitch in both directions, based on APV25 chips, the ions are tracked and their respective origin in the cathode converter foil is reconstructed. Using an Ar-CO2 93:7% gas mixture, a resolution of 100 um (FWHM 235 um) has been observed with a triple GEM-detector setup at the Garching neutron source (FRMII) for neutrons of 4.7 Angstrom.

  11. TPC-like readout for thermal neutron detection using a GEM-detector

    E-Print Network [OSTI]

    Bernhard Flierl; Otmar Biebel; Ralf Hertenberger; Karl Zeitelhack

    2015-09-08

    Spatial resolution of less than 200 um is challenging for thermal neutron detection. A novel readout scheme based on the time-projection-chamber (TPC) concept is used in a gaseous electron multiplier (GEM) detector. Thermal neutrons are captured in a single 2 um thick Boron-10 converter cathode and secondary Helium and Lithium ions are produced with a combined energy of 2.8 MeV. These ions have sufficient energy to form straight tracks of several mm length. With a time resolving 2-dimensional readout of 400 um pitch in both directions, based on APV25 chips, the ions are tracked and their respective origin in the cathode converter foil is reconstructed. Using an Ar-CO2 93:7% gas mixture, a resolution of 100 um (FWHM 235 um) has been observed with a triple GEM-detector setup at the Garching neutron source (FRMII) for neutrons of 4.7 Angstrom.

  12. Method for manufacturing solid-state thermal neutron detectors with simultaneous high thermal neutron detection efficiency (>50%) and neutron to gamma discrimination (>1.0E4)

    DOE Patents [OSTI]

    Nikolic, Rebecca J.; Conway, Adam M.; Heineck, Daniel; Voss, Lars F.; Wang, Tzu Fang; Shao, Qinghui

    2013-10-15

    Methods for manufacturing solid-state thermal neutron detectors with simultaneous high thermal neutron detection efficiency (>50%) and neutron to gamma discrimination (>10.sup.4) are provided. A structure is provided that includes a p+ region on a first side of an intrinsic region and an n+ region on a second side of the intrinsic region. The thickness of the intrinsic region is minimized to achieve a desired gamma discrimination factor of at least 1.0E+04. Material is removed from one of the p+ region or the n+ region and into the intrinsic layer to produce pillars with open space between each pillar. The open space is filed with a neutron sensitive material. An electrode is placed in contact with the pillars and another electrode is placed in contact with the side that is opposite of the intrinsic layer with respect to the first electrode.

  13. High-efficiency scintillation detector for combined detection of thermal and fast neutrons and gamma radiation

    DOE Patents [OSTI]

    Chiles, M.M.; Mihalczo, J.T.; Blakeman, E.D.

    1987-02-27

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation event count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  14. High-efficiency scintillation detector for combined of thermal and fast neutrons and gamma radiation

    DOE Patents [OSTI]

    Chiles, Marion M. (Knoxville, TN); Mihalczo, John T. (Oak Ridge, TN); Blakeman, Edward D. (Oak Ridge, TN)

    1989-01-01

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation even count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  15. Directional Response of Microstructure Solid State Thermal Neutron Detectors Justin Dingleya

    E-Print Network [OSTI]

    Danon, Yaron

    efficiency assumes a parallel incident neutron beam; for a given absorber, neglecting the small scattering in the absorber, and Fg is the absorber area fraction. By neglecting scattering in the semiconductor, the neutron. As scattering of neutrons from hydrogen is virtually isotropic in center of mass, thermal neutrons would

  16. Hybrid superconducting neutron detectors

    SciTech Connect (OSTI)

    Merlo, V.; Lucci, M.; Ottaviani, I.; Salvato, M.; Cirillo, M.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B?+?n?????+?{sup 7}Li, with ? and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T?=?8?K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40?mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  17. Layered semiconductor neutron detectors

    DOE Patents [OSTI]

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  18. Arsenic activation neutron detector

    DOE Patents [OSTI]

    Jacobs, Eddy L. (Albuquerque, NM)

    1981-01-01

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5 Mev neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  19. Arsenic activation neutron detector

    DOE Patents [OSTI]

    Jacobs, E.L.

    1980-01-28

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5-MeV neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  20. Fiber optic thermal/fast neutron and gamma ray scintillation detector

    DOE Patents [OSTI]

    Neal, John S. (Knoxville, TN); Mihalczo, John T (Oak Ridge, TN)

    2007-10-30

    A system for detecting fissile and fissionable material originating external to the system includes: a .sup.6Li loaded glass fiber scintillator for detecting thermal neutrons, x-rays and gamma rays; a fast scintillator for detecting fast neutrons, x-rays and gamma rays, the fast scintillator conjoined with the glass fiber scintillator such that the fast scintillator moderates fast neutrons prior to their detection as thermal neutrons by the glass fiber scintillator; and a coincidence detection system for processing the time distributions of arriving signals from the scintillators.

  1. Ultrafast neutron detector

    DOE Patents [OSTI]

    Wang, C.L.

    1985-06-19

    A neutron detector of very high temporal resolution is described. It may be used to measure distributions of neutrons produced by fusion reactions that persist for times as short as about 50 picoseconds.

  2. Neutron coincidence detectors employing heterogeneous materials

    DOE Patents [OSTI]

    Czirr, J. Bartley (Mapleton, UT); Jensen, Gary L. (Orem, UT)

    1993-07-27

    A neutron detector relies upon optical separation of different scintillators to measure the total energy and/or number of neutrons from a neutron source. In pulse mode embodiments of the invention, neutrons are detected in a first detector which surrounds the neutron source and in a second detector surrounding the first detector. An electronic circuit insures that only events are measured which correspond to neutrons first detected in the first detector followed by subsequent detection in the second detector. In spectrometer embodiments of the invention, neutrons are thermalized in the second detector which is formed by a scintillator-moderator and neutron energy is measured from the summed signals from the first and second detectors.

  3. An investigation of the elimination of detector perturbations in pure thermal neutron fluxes 

    E-Print Network [OSTI]

    Feltz, Donald Everett

    1963-01-01

    . INTRODUCTION II. THEORETICAL INVESTIGATION Elimination of Flux Perturbation Theoretically Predicted Flux Perturbations III. EXPERIMENTAL INVESTIGATION Introduction Test Section Positioning in Graphite Thermal Column Final Test Section Design... Thermal Column 3. Final Graphite Loading and Test Section Position 4, Test Section Assembly Thermal Neutron Flux Distribution m 4" x 4" x 4" Water Test Section Photograph of Thermal Column Shield Door, Test Section Assembly Positioned in Loading...

  4. Semiconductor neutron detector

    DOE Patents [OSTI]

    Ianakiev, Kiril D. (Los Alamos, NM); Littlewood, Peter B. (Cambridge, GB); Blagoev, Krastan B. (Arlington, VA); Swinhoe, Martyn T. (Los Alamos, NM); Smith, James L. (Los Alamos, NM); Sullivan, Clair J. (Los Alamos, NM); Alexandrov, Boian S. (Los Alamos, NM); Lashley, Jason Charles (Santa Fe, NM)

    2011-03-08

    A neutron detector has a compound of lithium in a single crystal form as a neutron sensor element. The lithium compound, containing improved charge transport properties, is either lithium niobate or lithium tantalate. The sensor element is in direct contact with a monitor that detects an electric current. A signal proportional to the electric current is produced and is calibrated to indicate the neutrons sensed. The neutron detector is particularly useful for detecting neutrons in a radiation environment. Such radiation environment may, e.g. include gamma radiation and noise.

  5. Pocked surface neutron detector

    DOE Patents [OSTI]

    McGregor, Douglas (Whitmore Lake, MI); Klann, Raymond (Bolingbrook, IL)

    2003-04-08

    The detection efficiency, or sensitivity, of a neutron detector material such as of Si, SiC, amorphous Si, GaAs, or diamond is substantially increased by forming one or more cavities, or holes, in its surface. A neutron reactive material such as of elemental, or any compound of, .sup.10 B, .sup.6 Li, .sup.6 LiF, U, or Gd is deposited on the surface of the detector material so as to be disposed within the cavities therein. The portions of the neutron reactive material extending into the detector material substantially increase the probability of an energetic neutron reaction product in the form of a charged particle being directed into and detected by the neutron detector material.

  6. Pulsed neutron detector

    DOE Patents [OSTI]

    Robertson, deceased, J. Craig (late of Albuquerque, NM); Rowland, Mark S. (Livermore, CA)

    1989-03-21

    A pulsed neutron detector and system for detecting low intensity fast neutron pulses has a body of beryllium adjacent a body of hydrogenous material the latter of which acts as a beta particle detector, scintillator, and moderator. The fast neutrons (defined as having En>1.5 MeV) react in the beryllium and the hydrogenous material to produce larger numbers of slow neutrons than would be generated in the beryllium itself and which in the beryllium generate hellium-6 which decays and yields beta particles. The beta particles reach the hydrogenous material which scintillates to yield light of intensity related to the number of fast neutrons. A photomultiplier adjacent the hydrogenous material (scintillator) senses the light emission from the scintillator. Utilization means, such as a summing device, sums the pulses from the photo-multiplier for monitoring or other purposes.

  7. Ultrafast neutron detector

    DOE Patents [OSTI]

    Wang, Ching L. (Livermore, CA)

    1987-01-01

    The invention comprises a neutron detector (50) of very high temporal resolution that is particularly well suited for measuring the fusion reaction neutrons produced by laser-driven inertial confinement fusion targets. The detector comprises a biased two-conductor traveling-wave transmission line (54, 56, 58, 68) having a uranium cathode (60) and a phosphor anode (62) as respective parts of the two conductors. A charge line and Auston switch assembly (70, 72, 74) launch an electric field pulse along the transmission line. Neutrons striking the uranium cathode at a location where the field pulse is passing, are enabled to strike the phosphor anode and produce light that is recorded on photographic film (64). The transmission line may be variously configured to achieve specific experimental goals.

  8. Shifting scintillator neutron detector

    DOE Patents [OSTI]

    Clonts, Lloyd G; Cooper, Ronald G; Crow, Jr., Morris Lowell; Hannah, Bruce W; Hodges, Jason P; Richards, John D; Riedel, Richard A

    2014-03-04

    Provided are sensors and methods for detecting thermal neutrons. Provided is an apparatus having a scintillator for absorbing a neutron, the scintillator having a back side for discharging a scintillation light of a first wavelength in response to the absorbed neutron, an array of wavelength-shifting fibers proximate to the back side of the scintillator for shifting the scintillation light of the first wavelength to light of a second wavelength, the wavelength-shifting fibers being disposed in a two-dimensional pattern and defining a plurality of scattering plane pixels where the wavelength-shifting fibers overlap, a plurality of photomultiplier tubes, in coded optical communication with the wavelength-shifting fibers, for converting the light of the second wavelength to an electronic signal, and a processor for processing the electronic signal to identify one of the plurality of scattering plane pixels as indicative of a position within the scintillator where the neutron was absorbed.

  9. Porous material neutron detector

    DOE Patents [OSTI]

    Diawara, Yacouba (Oak Ridge, TN); Kocsis, Menyhert (Venon, FR)

    2012-04-10

    A neutron detector employs a porous material layer including pores between nanoparticles. The composition of the nanoparticles is selected to cause emission of electrons upon detection of a neutron. The nanoparticles have a maximum dimension that is in the range from 0.1 micron to 1 millimeter, and can be sintered with pores thereamongst. A passing radiation generates electrons at one or more nanoparticles, some of which are scattered into a pore and directed toward a direction opposite to the applied electrical field. These electrons travel through the pore and collide with additional nanoparticles, which generate more electrons. The electrons are amplified in a cascade reaction that occurs along the pores behind the initial detection point. An electron amplification device may be placed behind the porous material layer to further amplify the electrons exiting the porous material layer.

  10. Solid state neutron detector array

    DOE Patents [OSTI]

    Seidel, J.G.; Ruddy, F.H.; Brandt, C.D.; Dulloo, A.R.; Lott, R.G.; Sirianni, E.; Wilson, R.O.

    1999-08-17

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors. 7 figs.

  11. Solid state neutron detector array

    DOE Patents [OSTI]

    Seidel, John G. (Pittsburgh, PA); Ruddy, Frank H. (Monroeville, PA); Brandt, Charles D. (Mount Lebanon, PA); Dulloo, Abdul R. (Pittsburgh, PA); Lott, Randy G. (Pittsburgh, PA); Sirianni, Ernest (Monroeville, PA); Wilson, Randall O. (Greensburg, PA)

    1999-01-01

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors.

  12. Coated Fiber Neutron Detector Test

    SciTech Connect (OSTI)

    Lintereur, Azaree T.; Ely, James H.; Kouzes, Richard T.; Stromswold, David C.

    2009-10-23

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Reported here are the results of tests of the 6Li/ZnS(Ag)-coated non-scintillating plastic fibers option. This testing measured the required performance for neutron detection efficiency and gamma ray rejection capabilities of a system manufactured by Innovative American Technology (IAT).

  13. Neutron detectors comprising boron powder

    DOE Patents [OSTI]

    Wang, Zhehui; Morris, Christopher; Bacon, Jeffrey Darnell; Makela, Mark F; Spaulding, Randy Jay

    2013-05-21

    High-efficiency neutron detector substrate assemblies comprising a first conductive substrate, wherein a first side of the substrate is in direct contact with a first layer of a powder material comprising .sup.10boron, .sup.10boron carbide or combinations thereof, and wherein a conductive material is in proximity to the first layer of powder material; and processes of making said neutron detector substrate assemblies.

  14. Organic metal neutron detector

    DOE Patents [OSTI]

    Butler, M.A.; Ginley, D.S.

    1984-11-21

    A device for detection of neutrons comprises: as an active neutron sensing element, a conductive organic polymer having an electrical conductivity and a cross-section for said neutrons whereby a detectable change in said conductivity is caused by impingement of said neutrons on the conductive organic polymer which is responsive to a property of said polymer which is altered by impingement of said neutrons on the polymer; and means for associating a change in said alterable property with the presence of neutrons at the location of said device.

  15. Using Back-Scattering to Enhance Efficiency in Neutron Detectors

    E-Print Network [OSTI]

    Kittelmann, Thomas; Cai, Xiao Xiao; Kanaki, Kalliopi; Cooper-Jensen, Carsten P; Hall-Wilton, Richard

    2015-01-01

    The principle of using strongly scattering materials to recover efficiency in neutron detectors, via back-scattering of unconverted thermal neutrons, is discussed in general. Feasibility of the method is illustrated through Geant4-based simulations of a specific setup involving a moderator-like material placed behind a single layered boron-10 thin film gaseous detector.

  16. Plastic neutron detectors.

    SciTech Connect (OSTI)

    Wilson, Tiffany M.S; King, Michael J.; Doty, F. Patrick

    2008-12-01

    This work demonstrated the feasibility and limitations of semiconducting {pi}-conjugated organic polymers for fast neutron detection via n-p elastic scattering. Charge collection in conjugated polymers in the family of substituted poly(p-phenylene vinylene)s (PPV) was evaluated using band-edge laser and proton beam ionization. These semiconducting materials can have high H/C ratio, wide bandgap, high resistivity and high dielectric strength, allowing high field operation with low leakage current and capacitance noise. The materials can also be solution cast, allowing possible low-cost radiation detector fabrication and scale-up. However, improvements in charge collection efficiency are necessary in order to achieve single particle detection with a reasonable sensitivity. The work examined processing variables, additives and environmental effects. Proton beam exposure was used to verify particle sensitivity and radiation hardness to a total exposure of approximately 1 MRAD. Conductivity exhibited sensitivity to temperature and humidity. The effects of molecular ordering were investigated in stretched films, and FTIR was used to quantify the order in films using the Hermans orientation function. The photoconductive response approximately doubled for stretch-aligned films with the stretch direction parallel to the electric field direction, when compared to as-cast films. The response was decreased when the stretch direction was orthogonal to the electric field. Stretch-aligned films also exhibited a significant sensitivity to the polarization of the laser excitation, whereas drop-cast films showed none, indicating improved mobility along the backbone, but poor {pi}-overlap in the orthogonal direction. Drop-cast composites of PPV with substituted fullerenes showed approximately a two order of magnitude increase in photoresponse, nearly independent of nanoparticle concentration. Interestingly, stretch-aligned composite films showed a substantial decrease in photoresponse with increasing stretch ratio. Other additives examined, including small molecules and cosolvents, did not cause any significant increase in photoresponse. Finally, we discovered an inverse-geometric particle track effect wherein increased track lengths created by tilting the detector off normal incidence resulted in decreased signal collection. This is interpreted as a trap-filling effect, leading to increased carrier mobility along the particle track direction. Estimated collection efficiency along the track direction was near 20 electrons/micron of track length, sufficient for particle counting in 50 micron thick films.

  17. Method and apparatus for determining the content and distribution of a thermal neutron absorbing material in an object

    DOE Patents [OSTI]

    Crane, T.W.

    1983-12-21

    The disclosure is directed to an apparatus and method for determining the content and distribution of a thermal neutron absorbing material within an object. Neutrons having an energy higher than thermal neutrons are generated and thermalized. The thermal neutrons are detected and counted. The object is placed between the neutron generator and the neutron detector. The reduction in the neutron flux corresponds to the amount of thermal neutron absorbing material in the object. The object is advanced past the neutron generator and neutron detector to obtain neutron flux data for each segment of the object. The object may comprise a space reactor heat pipe and the thermal neutron absorbing material may comprise lithium.

  18. Method and apparatus for determining the content and distribution of a thermal neutron absorbing material in an object

    DOE Patents [OSTI]

    Crane, Thomas W. (Los Alamos, NM)

    1986-01-01

    The disclosure is directed to an apparatus and method for determining the content and distribution of a thermal neutron absorbing material within an object. Neutrons having an energy higher than thermal neutrons are generated and thermalized. The thermal neutrons are detected and counted. The object is placed between the neutron generator and the neutron detector. The reduction in the neutron flux corresponds to the amount of thermal neutron absorbing material in the object. The object is advanced past the neutron generator and neutron detector to obtain neutron flux data for each segment of the object. The object may comprise a space reactor heat pipe and the thermal neutron absorbing material may comprise lithium.

  19. Response microcantilever thermal detector

    DOE Patents [OSTI]

    Cunningham, Joseph P.; Rajic, Slobodan; Datskos, Panagiotis G.; Evans III, Boyd M.

    2004-10-19

    A "folded leg" thermal detector microcantilever constructed of a substrate with at least one leg interposed between a fixed end and a deflective end, each leg having at least three essentially parallel leg segments interconnected on alternate opposing ends and aligned in a serpentine pattern with only the first leg segment attached to the fixed end and only the last leg segment attached to the deflective end. Alternate leg segment are coated on the pentalever with coating applied to the top of the first, third, and fifth leg segments of each leg and to the bottom of the second and fourth leg segments of each leg.

  20. Ion chamber based neutron detectors

    DOE Patents [OSTI]

    Derzon, Mark S; Galambos, Paul C; Renzi, Ronald F

    2014-12-16

    A neutron detector with monolithically integrated readout circuitry, including: a bonded semiconductor die; an ion chamber formed in the bonded semiconductor die; a first electrode and a second electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; and the readout circuitry which is electrically coupled to the first and second electrodes. The bonded semiconductor die includes an etched semiconductor substrate bonded to an active semiconductor substrate. The readout circuitry is formed in a portion of the active semiconductor substrate. The ion chamber has a substantially planar first surface on which the first electrode is formed and a substantially planar second surface, parallel to the first surface, on which the second electrode is formed. The distance between the first electrode and the second electrode may be equal to or less than the 50% attenuation length for neutrons in the neutron absorbing material filling the ion chamber.

  1. BF3 Neutron Detector Tests

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.; Woodring, Mitchell L.

    2009-12-09

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world; thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and detection capabilities are being investigated. Reported here are the results of tests of the efficiency of BF3 tubes at a pressure of 800 torr. These measurements were made partially to validate models of the RPM system that have been modified to simulate the performance of BF3-filled tubes. While BF3 could be a potential replacement for 3He, there are limitations to its use in deployed systems.

  2. THERMAL HYDRAULICS KEYWORDS: neutron activation,

    E-Print Network [OSTI]

    Pázsit, Imre

    THERMAL HYDRAULICS KEYWORDS: neutron activation, flow measurements, evaluation methods FLOWACT, FLOW RATE MEASUREMENTS IN PIPES WITH THE PULSED-NEUTRON ACTIVATION METHOD PER LINDÉN,* GUDMAR GROSSHÖG- neutron activation (PNA) in a specially designed test loop. A stationary neutron generator was used

  3. ATRC Neutron Detector Testing Quick Look Report

    SciTech Connect (OSTI)

    Troy C. Unruh; Benjamin M. Chase; Joy L. Rempe

    2013-08-01

    As part of the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) program, a joint Idaho State University (ISU) / French Alternative Energies and Atomic Energy Commission (CEA) / Idaho National Laboratory (INL) project was initiated in FY-10 to investigate the feasibility of using neutron sensors to provide online measurements of the neutron flux and fission reaction rate in the ATR Critical Facility (ATRC). A second objective was to provide initial neutron spectrum and flux distribution information for physics modeling and code validation using neutron activation based techniques in ATRC as well as ATR during depressurized operations. Detailed activation spectrometry measurements were made in the flux traps and in selected fuel elements, along with standard fission rate distribution measurements at selected core locations. These measurements provide additional calibration data for the real-time sensors of interest as well as provide benchmark neutronics data that will be useful for the ATR Life Extension Program (LEP) Computational Methods and V&V Upgrade project. As part of this effort, techniques developed by Prof. George Imel will be applied by Idaho State University (ISU) for assessing the performance of various flux detectors to develop detailed procedures for initial and follow-on calibrations of these sensors. In addition to comparing data obtained from each type of detector, calculations will be performed to assess the performance of and reduce uncertainties in flux detection sensors and compare data obtained from these sensors with existing integral methods employed at the ATRC. The neutron detectors required for this project were provided to team participants at no cost. Activation detectors (foils and wires) from an existing, well-characterized INL inventory were employed. Furthermore, as part of an on-going ATR NSUF international cooperation, the CEA sent INL three miniature fission chambers (one for detecting fast flux and two for detecting thermal flux) with associated electronics for assessment. In addition, Prof. Imel, ISU, has access to an inventory of Self-Powered Neutron Detectors (SPNDs) with a range of response times as well as Back-to-Back (BTB) fission chambers from prior research he conducted at the Transient REActor Test Facility (TREAT) facility and Neutron RADiography (NRAD) reactors. Finally, SPNDs from the National Atomic Energy Commission of Argentina (CNEA) were provided in connection with the INL effort to upgrade ATR computational methods and V&V protocols that are underway as part of the ATR LEP. Work during fiscal year 2010 (FY10) focussed on design and construction of Experiment Guide Tubes (EGTs) for positioning the flux detectors in the ATRC N-16 locations as well as obtaining ATRC staff concurrence for the detector evaluations. Initial evaluations with CEA researchers were also started in FY10 but were cut short due to reactor reliability issues. Reactor availability issues caused experimental work to be delayed during FY11/12. In FY13, work resumed; and evaluations were completed. The objective of this "Quick Look" report is to summarize experimental activities performed from April 4, 2013 through May 16, 2013.

  4. Boron nitride solid state neutron detector

    DOE Patents [OSTI]

    Doty, F. Patrick

    2004-04-27

    The present invention describes an apparatus useful for detecting neutrons, and particularly for detecting thermal neutrons, while remaining insensitive to gamma radiation. Neutrons are detected by direct measurement of current pulses produced by an interaction of the neutrons with hexagonal pyrolytic boron nitride.

  5. Neutron detector using sol-gel absorber

    DOE Patents [OSTI]

    Hiller, John M. (Oak Ridge, TN); Wallace, Steven A. (Oak Ridge, TN); Dai, Sheng (Knoxville, TN)

    1999-01-01

    An neutron detector composed of fissionable material having ions of lithium, uranium, thorium, plutonium, or neptunium, contained within a glass film fabricated using a sol-gel method combined with a particle detector is disclosed. When the glass film is bombarded with neutrons, the fissionable material emits fission particles and electrons. Prompt emitting activated elements yielding a high energy electron contained within a sol-gel glass film in combination with a particle detector is also disclosed. The emissions resulting from neutron bombardment can then be detected using standard UV and particle detection methods well known in the art, such as microchannel plates, channeltrons, and silicon avalanche photodiodes.

  6. Neutrino Physics with Thermal Detectors

    SciTech Connect (OSTI)

    Nucciotti, A. [Dipartimento di Fisica, Universita di Milano Bicocca and INFN Sezione di Milano-Bicocca Piazza della Scienza, 3, 20126 Milano (Italy)

    2009-11-09

    The investigation of fundamental neutrino properties like its mass and its nature calls for the design of a new generation of experiments. High sensitivity, high energy resolution, and versatility together with the possibility of a simple multiplexing scheme are the key features of future detectors for these experiments. Thermal detectors can combine all these features. This paper reviews the status and the perspectives for what concerns the application of this type of detectors to neutrino physics, focusing on direct neutrino mass measurements and neutrinoless double beta decay searches.

  7. Silicon detectors for the n-TOF neutron beams monitoring

    E-Print Network [OSTI]

    Cosentino, L; Barbagallo, M; Colonna, N; Damone, L; Pappalardo, A; Piscopo, M; Finocchiaro, P

    2015-01-01

    During 2014 the second experimental area EAR2 was completed at the n-TOF neutron beam facility at CERN. As the neutrons are produced via spallation, by means of a high-intensity 20 GeV pulsed proton beam impinging on a thick target, the resulting neutron beam covers an enormous energy range, from thermal to several GeV. In this paper we describe two beam diagnostic devices, designed and built at INFN-LNS, both exploiting silicon detectors coupled with neutron converter foils containing 6Li. The first one is based on four silicon pads and allows to monitor the neutron beam flux as a function of the neutron energy. The second one, based on position sensitive silicon detectors, is intended for the reconstruction of the beam profile, again as a function of the neutron energy. Several electronic setups have been explored in order to overcome the issues related to the gamma flash, namely a huge pulse present at the start of each neutron bunch which may blind the detectors for some time. The two devices have been ch...

  8. First Study of Neutron Tagging with a Water Cherenkov Detector

    E-Print Network [OSTI]

    The Super-Kamiokande Collaboration; :; H. Watanabe; H. Zhang

    2008-11-06

    A first study of neutron tagging is conducted in Super--Kamiokande, a 50,000-ton water Cherenkov detector. The tagging efficiencies of thermal neutrons are evaluated in a 0.2 % GdCl$_{3}$-water solution and pure water. They are determined to be, respectively, 66.7 % for events above 3 MeV and 20 % with corresponding background probabilities of 2 $\\times$ 10$^{-4}$ and 3 $\\times$ 10$^{-2}$. This newly developed technique may enable water Cherenkov detectors to identify $\\bar \

  9. A multilayer surface detector for ultracold neutrons

    E-Print Network [OSTI]

    Wang, Zhehui; Callahan, N B; Adamek, E R; Bacon, J D; Blatnik, M; Brandt, A E; Broussard, L J; Clayton, S M; Cude-Woods, C; Currie, S; Dees, E B; Ding, X; Gao, J; Gray, F E; Hoffbauer, M A; Holley, A T; Ito, T M; Liu, C -Y; Makela, M; Ramsey, J C; Pattie,, R W; Salvat, D J; Saunders, A; Schmidt, D W; Schulze, R K; Seestrom, S J; Sharapov, E I; Sprow, A; Tang, Z; Wei, W; Wexler, J W; Womack, T L; Young, A R; Zeck, B A

    2015-01-01

    A multilayer surface detector for ultracold neutrons (UCNs) is described. The top $^{10}$B layer is exposed to the vacuum chamber and directly captures UCNs. The ZnS:Ag layer beneath the $^{10}$B layer is a few microns thick, which is sufficient to detect the charged particles from the $^{10}$B(n,$\\alpha$)$^7$Li neutron-capture reaction, while thin enough so that ample light due to $\\alpha$ and $^7$Li escapes for detection by photomultiplier tubes. One-hundred-nm thick $^{10}$B layer gives high UCN detection efficiency, as determined by the mean UCN kinetic energy, detector materials and others. Low background, including negligible sensitivity to ambient neutrons, has also been verified through pulse-shape analysis and comparisons with other existing $^3$He and $^{10}$B detectors. This type of detector has been configured in different ways for UCN flux monitoring, development of UCN guides and neutron lifetime research.

  10. Boron-Lined Neutron Detector Measurements

    SciTech Connect (OSTI)

    Lintereur, Azaree T.; Kouzes, Richard T.; Ely, James H.; Erikson, Luke E.; Siciliano, Edward R.; Woodring, Mitchell L.

    2010-03-07

    PNNL-18938 Revision Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. Reported here are the results of tests of a newly designed boron-lined proportional counter option. This testing measured the neutron detection efficiency and gamma ray rejection capabilities of two successive prototypes of a system manufactured by GE Reuter Stokes.

  11. Full Scale Coated Fiber Neutron Detector Measurements

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Ely, James H.; Erikson, Luke E.; Kernan, Warnick J.; Stromswold, David C.; Woodring, Mitchell L.

    2010-03-17

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. These technologies are: 1) Boron trifluoride (BF3)-filled proportional counters, 2) Boron-lined proportional counters, 3) Lithium-loaded glass fibers, and 4) Coated non-scintillating plastic fibers. Reported here are the results of tests of the full-scale 6Li/ZnS(Ag)-coated non-scintillating plastic fibers option. This testing measured the required performance for neutron detection efficiency and gamma ray rejection capabilities of a system manufactured by Innovative American Technology (IAT) and Saint Gobain, and is a follow-up report to an earlier one on a smaller prototype system.

  12. Boron-Lined Neutron Detector Measurements

    SciTech Connect (OSTI)

    Lintereur, Azaree T.; Kouzes, Richard T.; Ely, James H.; Erikson, Luke E.; Siciliano, Edward R.

    2009-11-02

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. Reported here are the results of tests of a newly designed boron-lined proportional counter option. This testing measured the neutron detection efficiency and gamma ray rejection capabilities of a system manufactured by Reuter Stokes.

  13. Lithium Loaded Glass Fiber Neutron Detector Tests

    SciTech Connect (OSTI)

    Ely, James H.; Erikson, Luke E.; Kouzes, Richard T.; Lintereur, Azaree T.; Stromswold, David C.

    2009-11-12

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world and, thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. Reported here are the results of tests of the lithium-loaded glass fibers option. This testing measured the neutron detection efficiency and gamma ray rejection capabilities of a small system manufactured by Nucsafe (Oak Ridge, TN).

  14. Neutron Multiplicity Measurements With 3He Alternative: Straw Neutron Detectors

    SciTech Connect (OSTI)

    Mukhopadhyay, Sanjoy

    2015-01-01

    Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as ‘‘ship effect ’’) and to the complicated nature of the neutron scattering in that environment. A prototype neutron detector was built using 10B as the converter in a special form factor called ‘‘straws’’ that would address the above problems by looking into the details of multiplicity distributions of neutrons originating from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and developed a data acquisition (DAQ) system to collect neutron multiplicity information from spontaneous fission sources using a single panel consisting of 60 straws equally distributed over three rows in high-density polyethylenemoderator. In the following year, we developed the field-programmable gate array and associated DAQ software. This SDRD effort successfully produced a prototype NMC with*33% detection efficiency compared to a commercial fission meter.

  15. Directional fast-neutron detector

    DOE Patents [OSTI]

    Byrd, Roger C. (Albuquerque, NM)

    1994-01-01

    A plurality of omnidirectional radiation detectors are arranged in a close packed symmetrical pattern to form a segmented detector. The output radiation counts from these detectors are arithmetically combined to provide the direction of a source of incident radiation. Directionality is achieved without the use of shielding to provide collimation and background reduction effects. Indeed, output counts from paired detectors are simply subtracted to yield a vector direction toward the radiation source. The counts from all of the detectors can be combined to yield an output signal functionally related to the radiation source strength.

  16. Plutonium Detection with Straw Neutron Detectors

    SciTech Connect (OSTI)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Guss, Paul

    2014-03-27

    A kilogram of weapons grade plutonium gives off about 56,000 neutrons per second of which 55,000 neutrons come from spontaneous fission of 240Pu (~6% by weight of the total plutonium). Actually, all even numbered isotopes (238Pu, 240Pu, and 242Pu) produce copious spontaneous fission neutrons. These neutrons induce fission in the surrounding fissile 239Pu with an approximate multiplication of a factor of ~1.9. This multiplication depends on the shape of the fissile materials and the surrounding material. These neutrons (typically of energy 2 MeV and air scattering mean free path >100 meters) can be detected 100 meters away from the source by vehicle-portable neutron detectors. [1] In our current studies on neutron detection techniques, without using 3He gas proportional counters, we designed and developed a portable high-efficiency neutron multiplicity counter using 10B-coated thin tubes called straws. The detector was designed to perform like commercially available fission meters (manufactured by Ortec Corp.) except instead of using 3He gas as a neutron conversion material, we used a thin coating of 10B.

  17. Measurements of the Thermal Neutron Scattering Kernel

    E-Print Network [OSTI]

    Danon, Yaron

    Measurements of the Thermal Neutron Scattering Kernel Li (Emily) Liu, Yaron Danon, Bjorn Becker and discussions Problems and Future study Questions #12;3 M. Mattes and J. Keinert, Thermal Neutron Scattering experimental data used was from 1973-1974! M. Mattes and J. Keinert, Thermal Neutron Scattering Data

  18. Boron filling of high aspect ratio holes by chemical vapor deposition for solid-state neutron detector applications

    E-Print Network [OSTI]

    Danon, Yaron

    . Helium-3 gas-filled tube has long been used as a neutron detector because of its high neu- tron detection was characterized for the thermal neutron detection efficiency. VC 2012 American Vacuum Society. [http, efficient solid-state neutron detectors based on silicon microstructures with large detecting surface area

  19. Improving neutron dosimetry using bubble detector technology

    SciTech Connect (OSTI)

    Buckner, M.A.

    1993-02-01

    Providing accurate neutron dosimetry for a variety of neutron energy spectra is a formidable task for any dosimetry system. Unless something is known about the neutron spectrum prior to processing the dosimeter, the calculated dose may vary greatly from that actually encountered; that is until now. The entrance of bubble detector technology into the field of neutron dosimetry has eliminated the necessity of having an a priori knowledge of the neutron energy spectra. Recently, a new approach in measuring personnel neutron dose equivalent was developed at Oak Ridge National Laboratory. By using bubble detectors in combination with current thermoluminescent dosimeters (TLDs) as a Combination Personnel Neutron Dosimeter (CPND), not only is it possible to provide accurate dose equivalent results, but a simple four-interval neutron energy spectrum is obtained as well. The components of the CPND are a Harshaw albedo TLD and two bubble detectors with theoretical energy thresholds of 100 key and 1500 keV. Presented are (1) a synoptic history surrounding emergence of bubble detector technology, (2) a brief overview of the current theory on mechanisms of interaction, (3) the data and analysis process involved in refining the response functions, (4) performance evaluation of the original CPND and a reevaluation of the same data under the modified method, (5) the procedure used to determine the reference values of component fluence and dose equivalent for field assessment, (6) analysis of the after-modification results, (7) a critique of some currently held assumptions, offering some alternative explanations, and (8) thoughts concerning potential applications and directions for future research.

  20. Author's personal copy Perforated diode neutron detector modules fabricated from

    E-Print Network [OSTI]

    Shultis, J. Kenneth

    Author's personal copy Perforated diode neutron detector modules fabricated from high Perforated detectors Perforated diodes a b s t r a c t Compact neutron detectors are being designed that are mass produced from high-purity Si wafers. Each detector has thousands of circular perforations etched

  1. Thermal Neutrons in Eas: A New Dimension in Eas Study

    E-Print Network [OSTI]

    Yuri V. Stenkin

    2007-02-27

    A new method to study Extensive Air Shower (EAS) hadronic component is proposed. It is shown that addition of specific detectors for thermal neutron detection to a standard array for EAS study can significantly improve its performance. Results of CORSIKA based Monte Carlo simulations as well as preliminary experimental data are presented. A proposal of novel type of EAS array is given.

  2. High efficiency proportional neutron detector with solid liner internal structures

    DOE Patents [OSTI]

    Kisner, Roger Allen; Holcomb, David Eugene; Brown, Gilbert M.

    2014-08-05

    A tube-style neutron detector, a panel-style neutron detector incorporating a plurality of tube-style neutron detectors, and a panel-style neutron detector including a plurality of anode wires are provided. A plurality of channels is provided in a neutron detector such that each channel has an inner surface of a coating layer including a neutron-absorbing material. A wire anode is provided at end of each channel so that electrons generated by a charged daughter particle generated by a neutron are collected to detect a neutron-matter interaction. Moderator units can be incorporated into a neutron detector to provide improved detection efficiencies and/or to determine neutron energy spectrum. Gas-based proportional response from the neutron detectors can be employed for special nuclear material (SNM) detection. This neutron detector can provide similar performance to .sup.3He-based detectors without requiring .sup.3He and without containing toxic, flammable, or high-pressure materials.

  3. Neutron position-sensitive scintillation detector

    DOE Patents [OSTI]

    Strauss, Michael G. (Downers Grove, IL); Brenner, Raul (Woodridge, IL)

    1984-01-01

    A device is provided for mapping one- and two-dimensional distributions of neutron-positions in a scintillation detector. The device consists of a lithium glass scintillator coupled by an air gap and a light coupler to an array of photomultipliers. The air gap concentrates light flashes from the scintillator, whereas the light coupler disperses this concentrated light to a predetermined fraction of the photomultiplier tube array.

  4. Diagnostic of fusion neutrons on JET tokamak using diamond detector

    SciTech Connect (OSTI)

    Nemtsev, G.; Amosov, V.; Marchenko, N.; Meshchaninov, S.; Rodionov, R.; Popovichev, S.; Collaboration: JET EFDA Conbributors

    2014-08-21

    In 2011-2012, an experimental campaign with a significant yield of fusion neutrons was carried out on the JET tokamak. During this campaign the facility was equipped with two diamond detectors based on natural and artificial CVD diamond. These detectors were designed and manufactured in State Research Center of Russian Federation TRINITI. The detectors measure the flux of fast neutrons with energies above 0.2 MeV. They have been installed in the torus hall and the distance from the center of plasma was about 3 m. For some of the JET pulses in this experiment, the neutron flux density corresponded to the operational conditions in collimator channels of ITER Vertical Neutron Camera. The main objective of diamond monitors was the measurement of total fast neutron flux at the detector location and the estimation of the JET total neutron yield. The detectors operate as threshold counters. Additionally a spectrometric measurement channel has been configured that allowed us to distinguish various energy components of the neutron spectrum. In this paper we describe the neutron signal measuring and calibration procedure of the diamond detector. Fluxes of DD and DT neutrons at the detector location were measured. It is shown that the signals of total neutron yield measured by the diamond detector correlate with signals measured by the main JET neutron diagnostic based on fission chambers with high accuracy. This experiment can be considered as a successful test of diamond detectors in ITER-like conditions.

  5. Thermal neutron shield and method of manufacture

    DOE Patents [OSTI]

    Brindza, Paul Daniel; Metzger, Bert Clayton

    2013-05-28

    A thermal neutron shield comprising concrete with a high percentage of the element Boron. The concrete is least 54% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of Boron loaded concrete which includes enriching the concrete mixture with varying grit sizes of Boron Carbide.

  6. Thermal neutron shield and method of manufacture

    DOE Patents [OSTI]

    Metzger, Bert Clayton; Brindza, Paul Daniel

    2014-03-04

    A thermal neutron shield comprising boron shielding panels with a high percentage of the element Boron. The panel is least 46% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of boron shielding panels which includes enriching the pre-cursor mixture with varying grit sizes of Boron Carbide.

  7. Boron-10 Neutron Detectors for Helium-3 Replacement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Email Boron-10 Neutron Detectors for Helium-3 Replacement Applications: Portal monitoring Nuclear energy safety and monitoring Nuclear non-proliferation Benefits: Drop-in...

  8. Hand Held Neutron Detector Development for Physics and Security Applications 

    E-Print Network [OSTI]

    Campbell, Caitlin E

    2013-10-04

    energy neutrons may penetrate through the shielding and cause nuclear recoils on the detector that may be mistaken for a WIMP interaction event. The purpose of this project was to create a detector that shields as well as tags incoming neutrons to measure...

  9. Determination of thermal neutron capture gamma yields

    E-Print Network [OSTI]

    Harper, Thomas Lawrence

    1969-01-01

    A method of analysing Ge(Li) thermal neutron capture gamma spectra to obtain total gamma yields has been developed. Tie method determines both the yields from the well resolved gamma peaks in a spectrum as well as the gamma ...

  10. Determination of thermal neutron capture gamma yields.

    E-Print Network [OSTI]

    Harper, Thomas Lawrence

    1969-01-01

    A method of analysing Ge(Li) thermal neutron capture gamma spectra to obtain total gamma yields has been developed. Tie method determines both the yields from the well resolved gamma peaks in a spectrum as well as the gamma ...

  11. Enhancing the detector for advanced neutron capture experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Couture, A.; Mosby, S.; Baramsai, B.; Bredeweg, T. A.; Jandel, M.; Macon, K.; O’Donnell, J. M.; Rusev, G.; Taddeucci, T. N; Ullmann, J. L.; et al

    2015-05-28

    The Detector for Advanced Neutron Capture Experiments (DANCE) has been used for extensive studies of neutron capture, gamma decay, photon strength functions, and prompt and delayed fission-gamma emission. Despite these successes, the potential measurements have been limited by the data acquisition hardware. We report on a major upgrade of the DANCE data acquisition that simultaneously enables strait-forward coupling to auxiliary detectors, including high-resolution high-purity germanium detectors and neutron tagging array. The upgrade will enhance the time domain accessible for time-of-flight neutron measurements as well as improve the resolution in the DANCE barium fluoride crystals for photons.

  12. Neutron detector using lithiated glass-scintillating particle composite

    DOE Patents [OSTI]

    Wallace, Steven (Knoxville, TN); Stephan, Andrew C. (Knoxville, TX); Dai, Sheng (Knoxville, TN); Im, Hee-Jung (Knoxville, TN)

    2009-09-01

    A neutron detector composed of a matrix of scintillating particles imbedded in a lithiated glass is disclosed. The neutron detector detects the neutrons by absorbing the neutron in the lithium-6 isotope which has been enriched from the natural isotopic ratio to a commercial ninety five percent. The utility of the detector is optimized by suitably selecting scintillating particle sizes in the range of the alpha and the triton. Nominal particle sizes are in the range of five to twenty five microns depending upon the specific scintillating particle selected.

  13. DANCE : a 4[pi] barium fluoride detector for measuring neutron capture on unstable nuclei /.

    SciTech Connect (OSTI)

    Ullmann, J. L. (John L.); Haight, Robert C.; Hunt, L. F. (Lloyd F.); Reifarth, R. (Rene); Rundberg, R. S. (Robert S.); Bredeweg, T. A. (Todd A); Fowler, Malcolm M.; Miller, G. G. (Geoffrey G.); Heil, M.; Käppeler, F. (Franz); Chamberlin, E. P. (Edwin P.)

    2002-01-01

    Measurements of neutron capture on unstable nuclei are important for studies of s-process nucleosynthesis, nuclear waste transmutation, and stewardship science. A 160-element, 4{pi} barium fluoride detector array, and associated neutron flight path, is being constructed to make capture measurements at the moderated neutron spallation source at LANSCE. Measurements can be made on as little as 1 mg of sample material over energies from near thermal to near 100 keV. The design of the DANCE array is described and neutron flux measurements from flight path commissioning are shown. The array is expected to be complete by the end of 2002.

  14. Validation of the fast neutron spectrum in the coupled fast-thermal system HERBE

    SciTech Connect (OSTI)

    Avdic, S.; Pesic, M.; Marinkovic, P.

    1995-12-31

    Methods applied in the calculation and interpretation of the measurements of the fast neutron spectrum in the NERBE coupled fast-thermal system are validated in this paper. When advantages and disadvantages of a He-filled semi-conductor-sandwich detector are compared to other neutron detectors, the former is found more appropriate. The neutron detection is based on the reaction {sup 3}He(n,p)T + 0.764 MeV and simultaneous detection of the reaction products in the silicon diodes. The pulses from the diodes are amplified and shaped in separate {open_quotes}energy{close_quotes} channels and summed to produce a single pulse with height proportional to the energy of the incident neutron plus the Q value of the reaction. A well-known measuring system of the He neutron spectrometer is used for the HERBE fast neutron spectrum measurement and calibration in a thermal neutron field.

  15. Test of a prototype neutron spectrometer based on diamond detectors in a fast reactor

    E-Print Network [OSTI]

    M. Osipenko; F. Pompili; M. Ripani; M. Pillon; G. Ricco; B. Caiffi; R. Cardarelli; G. Verona-Rinati; S. Argiro

    2015-05-23

    A prototype of neutron spectrometer based on diamond detectors has been developed. This prototype consists of a $^6$Li neutron converter sandwiched between two CVD diamond crystals. The radiation hardness of the diamond crystals makes it suitable for applications in low power research reactors, while a low sensitivity to gamma rays and low leakage current of the detector permit to reach good energy resolution. A fast coincidence between two crystals is used to reject background. The detector was read out using two different electronic chains connected to it by a few meters of cable. The first chain was based on conventional charge-sensitive amplifiers, the other used a custom fast charge amplifier developed for this purpose. The prototype has been tested at various neutron sources and showed its practicability. In particular, the detector was calibrated in a TRIGA thermal reactor (LENA laboratory, University of Pavia) with neutron fluxes of $10^8$ n/cm$^2$s and at the 3 MeV D-D monochromatic neutron source named FNG (ENEA, Rome) with neutron fluxes of $10^6$ n/cm$^2$s. The neutron spectrum measurement was performed at the TAPIRO fast research reactor (ENEA, Casaccia) with fluxes of 10$^9$ n/cm$^2$s. The obtained spectra were compared to Monte Carlo simulations, modeling detector response with MCNP and Geant4.

  16. High sensitivity, solid state neutron detector

    DOE Patents [OSTI]

    Stradins, Pauls; Branz, Howard M; Wang, Qi; McHugh, Harold R

    2015-05-12

    An apparatus (200) for detecting slow or thermal neutrons (160). The apparatus (200) includes an alpha particle-detecting layer (240) that is a hydrogenated amorphous silicon p-i-n diode structure. The apparatus includes a bottom metal contact (220) and a top metal contact (250) with the diode structure (240) positioned between the two contacts (220, 250) to facilitate detection of alpha particles (170). The apparatus (200) includes a neutron conversion layer (230) formed of a material containing boron-10 isotopes. The top contact (250) is pixilated with each contact pixel extending to or proximate to an edge of the apparatus to facilitate electrical contacting. The contact pixels have elongated bodies to allow them to extend across the apparatus surface (242) with each pixel having a small surface area to match capacitance based upon a current spike detecting circuit or amplifier connected to each pixel. The neutron conversion layer (860) may be deposited on the contact pixels (830) such as with use of inkjet printing of nanoparticle ink.

  17. High sensitivity, solid state neutron detector

    DOE Patents [OSTI]

    Stradins, Pauls; Branz, Howard M.; Wang, Qi; McHugh, Harold R.

    2013-10-29

    An apparatus (200) for detecting slow or thermal neutrons (160) including an alpha particle-detecting layer (240) that is a hydrogenated amorphous silicon p-i-n diode structure. The apparatus includes a bottom metal contact (220) and a top metal contact (250) with the diode structure (240) positioned between the two contacts (220, 250) to facilitate detection of alpha particles (170). The apparatus (200) includes a neutron conversion layer (230) formed of a material containing boron-10 isotopes. The top contact (250) is pixilated with each contact pixel extending to or proximate to an edge of the apparatus to facilitate electrical contacting. The contact pixels have elongated bodies to allow them to extend across the apparatus surface (242) with each pixel having a small surface area to match capacitance based upon a current spike detecting circuit or amplifier connected to each pixel. The neutron conversion layer (860) may be deposited on the contact pixels (830) such as with use of inkjet printing of nanoparticle ink.

  18. Compound Refractive Lenses for Thermal Neutron Applications

    SciTech Connect (OSTI)

    Gary, Charles K.

    2013-11-12

    This project designed and built compound refractive lenses (CRLs) that are able to focus, collimate and image using thermal neutrons. Neutrons are difficult to manipulate compared to visible light or even x rays; however, CRLs can provide a powerful tool for focusing, collimating and imaging neutrons. Previous neutron CRLs were limited to long focal lengths, small fields of view and poor resolution due to the materials available and manufacturing techniques. By demonstrating a fabrication method that can produce accurate, small features, we have already dramatically improved the focal length of thermal neutron CRLs, and the manufacture of Fresnel lens CRLs that greatly increases the collection area, and thus efficiency, of neutron CRLs. Unlike a single lens, a compound lens is a row of N lenslets that combine to produce an N-fold increase in the refraction of neutrons. While CRLs can be made from a variety of materials, we have chosen to mold Teflon lenses. Teflon has excellent neutron refraction, yet can be molded into nearly arbitrary shapes. We designed, fabricated and tested Teflon CRLs for neutrons. We demonstrated imaging at wavelengths as short as 1.26 ? with large fields of view and achieved resolution finer than 250 ?m which is better than has been previously shown. We have also determined designs for Fresnel CRLs that will greatly improve performance.

  19. Selective Filtration of Gadolinium Trichloride for Use in Neutron Detection in Large Water Cherenkov Detectors

    SciTech Connect (OSTI)

    Vagins, Mark R.

    2013-04-10

    Water Cherenkov detectors have been used for many years as inexpensive, effective detectors for neutrino interactions and nucleon decay searches. While many important measurements have been made with these detectors a major drawback has been their inability to detect the absorption of thermal neutrons. We believe an inexpensive, effective technique could be developed to overcome this situation via the addition to water of a solute with a large neutron cross section and energetic gamma daughters which would make neutrons detectable. Gadolinium seems an excellent candidate especially since in recent years it has become very inexpensive, now less than $8 per kilogram in the form of commercially-available gadolinium trichloride, GdCl{sub 3}. This non-toxic, non-reactive substance is highly soluble in water. Neutron capture on gadolinium yields a gamma cascade which would be easily seen in detectors like Super-Kamiokande. We have been investigating the use of GdCl{sub 3} as a possible upgrade for the Super-Kamiokande detector with a view toward improving its performance as a detector for atmospheric neutrinos, supernova neutrinos, wrong-sign solar neutrinos, reactor neutrinos, proton decay, and also as a target for the coming T2K long-baseline neutrino experiment. This focused study of selective water filtration and GdCl{sub 3} extraction techniques, conducted at UC Irvine, followed up on highly promising benchtop-scale and kiloton-scale work previously carried out with the assistance of 2003 and 2005 Advanced Detector Research Program grants.

  20. Cylindrical Detector and Preamplifier Design for Detecting Neutrons 

    E-Print Network [OSTI]

    Xia, Zhenghua

    2010-01-14

    Tissue equivalent proportional counters are frequently used to measure dose and dose equivalent in mixed radiation fields that include neutrons; however, detectors simulating sites 1?m in diameter underestimate the quality factor, Q, for low energy...

  1. Liquid Argon Cryogenic Detector Calibration by Inelastic Scattering of Neutrons

    E-Print Network [OSTI]

    Sergey Polosatkin; Evgeny Grishnyaev; Alexander Dolgov

    2014-07-10

    A method for calibration of cryogenic liquid argon detector response to recoils with certain energy -8.2 keV - is proposed. The method utilizes a process of inelastic scattering of monoenergetic neutrons produced by fusion DD neutron generator. Features of kinematics of inelastic scattering cause sufficient (forty times) increase in count rate of useful events relative to traditional scheme exploited elastic scattering with the same recoil energy and compatible energy resolution. The benefits of the proposed scheme of calibration most well implemented with the use of tagged neutron generator as a neutron source that allows to eliminate background originated from casual coincidence of signals on cryogenic detector and additional detector of scattered neutrons.

  2. Neutron Interactions as Seen by A Segmented Germanium Detector

    E-Print Network [OSTI]

    I. Abt; A. Caldwell; K. Kroeninger; J. Liu; X. Liu; B. Majorovits

    2007-11-14

    The GERmanium Detector Array, GERDA, is designed for the search for ``neutrinoless double beta decay'' (0-nu-2-beta) with germanium detectors enriched in Ge76. An 18-fold segmented prototype detector for GERDA Phase II was exposed to an AmBe neutron source to improve the understanding of neutron induced backgrounds. Neutron interactions with the germanium isotopes themselves and in the surrounding materials were studied. Segment information is used to identify neutron induced peaks in the recorded energy spectra. The Geant4 based simulation package MaGe is used to simulate the experiment. Though many photon peaks from germanium isotopes excited by neutrons are correctly described by Geant4, some physics processes were identified as being incorrectly treated or even missing.

  3. Neutron detectors comprising ultra-thin layers of boron powder

    DOE Patents [OSTI]

    Wang, Zhehul; Morris, Christopher

    2013-07-23

    High-efficiency neutron detector substrate assemblies comprising a first conductive substrate, wherein a first side of the substrate is in direct contact with a first layer of a powder material having a thickness of from about 50 nm to about 250 nm and comprising .sup.10boron, .sup.10boron carbide or combinations thereof, and wherein a conductive material is in proximity to the first layer of powder material; and processes of making said neutron detector substrate assemblies.

  4. Applications of Bonner sphere detectors in neutron field dosimetry

    SciTech Connect (OSTI)

    Awschalom, M.; Sanna, R.S.

    1983-09-01

    The theory of neutron moderation and spectroscopy are briefly reviewed, and moderators that are useful for Bonner sphere spectrometers are discussed. The choice of the neutron detector for a Bonner sphere spectrometer is examined. Spectral deconvolution methods are briefly reviewed, including derivative, parametric, quadrature, and Monte Carlo methods. Calibration is then discussed. (LEW)

  5. Neutron counting and gamma spectroscopy with PVT detectors.

    SciTech Connect (OSTI)

    Mitchell, Dean James; Brusseau, Charles A.

    2011-06-01

    Radiation portals normally incorporate a dedicated neutron counter and a gamma-ray detector with at least some spectroscopic capability. This paper describes the design and presents characterization data for a detection system called PVT-NG, which uses large polyvinyl toluene (PVT) detectors to monitor both types of radiation. The detector material is surrounded by polyvinyl chloride (PVC), which emits high-energy gamma rays following neutron capture reactions. Assessments based on high-energy gamma rays are well suited for the detection of neutron sources, particularly in border security applications, because few isotopes in the normal stream of commerce have significant gamma ray yields above 3 MeV. Therefore, an increased count rate for high-energy gamma rays is a strong indicator for the presence of a neutron source. The sensitivity of the PVT-NG sensor to bare {sup 252}Cf is 1.9 counts per second per nanogram (cps/ng) and the sensitivity for {sup 252}Cf surrounded by 2.5 cm of polyethylene is 2.3 cps/ng. The PVT-NG sensor is a proof-of-principal sensor that was not fully optimized. The neutron detector sensitivity could be improved, for instance, by using additional moderator. The PVT-NG detectors and associated electronics are designed to provide improved resolution, gain stability, and performance at high-count rates relative to PVT detectors in typical radiation portals. As well as addressing the needs for neutron detection, these characteristics are also desirable for analysis of the gamma-ray spectra. Accurate isotope identification results were obtained despite the common impression that the absence of photopeaks makes data collected by PVT detectors unsuitable for spectroscopic analysis. The PVT detectors in the PVT-NG unit are used for both gamma-ray and neutron detection, so the sensitive volume exceeds the volume of the detection elements in portals that use dedicated components to detect each type of radiation.

  6. Ship Effect Measurements With Fiber Optic Neutron Detector

    SciTech Connect (OSTI)

    King, Kenneth L.; Dean, Rashe A.; Akbar, Shahzad; Kouzes, Richard T.; Woodring, Mitchell L.

    2010-08-10

    The main objectives of this research project was to assemble, operate, test and characterize an innovatively designed scintillating fiber optic neutron radiation detector manufactured by Innovative American Technology with possible application to the Department of Homeland Security screening for potential radiological and nuclear threats at US borders (Kouzes 2004). One goal of this project was to make measurements of the neutron ship effect for several materials. The Virginia State University DOE FaST/NSF summer student-faculty team made measurements with the fiber optic radiation detector at PNNL above ground to characterize the ship effect from cosmic neutrons, and underground to characterize the muon contribution.

  7. High-efficiency neutron detectors and methods of making same

    DOE Patents [OSTI]

    McGregor, Douglas S.; Klann, Raymond

    2007-01-16

    Neutron detectors, advanced detector process techniques and advanced compound film designs have greatly increased neutron-detection efficiency. One embodiment of the detectors utilizes a semiconductor wafer with a matrix of spaced cavities filled with one or more types of neutron reactive material such as 10B or 6LiF. The cavities are etched into both the front and back surfaces of the device such that the cavities from one side surround the cavities from the other side. The cavities may be etched via holes or etched slots or trenches. In another embodiment, the cavities are different-sized and the smaller cavities extend into the wafer from the lower surfaces of the larger cavities. In a third embodiment, multiple layers of different neutron-responsive material are formed on one or more sides of the wafer. The new devices operate at room temperature, are compact, rugged, and reliable in design.

  8. Boron-Lined Straw-Tube Neutron Detector Test

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Ely, James H.; Stromswold, David C.

    2010-08-07

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. Reported here are the results of tests of a boron-lined proportional counter design variation. In the testing described here, the neutron detection efficiency and gamma ray rejection capabilities of a system manufactured by Proportional Technologies, Inc, was tested.

  9. A Balloon-borne Measurement of High Latitude Atmospheric Neutrons Using a LiCAF Neutron Detector

    E-Print Network [OSTI]

    Kole, Merlin; Fukuda, Kentaro; Ishizu, Sumito; Jackson, Miranda; Kamae, Tune; Kawaguchi, Noriaki; Kawano, Takafumi; Kiss, Mózsi; Moretti, Elena; Salinas, Maria Fernanda Muńoz; Pearce, Mark; Rydström, Stefan; Takahashi, Hiromitsu; Yanagida, Takayuki

    2013-01-01

    PoGOLino is a scintillator-based neutron detector. Its main purpose is to provide data on the neutron flux in the upper stratosphere at high latitudes at thermal and nonthermal energies for the PoGOLite instrument. PoGOLite is a balloon borne hard X-ray polarimeter for which the main source of background stems from high energy neutrons. No measurements of the neutron environment for the planned flight latitude and altitude exist. Furthermore this neutron environment changes with altitude, latitude and solar activity, three variables that will vary throughout the PoGOLite flight. PoGOLino was developed to study the neutron environment and the influences from these three variables upon it. PoGOLino consists of two Europium doped Lithium Calcium Aluminium Fluoride (Eu:LiCAF) scintillators, each of which is sandwiched between 2 Bismuth Germanium Oxide (BGO) scintillating crystals, which serve to veto signals produced by gamma-rays and charged particles. This allows the neutron flux to be measured even in high rad...

  10. Lithium and Zinc Sulfide Coated Plastic Neutron Detector Test

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Ely, James H.

    2010-07-16

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. In addition, a few other companies have detector technologies that might be competitive in the near term as an alternative technology. Reported here are the results of tests of 6Li/ZnS(Ag)-coated scintillator paddles. This testing measured the required performance for neutron detection efficiency and gamma ray rejection capabilities of a system manufactured by Symetrica.

  11. The All Boron Carbide Diode Neutron Detector: Experiment and Modeling Approach

    SciTech Connect (OSTI)

    Sabirianov, Ildar F.; Brand, Jennifer I. |; Fairchild, Robert W.

    2008-07-01

    Boron carbide diode detectors, fabricated from two different polytypes of semiconducting boron carbide, will detect neutrons in reasonable agreement with theoretical expectations. The performance of the all boron carbide neutron detector differs, as expected, from devices where a boron rich neutron capture layer is distinct from the diode charge collection region (i.e. a conversion layer solid state detector). Diodes were fabricated from natural abundance boron (20% {sup 10}B and 80% {sup 11}B.) directly on the metal substrates and metal contacts applied to the films as grown. The total boron depth was on the order of 2 microns. This is clearly not a conversion-layer configuration. The diodes were exposed to thermal neutrons generated from a paraffin moderated plutonium-beryllium source in moderated and un-moderated, as well as shielded and unshielded experimental configurations, where the expected energy peaks at at 2.31 MeV and 2.8 MeV were clearly observed, albeit with some incomplete charge collection typical of thinner diode structures. The results are compared with other boron based thin film detectors and literature models. (authors)

  12. Diamond detector for high rate monitors of fast neutrons beams

    SciTech Connect (OSTI)

    Giacomelli, L.; Rebai, M.; Cippo, E. Perelli; Tardocchi, M.; Fazzi, A.; Andreani, C.; Pietropaolo, A.; Frost, C. D.; Rhodes, N.; Schooneveld, E.; Gorini, G.

    2012-06-19

    A fast neutron detection system suitable for high rate measurements is presented. The detector is based on a commercial high purity single crystal diamond (SDD) coupled to a fast digital data acquisition system. The detector was tested at the ISIS pulsed spallation neutron source. The SDD event signal was digitized at 1 GHz to reconstruct the deposited energy (pulse amplitude) and neutron arrival time; the event time of flight (ToF) was obtained relative to the recorded proton beam signal t{sub 0}. Fast acquisition is needed since the peak count rate is very high ({approx}800 kHz) due to the pulsed structure of the neutron beam. Measurements at ISIS indicate that three characteristics regions exist in the biparametric spectrum: i) background gamma events of low pulse amplitudes; ii) low pulse amplitude neutron events in the energy range E{sub dep}= 1.5-7 MeV ascribed to neutron elastic scattering on {sup 12}C; iii) large pulse amplitude neutron events with E{sub n} < 7 MeV ascribed to {sup 12}C(n,{alpha}){sup 9}Be and 12C(n,n')3{alpha}.

  13. Gamma-Free Neutron Detector Based upon Lithium Phosphate Nanoparticles

    SciTech Connect (OSTI)

    Steven Wallace

    2007-08-28

    A gamma-free neutron-sensitive scintillator is needed to enhance radiaition sensing and detection for nonproliferation applications. Such a scintillator would allow very large detectors to be placed at the perimeter of spent-fuel storage facilities at commercial nuclear power plants, so that any movement of spontaneously emitted neutrons from spent nuclear fuel or weapons grade plutonium would be noted in real-time. This task is to demonstrate that the technology for manufacturing large panels of fluor-doped plastic containing lithium-6 phosphate nanoparticles can be achieved. In order to detect neutrons, the nanoparticles must be sufficiently small so that the plastic remains transparent. In this way, the triton and alpha particles generated by the capture of the neutron will result in a photon burst that can be coupled to a wavelength shifting fiber (WLS) producing an optical signal of about ten nanoseconds duration signaling the presence of a neutron emitting source.

  14. Observation of Neutrons with a Gadolinium Doped Water Cerenkov Detector

    E-Print Network [OSTI]

    S. Dazeley; A. Bernstein; N. S. Bowden; R. Svoboda

    2008-08-02

    Spontaneous and induced fission in Special Nuclear Material (SNM) such as 235U and 239Pu results in the emission of neutrons and high energy gamma-rays. The multiplicities of and time correlations between these particles are both powerful indicators of the presence of fissile material. Detectors sensitive to these signatures are consequently useful for nuclear material monitoring, search, and characterization. In this article, we demonstrate sensitivity to both high energy gamma-rays and neutrons with a water Cerenkov based detector. Electrons in the detector medium, scattered by gamma-ray interactions, are detected by their Cerenkov light emission. Sensitivity to neutrons is enhanced by the addition of a gadolinium compound to the water in low concentrations. Cerenkov light is similarly produced by an 8 MeV gamma-ray cascade following neutron capture on the gadolinium. The large solid angle coverage and high intrinsic efficiency of this detection approach can provide robust and low cost neutron and gamma-ray detection with a single device.

  15. Rocky Flats Neutron Detector Testing at Valduc, France

    SciTech Connect (OSTI)

    Kim, S S; Dulik, G M

    2011-01-03

    Recent program requirements of the US Department of Energy/NNSA have led to a need for a criticality accident alarm system to be installed at a newly activated facility. The Criticality Safety Group of the Lawrence Livermore National Laboratory (LLNL) was able to recover and store for possible future use approximately 200 neutron criticality detectors and 20 master alarm panels from the former Rocky Flats Plant in Golden, Colorado when the plant was closed. The Criticality Safety Group participated in a facility analysis and evaluation, the engineering design and review process, as well as the refurbishment, testing, and recalibration of the Rocky Flats criticality alarm system equipment to be used in the new facility. In order to demonstrate the functionality and survivability of the neutron detectors to the effects of an actual criticality accident, neutron detector testing was performed at the French CEA Valduc SILENE reactor from October 7 to October 19, 2010. The neutron detectors were exposed to three criticality events or pulses generated by the SILENE reactor. The first excursion was performed with a bare or unshielded reactor, and the second excursion was made with a lead shielded/reflected reactor, and the third excursion with a polyethylene reflected core. These tests of the Rocky Flats neutron detectors were performed as a part of the 2010 Criticality Accident Alarm System Benchmark Measurements at the SILENE Reactor. The principal investigators for this series of experiments were Thomas M. Miller and John C. Wagner of the Oak Ridge National Laboratory, with Nicolas Authier and Nathalie Baclet of CEA Valduc. Several other organizations were also represented, including the Y-12 National Security Complex, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, CEA Saclay, and Babcock International Group.

  16. Novel Large Area High Resolution Neutron Detector for the Spallation Neutron Source

    SciTech Connect (OSTI)

    Lacy, Jeffrey L

    2009-05-22

    Neutron scattering is a powerful technique that is critically important for materials science and structural biology applications. The knowledge gained from past developments has resulted in far-reaching advances in engineering, pharmaceutical and biotechnology industries, to name a few. New facilities for neutron generation at much higher flux, such as the SNS at Oak Ridge, TN, will greatly enhance the capabilities of neutron scattering, with benefits that extend to many fields and include, for example, development of improved drug therapies and materials that are stronger, longer-lasting, and more impact-resistant. In order to fully realize this enhanced potential, however, higher neutron rates must be met with improved detection capabilities, particularly higher count rate capability in large size detectors, while maintaining practicality. We have developed a neutron detector with the technical and economic advantages to accomplish this goal. This new detector has a large sensitive area, offers 3D spatial resolution, high sensitivity and high count rate capability, and it is economical and practical to produce. The proposed detector technology is based on B-10 thin film conversion of neutrons in long straw-like gas detectors. A stack of many such detectors, each 1 meter in length, and 4 mm in diameter, has a stopping power that exceeds that of He-3 gas, contained at practical pressures within an area detector. With simple electronic readout methods, straw detector arrays can provide spatial resolution of 4 mm FWHM or better, and since an array detector of such form consists of several thousand individual elements per square meter, count rates in a 1 m^2 detector can reach 2?10^7 cps. Moreover, each individual event can be timetagged with a time resolution of less than 0.1 ?sec, allowing accurate identification of neutron energy by time of flight. Considering basic elemental cost, this novel neutron imaging detector can be commercially produced economically, probably at a small fraction of the cost of He-3 detectors. In addition to neutron scattering science, the fully developed base technology can be used as a rugged, low-cost neutron detector in area monitoring and surveying. Radiation monitors are used in a number of other settings for occupational and environmental radiation safety. Such a detector can also be used in environmental monitoring and remote nuclear power plant monitoring. For example, the Department of Energy could use it to characterize nuclear waste dumps, coordinate clean-up efforts, and assess the radioactive contaminants in the air and water. Radiation monitors can be used to monitor the age and component breakdown of nuclear warheads and to distinguish between weapons and reactor grade plutonium. The UN's International Atomic Energy Agency (IAEA) uses radiation monitors for treaty verification, remote monitoring, and enforcing the non-proliferation of nuclear weapons. As part of treaty verification, monitors can be used to certify the contents of containers during inspections. They could be used for portal monitoring to secure border checkpoints, sea ports, air cargo centers, public parks, sporting venues, and key government buildings. Currently, only 2% of all sea cargo shipped is inspected for radiation sources. In addition, merely the presence of radiation is detected and nothing is known about the radioactive source until further testing. The utilization of radiation monitors with neutron sensitivity and capability of operation in hostile port environments would increase the capacity and effectiveness of the radioactive scanning processes.

  17. Thermal neutron capture gamma-rays

    SciTech Connect (OSTI)

    Tuli, J.K.

    1983-01-01

    The energy and intensity of gamma rays as seen in thermal neutron capture are presented. Only those (n,..cap alpha..), E = thermal, reactions for which the residual nucleus mass number is greater than or equal to 45 are included. These correspond to evaluations published in Nuclear Data Sheets. The publication source data are contained in the Evaluated Nuclear Structure Data File (ENSDF). The data presented here do not involve any additional evaluation. Appendix I lists all the residual nuclides for which the data are included here. Appendix II gives a cumulated index to A-chain evaluations including the year of publication. The capture gamma ray data are given in two tables - the Table 1 is the list of all gamma rays seen in (n,..gamma..) reaction given in the order of increasing energy; the Table II lists the gamma rays according to the nuclide.

  18. Novel Boron-10-based detectors for Neutron Scattering Science

    E-Print Network [OSTI]

    Piscitelli, Francesco

    2015-01-01

    Nowadays neutron scattering science is increasing its instrumental power. Most of the neutron sources in the world are pushing the development of their technologies to be more performing. The neutron scattering development is also pushed by the European Spallation Source (ESS) in Sweden, a neutron facility which has just started construction. Concerning small area detectors (1m^2), the 3He technology, which is today cutting edge, is reaching fundamental limits in its development. Counting rate capability, spatial resolution and cost-e?ectiveness, are only a few examples of the features that must be improved to ful?fill the new requirements. On the other hand, 3He technology could still satisfy the detector requirements for large area applications (50m^2), however, because of the present 3He shortage that the world is experiencing, this is not practical anymore. The recent detector advances (the Multi-Grid and the Multi-Blade prototypes) developed in the framework of the collaboration between the Institut Laue...

  19. Solid state neutron detector and method for use

    DOE Patents [OSTI]

    Doty, F. Patrick (Livermore, CA); Zwieback, Ilya (New Milford, NJ); Ruderman, Warren (Demarest, NJ)

    2002-01-01

    Crystals of lithium tetraborate or alpha-barium borate had been found to be neutron detecting materials. The crystals are prepared using known crystal growing techniques, wherein the process does not include the common practice of using a fluxing agent, such as sodium oxide or sodium fluoride, to reduce the melting temperature of the crystalline compound. Crystals prepared by this method can be sliced into thin single or polycrystalline wafers, or ground to a powder and prepared as a sintered compact or a print paste, and then configured with appropriate electronic hardware, in order to function as neutron detectors.

  20. Thermal Neutron Capture y's (CapGam)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Nuclear Data Center (NNDC) presents two tables showing energy and photon intensity with uncertainties of gamma rays as seen in thermal-neutron capture.  One table is organized in ascending order of gamma energy, and the second is organized by Z, A of the target. In the energy-ordered table the three strongest transitions are indicated in each case. The nuclide given is the target nucleus in the capture reaction. The gamma energies given are in keV. The gamma intensities given are relative to 100 for the strongest transition. %I? (per 100 n-captures) for the strongest transition is given, where known. All data are taken from the Evaluated Nuclear Structure Data File (ENSDF), a computer file of evaluated nuclear structure data and from the eXperimental Unevaluated Nuclear Data List (XUNDL). (Specialized Interface)

  1. Measuring Fast Neutrons with Large Liquid Scintillation Detector for Ultra-low Background Experiments

    E-Print Network [OSTI]

    C. Zhang; D. -M. Mei; P. Davis; B. Woltman; F. Gray

    2013-06-12

    We developed a 12-liter volume neutron detector filled with the liquid scintillator EJ301 that measures neutrons in an underground laboratory where dark matter and neutrino experiments are located. The detector target is a cylindrical volume coated on the inside with reflective paint (95% reflectivity) that significantly increases the detector's light collection. We demonstrate several calibration techniques using point sources and cosmic-ray muons for energies up to 20 MeV for this large liquid scintillation detector. Neutron-gamma separation using pulse shape discrimination with a few MeV neutrons to hundreds of MeV neutrons is shown for the first time using a large liquid scintillator.

  2. Non-streaming high-efficiency perforated semiconductor neutron detectors, methods of making same and measuring wand and detector modules utilizing same

    DOE Patents [OSTI]

    McGregor, Douglas S. (Riley, KS); Shultis, John K. (Manhattan, KS); Rice, Blake B. (Manhattan, KS); McNeil, Walter J. (Winnfield, KS); Solomon, Clell J. (Wichita, KS); Patterson, Eric L. (Manhattan, KS); Bellinger, Steven L. (Manhattan, KS)

    2010-12-21

    Non-streaming high-efficiency perforated semiconductor neutron detectors, method of making same and measuring wands and detector modules utilizing same are disclosed. The detectors have improved mechanical structure, flattened angular detector responses, and reduced leakage current. A plurality of such detectors can be assembled into imaging arrays, and can be used for neutron radiography, remote neutron sensing, cold neutron imaging, SNM monitoring, and various other applications.

  3. Large Area Imaging Detector for Neutron Scattering Based on Boron-Rich Liquid Scintillator

    E-Print Network [OSTI]

    Large Area Imaging Detector for Neutron Scattering Based on Boron-Rich Liquid Scintillator D detector, neutron scattering, gaseous photomultiplier Pacs: 29.40.Mc, 29.40.Cs, 61.12.-q, 61.12.Ex to Nucl. Instr. & Meth. A WIS/31/02-July-DPP #12;1. Introduction Slow neutron scattering is one of the key

  4. 280 TECHNICAL NOTES Statistical Estimates of Thermal Neutron

    E-Print Network [OSTI]

    Shlyakhter, Ilya

    berechnete Querschnittsverteilung wird mit neue Daten verglichen. At thermal energies neutron cross sections)A + 1 .So.Syo Here, A is the atomic weight of the target nucleus, ET=0.0253 eV is the thermal energy good approximation at thermal energies. If the resonance parameters were not fluctuating at all

  5. 280 TECIINICAL NOTES Statistical Estimates of Thermal Neutron

    E-Print Network [OSTI]

    Shlyakhter, Ilya

    . At thermal energies neutron cross sections can differ by several orders of magnitude even for neighboring of the target nucleus, ET = 0.0253 eV is the thermal energy, and E0 = 1 eV. In Eq. (1) we assume the following narrow resonances (S, -=KI), which is a rather good approximation at thermal energies. If t

  6. Determination of Thermal Neutron Capture Cross Sections Using Cold Neutron Beams at the Budapest PGAA and NIPS Facilities

    SciTech Connect (OSTI)

    Belgya, T.; Revay, Zs.; Szentmiklosi, L. [Institute of Isotopes, Chemical Research Centre, HAS H-1525 Budapest (Hungary)

    2006-03-13

    We report about our methodology developed for the determination of the thermal capture cross section of various target isotopes at our PGAA and NIPS facilities, which both use a guided cold neutron beam produced by the 10 MW Budapest Research Reactor. The two facilities provide an excellent means for determining partial gamma ray cross sections for products produced in the sample by neutron capture reactions. Both stations are equipped with HPGe detectors to detect the gamma rays coming from the excited nuclei of the samples. We present examples for the determination of thermal capture cross section of various target isotopes including the radioactive 99Tc, 129I nuclei and of the 204,206,207Pb isotopes. The chopped beam option provides a good opportunity to study short-lived products.

  7. X-Ray Energy Responses of Silicon Tomography Detectors Irradiated with Fusion Produced Neutrons

    SciTech Connect (OSTI)

    Kohagura, J. [Plasma Research Centre, University of Tsukuba (Japan); Cho, T. [Plasma Research Centre, University of Tsukuba (Japan); Hirata, M. [Plasma Research Centre, University of Tsukuba (Japan); Numakura, T. [Plasma Research Centre, University of Tsukuba (Japan); Yokoyama, N. [Plasma Research Centre, University of Tsukuba (Japan); Fukai, T. [Plasma Research Centre, University of Tsukuba (Japan); Tomii, Y. [Plasma Research Centre, University of Tsukuba (Japan); Tokioka, S. [Plasma Research Centre, University of Tsukuba (Japan); Miyake, Y. [Plasma Research Centre, University of Tsukuba (Japan); Kiminami, S. [Plasma Research Centre, University of Tsukuba (Japan); Shimizu, K. [Plasma Research Centre, University of Tsukuba (Japan); Miyoshi, S. [Plasma Research Centre, University of Tsukuba (Japan); Hirano, K. [High Energy Accelerator Research Organization (Japan); Yoshida, M. [Japan Atomic Energy Research Institute (Japan); Yamauchi, M. [Japan Atomic Energy Research Institute (Japan); Kondoh, T. [Japan Atomic Energy Research Institute (Japan); Nishitani, T. [Japan Atomic Energy Research Institute (Japan)

    2005-01-15

    In order to clarify the effects of fusion-produced neutron irradiation on silicon semiconductor x-ray detectors, the x-ray energy responses of both n- and p-type silicon tomography detectors used in the Joint European Torus (JET) tokamak (n-type) and the GAMMA 10 tandem mirror (p-type) are studied using synchrotron radiation at the Photon Factory of the National Laboratory for High Energy Accelerator Research Organization (KEK). The fusion neutronics source (FNS) of Japan Atomic Energy Research Institute (JAERI) is employed as well-calibrated D-T neutron source with fluences from 10{sup 13} to 10{sup 15} neutrons/cm{sup 2} onto these semiconductor detectors. Different fluence dependence is found between these two types of detectors; that is, (i) for the n-type detector, the recovery of the degraded response is found after the neutron exposure beyond around 10{sup 13} neutrons/cm{sup 2} onto the detector. A further finding is followed as a 're-degradation' by a neutron irradiation level over about 10{sup 14} neutrons/cm{sup 2}. On the other hand, (ii) the energy response of the p-type detector shows only a gradual decrease with increasing neutron fluences. These properties are interpreted by our proposed theory on semiconductor x-ray responses in terms of the effects of neutrons on the effective doping concentration and the diffusion length of a semiconductor detector.

  8. INVESTIGATION OF NEW MATERIALS AND DETECTORS USING THE ELECTROSTATIC ACCELERATOR AND NEUTRON GENERATOR BEAMS

    E-Print Network [OSTI]

    Titov, Anatoly

    314 INVESTIGATION OF NEW MATERIALS AND DETECTORS USING THE ELECTROSTATIC ACCELERATOR AND NEUTRON, semiconductors) as well as for technical and applied investigations (new materials, nuclear detectors 1. Introduction Existing at PNPI low energy accelerators - a Van de Graaf electrostatic accelerator

  9. A Wide Range Neutron Detector for Space Nuclear Reactor Applications

    SciTech Connect (OSTI)

    Nassif, Eduardo; Sismonda, Miguel; Matatagui, Emilio; Pretorius, Stephan

    2007-01-30

    We propose here a versatile and innovative solution for monitoring and controlling a space-based nuclear reactor that is based on technology already proved in ground based reactors. A Wide Range Neutron Detector (WRND) allows for a reduction in the complexity of space based nuclear instrumentation and control systems. A ground model, predecessor of the proposed system, has been installed and is operating at the OPAL (Open Pool Advanced Light Water Research Reactor) in Australia, providing long term functional data. A space compatible Engineering Qualification Model of the WRND has been developed, manufactured and verified satisfactorily by analysis, and is currently under environmental testing.

  10. Detection of thermal neutrons with a CMOS pixel sensor for a future dosemeter

    SciTech Connect (OSTI)

    Vanstalle, M.; Husson, D.; Higueret, S.; Le, T. D.; Nourreddine, A. M.

    2011-07-01

    The RaMsEs group (Radioprotection et Mesures Environnementales) is developing a new compact device for operational neutron dosimetry. The electronic part of the detector is made of an integrated active pixel sensor, originally designed for tracking in particle physics. This device has useful features for neutrons, such as high detection efficiency for charged particles, good radiation resistance, high readout speed, low power consumption and high rejection of photon background. A good response of the device to fast neutrons has already been demonstrated [1]. In order to test the sensibility of the detector to thermal neutrons, experiments have been carried out with a 512 x 512 pixel CMOS sensor on a californium source moderated with heavy water (Cf.D{sub 2}O) on the Van Gogh irradiator at the LMDN, IRSN, Cadarache (France)). A thin boron converter is used to benefit from the significant cross section of the {sup 10}B (n,{alpha}) {sup 7}Li reaction. Results show a high detection efficiency (around 10{sup -3}) of the device to thermal neutrons. Our measurements are in good agreement with GEANT4 Monte Carlo simulations. (authors)

  11. Thermal neutron capture cross sections of tellurium isotopes

    SciTech Connect (OSTI)

    Tomandl, I.; Honzatko, J.; von Egidy, T.; Wirth, H.-F.; Belgya, T.; Lakatos, M.; Szentmiklosi, L.; Revay, Zs.; Molnar, G.L.; Firestone, R.B.; Bondarenko, V.

    2004-03-01

    New values for thermal neutron capture cross sections of the tellurium isotopes 122Te, 124Te, 125Te, 126Te, 128Te, and 130Te are reported. These values are based on a combination of newly determined partial g-ray cross sections obtained from experiments on targets contained natural Te and gamma intensities per capture of individual Te isotopes. Isomeric ratios for the thermal neutron capture on the even tellurium isotopes are also given.

  12. Development of a Gain Monitoring System for a Neutron Detector Array

    E-Print Network [OSTI]

    Saskatchewan, University of

    Development of a Gain Monitoring System for a Neutron Detector Array A Thesis Submitted the neutron detector array a gain monitoring system will be included. The new system will provide continuous conducted to determine the accuracy of the gain monitoring system. Three groups of trials focused

  13. Neutron Slowing Down in a Detector with Absorption Sara A. Pozzi*

    E-Print Network [OSTI]

    Pázsit, Imre

    Neutron Slowing Down in a Detector with Absorption Sara A. Pozzi* Oak Ridge National Laboratory, P of scattering collisions undergone by fast neutrons as they slow down until they are absorbed was presented realistic case of neutron slowing down in a homogeneous mixture. The formulas are derived and evaluated

  14. Estimation of Performance of an Active Well Coincidence Counter Equipped with Boron-Coated Straw Neutron Detectors - 13401

    SciTech Connect (OSTI)

    Young, B.M. [Canberra Industries, Inc., 800 Research Parkway, Meriden, CT 06450 (United States)] [Canberra Industries, Inc., 800 Research Parkway, Meriden, CT 06450 (United States); Lacy, J.L.; Athanasiades, A. [Proportional Technologies, Inc., 8022 El Rio Street, Houston, TX 77054 (United States)] [Proportional Technologies, Inc., 8022 El Rio Street, Houston, TX 77054 (United States)

    2013-07-01

    He-3, a very rare isotope of natural helium gas, has ideal properties for the detection of thermal neutrons. As such it has become the standard material for neutron detectors and sees ubiquitous use within many radiometric applications that require neutron sensitivity. Until recently, there has been a fairly abundant supply of He-3. However, with the reduction in nuclear weapons, production of tritium ceased decades ago and the stockpile has largely decayed away, reducing the available He-3 supply to a small fraction of that needed for neutron detection. A suitable and rapidly-deployable replacement technology for neutron detectors must be found. Many potential replacement technologies are under active investigation and development. One broad class of technologies utilizes B-10 as a neutron capture medium in coatings on the internal surfaces of proportional detectors. A particular implementation of this sort of technology is the boron-coated 'straw' (BCS) detectors under development by Proportional Technologies, Inc. (PTi). This technology employs a coating of B-10 enriched boron carbide (B{sub 4}C) on the inside of narrow tubes, roughly 4 mm in diameter. A neutron counter (e.g. a slab, a well counter, or a large assay counter designed to accommodate 200 liter drums) could be constructed by distributing these narrow tubes throughout the polyethylene body of the counter. One type of neutron counter that is of particular importance to safeguards applications is the Active Well Coincidence Counter (AWCC), which is a Los Alamos design that traditionally employs 42 He-3 detectors. This is a very flexible design which can accurately assay small samples of uranium- and plutonium-bearing materials. Utilizing the MCNPX code and benchmarking against measurements where possible, the standard AWCC has been redesigned to utilize the BCS technology. Particular aspects of the counter performance include the single-neutron ('singles') detection efficiency and the time constant for the decrease in neutron population in the counter following a fission event (a.k.a. the die-away time). Results of the modeling and optimization are presented. (authors)

  15. High detection efficiency micro-structured solid-state neutron detector with extremely low leakage current fabricated with continuous p-n junction

    SciTech Connect (OSTI)

    Huang, Kuan-Chih; Lu, James J.-Q.; Bhat, Ishwara B.; Dahal, Rajendra; Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180-3522 ; Danon, Yaron

    2013-04-15

    We report the continuous p-n junction formation in honeycomb structured Si diode by in situ boron deposition and diffusion process using low pressure chemical vapor deposition for solid-state thermal neutron detection applications. Optimized diffusion temperature of 800 Degree-Sign C was obtained by current density-voltage characteristics for fabricated p{sup +}-n diodes. A very low leakage current density of {approx}2 Multiplication-Sign 10{sup -8} A/cm{sup 2} at -1 V was measured for enriched boron filled honeycomb structured neutron detector with a continuous p{sup +}-n junction. The neutron detection efficiency for a Maxwellian spectrum incident on the face of the detector was measured under zero bias voltage to be {approx}26%. These results are very encouraging for fabrication of large area solid-state neutron detector that could be a viable alternative to {sup 3}He tube based technology.

  16. Testing a new NIF neutron time-of-flight detector with a bibenzyl scintillator on OMEGA

    SciTech Connect (OSTI)

    Glebov, V. Yu.; Forrest, C.; Knauer, J. P.; Pruyne, A.; Romanofsky, M.; Sangster, T. C.; Shoup, M. J. III; Stoeckl, C.; Caggiano, J. A.; Carman, M. L.; Clancy, T. J.; Hatarik, R.; McNaney, J.; Zaitseva, N. P.

    2012-10-15

    A new neutron time-of-flight (nTOF) detector with a bibenzyl crystal as a scintillator has been designed and manufactured for the National Ignition Facility (NIF). This detector will replace a nTOF20-Spec detector with an oxygenated xylene scintillator currently operational on the NIF to improve the areal-density measurements. In addition to areal density, the bibenzyl detector will measure the D-D and D-T neutron yield and the ion temperature of indirect- and direct-drive-implosion experiments. The design of the bibenzyl detector and results of tests on the OMEGA Laser System are presented.

  17. Neutron Energy Spectrum Measurements with a Compact Liquid Scintillation Detector on EAST

    E-Print Network [OSTI]

    Xi Yuan; Xing Zhang; Xufei Xie; G. Gorini; Zhongjing Chen; Xingyu Peng; Jinxiang Chen; Guohui Zhang; Tieshuan Fan; Guoqiang Zhong; Liqun Hu; Baonian Wan

    2013-04-27

    A neutron detector based on EJ301 liquid scintillator has been employed at EAST to measure the neutron energy spectrum for D-D fusion plasma. The detector was carefully characterized in different quasi-monoenergetic neutron fields generated by a 4.5 MV Van de Graaff accelerator. In recent experimental campaigns, due to the low neutron yield at EAST, a new shielding device was designed and located as close as possible to the tokamak to enhance the count rate of the spectrometer. The fluence of neutrons and gamma-rays was measured with the liquid neutron spectrometer and was consistent with 3He proportional counter and NaI (Tl) gamma-ray spectrometer measurements. Plasma ion temperature values were deduced from the neutron spectrum in discharges with lower hybrid wave injection and ion cyclotron resonance heating. Scattered neutron spectra were simulated by the Monte Carlo transport Code, and they were well verified by the pulse height measurements at low energies.

  18. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    SciTech Connect (OSTI)

    Hu, J. P.; Holden, N. E.; Reciniello, R. N.

    2014-05-23

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4 - 7 % lower than the statistical mean derived from the Monte-Carlo modeling (5% uncertainty). The dose rate measured by ion chambers was 6 - 10 % lower than the output tallies (7% uncertainty). The detailed dosimetry that was performed at the TNIF for the NCT will be described.

  19. A new neutron time-of-flight detector for fuel-areal-density measurements on OMEGA

    SciTech Connect (OSTI)

    Glebov, V. Yu. Forrest, C. J.; Marshall, K. L.; Romanofsky, M.; Sangster, T. C.; Shoup, M. J.; Stoeckl, C.

    2014-11-15

    A new neutron time-of-flight (nTOF) detector for fuel-areal-density measurements in cryogenic DT implosions was installed on the OMEGA Laser System. The nTOF detector has a cylindrical thin-wall, stainless-steel, 8-in.-diam, 4-in.-thick cavity filled with an oxygenated liquid xylene scintillator. Four gated photomultiplier tubes (PMTs) with different gains are used to measure primary DT and D{sub 2} neutrons, down-scattered neutrons in nT and nD kinematic edge regions, and to study tertiary neutrons in the same detector. The nTOF detector is located 13.4 m from target chamber center in a well-collimated line of sight. The design details of the nTOF detector, PMT optimization, and test results on OMEGA will be presented.

  20. Fission signal detection using helium-4 gas fast neutron scintillation detectors

    SciTech Connect (OSTI)

    Lewis, J. M. Kelley, R. P.; Jordan, K. A.; Murer, D.

    2014-07-07

    We demonstrate the unambiguous detection of the fission neutron signal produced in natural uranium during active neutron interrogation using a deuterium-deuterium fusion neutron generator and a high pressure {sup 4}He gas fast neutron scintillation detector. The energy deposition by individual neutrons is quantified, and energy discrimination is used to differentiate the induced fission neutrons from the mono-energetic interrogation neutrons. The detector can discriminate between different incident neutron energies using pulse height discrimination of the slow scintillation component of the elastic scattering interaction between a neutron and the {sup 4}He atom. Energy histograms resulting from this data show the buildup of a detected fission neutron signal at higher energies. The detector is shown here to detect a unique fission neutron signal from a natural uranium sample during active interrogation with a (d, d) neutron generator. This signal path has a direct application to the detection of shielded nuclear material in cargo and air containers. It allows for continuous interrogation and detection while greatly minimizing the potential for false alarms.

  1. Inferring neutron stars crust properties from quiescent thermal emission

    E-Print Network [OSTI]

    Aguilera, Deborah N

    2015-01-01

    The observation of thermal emission from isolated neutron stars and the modeling of the corresponding cooling curves has been very useful to get information on the properties of matter at very high densities. More recently, the detection of quiescent thermal emission from neutron stars in low mass X-ray binary systems after active periods opened a new window to the physics of matter at lower densities. Here we analyze a few sources that have been recently monitored and we show how the models can be used to establish constraints on the crust composition and their transport properties, depending on the astrophysical scenarios assumed.

  2. Calibration of Time Of Flight Detectors Using Laser-driven Neutron Source

    E-Print Network [OSTI]

    S. R. Mirfayzi; S. Kar; H. Ahmed; A. G. Krygier; A. Green; A. Alejo; R. Clarke; R. R. Freeman; J. Fuchs; D. Jung; A. Kleinschmidt; J. T. Morrison; Z. Najmudin; H. Nakamura; P. Norreys; M. Oliver; M. Roth; L. Vassura; M. Zepf; M. Borghesi

    2015-06-15

    Calibration of three scintillators (EJ232Q, BC422Q and EJ410) in a time-of-flight (TOF) arrangement using a laser drive-neutron source is presented. The three plastic scintillator detectors were calibrated with gamma insensitive bubble detector spectrometers, which were absolutely calibrated over a wide range of neutron energies ranging from sub MeV to 20 MeV. A typical set of data obtained simultaneously by the detectors are shown, measuring the neutron spectrum emitted from a petawatt laser irradiated thin foil.

  3. Measurement of Neutron and Muon Fluxes 100~m Underground with the SciBath Detector

    SciTech Connect (OSTI)

    Garrison, Lance

    2014-01-01

    The SciBath detector is an 80 liter liquid scintillator detector read out by a three dimensional grid of 768 wavelength-shifting fibers. Initially conceived as a fine-grained charged particle detector for neutrino studies that could image charged particle tracks in all directions, it is also sensitive to fast neutrons (15-200 MeV). In fall of 2011 the apparatus performed a three month run to measure cosmic-induced muons and neutrons 100~meters underground in the FNAL MINOS near-detector area. Data from this run has been analyzed and resulted in measurements of the cosmic muon flux as \

  4. Spin diffusive modes and thermal transport in neutron star crusts

    E-Print Network [OSTI]

    Sedrakian, Armen

    2015-01-01

    In this contribution we first review a method for obtaining the collective modes of pair-correlated neutron matter as found in a neutron star inner crust. We discuss two classes of modes corresponding to density and spin perturbations with energy spectra $\\omega = \\omega_0 + \\alpha q^2$, where $\\omega_0 = 2\\Delta$ is the threshold frequency and $\\Delta$ is the gap in the neutron fluid spectrum. For characteristic values of Landau parameters in neutron star crusts the exitonic density modes have $\\alpha 0$ and they exist above $\\omega_0$ which implies that these modes are damped. As an application of these findings we compute the thermal conductivity due to spin diffusive modes and show that it scales as $T^{1/2} \\exp(-2\\omega_0/T)$ in the case where their two-by-two scattering cross-section is weakly dependent on temperature.

  5. Designing and testing the neutron source deployment system and calibration plan for a dark matter detector

    E-Print Network [OSTI]

    Westerdale, Shawn (Shawn S.)

    2011-01-01

    In this thesis, we designed and tested a calibration and deployment system for the MiniCLEAN dark matter detector. The deployment system uses a computer controlled winch to lower a canister containing a neutron source into ...

  6. Response of diamond detector sandwich to 14 MeV neutrons

    E-Print Network [OSTI]

    M. Osipenko; M. Ripani; G. Ricco; B. Caiffi; F. Pompili; M. Pillon; G. Verona-Rinati; R. Cardarelli

    2015-10-27

    In this paper we present the measurement of the response of 50 $\\mu$m thin diamond detectors to 14 MeV neutrons. Such neutrons are produced in fusion reactors and are of particular interest for ITER neutron diagnostics. Among semiconductor detectors diamond has properties most appropriate for harsh radiation and temperature conditions of a fusion reactor. However, 300-500 $\\mu$m thick diamond detectors suffer significant radiation damage already at neutron fluences of the order of $10^{14}$ n/cm$^2$. It is expected that a 50 $\\mu$m thick diamond will withstand a fluence of $>10^{16}$ n/cm$^2$. We tested two 50 $\\mu$m thick single crystal CVD diamonds, stacked to form a "sandwich" detector for coincidence measurements. The detector measured the conversion of 14 MeV neutrons, impinging on one diamond, into $\\alpha$ particles which were detected in the second diamond in coincidence with nuclear recoil. For $^{12}C(n,\\alpha)^{9}Be$ reaction the total energy deposited in the detector gives access to the initial neutron energy value. The measured 14 MeV neutron detection sensitivity through this reaction by a detector of effective area 3$\\times$3 mm$^2$ was $5\\times 10^{-7}$ counts cm$^2$/n. This value is in good agreement with Geant4 simulations. The intrinsic energy resolution of the detector was found to be 240 keV FWHM which adds only 10 % to ITER's 14 MeV neutron energy spread.

  7. Data from the Versatile Array of Neutron Detectors at Low Energy (VANDLE) will impact modeling of processes occurring in neutron-rich

    E-Print Network [OSTI]

    Data from the Versatile Array of Neutron Detectors at Low Energy (VANDLE) will impact modeling of processes occurring in neutron-rich environments ·The energies of beta-delayed neutrons emitted from 25 strong feeding to high-lying states that emit high energy neutrons while others have broad distributions

  8. Uncooled thin film pyroelectric IR detector with aerogel thermal isolation

    DOE Patents [OSTI]

    Ruffner, Judith A. (Albuquerque, NM); Bullington, Jeff A. (Albuquerque, NM); Clem, Paul G. (Albuquerque, NM); Warren, William L. (Albuquerque, NM); Brinker, C. Jeffrey (Albuquerque, NM); Tuttle, Bruce A. (Albuquerque, NM); Schwartz, Robert W. (Seneca, SC)

    1999-01-01

    A monolithic infrared detector structure which allows integration of pyroelectric thin films atop low thermal conductivity aerogel thin films. The structure comprises, from bottom to top, a substrate, an aerogel insulating layer, a lower electrode, a pyroelectric layer, and an upper electrode layer capped by a blacking layer. The aerogel can offer thermal conductivity less than that of air, while providing a much stronger monolithic alternative to cantilevered or suspended air-gap structures for pyroelectric thin film pixel arrays. Pb(Zr.sub.0.4 Ti.sub.0.6)O.sub.3 thin films deposited on these structures displayed viable pyroelectric properties, while processed at 550.degree. C.

  9. The uTPC Method: Improving the Position Resolution of Neutron Detectors Based on MPGDs

    E-Print Network [OSTI]

    Pfeiffer, Dorothea; Birch, Jens; Hall-Wilton, Richard; Höglund, Carina; Hultman, Lars; Iakovidis, George; Oliveri, Eraldo; Oksanen, Esko; Ropelewski, Leszek; Thuiner, Patrik

    2015-01-01

    Due to the Helium-3 crisis, alternatives to the standard neutron detection techniques are becoming urgent. In addition, the instruments of the European Spallation Source (ESS) require advances in the state of the art of neutron detection. The instruments need detectors with excellent neutron detection efficiency, high-rate capabilities and unprecedented spatial resolution. The Macromolecular Crystallography instrument (NMX) requires a position resolution in the order of 200 um over a wide angular range of incoming neutrons. Solid converters in combination with Micro Pattern Gaseous Detectors (MPGDs) are proposed to meet the new requirements. Charged particles rising from the neutron capture have usually ranges larger than several millimetres in gas. This is apparently in contrast with the requirements for the position resolution. In this paper, we present an analysis technique, new in the field of neutron detection, based on the Time Projection Chamber (TPC) concept. Using a standard Single-GEM with the catho...

  10. A NEW HIGH ENERGY RESOLUTION NEUTRON TRANSMISSION DETECTOR SYSTEM AT THE GAERTTNER LINAC LABORATORY

    E-Print Network [OSTI]

    Danon, Yaron

    Laboratory P.O. Box 1072, Schenectady, New York 12301-1072 A new high energy resolution modular neutronA NEW HIGH ENERGY RESOLUTION NEUTRON TRANSMISSION DETECTOR SYSTEM AT THE GAERTTNER LINAC LABORATORY capabilities at the Laboratory in and above the resolved resonance energy region from 1 keV to 600 ke

  11. Thermal Neutron Capture Cross Sections of the PalladiumIsotopes

    SciTech Connect (OSTI)

    Firestone, R.B.; Krticka, M.; McNabb, D.P.; Sleaford, B.; Agvaanluvsan, U.; Belgya, T.; Revay, Zs.

    2006-07-17

    Precise gamma-ray thermal neutron capture cross sectionshave been measured at the Budapest Reactor for all elements withZ=1-83,92 except for He and Pm. These measurements and additional datafrom the literature been compiled to generate the Evaluated Gamma-rayActivation File (EGAF), which is disseminated by LBNL and the IAEA. Thesedata are nearly complete for most isotopes with Z<20 so the totalradiative thermal neutron capture cross sections can be determineddirectly from the decay scheme. For light isotopes agreement with therecommended values is generally satisfactory although large discrepanciesexist for 11B, 12,13C, 15N, 28,30Si, 34S, 37Cl, and 40,41K. Neutroncapture decay data for heavier isotopes are typically incomplete due tothe contribution of unresolved continuum transitions so only partialradiative thermal neutron capture cross sections can be determined. Thecontribution of the continuum to theneutron capture decay scheme arisesfrom a large number of unresolved levels and transitions and can becalculated by assuming that the fluctuations in level densities andtransition probabilities are statistical. We have calculated thecontinuum contribution to neutron capture decay for the palladiumisotopes with the Monte Carlo code DICEBOX. These calculations werenormalized to the experimental cross sections deexciting low excitationlevels to determine the total radiative thermal neutron capture crosssection. The resulting palladium cross sections values were determinedwith a precision comparable to the recommended values even when only onegamma-ray cross section was measured. The calculated and experimentallevel feedings could also be compared to determine spin and parityassignments for low-lying levels.

  12. Development of a gain monitoring system for a neutron detector array

    E-Print Network [OSTI]

    Saskatchewan, University of

    Development of a gain monitoring system for a neutron detector array By Brian Bewer University gain monitoring system was created to find relative gains of the Blowfish detectors during experiment a reliable cross section calculation. #12;Gain Monitoring System · The gain monitor has four major components

  13. Ortho- and para-hydrogen in neutron thermalization

    SciTech Connect (OSTI)

    Daemen, L. L.; Brun, T. O.

    1998-01-01

    The large difference in neutron scattering cross-section at low neutron energies between ortho- and para-hydrogen was recognized early on. In view of this difference (more than an order of magnitude), one might legitimately ask whether the ortho/para ratio has a significant effect on the neutron thermalization properties of a cold hydrogen moderator. Several experiments performed in the 60`s and early 70`s with a variety of source and (liquid hydrogen) moderator configurations attempted to investigate this. The results tend to show that the ortho/para ratio does indeed have an effect on the energy spectrum of the neutron beam produced. Unfortunately, the results are not always consistent with each other and much unknown territory remains to be explored. The problem has been approached from a computational standpoint, but these isolated efforts are far from having examined the ortho/para-hydrogen problem in neutron moderation in all its complexity. Because of space limitations, the authors cannot cover, even briefly, all the aspects of the ortho/para question here. This paper will summarize experiments meant to investigate the effect of the ortho/para ratio on the neutron energy spectrum produced by liquid hydrogen moderators.

  14. Quiescent thermal emission from neutron stars in LMXBs

    E-Print Network [OSTI]

    Anabela Turlione; Deborah N. Aguilera; José A. Pons

    2015-02-19

    We monitored the quiescent thermal emission from neutron stars in low-mass X-ray binaries after active periods of intense activity in x-rays (outbursts). The theoretical modeling of the thermal relaxation of the neutron star crust may be used to establish constraints on the crust composition and transport properties, depending on the astrophysical scenarios assumed. We numerically simulated the thermal evolution of the neutron star crust and compared them with inferred surface temperatures for five sources: MXB 1659-29, KS 1731-260, EXO 0748-676, XTE J1701-462 and IGR J17480-2446. We find that the evolution of MXB 1659-29, KS 1731-260 and EXO 0748-676 can be well described within a deep crustal cooling scenario. Conversely, we find that the other two sources can only be explained with models beyond crustal cooling. For the peculiar emission of XTE J1701-462 we propose alternative scenarios such as residual accretion during quiescence, additional heat sources in the outer crust, and/or thermal isolation of the inner crust due to a buried magnetic field. We also explain the very recent reported temperature of IGR J17480-2446 with an additional heat deposition in the outer crust from shallow sources.

  15. Fast Neutron Detector for Fusion Reactor KSTAR Using Stilbene Scintillator

    E-Print Network [OSTI]

    Seung Kyu Lee; Byoung-Hwi Kang; Gi-Dong Kim; Yong-Kyun Kim

    2011-12-27

    Various neutron diagnostic tools are used in fusion reactors to evaluate different aspects of plasma performance, such as fusion power, power density, ion temperature, fast ion energy, and their spatial distributions. The stilbene scintillator has been proposed for use as a neutron diagnostic system to measure the characteristics of neutrons from the Korea Superconducting Tokamak Advanced Research (KSTAR) fusion reactor. Specially designed electronics are necessary to measure fast neutron spectra with high radiation from a gamma-ray background. The signals from neutrons and gamma-rays are discriminated by the digital charge pulse shape discrimination (PSD) method, which uses total to partial charge ratio analysis. The signals are digitized by a flash analog-to-digital convertor (FADC). To evaluate the performance of the fabricated stilbene neutron diagnostic system, the efficiency of 10 mm soft-iron magnetic shielding and the detection efficiency of fast neutrons were tested experimentally using a 252Cf neutron source. In the results, the designed and fabricated stilbene neutron diagnostic system performed well in discriminating neutrons from gamma-rays under the high magnetic field conditions during KSTAR operation. Fast neutrons of 2.45 MeV were effectively measured and evaluated during the 2011 KSTAR campaign.

  16. Neutron and gamma detector using an ionization chamber with an integrated body and moderator

    DOE Patents [OSTI]

    Ianakiev, Kiril D.; Swinhoe, Martyn T.; Lestone, John Paul

    2006-07-18

    A detector for detecting neutrons and gamma radiation includes a cathode that defines an interior surface and an interior volume. A conductive neutron-capturing layer is disposed on the interior surface of the cathode and a plastic housing surrounds the cathode. A plastic lid is attached to the housing and encloses the interior volume of the cathode forming an ionization chamber, into the center of which an anode extends from the plastic lid. A working gas is disposed within the ionization chamber and a high biasing voltage is connected to the cathode. Processing electronics are coupled to the anode and process current pulses which are converted into Gaussian pulses, which are either counted as neutrons or integrated as gammas, in response to whether pulse amplitude crosses a neutron threshold. The detector according to the invention may be readily fabricated into single or multilayer detector arrays.

  17. Accurate Development of Thermal Neutron Scattering Cross Section Libraries

    SciTech Connect (OSTI)

    Hawari, Ayman; Dunn, Michael

    2014-06-10

    The objective of this project is to develop a holistic (fundamental and accurate) approach for generating thermal neutron scattering cross section libraries for a collection of important enutron moderators and reflectors. The primary components of this approach are the physcial accuracy and completeness of the generated data libraries. Consequently, for the first time, thermal neutron scattering cross section data libraries will be generated that are based on accurate theoretical models, that are carefully benchmarked against experimental and computational data, and that contain complete covariance information that can be used in propagating the data uncertainties through the various components of the nuclear design and execution process. To achieve this objective, computational and experimental investigations will be performed on a carefully selected subset of materials that play a key role in all stages of the nuclear fuel cycle.

  18. Scintillation detector efficiencies for neutrons in the energy region above 20 MeV

    SciTech Connect (OSTI)

    Dickens, J.K.

    1991-01-01

    The computer program SCINFUL (for SCINtillator FUL1 response) is a program designed to provide a calculated complete pulse-height response anticipated for neutrons being detected by either an NE-213 (liquid) scintillator or an NE-110 (solid) scintillator in the shape of a right circular cylinder. The point neutron source may be placed at any location with respect to the detector, even inside of it. The neutron source may be monoenergetic, or Maxwellian distributed, or distributed between chosen lower and upper bounds. The calculational method uses Monte Carlo techniques, and it is relativistically correct. Extensive comparisons with a variety of experimental data have been made. There is generally overall good agreement (less than 10% differences) of results for SCINFUL calculations with measured integral detector efficiencies for the design incident neutron energy range of 0.1 to 80 MeV. Calculations of differential detector responses, i.e. yield versus response pulse height, are generally within about 5% on the average for incident neutron energies between 16 and 50 MeV and for the upper 70% of the response pulse height. For incident neutron energies between 50 and 80 MeV, the calculated shape of the response agrees with measurements, but the calculations tend to underpredict the absolute values of the measured responses. Extension of the program to compute responses for incident neutron energies greater than 80 MeV will require new experimental data on neutron interactions with carbon. 32 refs., 6 figs., 2 tabs.

  19. Transport of thermal neutrons in different forms of liquid hydrogen and the production of intense beams of cold neutrons

    SciTech Connect (OSTI)

    Swaminathan, K.; Tewari, S.P.

    1982-10-01

    From their studies the authors find that the thermal neutron inelastic scattering kernel incorporating the chemical binding energy in liquid hydrogen is able to successfully explain various neutron transport studies such as pulsed neutron and steady-state neutron spectra. For an infinite-sized assembly, D/sub 2/ at 4 K yields a very intense flux of cold and ultracold neutrons. For the practicable finite assembly corresponding to B/sup 2/ = 0.0158 cm/sup -2/, it is found that liquid hydrogen at 11 K gives the most intense beam of cold neutrons.

  20. Thermal conductivity changes upon neutron transmutation of {sup 10}B doped diamond

    SciTech Connect (OSTI)

    Jagannadham, K., E-mail: jag-kasichainula@ncsu.edu [Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Verghese, K. [Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Butler, J. E. [Code 6174, Naval research Laboratory, Washington, District of Columbia 20375 (United States)

    2014-08-28

    {sup 10}B doped p-type diamond samples were subjected to neutron transmutation reaction using thermal neutron flux of 0.9 × 10{sup 13} cm{sup ?2} s{sup ?1} and fast neutron flux of 0.09 × 10{sup 13} cm{sup ?2} s{sup ?1}. Another sample of epilayer grown on type IIa (110) single crystal diamond substrate was subjected to equal thermal and fast neutron flux of 10{sup 14}?cm{sup ?2} s{sup ?1}. The defects in the diamond samples were previously characterized by different methods. In the present work, thermal conductivity of these diamond samples was determined at room temperature by transient thermoreflectance method. The thermal conductivity change in the samples as a function of neutron fluence is explained by the phonon scattering from the point defects and disordered regions. The thermal conductivity of the diamond samples decreased more rapidly initially and less rapidly for larger neutron fluence. In addition, the thermal conductivity in type IIb diamond decreased less rapidly with thermal neutron fluence compared to the decrease in type IIa diamond subjected to fast neutron fluence. It is concluded that the rate of production of defects during transmutation reaction is slower when thermal neutrons are used. The thermal conductivity of epilayer of diamond subjected to high thermal and fast neutron fluence is associated with the covalent carbon network in the composite structure consisting of disordered carbon and sp{sup 2} bonded nanocrystalline regions.

  1. Optimizing moderation of He-3 neutron detectors for shielded fission sources

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rees, Lawrence B.; Czirr, J. Bart

    2012-07-10

    Abstract: The response of 3-He neutron detectors is highly dependent on the amount of moderator incorporated into the detector system. If there is too little moderation, neutrons will not react with the 3-He. If there is too much moderation, neutrons will not reach the 3-He. In applications for portal or border monitors where 3He detectors are used to interdict illicit Importation of plutonium, the fission source is always shielded to some extent. Since the energy distribution of neutrons emitted from the source depends on the amount and type of shielding present, the optimum placement of moderating material around 3-He tubesmore »is a function of shielding. In this paper, we use Monte Carlo techniques to model the response of 3-He tubes placed in polyethylene boxes for moderation. To model the shielded fission neutron source, we use a 252-Cf source placed in the center of spheres of water of varying radius. Detector efficiency as a function of box geometry and shielding are explored. We find that increasing the amount of moderator behind and to the sides of the detector generally improves the detector response, but that benefits are limited if the thickness of the polyethylene moderator is greater than about 5-7 cm. The thickness of the moderator in front of the 3He tubes, however, is very important. For bare sources, about 5-6 cm of moderator is optimum, but as the shielding increases, the optimum thickness of this moderator decreases to 0-1 cm. A two-tube box with a moderator thickness of 5 cm in front of the first tube and a thickness of 1 cm in front of the second tube is proposed to improve the detector's sensitivity to lower-energy neutrons.« less

  2. Optimizing moderation of He-3 neutron detectors for shielded fission sources

    SciTech Connect (OSTI)

    Rees, Lawrence B. [Brigham Young University, Provo, UT (United States); Czirr, J. Bart [Brigham Young University, Provo, UT (United States)

    2012-11-01

    Abstract: The response of 3-He neutron detectors is highly dependent on the amount of moderator incorporated into the detector system. If there is too little moderation, neutrons will not react with the 3-He. If there is too much moderation, neutrons will not reach the 3-He. In applications for portal or border monitors where 3He detectors are used to interdict illicit Importation of plutonium, the fission source is always shielded to some extent. Since the energy distribution of neutrons emitted from the source depends on the amount and type of shielding present, the optimum placement of moderating material around 3-He tubes is a function of shielding. In this paper, we use Monte Carlo techniques to model the response of 3-He tubes placed in polyethylene boxes for moderation. To model the shielded fission neutron source, we use a 252-Cf source placed in the center of spheres of water of varying radius. Detector efficiency as a function of box geometry and shielding are explored. We find that increasing the amount of moderator behind and to the sides of the detector generally improves the detector response, but that benefits are limited if the thickness of the polyethylene moderator is greater than about 5-7 cm. The thickness of the moderator in front of the 3He tubes, however, is very important. For bare sources, about 5-6 cm of moderator is optimum, but as the shielding increases, the optimum thickness of this moderator decreases to 0-1 cm. A two-tube box with a moderator thickness of 5 cm in front of the first tube and a thickness of 1 cm in front of the second tube is proposed to improve the detector's sensitivity to lower-energy neutrons.

  3. Thermal evolution of neutron stars with global and local neutrality

    E-Print Network [OSTI]

    S. M. de Carvalho; R. Negreiros; Jorge A. Rueda; Remo Ruffini

    2014-11-19

    Globally neutral neutron stars, obtained from the solution of the called Einstein-Maxwell-Thomas-Fermi equations that account for all the fundamental interactions, have been recently introduced. These configurations have a more general character than the ones obtained with the traditional Tolman-Oppenheimer-Volkoff, which impose the condition of local charge neutrality. The resulting configurations have a less massive and thinner crust, leading to a new mass-radius relation. Signatures of this new structure of the neutron star on the thermal evolution might be a potential test for this theory. We compute the cooling curves by integrating numerically the energy balance and transport equations in general relativity, for globally neutral neutron stars with crusts of different masses and sizes, according to this theory for different core-crust transition interfaces. We compare and contrast our study with known results for local charge neutrality. We found a new behavior for the relaxation time, depending upon the density at the base of the crust, $\\rho_{\\rm crust}$. In particular, we find that the traditional increase of the relaxation time with the crust thickness holds only for configurations whose density of the base of the crust is greater than $\\approx 5\\times 10^{13}$ g cm$^{-3}$. The reason for this is that neutron star crusts with very thin or absent inner crust have some neutrino emission process blocked which keep the crust hotter for longer times. Therefore, accurate observations of the thermal relaxation phase of neutron stars might give crucial information on the core-crust transition which may aid us in probing the inner composition/structure of these objects.

  4. Thermal Neutron Capture Cross Sections Of The Palladium Isotopes

    SciTech Connect (OSTI)

    Firestone, R. B. [Lawrence Berkeley National Laboratory Berkeley CA 94720 (United States); Krtiaka, M. [Faculty of Mathematics and Physics, Charles University V Holesovickach 2, CZ-180 00 Prague 8 (Czech Republic); McNabb, D. P.; Sleaford, B.; Agvaanluvsan, U. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Belgya, T.; Revay, Zs. [Institute of Isotope and Surface Chemistry H-1525, Budapest (Hungary)

    2006-03-13

    We have measured precise thermal neutron capture {gamma}-ray cross sections cry for all stable Palladium isotopes with the guided thermal neutron beam from the Budapest Reactor. The data were compared with other data from the literature and have been evaluated into the Evaluated Gamma-ray Activation File (EGAF). Total radiative neutron capture cross-sections {sigma}{gamma} can be deduced from the sum of transition cross sections feeding the ground state of each isotope if the decay scheme is complete. The Palladium isotope decay schemes are incomplete, although transitions deexciting low-lying levels are known for each isotope. We have performed Monte Carlo simulations of the Palladium thermal neutron capture deexcitation schemes using the computer code DICEBOX. This program generates level schemes where levels below a critical energy Ecrit are taken from experiment, and those above Ecrit are calculated by a random discretization of an a priori known level density formula {rho}(E,J{pi}). Level de-excitation branching intensities are taken from experiment for levels below Ecrit the capture state, or calculated for levels above Ecrit assuming an a priori photon strength function and applying allowed selection rules and a Porter-Thomas distribution of widths. The advantage of this method is that calculational uncertainties can be investigated systematically. Calculated feeding to levels below Ecrit can be normalized to the measured cross section deexciting those levels to determine the total radiative neutron cross-section {sigma}{gamma}. In this paper we report the cross section measurements {sigma}{gamma}[102Pd(n,{gamma})]=0.9{+-}0.3 b, {sigma}{gamma}[104Pd(n,{gamma})=0.61{+-}0.11 b, {sigma}{gamma}[105Pd(n,{gamma})]=2.1.1{+-}1.5 b, {sigma}{gamma}[106Pd(n,{gamma})]=0.36{+-}0.05 b, {sigma}{gamma}[108Pd(n,{gamma})(0)]=7.6{+-}0.6 b, {sigma}{gamma}[108Pd(n,{gamma})(189)]=0.185{+-}0.011 b, and {sigma}{gamma}[110Pd(n,{gamma})]=0.10{+-}0.03 b. We have also determined from our statistical calculations that the neutron capture states in 107Pd are best described as 2+[59(4)%]+3+[41(4)%]. Agreement with literature values was excellent in most cases. We found significant discrepancies between our results for 102Pd and 110Pd and earlier values that could be resolved by re-evaluation of the earlier results.

  5. On the simulation of limit thresholds for ISOLDE decay station neutron detector

    E-Print Network [OSTI]

    Arce Gamboa, José Rafael

    2015-01-01

    The recently comissioned ISOLDE decay station neutron detector (IDSN) efficiency was calibrated with a standard 252Cf neutron source, using lower threshold limits set at 0, 31 keV and 59.5 keV, and upper threhold of 3840 keV. Geant4 simulations were run to compare with the experimental efficiency where new detector limits were sought to fit the experimental data. Suitable values of limit thresholds were found that properly fit the simulation with experimental lower neutron energies, below 1 MeV, but strongly departs from data above it. It is concluded that the simulation is incomplete at this point, and so a review must be done on the nuclear physics and scintillation light Geant4 packages in order to properly reproduce the detector properties.

  6. An aerogel Cherenkov detector for multi-GeV photon detection with low sensitivity to neutrons

    E-Print Network [OSTI]

    Maeda, Y; Masuda, T; Morii, H; Naito, D; Nakajima, Y; Nanjo, H; Nomura, T; Sasao, N; Seki, S; Shiomi, K; Sumida, T; Tajima, Y

    2014-01-01

    We describe a novel photon detector which operates under an intense flux of neutrons. It is composed of lead-aerogel sandwich counter modules. Its salient features are high photon detection efficiency and blindness to neutrons. As a result of Monte Carlo (MC) simulations, the efficiency for photons with the energy larger than 1 GeV is expected to be higher than 99.5% and that for 2 GeV/$c$ neutrons less than 1%. The performance on the photon detection under such a large flux of neutrons was measured for a part of the detector. It was confirmed that the efficiency to photons with the energy $>$1 GeV was consistent with the MC expectation within 8.2% uncertainty.

  7. An aerogel Cherenkov detector for multi-GeV photon detection with low sensitivity to neutrons

    E-Print Network [OSTI]

    Y. Maeda; N. Kawasaki; T. Masuda; H. Morii; D. Naito; Y. Nakajima; H. Nanjo; T. Nomura; N. Sasao; S. Seki; K. Shiomi; T. Sumida; Y. Tajima

    2014-12-22

    We describe a novel photon detector which operates under an intense flux of neutrons. It is composed of lead-aerogel sandwich counter modules. Its salient features are high photon detection efficiency and blindness to neutrons. As a result of Monte Carlo (MC) simulations, the efficiency for photons with the energy larger than 1 GeV is expected to be higher than 99.5% and that for 2 GeV/$c$ neutrons less than 1%. The performance on the photon detection under such a large flux of neutrons was measured for a part of the detector. It was confirmed that the efficiency to photons with the energy $>$1 GeV was consistent with the MC expectation within 8.2% uncertainty.

  8. Study of TFTR D-T neutron spectra using natural diamond detectors

    SciTech Connect (OSTI)

    Roquemore, A.L.; Krasilnikov, A.V., Gorelenkov, N.N.

    1996-12-31

    Three Natural Diamond Detector (NDD) based spectrometers have been used for neutron spectra measurement during Deuterium-Tritium (D-T) experiments using high power Neutral Beam Injection (NBI) and Ton Cyclotron Resonance Heating (ICRH) on the Tokamak Fusion Test Reactor (TFTR) in 1996. A 2-3 % energy resolution coupled with the high radiation resistance of NDDs (5 x 10{sup 14}n/cm{sup 2}) makes them ideal for measuring the D-T neutron spectra in the high radiation environment of TFTR tritium experiments. The compact size of the NDD made it possible to insert one of the detectors into one of the center channels of the TFTR multichannel neutron collimator to provide a vertical view perpendicular to the vessel midplane, Two other detectors were placed inside shields in TFTR test cell and provide measurements of the neutrons having angles of emission of 110- 180{degrees} and 60-12-{degrees} with respect to the direction of the plasma current. By using a 0.25 {mu}s shaping time of the Ortec 673 spectroscopy amplifier we were able to accumulate useful spectrometry data at count rates up to 1.5 x 10{sup 3} counts/sec. To model the D- T neutron spectra measured by each of three NDD`s the Neutron Source post TRANSP (NST) code and semi-analytical model were developed. A set of D-T and D-D plasmas is analyzed for the dynamics of D-T neutron spectral broadening for each of three NDD cones of view. The application of three NDD based D-T neutron -spectrometer array demonstrated the anisotropy of the ion distribution function. and provided a mature of the dynamics of the effective ion temperatures for each detector view, and determined the tangential velocity of resonant tritons during ICRH.

  9. SICANE: a Detector Array for the Measurement of Nuclear Recoil Quenching Factors using Monoenergetic Neutron Beam

    E-Print Network [OSTI]

    E. Simon; L. Berge; A. Broniatowski; R. Bouvier; B. Chambon; M. De Jesus; D. Drain; L. Dumoulin; J. Gascon; J. P. Hadjout; A. Juillard; O. Martineau; C. Pastor; M. Stern; L. Vagneron

    2002-12-20

    SICANE is a neutron scattering multidetector facility for the determination of the quenching factor (ratio of the response to nuclear recoils and to electrons) of cryogenic detectors used in direct WIMP searches. Well collimated monoenergetic neutron beams are obtained with inverse (p,n) reactions. The facility is described, and results obtained for the quenching factors of scintillation in NaI(Tl) and of heat and ionization in Ge are presented.

  10. Proton recoil telescope based on diamond detectors for measurement of fusion neutrons

    E-Print Network [OSTI]

    B. Caiffi; M. Osipenko; M. Ripani; M. Pillon; M. Taiuti

    2015-05-23

    Diamonds are very promising candidates for the neutron diagnostics in harsh environments such as fusion reactor. In the first place this is because of their radiation hardness, exceeding that of Silicon by an order of magnitude. Also, in comparison to the standard on-line neutron diagnostics (fission chambers, silicon based detectors, scintillators), diamonds are less sensitive to $\\gamma$ rays, which represent a huge background in fusion devices. Finally, their low leakage current at high temperature suppresses the detector intrinsic noise. In this talk a CVD diamond based detector has been proposed for the measurement of the 14 MeV neutrons from D-T fusion reaction. The detector was arranged in a proton recoil telescope configuration, featuring a plastic converter in front of the sensitive volume in order to induce the (n,p) reaction. The segmentation of the sensitive volume, achieved by using two crystals, allowed to perform measurements in coincidence, which suppressed the neutron elastic scattering background. A preliminary prototype was assembled and tested at FNG (Frascati Neutron Generator, ENEA), showing promising results regarding efficiency and energy resolution.

  11. Thermal Neutron Computed Tomography of Soil Water and Plant Roots

    E-Print Network [OSTI]

    Leanne G. Tumlinson; Hungyuan Liu; Wendy K. Silk; Jan W. Hopmans

    2007-01-01

    caused by increased neutron scattering with an increase inof beam hardening and neutron scattering could be correctedof beam hardening or neutron scattering and backscattering

  12. Order-of-Magnitude Estimate of Fast Neutron Recoil Rates in Proposed Neutrino Detector at SNS

    SciTech Connect (OSTI)

    Iverson, Erik B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2006-02-01

    Yuri Efremenko (UT-K) and Kate Scholberg (Duke) indicated, during discussions on 12 January 2006 with the SNS Neutronics Team, interest in a new type of neutrino detector to be placed within the proposed neutrino bunker at SNS, near beam-line 18, against the RTBT. The successful operation of this detector and its associated experiments would require fast-neutron recoil rates of approximately one event per day of operation or less. To this end, the author has attempted the following order-of-magnitude estimate of this recoil rate in order to judge whether or not a full calculation effort is needed or justified. For the purposes of this estimate, the author considers a one-dimensional slab geometry, in which fast and high-energy neutrons making up the general background in the target building are incident upon one side of an irbon slab. This iron slab represents the neutrino bunker walls. If we assume that a significant fraction of the dose rate throughout the target building is due to fast or high-energy neutrons, we can estimate the flux of such neutrons based upon existing shielding calculations performed for radiation protection purposes. In general, the dose rates within the target building are controlled to be less than 0.25 mrem per hour. A variety of calculations have indicated that these dose rates have significant fast and high-energy neutron components. Thus they can estimate the fast neutron flux incident on the neutrino bunker, and thereby the fast neutron flux inside that bunker. Finally, they can estimate the neutron recoil rate within a nominal detector volume. Such an estimate is outlined in Table 1.

  13. Forward fitting of experimental data from a NE213 neutron detector installed with the magnetic proton recoil upgraded spectrometer at JET

    SciTech Connect (OSTI)

    Binda, F. Ericsson, G.; Eriksson, J.; Hellesen, C.; Conroy, S.; Sundén, E. Andersson; Collaboration: JET-EFDA Team

    2014-11-15

    In this paper, we present the results obtained from the data analysis of neutron spectra measured with a NE213 liquid scintillator at JET. We calculated the neutron response matrix of the instrument combining MCNPX simulations, a generic proton light output function measured with another detector and the fit of data from ohmic pulses. For the analysis, we selected a set of pulses with neutral beam injection heating (NBI) only and we applied a forward fitting procedure of modeled spectral components to extract the fraction of thermal neutron emission. The results showed the same trend of the ones obtained with the dedicated spectrometer TOFOR, even though the values from the NE213 analysis were systematically higher. This discrepancy is probably due to the different lines of sight of the two spectrometers (tangential for the NE213, vertical for TOFOR). The uncertainties on the thermal fraction estimates were from 4 to 7 times higher than the ones from the TOFOR analysis.

  14. Single crystal diamond detector measurements of deuterium-deuterium and deuterium-tritium neutrons in Joint European Torus fusion plasmas

    SciTech Connect (OSTI)

    Cazzaniga, C., E-mail: carlo.cazzaniga@mib.infn.it; Gorini, G.; Nocente, M. [Department of Physics “G. Occhialini,” University of Milano Bicocca, Piazza della Scienza 3, Milano (Italy) [Department of Physics “G. Occhialini,” University of Milano Bicocca, Piazza della Scienza 3, Milano (Italy); Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, via Roberto Cozzi 53, Milano (Italy); Sundén, E. Andersson; Binda, F.; Ericsson, G. [Department of Physics and Astronomy, EURATOM-VR Association, Uppsala University, Uppsala (Sweden)] [Department of Physics and Astronomy, EURATOM-VR Association, Uppsala University, Uppsala (Sweden); Croci, G.; Grosso, G.; Cippo, E. Perelli; Tardocchi, M. [Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, via Roberto Cozzi 53, Milano (Italy)] [Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, via Roberto Cozzi 53, Milano (Italy); Giacomelli, L.; Rebai, M. [Department of Physics “G. Occhialini,” University of Milano Bicocca, Piazza della Scienza 3, Milano (Italy)] [Department of Physics “G. Occhialini,” University of Milano Bicocca, Piazza della Scienza 3, Milano (Italy); Griesmayer, E. [Atominstitut, Vienna University of Technology (Austria)] [Atominstitut, Vienna University of Technology (Austria); Kaveney, G.; Syme, B. [Culham Centre for Fusion Energy, Culham OX143DB (United Kingdom)] [Culham Centre for Fusion Energy, Culham OX143DB (United Kingdom); Collaboration: JET-EFDA Contributors

    2014-04-15

    First simultaneous measurements of deuterium-deuterium (DD) and deuterium-tritium neutrons from deuterium plasmas using a Single crystal Diamond Detector are presented in this paper. The measurements were performed at JET with a dedicated electronic chain that combined high count rate capabilities and high energy resolution. The deposited energy spectrum from DD neutrons was successfully reproduced by means of Monte Carlo calculations of the detector response function and simulations of neutron emission from the plasma, including background contributions. The reported results are of relevance for the development of compact neutron detectors with spectroscopy capabilities for installation in camera systems of present and future high power fusion experiments.

  15. Compounds for neutron radiation detectors and systems thereof

    DOE Patents [OSTI]

    Payne, Stephen A.; Stoeffl, Wolfgang; Zaitseva, Natalia P.; Cherepy, Nerine J.; Carman, M. Leslie

    2013-06-11

    One embodiment includes a material exhibiting an optical response signature for neutrons that is different than an optical response signature for gamma rays, said material exhibiting performance comparable to or superior to stilbene in terms of distinguishing neutrons from gamma rays, wherein the material is not stilbene. Another embodiment includes a substantially pure crystal exhibiting an optical response signature for neutrons that is different than an optical response signature for gamma rays, the substantially pure crystal comprising a material selected from a group consisting of: 1-1-4-4-tetraphenyl-1-3-butadiene; 2-fluorobiphenyl-4-carboxylic acid; 4-biphenylcarboxylic acid; 9-10-diphenylanthracene; 9-phenylanthracene; 1-3-5-triphenylbenzene; m-terphenyl; bis-MSB; p-terphenyl; diphenylacetylene; 2-5-diphenyoxazole; 4-benzylbiphenyl; biphenyl; 4-methoxybiphenyl; n-phenylanthranilic acid; and 1-4-diphenyl-1-3-butadiene.

  16. Compounds for neutron radiation detectors and systems thereof

    DOE Patents [OSTI]

    Payne, Stephen A; Stoeffl, Wolfgang; Zaitseva, Natalia P; Cherepy, Nerine J; Carman, M. Leslie

    2014-05-27

    A material according to one embodiment exhibits an optical response signature for neutrons that is different than an optical response signature for gamma rays, said material exhibiting performance comparable to or superior to stilbene in terms of distinguishing neutrons from gamma rays, wherein the material is not stilbene, the material comprising a molecule selected from a group consisting of: two or more benzene rings, one or more benzene rings with a carboxylic acid group, one or more benzene rings with at least one double bound adjacent to said benzene ring, and one or more benzene rings for which at least one atom in the benzene ring is not carbon.

  17. Thermal-neutron capture gamma-rays. Volume 1

    SciTech Connect (OSTI)

    Tuli, J.K. [National Nuclear Data Center, Upton, NY (United States)

    1997-05-01

    The energy and photon intensity of gamma rays as seen in thermal-neutron capture are presented in ascending order of gamma energy. All those gamma-rays with intensity of {ge} 2% of the strongest transition are included. The two strongest transitions seen for the target nuclide are indicated in each case. Where the target nuclide mass number is indicated as nat the natural target was used. The gamma energies given are in keV. The gamma intensities given are relative to 100 for the strongest transition. All data for A > 44 are taken from Evaluated Nuclear Structure Data File (4/97), a computer file of evaluated nuclear structure data maintained by the National Nuclear Data Center, Brookhaven National Laboratory, on behalf of the Nuclear Structure and Decay and Decay Data network, coordinated by the International Atomic Energy Agency, Vienna. These data are published in Nuclear Data Sheets, Academic Press, San Diego, CA. The data for A {le} 44 is taken from ``Prompt Gamma Rays from Thermal-Neutron Capture,`` M.A. Lone, R.A. Leavitt, D.A. Harrison, Atomic Data and Nuclear Data Tables 26, 511 (1981).

  18. A novel fast-neutron detector concept for energy-selective imaging and imaging spectroscopy

    SciTech Connect (OSTI)

    Cortesi, M.; Prasser, H.-M.; Dangendorf, V.; Zboray, R.

    2014-07-15

    We present and discuss the operational principle of a new fast-neutron detector concept suitable for either energy-selective imaging or for imaging spectroscopy. The detector is comprised of a series of energy-selective stacks of converter foils immersed in a noble-gas based mixture, coupled to a position-sensitive charge readout. Each foil in the various stacks is made of two layers of different thicknesses, fastened together: a hydrogen-rich (plastic) layer for neutron-to-proton conversion, and a hydrogen-free coating to selectively stop/absorb the recoil protons below a certain energy cut-off. The neutron-induced recoil protons, that escape the converter foils, release ionization electrons in the gas gaps between consecutive foils. The electrons are then drifted towards and localized by a position-sensitive charge amplification and readout stage. Comparison of the images detected by stacks with different energy cut-offs allows energy-selective imaging. Neutron energy spectrometry is realized by analyzing the responses of a sufficient large number of stacks of different energy response and unfolding techniques. In this paper, we present the results of computer simulation studies and discuss the expected performance of the new detector concept. Potential applications in various fields are also briefly discussed, in particularly, the application of energy-selective fast-neutron imaging for nuclear safeguards application, with the aim of determining the plutonium content in Mixed Oxide (MOX) fuels.

  19. Detecting gravitational waves from mountains on neutron stars in the Advanced Detector Era

    E-Print Network [OSTI]

    Brynmor Haskell; Maxim Priymak; Alessandro Patruno; Manuel Oppenoorth; Andrew Melatos; Paul Lasky

    2015-01-24

    Rapidly rotating Neutron Stars (NSs) in Low Mass X-ray Binaries (LMXBs) are thought to be interesting sources of Gravitational Waves (GWs) for current and next generation ground based detectors, such as Advanced LIGO and the Einstein Telescope. The main reason is that many of the NS in these systems appear to be spinning well below their Keplerian breakup frequency, and it has been suggested that torques associated with GW emission may be setting the observed spin period. This assumption has been used extensively in the literature to assess the strength of the likely gravitational wave signal. There is now, however, a significant amount of theoretical and observation work that suggests that this may not be the case, and that GW emission is unlikely to be setting the spin equilibrium period in many systems. In this paper we take a different starting point and predict the GW signal strength for two physical mechanisms that are likely to be at work in LMXBs: crustal mountains due to thermal asymmetries and magnetically confined mountains. We find that thermal crustal mountains in transient LMXBs are unlikely to lead to detectable GW emission, while persistent systems are good candidates for detection by Advanced LIGO and by the Einstein Telescope. Detection prospects are pessimistic for the magnetic mountain case, unless the NS has a buried magnetic field of $B\\approx 10^{12}$ G, well above the typically inferred exterior dipole fields of these objects. Nevertheless, if a system were to be detected by a GW observatory, cyclotron resonant scattering features in the X-ray emission could be used to distinguish between the two different scenarios.

  20. Preparation of Neutron-activated Xenon for Liquid Xenon Detector Calibration

    E-Print Network [OSTI]

    Ni, K; Wongjirad, T M; Kastens, L; Manzur, A; McKinsey, D N

    2007-01-01

    We report the preparation of neutron-activated xenon for the calibration of liquid xenon (LXe) detectors. Gamma rays from the decay of xenon metastable states, produced by fast neutron activation, were detected and their activities measured in a LXe scintillation detector. Following a five-day activation of natural xenon gas with a Cf-252 (4 x 10^5 n/s) source, the activities of two gamma ray lines at 164 keV and 236 keV, from Xe-131m and Xe-129m metastable states, were measured at about 95 and 130 Bq/kg, respectively. We also observed three additional lines at 35 keV, 100 keV and 275 keV, which decay away within a few days. No long-lifetime activity was observed after the neutron activation.

  1. Preparation of Neutron-activated Xenon for Liquid Xenon Detector Calibration

    E-Print Network [OSTI]

    K. Ni; R. Hasty; T. M. Wongjirad; L. Kastens; A. Manzur; D. N. McKinsey

    2007-09-27

    We report the preparation of neutron-activated xenon for the calibration of liquid xenon (LXe) detectors. Gamma rays from the decay of xenon metastable states, produced by fast neutron activation, were detected and their activities measured in a LXe scintillation detector. Following a five-day activation of natural xenon gas with a Cf-252 (4 x 10^5 n/s) source, the activities of two gamma ray lines at 164 keV and 236 keV, from Xe-131m and Xe-129m metastable states, were measured at about 95 and 130 Bq/kg, respectively. We also observed three additional lines at 35 keV, 100 keV and 275 keV, which decay away within a few days. No long-lifetime activity was observed after the neutron activation.

  2. Spin-dependent scattering and absorption of thermal neutrons on dynamically polarized nuclei

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    957 Spin-dependent scattering and absorption of thermal neutrons on dynamically polarized nuclei H neutrons and polarized nuclei have been used to measure spin-dependent scattering lengths and absorption cross sections of slow (S-wave) neutrons on nuclei. In order to obtain those scattering lengths

  3. Thermal Design of the Mu2e Detector Solenoid

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dhanaraj, N.; Wands, R.; Buehler, M.; Feher, S.; Page, T.; Peterson, T.; Schmitt, R.

    2014-12-18

    The reference design for a superconducting Detector Solenoid (DS) for the Mu2e experiment has been completed. The main functions of the DS are to provide a graded field in the region of the stopping target which ranges from 2 T to 1 T and a uniform precision magnetic field of 1 T in a volume large enough to house a tracker downstream of the stopping target. The inner diameter of the magnet cryostat is 1.9 m and the length is 10.9 m. The gradient section of the magnet is about 4 m long and the spectrometer section with a uniformmore »magnetic field is about 6 m long. The inner cryostat wall supports the stopping target, tracker, calorimeter and other equipment installed in the DS. This warm bore volume is under vacuum during operation. It is sealed on one end by the muon beam stop, while it is open on the other end where it interfaces with the Transport Solenoid. The operating temperature of the magnetic coil is 4.7 K and is indirectly cooled with helium flowing in a thermosiphon cooling scheme. This paper describes the thermal design of the solenoid, including the design aspects of the thermosiphon for the coil cooling, forced flow cooling of the thermal shields with 2 phase LN2 (Liquid Nitrogen) and the transient studies of the cool down of the cold mass as well.« less

  4. Thermal Design of the Mu2e Detector Solenoid

    SciTech Connect (OSTI)

    Dhanaraj, N.; Wands, R.; Buehler, M.; Feher, S.; Page, T.; Peterson, T.; Schmitt, R.

    2014-12-18

    The reference design for a superconducting Detector Solenoid (DS) for the Mu2e experiment has been completed. The main functions of the DS are to provide a graded field in the region of the stopping target which ranges from 2 T to 1 T and a uniform precision magnetic field of 1 T in a volume large enough to house a tracker downstream of the stopping target. The inner diameter of the magnet cryostat is 1.9 m and the length is 10.9 m. The gradient section of the magnet is about 4 m long and the spectrometer section with a uniform magnetic field is about 6 m long. The inner cryostat wall supports the stopping target, tracker, calorimeter and other equipment installed in the DS. This warm bore volume is under vacuum during operation. It is sealed on one end by the muon beam stop, while it is open on the other end where it interfaces with the Transport Solenoid. The operating temperature of the magnetic coil is 4.7 K and is indirectly cooled with helium flowing in a thermosiphon cooling scheme. This paper describes the thermal design of the solenoid, including the design aspects of the thermosiphon for the coil cooling, forced flow cooling of the thermal shields with 2 phase LN2 (Liquid Nitrogen) and the transient studies of the cool down of the cold mass as well.

  5. Thermal Design of the Mu2e Detector Solenoid

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dhanaraj, Nandhini [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Wands, Bob [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Buehler, Marc [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Feher, Sandor [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Page, Thomas M [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Peterson, Thomas [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Schmitt, Richard L [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2015-06-01

    The reference design for a superconducting Detector Solenoid (DS) for the Mu2e experiment has been completed. The main functions of the DS are to provide a graded field in the region of the stopping target which ranges from 2 T to 1 T and a uniform precision magnetic field of 1 T in a volume large enough to house a tracker downstream of the stopping target. The inner diameter of the magnet cryostat is 1.9 m and the length is 10.9 m. The gradient section of the magnet is about 4 m long and the spectrometer section with a uniform magnetic field is about 6 m long. The inner cryostat wall supports the stopping target, tracker, calorimeter and other equipment installed in the DS. This warm bore volume is under vacuum during operation. It is sealed on one end by the muon beam stop, while it is open on the other end where it interfaces with the Transport Solenoid. The operating temperature of the magnetic coil is 4.7 K and is indirectly cooled with helium flowing in a thermosiphon cooling scheme. This paper describes the thermal design of the solenoid, including the design aspects of the thermosiphon for the coil cooling, forced flow cooling of the thermal shields with 2 phase LN2 (Liquid Nitrogen) and the transient studies of the cool down of the cold mass as well.

  6. Directionally Sensitive Neutron Detector For Homeland Security Applications 

    E-Print Network [OSTI]

    Spence, Grant

    2012-02-14

    KAERI Korean Atomic Energy Research Institute MC Monte Carlo Mathematical Model MCNPX Monte Carlo N- Particle Extended NaI Sodium Iodide PMT Photomultiplier Tube PTRAC Particle Tracing Function of MCNPX PVT Polyvynal Taluene RPMs... tubes, and the flat blue and pink plates in front of the 3He tubes are the PVT detectors. ...................................................................................................... 45 Fig. 23. MCNPX...

  7. Maintenance neutron coincidence counter manual

    SciTech Connect (OSTI)

    Krick, M.S.; Polk, P.J.; Atencio, J.D.

    1989-09-01

    A compact thermal-neutron coincidence counter has been constructed specifically for use by the International Atomic Energy Agency as a reference neutron detector for maintenance activities. The counter is designed for use only with {sup 252}Cf sources in SR-CF-100 capsules. This manual describes the detector's mechanical and electrical components and its operating characteristics. 2 refs., 8 figs.

  8. Improvement studies on neutron-gamma separation in HPGe detectors by using neural networks

    E-Print Network [OSTI]

    Serkan Akkoyun; Tuncay Bayram; S. Okan Kara

    2013-04-11

    The neutrons emitted in heavy-ion fusion-evaporation (HIFE) reactions together with the gamma-rays cause unwanted backgrounds in gamma-ray spectra. Especially in the nuclear reactions, where relativistic ion beams (RIBs) are used, these neutrons are serious problem. They have to be rejected in order to obtain clearer gamma-ray peaks. In this study, the radiation energy and three criteria which were previously determined for separation between neutron and gamma-rays in the HPGe detectors have been used in artificial neural network (ANN) for improving of the decomposition power. According to the preliminary results obtained from ANN method, the ratio of neutron rejection has been improved by a factor of 1.27 and the ratio of the lost in gamma-rays has been decreased by a factor of 0.50.

  9. A large area plastic scintillator detector array for fast neutron measurements

    E-Print Network [OSTI]

    P. C. Rout; D. R. Chakrabarty; V. M. Datar; Suresh Kumar; E. T. Mirgule; A. Mitra; V. Nanal; R. Kujur

    2008-09-04

    A large area plastic scintillator detector array(~ 1 m x1m) has been set up for fast neutron spectroscopy at the BARC-TIFR Pelletron laboratory, Mumbai. The energy, time and position response has been measured for electrons using radioactive sources and for mono-energetic neutrons using the 7Li(p,n1)7Be*(0.429 MeV) reaction at proton energies between 6.3 and 19 MeV. A Monte Carlo simulation of the energy dependent efficiency of the array for neutron detection is in agreement with the 7Li(p,n1) measurements. The array has been used to measure the neutron spectrum, in the energy range of 4-12 MeV, in the reaction 12C+ 93Nb at E(12C)= 40 MeV. This is in reasonable agreement with a statistical model calculation.

  10. A new MCNPX PTRAC coincidence capture file capability: a tool for neutron detector design

    SciTech Connect (OSTI)

    Evans, Louise G; Schear, Melissa A; Hendricks, John S; Swinhoe, Martyn T; Tobin, Stephen J; Croft, Stephen

    2011-02-16

    The existing Monte Carlo N-Particle (MCNPX) particle tracking (PTRAC) coincidence capture file allows a full list of neutron capture events to be recorded in any simulated detection medium. The originating event history number (e.g. spontaneous fission events), capture time, location and source particle number are tracked and output to file for post-processing. We have developed a new MCNPX PTRAC coincidence capture file capability to aid detector design studies. New features include the ability to track the nuclides that emitted the detected neutrons as well as induced fission chains in mixed samples before detection (both generation number and nuclide that underwent induced fission). Here, the power of this tool is demonstrated using a detector design developed for the non-destructive assay (NDA) of spent nuclear fuel. Individual capture time distributions have been generated for neutrons originating from Curium-244 source spontaneous fission events and induced fission events in fissile nuclides of interest: namely Plutonium-239, Plutonium-241, and Uranium-235. Through this capability, a full picture for the attribution of neutron capture events in the detector can be simulated.

  11. Tomographic analysis of neutron and gamma pulse shape distributions from liquid scintillation detectors at Joint European Torus

    SciTech Connect (OSTI)

    Giacomelli, L.; Department of Physics, Universitŕ degli Studi di Milano-Bicocca, Milano ; Conroy, S.; Department of Physics and Astronomy, Uppsala University, Uppsala ; Gorini, G.; Horton, L.; Murari, A.; Popovichev, S.; Syme, D. B.

    2014-02-15

    The Joint European Torus (JET, Culham, UK) is the largest tokamak in the world devoted to nuclear fusion experiments of magnetic confined Deuterium (D)/Deuterium-Tritium (DT) plasmas. Neutrons produced in these plasmas are measured using various types of neutron detectors and spectrometers. Two of these instruments on JET make use of organic liquid scintillator detectors. The neutron emission profile monitor implements 19 liquid scintillation counters to detect the 2.45 MeV neutron emission from D plasmas. A new compact neutron spectrometer is operational at JET since 2010 to measure the neutron energy spectra from both D and DT plasmas. Liquid scintillation detectors are sensitive to both neutron and gamma radiation but give light responses of different decay time such that pulse shape discrimination techniques can be applied to identify the neutron contribution of interest from the data. The most common technique consists of integrating the radiation pulse shapes within different ranges of their rising and/or trailing edges. In this article, a step forward in this type of analysis is presented. The method applies a tomographic analysis of the 3-dimensional neutron and gamma pulse shape and pulse height distribution data obtained from liquid scintillation detectors such that n/? discrimination can be improved to lower energies and additional information can be gained on neutron contributions to the gamma events and vice versa.

  12. A silicon photomultiplier readout for time of flight neutron spectroscopy with {gamma}-ray detectors

    SciTech Connect (OSTI)

    Pietropaolo, A.; Gorini, G.; Festa, G.; Andreani, C.; De Pascale, M. P.; Reali, E.; Grazzi, F.; Schooneveld, E. M.

    2009-09-15

    The silicon photomultiplier (SiPM) is a recently developed photosensor used in particle physics, e.g., for detection of minimum ionizing particles and/or Cherenkov radiation. Its performance is comparable to that of photomultiplier tubes, but with advantages in terms of reduced volume and magnetic field insensitivity. In the present study, the performance of a gamma ray detector made of an yttrium aluminum perovskite scintillation crystal and a SiPM-based readout is assessed for use in time of flight neutron spectroscopy. Measurements performed at the ISIS pulsed neutron source demonstrate the feasibility of {gamma}-detection based on the new device.

  13. Diverse methods of analyzing neutron detector signal for power monitoring in commercial fast reactors

    SciTech Connect (OSTI)

    Sivaramakrishna, M.; Nagaraj, C. P.; Madhusoodanan, K. [Kerala Univ., Thiruvananthapuram (India)

    2011-07-01

    In a fast reactor, the measurement of instantaneous power, accurately at any point of time is of prime importance. To control the reactor power within its design limit for safe operation, measurement of power and safety functions operated by different systems based on power is required. This is done with neutron detectors from which signal come as current pulses in random following Poisson distribution. Due to heavy overlap, individual pulse counting is extremely difficult beyond certain frequency. So to count pulses in the detector output in a given length of time, which will be measure of power in the reactor, indirect method of signal processing is applied here. After applying signal processing methods on the detector output, linear relation is established between maximum amplitude of absolute of FFT (Fast Fourier Transform) of the signal and no of pulses in a given length of time of the signal i.e. rate of arrival of pulses to the detector. This linear relation is verified in different ways i.e. with simulated fixed rate of arrival of the pulses, random rate of arrival of the pulses and with neutron detector simulator output. The paper explains various stages of development and testing. (authors)

  14. Detector-Response Correction of Two-Dimensional ? -Ray Spectra from Neutron Capture

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rusev, G.; Jandel, M.; Arnold, C. W.; Bredeweg, T. A.; Couture, A.; Mosby, S. M.; Ullmann, J. L.

    2015-05-28

    The neutron-capture reaction produces a large variety of ?-ray cascades with different ?-ray multiplicities. A measured spectral distribution of these cascades for each ?-ray multiplicity is of importance to applications and studies of ?-ray statistical properties. The DANCE array, a 4? ball of 160 BaF2 detectors, is an ideal tool for measurement of neutron-capture ?-rays. The high granularity of DANCE enables measurements of high-multiplicity ?-ray cascades. The measured two-dimensional spectra (?-ray energy, ?-ray multiplicity) have to be corrected for the DANCE detector response in order to compare them with predictions of the statistical model or use them in applications. Themore »detector-response correction problem becomes more difficult for a 4? detection system than for a single detector. A trial and error approach and an iterative decomposition of ?-ray multiplets, have been successfully applied to the detector-response correction. Applications of the decomposition methods are discussed for two-dimensional ?-ray spectra measured at DANCE from ?-ray sources and from the 10B(n, ?) and 113Cd(n, ?) reactions.« less

  15. 3He Neutron Detector Pressure Effect and Comparison to Models

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.; Stromswold, David C.; Woodring, Mitchell L.

    2010-01-14

    Reported here are the results of measurements performed to determine the efficiency of 3He filled proportional counters as a function of gas pressure in the SAIC system. Motivation for these measurements was largely to validate the current model of the SAIC system. Those predictions indicated that the neutron detection efficiency plotted as a function of pressure has a simple, logarithmic shape. As for absolute performance, the model results indicated the 3He pressure in the current SAIC system could not be reduced appreciably while meeting the current required level of detection sensitivity. Thus, saving 3He by reducing its pressure was predicted not to be a viable option in the current SAIC system.

  16. Study of neutron response and n-gamma discrimination by charge comparison method for small liquid scintillation detector

    E-Print Network [OSTI]

    J. ?erný; Z. Doležal; M. P. Ivanov; E. S. Kuzmin; J. Švejda; I. Wilhelm

    2003-11-24

    The study of the neutron response and n-gamma discrimination for small (18x26x8) mm3 liquid scintillator BC501A (Bicron) detector was carried out by digital charge comparison method. Three ranges of neutron energies were used: uniform distribution from 0.95 MeV to 1.23 MeV, continuous spectra of AmBe source and monoenergetic 16.2 MeV neutrons. The obtained results are compared with those for cylindrical liquid scintillation detector (40 mm diameter, 60 mm length) at the same energies of neutrons. A dramatic fall of the neutron response function at 400 keVee for small detector at 16.2 MeV neutron energy was measured. For (0.95 - 1.23) MeV neutron energy range such fall takes place at 260 keVee. The greater slope of neutron locus at (0.95 - 1.23) MeV neutron energy comparing to 16.2 MeV for both detectors is explained by longer tail of pulse from proton recoils within (0.1-1.23) MeV energy range.

  17. Thermal and Electric Conductivities of Coulomb Crystals in the Inner Crust of a Neutron Star

    E-Print Network [OSTI]

    D. A. Baiko; D. G. Yakovlev

    1996-04-28

    Thermal and electric conductivities of relativistic degenerate electrons are calculated for the case when electrons scatter by phonons in Coulomb crystals made of spherical finite--size nuclei at densities $10^{11}$~g/cm$^3 neutron star. In combination with the results of the previous article (for lower $\\rho$), simple unified fits are obtained which describe the kinetic coefficients in the range $10^3$~g/cm$^3 neutron stars and evolution of their magnetic fields. The difference between the kinetic coefficients in the neutron star crust composed of ground state and accreted matters is analyzed. Thermal drift of the magnetic field in the neutron star crust is discussed.

  18. Neutron Radiation Shielding For The NIF Streaked X-Ray Detector (SXD) Diagnostic

    SciTech Connect (OSTI)

    Song, P; Holder, J; Young, B; Kalantar, D; Eder, D; Kimbrough, J

    2006-11-02

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is preparing for the National Ignition Campaign (NIC) scheduled in 2010. The NIC is comprised of several ''tuning'' physics subcampaigns leading up to a demonstration of Inertial Confinement Fusion (ICF) ignition. In some of these experiments, time-resolved x-ray imaging of the imploding capsule may be required to measure capsule trajectory (shock timing) or x-ray ''bang-time''. A capsule fueled with pure tritium (T) instead of a deutriun-tritium (DT) mixture is thought to offer useful physics surrogacy, with reduced yields of up to 5e14 neutrons. These measurements will require the use of the NIF streak x-ray detector (SXD). The resulting prompt neutron fluence at the planned SXD location ({approx}1.7 m from the target) would be {approx}1.4e9/cm{sup 2}. Previous measurements suggest the onset of significant background at a neutron fluence of {approx} 1e8/cm{sup 2}. The radiation damage and operational upsets which starts at {approx}1e8 rad-Si/sec must be factored into an integrated experimental campaign plan. Monte Carlo analyses were performed to predict the neutron and gamma/x-ray fluences and radiation doses for the proposed diagnostic configuration. A possible shielding configuration is proposed to mitigate radiation effects. The primary component of this shielding is an 80 cm thickness of Polyethylene (PE) between target chamber center (TCC) and the SXD diagnostic. Additionally, 6-8 cm of PE around the detector provide from the large number of neutrons that scatter off the inside of the target chamber. This proposed shielding configuration reduces the high-energy neutron fluence at the SXD by approximately a factor {approx}50.

  19. Gamma Rossi-alpha, Feynman-alpha and Gamma Differential Die-Away concepts as a potential alternative/complement to the traditional thermal neutron based analysis in Safeguards

    E-Print Network [OSTI]

    Chernikova, Dina; Trnjanin, Nermin; Axell, Kĺre; Nordlund, Anders

    2015-01-01

    A new concept for thermal neutron based correlation and multiplicity measurements is proposed in this paper. The main idea of the concept consists of using 2.223 MeV gammas (or 1.201 MeV, DE) originating in the 1H(n,gamma)2D-reaction instead of using traditional thermal neutron counting. Results of investigations presented in this paper indicate that gammas from thermal neutron capture reaction preserve the information about the correlation characteristics of thermal (fast) neutrons in the same time scale. Therefore, instead of thermal neutron detectors (or as a complement) one may use traditional and inexpensive gamma detectors, such NaI, BGO, CdZnTe or any other gamma detectors. In this work we used D8x8 cm2 NaI scintillator to test the concept. Thus, the new approach helps to address the problem of replacement of 3He-counters and problems related to the specific measurements of spent nuclear fuel directly in the spent fuel pool. It has a particular importance for nuclear safeguards and security. Overall, t...

  20. NEUTRONIC AND THERMAL HYDRAULIC DESIGNS OF ANNULAR FUEL FOR HIGH POWER DENSITY BWRS

    E-Print Network [OSTI]

    Morra, P.

    As a promising new fuel for high power density light water reactors, the feasibility of using annular fuel for BWR services is explored from both thermal hydraulic and neutronic points of view. Keeping the bundle size ...

  1. NUCLEARSCIENCEAND ENGINEERING:77, 15%167(1981) The Distribution of Thermal Neutron Cross Sections

    E-Print Network [OSTI]

    Shlyakhter, Ilya

    1981-01-01

    sections for thermal neutrons [the (n,-y) reaction] have been measured for hundreds of nuclei. ' However such estimates while planning the measurements of cross sections. They are also useful to estimate changes Neutron Cross Sections I I I i / I I ! I I R Yu. V. Petrov and A. I. Shlyakhter Leningrad Nuclear Physics

  2. Absorbed dose rates in tissue from prompt gamma emissions from near-thermal neutron absorption

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schwahn, Scott O.

    2015-10-01

    Prompt gamma emission data from the International Atomic Energy Agency s Prompt Gamma-ray Neutron Activation Analysis database are analyzed to determine the absorbed dose rates in tissue to be expected when natural elements are exposed in a near-thermal neutron environment.

  3. Gamma Rossi-alpha, Feynman-alpha and Gamma Differential Die-Away concepts as a potential alternative/complement to the traditional thermal neutron based analysis in Safeguards

    E-Print Network [OSTI]

    Dina Chernikova; Syed F. Naeem; Nermin Trnjanin; Kĺre Axell; Anders Nordlund

    2015-07-20

    A new concept for thermal neutron based correlation and multiplicity measurements is proposed in this paper. The main idea of the concept consists of using 2.223 MeV gammas (or 1.201 MeV, DE) originating in the 1H(n,gamma)2D-reaction instead of using traditional thermal neutron counting. Results of investigations presented in this paper indicate that gammas from thermal neutron capture reaction preserve the information about the correlation characteristics of thermal (fast) neutrons in the same time scale. Therefore, instead of thermal neutron detectors (or as a complement) one may use traditional and inexpensive gamma detectors, such NaI, BGO, CdZnTe or any other gamma detectors. In this work we used D8x8 cm2 NaI scintillator to test the concept. Thus, the new approach helps to address the problem of replacement of 3He-counters and problems related to the specific measurements of spent nuclear fuel directly in the spent fuel pool. It has a particular importance for nuclear safeguards and security. Overall, this work represents the proof of concept study and reports on the experimental and numerical evidence that thermal neutron capture gammas may be used in the context of correlation and multiplicity measurements. Investigations were performed for a 252Cf-correlated neutron source and an 241Am-Be-random neutron source. The related idea of Gamma Differential Die-Away approach is investigated numerically in this paper as well, and will be tested experimentally in a future work.

  4. Measuring Muon-Induced Neutrons with Liquid Scintillation Detector at Soudan Mine

    E-Print Network [OSTI]

    C. Zhang; D. -M. Mei

    2014-11-26

    We report a direct detection of muon-induced high energy neutrons with a 12-liter neutron detector fabricated with EJ-301 liquid scintillator operating at Soudan Mine for about two years. The detector response to energy from a few MeV up to $\\sim$ 20 MeV has been calibrated using radioactive sources and cosmic-ray muons. Subsequently, we have calculated the scintillation efficiency for nuclear recoils, up to a few hundred MeV, using Birks' law in the Monte Carlo simulation. Data from an exposure of 655.1 days were analyzed and neutron-induced recoil events were observed in the energy region from 4 MeV to 50 MeV, corresponding to fast neutrons with kinetic energy up to a few hundred MeV, depending on the scattering angle. Combining with the Monte Carlo simulation, the muon-induced fast neutron flux is determined to be $(2.3 \\pm 0.52 (sta.) \\pm 0.99 (sys.) ) \\times10^{-9}$ cm$^{-2}$s$^{-1}$ (E$_{n}$ $>$ 20 MeV), in a reasonable agreement with the model prediction. The muon flux is found to be ($1.65\\pm 0.02 (sta.) \\pm 0.1 (sys.) ) \\times10^{-7}$ cm$^{-2}$s$^{-1}$ (E$_{\\mu}$ $>$ 1 GeV), consistent with other measurements. As a result, the muon-induced high energy gamma-ray flux is simulated to be 7.08 $\\times$10$^{-7}$cm$^{-2}$s$^{-1}$ (E$_{\\gamma}$ $>$ 1 MeV) for the depth of Soudan.

  5. A 4p BaF2 detector for (n,g) cross section measurements at a spallation neutron source

    E-Print Network [OSTI]

    Heil, M; Fowler, M M; Haight, R C; Käppeler, F; Rundberg, R S; Seabury, E H; Ullmann, J L; Wilhelmy, J B; Wisshak, K

    2013-01-01

    The quest for improved neutron capture cross sections for advanced reactor concepts, transmutation of radioactive wastes as well as for astrophysical scenarios of neutron capture nucleosynthesis has motivated new experimental efforts based on modern techniques. Recent measurements in the keV region have shown that a 4p BaF2 detector represents an accurate and versatile instrument for such studies. The present work deals with the potential of such a 4p BaF2 detector in combination with spallation neutron sources, which offer large neutron fluxes over a wide energy range. Detailed Monte Carlo simulations with the GEANT package have been performed to investigate the critical backgrounds at a spallation facility, to optimize the detector design, and to discuss alternative solutions.

  6. Neutron Damage in Mechanically-Cooled High-Purity Germanium Detectors for Field-Portable Prompt Gamma Neutron Activation Analysis (PGNAA) Systems

    SciTech Connect (OSTI)

    E.H. Seabury; C.J. Wharton; A.J. Caffrey; J.B. McCabe; C. DeW. Van Siclen

    2013-10-01

    Prompt Gamma Neutron Activation (PGNAA) systems require the use of a gamma-ray spectrometer to record the gamma-ray spectrum of an object under test and allow the determination of the object’s composition. Field-portable systems, such as Idaho National Laboratory’s PINS system, have used standard liquid-nitrogen-cooled high-purity germanium (HPGe) detectors to perform this function. These detectors have performed very well in the past, but the requirement of liquid-nitrogen cooling limits their use to areas where liquid nitrogen is readily available or produced on-site. Also, having a relatively large volume of liquid nitrogen close to the detector can impact some assessments, possibly leading to a false detection of explosives or other nitrogen-containing chemical. Use of a mechanically-cooled HPGe detector is therefore very attractive for PGNAA applications where nitrogen detection is critical or where liquid-nitrogen logistics are problematic. Mechanically-cooled HPGe detectors constructed from p-type germanium, such as Ortec’s trans-SPEC, have been commercially available for several years. In order to assess whether these detectors would be suitable for use in a fielded PGNAA system, Idaho National Laboratory (INL) has been performing a number of tests of the resistance of mechanically-cooled HPGe detectors to neutron damage. These detectors have been standard commercially-available p-type HPGe detectors as well as prototype n-type HPGe detectors. These tests compare the performance of these different detector types as a function of crystal temperature and incident neutron fluence on the crystal.

  7. MEASURING THE COOLING OF THE NEUTRON STAR IN CASSIOPEIA A WITH ALL CHANDRA X-RAY OBSERVATORY DETECTORS

    SciTech Connect (OSTI)

    Elshamouty, K. G.; Heinke, C. O.; Sivakoff, G. R. [Department of Physics, University of Alberta, CCIS 4-181, Edmonton AB T6G 2E1 (Canada); Ho, W. C. G. [School of Mathematics, University of Southampton, Southampton SO17 1BJ (United Kingdom); Shternin, P. S.; Yakovlev, D. G. [Ioffe Physical Technical Institute, Politekhnicheskaya 26, 194021 St Petersburg (Russian Federation); Patnaude, D. J.; David, L., E-mail: alshamou@ualberta.ca [Harvard-Smithsonian Centre for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-11-01

    The thermal evolution of young neutron stars (NSs) reflects the neutrino emission properties of their cores. Heinke and Ho measured a 3.6% ± 0.6% decay in the surface temperature of the Cassiopeia A (Cas A) NS between 2000 and 2009, using archival data from the Chandra X-ray Observatory ACIS-S detector in Graded mode. Page et al. and Shternin et al. attributed this decay to enhanced neutrino emission from a superfluid neutron transition in the core. Here we test this decline, combining analysis of the Cas A NS using all Chandra X-ray detectors and modes (HRC-S, HRC-I, ACIS-I, ACIS-S in Faint mode, and ACIS-S in Graded mode) and adding a 2012 May ACIS-S Graded mode observation, using the most current calibrations (CALDB 4.5.5.1). We measure the temperature changes from each detector separately and test for systematic effects due to the nearby filaments of the supernova remnant. We find a 0.92%-2.0% decay over 10 yr in the effective temperature, inferred from HRC-S data, depending on the choice of source and background extraction regions, with a best-fit decay of 1.0% ± 0.7%. In comparison, the ACIS-S Graded data indicate a temperature decay of 3.1%-5.0% over 10 yr, with a best-fit decay of 3.5% ± 0.4%. Shallower observations using the other detectors yield temperature decays of 2.6% ± 1.9% (ACIS-I), 2.1% ± 1.0% (HRC-I), and 2.1% ± 1.9% (ACIS-S Faint mode) over 10 yr. Our best estimate indicates a decline of 2.9% ± 0.5%{sub stat} ± 1.0{sub sys}% over 10 yr. The complexity of the bright and varying supernova remnant background makes a definitive interpretation of archival Cas A Chandra observations difficult. A temperature decline of 1%-3.5% over 10 yr would indicate extraordinarily fast cooling of the NS that can be regulated by superfluidity of nucleons in the stellar core.

  8. Gadolinium-doped water cerenkov-based neutron and high energy gamma-ray detector and radiation portal monitoring system

    SciTech Connect (OSTI)

    Dazeley, Steven A; Svoboda, Robert C; Bernstein, Adam; Bowden, Nathaniel

    2013-02-12

    A water Cerenkov-based neutron and high energy gamma ray detector and radiation portal monitoring system using water doped with a Gadolinium (Gd)-based compound as the Cerenkov radiator. An optically opaque enclosure is provided surrounding a detection chamber filled with the Cerenkov radiator, and photomultipliers are optically connected to the detect Cerenkov radiation generated by the Cerenkov radiator from incident high energy gamma rays or gamma rays induced by neutron capture on the Gd of incident neutrons from a fission source. The PMT signals are then used to determine time correlations indicative of neutron multiplicity events characteristic of a fission source.

  9. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Waugh, C. J.; Rosenberg, M. J.; Zylstra, A. B.; Frenje, J. A.; Seguin, F. H.; Petrasso, R. D.; Glebov, V. Yu.; Sangster, T. C.; Stoeckl, C.

    2015-05-27

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition,more »comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.« less

  10. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Waugh, C. J.; Rosenberg, M. J.; Zylstra, A. B.; Frenje, J. A.; Seguin, F. H.; Petrasso, R. D.; Glebov, V. Yu.; Sangster, T. C.; Stoeckl, C.

    2015-05-01

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition,more »comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.« less

  11. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Waugh, C. J. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States).; Rosenberg, M. J. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States).; Zylstra, A. B. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States).; Frenje, J. A. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States).; Seguin, F. H. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States).; Petrasso, R. D. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States).; Glebov, V. Yu. [Lab. for Laser Energetics, Rochester, NY (United States); Sangster, T. C. [Lab. for Laser Energetics, Rochester, NY (United States); Stoeckl, C. [Lab. for Laser Energetics, Rochester, NY (United States)

    2015-05-01

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.

  12. Fabrication and characterization of a lithium-glass-based composite neutron detector

    E-Print Network [OSTI]

    G. C. Rich; K. Kazkaz; H. P. Martinez; T. Gushue

    2015-05-25

    A novel composite, scintillating material intended for neutron detection and composed of small (1.5 mm) cubes of KG2-type lithium glass embedded in a matrix of scintillating plastic has been developed in the form of a 2.2 in.-diameter, 3.1 in.-tall cylindrical prototype loaded with $\\left( 5.82 \\pm 0.02 \\right)\\%$ lithium glass by mass. The response of the material when exposed to ${}^{252}$Cf fission neutrons and various $\\gamma$-ray sources has been studied; using the charge-integration method for pulse shape discrimination, good separation between neutron and $\\gamma$-ray events is observed and intrinsic efficiencies of $\\left( 1.15 \\pm 0.16 \\right)\\times 10^{-2}$ and $\\left( 2.28 \\pm 0.21 \\right)\\times 10^{-4}$ for ${}^{252}$Cf fission neutrons and ${}^{60}$Co $\\gamma$ rays are obtained; an upper limit for the sensitivity to ${}^{137}$Cs $\\gamma$ rays is determined to be $lithium glass can be detected in coincidence with a preceding elastic scattering event in the plastic scintillator; with this coincidence requirement, the intrinsic efficiency of the prototype detector for ${}^{60}$Co $\\gamma$ rays is $\\left( 2.42 \\pm 0.61 \\right)\\times 10^{-6}$ while its intrinsic efficiency for unmoderated ${}^{252}$Cf fission neutrons is $\\left( 4.31 \\pm 0.59 \\right)\\times 10^{-3}$. Through use of subregion-integration ratios in addition to the coincidence requirement, the efficiency for $\\gamma$ rays from ${}^{60}$Co is reduced to $\\left( 7.15 \\pm 4.10 \\right) \\times 10^{-7}$ while the ${}^{252}$Cf fission neutron efficiency becomes $\\left( 2.78 \\pm 0.38 \\right) \\times 10^{-3}$.

  13. PHYSICAL REVIEW C 83, 064612 (2011) Advanced Monte Carlo modeling of prompt fission neutrons for thermal and fast neutron-induced

    E-Print Network [OSTI]

    Danon, Yaron

    2011-01-01

    owing to the multiple scattering from ambient neutrons and from energy cuts in the detection efficiencyPHYSICAL REVIEW C 83, 064612 (2011) Advanced Monte Carlo modeling of prompt fission neutrons for thermal and fast neutron-induced fission reactions on 239 Pu P. Talou,1,* B. Becker,2 T. Kawano,1 M. B

  14. Optimizing Neutron Thermal Scattering Effects in very High Temperature Reactors. Final Report

    SciTech Connect (OSTI)

    Hawari, Ayman; Ougouag, Abderrafi

    2014-07-08

    This project aims to develop a holistic understanding of the phenomenon of neutron thermalization in the VHTR. Neutron thermalization is dependent on the type and structure of the moderating material. The fact that the moderator (and reflector) in the VHTR is a solid material will introduce new and interesting considerations that do not apply in other (e.g. light water) reactors. The moderator structure is expected to undergo radiation induced changes as the irradiation (or burnup) history progresses. In this case, the induced changes in structure will have a direct impact on many properties including the neutronic behavior. This can be easily anticipated if one recognizes the dependence of neutron thermalization on the scattering law of the moderator. For the pebble bed reactor, it is anticipated that the moderating behavior can be tailored, e.g. using moderators that consist of composite materials, which could allow improved optimization of the moderator-to-fuel ratio.

  15. Fissile material detector

    DOE Patents [OSTI]

    Ivanov, Alexander I. (Dubna, RU); Lushchikov, Vladislav I. (Dubna, RU); Shabalin, Eugeny P. (Dubna, RU); Maznyy, Nikita G. (Dubna, RU); Khvastunov, Michael M. (Dubna, RU); Rowland, Mark (Alamo, CA)

    2002-01-01

    A detector for fissile materials which provides for integrity monitoring of fissile materials and can be used for nondestructive assay to confirm the presence of a stable content of fissile material in items. The detector has a sample cavity large enough to enable assay of large items of arbitrary configuration, utilizes neutron sources fabricated in spatially extended shapes mounted on the endcaps of the sample cavity, incorporates a thermal neutron filter insert with reflector properties, and the electronics module includes a neutron multiplicity coincidence counter.

  16. Non-Destructive Spent Fuel Characterization with Semi-Conducting Gallium Arsinde Neutron Imaging Arrays

    SciTech Connect (OSTI)

    Douglas S. McGregor; Holly K. Gersch; Jeffrey D. Sanders; John C. Lee; Mark D. Hammig; Michael R. Hartman; Yong Hong Yang; Raymond T. Klann; Brian Van Der Elzen; John T. Lindsay; Philip A. Simpson

    2002-01-30

    High resistivity bulk grown GaAs has been used to produce thermal neutron imaging devices for use in neutron radiography and characterizing burnup in spent fuel. The basic scheme utilizes a portable Sb/Be source for monoenergetic (24 keV) neutron radiation source coupled to an Fe filter with a radiation hard B-coated pixellated GaAs detector array as the primary neutron detector. The coated neutron detectors have been tested for efficiency and radiation hardness in order to determine their fitness for the harsh environments imposed by spent fuel. Theoretical and experimental results are presented, showing detector radiation hardness, expected detection efficiency and the spatial resolution from such a scheme. A variety of advanced neutron detector designs have been explored, with experimental results achieving 13% thermal neutron detection efficiency while projecting the possibility of over 30% thermal neutron detection efficiency.

  17. Detector configuration of DECIGO/BBO and identification of cosmological neutron-star binaries

    E-Print Network [OSTI]

    Kent Yagi; Naoki Seto

    2011-01-20

    The primary target for the planned space-borne gravitational wave interferometers DECIGO/BBO is a primordial gravitational wave background (PGWB). However there exist astrophysical foregrounds and among them, gravitational waves from neutron star (NS) binaries are the solid and strong component that must be identified and subtracted. In this paper, we discuss the geometry of detector configurations preferable for identifying the NS/NS binary signals. As a first step, we analytically estimate the minimum signal-to-noise ratios (SNRs) of the binaries for several static detector configurations that are characterized by adjustable geometrical parameters, and determine the optimal values for these parameters. Next we perform numerical simulations to take into account the effect of detector motions, and find reasonable agreements with the analytical results. We show that, with the standard network formed by 4 units of triangle detectors, the proposed BBO sensitivity would be sufficient in receiving gravitational waves from all the NS/NS binaries at $z\\le 5$ with SNRs higher than 25. We also discuss the minimum sensitivity of DECIGO required for the foreground identification.

  18. Low amplitude part of the electron detector response and its significance in neutron angular correlation measurements

    E-Print Network [OSTI]

    L. Goldin; B. Yerozolimsky

    2004-01-13

    Results of a study of the possibilities to reduce the low amplitude "tail" of the response characteristic of various electron detectors are presented. The main reason of such attribute of all detectors used in electron epectrometry is the energy of several hundreds KeV taken by the backscattered electrons. A simple method of rejecting the events when the electrons are backscattered - the use of a second -"veto" - detector in anticoincidences with the main detector was investigated. The low amplitude "tail" in the response curve could be reduced by a factor of 3 - 4 . The remaining effect - about 1% of the integral has yet no explanation. Additional experiments showed that only \\~0.2-0.3% can be related to bremmsstrahlung. The significance of this effect in the study of angular correlations in neutron beta decay was analyzed too with the help of a simplified computer model. As a result, we propose a method of calculating appropriate corrections which promise to reduce the systematic uncertainty in the measurement of the "a" correlation coefficient which going to be carried out in the near future.

  19. Defects in {sup 6}LiInSe{sub 2} neutron detector investigated by photo-induced current transient spectroscopy and photoluminescence

    SciTech Connect (OSTI)

    Cui, Yunlong; Bhattacharya, Pijush; Buliga, Vladimir; Tupitsyn, Eugene; Rowe, Emmanuel; Wiggins, Brenden; Johnstone, Daniel; Stowe, Ashley; Burger, Arnold; Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235

    2013-08-26

    {sup 6}LiInSe{sub 2} is a promising thermal neutron semiconductor detector material. The performance of the detector is affected by the carrier mobility-lifetime products. Therefore, defects that function as carrier recombination centers need to be identified. In this letter, characterization of defect levels in {sup 6}LiInSe{sub 2} by photo-induced current transient spectroscopy (PICTS) and photoluminescence is reported. PICTS measurements revealed electron-related defects located at 0.22, 0.36, and 0.55 eV and hole-related defects at 0.19, 0.30, and 0.73 eV. Free exciton and donor-acceptor pairs (DAP) emissions were observed. The PICTS defect level values are consistent with those extracted from DAP transitions.

  20. Radiation damage to neutron and proton irradiated GaAs particle detectors

    E-Print Network [OSTI]

    M. Rogalla; Th. Eich; N. Evans; S. Joost; M. Kienzle; R. Geppert; R. Goeppert; R. Irsigler; J. Ludwig; K. Runge; Th. Schmid

    1997-04-04

    The radiation damage in 200 um thick Schottky diodes made on semi-insulating (SI) undoped GaAs Liquid Encapsulated Czochralski (LEC) bulk material with resistivities between 0.4 and 8.9*10E7 Ohm*cm were studied using alpha-spectroscopy, signal response to minimum ionising particles (MIP), I-V and CV-measurements. The results have been analysed to investigate the influence of the substrate resistivity on the detector performance after neutron and proton irradiation. The leakage current density, signal response to alpha-particles and MIPs show a strong dependence on the resistivity before and after irradiation. An observed decrease of the electron mean free drift length before and after irradiation with increasing substrate resistivity can be explained by a model involving the different ionisation ratios of defects, which are introduced by the irradiation. Comparison of the radiation damage due to neutrons and protons gives a hardness factor of 7+-0.9 for 24 GeV/c protons. The best detectors show a response to MIPs of 5250 e- at 200 V reverse bias after a irradiation level of 2*10E14 p/cm^2.

  1. Monitoring the Thermal Power of Nuclear Reactors with a Prototype Cubic Meter Antineutrino Detector

    E-Print Network [OSTI]

    A. Bernstein; N. S. Bowden; A. Misner; T. Palmer

    2008-04-30

    In this paper, we estimate how quickly and how precisely a reactor's operational status and thermal power can be monitored over hour to month time scales, using the antineutrino rate as measured by a cubic meter scale detector. Our results are obtained from a detector we have deployed and operated at 25 meter standoff from a reactor core. This prototype can detect a prompt reactor shutdown within five hours, and monitor relative thermal power to three percent within seven days. Monitoring of short-term power changes in this way may be useful in the context of International Atomic Energy Agency's (IAEA) Reactor Safeguards Regime, or other cooperative monitoring regimes.

  2. Monitoring the Thermal Power of Nuclear Reactors with a Prototype Cubic Meter Antineutrino Detector

    E-Print Network [OSTI]

    Bernstein, A; Misner, A; Palmer, T

    2008-01-01

    In this paper, we estimate how quickly and how precisely a reactor's operational status and thermal power can be monitored over hour to month time scales, using the antineutrino rate as measured by a cubic meter scale detector. Our results are obtained from a detector we have deployed and operated at 25 meter standoff from a reactor core. This prototype can detect a prompt reactor shutdown within five hours, and monitor relative thermal power to three percent within seven days. Monitoring of short-term power changes in this way may be useful in the context of International Atomic Energy Agency's (IAEA) Reactor Safeguards Regime, or other cooperative monitoring regimes.

  3. Characterization of the Neutron Detector Upgrade to the GP-SANS and BIO-SANS Instruments at HFIR

    SciTech Connect (OSTI)

    Berry, Kevin D [ORNL; Bailey, Katherine M [ORNL; Beal, Justin D [ORNL; Diawara, Yacouba [ORNL; Funk, Loren L [ORNL; Hicks, J Steve [ORNL; Jones, Amy Black [ORNL; Littrell, Ken [ORNL; Summers, Randy [ORNL; Urban, Volker S [ORNL; Vandergriff, David H [ORNL; Johnson, Nathan [GE Energy Services; Bradley, Brandon [GE Energy Services

    2012-01-01

    Over the past year, new 1 m x 1 m neutron detectors have been installed at both the General Purpose SANS (GP-SANS) and the Bio-SANS instruments at HFIR, each intended as an upgrade to provide improved high rate capability. This paper presents the results of characterization studies performed in the detector test laboratory, including position resolution, linearity and background, as well as a preliminary look at high count rate performance.

  4. The development and demonstration of a thermal neutron radiography facility utilizing the TAMU NSC TRIGA reactor 

    E-Print Network [OSTI]

    Lorenz, Robert Wayne

    1972-01-01

    of this paper the dividing line between the thermal and epithermal regions will be the cadmium cutoff. Cadmium-113 has a very high absorption cross section for low energy neutrons which drops rapidly between 0. 15 ev and 1. 0 ev. As a consequence, cadmium-113.... " absorbed by gold-197 with and without a cadmium shield will be called the gold-cadmium ratio and will. be used to indicate roughly the energy spectrum of the beam. CHAPTER II REVIEW OF NEUTRON RADIOGRAPHY A neutron radiograph is made much the same way...

  5. A novel method for modeling the neutron time of flight detector response in current mode to inertial confinement fusion experiments (invited)

    SciTech Connect (OSTI)

    Nelson, A. J.; Cooper, G. W. [Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Ruiz, C. L.; Chandler, G. A.; Fehl, D. L.; Hahn, K. D.; Leeper, R. J.; Smelser, R.; Torres, J. A. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1196 (United States)

    2012-10-15

    A novel method for modeling the neutron time of flight (nTOF) detector response in current mode for inertial confinement fusion experiments has been applied to the on-axis nTOF detectors located in the basement of the Z-Facility. It will be shown that this method can identify sources of neutron scattering, and is useful for predicting detector responses in future experimental configurations, and for identifying potential sources of neutron scattering when experimental set-ups change. This method can also provide insight on how much broadening neutron scattering contributes to the primary signals, which is then subtracted from them. Detector time responses are deconvolved from the signals, allowing a transformation from dN/dt to dN/dE, extracting neutron spectra at each detector location; these spectra are proportional to the absolute yield.

  6. Report on Thermal Neutron Diffusion Length Measurement in Reactor Grade Graphite Using MCNP and COMSOL Multiphysics

    E-Print Network [OSTI]

    S. R. Mirfayzi

    2013-01-08

    Neutron diffusion length in reactor grade graphite is measured both experimentally and theoretically. The experimental work includes Monte Carlo (MC) coding using 'MCNP' and Finite Element Analysis (FEA) coding suing 'COMSOL Multiphysics' and Matlab. The MCNP code is adopted to simulate the thermal neutron diffusion length in a reactor moderator of 2m x 2m with slightly enriched uranium ($^{235}U$), accompanied with a model designed for thermal hydraulic analysis using point kinetic equations, based on partial and ordinary differential equation. The theoretical work includes numerical approximation methods including transcendental technique to illustrate the iteration process with the FEA method. Finally collision density of thermal neutron in graphite is measured, also specific heat relation dependability of collision density is also calculated theoretically, the thermal neutron diffusion length in graphite is evaluated at $50.85 \\pm 0.3cm$ using COMSOL Multiphysics and $50.95 \\pm 0.5cm$ using MCNP. Finally the total neutron cross-section is derived using FEA in an inverse iteration form.

  7. Study on generating of thermal neutron scattering cross sections for LiH

    SciTech Connect (OSTI)

    Wang, L.; Jiang, X.; Zhao, Z.; Chen, L. [Northwest Institute of Nuclear Technology, Xi'an 710024 (China)

    2013-07-01

    LiH is designated as a promising moderator and shielding material because of its low density, high melting point and large fraction of H atoms. However, lack of the thermal neutron cross sections of LiH makes numerical calculation deviate from experimental data to some extent. As a result, it is necessary to study LiH thermal kernel effect. The phonon property of LiH has been investigated by first-principles calculations using the plane-wave pseudo potential method with CASTEP code. The scattering law and the thermal neutron scattering cross sections for Li and H have been generated using this distribution. The results have been compared with zirconium hydride data. The GASKET and NJOY/LEAPR codes have been used in the calculation of scattering law, whose results have been compared with the reference; the discrepancy mainly comes from phonon spectrums and its expansion. LEAPR had the capability to compute scattering through larger energy and momentum transfers than GASKET did. By studying LiH phonon spectrum and constructing the model of LiH thermal kernel and scattering matrix, the ACE format LiH thermal neutron cross sections for MCNP software could be made and used for reactor Neutronics calculation. (authors)

  8. Uncooled thin film pyroelectric IR detector with aerogel thermal isolation

    SciTech Connect (OSTI)

    Ruffner, J.A.; Clem, P.G.; Tuttle, B.A. [and others

    1998-01-01

    Uncooled pyroelectric IR imaging systems, such as night vision goggles, offer important strategic advantages in battlefield scenarios and reconnaissance surveys. Until now, the current technology for fabricating these devices has been limited by low throughput and high cost which ultimately limit the availability of these sensor devices. We have developed and fabricated an alternative design for pyroelectric IR imaging sensors that utilizes a multilayered thin film deposition scheme to create a monolithic thin film imaging element on an active silicon substrate for the first time. This approach combines a thin film pyroelectric imaging element with a thermally insulating SiO{sub 2} aerogel thin film to produce a new type of uncooled IR sensor that offers significantly higher thermal, spatial, and temporal resolutions at a substantially lower cost per unit. This report describes the deposition, characterization and optimization of the aerogel thermal isolation layer and an appropriate pyroelectric imaging element. It also describes the overall integration of these components along with the appropriate planarization, etch stop, adhesion, electrode, and blacking agent thin film layers into a monolithic structure. 19 refs., 8 figs., 6 tabs.

  9. Condensed Surfaces of Magnetic Neutron Stars, Thermal Surface Emission, and Particle Acceleration Above Pulsar Polar Caps

    E-Print Network [OSTI]

    Zach Medin; Dong Lai

    2008-01-18

    For sufficiently strong magnetic fields and/or low temperatures, the neutron star surface may be in a condensed state with little gas or plasma above it. Such surface condensation can significantly affect the thermal emission from isolated neutron stars, and may lead to the formation of a charge-depleted acceleration zone ("vacuum gap") in the magnetosphere above the stellar polar cap. Using the latest results on the cohesive property of magnetic condensed matter, we quantitatively determine the conditions for surface condensation and vacuum gap formation in magnetic neutron stars. We find that condensation can occur if the thermal energy kT of the neutron star surface is less than about 8% of its cohesive energy Q_s, and that a vacuum gap can form if the neutron star's rotation axis and magnetic moment point in opposite directions and kT is less than about 4% of Q_s. Thus, vacuum gap accelerators may exist for some neutron stars. Motivated by this result, we also study the physics of pair cascades in the vacuum gap model for photon emission by accelerating electrons and positrons due to both curvature radiation and resonant/nonresonant inverse Compton scattering. Our calculations of the condition of cascade-induced vacuum breakdown and the related pulsar death line/boundary generalize previous works to the superstrong field regime. We find that inverse Compton scatterings do not produce a sufficient number of high energy photons in the gap and thus do not lead to pair cascades for most neutron star parameters. We discuss the implications of our results for the recent observations of neutron star thermal radiation as well as for the detection/non-detection of radio emission from high-B pulsars and magnetars.

  10. Differential Die-Away Instrument: Report on Neutron Detector Recovery Performance and Proposed Improvements

    SciTech Connect (OSTI)

    Goodsell, Alison Victoria; Swinhoe, Martyn Thomas; Henzl, Vladimir; Ianakiev, Kiril Dimitrov; Iliev, Metodi; Rael, Carlos D.; Desimone, David J.

    2014-09-22

    Four helium-3 (3He) detector/preamplifier packages (ľ”/KM200, DDSI/PDT-A111, DDA/PDT-A111, and DDA/PDT10A) were experimentally tested to determine the deadtime effects at different DT neutron generator output settings. At very high count rates, the ľ”/KM200 package performed best. At high count rates, the ľ”/KM200 and the DDSI/PDT-A111 packages performed very well, with the DDSI/PDT-A111 operating with slightly higher efficiency. All of the packages performed similarly at mid to low count rates. Proposed improvements include using a fast recovery LANL-made dual channel preamplifier, testing smaller diameter 3He tubes, and further investigating quench gases.

  11. Neutron Scattering Facility for Characterization of CRESST and EURECA Detectors at mK Temperatures

    E-Print Network [OSTI]

    J. -C. Lanfranchi; C. Ciemniak; C. Coppi; F. von Feilitzsch; A. Gütlein; H. Hagn; C. Isaila; J. Jochum; M. Kimmerle; S. Pfister; W. Potzel; W. Rau; S. Roth; K. Rottler; C. Sailer; S. Scholl; I. Usherov; W. Westphal

    2008-10-01

    CRESST (Cryogenic Rare Event Search with Superconducting Thermometers) is an experiment located at the Gran Sasso underground laboratory and aimed at the direct detection of dark matter in the form of WIMPs. The setup has just completed a one year commissioning run in 2007 and is presently starting a physics run with an increased target mass. Scintillating $\\mathrm{CaWO_4}$ single crystals, operated at temperatures of a few millikelvin, are used as target to detect the tiny nuclear recoil induced by a WIMP. The powerful background identification and rejection of $\\alpha$, e$^{-}$ and $\\gamma$ events is realized via the simultaneous measurement of a phonon and a scintillation signal generated in the $\\mathrm{CaWO_4}$ crystal. However, neutrons could still be misidentified as a WIMP signature. Therefore, a detailed understanding of the individual recoil behaviour in terms of phonon generation and scintillation light emission due to scattering on Ca, O or W nuclei, respectively, is mandatory. The only setup which allows to perform such measurements at the operating temperature of the CRESST detectors has been installed at the Maier-Leibnitz-Accelerator Laboratory in Garching and is presently being commissioned. The design of this neutron scattering facility is such that it can also be used for other target materials, e.g. $\\mathrm{ZnWO_4}$, $\\mathrm{PbWO_4}$ and others as foreseen in the framework of the future multitarget tonne-scale experiment EURECA (European Underground Rare Event Calorimeter Array).

  12. Thermal neutron cross sections for the 1991 table of the isotopes

    SciTech Connect (OSTI)

    Holden, N.E.

    1991-05-01

    It has been a decade since the last publication of the Barn Book,'' BNL-325. In preparing a revision to the Table of the Isotopes, a re-evaluation of all of the thermal neutron cross sections has been performed, utilizing the previous data base of the Barn Book'' and all of the more recently published experiments. 5 refs.

  13. The fast neutron fluence and the activation detector activity calculations using the effective source method and the adjoint function

    SciTech Connect (OSTI)

    Hep, J.; Konecna, A.; Krysl, V.; Smutny, V. [Calculation Dept., Skoda JS plc, Orlik 266, 31606 Plzen (Czech Republic)

    2011-07-01

    This paper describes the application of effective source in forward calculations and the adjoint method to the solution of fast neutron fluence and activation detector activities in the reactor pressure vessel (RPV) and RPV cavity of a VVER-440 reactor. Its objective is the demonstration of both methods on a practical task. The effective source method applies the Boltzmann transport operator to time integrated source data in order to obtain neutron fluence and detector activities. By weighting the source data by time dependent decay of the detector activity, the result of the calculation is the detector activity. Alternatively, if the weighting is uniform with respect to time, the result is the fluence. The approach works because of the inherent linearity of radiation transport in non-multiplying time-invariant media. Integrated in this way, the source data are referred to as the effective source. The effective source in the forward calculations method thereby enables the analyst to replace numerous intensive transport calculations with a single transport calculation in which the time dependence and magnitude of the source are correctly represented. In this work, the effective source method has been expanded slightly in the following way: neutron source data were performed with few group method calculation using the active core calculation code MOBY-DICK. The follow-up neutron transport calculation was performed using the neutron transport code TORT to perform multigroup calculations. For comparison, an alternative method of calculation has been used based upon adjoint functions of the Boltzmann transport equation. Calculation of the three-dimensional (3-D) adjoint function for each required computational outcome has been obtained using the deterministic code TORT and the cross section library BGL440. Adjoint functions appropriate to the required fast neutron flux density and neutron reaction rates have been calculated for several significant points within the RPV and RPV cavity of the VVER-440 reacto rand located axially at the position of maximum power and at the position of the weld. Both of these methods (the effective source and the adjoint function) are briefly described in the present paper. The paper also describes their application to the solution of fast neutron fluence and detectors activities for the VVER-440 reactor. (authors)

  14. Thermal insulating barrier and neutron shield providing integrated protection for a nuclear reactor vessel

    DOE Patents [OSTI]

    Schreiber, Roger B. (Penn Twp., PA); Fero, Arnold H. (New Kensington, PA); Sejvar, James (Murrysville, PA)

    1997-01-01

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel to form a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive valving also includes bistable vents at the upper end of the thermal insulating barrier for releasing steam. A removable, modular neutron shield extending around the upper end of the reactor cavity below the nozzles forms with the upwardly and outwardly tapered transition on the outer surface of the reactor vessel, a labyrinthine channel which reduces neutron streaming while providing a passage for the escape of steam during a severe accident, and for the cooling air which is circulated along the reactor cavity walls outside the thermal insulating barrier during normal operation of the reactor.

  15. Thermal insulating barrier and neutron shield providing integrated protection for a nuclear reactor vessel

    DOE Patents [OSTI]

    Schreiber, R.B.; Fero, A.H.; Sejvar, J.

    1997-12-16

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel to form a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive valving also includes bistable vents at the upper end of the thermal insulating barrier for releasing steam. A removable, modular neutron shield extending around the upper end of the reactor cavity below the nozzles forms with the upwardly and outwardly tapered transition on the outer surface of the reactor vessel, a labyrinthine channel which reduces neutron streaming while providing a passage for the escape of steam during a severe accident, and for the cooling air which is circulated along the reactor cavity walls outside the thermal insulating barrier during normal operation of the reactor. 8 figs.

  16. Methodology and Determination of Field of View of Neutron and Gamma Detectors in the Atucha Spent Fuel Storage Pool

    SciTech Connect (OSTI)

    Walters, W; Wenner, M; Haghighat, A; Sitaraman, S; Ham, Y S

    2009-06-15

    In this paper we seek to create a model by determining the field of view (FOV) of a detector (i.e. which assemblies contribute to the detector response) in the Atucha-I spent fuel pool. The FOV is determined by solving the adjoint transport equation using the 3-D, parallel PENTRAN (Parallel Environment Neutral-particle TRANsport) Sn code, with the detector cross section as the adjoint source. If this adjoint function is coupled with the source spectrum, then the contribution to the detector from each assembly can be determined. First, the reactor criticality was modeled using the MCNP5 (Monte Carlo N-Particle) Monte Carlo code in order to determine the power distribution in each assembly. Using the power distribution data, the assemblies were divided and homogenized into 8 axial and 3 radial zones for burnup analysis. Depletion calculations were performed for each zone using the ORIGEN-ARP (Automatic Rapid Processing) utility from the SCALE 5.1 (Standardized Computer Analyses for Licensing Evaluation) code package. Spent fuel pool and detector were modeled in 2-D in PENTRAN as the detector plus 3 fuel assemblies along both x and y axes. Using the resulting adjoint function combined with the source spectrum, they have determined the FOVs of the fission chamber neutron detector that was used at Atucha, and concluded that 2 assemblies along x and y axes are needed for both cases (i.e. the 4 adjacent assemblies plus the next surrounding 12). For the neutron detector, 88% of the response comes from the nearest 4 assemblies, with 99% from the nearest 16. Results for a uniformly sensitive gamma detector indicate that 2 assemblies in both directions are also needed, with 89% of the response coming from the adjacent assemblies. A Monte Carlo calculation using MCNP was performed to benchmark the neutron result, giving a similar result (87% MCNP vs. 88% PENTRAN). Based on these studies, we have developed a database of FOVs as a function of burnup and decay conditions for different detector types, and a methodology/algorithm which uses this database to analyze the response of a detector placed in a spent fuel pool with the aim of detecting gross defects.

  17. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOE Patents [OSTI]

    Bowman, C.D.

    1992-11-03

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  18. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOE Patents [OSTI]

    Bowman, Charles D. (Los Alamos, NM)

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  19. Predicting the sensitivity of the beryllium/scintillator layer neutron detector using Monte Carlo and experimental response functions

    SciTech Connect (OSTI)

    Styron, J. D., E-mail: jdstyro@sandia.gov; Cooper, G. W.; Carpenter, Ken; Bonura, M. A. [Department of Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Ruiz, C. L.; Hahn, K. D.; Chandler, G. A.; Nelson, A. J.; Torres, J. A.; McWatters, B. R. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2014-11-15

    A methodology for obtaining empirical curves relating absolute measured scintillation light output to beta energy deposited is presented. Output signals were measured from thin plastic scintillator using NIST traceable beta and gamma sources and MCNP5 was used to model the energy deposition from each source. Combining the experimental and calculated results gives the desired empirical relationships. To validate, the sensitivity of a beryllium/scintillator-layer neutron activation detector was predicted and then exposed to a known neutron fluence from a Deuterium-Deuterium fusion plasma (DD). The predicted and the measured sensitivity were in statistical agreement.

  20. Materials Development for Boron Phosphide Based Neutron Detectors: Final Technical Report

    SciTech Connect (OSTI)

    Edgar, James Howard [Ksnsas State University

    2014-09-12

    The project goal was to improve the quality of boron phosphide (BP) by optimizing its epitaxial growth on single crystal substrates and by producing bulk BP single crystals with low dislocation densities. BP is potentially a good semiconductor for high efficiency solid state neutron detectors by combining neutron capture and charge creation within the same volume. The project strategy was to use newly available single crystal substrates, silicon carbide and aluminum nitride, engineered to produce the best film properties. Substrate variables included the SiC polytype, crystallographic planes, misorientation of the substrate surface (tilt direction and magnitude) from the major crystallographic plane, and surface polarity (Si and C). The best films were (111)BP on silicon-face (0001) 4H-SiC misoriented 4° in the [1-100] direction, and BP on (100) and (111) 3C-SiC/Si; these substrates resulted in films that were free of in-plane twin defects, as determined by x-ray topography. The impact of the deposition temperature was also assessed: increasing the temperature from 1000 °C to 1200 °C produced films that were more ordered and more uniform, and the size of individual grains increased by more than a factor of twenty. The BP films were free of other compounds such as icosahedral boron phosphide (B12P2) over the entire temperature range, as established by Raman spectroscopy. The roughness of the BP films was reduced by increasing the phosphine to diborane ratio from 50 to 200. Bulk crystals were grown by reacting boron dissolved in nickel with phosphorus vapor to precipitate BP. Crystals with dimensions up to 2 mm were produced.

  1. NOVEL Al2O3:C,Mg FLUORESCENT NUCLEAR TRACK DETECTORS FOR PASSIVE NEUTRON DOSIMETRY

    E-Print Network [OSTI]

    neutrons and protons were performed at the Radiological Research Accelerator Facility (RARAF) of Columbia

  2. Detectors

    DOE Patents [OSTI]

    Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM); Bounds, John Alan (Los Alamos, NM); Allander, Krag (Los Alamos, NM)

    2002-01-01

    The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.

  3. In situ changes in the moisture content of heated, welded tuff based on thermal neutron measurements

    SciTech Connect (OSTI)

    Ramirez, A.L.; Carlson, R.C.; Buscheck, T.A.

    1991-07-01

    Thermal neutron logs were collected to monitor changes in moisture content within a welded tuff rock mass heated from a borehole containing an electrical heater which remained energized for 195 days. Thermal neutron measurements were made in sampling boreholes before, during and after heating. The results generally corroborated our conceptual understanding of hydrothermal flow as well as most of the numerical modeling conducting for this study. Conceptual models have been developed in conjunction with the numerical model calculations to explain differences in the drying and re-wetting behavior above and below the heater. Numerical modeling indicated that the re-wetting of the dried-out zone was dominated by the binary diffusion of water vapor through fractures. Saturation gradients in the rock matrix resulted in relative humidity gradients which drove water vapor (primarily along fractures) back to the dried-out zone where it condensed along the fracture walls and was imbibed by the matrix. 4 refs., 28 figs.

  4. Periodic magnetic fieldas a polarized and focusing thermal neutron spectrometer and monochromator

    E-Print Network [OSTI]

    2010-01-01

    Carlile, Experimental Neutron Scattering ?Oxford Universitysmall angle neutron scattering, and neutron absorptionbirefringent to neutrons, and uses scattering length b F in

  5. The thermal neutron capture cross section of the radioactive isotope $^{60}$Fe

    E-Print Network [OSTI]

    T. Heftrich; M. Bichler; R. Dressler; K. Eberhardt; A. Endres; J. Glorius; K. Göbel; G. Hampel; M. Heftrich; F. Käppeler; C. Lederer; M. Mikorski; R. Plag; R. Reifarth; C. Stieghorst; S. Schmidt; D. Schumann; Z. Slavkovská; K. Sonnabend; A. Wallner; M. Weigand; N. Wiehl; S. Zauner

    2015-07-11

    50% of the heavy element abundances are produced via slow neutron capture reactions in different stellar scenarios. The underlying nucleosynthesis models need the input of neutron capture cross sections. One of the fundamental signatures for active nucleosynthesis in our galaxy is the observation of long-lived radioactive isotopes, such as $^{60}$Fe with a half-life of $2.60\\times10^6$ yr. To reproduce this $\\gamma$-activity in the universe, the nucleosynthesis of $^{60}$Fe has to be understood reliably. A $^{60}$Fe sample produced at the Paul-Scherrer-Institut was activated with thermal and epithermal neutrons at the research reactor at the Johannes Gutenberg-Universit\\"at Mainz. The thermal neutron capture cross section has been measured for the first time to $\\sigma_{\\text{th}}=0.226 \\ (^{+0.044}_{-0.049})$ b. An upper limit of $\\sigma_{\\text{RI}} < 0.50$ b could be determined for the resonance integral. An extrapolation towards the astrophysicaly interesting energy regime between $kT$=10 keV and 100 keV illustrates that the s-wave part of the direct capture component can be neglected.

  6. Method of assaying uranium with prompt fission and thermal neutron borehole logging adjusted by borehole physical characteristics. [Patient application

    DOE Patents [OSTI]

    Barnard, R.W.; Jensen, D.H.

    1980-11-05

    Uranium formations are assayed by prompt fission neutron logging techniques. The uranium in the formation is proportional to the ratio of epithermal counts to thermal or epithermal dieaway. Various calibration factors enhance the accuracy of the measurement.

  7. WCZEAR SCIENCE AND ENGLNEERING: 77,157-167 (1981) The Distribution of Thermal Neutron Cross Sections

    E-Print Network [OSTI]

    Shlyakhter, Ilya

    1981-01-01

    recently first measured for `52mE~l(Ref. 3). However, the need of estimating these cross sections 111 District 188350,USSR Received August 13, I979 Accepted May 29, J 980 * An csriniatp of tke cross sections~troncross section in a given intervd. I.INTRn13C1CTlON Thc capture cross sections for thermal neutrons [the ( 1 1

  8. Self-regulating neutron coincidence counter

    DOE Patents [OSTI]

    Baron, N.

    1980-06-16

    A device for accurately measuring the mass of /sup 240/Pu and /sup 239/Pu in a sample having arbitrary moderation and mixed with various contaminants. The device utilizes a thermal neutron well counter which has two concentric rings of neutron detectors separated by a moderating material surrounding the well. Neutron spectroscopic information derived by the two rings of detectors is used to measure the quantity of /sup 239/Pu and /sup 240/Pu in device which corrects for background radiation, deadtime losses of the detector and electronics and various other constants of the system.

  9. Defect annealing and thermal desorption of deuterium in low dose HFIR neutron-irradiated tungsten

    SciTech Connect (OSTI)

    Masashi Shimada; M. Hara; T. Otsuka; Y. Oya; Y. Hatano

    2014-05-01

    Accurately estimating tritium retention in plasma facing components (PFCs) and minimizing its uncertainty are key safety issues for licensing future fusion power reactors. D-T fusion reactions produce 14.1 MeV neutrons that activate PFCs and create radiation defects throughout the bulk of the material of these components. Recent studies show that tritium migrates and is trapped in bulk (>> 10 µm) tungsten beyond the detection range of nuclear reaction analysis technique [1-2], and thermal desorption spectroscopy (TDS) technique becomes the only established diagnostic that can reveal hydrogen isotope behavior in in bulk (>> 10 µm) tungsten. Radiation damage and its recovery mechanisms in neutron-irradiated tungsten are still poorly understood, and neutron-irradiation data of tungsten is very limited. In this paper, systematic investigations with repeated plasma exposures and thermal desorption are performed to study defect annealing and thermal desorption of deuterium in low dose neutron-irradiated tungsten. Three tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) irradiated at High Flux Isotope Reactor at Oak Ridge National Laboratory were exposed to high flux (ion flux of (0.5-1.0)x1022 m-2s-1 and ion fluence of 1x1026 m-2) deuterium plasma at three different temperatures (100, 200, and 500 °C) in Tritium Plasma Experiment at Idaho National Laboratory. Subsequently, thermal desorption spectroscopy (TDS) was performed with a ramp rate of 10 °C/min up to 900 °C, and the samples were annealed at 900 °C for 0.5 hour. These procedures were repeated three (for 100 and 200 °C samples) and four (for 500 °C sample) times to uncover damage recovery mechanisms and its effects on deuterium behavior. The results show that deuterium retention decreases approximately 90, 75, and 66 % for 100, 200, and 500 °C, respectively after each annealing. When subjected to the same TDS recipe, the desorption temperature shifts from 800 °C to 600 °C after 1st annealing for the sample exposed to TPE at 500 °C. Tritium Migration Analysis Program (TMAP) analysis reveals that the detrapping energy decreases from 1.8 eV to 1.4 eV, indicating the changes in trapping mechanisms. This paper also summarizes deuterium behavior studies in HFIR neutron-irradiated tungsten under US-Japan TITAN program.

  10. Comparison of discrete and continuous thermal neutron scattering treatments in MCNP5

    SciTech Connect (OSTI)

    Pavlou, A. T. [Univ. of Michigan, Dept. of Nuclear Engineering and Radiological Sciences, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Brown, F. B. [Los Alamos National Laboratory, Monte Carlo Codes Group, MS A143, PO Box 1663, Los Alamos, NM 87545 (United States); Martin, W. R. [Univ. of Michigan, Dept. of Nuclear Engineering and Radiological Sciences, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Kiedrowski, B. C. [Los Alamos National Laboratory, Monte Carlo Codes Group, MS A143, PO Box 1663, Los Alamos, NM 87545 (United States)

    2012-07-01

    The standard discrete thermal neutron S({alpha},{beta}) scattering treatment in MCNP5 is compared with a continuous S({alpha},{beta}) scattering treatment using a criticality suite of 119 benchmark cases and ENDF/B-VII.0 nuclear data. In the analysis, six bound isotopes are considered: beryllium metal, graphite, hydrogen in water, hydrogen in polyethylene, beryllium in beryllium oxide and oxygen in beryllium oxide. Overall, there are only small changes in the eigenvalue (k{sub eff}) between discrete and continuous treatments. In the comparison of 64 cases that utilize S({alpha},{beta}) scattering, 62 agreed at the 95% confidence level, and the 2 cases with differences larger than 3 {sigma} agreed within 1 {sigma} when more neutrons were run in the calculations. The results indicate that the changes in eigenvalue between continuous and discrete treatments are random, small, and well within the uncertainty of measured data for reactor criticality experiments. (authors)

  11. The Digital discrimination of neutron and {\\gamma} ray using organic scintillation detector based on wavelet transform modulus maximum

    E-Print Network [OSTI]

    yun, Yang; jun, Yang; xiaoliang, Luo

    2013-01-01

    A novel algorithm for the discrimination of neutron and {\\gamma}-ray with wavelet transform modulus maximum (WTMM) in an organic scintillation has been investigated. Voltage pulses arising from a BC501A organic liquid scintillation detector in a mixed radiation field have been recorded with a fast digital sampling oscilloscope. The performances of most pulse shape discrimination methods in scintillation detection systems using time-domain features of the pulses are affected intensively by noise. However, the WTMM method using frequency-domain features exhibits a strong insensitivity to noise and can be used to discriminate neutron and {\\gamma}-ray events based on their different asymptotic decay trend between the positive modulus maximum curve and the negative modulus maximum curve in the scale-space plane. This technique has been verified by the corresponding mixed-field data assessed by the time-of-flight (TOF) method and the frequency gradient analysis (FGA) method. It is shown that the characterization of...

  12. Extraction of protactinium-233 and separation from thermal neutron-irradiated thorium-232 using crown ethers

    SciTech Connect (OSTI)

    Jalhoom, Moayyed G.; Mohammed, Dawood A.; Khalaf, Jumah S.

    2008-07-01

    A new method was developed for the extraction and separation of {sup 233}Pa from thermal neutron-irradiated {sup 232}Th. Solutions of Pa{sup 233} were prepared in LiCI-HCl solutions from which appreciable extraction was obtained using dibenzo-18-crown-6 in 1,2-dichloroethane. The effects of cavity size, substitutions on the crown ring, type of the organic solvent, and temperature on extraction are discussed. Very high separation factors were obtained for the pairs {sup 233}Pa/{sup 232}Th (>105), {sup 233}Pa/{sup 233}U (> 1000), and {sup 232}U/{sup 232}Th (>60). (authors)

  13. Experiments and Simulations of the Use of Time-Correlated Thermal Neutron Counting to Determine the Multiplication of an Assembly of Highly Enriched Uranium

    SciTech Connect (OSTI)

    David L. Chichester; Mathew T. Kinlaw; Scott M. Watson; Jeffrey M. Kalter; Eric C. Miller; William A. Noonan

    2014-11-01

    A series of experiments and numerical simulations using thermal-neutron time-correlated measurements has been performed to determine the neutron multiplication, M, of assemblies of highly enriched uranium available at Idaho National Laboratory. The experiments used up to 14.4 kg of highly-enriched uranium, including bare assemblies and assemblies reflected with high-density polyethylene, carbon steel, and tungsten. A small 252Cf source was used to initiate fission chains within the assembly. Both the experiments and the simulations used 6-channel and 8-channel detector systems, each consisting of 3He proportional counters moderated with polyethylene; data was recorded in list mode for analysis. 'True' multiplication values for each assembly were empirically derived using basic neutron production and loss values determined through simulation. A total of one-hundred and sixteen separate measurements were performed using fifty-seven unique measurement scenarios, the multiplication varied from 1.75 to 10.90. This paper presents the results of these comparisons and discusses differences among the various cases.

  14. Measurement of neutron capture on $^{48}$Ca at thermal and thermonuclear energies

    E-Print Network [OSTI]

    H. Beer; C. Coceva; P. V. Sedyshev; Yu. P. Popov; H. Herndl; R. Hofinger; P. Mohr; H. Oberhummer

    1996-08-07

    At the Karlsruhe pulsed 3.75\\,MV Van de Graaff accelerator the thermonuclear $^{48}$Ca(n,$\\gamma$)$^{49}$Ca(8.72\\,min) cross section was measured by the fast cyclic activation technique via the 3084.5\\,keV $\\gamma$-ray line of the $^{49}$Ca-decay. Samples of CaCO$_3$ enriched in $^{48}$Ca by 77.87\\,\\% were irradiated between two gold foils which served as capture standards. The capture cross-section was measured at the neutron energies 25, 151, 176, and 218\\,keV, respectively. Additionally, the thermal capture cross-section was measured at the reactor BR1 in Mol, Belgium, via the prompt and decay $\\gamma$-ray lines using the same target material. The $^{48}$Ca(n,$\\gamma$)$^{49}$Ca cross-section in the thermonuclear and thermal energy range has been calculated using the direct-capture model combined with folding potentials. The potential strengths are adjusted to the scattering length and the binding energies of the final states in $^{49}$Ca. The small coherent elastic cross section of $^{48}$Ca+n is explained through the nuclear Ramsauer effect. Spectroscopic factors of $^{49}$Ca have been extracted from the thermal capture cross-section with better accuracy than from a recent (d,p) experiment. Within the uncertainties both results are in agreement. The non-resonant thermal and thermonuclear experimental data for this reaction can be reproduced using the direct-capture model. A possible interference with a resonant contribution is discussed. The neutron spectroscopic factors of $^{49}$Ca determined from shell-model calculations are compared with the values extracted from the experimental cross sections for $^{48}$Ca(d,p)$^{49}$Ca and $^{48}$Ca(n,$\\gamma$)$^{49}$Ca.

  15. Isolated thermal neutron stars, SGRs and AXPs: propellers and early accretors with conventional magnetic fields?

    E-Print Network [OSTI]

    M. Ali Alpar

    1999-12-10

    The similarity of rotation periods from three interesting classes of neutron stars, the anomalous X-ray pulsars (AXPs), the soft gamma ray repeaters (SGRs) and the dim isolated thermal neutron stars (DTNs) suggests a common mechanism with an asymptotic spindownphase, extending through the propeller and early accretion stages. The DTNs are interpreted as sources in the propeller stage. Their low luminosities arise from frictional heating in the neutron star. SGRs and AXPs are accreting at $\\dot{M} \\sim 10^{15} gm/s $. The limited range of near equilibrium periods corresponds to a limited range of mass inflow rates $\\dot{M}$. For lower rates the source of mass inflow may be depleted before the asymptotic stage is reached, while sources with higher $\\dot{M}$ or later ages possess circumstellar material that is optically thick to electron scattering, destroying the X-ray beaming and the modulation at the rotation period. The model works with conventional magnetic fields of 10$^{11}-10^{12}$ G, obviating the need to postulate magnetars. Frequently sampled timing observations of AXPs, SGRs and DTNs can distinguish between this explanation and the magnetar model.

  16. Calcium/calcium chromate thermal battery and thermal battery assignment at the General Electric Neutron Devices Department

    SciTech Connect (OSTI)

    Neale, J.B.; Walton, R.D.

    1980-10-10

    A nontechnical overview of thermal battery design and fabrication methods is given, along with a description of the role of the General Electric Neutron Devices Department (GEND) in the Department of Energy's battery program. A thermal battery is a primary, reserve electrochemical power source; that is, it can be used only once and then for a relatively short period, measured in minutes. To energize the battery, an external electrical signal ignites a heat source in the battery to melt the electrolyte and initiate an electrochemical reaction. The battery is made up of several series-connected cells, each with an anode, a cathode, and a current collector. A cell's anode is calcium; its cathode is hexavalent chromium. The electrochemical reaction takes place when the electrolyte is melted by heat supplied from ignition of an iron-potassium perchlorate disk. Since no reaction occurs while the electrolyte is in the solid state, the battery does not deteriorate with time and has a shelf life exceeding 20 years. Presented are such critical battery operating characteristics as temperature, rise time, active life, current capacity, etc. Design factors described include size and shape, pellet density, ignition methods, anode construction, etc. These batteries are designed by Sandia National Laboratories, Albuquerque. GEND acts as a procurement agency and provides engineering support to suppliers. 18 figures.

  17. Hidden explosives detector employing pulsed neutron and x-ray interrogation

    DOE Patents [OSTI]

    Schultz, Frederick J. (Oak Ridge, TN); Caldwell, John T. (Los Alamos, NM)

    1993-01-01

    Methods and systems for the detection of small amounts of modern, highly-explosive nitrogen-based explosives, such as plastic explosives, hidden in airline baggage. Several techniques are employed either individually or combined in a hybrid system. One technique employed in combination is X-ray imaging. Another technique is interrogation with a pulsed neutron source in a two-phase mode of operation to image both nitrogen and oxygen densities. Another technique employed in combination is neutron interrogation to form a hydrogen density image or three-dimensional map. In addition, deliberately-placed neutron-absorbing materials can be detected.

  18. Hidden explosives detector employing pulsed neutron and x-ray interrogation

    DOE Patents [OSTI]

    Schultz, F.J.; Caldwell, J.T.

    1993-04-06

    Methods and systems for the detection of small amounts of modern, highly-explosive nitrogen-based explosives, such as plastic explosives, hidden in airline baggage. Several techniques are employed either individually or combined in a hybrid system. One technique employed in combination is X-ray imaging. Another technique is interrogation with a pulsed neutron source in a two-phase mode of operation to image both nitrogen and oxygen densities. Another technique employed in combination is neutron interrogation to form a hydrogen density image or three-dimensional map. In addition, deliberately-placed neutron-absorbing materials can be detected.

  19. On the thermal neutron transport processes in liquid H/sub 2/O-D/sub 2/O mixtures

    SciTech Connect (OSTI)

    Barnsal, R.M.; Tewari, S.P.

    1983-06-01

    Using the recently developed thermal neutron scattering kernels for water and heavy water, which incorporate both the collective and the molecular modes present in water and heavy water, the thermal neutron transport studies of asymptotic decay constants lambda/sub 0/, diffusion coefficient D/sub 0/, diffusion cooling coefficient C, and the transport mean-free-path lambda /SUB tr/ are studied for liquid H/sub 2/O-D/sub 2/O mixtures with varying molecular contents and for various assembly sizes at 21 and 5/sup 0/C. The calculated values of the physical constants, lambda/sub 0/, D/sub 0/, C, and lambda /SUB tr/ are found to be in good agreement with the corresponding experimental results. Both the collective motion and the molecular modes present in the liquid H/sub 2/O-D/sub 2/O mixtures play significant roles in the thermal neutron transport processes.

  20. Thermal and Electric Conductivities of Coulomb Crystals in Neutron Stars and White Dwarfs

    E-Print Network [OSTI]

    D. A. Baiko; D. G. Yakovlev

    1996-04-28

    Thermal and electric conductivities are calculated for degenerate electrons scattered by phonons in a crystal made of atomic nuclei. The exact phonon spectrum and the Debye--Waller factor are taken into account. Monte Carlo calculations are performed for body-centered cubic (bcc) crystals made of C, O, Ne, Mg, Si, S, Ca, and Fe nuclei in the density range from $10^3$ to $10^{11}$ g cm$^{-3}$ at temperatures lower than the melting temperature but higher than the temperature at which the Umklapp processes begin to be "frozen out". A simplified method of calculation is proposed, which makes it possible to describe the results in terms of simple analytic expressions, to extend these expressions to any species of nucleus, and to consider face-centered cubic (fcc) crystals. The kinetic coefficients are shown to depend tangibly on the lattice type. The results are applicable to studies of heat transfer and evolution of the magnetic field in the cores of white dwarfs and in the crusts of neutron stars. The thermal drift of the magnetic field in the crust of a neutron star is discussed.

  1. Proceedings of the OECD/CSNI workshop on transient thermal-hydraulic and neutronic codes requirements

    SciTech Connect (OSTI)

    Ebert, D.

    1997-07-01

    This is a report on the CSNI Workshop on Transient Thermal-Hydraulic and Neutronic Codes Requirements held at Annapolis, Maryland, USA November 5-8, 1996. This experts` meeting consisted of 140 participants from 21 countries; 65 invited papers were presented. The meeting was divided into five areas: (1) current and prospective plans of thermal hydraulic codes development; (2) current and anticipated uses of thermal-hydraulic codes; (3) advances in modeling of thermal-hydraulic phenomena and associated additional experimental needs; (4) numerical methods in multi-phase flows; and (5) programming language, code architectures and user interfaces. The workshop consensus identified the following important action items to be addressed by the international community in order to maintain and improve the calculational capability: (a) preserve current code expertise and institutional memory, (b) preserve the ability to use the existing investment in plant transient analysis codes, (c) maintain essential experimental capabilities, (d) develop advanced measurement capabilities to support future code validation work, (e) integrate existing analytical capabilities so as to improve performance and reduce operating costs, (f) exploit the proven advances in code architecture, numerics, graphical user interfaces, and modularization in order to improve code performance and scrutibility, and (g) more effectively utilize user experience in modifying and improving the codes.

  2. Solution-grown crystals for neutron radiation detectors, and methods of solution growth

    DOE Patents [OSTI]

    Zaitseva, Natalia P.; Hull, Giulia; Cherepy, Nerine J.; Payne, Stephen A.; Stoeffl, Wolfgang

    2012-06-26

    A method according to one embodiment includes growing an organic crystal from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source. A system according to one embodiment includes an organic crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source; and a photodetector for detecting the signal response of the organic crystal. A method according to another embodiment includes growing an organic crystal from solution, the organic crystal being large enough to exhibit a detectable signal response signature for neutrons from a radioactive source. An organic crystal according to another embodiment includes an organic crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source, wherein the organic crystal has a length of greater than about 1 mm in one dimension.

  3. The Digital discrimination of neutron and ? ray using organic scintillation detector based on wavelet transform modulus maximum

    E-Print Network [OSTI]

    Yang yun; Liu guofu; Yang jun; Luo xiaoliang

    2013-04-17

    A novel algorithm for the discrimination of neutron and {\\gamma}-ray with wavelet transform modulus maximum (WTMM) in an organic scintillation has been investigated. Voltage pulses arising from a BC501A organic liquid scintillation detector in a mixed radiation field have been recorded with a fast digital sampling oscilloscope. The performances of most pulse shape discrimination methods in scintillation detection systems using time-domain features of the pulses are affected intensively by noise. However, the WTMM method using frequency-domain features exhibits a strong insensitivity to noise and can be used to discriminate neutron and {\\gamma}-ray events based on their different asymptotic decay trend between the positive modulus maximum curve and the negative modulus maximum curve in the scale-space plane. This technique has been verified by the corresponding mixed-field data assessed by the time-of-flight (TOF) method and the frequency gradient analysis (FGA) method. It is shown that the characterization of neutron and gamma achieved by the discrimination method based on WTMM is consistent with that afforded by TOF and better than FGA. Moreover, because the WTMM method is it self presented to eliminate the noise, there is no need to make any pretreatment for the pulses.

  4. Development and Validation of Temperature Dependent Thermal Neutron Scattering Laws for Applications and Safety Implications in Generation IV Reactor Designs

    SciTech Connect (OSTI)

    Ayman Hawari

    2008-06-20

    The overall obljectives of this project are to critically review the currently used thermal neutron scattering laws for various moderators as a function of temperature, select as well documented and representative set of experimental data sensitive to the neutron spectra to generate a data base of benchmarks, update models and models parameters by introducing new developments in thermalization theory and condensed matter physics into various computational approaches in establishing the scattering laws, benchmark the results against the experimentatl set. In the case of graphite, a validation experiment is performed by observing nutron slowing down as a function of temperatures equal to or greater than room temperature.

  5. Delayed neutron emission measurements for U-235 and Pu-239 

    E-Print Network [OSTI]

    Chen, Yong

    2009-05-15

    The delayed neutron emission rates of U-235 and Pu-239 samples were measured accurately from a thermal fission reaction. A Monte Carlo calculation using the Geant4 code was used to demonstrate the neutron energy independence of the detector used...

  6. Simulated Performance of the Integrated Passive Neutron Albedo Reactivity and Self-Interrogation Neutron Resonance Densitometry Detector Designed for Spent Fuel Measurement at the Fugen Reactor in Japan

    SciTech Connect (OSTI)

    Ulrich, Timothy J. II [Los Alamos National Laboratory; Lafleur, Adrienne M. [Los Alamos National Laboratory; Menlove, Howard O. [Los Alamos National Laboratory; Swinhoe, Martyn T. [Los Alamos National Laboratory; Tobin, Stephen J. [Los Alamos National Laboratory; Seya, Michio [Los Alamos National Laboratory; Bolind, Alan M. [Los Alamos National Laboratory

    2012-07-16

    An integrated nondestructive assay instrument, which combined the Passive Neutron Albedo Reactivity (PNAR) and the Self-Interrogation Neutron Resonance Densitometry (SINRD) techniques, is the research focus for a collaborative effort between Los Alamos National Laboratory (LANL) and the Japanese Atomic Energy Agency as part of the Next Generation Safeguard Initiative. We will quantify the anticipated performance of this experimental system in two physical environments: (1) At LANL we will measure fresh Low Enriched Uranium (LEU) assemblies for which the average enrichment can be varied from 0.2% to 3.2% and for which Gd laced rods will be included. (2) At Fugen we will measure spent Mixed Oxide (MOX-B) and LEU spent fuel assemblies from the heavy water moderated Fugen reactor. The MOX-B assemblies will vary in burnup from {approx}3 GWd/tHM to {approx}20 GWd/tHM while the LEU assemblies ({approx}1.9% initial enrichment) will vary from {approx}2 GWd/tHM to {approx}7 GWd/tHM. The estimated count rates will be calculated using MCNPX. These preliminary results will help the finalization of the hardware design and also serve a guide for the experiment. The hardware of the detector is expected to be fabricated in 2012 with measurements expected to take place in 2012 and 2013. This work is supported by the Next Generation Safeguards Initiative, Office of Nuclear Safeguards and Security, National Nuclear Security Administration.

  7. Methods for absorbing neutrons

    DOE Patents [OSTI]

    Guillen, Donna P. (Idaho Falls, ID); Longhurst, Glen R. (Idaho Falls, ID); Porter, Douglas L. (Idaho Falls, ID); Parry, James R. (Idaho Falls, ID)

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  8. Solution-grown crystals for neutron radiation detectors, and methods of solution growth

    DOE Patents [OSTI]

    Zaitseva, Natalia; Carman, M Leslie; Payne, Steve

    2014-10-28

    An organic crystal according to one embodiment includes an organic crystal comprising diphenylacetylene and stilbene or a stilbene derivative, the crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source. A system according to one embodiment includes an organic crystal comprising diphenylacetylene and stilbene or a stilbene derivative, the crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source; and a photodetector for detecting the signal response of the organic crystal. Methods of making such crystals are also provided.

  9. An in-line thermal-neutron coincidence counter for WIPP (Waste Isolation Pilot Plant) certification measurements

    SciTech Connect (OSTI)

    Krick, M.S.; Osborne, L.; Polk, P.J.; Atencio, J.D.; Bjork, C.

    1989-10-01

    A custom-designed, in-line, thermal-neutron coincidence counter has been constructed for the certification of plutonium waste intended for storage at the Waste Isolation Pilot Plant. The mechanical and electrical components of the system and its performance characteristics are described. 6 refs., 16 figs.

  10. Space nuclear-power reactor design based on combined neutronic and thermal-fluid analyses

    SciTech Connect (OSTI)

    Koenig, D.R.; Gido, R.G.; Brandon, D.I.

    1985-01-01

    The design and performance analysis of a space nuclear-power system requires sophisticated analytical capabilities such as those developed during the nuclear rocket propulsion (Rover) program. In particular, optimizing the size of a space nuclear reactor for a given power level requires satisfying the conflicting requirements of nuclear criticality and heat removal. The optimization involves the determination of the coolant void (volume) fraction for which the reactor diameter is a minimum and temperature and structural limits are satisfied. A minimum exists because the critical diameter increases with increasing void fraction, whereas the reactor diameter needed to remove a specified power decreases with void fraction. The purpose of this presentation is to describe and demonstrate our analytical capability for the determination of minimum reactor size. The analysis is based on combining neutronic criticality calculations with OPTION-code thermal-fluid calculations.

  11. An evaporation-based model of thermal neutron induced ternary fission of plutonium

    E-Print Network [OSTI]

    Lestone, J P

    2007-01-01

    Ternary fission probabilities for thermal neutron induced fission of plutonium are analyzed within the framework of an evaporation-based model where the complexity of time-varying potentials, associated with the neck collapse, are included in a simplistic fashion. If the nuclear temperature at scission and the fission-neck-collapse time are assumed to be ~1.2 MeV and ~10^-22 s, respectively, then calculated relative probabilities of ternary-fission light-charged-particle emission follow the trends seen in the experimental data. The ability of this model to reproduce ternary fission probabilities spanning seven orders of magnitude for a wide range of light-particle charges and masses implies that ternary fission is caused by the coupling of an evaporation-like process with the rapid re-arrangement of the nuclear fluid following scission.

  12. An evaporation-based model of thermal neutron induced ternary fission of plutonium

    E-Print Network [OSTI]

    J. P. Lestone

    2007-03-10

    Ternary fission probabilities for thermal neutron induced fission of plutonium are analyzed within the framework of an evaporation-based model where the complexity of time-varying potentials, associated with the neck collapse, are included in a simplistic fashion. If the nuclear temperature at scission and the fission-neck-collapse time are assumed to be ~1.2 MeV and ~10^-22 s, respectively, then calculated relative probabilities of ternary-fission light-charged-particle emission follow the trends seen in the experimental data. The ability of this model to reproduce ternary fission probabilities spanning seven orders of magnitude for a wide range of light-particle charges and masses implies that ternary fission is caused by the coupling of an evaporation-like process with the rapid re-arrangement of the nuclear fluid following scission.

  13. Irradiation of Nuclear Track Emulsions with Thermal Neutrons, Heavy Ions, and Muons

    E-Print Network [OSTI]

    D. A. Artemenkov; V. Bradnova; A. A. Zaitsev; P. I. Zarubin; I. G. Zarubina; R. R. Kattabekov; K. Z. Mamatkulov; V. V. Rusakova

    2015-08-11

    Exposures of test samples of nuclear track emulsion were analyzed. Angular and energy correlations of products originating from the thermal-neutron-induced reaction n$_{th} + ^{10}$B $\\rightarrow ^{7}$Li $+ (\\gamma) + \\alpha$ were studied in nuclear tack emulsions enriched in boron. Nuclear track emulsions were also irradiated with $^{86}$Kr$^{+17}$ and $^{132}$Xe$^{+26}$ of energy about 1.2 MeV per nucleon. Measurements of ranges of heavy ions in nuclear track emulsions made it possible to determine their energies on the basis of the SRIM model. The formation of high-multiplicity nuclear stars was observed upon irradiating nuclear track emulsions with ultrarelativistic muons. Kinematical features studied in this exposure of nuclear track emulsions for events of the muon-induced splitting of carbon nuclei to three alpha particles are indicative of the nuclear-diffraction interaction mechanism.

  14. A structural evaluation of the tungsten isotopes via thermal neutron capture

    E-Print Network [OSTI]

    Hurst, A M; Sleaford, B W; Summers, N C; Revay, Zs; Szentmiklosi, L; Basunia, M S; Belgya, T; Escher, J E; Krticka, M

    2014-01-01

    Total radiative thermal neutron-capture $\\gamma$-ray cross sections for the $^{182,183,184,186}$W isotopes were measured using guided neutron beams from the Budapest Research Reactor to induce prompt and delayed $\\gamma$ rays from elemental and isotopically-enriched tungsten targets. These cross sections were determined from the sum of measured $\\gamma$-ray cross sections feeding the ground state from low-lying levels below a cutoff energy, E$_{\\rm crit}$, where the level scheme is completely known, and continuum $\\gamma$ rays from levels above E$_{\\rm crit}$, calculated using the Monte Carlo statistical-decay code DICEBOX. The new cross sections determined in this work for the tungsten nuclides are: $\\sigma_{0}(^{182}{\\rm W}) = 20.5(14)$ b and $\\sigma_{11/2^{+}}(^{183}{\\rm W}^{m}, 5.2 {\\rm s}) = 0.177(18)$ b; $\\sigma_{0}(^{183}{\\rm W}) = 9.37(38)$ b and $\\sigma_{5^{-}}(^{184}{\\rm W}^{m}, 8.33 \\mu{\\rm s}) = 0.0247(55)$ b; $\\sigma_{0}(^{184}{\\rm W}) = 1.43(10)$ b and $\\sigma_{11/2^{+}}(^{185}{\\rm W}^{m}, 1.67 ...

  15. Near-Thermal Radiation in Detectors, Mirrors and Black Holes: A Stochastic Approach

    E-Print Network [OSTI]

    Alpan Raval; B. L. Hu; Don Koks

    1996-06-27

    In analyzing the nature of thermal radiance experienced by an accelerated observer (Unruh effect), an eternal black hole (Hawking effect) and in certain types of cosmological expansion, one of us proposed a unifying viewpoint that these can be understood as arising from the vacuum fluctuations of the quantum field being subjected to an exponential scale transformation. This viewpoint, together with our recently developed stochastic theory of particle-field interaction understood as quantum open systems described by the influence functional formalism, can be used to address situations where the spacetime possesses an event horizon only asymptotically, or none at all. Examples studied here include detectors moving at uniform acceleration only asymptotically or for a finite time, a moving mirror, and a collapsing mass. We show that in such systems radiance indeed is observed, albeit not in a precise Planckian spectrum. The deviation therefrom is determined by a parameter which measures the departure from uniform acceleration or from exact exponential expansion. These results are expected to be useful for the investigation of non-equilibrium black hole thermodynamics and the linear response regime of backreaction problems in semiclassical gravity.

  16. A novel method for modeling the neutron time of flight (nTOF) detector response in current mode to inertial confinement fusion experiments.

    SciTech Connect (OSTI)

    Nelson, Alan J.; Cooper, Gary Wayne; Ruiz, Carlos L.; Chandler, Gordon Andrew; Fehl, David Lee; Hahn, Kelly Denise; Leeper, Ramon Joe; Smelser, Ruth Marie; Torres, Jose A.

    2013-09-01

    There are several machines in this country that produce short bursts of neutrons for various applications. A few examples are the Zmachine, operated by Sandia National Laboratories in Albuquerque, NM; the OMEGA Laser Facility at the University of Rochester in Rochester, NY; and the National Ignition Facility (NIF) operated by the Department of Energy at Lawrence Livermore National Laboratory in Livermore, California. They all incorporate neutron time of flight (nTOF) detectors which measure neutron yield, and the shapes of the waveforms from these detectors contain germane information about the plasma conditions that produce the neutrons. However, the signals can also be %E2%80%9Cclouded%E2%80%9D by a certain fraction of neutrons that scatter off structural components and also arrive at the detectors, thereby making analysis of the plasma conditions more difficult. These detectors operate in current mode - i.e., they have no discrimination, and all the photomultiplier anode charges are integrated rather than counted individually as they are in single event counting. Up to now, there has not been a method for modeling an nTOF detector operating in current mode. MCNPPoliMiwas developed in 2002 to simulate neutron and gammaray detection in a plastic scintillator, which produces a collision data output table about each neutron and photon interaction occurring within the scintillator; however, the postprocessing code which accompanies MCNPPoliMi assumes a detector operating in singleevent counting mode and not current mode. Therefore, the idea for this work had been born: could a new postprocessing code be written to simulate an nTOF detector operating in current mode? And if so, could this process be used to address such issues as the impact of neutron scattering on the primary signal? Also, could it possibly even identify sources of scattering (i.e., structural materials) that could be removed or modified to produce %E2%80%9Ccleaner%E2%80%9D neutron signals? This process was first developed and then applied to the axial neutron time of flight detectors at the ZFacility mentioned above. First, MCNPPoliMi was used to model relevant portions of the facility between the source and the detector locations. To obtain useful statistics, variance reduction was utilized. Then, the resulting collision output table produced by MCNPPoliMi was further analyzed by a MATLAB postprocessing code. This converted the energy deposited by neutron and photon interactions in the plastic scintillator (i.e., nTOF detector) into light output, in units of MeVee%D1%84 (electron equivalent) vs time. The time response of the detector was then folded into the signal via another MATLAB code. The simulated response was then compared with experimental data and shown to be in good agreement. To address the issue of neutron scattering, an %E2%80%9CIdeal Case,%E2%80%9D (i.e., a plastic scintillator was placed at the same distance from the source for each detector location) with no structural components in the problem. This was done to produce as %E2%80%9Cpure%E2%80%9D a neutron signal as possible. The simulated waveform from this %E2%80%9CIdeal Case%E2%80%9D was then compared with the simulated data from the %E2%80%9CFull Scale%E2%80%9D geometry (i.e., the detector at the same location, but with all the structural materials now included). The %E2%80%9CIdeal Case%E2%80%9D was subtracted from the %E2%80%9CFull Scale%E2%80%9D geometry case, and this was determined to be the contribution due to scattering. The time response was deconvolved out of the empirical data, and the contribution due to scattering was then subtracted out of it. A transformation was then made from dN/dt to dN/dE to obtain neutron spectra at two different detector locations.

  17. Neutron light output and detector efficiency (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech Connect Nanomechanical switch for| SciTech ConnectSciTechNeutron light output and

  18. A New On-the-Fly Sampling Method for Incoherent Inelastic Thermal Neutron Scattering Data in MCNP6

    SciTech Connect (OSTI)

    Pavlou, Andrew Theodore; Brown, Forrest B.; Ji, Wei

    2014-09-02

    At thermal energies, the scattering of neutrons in a system is complicated by the comparable velocities of the neutron and target, resulting in competing upscattering and downscattering events. The neutron wavelength is also similar in size to the target's interatomic spacing making the scattering process a quantum mechanical problem. Because of the complicated nature of scattering at low energies, the thermal data files in ACE format used in continuous-energy Monte Carlo codes are quite large { on the order of megabytes for a single temperature and material. In this paper, a new storage and sampling method is introduced that is orders of magnitude less in size and is used to sample scattering parameters at any temperature on-the-fly. In addition to the reduction in storage, the need to pre-generate thermal scattering data tables at fine temperatures has been eliminated. This is advantageous for multiphysics simulations which may involve temperatures not known in advance. A new module was written for MCNP6 that bypasses the current S(?,?) table lookup in favor of the new format. The new on-the-fly sampling method was tested for graphite for two benchmark problems at ten temperatures: 1) an eigenvalue test with a fuel compact of uranium oxycarbide fuel homogenized into a graphite matrix, 2) a surface current test with a \\broomstick" problem with a monoenergetic point source. The largest eigenvalue difference was 152pcm for T= 1200K. For the temperatures and incident energies chosen for the broomstick problem, the secondary neutron spectrum showed good agreement with the traditional S(?,?) sampling method. These preliminary results show that sampling thermal scattering data on-the-fly is a viable option to eliminate both the storage burden of keeping thermal data at discrete temperatures and the need to know temperatures before simulation runtime.

  19. The Mechanical and Thermal Design for the MICE Detector Solenoid Magnet System

    E-Print Network [OSTI]

    Fabbricatore, P.; Farinon, S.; Perrella, M.; Bravar, U.; Green, M.A.

    2004-01-01

    et al, “The Mechanical and Thermal Design for the MICEBarr et al, “The Mechanical and Thermal Design for the MICE04 LBNL-57376 The Mechanical and Thermal Design for the MICE

  20. MSX - A Monte-Carlo Code for Neutron Efficiency Calculations for Large Volume Gd-loaded Liquid Scintillation Detectors

    E-Print Network [OSTI]

    A. Trzcinski; B. Zwieglinski; ALADIN collaboration

    1996-12-19

    Some properties of the code newly developed to simulate the neutron detection process in a neutron multiplicity meter are briefly described.

  1. Apparatuses and methods for detecting, identifying and quantitating radioactive nuclei and methods of distinguishing neutron stimulation of a radiation particle detector from gamma-ray stimulation of a detector

    DOE Patents [OSTI]

    Cole, Jerald D. (Idaho Falls, ID); Drigert, Mark W. (Idaho Falls, ID); Reber, Edward L. (Idaho Falls, ID); Aryaeinejad, Rahmat (Idaho Falls, ID)

    2001-01-01

    In one aspect, the invention encompasses a method of detecting radioactive decay, comprising: a) providing a sample comprising a radioactive material, the radioactive material generating decay particles; b)providing a plurality of detectors proximate the sample, the detectors comprising a first set and a second set, the first set of the detectors comprising liquid state detectors utilizing liquid scintillation material coupled with photo tubes to generate a first electrical signal in response to decay particles stimulating the liquid scintillation material, the second set of the detectors comprising solid state detectors utilizing a crystalline solid to generate a second electrical signal in response to decay particles stimulating the crystalline solid; c) stimulating at least one of the detectors to generate at least one of the first and second electrical signals, the at least one of the first and second electrical signals being indicative of radioactive decay in the sample. In another aspect, the invention encompasses an apparatus for identifying and quantitating radioactive nuclei of a sample comprising radioactive material that decays to generate neutrons and high-energy .gamma.-rays.

  2. Effects of thermal aging and neutron irradiation on the mechanical properties of three-wire stainless steel weld overlay cladding

    SciTech Connect (OSTI)

    Haggag, F.M.; Nanstad, R.K.

    1997-05-01

    Thermal aging of three-wire series-arc stainless steel weld overlay cladding at 288{degrees}C for 1605 h resulted in an appreciable decrease (16%) in the Charpy V-notch (CVN) upper-shelf energy (USE), but the effect on the 41-J transition temperature shift was very small (3{degrees}C). The combined effect of aging and neutron irradiation at 288{degrees}C to a fluence of 5 x 10{sup 19} neutrons/cm{sup 2} (> 1 MeV) was a 22% reduction in the USE and a 29{degrees}C shift in the 41-J transition temperature. The effect of thermal aging on tensile properties was very small. However, the combined effect of irradiation and aging was an increase in the yield strength (6 to 34% at test temperatures from 288 to {minus}125{degrees}C) but no apparent change in ultimate tensile strength or total elongation. Neutron irradiation reduced the initiation fracture toughness (J{sub Ic}) much more than did thermal aging alone. Irradiation slightly decreased the tearing modulus, but no reduction was caused by thermal aging alone. Other results from tensile, CVN, and fracture toughness specimens showed that the effects of thermal aging at 288 or 343{degrees}C for 20,000 h each were very small and similar to those at 288{degrees}C for 1605 h. The effects of long-term thermal exposure time (50,000 h and greater) at 288{degrees}C will be investigated as the specimens become available in 1996 and beyond.

  3. Ultra Wide Band RFID Neutron Tags for Nuclear Materials Monitoring

    SciTech Connect (OSTI)

    Nekoogar, F; Dowla, F; Wang, T

    2010-01-27

    Recent advancements in the ultra-wide band Radio Frequency Identification (RFID) technology and solid state pillar type neutron detectors have enabled us to move forward in combining both technologies for advanced neutron monitoring. The LLNL RFID tag is totally passive and will operate indefinitely without the need for batteries. The tag is compact, can be directly mounted on metal, and has high performance in dense and cluttered environments. The LLNL coin-sized pillar solid state neutron detector has achieved a thermal neutron detection efficiency of 20% and neutron/gamma discrimination of 1E5. These performance values are comparable to a fieldable {sup 3}He based detector. In this paper we will discuss features about the two technologies and some potential applications for the advanced safeguarding of nuclear materials.

  4. High Intensity, Pulsed, D-D Neutron Generator

    E-Print Network [OSTI]

    Williams, D. L.

    2010-01-01

    application. Whether thermal activation (measuring prompt orthermal neutrons for both prompt and delayed gamma neutron activation

  5. SMITHERS: An object-oriented modular mapping methodology for MCNP-based neutronic–thermal hydraulic multiphysics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Richard, Joshua; Galloway, Jack; Fensin, Michael; Trellue, Holly

    2015-04-04

    A novel object-oriented modular mapping methodology for externally coupled neutronics–thermal hydraulics multiphysics simulations was developed. The Simulator using MCNP with Integrated Thermal-Hydraulics for Exploratory Reactor Studies (SMITHERS) code performs on-the-fly mapping of material-wise power distribution tallies implemented by MCNP-based neutron transport/depletion solvers for use in estimating coolant temperature and density distributions with a separate thermal-hydraulic solver. The key development of SMITHERS is that it reconstructs the hierarchical geometry structure of the material-wise power generation tallies from the depletion solver automatically, with only a modicum of additional information required from the user. In addition, it performs the basis mapping from themore »combinatorial geometry of the depletion solver to the required geometry of the thermal-hydraulic solver in a generalizable manner, such that it can transparently accommodate varying levels of thermal-hydraulic solver geometric fidelity, from the nodal geometry of multi-channel analysis solvers to the pin-cell level of discretization for sub-channel analysis solvers.« less

  6. Nuclear Instruments and Methods in Physics Research A 432 (1999) 403}409 Measurement of the thermal and fast neutron #ux in a research

    E-Print Network [OSTI]

    Pázsit, Imre

    1999-01-01

    the neutron converter material to measure neu- trons of various energies, such as fast, thermal and epithermal positions, such as between the fuel plates of an MTR-type reactor. At the same time, its sensitive volume

  7. A Combined Neutronic-Thermal Hydraulic Model of CERMET NTR Reactor

    SciTech Connect (OSTI)

    Jonathan A. Webb; Brian Gross; William T. Taitano

    2011-02-01

    Abstract. Two different CERMET fueled Nuclear Thermal Propulsion reactors were modeled to determine the optimum coolant channel surface area to volume ratio required to cool a 25,000 lbf rocket engine operating at a specific impulse of 940 seconds. Both reactor concepts were computationally fueled with hexagonal cross section fuel elements having a flat-to-flat distance of 3.51 cm and containing 60 vol.% UO2 enriched to 93wt.%U235 and 40 vol.% tungsten. Coolant channel configuration consisted of a 37 coolant channel fuel element and a 61 coolant channel model representing 0.3 and 0.6 surface area to volume ratios respectively. The energy deposition from decelerating fission products and scattered neutrons and photons was determined using the MCNP monte carlo code and then imported into the STAR-CCM+ computational fluid dynamics code. The 37 coolant channel case was shown to be insufficient in cooling the core to a peak temperature of 3000 K; however, the 61 coolant channel model shows promise for maintaining a peak core temperature of 3000 K, with no more refinements to the surface area to volume ratio. The core was modeled to have a power density of 9.34 GW/m3 with a thrust to weight ratio of 5.7.

  8. Thermal neutron steady-state spectra in light water reactor fuel assemblies poisoned with various non-1/v absorbers of different concentrations

    SciTech Connect (OSTI)

    Swaminathan, K.; Chandra, S.; Jha, R.C.; Tewari, S.P. )

    1991-07-01

    This paper reports on the thermal neutron scattering kernel that explicitly incorporates the presence of chemical binding energy and the collective oscillations in the dynamics of water, the steady-state thermal neutron spectra in light water reactor fuel assemblies poisoned with non-1/v absorbers, such as cadmium, samarium, erbium, and gadolinium, in various concentrations have been computed at 298 K. The calculated spectra are in reasonable agreement with the corresponding experimental spectra for realistic source terms.

  9. Low-energy neutron detector based upon lithium lanthanide borate scintillators

    DOE Patents [OSTI]

    Czirr, John B. (Mapleton, UT)

    1998-01-01

    An apparatus for detecting neutrons includes a cerium activated scintillation crystal containing .sup.10 B, with the scintillation crystal emitting light in response to .alpha. particles emitted from the .sup.10 B(n,.alpha.)Li* reaction. The apparatus also includes a gamma scintillator positioned adjacent the crystal and which generates light in response to gamma rays emitted from the decay of Li*. The apparatus further includes a first and a second light-to-electronic signal converter each positioned to respectively receive light from the crystal and the gamma scintillator, and each respectively outputting first and second electronic signals representative of .alpha. particles from the .sup.10 B(n,.alpha.)Li* reaction and gamma rays from the .sup.10 B(n,.alpha.)Li* reaction. The apparatus includes a coincidence circuit connected to receive the first and second signals and which generates a coincidence signal when the first and second signals coincide. The apparatus also includes a data analyzer for receiving an additional signal from at least one of the first and second converters, and for operating in response to the coincidence signal.

  10. Charge exchange neutral particle measurements with natural diamond detector under the deuterium-deuterium neutron field on JT-60U tokamak

    SciTech Connect (OSTI)

    Ishikawa, M.; Kusama, Y.; Takechi, M.; Nishitani, T.; Morioka, A.; Sasao, M.; Isobe, M.; Krasilnikov, A.; Kaschuck, Yu. A. [Japan Atomic Energy Research Institute, Naka-machi, Naka-gun, Ibaraki 319-0193 (Japan); Tohoku University, Sendai-shi, Miyagi 980-8578 (Japan); National Institute for Fusion Science, Toki, Gihu 509-5292 (Japan); Troitsk Institute of Innovating and Fusion Research (TRINITI) Troitsk, Moscow Region 142092 (Russian Federation)

    2004-10-01

    A natural diamond detector (NDD) has been installed on the JT-60U tokamak to measure the flux and the energy distribution of charge exchange (CX) fast neutral particles. A NDD has many important advantages to be used as a CX neutral particle analyzer, for example very compact size, high energy resolution, and high radiation hardness etc., while the neutrons and {gamma} rays are a large noise source in the deuterium plasma. The shield was set up around the NDD to reduce those noises. Time-resolved energy distribution of CX neutral particles corresponding to injected beam energy have been successfully obtained under high intensity neutron yield Y{sub n}>10{sup 15} n/s. Further enhanced neutral particle fluxes during sawtooth oscillation and Alfven eigenmodes were observed with the NDD. The performance of the NDD as CX neutral particle spectrometer under high intensity neutron yield was demonstrated for the first time on JT-60U in this work.

  11. Requirements, possible alternatives & international NEUTRON SCATTERING

    E-Print Network [OSTI]

    Dimeo, Robert M.

    Requirements, possible alternatives & international NEUTRON SCATTERING DETECTORS for Rob Dimeo NIST neutron scattering instruments are the most demanding require background low #12;#12;The Helium-3 Supply Crisis ­ Alternative Techniques to Helium-3 based Detectors for Neutron Scattering Applications

  12. Fission Product Yields of {sup 233}U, {sup 235}U, {sup 238}U and {sup 239}Pu in Fields of Thermal Neutrons, Fission Neutrons and 14.7-MeV Neutrons

    SciTech Connect (OSTI)

    Laurec, J.; Adam, A.; Bruyne, T. de [Commissariat a l'Energie Atomique, Centre DAM-Ile de France (CEA DAM DIF), 91297 Arpajon (France); Bauge, E., E-mail: eric.bauge@cea.f [Commissariat a l'Energie Atomique, Centre DAM-Ile de France (CEA DAM DIF), 91297 Arpajon (France); Granier, T.; Aupiais, J.; Bersillon, O.; Le Petit, G. [Commissariat a l'Energie Atomique, Centre DAM-Ile de France (CEA DAM DIF), 91297 Arpajon (France); Authier, N.; Casoli, P. [Commissariat a l'Energie Atomique, Centre de Valduc, 21120 Is-sur-Tille (France)

    2010-12-15

    The yields of more than fifteen fission products have been carefully measured using radiochemical techniques, for {sup 235}U(n,f), {sup 239}Pu(n,f) in a thermal spectrum, for {sup 233}U(n,f), {sup 235}U(n,f), and {sup 239}Pu(n,f) reactions in a fission neutron spectrum, and for {sup 233}U(n,f), {sup 235}U(n,f), {sup 238}U(n,f), and {sup 239}Pu(n,f) for 14.7 MeV monoenergetic neutrons. Irradiations were performed at the EL3 reactor, at the Caliban and Prospero critical assemblies, and at the Lancelot electrostatic accelerator in CEA-Valduc. Fissions were counted in thin deposits using fission ionization chambers. The number of fission products of each species were measured by gamma spectrometry of co-located thick deposits.

  13. Neutron spectrometer for fast nuclear reactors

    E-Print Network [OSTI]

    M. Osipenko; M. Ripani; G. Ricco; B. Caiffi; F. Pompili; M. Pillon; M. Angelone; G. Verona-Rinati; R. Cardarelli; G. Mila; S. Argiro

    2015-05-25

    In this paper we describe the development and first tests of a neutron spectrometer designed for high flux environments, such as the ones found in fast nuclear reactors. The spectrometer is based on the conversion of neutrons impinging on $^6$Li into $\\alpha$ and $t$ whose total energy comprises the initial neutron energy and the reaction $Q$-value. The $^6$LiF layer is sandwiched between two CVD diamond detectors, which measure the two reaction products in coincidence. The spectrometer was calibrated at two neutron energies in well known thermal and 3 MeV neutron fluxes. The measured neutron detection efficiency varies from 4.2$\\times 10^{-4}$ to 3.5$\\times 10^{-8}$ for thermal and 3 MeV neutrons, respectively. These values are in agreement with Geant4 simulations and close to simple estimates based on the knowledge of the $^6$Li(n,$\\alpha$)$t$ cross section. The energy resolution of the spectrometer was found to be better than 100 keV when using 5 m cables between the detector and the preamplifiers.

  14. Neutron spectrometer for fast nuclear reactors

    E-Print Network [OSTI]

    Osipenko, M; Ricco, G; Caiffi, B; Pompili, F; Pillon, M; Angelone, M; Verona-Rinati, G; Cardarelli, R; Mila, G; Argiro, S

    2015-01-01

    In this paper we describe the development and first tests of a neutron spectrometer designed for high flux environments, such as the ones found in fast nuclear reactors. The spectrometer is based on the conversion of neutrons impinging on $^6$Li into $\\alpha$ and $t$ whose total energy comprises the initial neutron energy and the reaction $Q$-value. The $^6$LiF layer is sandwiched between two CVD diamond detectors, which measure the two reaction products in coincidence. The spectrometer was calibrated at two neutron energies in well known thermal and 3 MeV neutron fluxes. The measured neutron detection efficiency varies from 4.2$\\times 10^{-4}$ to 3.5$\\times 10^{-8}$ for thermal and 3 MeV neutrons, respectively. These values are in agreement with Geant4 simulations and close to simple estimates based on the knowledge of the $^6$Li(n,$\\alpha$)$t$ cross section. The energy resolution of the spectrometer was found to be better than 100 keV when using 5 m cables between the detector and the preamplifiers.

  15. Minor actinides transmutation in SFR depleted uranium radial blanket, neutronic AND THERMAL HYDRAULIC EVALUATION

    SciTech Connect (OSTI)

    Buiron, L.; Varaine, F. [CEA/DER/SPRC/LEDC Commissariat a l'Energie Atomique (CEA), Cadarache Centre, 13108 Saint-Paul-lez-Durance Cedex (France); Lorenzo, D.; Palancher, H.; Valentin, B. [CEA/DEC/SESC/LC2I Commissariat a l'Energie Atomique (CEA), Cadarache Centre, 13108 Saint-Paul-lez-Durance Cedex (France)

    2007-07-01

    In the framework of next generation fast reactor design, the management of minor actinides (MA) is one of the fundamental issues. This can be made by either homogeneous or heterogeneous multi-recycling model. In the homogeneous process the minor actinides are diluted in the fuel assembly. In the so-called heterogeneous model, minor actinides are concentrated apart from the core fuel (in special pins within dedicated core fuel assemblies or in axial or radial blankets). Here, we proposed to see the transmutation performances of radial blankets loaded with a mixture of depleted uranium and minor actinides oxide. This particular heterogeneous multi-recycling model allows the loading a significantly higher mass of minor actinides in the core than the homogeneous multi-recycling model. The oxide matrix also allows to reprocess such S/A in the spent fuel standard flow. Starting from a preliminary design of a 3600 MW Sodium Fast Reactor (SFR) in progress at CEA, we investigated the transmutation performances of (U+MA)O{sub 2} fuel in radial blankets assemblies. Among all possibilities, we focused on two scenarios: a realistic case with MA enrichment close to 10% and a more optimistic one, near term technologically achievable, close to 40%. For an equilibrium core, the MA transmutation rate reaches 40% for total fuel life time around 11 years for both enrichments. For this particular heterogeneous model, the minor actinides equilibrium (production=destruction) can be achieved with only 23% of the SFR fleet using such 40% MA radial blankets. It represents a total fabrication of 50 of such S/A per year. Concerning non-proliferation issue, the discharged plutonium of these assemblies is highly degraded (contribution of {sup 238}Pu and {sup 240}Pu around 60%). From this starting point, a coupled neutronic-thermal hydraulic optimization based on a simple iterative process has been carried out to deal with minor actinides specific features: high specific decay heat, swelling and helium production. In this paper, we review the main characteristics of the optimized system complying with GEN IV-like images of sodium fast reactors. (authors)

  16. Radiative Thermal Noise for Transmissive Optics in Gravitational-Wave Detectors

    E-Print Network [OSTI]

    Sheila Dwyer; Stefan W. Ballmer

    2014-08-07

    Radiative losses have traditionally been neglected in the calculation of thermal noise of transmissive optical elements because for the most commonly used geometries they are small compared to losses due to thermal conduction. We explore the use of such transmissive optical elements in extremely noise-sensitive environments such as the arm cavities of future gravitational-wave interferometers. This drives us to a geometry regime where radiative losses are no longer negligible. In this paper we derive the thermo-refractive noise associated with such radiative losses and compare it to other known sources of thermal noise.

  17. Monte Carlo simulation of prompt gamma-ray spectra from depleted uranium under D-T neutron irradiation and electron recoil spectra in a liquid scintillator detector

    E-Print Network [OSTI]

    Qin, Jianguo; Liu, Rong; Zhu, Tonghua; Zhang, Xinwei; Ye, Bangjiao

    2015-01-01

    To overcome the problem of inefficient computing time and unreliable results in MCNP5 calculation, a two-step method is adopted to calculate the energy deposition of prompt gamma-rays in detectors for depleted uranium spherical shells under D-T neutrons irradiation. In the first step, the gamma-ray spectrum for energy below 7 MeV is calculated by MCNP5 code; secondly, the electron recoil spectrum in a BC501A liquid scintillator detector is simulated based on EGSnrc Monte Carlo Code with the gamma-ray spectrum from the first step as input. The comparison of calculated results with experimental ones shows that the simulations agree well with experiment in the energy region 0.4-3 MeV for the prompt gamma-ray spectrum and below 4 MeVee for the electron recoil spectrum. The reliability of the two-step method in this work is validated.

  18. Measured thermal and fast neutron fluence rates, ATR Cycle 100-BC, April 23, 1993--May 13, 1993

    SciTech Connect (OSTI)

    Smith, L.D.; Murray, R.K.; Rogers, J.W.

    1993-07-01

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for ATR Cycle 100-BC which were measured by the Radiation Measurements Laboratory (RML) as requested by the Power Reactor Programs (ATR Experiments) Radiation Measurements Work Order. This report contains fluence rate values corresponding to the particular elevations (relative to the 80 ft. core elevation) where the measurements were taken. The data in this report consists of (1) a table of the ATR power history and distribution, (2) a hard copy listing of all thermal and fast neutron fluence rates, (3) plots of both the thermal and fast neutron fluence rates, and (4) a magnetic record (3.5 inch diskette) containing a listing of only the fast neutron fluence rates, their assigned elevations and proper header identification of all monitor positions contained herein. The fluence rates reported are for the average power levels given in the table of power history and distribution. All {open_quotes}H{close_quotes} holder monitor wires for this cycle are 54 inches long. All {open_quotes}SR{close_quotes} holder monitor wires for this cycle are 55 inches long. This length allows measurement of the full core region and makes the first count elevation 24.73 inches above core midplane. Due to the safety rod problems in the west lobe, {open_quotes}BR{close_quotes} holders were used in the W-1, 2, 3, and 4 positions. All {open_quotes}BR{close_quotes} holder monitor wires for this cycle are 56.25 inches long. The distance from the end of the wires to the first count position was 4.25 inches for all wires counted from this cycle. The results from the measurements in the W-1, 2, 3, 4 monitor positions indicate that the safety rod followers were rotated to a different azimuthal orientation relative to the normal orientation. The results indicate that the rotation was counterclockwise from their normal orientation. This is the same condition observed starting with Cycle 99-B.

  19. Neutron absorption detector

    DOE Patents [OSTI]

    Bell, Zane William (Oak Ridge, TN); Boatner, Lynn Allen (Oak Ridge, TN)

    2011-05-31

    A method of detecting an activator, the method including impinging a receptor material that is not predominately water and lacks a photoluminescent material with an activator and generating Cherenkov effect light due to the activator impinging the receptor material. The method further including identifying a characteristic of the activator based on the light.

  20. Thermoluminescence measurements of neutron streaming through JET Torus Hall ducts

    E-Print Network [OSTI]

    Obryk, Barbara; Conroy, Sean; Syme, Brian D; Popovichev, Sergey; Stamatelatos, Ion E; Vasilopoulou, Theodora; Bilski, Pawe?; Contributors, JET EFDA

    2014-01-01

    Thermoluminescence detectors (TLD) were used for dose measurements at JET. Several hundreds of LiF detectors of various types, standard LiF:Mg,Ti and highly sensitive LiF:Mg,Cu,P were produced. LiF detectors consisting of natural lithium are sensitive to slow neutrons, their response to neutrons being enhanced by 6Li-enriched lithium or suppressed by using lithium consisting entirely of 7Li. Pairs of 6LiF/7LiF detectors allow distinguishing between neutron/non-neutron components of a radiation field. For detection of neutrons of higher energy, polyethylene (PE-300) moderators were used. TLDs, located in the centre of cylindrical moderators, were installed at eleven positions in the JET hall and the hall labyrinth in July 2012, and exposure took place during the last two weeks of the experimental campaign. Measurements of the gamma dose were obtained for all positions over a range of about five orders of magnitude variation. As the TLDs were also calibrated in a thermal neutron field, the neutron fluence at th...

  1. Fast neutron imaging device and method

    DOE Patents [OSTI]

    Popov, Vladimir; Degtiarenko, Pavel; Musatov, Igor V.

    2014-02-11

    A fast neutron imaging apparatus and method of constructing fast neutron radiography images, the apparatus including a neutron source and a detector that provides event-by-event acquisition of position and energy deposition, and optionally timing and pulse shape for each individual neutron event detected by the detector. The method for constructing fast neutron radiography images utilizes the apparatus of the invention.

  2. Gamma and neutron detection modeling in the nuclear detection figure of merit (NDFOM) portal

    SciTech Connect (OSTI)

    Stroud, Phillip D [Los Alamos National Laboratory; Saeger, Kevin J [Los Alamos National Laboratory

    2009-01-01

    The Nuclear Detection Figure Of Merit (NDFOM) portal is a database of objects and algorithms for evaluating the performance of radiation detectors to detect nuclear material. This paper describes the algorithms used to model the physics and mathematics of radiation detection. As a first-principles end-to-end analysis system, it starts with the representation of the gamma and neutron spectral fluxes, which are computed with the particle and radiation transport code MCNPX. The gamma spectra emitted by uranium, plutonium, and several other materials of interest are described. The impact of shielding and other intervening material is computed by the method of build-up factors. The interaction of radiation with the detector material is computed by a detector response function approach. The construction of detector response function matrices based on MCNPX simulation runs is described in detail. Neutron fluxes are represented in a three group formulation to treat differences in detector sensitivities to thermal, epithermal, and fast neutrons.

  3. Single-Volume Neutron Scatter Camera for High-Efficiency Neutron Imaging and Source Characterization. Year 2 of 3 Summary

    SciTech Connect (OSTI)

    Brubaker, Erik

    2015-10-01

    The neutron scatter camera (NSC), an imaging spectrometer for fission energy neutrons, is an established and proven detector for nuclear security applications such as weak source detection of special nuclear material (SNM), arms control treaty verification, and emergency response. Relative to competing technologies such as coded aperture imaging, time-encoded imaging, neutron time projection chamber, and various thermal neutron imagers, the NSC provides excellent event-by-event directional information for signal/background discrimination, reasonable imaging resolution, and good energy resolution. Its primary drawback is very low detection efficiency due to the requirement for neutron elastic scatters in two detector cells. We will develop a singlevolume double-scatter neutron imager, in which both neutron scatters can occur in the same large active volume. If successful, the efficiency will be dramatically increased over the current NSC cell-based geometry. If the detection efficiency approaches that of e.g. coded aperture imaging, the other inherent advantages of double-scatter imaging would make it the most attractive fast neutron detector for a wide range of security applications.

  4. OECD/CSNI Workshop on Advanced Thermal-Hydraulic and Neutronic Codes: Current and Future Applications, Barcelona, SPAIN, 10-13 April, 2000.

    E-Print Network [OSTI]

    Kunz, Robert Francis

    OECD/CSNI Workshop on Advanced Thermal-Hydraulic and Neutronic Codes: Current and Future and experimental measure- ments. The tool provides a suite of metrics for quality of fit to specific data sets in this area (see [1-9], for examples). The United States Nuclear Regulatory Commission has sponsored

  5. Format requirements of thermal neutron scattering data in a nuclear data format to succeed the ENDF format

    SciTech Connect (OSTI)

    Brown, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-03-31

    In November 2012, the Working Party on Evaluation Cooperation Subgroup 38 (WPEC-SG38) began with the task of developing a nuclear data format and supporting infrastructure to replace the now nearly 50 year old ENDF format. The first step in this process is to develop requirements for the new format and infrastructure. In this talk, I will review the status of ENDF's Thermal Scattering Law (TSL) formats as well as support for this data in the GND format (from which the new format is expected to evolve). Finally, I hope to begin a dialog with members of the thermal neutron scattering community so that their data needs can be accurately and easily accommodated by the new format and tools, as captured by the requirements document. During this discussion, we must keep in mind that the new tools and format must; Support what is in existing data files; Support new things we want to put in data files; and Be flexible enough for us to adapt it to future unanticipated challenges.

  6. This work centers around a state of the art gamma and neutron radiation detector, which is able to display radiation information about its surrounding at every second. Information about the count

    E-Print Network [OSTI]

    Abidi, Mongi A.

    ABSTRACT This work centers around a state of the art gamma and neutron radiation detector, which is able to display radiation information about its surrounding at every second. Information about the count level is displayed along with the energy range of the detected radiation. Currently, similar

  7. Critical experiments on an enriched uranium solution system containing periodically distributed strong thermal neutron absorbers

    SciTech Connect (OSTI)

    Rothe, R.E.

    1996-09-30

    A series of 62 critical and critical approach experiments were performed to evaluate a possible novel means of storing large volumes of fissile solution in a critically safe configuration. This study is intended to increase safety and economy through use of such a system in commercial plants which handle fissionable materials in liquid form. The fissile solution`s concentration may equal or slightly exceed the minimum-critical-volume concentration; and experiments were performed for high-enriched uranium solution. Results should be generally applicable in a wide variety of plant situations. The method is called the `Poisoned Tube Tank` because strong neutron absorbers (neutron poisons) are placed inside periodically spaced stainless steel tubes which separate absorber material from solution, keeping the former free of contamination. Eight absorbers are investigated. Both square and triangular pitched lattice patterns are studied. Ancillary topics which closely model typical plant situations are also reported. They include the effect of removing small bundles of absorbers as might occur during inspections in a production plant. Not taking the tank out of service for these inspections would be an economic advantage. Another ancillary topic studies the effect of the presence of a significant volume of unpoisoned solution close to the Poisoned Tube Tank on the critical height. A summary of the experimental findings is that boron compounds were excellent absorbers, as expected. This was true for granular materials such as Gerstley Borate and Borax; but it was also true for the flexible solid composed of boron carbide and rubber, even though only thin sheets were used. Experiments with small bundles of absorbers intentionally removed reveal that quite reasonable tanks could be constructed that would allow a few tubes at a time to be removed from the tank for inspection without removing the tank from production service.

  8. Silicon drift detector based X-ray spectroscopy diagnostic system for the study of non-thermal electrons at Aditya tokamak

    SciTech Connect (OSTI)

    Purohit, S., E-mail: pshishir@ipr.res.in; Joisa, Y. S.; Raval, J. V.; Ghosh, J.; Tanna, R.; Shukla, B. K.; Bhatt, S. B. [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India)

    2014-11-15

    Silicon drift detector based X-ray spectrometer diagnostic was developed to study the non-thermal electron for Aditya tokamak plasma. The diagnostic was mounted on a radial mid plane port at the Aditya. The objective of diagnostic includes the estimation of the non-thermal electron temperature for the ohmically heated plasma. Bi-Maxwellian plasma model was adopted for the temperature estimation. Along with that the study of high Z impurity line radiation from the ECR pre-ionization experiments was also aimed. The performance and first experimental results from the new X-ray spectrometer system are presented.

  9. Supercritical Water Nuclear Steam Supply System: Innovations In Materials, Neutronics & Thermal-Hydraulics

    SciTech Connect (OSTI)

    Mark Anderson; M.L. Corradini; K. Sridharan; P. WIlson; D. Cho; T.K. Kim; S. Lomperski

    2004-09-02

    In the 1990's supercritical light-water reactors were considered in conceptual designs. A nuclear reactor cooled by supercritical waster would have a much higher thermal efficiency with a once-through direct power cycle, and could be based on standardized water reactor components (light water or heavy water). The theoretical efficiency could be improved by more than 33% over that of other water reactors and could be simplified with higher reliability; e.g., a boiling water reactor without steam separators or dryers.

  10. GADRAS Detector Response Function.

    SciTech Connect (OSTI)

    Mitchell, Dean J.; Harding, Lee; Thoreson, Gregory G; Horne, Steven M.

    2014-11-01

    The Gamma Detector Response and Analysis Software (GADRAS) applies a Detector Response Function (DRF) to compute the output of gamma-ray and neutron detectors when they are exposed to radiation sources. The DRF is fundamental to the ability to perform forward calculations (i.e., computation of the response of a detector to a known source), as well as the ability to analyze spectra to deduce the types and quantities of radioactive material to which the detectors are exposed. This document describes how gamma-ray spectra are computed and the significance of response function parameters that define characteristics of particular detectors.

  11. Innovative and Advanced Coupled Neutron Transport and Thermal Hydraulic Method (Tool) for the Design, Analysis and Optimization of VHTR/NGNP Prismatic Reactors

    SciTech Connect (OSTI)

    Rahnema, Farzad; Garimeela, Srinivas; Ougouag, Abderrafi; Zhang, Dingkang

    2013-11-29

    This project will develop a 3D, advanced coarse mesh transport method (COMET-Hex) for steady- state and transient analyses in advanced very high-temperature reactors (VHTRs). The project will lead to a coupled neutronics and thermal hydraulic (T/H) core simulation tool with fuel depletion capability. The computational tool will be developed in hexagonal geometry, based solely on transport theory without (spatial) homogenization in complicated 3D geometries. In addition to the hexagonal geometry extension, collaborators will concurrently develop three additional capabilities to increase the code’s versatility as an advanced and robust core simulator for VHTRs. First, the project team will develop and implement a depletion method within the core simulator. Second, the team will develop an elementary (proof-of-concept) 1D time-dependent transport method for efficient transient analyses. The third capability will be a thermal hydraulic method coupled to the neutronics transport module for VHTRs. Current advancements in reactor core design are pushing VHTRs toward greater core and fuel heterogeneity to pursue higher burn-ups, efficiently transmute used fuel, maximize energy production, and improve plant economics and safety. As a result, an accurate and efficient neutron transport, with capabilities to treat heterogeneous burnable poison effects, is highly desirable for predicting VHTR neutronics performance. This research project’s primary objective is to advance the state of the art for reactor analysis.

  12. Proton recoil scintillator neutron rem meter

    DOE Patents [OSTI]

    Olsher, Richard H. (Los Alamos, NM); Seagraves, David T. (Los Alamos, NM)

    2003-01-01

    A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

  13. Neutron streak camera

    DOE Patents [OSTI]

    Wang, C.L.

    1981-05-14

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  14. Fission Product Data Measured at Los Alamos for Fission Spectrum and Thermal Neutrons on {sup 239}Pu, {sup 235}U, {sup 238}U

    SciTech Connect (OSTI)

    Selby, H.D.; Mac Innes, M.R.; Barr, D.W.; Keksis, A.L.; Meade, R.A.; Burns, C.J.; Chadwick, M.B.; Wallstrom, T.C.

    2010-12-15

    We describe measurements of fission product data at Los Alamos that are important for determining the number of fissions that have occurred when neutrons are incident on plutonium and uranium isotopes. The fission-spectrum measurements were made using a fission chamber designed by the National Institute for Standards and Technology (NIST) in the BIG TEN critical assembly, as part of the Inter-laboratory Liquid Metal Fast Breeder Reactor (LMFBR) Reaction Rate (ILRR) collaboration. The thermal measurements were made at Los Alamos' Omega West Reactor. A related set of measurements were made of fission-product ratios (so-called R-values) in neutron environments provided by a number of Los Alamos critical assemblies that range from having average energies causing fission of 400-600 keV (BIG TEN and the outer regions of the Flattop-25 assembly) to higher energies (1.4-1.9 MeV) in the Jezebel, and in the central regions of the Flattop-25 and Flattop-Pu, critical assemblies. From these data we determine ratios of fission product yields in different fuel and neutron environments (Q-values) and fission product yields in fission spectrum neutron environments for {sup 99}Mo, {sup 95}Zr, {sup 137}Cs, {sup 140}Ba, {sup 141,143}Ce, and {sup 147}Nd. Modest incident-energy dependence exists for the {sup 147}Nd fission product yield; this is discussed in the context of models for fission that include thermal and dynamical effects. The fission product data agree with measurements by Maeck and other authors using mass-spectrometry methods, and with the ILRR collaboration results that used gamma spectroscopy for quantifying fission products. We note that the measurements also contradict earlier 1950s historical Los Alamos estimates by {approx}5-7%, most likely owing to self-shielding corrections not made in the early thermal measurements. Our experimental results provide a confirmation of the England-Rider ENDF/B-VI evaluated fission-spectrum fission product yields that were carried over to the ENDF/B-VII.0 library, except for {sup 99}Mo where the present results are about 4%-relative higher for neutrons incident on {sup 239}Pu and {sup 235}U. Additionally, our results illustrate the importance of representing the incident energy dependence of fission product yields over the fast neutron energy range for high-accuracy work, for example the {sup 147}Nd from neutron reactions on plutonium. An upgrade to the ENDF library, for ENDF/B-VII.1, based on these and other data, is described in a companion paper to this work.

  15. R-matrix analysis of the {sup 240}Pu neutron cross sections in the thermal to 5700 eV energy range

    SciTech Connect (OSTI)

    Derrien, H.; Bouland, O.; Larson, N.M.; Leal, L.C.

    1997-08-01

    Resonance analysis of high resolution neutron transmission data and of fission cross sections were performed in the neutron energy range from the thermal regions to 5,700 eV by using the Reich-Moore Bayesian code SAMMY. The experimental data base is described and the method of analysis is given. The experimental data were carefully examined in order to identify more resonances than those found in the current evaluated data files. The statistical properties of the resonance parameters are given. A new set of the average values of the parameters is proposed, which could be used for calculation of the average cross sections in the unresolved resonance region. The resonance parameters are available IN ENDF-6 format at the national or international data centers.

  16. Observation of d-d fusion neutrons during degassing of deuterium-loaded palladium

    SciTech Connect (OSTI)

    Bittner, M.; Meister, A.; Seeliger, D.; Schwierz, R.; Wuestner, P. )

    1993-05-01

    Experiments with two massive deuterium-loaded palladium samples designed to search for deuteron-deuteron (d-d) fusion during thermal degassing are described. In the heavier of the two samples, which has a total mass of [approximately] 0.5 kg, during deuterium expulsion from the metal, a significant neutron excess count rate was detected by two independent NE-213 scintillation neutron detectors. The maximum time-dependent excess count rate corresponds to a d-d reaction rate of (3 [+-] 1) [times] 10[sup [minus]25] per deuteron pair per second. From detector pulse height spectra, the energy of the neutrons is determined to be [approximately] 2.5 MeV, as expected for d-d fusion neutrons. 10 refs., 10 figs., 2 tabs.

  17. Review of the Development and Testing of a New Family of Boron and Gadolinium-Bearing Dual Thermal Neutron Absorbing Alloys - 13026

    SciTech Connect (OSTI)

    Schmidt, M.L.; Del Corso, G.J.; Klankowski, K.A. [Carpenter Tech., Corp., P.O. Box 14662, Reading PA 19612-4662 (United States)] [Carpenter Tech., Corp., P.O. Box 14662, Reading PA 19612-4662 (United States); Lherbier, L.W.; Novotnak, D.J. [Carpenter Powder Products, 600 Mayer St., Bridgeville, PA 15017 (United States)] [Carpenter Powder Products, 600 Mayer St., Bridgeville, PA 15017 (United States)

    2013-07-01

    The development of a new class of Fe-based thermal neutron absorbing alloys (patent pending) containing both natural boron (B) and gadolinium (Gd) is reviewed. Testing has shown that Ar and N inert gas atomized powder metallurgy (PM) variants offer superior processability coupled with improved mechanical properties that exhibit reduced anisotropy and reduced corrosion rates compared to conventional cast/wrought processed material. PM processing results in a microstructure containing a uniform distribution of second phase borides and gadolinides, and the morphology of the gadolinides prevents the formation low melting point Gd-bearing phases at solidifying austenite boundaries. The new T316-based materials containing both B and Gd exhibit superior corrosion resistance compared to straight B-bearing T304 materials. By keeping the B content < 1 weight percent (%) and using Gd to attain an equivalent B (B{sub Eq}) content higher than that achievable through the use of B only, the new materials exhibit superior ductility, toughness and bendability as a result of significantly reduced area fraction of Cr-rich M{sub 2}B borides. Limiting the total area fraction of second phase particles to < 22% insures a product with superior bendability. By restricting B to < 1% and using Gd up to 2.5%, B{sub Eq} levels approaching 12% can be attained that provide a cost effective improvement in thermal neutron absorption capability compared to using B-10 enriched boron. The new materials can be easily bent during fabrication compared to existing metal matrix composite materials while offering similar thermal neutron absorption capability. Production lots containing B{sub Eq} levels of 4.0 and 7.5% (Micro-Melt{sup R} DuoSorb{sup TM} 316NU-40 and 75, respectively) are in the process of being fabricated for customer trial material. (authors)

  18. Material identification based upon energy-dependent attenuation of neutrons

    DOE Patents [OSTI]

    Marleau, Peter

    2015-10-06

    Various technologies pertaining to identifying a material in a sample and imaging the sample are described herein. The material is identified by computing energy-dependent attenuation of neutrons that is caused by presence of the sample in travel paths of the neutrons. A mono-energetic neutron generator emits the neutron, which is downscattered in energy by a first detector unit. The neutron exits the first detector unit and is detected by a second detector unit subsequent to passing through the sample. Energy-dependent attenuation of neutrons passing through the sample is computed based upon a computed energy of the neutron, wherein such energy can be computed based upon 1) known positions of the neutron generator, the first detector unit, and the second detector unit; or 2) computed time of flight of neutrons between the first detector unit and the second detector unit.

  19. Neutron dose equivalent meter

    DOE Patents [OSTI]

    Olsher, Richard H. (Los Alamos, NM); Hsu, Hsiao-Hua (Los Alamos, NM); Casson, William H. (Los Alamos, NM); Vasilik, Dennis G. (Los Alamos, NM); Kleck, Jeffrey H. (Menlo Park, CA); Beverding, Anthony (Foster City, CA)

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  20. Neutron Detection Efficiency of the

    E-Print Network [OSTI]

    Gilfoyle, Jerry

    Neutron Detection Efficiency of the CLAS12 Detector M. Moog and G. Gilfoyle University Of Richmond - Department of Physics Software We simulated the neutron detection efficiency of the forward time of flight scintillators for quasielastic electron-neutron scattering using a series of software packages. Elastic

  1. Transport of thermal neutrons in D/sub 2/O in the temperature Range 5 to 60/sup 0/C based on a new scattering kernel

    SciTech Connect (OSTI)

    Bansal, R.M.; Kothari, L.S.; Tewari, S.P.

    1980-10-01

    A new scattering kernel for heavy water has been proposed. The kernel takes into account the chemical binding energy effects and also includes the rotational and intramolecular vibrational modes. Using this scattering kernel, various neutron transport processes in the temperature range 5 to 60/sup 0/C have been studied and compared with the corresponding experimental results. The calculated results include total neutron scattering cross section at 20/sup 0/C; asymptotic decay of neutron pulses in the temperature range 5 to 60/sup 0/C and temperature variation of the diffusion coefficient and diffusion cooling coefficient; timedependent spectra inside finite-sized assemblies of heavy water at 20 and 43.3/sup 0/C thermalization time; and diffusion length and space-dependent study in pure and poisoned assemblies of heavy water. The calculated results are in good agreement with the experimental results. At some places notable differences are observed between the results obtained using our scattering kernel and those based on the Honeck kernel.

  2. Measurement of cross sections for inelastic cold-neutron scattering in metals and polymers by the method of (n, {gamma}) analysis

    SciTech Connect (OSTI)

    Arzumanov, S. S.; Bondarenko, L. N.; Geltenbort, P.; Morozov, V. I.; Panin, Yu. N.; Chernyavsky, S. M.

    2008-11-15

    The results obtained by measuring the cross sections for the inelastic scattering of very cold neutrons for a number of metals and polymers by the method of a neutron-irradiation analysis are presented. The method is based on simultaneously measuring events of inelastic scattering and neutron capture in the sample under investigation via recording gamma radiation with a semiconductor germanium detector. Neutron capture by a nucleus of the sample is accompanied by the prompt radiation of gamma rays having a known spectrum. Upon inelastic scattering, a neutron acquires thermal energy. Upon leaving the sample, this neutron is absorbed in a special converter that contains the isotope {sup 10}B. The capture of the neutron by a {sup 10}B nucleus is followed by the emission of a 477-keV gamma ray. The probabilities of capture and inelastic scattering are proportional to the respective neutron-interaction cross sections, and the ratio of the recorded detector counts corresponding to events of the two types does not depend on the spectrum of the incident flux of very cold neutrons or on the trajectory of neutron motion in the sample. The sought inelastic-scattering cross section at a fixed sample temperature is calculated by using this ratio and the known cross section for neutron capture by the sample isotope having a known gamma-radiation spectrum.

  3. A more accurate and penetrating method to measure the enrichment and mass of UF6 storage containers using passive neutron self-interrogation

    SciTech Connect (OSTI)

    Menlove, Howard O; Swinhoe, Martyn T; Miller, Karen A

    2010-01-01

    This paper describes an unattended mode neutron measurement that can provide the enrichment of the uranium in UF{sub 6} cylinders. The new passive neutron measurement provides better penetration into the uranium mass than prior gamma-ray enrichment measurement methods. The Passive Neutron Enrichment Monitor (PNEM) provides a new measurement technique that uses passive neutron totals and coincidence counting together with neutron self-interrogation to measure the enrichment in the cylinders. The measurement uses the neutron rates from two detector pods. One of the pods has a bare polyethylene surface next to the cylinder and the other polyethylene surface is covered with Cd to prevent thermal neutrons from returning to the cylinder. The primary neutron source from the enriched UF{sub 6} is the alpha-particle decay from the {sub 234}U that interacts with the fluorine to produce random neutrons. The singles neutron counting rate is dominated by the {sub 234}U neutrons with a minor contribution from the induced fissions in the {sub 235}U. However, the doubles counting rate comes primarily from the induced fissions (i.e., multiplication) in the {sub 235}U in enriched uranium. The PNEM concept makes use of the passive neutrons that are initially produced from the {sub 234}U reactions that track the {sub 235}U enrichment during the enrichment process. The induced fission reactions from the thermal-neutron albedo are all from the {sub 235}U and provide a measurement of the {sub 235}U. The Cd ratio has the desirable feature that all of the thermal-neutron-induced fissions in {sub 235}U are independent of the original neutron source. Thus, the ratio is independent of the uranium age, purity, and prior reactor history.

  4. Analytical and experimental investigations of the behavior of thermal neutrons in lattices of uranium metal rods in heavy water

    E-Print Network [OSTI]

    Simms, Richard

    1963-01-01

    Measurements of the intracellular distribution of the activation of foils by neutrons were made in lattices of 1/4-inch diameter, 1.03% U-235, uranium rods moderated by heavy water, with bare and cadmium-covered foils of ...

  5. MPACT Fast Neutron Multiplicity System Design Concepts

    SciTech Connect (OSTI)

    D. L. Chichester; S. A. Pozzi; J. L. Dolan; M. T. Kinlaw; A. C. Kaplan; M. Flaska; A. Enqvist; J. T. Johnsom; S. M. Watson

    2012-10-01

    This report documents work performed by Idaho National Laboratory and the University of Michigan in fiscal year (FY) 2012 to examine design parameters related to the use of fast-neutron multiplicity counting for assaying plutonium for materials protection, accountancy, and control purposes. This project seeks to develop a new type of neutron-measurement-based plutonium assay instrument suited for assaying advanced fuel cycle materials. Some current-concept advanced fuels contain high concentrations of plutonium; some of these concept fuels also contain other fissionable actinides besides plutonium. Because of these attributes the neutron emission rates of these new fuels may be much higher, and more difficult to interpret, than measurements made of plutonium-only materials. Fast neutron multiplicity analysis is one approach for assaying these advanced nuclear fuels. Studies have been performed to assess the conceptual performance capabilities of a fast-neutron multiplicity counter for assaying plutonium. Comparisons have been made to evaluate the potential improvements and benefits of fast-neutron multiplicity analyses versus traditional thermal-neutron counting systems. Fast-neutron instrumentation, using for example an array of liquid scintillators such as EJ-309, have the potential to either a) significantly reduce assay measurement times versus traditional approaches, for comparable measurement precision values, b) significantly improve assay precision values, for measurement durations comparable to current-generation technology, or c) moderating improve both measurement precision and measurement durations versus current-generation technology. Using the MCNPX-PoliMi Monte Carlo simulation code, studies have been performed to assess the doubles-detection efficiency for a variety of counter layouts of cylindrical liquid scintillator detector cells over one, two, and three rows. Ignoring other considerations, the best detector design is the one with the most detecting volume. However, operational limitations guide a) the maximum acceptable size of each detector cell (due to PSD performance and maximum-acceptable per-channel data throughput rates, limited by pulse pile-up and the processing rate of the electronics components of the system) and b) the affordability of a system due to the number of total channels of data to be collected and processed. As a first estimate, it appears that a system comprised of two rows of detectors 5" Ř ? 3" would yield a working prototype system with excellent performance capabilities for assaying Pu-containing items and capable of handling high signal rates likely when measuring items with Pu and other actinides. However, it is still likely that gamma-ray shielding will be needed to reduce the total signal rate in the detectors. As a first step prior to working with these larger-sized detectors, it may be practical to perform scoping studies using small detectors, such as already-on-hand 3" Ř ? 3" detectors.

  6. Compact neutron spectometers and their performance under fusion-relevant conditions

    SciTech Connect (OSTI)

    Zimbal, A.; Reginatto, M.; Schuhmacher, H. [Physikalisch-Technische Bundesanstalt, 38116 Braunschweig (Germany)

    2008-03-12

    The Physikalisch-Technische Bundesanstalt (PTB) has many years of experience with the development, detailed characterization and use of organic liquid scintillation detectors. Such detectors, e.g. NE213, are routinely used as high resolution compact neutron spectrometers in many nuclear experiments. In recent years, a series of measurements with a carefully characterized detector was carried out by PTB in collaboration with ENEA and EFDA-JET at the Joint European Torus (JET). The results show that these detectors can be used as high resolution compact neutron spectrometers for diagnostic purposes in fusion research. The neutron energy spectrum can be reliably determined from the acquired pulse height spectrum provided the response function of the detector is well determined, a suitable unfolding method is applied and care is taken to ensure stable operation of the system during the measurement. We describe in this paper tests of the performance of the spectrometer carried out at the PTB accelerator. The irradiation facilities at PTB are well suited for such investigations since they allow testing of neutron and photon detectors over a wide range in energy and intensity. Among the reference neutron fields available, there are fields with energies of 2.5 MeV and 14 MeV, produced by means of D(d,n) and T(d,n) reactions. Detailed calculations of the energy spectra have been carried out, and they indicate that the widths of the peaks are comparable to those of thermal fusion plasmas with Maxwellian temperatures of the order of 1 keV. Measurements carried out with a compact neutron spectrometer under fusion-relevant conditions (i.e., using reference fields with energies of 2.5 MeV and 14 MeV and suitable ranges of count rates and statistics) are discussed in terms of the energy resolution that is achievable and the influence of the different irradiation conditions.

  7. Negative Thermal Expansion in ZrW{sub 2}O{sub 8}: Mechanisms, Rigid Unit Modes, and Neutron Total Scattering

    SciTech Connect (OSTI)

    Tucker, Matthew G. [Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ (United Kingdom); ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Goodwin, Andrew L.; Dove, Martin T. [Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ (United Kingdom); Keen, David A. [Physics Department, Oxford University, Clarendon Laboratory, Parks Road, Oxford OX1 3PU (United Kingdom); ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Wells, Stephen A. [Biological Physics, Bateman Physical Sciences Building, Arizona State University, Tempe, Arizona 85287-1504 (United States); Evans, John S.O. [Department of Chemistry, University Science Laboratories, South Road, Durham DH1 3LE (United Kingdom)

    2005-12-16

    The local structure of the low-temperature ordered phase of the negative thermal expansion (NTE) material ZrW{sub 2}O{sub 8} has been investigated by reverse Monte Carlo (RMC) modeling of neutron total scattering data. We obtain, for the first time, quantitative measurements of the extent to which the WO{sub 4} and ZrO{sub 6} polyhedra move as rigid units, and we show that these values are consistent with the predictions of rigid unit mode theory. We suggest that rigid unit modes are associated with the NTE. Our results do not support a recent interpretation of x-ray-absorption fine structure spectroscopy data in terms of a larger rigid structural component involving the Zr-O-W linkage.

  8. NEUTRON INTERFEROMETRY Neutron Interferometry

    E-Print Network [OSTI]

    Jeanjean, Louis

    #12;NEUTRON INTERFEROMETRY #12;#12;Neutron Interferometry Lessons in Experimental Quantum Mechanics of the modern quantum mechanical literature. Neutron interferometry is a mature technique in experimental of many isotopes is given in Chapter 3. Very accurate measurements of the neutron scattering lengths

  9. neutron density. The neutron density (nn) of the source was modeled by solving the simul-

    E-Print Network [OSTI]

    West, Stuart

    neutron density. The neutron density (nn) of the source was modeled by solving the simul- taneousT is the thermal neutron velocity, l is the decay constant, Ns is the s-process abun- dance, bsŔ is the maxwellian-averaged neutron capture cross-section, and t0 is the average neutron exposure (21). The branching decay of 186Re

  10. Neutron capture therapy with deep tissue penetration using capillary neutron focusing

    DOE Patents [OSTI]

    Peurrung, Anthony J. (Richland, WA)

    1997-01-01

    An improved method for delivering thermal neutrons to a subsurface cancer or tumor which has been first doped with a dopant having a high cross section for neutron capture. The improvement is the use of a guide tube in cooperation with a capillary neutron focusing apparatus, or neutron focusing lens, for directing neutrons to the tumor, and thereby avoiding damage to surrounding tissue.

  11. Portable neutron spectrometer and dosimeter

    DOE Patents [OSTI]

    Waechter, David A. (Los Alamos, NM); Erkkila, Bruce H. (Los Alamos, NM); Vasilik, Dennis G. (Los Alamos, NM)

    1985-01-01

    The disclosure relates to a battery operated neutron spectrometer/dosimeter utilizing a microprocessor, a built-in tissue equivalent LET neutron detector, and a 128-channel pulse height analyzer with integral liquid crystal display. The apparatus calculates doses and dose rates from neutrons incident on the detector and displays a spectrum of rad or rem as a function of keV per micron of equivalent tissue and also calculates and displays accumulated dose in millirads and millirem as well as neutron dose rates in millirads per hour and millirem per hour.

  12. Scattered neutron tomography based on a neutron transport problem 

    E-Print Network [OSTI]

    Scipolo, Vittorio

    2005-11-01

    and scattered images generated from a beam passing through an optically thick object. This inverse problem makes use of a computationally efficient, two-dimensional forward problem based on neutron transport theory that effectively calculates the detector...

  13. High Thermal Conductivity UO2-BeO Nulcear Fuel: Neutronic Performance Assessments and Overview of Fabrication 

    E-Print Network [OSTI]

    Naramore, Michael J

    2010-08-03

    is very prominent and porosity helps alleviate internal pressures to reduce fuel deformation. Therefore, a balance between thermal conductivity and fission gas accommodation is necessary to achieve a long lasting fuel [4]. 4> F c.> ::>oz 00 c.> 3 -l F...................................................................................................................78 APPENDIX G ..................................................................................................................82...

  14. Semiconductor radiation detector

    DOE Patents [OSTI]

    Bell, Zane W. (Oak Ridge, TN); Burger, Arnold (Knoxville, TN)

    2010-03-30

    A semiconductor detector for ionizing electromagnetic radiation, neutrons, and energetic charged particles. The detecting element is comprised of a compound having the composition I-III-VI.sub.2 or II-IV-V.sub.2 where the "I" component is from column 1A or 1B of the periodic table, the "II" component is from column 2B, the "III" component is from column 3A, the "IV" component is from column 4A, the "V" component is from column 5A, and the "VI" component is from column 6A. The detecting element detects ionizing radiation by generating a signal proportional to the energy deposited in the element, and detects neutrons by virtue of the ionizing radiation emitted by one or more of the constituent materials subsequent to capture. The detector may contain more than one neutron-sensitive component.

  15. Measurement of neutron yield by 62 MeV proton beam on a thick Beryllium target

    E-Print Network [OSTI]

    M. Osipenko; M. Ripani; R. Alba; G. Ricco; M. Barbagallo; P. Boccaccio; A. Celentano; N. Colonna; L. Cosentino; A. Del Zoppo; A. Di Pietro; J. Esposito; P. Figuera; P. Finocchiaro; A. Kostyukov; C. Maiolino; D. Santonocito; M. Schillaci; V. Scuderi; C. M. Viberti

    2013-06-28

    The design of a low-power prototype of neutron amplifier recently proposed within the INFN-E project indicated the need for more accurate called for detailed data on the neutron yield produced by a proton beam with energy of about 70 MeV impinging on a thick Beryllium target. Such measurement was performed at the LNS superconducting cyclotron, covering a wide angular range from 0 to 150 degrees and a complete neutron energy interval from thermal to beam energy. Neutrons with energy above 0.5 MeV were measured by liquid scintillators exploiting their Time of Flight to determine the kinetic energy. For lower energy neutrons, down to thermal energy, a $^3$He detector was used. The obtained data are in good agreement with previous measurements at 0 degree with 66 MeV proton beam, covering neutron energies >10 MeV, as well as with measurements at few selected angles with protons of 46, 55 and 113 MeV energy. The present results extend the neutron yield data in the 60-70 MeV beam energy range. A comparison of measured yields to MCNP and Geant4 Monte Carlo simulations was performed.

  16. Comparison of MCNP6 and experimental results for neutron counts, Rossi-{alpha}, and Feynman-{alpha} distributions

    SciTech Connect (OSTI)

    Talamo, A.; Gohar, Y.; Sadovich, S.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.

    2013-07-01

    MCNP6, the general-purpose Monte Carlo N-Particle code, has the capability to perform time-dependent calculations by tracking the time interval between successive events of the neutron random walk. In fixed-source calculations for a subcritical assembly, the zero time value is assigned at the moment the neutron is emitted by the external neutron source. The PTRAC and F8 cards of MCNP allow to tally the time when a neutron is captured by {sup 3}He(n, p) reactions in the neutron detector. From this information, it is possible to build three different time distributions: neutron counts, Rossi-{alpha}, and Feynman-{alpha}. The neutron counts time distribution represents the number of neutrons captured as a function of time. The Rossi-a distribution represents the number of neutron pairs captured as a function of the time interval between two capture events. The Feynman-a distribution represents the variance-to-mean ratio, minus one, of the neutron counts array as a function of a fixed time interval. The MCNP6 results for these three time distributions have been compared with the experimental data of the YALINA Thermal facility and have been found to be in quite good agreement. (authors)

  17. Neutron stars - cooling and transport

    E-Print Network [OSTI]

    Potekhin, A Y; Page, Dany

    2015-01-01

    Observations of thermal radiation from neutron stars can potentially provide information about the states of supranuclear matter in the interiors of these stars with the aid of the theory of neutron-star thermal evolution. We review the basics of this theory for isolated neutron stars with strong magnetic fields, including most relevant thermodynamic and kinetic properties in the stellar core, crust, and blanketing envelopes.

  18. Wolter mirror microscope : novel neutron focussing and imaging optic

    E-Print Network [OSTI]

    Bagdasarova, Yelena S. (Yelena Sergeyevna)

    2010-01-01

    In this thesis, I investigated the effectiveness of a Wolter Type I neutron microscope as a focusing and imaging device for thermal and cold neutrons sources by simulating the performance of the optics in a standard neutron ...

  19. Secondary neutron spectrum from 250-MeV passively scattered proton therapy: Measurement with an extended-range Bonner sphere system

    SciTech Connect (OSTI)

    Howell, Rebecca M.; Burgett, E. A.

    2014-09-15

    Purpose: Secondary neutrons are an unavoidable consequence of proton therapy. While the neutron dose is low compared to the primary proton dose, its presence and contribution to the patient dose is nonetheless important. The most detailed information on neutrons includes an evaluation of the neutron spectrum. However, the vast majority of the literature that has reported secondary neutron spectra in proton therapy is based on computational methods rather than measurements. This is largely due to the inherent limitations in the majority of neutron detectors, which are either not suitable for spectral measurements or have limited response at energies greater than 20 MeV. Therefore, the primary objective of the present study was to measure a secondary neutron spectrum from a proton therapy beam using a spectrometer that is sensitive to neutron energies over the entire neutron energy spectrum. Methods: The authors measured the secondary neutron spectrum from a 250-MeV passively scattered proton beam in air at a distance of 100 cm laterally from isocenter using an extended-range Bonner sphere (ERBS) measurement system. Ambient dose equivalent H*(10) was calculated using measured fluence and fluence-to-ambient dose equivalent conversion coefficients. Results: The neutron fluence spectrum had a high-energy direct neutron peak, an evaporation peak, a thermal peak, and an intermediate energy continuum between the thermal and evaporation peaks. The H*(10) was dominated by the neutrons in the evaporation peak because of both their high abundance and the large quality conversion coefficients in that energy interval. The H*(10) 100 cm laterally from isocenter was 1.6 mSv per proton Gy (to isocenter). Approximately 35% of the dose equivalent was from neutrons with energies ?20?MeV. Conclusions: The authors measured a neutron spectrum for external neutrons generated by a 250-MeV proton beam using an ERBS measurement system that was sensitive to neutrons over the entire energy range being measured, i.e., thermal to 250 MeV. The authors used the neutron fluence spectrum to demonstrate experimentally the contribution of neutrons with different energies to the total dose equivalent and in particular the contribution of high-energy neutrons (?20 MeV). These are valuable reference data that can be directly compared with Monte Carlo and experimental data in the literature.

  20. Comparison of IUPAC k0 Values and Neutron Cross Sections to Determine a Self-consistent Set of Data for Neutron Activation Analysis

    E-Print Network [OSTI]

    Firestone, Richard B

    2011-01-01

    S.K. , Gill, P.S. : Thermal neutron activation cross-sectionset of thermal neu- tron activation cross sections. Diss.Ryves, T.B. : Activation measurements of thermal neutron

  1. Neutron Imaging by Boric Acid

    E-Print Network [OSTI]

    Fabio Cardone; Giovanni Cherubini; Walter Perconti; Andrea Petrucci; Alberto Rosada

    2013-02-22

    In this paper a new type of passive neutron detector based on the already existing one, CR39, is described. Its operation was verified by three different neutron sources: an Americium-Beryllium (Am241-Be) source; a TRIGA type nuclear reactor; and a fast neutron reactor called TAPIRO. The obtained results, reported here, positively confirm its operation and the accountability of the new developed detecting technique.

  2. Test of the consistency of various linearized semiclassical initial value time correlation functions in application to inelastic neutron scattering from liquid para-hydrogen

    E-Print Network [OSTI]

    Liu, Jian

    2008-01-01

    Theory of Thermal Neutron Scattering. (Dover Publications,S. W. Lovesey, Theory of Neutron Scattering from Condensedwith the inelastic neutron scattering experiment results.

  3. PASSIVE DETECTORS

    E-Print Network [OSTI]

    Thomas, R.H.

    2010-01-01

    Italy, September 1979 PASSIVE DETECTORS Ralph H. Thomasthereof. |ir>Bi f j I PASSIVE DETECTORS Course on AdvancesI shall interpret the term "passive" radiation detector as

  4. Compact neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  5. Micro-Pocket Fission Detectors (MPFD) For Fuel Assembly Analysis

    SciTech Connect (OSTI)

    Troy Unruh; Michael Reichenberger; Phillip Ugorowski

    2013-09-01

    Neutron sensors capable of real-time measurement of thermal flux, fast flux, and temperature in a single miniaturized probe are needed in irradiation tests required to demonstrate the performance of candidate new fuels, and cladding materials. In-core ceramic-based miniature neutron detectors or “Micro-Pocket Fission Detectors” (MPFDs) have been studied at Kansas State University (KSU). The first MPFD prototypes were tested in various neutron fields at the KSU TRIGA research reactor with successful results. Currently, a United States Department of Energy-sponsored joint KSU/Idaho National Laboratory (INL) effort is underway to develop a high-temperature, high-pressure version of the MPFD using radiation-resistant, high temperature materials, which would be capable of withstanding irradiation test conditions in high performance material and test reactors (MTRs). Ultimately, this more compact, more accurate, and longer lifetime flux sensor for critical mock-ups, existing and advanced reactor designs, high performance MTRs, and transient test reactors has the potential to lead to higher accuracy and resolution data from irradiation testing, more detailed core flux measurements and enhanced fuel assembly processing. Prior evaluations by KSU indicate that these sensors could also be used to monitor burn-up of nuclear fuel. If integrated into nuclear fuel assemblies, MPFDs offer several advantages to current spent fuel management systems.

  6. Rapid cooling and structure of neutron stars

    SciTech Connect (OSTI)

    Van Riper, K.A.; Lattimer, J.M.

    1992-07-01

    This report discusses the following topics on neutron stars: direct URCA neutrino emission; thermal evolution models; analytic model for diffusion through the crust; and core superfluidity. (LSP).

  7. Rapid cooling and structure of neutron stars

    SciTech Connect (OSTI)

    Van Riper, K.A. ); Lattimer, J.M. . Dept. of Earth and Space Sciences)

    1992-01-01

    This report discusses the following topics on neutron stars: direct URCA neutrino emission; thermal evolution models; analytic model for diffusion through the crust; and core superfluidity. (LSP).

  8. Neutron-induced nucleosynthesis

    E-Print Network [OSTI]

    H. Oberhummer; H. Herndl; T. Rauscher; H. Beer

    1996-08-20

    Neutron--induced nucleosynthesis plays an important role in astrophysical scenarios like in primordial nucleosynthesis in the early universe, in the s--process occurring in Red Giants, and in the $\\alpha$--rich freeze--out and r--process taking place in supernovae of type II. A review of the three important aspects of neutron--induced nucleosynthesis is given: astrophysical background, experimental methods and theoretical models for determining reaction cross sections and reaction rates at thermonuclear energies. Three specific examples of neutron capture at thermal and thermonuclear energies are discussed in some detail.

  9. Neutronic reactor

    DOE Patents [OSTI]

    Wende, Charles W. J. (Augusta, GA); Babcock, Dale F. (Wilmington, DE); Menegus, Robert L. (Wilmington, DE)

    1983-01-01

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  10. Neutron scattering studies in the actinide region. Progress report, August 1, 1992--July 31, 1993

    SciTech Connect (OSTI)

    Kegel, G.H.R.; Egan, J.J.

    1993-09-01

    This report discusses the following topics: Prompt fission neutron energy spectra for {sup 235}U and {sup 239}Pu; Two-parameter measurement of nuclear lifetimes; ``Black`` neutron detector; Data reduction techniques for neutron scattering experiments; Inelastic neutron scattering studies in {sup 197}Au; Elastic and inelastic scattering studies in {sup 239}Pu; and neutron induced defects in silicon dioxide MOS structures.

  11. Handheld CZT radiation detector

    DOE Patents [OSTI]

    Murray, William S.; Butterfield, Kenneth B.; Baird, William

    2004-08-24

    A handheld CZT radiation detector having a CZT gamma-ray sensor, a multichannel analyzer, a fuzzy-logic component, and a display component is disclosed. The CZT gamma-ray sensor may be a coplanar grid CZT gamma-ray sensor, which provides high-quality gamma-ray analysis at a wide range of operating temperatures. The multichannel analyzer categorizes pulses produce by the CZT gamma-ray sensor into channels (discrete energy levels), resulting in pulse height data. The fuzzy-logic component analyzes the pulse height data and produces a ranked listing of radioisotopes. The fuzzy-logic component is flexible and well-suited to in-field analysis of radioisotopes. The display component may be a personal data assistant, which provides a user-friendly method of interacting with the detector. In addition, the radiation detector may be equipped with a neutron sensor to provide an enhanced mechanism of sensing radioactive materials.

  12. Detector and System Developments for LHC Detector Upgrades

    E-Print Network [OSTI]

    Mandelli, Beatrice; Guida, Roberto; Rohne, Ole; Stapnes, Steinar

    2015-05-12

    The future Large Hadron Collider (LHC) Physics program and the consequent improvement of the LHC accelerator performance set important challenges to all detector systems. This PhD thesis delineates the studies and strategies adopted to improve two different types of detectors: the replacement of precision trackers with ever increasingly performing silicon detectors, and the improvement of large gaseous detector systems by optimizing their gas mixtures and operation modes. Within the LHC tracker upgrade programs, the ATLAS Insertable B-layer (IBL) is the first major upgrade of a silicon-pixel detector. Indeed the overall ATLAS Pixel Detector performance is expected to degrade with the increase of luminosity and the IBL will recover the performance by adding a fourth innermost layer. The IBL Detector makes use of new pixel and front-end electronics technologies as well as a novel thermal management approach and light support and service structures. These innovations required complex developments and Quality Ass...

  13. Neutron capture therapy with deep tissue penetration using capillary neutron focusing

    DOE Patents [OSTI]

    Peurrung, A.J.

    1997-08-19

    An improved method is disclosed for delivering thermal neutrons to a subsurface cancer or tumor which has been first doped with a dopant having a high cross section for neutron capture. The improvement is the use of a guide tube in cooperation with a capillary neutron focusing apparatus, or neutron focusing lens, for directing neutrons to the tumor, and thereby avoiding damage to surrounding tissue. 1 fig.

  14. Characterization of neutron transmutation doped (NTD) Ge for low temperature sensor development

    E-Print Network [OSTI]

    S. Mathimalar; V. Singh; N. Dokania; V. Nanal; R. G. Pillay; S. Pal; S. Ramakrishnan; A. Shrivastava; Priya Maheshwari; P. K. Pujari; S. Ojha; D. Kanjilal; K. C. Jagadeesan; S. V. Thakare

    2014-12-05

    Development of NTD Ge sensors has been initiated for low temperature (mK) thermometry in The India-based Tin detector (TIN.TIN). NTD Ge sensors are prepared by thermal neutron irradiation of device grade Ge samples at Dhruva reactor, BARC, Mumbai. Detailed measurements have been carried out in irradiated samples for estimating the carrier concentration and fast neutron induced defects. The Positron Annihilation Lifetime Spectroscopy (PALS) measurements indicated monovacancy type defects for all irradiated samples, while Channeling studies employing RBS with 2 MeV alpha particles, revealed no significant defects in the samples exposed to fast neutron fluence of $\\sim 4\\times10^{16}/cm^2$. Both PALS and Channeling studies have shown that vacuum annealing at 600 $^\\circ$C for $\\sim2$ hours is sufficient to recover the damage in the irradiated samples, thereby making them suitable for the sensor development.

  15. Neutron capture therapies

    DOE Patents [OSTI]

    Yanch, Jacquelyn C. (Cambridge, MA); Shefer, Ruth E. (Newton, MA); Klinkowstein, Robert E. (Winchester, MA)

    1999-01-01

    In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  16. An Analysis Technique for Active Neutron Multiplicity Measurements Based on First Principles

    SciTech Connect (OSTI)

    Evans, Louise G; Goddard, Braden; Charlton, William S; Peerani, Paolo

    2012-08-13

    Passive neutron multiplicity counting is commonly used to quantify the total mass of plutonium in a sample, without prior knowledge of the sample geometry. However, passive neutron counting is less applicable to uranium measurements due to the low spontaneous fission rates of uranium. Active neutron multiplicity measurements are therefore used to determine the {sup 235}U mass in a sample. Unfortunately, there are still additional challenges to overcome for uranium measurements, such as the coupling of the active source and the uranium sample. Techniques, such as the coupling method, have been developed to help reduce the dependence of calibration curves for active measurements on uranium samples; although, they still require similar geometry known standards. An advanced active neutron multiplicity measurement method is being developed by Texas A&M University, in collaboration with Los Alamos National Laboratory (LANL) in an attempt to overcome the calibration curve requirements. This method can be used to quantify the {sup 235}U mass in a sample containing uranium without using calibration curves. Furthermore, this method is based on existing detectors and nondestructive assay (NDA) systems, such as the LANL Epithermal Neutron Multiplicity Counter (ENMC). This method uses an inexpensive boron carbide liner to shield the uranium sample from thermal and epithermal neutrons while allowing fast neutrons to reach the sample. Due to the relatively low and constant fission and absorption energy dependent cross-sections at high neutron energies for uranium isotopes, fast neutrons can penetrate the sample without significant attenuation. Fast neutron interrogation therefore creates a homogeneous fission rate in the sample, allowing for first principle methods to be used to determine the {sup 235}U mass in the sample. This paper discusses the measurement method concept and development, including measurements and simulations performed to date, as well as the potential limitations.

  17. Prospects for fusion neutron NPLs

    SciTech Connect (OSTI)

    Petra, M.; Miley, G.H.; Batyrbekov, E.; Jassby, D.L.; McArthur, D. [Fusion Studies Laboratory, University of Illinois, 100 NEL, 103 South Goodwin Avenue, Urbana, Illinois 61801-2984 (United States)

    1996-05-01

    To date, nuclear pumped lasers (NPLs) have been driven by neutrons from pulsed research fission reactors. However, future applications using either a Magnetic Confinement Fusion (MCF) neutron source or an Inertial Confinement Fusion (ICF) source appear attractive. One unique combination proposed earlier would use a neutron feedback NPL driver in an ICF power plant. 14-MeV D-T neutrons (and 2.5-MeV D-D neutrons) provide a unique opportunity for a neutron recoil pumped NPL. Alternatively, these neutrons can be thermalized to provide thermal-neutron induced reactions for pumping. Initial experience with a fusion-pumped NPL can possibly be obtained using the D-T burn experiments in progress/planning at the Tokamak Fusion Test Reactor (TFTR) and Joint European Torus (JET) tokamak devices or at the planned National Ignition Facility (NIF) high-gain ICF target experimental facility. With neutron fluxes presently available, peak thermalized fluxes at a test laser in the shield region could exceed 10{sup 14} n/cm{sup 2}/sec. Several low-threshold NPLs might be utilized in such an experiment, including the He-Ne-H{sub 2} NPL and the Ar-Xe NPL. Experimental set-ups for both the tokamak and the NIF will be described. {copyright} {ital 1996 American Institute of Physics.}

  18. Alternative Neutron Detection Testing Summary

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Ely, James H.; Erikson, Luke E.; Kernan, Warnick J.; Lintereur, Azaree T.; Siciliano, Edward R.; Stromswold, David C.; Woodring, Mitchell L.

    2010-04-08

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. Most currently deployed radiation portal monitors (RPMs) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large area neutron detector. This type of neutron detector is used in the TSA and other RPMs installed in international locations and in the Ludlum and Science Applications International Corporation RPMs deployed primarily for domestic applications. There is a declining supply of 3He in the world and, thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. These technologies are: 1) Boron trifluoride-filled proportional counters, 2) Boron-lined proportional counters, 3) Lithium-loaded glass fibers, and 4) Coated wavelength-shifting plastic fibers. Reported here is a summary of the testing carried out at Pacific Northwest National Laboratory on these technologies to date, as well as measurements on 3He tubes at various pressures. Details on these measurements are available in the referenced reports. Sponsors of these tests include the Department of Energy (DOE), Department of Homeland Security (DHS), and the Department of Defense (DoD), as well as internal Pacific Northwest National Laboratory funds.

  19. Report on Advanced Detector Development

    SciTech Connect (OSTI)

    James K. Jewell

    2012-09-01

    Neutron, gamma and charged particle detection improvements are key to supporting many of the foreseen measurements and systems envisioned in the R&D programs and the future fuel cycle requirements, such as basic nuclear physics and data, modeling and simulation, reactor instrumentation, criticality safety, materials management and safeguards. This task will focus on the developmental needs of the FCR&D experimental programs, such as elastic/inelastic scattering, total cross sections and fission neutron spectra measurements, and will leverage a number of existing neutron detector development efforts and programs, such as those at LANL, PNNL, INL, and IAC as well as those at many universities, some of whom are funded under NE grants and contracts. Novel materials and fabrication processes combined with state-of-the-art electronics and computing provide new opportunities for revolutionary detector systems that will be able to meet the high precision needs of the program. This work will be closely coordinated with the Nuclear Data Crosscut. The Advanced Detector Development effort is a broadly-focused activity that supports the development of improved nuclear data measurements and improved detection of nuclear reactions and reactor conditions. This work supports the design and construction of large-scale, multiple component detectors to provide nuclear reaction data of unprecedented quality and precision. Examples include the Time Projection Chamber (TPC) and the DANCE detector at LANL. This work also supports the fabrication and end-user application of novel scintillator materials detection and monitoring.

  20. Beamed neutron emission driven by laser accelerated light ions

    E-Print Network [OSTI]

    S. Kar; A. Green; H. Ahmed; A. Alejo; A. P. L. Robinson; M. Cerchez; R. Clarke; D. Doria; S. Dorkings; J. Fernandez; S. R. Mirfyazi; P. McKenna; K. Naughton; D. Neely; P. Norreys; C. Peth; H. Powell; J. A. Ruiz; J. Swain; O. Willi; M. Borghesi

    2015-07-16

    We report on the experimental observation of beam-like neutron emission with peak flux of the order of 10^9 n/sr, from light nuclei reactions in a pitcher-catcher scenario, by employing MeV ions driven by high power laser. The spatial profile of the neutron beam, fully captured for the first time by employing a CR39 nuclear track detector, shows a FWHM divergence angle of 70 degrees, with a peak flux nearly an order of magnitude higher than the isotropic component elsewhere. The observed beamed flux of neutrons is highly favourable for a wide range of applications, and indeed for further transport and moderation to thermal energies. A systematic study employing various combinations of pitcher-catcher materials indicates the dominant reactions being d(p, n+p)^1H and d(d,n)^3He. Albeit insufficient cross-section data are available for modelling, the observed anisotropy in the neutrons' spatial and spectral profiles are most likely related to the directionality and high energy of the projectile ions.

  1. Beamed neutron emission driven by laser accelerated light ions

    E-Print Network [OSTI]

    Kar, S; Ahmed, H; Alejo, A; Robinson, A P L; Cerchez, M; Clarke, R; Doria, D; Dorkings, S; Fernandez, J; Mirfyazi, S R; McKenna, P; Naughton, K; Neely, D; Norreys, P; Peth, C; Powell, H; Ruiz, J A; Swain, J; Willi, O; Borghesi, M

    2015-01-01

    We report on the experimental observation of beam-like neutron emission with peak flux of the order of 10^9 n/sr, from light nuclei reactions in a pitcher-catcher scenario, by employing MeV ions driven by high power laser. The spatial profile of the neutron beam, fully captured for the first time by employing a CR39 nuclear track detector, shows a FWHM divergence angle of 70 degrees, with a peak flux nearly an order of magnitude higher than the isotropic component elsewhere. The observed beamed flux of neutrons is highly favourable for a wide range of applications, and indeed for further transport and moderation to thermal energies. A systematic study employing various combinations of pitcher-catcher materials indicates the dominant reactions being d(p, n+p)^1H and d(d,n)^3He. Albeit insufficient cross-section data are available for modelling, the observed anisotropy in the neutrons' spatial and spectral profiles are most likely related to the directionality and high energy of the projectile ions.

  2. Ground water and snow sensor based on directional detection of cosmogenic neutrons.

    SciTech Connect (OSTI)

    Cooper, Robert Lee; Marleau, Peter; Griffin, Patrick J.

    2011-06-01

    A fast neutron detector is being developed to measure the cosmic ray neutron flux in order to measure soil moisture. Soil that is saturated with water has an enhanced ability to moderate fast neutrons, removing them from the backscatter spectrum. The detector is a two-element, liquid scintillator detector. The choice of liquid scintillator allows rejection of gamma background contamination from the desired neutron signal. This enhances the ability to reconstruct the energy and direction of a coincident neutron event. The ability to image on an event-by-event basis allows the detector to selectively scan the neutron flux as a function of distance from the detector. Calibrations, simulations, and optimization have been completed to understand the detector response to neutron sources at variable distances and directions. This has been applied to laboratory background measurements in preparation for outdoor field tests.

  3. Manufacturing techniques studies of ceramics by neutron and ?-ray radiography

    SciTech Connect (OSTI)

    Latini, R. M.; Bellido, A. V. B.; Souza, M. I. S.; Almeida, G. L.

    2014-11-11

    In this study, the aim was to evaluate capabilities and constraints of radiographic imagery using thermal neutrons and gamma-rays as tools to identify the type of technique employed in ceramics manufacturing especially that used in prehistoric Brazilian pottery from Acre state. For this purpose, radiographic images of test objects made with clay of this region using both techniques - palette and rollers - have been acquired with a system comprised of a source of gamma-rays or thermal neutrons and a corresponding X-ray or neutron-sensitive Imaging Plate as detector. For the neutrongraphy samples were exposed to a thermal neutron flux of order of 10{sup 5}n.cm{sup ?2}.s{sup ?1} for 3 minutes at main port of Argonauta research reactor of the Instituto de Engenharia Nuclear - IEN/CNEN. The radiographic images using ?-rays from {sup 165}Dy (95 keV) and {sup 198}Au (412 keV) both produced at this reactor, have been acquired under an exposure time of a couple of hours. After acquisition, images have undergone a treatment to improve their quality through enhancement of their contrast, a procedure involving corrections of the beam divergence, sample shape and averaging of the attenuation map profile. Preliminary results show that difference between manufacturing techniques is better identified by radiography using low energy ?-rays from {sup 165}Dy rather than neutrongraphy or ?-rays from {sup 198}Au. Nevertheless, disregarding the kind of employed radiation, it should be stressed that feasibility to apply the technique is tightly tied to homogeneity of the clay itself and tempers due to their different attenuation.

  4. Neutron calibration sources in the Daya Bay experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, J.; Carr, R.; Dwyer, D. A.; Gu, W. Q.; Li, G. S.; McKeown, R. D.; Qian, X.; Tsang, R. H. M.; Wu, F. F.; Zhang, C.

    2015-07-09

    We describe the design and construction of the low rate neutron calibration sources used in the Daya Bay Reactor Anti-neutrino Experiment. Such sources are free of correlated gamma-neutron emission, which is essential in minimizing induced background in the anti-neutrino detector. Thus, the design characteristics have been validated in the Daya Bay anti-neutrino detector.

  5. RCPO1 - A Monte Carlo program for solving neutron and photon transport problems in three dimensional geometry with detailed energy description and depletion capability

    SciTech Connect (OSTI)

    Ondis, L.A., II; Tyburski, L.J.; Moskowitz, B.S.

    2000-03-01

    The RCP01 Monte Carlo program is used to analyze many geometries of interest in nuclear design and analysis of light water moderated reactors such as the core in its pressure vessel with complex piping arrangement, fuel storage arrays, shipping and container arrangements, and neutron detector configurations. Written in FORTRAN and in use on a variety of computers, it is capable of estimating steady state neutron or photon reaction rates and neutron multiplication factors. The energy range covered in neutron calculations is that relevant to the fission process and subsequent slowing-down and thermalization, i.e., 20 MeV to 0 eV. The same energy range is covered for photon calculations.

  6. Neutron and X-ray experiments at high temperature P. Aldebert (*)

    E-Print Network [OSTI]

    Boyer, Edmond

    neutron scattering have appeared as power- ful tools to get information, mainly structural temperature scattering devices compared to X-rays. At the present time thermal neutron high flux reactors be investigated by neutron scattering.

  7. Delayed neutrons from the neutron irradiation of ˛ł?U 

    E-Print Network [OSTI]

    Heinrich, Aaron David

    2008-10-10

    two 235U samples, an array of three 3He cylindrical neutron detectors, signal processing circuitry, the PTS, a reactor core sensor and a computerized control system. A. Fissile Material Isotope Products Laboratories produced the two 235U samples... stream_source_info Heinrich.pdf.txt stream_content_type text/plain stream_size 107692 Content-Encoding UTF-8 stream_name Heinrich.pdf.txt Content-Type text/plain; charset=UTF-8 DELAYED NEUTRONS FROM THE NEUTRON...

  8. Thermal Conductivity of Electrons and Muons

    E-Print Network [OSTI]

    Gnedin, Oleg Y.

    Thermal Conductivity of Electrons and Muons in Neutron Star Cores O.Y. Gnedin and D.G. Yakovlev A thermal conductivity of dense matter (ae ? ¸ 10 14 g cm \\Gamma3 ) in neutron star cores with various expressions valid for a wide class of models of dense matter. 1 #12; 1 Introduction Thermal conductivity

  9. Study of thermal neutron capture gamma rays using a lithium-drifted germanium spectrometer / [by] Victor John Orphan [and] Norman C. Rasmussen

    E-Print Network [OSTI]

    Orphan, V. J.

    1967-01-01

    A gamma-ray spectrometer, using a 30 cc coaxial Ge(Li) detector, which can be operated as a pair spectrometer at high energies and in the Compton suppression mode at low energies provides an effective means of obtaining ...

  10. Apparatus and method for identification of matrix materials in which transuranic elements are embedded using thermal neutron capture gamma-ray emission

    DOE Patents [OSTI]

    Close, D.A.; Franks, L.A.; Kocimski, S.M.

    1984-08-16

    An invention is described that enables the quantitative simultaneous identification of the matrix materials in which fertile and fissile nuclides are embedded to be made along with the quantitative assay of the fertile and fissile materials. The invention also enables corrections for any absorption of neutrons by the matrix materials and by the measurement apparatus by the measurement of the prompt and delayed neutron flux emerging from a sample after the sample is interrogated by simultaneously applied neutrons and gamma radiation. High energy electrons are directed at a first target to produce gamma radiation. A second target receives the resulting pulsed gamma radiation and produces neutrons from the interaction with the gamma radiation. These neutrons are slowed by a moderator surrounding the sample and bathe the sample uniformly, generating second gamma radiation in the interaction. The gamma radiation is then resolved and quantitatively detected, providing a spectroscopic signature of the constituent elements contained in the matrix and in the materials within the vicinity of the sample. (LEW)

  11. Alkali metal ionization detector

    DOE Patents [OSTI]

    Bauerle, James E. (Plum Borough, PA); Reed, William H. (Monroeville, PA); Berkey, Edgar (Murrysville, PA)

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  12. Progress on the realization of a new GEM based neutron diagnostic concept for high flux neutron beams

    SciTech Connect (OSTI)

    Croci, G.; Tardocchi, M. [Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, Milano, Italy and INFN, Sez. di Milano-Bicocca, Milano (Italy); Rebai, M.; Cippo, E. Perelli; Gorini, G. [Dipartimento di Fisica, Universitŕ degli Studi di Milano-Bicocca, Milano, Italy and INFN, Sez. di Milano-Bicocca, Milano (Italy); Cazzaniga, C. [Dipartimento di Fisica, Universitŕ degli Studi di Milano-Bicocca, Milano (Italy); Palma, M. Dalla; Pasqualotto, R.; Tollin, M. [Consorzio RFX - Associazione Euratom-Enea sulla Fusione, Padova (Italy); Grosso, G.; Muraro, A. [Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, Milano (Italy); Murtas, F.; Claps, G. [INFN, Laboratori Nazionali di Frascati, Frascati (Roma) (Italy); Cavenago, M. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova) (Italy)

    2014-08-21

    Fusion reactors will need high flux neutron detectors to diagnose the deuterium-deuterium and deuterium-tritium. A candidate detection technique is the Gas Electron Multiplier (GEM). New GEM based detectors are being developed for application to a neutral deuterium beam test facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission due to interaction of the deuterium beam with the deuterons implanted in the beam dump surface. This is done by placing a detector in close contact, right behind the dump. CNESM uses nGEM detectors, i.e. GEM detectors equipped with a cathode that also serves as neutron-proton converter foil. After the realization and test of several small area prototypes, a full size prototype has been realized and tested with laboratory sources. Test on neutron beams are foreseen for the next months.

  13. Calibration Issues of the TFTR Multichannel Neutron Collimator.

    E-Print Network [OSTI]

    agrees within 10 % with the source strength from global neutron monitors in the TFTR test cell. Detector Neutron Collimator 1,2,3,4 is an important diagnostic system on the Tokamak Fusion Test Reactor (TFTR), which measures radial profiles of the neutron emission from the hot plasma core and monitors the local

  14. Calibration Issues of the TFTR Multichannel Neutron Collimator.

    E-Print Network [OSTI]

    agrees within 10 % with the source strength from global neutron monitors in the TFTR test cell. Detector Neutron Collimator1,2,3,4 is an important diagnostic system on the Tokamak Fusion Test Reactor (TFTR), which measures radial profiles of the neutron emission from the hot plasma core and monitors the local

  15. Neutron Physics at NIST 8th UCN Workshop

    E-Print Network [OSTI]

    Titov, Anatoly

    Measurement Neutron fluence is measured by counting gamma-rays from the reaction n+10B 4He+7Li + (478KeV) with a calibrated gamma detector and neutron calorimeter. Polarized 3-He Neutron Spin Analyzers A Spin Exchange: Silicon Mass Density of Thin Polymer Films Search for Quantum Entanglement in Liquid H2O-D2O Mixtures

  16. Simulation of Neutron Backscattering applied to organic material detection

    SciTech Connect (OSTI)

    Forero, N. C.; Cruz, A. H.; Cristancho, F.

    2007-10-26

    The Neutron Backscattering technique is tested when performing the task of localizing hydrogenated explosives hidden in soil. Detector system, landmine, soil and neutron source are simulated with Geant4 in order to obtain the number of neutrons detected when several parameters like mine composition, relative position mine-source and soil moisture are varied.0.

  17. Monte Carlo Hauser-Feshbach Calculations of Prompt Fission Neutrons...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Monte Carlo Hauser-Feshbach Calculations of Prompt Fission Neutrons and Gamma Rays: Application to Thermal Neutron-Induced Fission Reactions on U-235 and Pu-239...

  18. {beta}{sub {beta}} measurements of neutron-rich isotopes in the mass region 147{le}A{le}152

    SciTech Connect (OSTI)

    Ikuta, T.; Taniguchi, A.; Yamamoto, H.; Kawade, K. [Nagoya Univ. (Japan); Kawase, Y. [Kyoto Univ., Osaka (Japan)

    1994-12-31

    The systematic Q{sub {beta}} measurements of 14 neutron-rich nuclei in the mass region from A=147 to A=152 have been performed with an HPGe detector. Neutron-rich nuclei were mass-separated from the thermal neutron induced fission of {sup 235}U using a He-N{sub 2} mixture-jet type on-line isotope separator which has been developed at the Kyoto University Reactor (KUR-ISOL). From a {beta}-ray singles and {beta}-{gamma} coincidence measurements, the Q{sub {beta}} values of {sup 147}La, {sup 147-150}Ce, {sup 147-152}Pr, {sup 152}Nd and {sup 152}Pm have been determined. In addition, the atomic masses derived from the experimental Q{sub {beta}} values are compared with the predictions of theoretical mass calculations.

  19. Asterix is a reflectometer/diffractometer/grazing-incidence-SANS/SESAME-enabled-SANS spectrometer that is primarily used for experiments or neutron scattering

    E-Print Network [OSTI]

    that is primarily used for experiments or neutron scattering techniques requiring polarized neutron beams detector arm is readily configurable for polarization or energy analysis of the scattered neutron beam be translated in the horizontal and vertical directions. Neutron detector (Spin Echo Scattering Angle

  20. Measurement of neutron spectrum in an AGN-201 reactor using a semiconductor neutron spectrometer 

    E-Print Network [OSTI]

    Stephenson, S. E

    1961-01-01

    . EXPERIMENTAL DETERMINATION OF NEUTRON SPECTRA. 12 Caiibration of the Spectrometer Measurement of Neutron Spectrum in an AGN-201 Reactor 14 III. DISCUSSION OF RESULTS IV. CONCLUSIONS . APPENDIX 24 29 32 Appendix I Appendix 2 Pulse Height Data... for Thermal Neutrons. . . Pulse Height Data for Energetic D(D, n)He 3 Neutrons 33 35 Appendix 3. Pulse Height Data for the AGN-201 Reactor Core Appendix 4. Data on Surface-Barrier Diode Lifetime Appendix 5. Surface-Barrier Diode Characteristics . 36...

  1. Neutron guide

    DOE Patents [OSTI]

    Greene, Geoffrey L. (Los Alamos, NM)

    1999-01-01

    A neutron guide in which lengths of cylindrical glass tubing have rectangular glass plates properly dimensioned to allow insertion into the cylindrical glass tubing so that a sealed geometrically precise polygonal cross-section is formed in the cylindrical glass tubing. The neutron guide provides easier alignment between adjacent sections than do the neutron guides of the prior art.

  2. Actively driven thermal radiation shield

    DOE Patents [OSTI]

    Madden, Norman W. (Livermore, CA); Cork, Christopher P. (Pleasant Hill, CA); Becker, John A. (Alameda, CA); Knapp, David A. (Livermore, CA)

    2002-01-01

    A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

  3. Neutron spectrometer for improved SNM search.

    SciTech Connect (OSTI)

    Vance, Andrew L.; Aigeldinger, Georg

    2007-03-01

    With the exception of large laboratory devices with very low sensitivities, a neutron spectrometer have not been built for fission neutrons such as those emitted by special nuclear materials (SNM). The goal of this work was to use a technique known as Capture Gated Neutron Spectrometry to develop a solid-state device with this functionality. This required modifications to trans-stilbene, a known solid-state scintillator. To provide a neutron capture signal we added lithium to this material. This unique triggering signal allowed identification of neutrons that lose all of their energy in the detector, eliminating uncertainties that arise due to partial energy depositions. We successfully implemented a capture gated neutron spectrometer and were able to distinguish an SNM like fission spectrum from a spectrum stemming from a benign neutron source.

  4. Analysis of palladium coatings to remove hydrogen isotopes from zirconium fuel rods in Canada deuterium uranium-pressurized heavy water reactors; Thermal and neutron diffusion effects

    SciTech Connect (OSTI)

    Stokes, C.L.; Buxbaum, R.E. )

    1992-05-01

    This paper reports that, in pressurized heavy water nuclear reactors of the type standardly used in Canada (Canada deuterium uranium-pressurized heavy water reactors), the zirconium alloy pressure tubes of the core absorb deuterium produced by corrosion reactions. This deuterium weakens the tubes through hydrogen embrittlement. Thin palladium coatings on the outside of the zirconium are analyzed as a method for deuterium removal. This coating is expected to catalyze the reaction D{sub 2} + 1/2O{sub 2} {r reversible} D{sub 2}O when O{sub 2} is added to the annular (insulating) gas in the tubes. Major reductions in the deuterium concentration and, hence, hydrogen embrittlement are predicted. Potential problems such as plating the tube geometry, neutron absorption, catalyst deactivation, radioactive waste production, and oxygen corrosion are shown to be manageable. Also, a simple set of equations are derived to calculate the effect on diffusion caused by neutron interactions. Based on calculations of ordinary and neutron flux induced diffusion, a palladium coating of 1 {times} 10{sup {minus}6} m is recommended. This would cost approximately $60,000 per reactor unit and should more than double reactor lifetime. Similar coatings and similar interdiffusion calculations might have broad applications.

  5. Analytical applications for delayed neutrons

    SciTech Connect (OSTI)

    Eccleston, G.W.

    1983-01-01

    Analytical formulations that describe the time dependence of neutron populations in nuclear materials contain delayed-neutron dependent terms. These terms are important because the delayed neutrons, even though their yields in fission are small, permit control of the fission chain reaction process. Analytical applications that use delayed neutrons range from simple problems that can be solved with the point reactor kinetics equations to complex problems that can only be solved with large codes that couple fluid calculations with the neutron dynamics. Reactor safety codes, such as SIMMER, model transients of the entire reactor core using coupled space-time neutronics and comprehensive thermal-fluid dynamics. Nondestructive delayed-neutron assay instruments are designed and modeled using a three-dimensional continuous-energy Monte Carlo code. Calculations on high-burnup spent fuels and other materials that contain a mix of uranium and plutonium isotopes require accurate and complete information on the delayed-neutron periods, yields, and energy spectra. A continuing need exists for delayed-neutron parameters for all the fissioning isotopes.

  6. Development of A Self Biased High Efficiency Solid-State Neutron...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Development of A Self Biased High Efficiency Solid-State Neutron Detector for MPACT Applications Citation Details In-Document Search Title: Development of A Self...

  7. Infra-red signature neutron detector

    DOE Patents [OSTI]

    Bell, Zane William (Oak Ridge, TN) [Oak Ridge, TN; Boatner, Lynn Allen (Oak Ridge, TN) [Oak Ridge, TN

    2009-10-13

    A method of detecting an activator, the method including impinging with an activator a receptor material that includes a photoluminescent material that generates infrared radiation and generation a by-product of a nuclear reaction due to the activator impinging the receptor material. The method further includes generating light from the by-product via the Cherenkov effect, wherein the light activates the photoluminescent material so as to generate the infrared radiation. Identifying a characteristic of the activator based on the infrared radiation.

  8. PPPL3141 Preprint Date: December, 1995, UC420, 426 FAST DETECTION 0F 14 MeV NEUTRONS

    E-Print Network [OSTI]

    been the monitoring of the temporal development of radial profiles of the neutron emission from the hotS­based NE451 neutron detector system. 1,10 These detectors showed signs of saturation during DD injection in the Neutron Collimator. It provides data during DT operation. Both systems have been operated in the past

  9. Nano structural anodes for radiation detectors

    DOE Patents [OSTI]

    Cordaro, Joseph V.; Serkiz, Steven M.; McWhorter, Christopher S.; Sexton, Lindsay T.; Retterer, Scott T.

    2015-07-07

    Anodes for proportional radiation counters and a process of making the anodes is provided. The nano-sized anodes when present within an anode array provide: significantly higher detection efficiencies due to the inherently higher electric field, are amenable to miniaturization, have low power requirements, and exhibit a small electromagnetic field signal. The nano-sized anodes with the incorporation of neutron absorbing elements (e.g., .sup.10B) allow the use of neutron detectors that do not use .sup.3He.

  10. Neutron Scattering Tutorials | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron Scattering Tutorials SHARE Neutron Scattering Tutorials The following lectures were presented at the 2011 and 2010 National School on Neutron & X-Ray Scattering. This...

  11. Boron-Lined Multichamber and Conventional Neutron Proportional Counter Tests

    SciTech Connect (OSTI)

    Woodring, Mitchell L.; Ely, James H.; Kouzes, Richard T.; Stromswold, David C.

    2010-09-07

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. These technologies are: 1) Boron trifluoride (BF3)-filled proportional counters, 2) Boron-lined proportional counters, 3) Lithium-loaded glass fibers, and 4) Coated non-scintillating plastic fibers. In addition, a few other companies have detector technologies that might be competitive in the near term as an alternative technology. Reported here are the results of tests of a boron-lined, multichamber proportional counter manufactured by LND, Inc. Also reported are results obtained with an earlier design of conventional, boron-lined, proportional counters from LND. This testing measured the required performance for neutron detection efficiency and gamma-ray rejection capabilities of the detectors.

  12. Boron-Lined Multitube Neutron Proportional Counter Test

    SciTech Connect (OSTI)

    Woodring, Mitchell L.; Ely, James H.; Kouzes, Richard T.; Stromswold, David C.

    2010-09-07

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. These technologies are: 1) Boron trifluoride (BF3)-filled proportional counters, 2) Boron-lined proportional counters, 3) Lithium-loaded glass fibers, and 4) Coated non-scintillating plastic fibers. In addition, a few other companies have detector technologies that might be competitive in the near term as an alternative technology. Reported here are the results of tests of a boron-lined, “multitube” proportional counter manufactured by Centronic Ltd. (Surry, U.K. and Houston, TX). This testing measured the required performance for neutron detection efficiency and gamma-ray rejection capabilities of the detector.

  13. Cosmic ray neutron background reduction using localized coincidence veto neutron counting

    DOE Patents [OSTI]

    Menlove, Howard O. (Los Alamos, NM); Bourret, Steven C. (Los Alamos, NM); Krick, Merlyn S. (Los Alamos, NM)

    2002-01-01

    This invention relates to both the apparatus and method for increasing the sensitivity of measuring the amount of radioactive material in waste by reducing the interference caused by cosmic ray generated neutrons. The apparatus includes: (a) a plurality of neutron detectors, each of the detectors including means for generating a pulse in response to the detection of a neutron; and (b) means, coupled to each of the neutrons detectors, for counting only some of the pulses from each of the detectors, whether cosmic ray or fission generated. The means for counting includes a means that, after counting one of the pulses, vetos the counting of additional pulses for a prescribed period of time. The prescribed period of time is between 50 and 200 .mu.s. In the preferred embodiment the prescribed period of time is 128 .mu.s. The veto means can be an electronic circuit which includes a leading edge pulse generator which passes a pulse but blocks any subsequent pulse for a period of between 50 and 200 .mu.s. Alternately, the veto means is a software program which includes means for tagging each of the pulses from each of the detectors for both time and position, means for counting one of the pulses from a particular position, and means for rejecting those of the pulses which originate from the particular position and in a time interval on the order of the neutron die-away time in polyethylene or other shield material. The neutron detectors are grouped in pods, preferably at least 10. The apparatus also includes means for vetoing the counting of coincidence pulses from all of the detectors included in each of the pods which are adjacent to the pod which includes the detector which produced the pulse which was counted.

  14. The neutron-gamma Feynman variance to mean approach: gamma detection and total neutron-gamma detection (theory and practice)

    E-Print Network [OSTI]

    Dina Chernikova; Kĺre Axell; Senada Avdic; Imre Pázsit; Anders Nordlund

    2015-01-23

    Two versions of the neutron-gamma variance to mean (Feynman-alpha method or Feynman-Y function) formula for either gamma detection only or total neutron-gamma detection, respectively, are derived and compared in this paper. The new formulas have a particular importance for detectors of either gamma photons or detectors sensitive to both neutron and gamma radiation. If applied to a plastic or liquid scintillation detector, the total neutron-gamma detection Feynman-Y expression corresponds to a situation where no discrimination is made between neutrons and gamma particles. The gamma variance to mean formulas are useful when a detector of only gamma radiation is used or when working with a combined neutron-gamma detector at high count rates. The theoretical derivation is based on the Chapman-Kolmogorov equation with inclusion of general reactions and passage intensities for neutrons and gammas, but with the inclusion of prompt reactions only. A one energy group approximation is considered. The comparison of the two different theories is made by using reaction intensities obtained in MCNPX simulations with a simplified geometry for two scintillation detectors and a 252Cf-source enclosed in a steel container. In addition, the variance to mean ratios, neutron, gamma and total neutron-gamma, are evaluated experimentally for a weak 252Cf neutron-gamma source in a steel container, a 137Cs random gamma source and a 22Na correlated gamma source. Due to the focus being on the possibility of using neutron-gamma variance to mean theories for both reactor and safeguards applications, we limited the present study to the general analytical expressions for Feynman-Y formulas.

  15. Neutron tubes

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Lou, Tak Pui (Berkeley, CA); Reijonen, Jani (Oakland, CA)

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  16. Development of a portable neutron coincidence counter for field measurements of nuclear materials using the advanced multiplicity capabilities of MCNPX 2.5.F and the neutron coincidence point model 

    E-Print Network [OSTI]

    Thornton, Angela Lynn

    2009-05-15

    given material. In an effort to identify unknown nuclear samples in field inspections, the Portable Neutron Coincidence Counter (PNCC) has been developed. This detector makes use of the coincident neutrons being emitted from a bulk sample. An in...

  17. Microwave detector

    DOE Patents [OSTI]

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1985-02-08

    A microwave detector is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite produces a magnetization field flux that links a B-dot loop. The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  18. Real-time self-networking radiation detector apparatus

    DOE Patents [OSTI]

    Kaplan, Edward (Stony Brook, NY); Lemley, James (Miller Place, NY); Tsang, Thomas Y. (Holbrook, NY); Milian, Laurence W. (East Patchogue, NY)

    2007-06-12

    The present invention is for a radiation detector apparatus for detecting radiation sources present in cargo shipments. The invention includes the features of integrating a bubble detector sensitive to neutrons and a GPS system into a miniaturized package that can wirelessly signal the presence of radioactive material in shipping containers. The bubble density would be read out if such indicated a harmful source.

  19. Delayed neutron energy spectrum measurements of actinide waste isotopes 

    E-Print Network [OSTI]

    Comfort, Christopher M.

    1998-01-01

    was irradiated using the Texas A&M Nuclear Science Center Reactor (NSCR). Three proton recoil detectors, operating individually, in conjunction with MCNP calculated response functions, were used to measure the delayed neutron energy spectra of each isotope...

  20. Radiation detector system having heat pipe based cooling

    DOE Patents [OSTI]

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  1. Noble Travails: Noble Liquid Dark Matter Detectors

    E-Print Network [OSTI]

    Golwala, Sunil

    · Moving beyond this e.g. High Purity Water Shield 4m gives Neutron Activity (,n) from rock 0.1 cm-2 day-1 Since polyethylene impurities) Large Detector Masses are easily constructed and behave well · Shelf shielding means Inner

  2. DETECTORS FOR RADIATION DOSIMETRY

    E-Print Network [OSTI]

    Perez-Mendez, V.

    2010-01-01

    I. Applications of Radiation Detectors 1) X-Rays, Gammaof the Conference DETECTORS FOR RADIATION DOSIMETRY VictorT E D LBL9651 DETECTORS FOR RADIATION DOSIMETRY - DISCLAIM*

  3. Physics-based Uncertainty Quantification for ZrHx Thermal Scattering Law 

    E-Print Network [OSTI]

    Zheng, Weixiong

    2013-12-06

    ), neutron mean generation time (?), fuel temperature feedback coefficient (?Fuel), effective delayed neutron fraction (?eff ) and ex-core detector material absorption rate (Rabs), were analyzed. Analyses indicate that ?, ? and ?Fuel are sensitive...

  4. An automated neutron monitor maintenance system

    SciTech Connect (OSTI)

    Moore, F.S.; Griffin, J.C.; Odell, D.M.C.

    1996-09-01

    Neutron detectors are commonly used by the nuclear materials processing industry to monitor fissile materials in process vessels and tanks. The proper functioning of these neutron monitors must be periodically evaluated. We have developed and placed in routine use a PC-based multichannel analyzer (MCA) system for on-line BF3 and He-3 gas-filled detector function testing. The automated system: 1) acquires spectral data from the monitor system, 2) analyzes the spectrum to determine the detector`s functionality, 3) makes suggestions for maintenance or repair, as required, and 4) saves the spectrum and results to disk for review. The operator interface has been designed to be user-friendly and to minimize the training requirements of the user. The system may also be easily customized for various applications

  5. Method and apparatus for detecting neutrons

    DOE Patents [OSTI]

    Perkins, Richard W. (Richland, WA); Reeder, Paul L. (Richland, WA); Wogman, Ned A. (Richland, WA); Warner, Ray A. (Benton City, WA); Brite, Daniel W. (Richland, WA); Richey, Wayne C. (Richland, WA); Goldman, Don S. (Orangevale, CA)

    1997-01-01

    The instant invention is a method for making and using an apparatus for detecting neutrons. Scintillating optical fibers are fabricated by melting SiO.sub.2 with a thermal neutron capturing substance and a scintillating material in a reducing atmosphere. The melt is then drawn into fibers in an anoxic atmosphere. The fibers may then be coated and used directly in a neutron detection apparatus, or assembled into a geometrical array in a second, hydrogen-rich, scintillating material such as a polymer. Photons generated by interaction with thermal neutrons are trapped within the coated fibers and are directed to photoelectric converters. A measurable electronic signal is generated for each thermal neutron interaction within the fiber. These electronic signals are then manipulated, stored, and interpreted by normal methods to infer the quality and quantity of incident radiation. When the fibers are arranged in an array within a second scintillating material, photons generated by kinetic neutrons interacting with the second scintillating material and photons generated by thermal neutron capture within the fiber can both be directed to photoelectric converters. These electronic signals are then manipulated, stored, and interpreted by normal methods to infer the quality and quantity of incident radiation.

  6. Method and apparatus for detecting neutrons

    DOE Patents [OSTI]

    Perkins, R.W.; Reeder, P.L.; Wogman, N.A.; Warner, R.A.; Brite, D.W.; Richey, W.C.; Goldman, D.S.

    1997-10-21

    The instant invention is a method for making and using an apparatus for detecting neutrons. Scintillating optical fibers are fabricated by melting SiO{sub 2} with a thermal neutron capturing substance and a scintillating material in a reducing atmosphere. The melt is then drawn into fibers in an anoxic atmosphere. The fibers may then be coated and used directly in a neutron detection apparatus, or assembled into a geometrical array in a second, hydrogen-rich, scintillating material such as a polymer. Photons generated by interaction with thermal neutrons are trapped within the coated fibers and are directed to photoelectric converters. A measurable electronic signal is generated for each thermal neutron interaction within the fiber. These electronic signals are then manipulated, stored, and interpreted by normal methods to infer the quality and quantity of incident radiation. When the fibers are arranged in an array within a second scintillating material, photons generated by kinetic neutrons interacting with the second scintillating material and photons generated by thermal neutron capture within the fiber can both be directed to photoelectric converters. These electronic signals are then manipulated, stored, and interpreted by normal methods to infer the quality and quantity of incident radiation. 5 figs.

  7. Design and performance of a large area neutron sensitive anger camera

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Visscher, Theodore; Montcalm, Christopher A.; Donahue, Jr., Cornelius; Riedel, Richard A.

    2015-05-21

    We describe the design and performance of a 157mm x 157mm two dimensional neutron detector. The detector uses the Anger principle to determine the position of neutrons. We have verified FWHM resolution of 3) single crystal reference samples at the single crystal instrument TOPAZ provide results with low Rw(F) values

  8. Instrumentation for Neutron Scattering at the Missouri University Research Reactor Paul F. Miceli

    E-Print Network [OSTI]

    Montfrooij, Wouter

    Instrumentation for Neutron Scattering at the Missouri University Research Reactor Paul F. Miceli Research Reactor (MURR) provides significant thermal neutron flux, which enables neutron scattering]. There are presently 5 instruments located on the beam port floor that are dedicated to neutron scattering: (1) TRIAX

  9. Analytical Calculation of the Neutrons Spectrum for Direct Measurement of N-N Scattering at Pulsed Reactor Yaguar

    E-Print Network [OSTI]

    V. K. Ignatovich

    2008-06-23

    Analytical calculation of a single neutron detector counts per YAGUAR reactor pulse is presented and comparison with coincidence scheme is given.

  10. Neutron counter based on beryllium activation

    SciTech Connect (OSTI)

    Bienkowska, B.; Prokopowicz, R.; Kaczmarczyk, J.; Paducha, M. [Institute of Plasma Physics and Laser Microfusion (IPPLM), Hery 23, 01-497 Warsaw (Poland); Scholz, M.; Igielski, A. [Institute of Nuclear Physics PAS (IFJPAN), Radzikowskiego 152, 31-342 Krakow (Poland); Karpinski, L. [Faculty of Electrical Engineering, Rzeszow University of Technology, Pola 2, 35-959 Rzeszow (Poland); Pytel, K. [National Centre for Nuclear Research (NCBJ), Soltana 7, 05-400 Otwock - Swierk (Poland)

    2014-08-21

    The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction {sup 9}Be(n, ?){sup 6}He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, {sup 6}He, decays with half-life T{sub 1/2} = 0.807 s emitting ?{sup ?} particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of ?–particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known ?–source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5–the Monte Carlo transport code. It allowed proper application of the results of transport calculations of ?{sup ?} particles emitted from radioactive {sup 6}He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.

  11. The neutron long counter NERO for studies of beta-delayed neutron emission in the r-process

    E-Print Network [OSTI]

    J. Pereira; P. Hosmer; G. Lorusso; P. Santi; A. Couture; J. Daly; M. Del Santo; T. Elliot; J. Goerres; C. Herlitzius; K. -L. Kratz; L. O. Lamm; H. Y. Lee; F. Montes; M. Ouellette; E. Pellegrini; P. Reeder; H. Schatz; F. Schertz; L. Schnorrenberger; K. Smith; E. Stech; E. Strandberg; C. Ugalde; M. Wiescher; A. Woehr

    2010-07-28

    The neutron long counter NERO was built at the National Superconducting Cyclotron Laboratory (NSCL), Michigan State University, for measuring beta-delayed neutron-emission probabilities. The detector was designed to work in conjunction with a beta-decay implantation station, so that beta decays and beta-delayed neutrons emitted from implanted nuclei can be measured simultaneously. The high efficiency of about 40%, for the range of energies of interest, along with the small background, are crucial for measuring beta-delayed neutron emission branchings for neutron-rich r-process nuclei produced as low intensity fragmentation beams in in-flight separator facilities.

  12. NEET Micro-Pocket Fission Detector -- FY 2012 Status Report

    SciTech Connect (OSTI)

    Troy Unruh; Joy Rempe; Douglas McGregor; Philip Ugorowski; Michael Reichenberger

    2012-09-01

    A research program has been initiated by the NEET program for developing and testing compact miniature fission chambers capable of simultaneously measuring thermal neutron flux, fast neutron flux and temperature within a single package. When implemented, these sensors will significantly advance flux detection capabilities for irradiation tests in US Materials Test Reactors (MTRs).Ultimately, evaluations may lead to a more compact, more accurate, and longer lifetime flux sensor for critical mock-ups, high performance reactors and commercial nuclear power plants. Deployment of Micro-Pocket Fission Detectors (MPFDs) in US DOE-NE program irradiation tests will address several challenges: Current fission chamber technologies do not offer the ability to measure fast flux, thermal flux and temperature within a single compact probe, MPFDs offer this option. MPFD construction is very different then current fission chamber construction; the use of high temperature materials allow MPFDs to be specifically tailored to survive harsh conditions in typical high performance MTR irradiation tests. New high-fidelity reactor physics codes will need a small, accurate, multipurpose in-core sensor to validate the codes without perturbing the validation experiment; MPFDs fill this requirement. MPFDs can be built with variable sensitivities to survive the lifetime of an experiment or fuel assembly in some MTRs; allowing for more efficient and cost effective power monitoring. The small size of the MPFDs allows multiple sensors to be simultaneously deployed; obtaining data required to visualize the reactor flux and temperature profiles. This report summarizes the research progress for year 1 of this 3 year project. An updated design of the MPFD has been developed, materials and tools to support the new design have been procured, construction methods to support the new design have been initiated at INL’s HTTL and KSU’s SMART Laboratory, plating methods are being updated at KSU, new detector electronics have been designed, built and tested at KSU. In addition, a project meeting was held at KSU and a detector evaluation plan has been initiated between INL and KSU. Once NEET program evaluations are completed, the final MPFD will be deployed in MTR irradiations, enabling DOE-NE programs evaluating the performance of candidate new fuels and materials to better characterize irradiation test conditions.

  13. Neutron response of the LAMBDA spectrometer and neutron interaction length in BaF2

    E-Print Network [OSTI]

    Balaram Dey; Debasish Mondal; Deepak Pandit; S. Mukhopadhyay; Surajit Pal; K. Banerjee; Srijit Bhattacharya; A. De; S. R. Banerjee

    2013-06-17

    We report on the neutron response of the LAMBDA spectrometer developed earlier for high-energy gamma-ray measurement. The energy dependent neutron detection efficiency of the spectrometer has been measured using the time-of-flight (TOF) technique and compared with that of an organic liquid scintillator based neutron detector (BC501A). The extracted efficiencies have also been compared with those obtained from Monte Carlo GEANT4 simulation. We have also measured the average interaction length of neutrons in the BaF2 crystal in a separate experiment, in order to determine the TOF energy resolution. Finally, the LAMBDA spectrometer has been tested in an in-beam-experiment by measuring neutron energy spectra in the 4He + 93Nb reaction to extract nuclear level density parameters. Nuclear level density parameters obtained by the LAMBDA spectrometer were found to be consistent with those obtained by the BC501A neutron detector, indicating that the spectrometer can be efficiently used as a neutron detector to measure the nuclear level density parameter.

  14. Experimental Tests of Neutron Shielding for the ATLAS Forward Region

    E-Print Network [OSTI]

    Pospísil, S; Cechák, T; Cermák, P; Jakubek, J; Kluson, J; Konícek, J; Kubasta, J; Linhart, V; Sinor, M; Leroy, C; Dolezal, Z; Leitner, R; Lukianov, G A; Soustruznik, K; Lokajícek, M; Némécek, S; Pálla, G; Sodomka, J

    1999-01-01

    Experimental tests devoted to the optimization of the neutron shielding for the ATLAS forward region were performed at the CERN-PS with a 4 GeV/c proton beam. Spectra of fast neutrons, slow neutrons and gamma rays escaping a block of iron (40$\\times$40$\\times$80 cm$^3$) shielded with different types of neutron and gamma shields (pure polyethylene - PE, borated polyethylene - BPE, lithium filled polyethylene - LiPE, lead, iron) were measured by means of plastic scintillators, a Bonner spectrometer, a HPGe detector and a slow neutron detector. Effectiveness of different types of shielding agaisnt neutrons and $\\gamma$-rays were compared. The idea of a segmented outer layer shielding (iron, BPE, iron, LiPE) for the ATLAS Forward Region was also tested.

  15. Review of Current Neutron Detection Systems for Emergency Response

    SciTech Connect (OSTI)

    Mukhopadhyay, S.; Maurer, R.; Guss, P.; Kruschwitz, C.

    2014-09-01

    Neutron detectors are used in a myriad of applications—from safeguarding special nuclear materials (SNM) to determining lattice spacing in soft materials. The transformational changes taking place in neutron detection and imaging techniques in the last few years are largely being driven by the global shortage of helium-3 (3He). This article reviews the status of neutron sensors used specifically for SNM detection in radiological emergency response. These neutron detectors must be highly efficient, be rugged, have fast electronics to measure neutron multiplicity, and be capable of measuring direction of the neutron sources and possibly image them with high spatial resolution. Neutron detection is an indirect physical process: neutrons react with nuclei in materials to initiate the release of one or more charged particles that produce electric signals that can be processed by the detection system. Therefore, neutron detection requires conversion materials as active elements of the detection system; these materials may include boron-10 (10B), lithium-6 (6Li), and gadollinium-157 (157Gd), to name a few, but the number of materials available for neutron detection is limited. However, in recent years, pulse-shape-discriminating plastic scintillators, scintillators made of helium-4 (4He) under high pressure, pillar and trench semiconductor diodes, and exotic semiconductor neutron detectors made from uranium oxide and other materials have widely expanded the parameter space in neutron detection methodology. In this article we will pay special attention to semiconductor-based neutron sensors. Modern micro-fabricated nanotubes covered inside with neutron converter materials and with very high aspect ratios for better charge transport will be discussed.

  16. Neutron Capture Measurements and Resonance Parameters of Gadolinium

    E-Print Network [OSTI]

    Danon, Yaron

    products in fast reactors.1 A major portion of neutron capture cross sections of natural Gd is due to 155 important to examine the Gd isotopes as a control material for fast reactors.3 Neutron capture experiments measurements were made at the 25-m flight station with a 16-segment sodium iodide multiplicity detector. After

  17. Neutron range spectrometer

    DOE Patents [OSTI]

    Manglos, S.H.

    1988-03-10

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

  18. Neutron Tomography and Space

    E-Print Network [OSTI]

    Egbert, Hal; Walker, Ronald; Flocchini, R.

    2007-01-01

    Kevin Shields, “Optimization of neutron tomography for rapidNEUTRON TOMOGRAPHY AND SPACE Hal Egbert, Ronald Walker, R.industrial applications[1]. Neutron Computed Tomography was

  19. Dual neutron flux/temperature measurement sensor

    DOE Patents [OSTI]

    Mihalczo, John T. (Oak Ridge, TN); Simpson, Marc L. (Knoxville, TN); McElhaney, Stephanie A. (Oak Ridge, TN)

    1994-01-01

    Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination.

  20. Piezonuclear neutrons from fracturing of inert solids

    E-Print Network [OSTI]

    F. Cardone; A. Carpinteri; G. Lacidogna

    2009-03-18

    Neutron emission measurements by means of helium-3 neutron detectors were performed on solid test specimens during crushing failure. The materials used were marble and granite, selected in that they present a different behaviour in compression failure (i.e., a different brittleness index) and a different iron content. All the test specimens were of the same size and shape. Neutron emissions from the granite test specimens were found to be of about one order of magnitude higher than the natural background level at the time of failure.

  1. Fast Neutron Detection with a Segmented Spectrometer

    E-Print Network [OSTI]

    T. J. Langford; C. D. Bass; E. J. Beise; H. Breuer; D. K. Erwin; C. R. Heimbach; J. S. Nico

    2014-11-20

    A fast neutron spectrometer consisting of segmented plastic scintillator and He-3 proportional counters was constructed for the measurement of neutrons in the energy range 1 MeV to 200 MeV. We discuss its design, principles of operation, and the method of analysis. The detector is capable of observing very low neutron fluxes in the presence of ambient gamma background and does not require scintillator pulseshape discrimination. The spectrometer was characterized for its energy response in fast neutron fields of 2.5 MeV and 14 MeV, and the results are compared with Monte Carlo simulations. Measurements of the fast neutron flux and energy response at 120 m above sea-level (39.130 deg. N, 77.218 deg. W) and at a depth of 560 m in a limestone mine are presented. Finally, the design of a spectrometer with improved sensitivity and energy resolution is discussed.

  2. Lithium-6 filter for a fission converter-based Boron Neutron Capture Therapy irradiation facility beam

    E-Print Network [OSTI]

    Gao, Wei, Ph. D.

    2005-01-01

    (cont.) A storage system was designed to contain the lithium-6 filter safely when it is not in use. A mixed field dosimetry method was used to measure the photon, thermal neutron and fast neutron dose. The measured advantage ...

  3. Investigation of the "summation" method for predicting group dependent delayed neutron data 

    E-Print Network [OSTI]

    Angers, Laetitia Genevieve

    1998-01-01

    of the average delayed neutron lifetime by 15% for U-235 thermal fission, which agrees more closely with Keepin's results. The modified delayed neutron data set also improves the calculated reactor period (relative to the reactor period calculated using Keepin...

  4. Delayed neutron measurements for Th-232, Np-237, Pu-239, Pu-241 and depleted uranium 

    E-Print Network [OSTI]

    Stone, Joseph C.

    2001-01-01

    The neutron emission rates from five very pure actinide samples (Th-232, Np-237, Pu-239, Pu-241 and depleted uranium) were measured following equilibrium irradiation in fast and thermal neutron fluxes. The relative abundances (alphas) for the first...

  5. Neutronic Characterization of the Megapie Target

    E-Print Network [OSTI]

    Stefano Panebianco; Olivier Bringer; Pavel Bokov; Sebastien Chabod; Frederic Chartier; Emmeric Dupont; Diane Dore; Xavier Ledoux; Alain Letourneau; Ludovic Oriol; Aurelien Prevost; Danas Ridikas; Jean-Christian Toussaint

    2007-10-31

    The MEGAPIE project is one of the key experiments towards the feasibility of Accelerator Driven Systems. On-line operation and post-irradiation analysis will provide the scientific community with unique data on the behavior of a liquid spallation target under realistic irradiation conditions. A good neutronics performance of such a target is of primary importance towards an intense neutron source, where an extended liquid metal loop requires some dedicated verifications related to the delayed neutron activity of the irradiated PbBi. In this paper we report on the experimental characterization of the MEGAPIE neutronics in terms of the prompt neutron (PN) flux inside the target and the delayed neutron (DN) flux on the top of it. For the PN measurements, a complex detector, made of 8 microscopic fission chambers, has been built and installed in the central part of the target to measure the absolute neutron flux and its spatial distribution. Moreover, integral information on the neutron energy distribution as a function of the position along the beam axis could be extracted, providing integral constraints on the neutron production models implemented in transport codes such as MCNPX. For the DN measurement, we used a standard 3He counter and we acquired data during the start-up phase of the target irradiation in order to take sufficient statistics at variable beam power. Experimental results obtained on the PN flux characteristics and their comparison with MCNPX simulations are presented, together with a preliminary analysis of the DN decay time spectrum.

  6. The neutron imaging diagnostic at NIF (invited)

    SciTech Connect (OSTI)

    Merrill, F. E.; Clark, D. D.; Danly, C. R.; Drury, O. B.; Fatherley, V. E.; Gallegos, R.; Grim, G. P.; Guler, N.; Loomis, E. N.; Martinson, D. D.; Mares, D.; Morley, D. J.; Morgan, G. L.; Oertel, J. A.; Tregillis, I. L.; Volegov, P. L.; Wilde, C. H.; Wilson, D. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Bower, D.; Dzenitis, J. M. [Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2012-10-15

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  7. The Neutron Imaging Diagnostic at NIF

    SciTech Connect (OSTI)

    Merrill, F E; Buckles, R; Clark, D; Danly, C R; Drury, O B; Dzenitis, J M; Fatherly, V E; Fittinghoff, D N; Gallegos, R; Grim, G P; Guler, N; Loomis, E N; Lutz, S; Malone, R M; Martinson, D D; Mares, D; Morley, D J; Morgan, G L; Oertel, J A; Tregillis, I L; Volegov, P L; Weiss, P B; Wilde, C H

    2012-10-01

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of ICF implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  8. Neutron Repulsion

    E-Print Network [OSTI]

    Oliver K. Manuel

    2011-02-08

    Earth is connected gravitationally, magnetically and electrically to its heat source - a neutron star that is obscured from view by waste products in the photosphere. Neutron repulsion is like the hot filament in an incandescent light bulb. Excited neutrons are emitted from the solar core and decay into hydrogen that glows in the photosphere like a frosted light bulb. Neutron repulsion was recognized in nuclear rest mass data in 2000 as the overlooked source of energy, the keystone of an arch that locked together these puzzling space-age observations: 1.) Excess 136Xe accompanied primordial helium in the stellar debris that formed the solar system (Fig. 1); 2.) The Sun formed on the supernova core (Fig. 2); 3.) Waste products from the core pass through an iron-rich mantle, selectively carrying lighter elements and lighter isotopes of each element into the photosphere (Figs. 3-4); and 4.) Neutron repulsion powers the Sun and sustains life (Figs. 5-7). Together these findings offer a framework for understanding how: a.) The Sun generates and releases neutrinos, energy and solar-wind hydrogen and helium; b.) An inhabitable planet formed and life evolved around an ordinary-looking star; c.) Continuous climate change - induced by cyclic changes in gravitational interactions of the Sun's energetic core with planets - has favored survival by adaptation.

  9. Conducting Polymers for Neutron Detection

    SciTech Connect (OSTI)

    Kimblin, Clare; Miller, Kirk; Vogel, Bob; Quam, Bill; McHugh, Harry; Anthony, Glen; Mike, Grover

    2007-12-01

    Conjugated polymers have emerged as an attractive technology for large-area electronic applications. As organic semiconductors, they can be used to make large-area arrays of diodes or transistors using fabrication techniques developed for polymer coatings, such as spraying and screen-printing. We have demonstrated both neutron and alpha detection using diodes made from conjugated polymers and have done preliminary work to integrate a boron carbide layer into the conventional polymer device structure to capture thermal neutrons. The polymer devices appear to be insensitive to gamma rays, due to their small physical thickness and low atomic number.

  10. Development of multichannel low-energy neutron spectrometer

    SciTech Connect (OSTI)

    Arikawa, Y., E-mail: arikawa-y@ile.osaka-u.ac.jp; Nagai, T.; Abe, Y.; Kojima, S.; Sakata, S.; Inoue, H.; Utsugi, M.; Iwasa, Y.; Sarukura, N.; Nakai, M.; Shiraga, H.; Fujioka, S.; Azechi, H. [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka (Japan); Murata, T. [Kumamoto University, 2-40-1 Kurokami, Kumamoto 860-8555 (Japan)

    2014-11-15

    A multichannel low-energy neutron spectrometer for down-scattered neutron (DSN) measurements in inertial confinement fusion (ICF) experiments has been developed. Our compact-size 256-channel lithium-glass-scintillator-based spectrometer has been implemented and tested in ICF experiments with the GEKKO XII laser. We have performed time calibration of the 256-channel analog-to-digital convertor system used for DSN measurements via X-ray pulse signals. We have clearly observed the DD-primary fusion neutron signal and have successfully studied the detector's impulse response. Our detector is soon to be implemented in future ICF experiments.

  11. Microscopic description of neutron emission rates in compound nuclei

    E-Print Network [OSTI]

    Yi Zhu; Junchen Pei

    2014-11-02

    The neutron emission rates in thermal excited nuclei are conventionally described by statistical models with a phenomenological level density parameter that depends on excitation energies, deformations and mass regions. In the microscopic view of hot nuclei, the neutron emission rates can be determined by the external neutron gas densities without any free parameters. Therefore the microscopic description of thermal neutron emissions is desirable that can impact several understandings such as survival probabilities of superheavy compound nuclei and neutron emissivity in reactors. To describe the neutron emission rates microscopically, the external thermal neutron gases are self-consistently obtained based on the Finite-Temperature Hartree-Fock-Bogoliubov (FT-HFB) approach. The results are compared with the statistical model to explore the connections between the FT-HFB approach and the statistical model. The Skyrme FT-HFB equation is solved by HFB-AX in deformed coordinate spaces. Based on the FT-HFB approach, the thermal properties and external neutron gas are properly described with the self-consistent gas substraction procedure. Then neutron emission rates can be obtained based on the densities of external neutron gases. The thermal statistical properties of $^{238}$U and $^{258}$U are studied in detail in terms of excitation energies. The thermal neutron emission rates in $^{238, 258}$U and superheavy compound nuclei $_{112}^{278}$Cn and $_{114}^{292}$Fl are calculated, which agree well with the statistical model by adopting an excitation-energy-dependent level density parameter. The coordinate-space FT-HFB approach can provide reliable microscopic descriptions of neutron emission rates in hot nuclei, as well as microscopic constraints on the excitation energy dependence of level density parameters for statistical models.

  12. A solenoidal electron spectrometer for a precision measurement of the neutron $?$-asymmetry with ultracold neutrons

    E-Print Network [OSTI]

    B. Plaster; R. Carr; B. W. Filippone; D. Harrison; J. Hsiao; T. M. Ito; J. Liu; J. W. Martin; B. Tipton; J. Yuan

    2008-06-12

    We describe an electron spectrometer designed for a precision measurement of the neutron $\\beta$-asymmetry with spin-polarized ultracold neutrons. The spectrometer consists of a 1.0-Tesla solenoidal field with two identical multiwire proportional chamber and plastic scintillator electron detector packages situated within 0.6-Tesla field-expansion regions. Select results from performance studies of the spectrometer with calibration sources are reported.

  13. SU-E-T-557: Measuring Neutron Activation of Cardiac Devices Irradiated During Proton Therapy Using Indium Foils

    SciTech Connect (OSTI)

    Avery, S; Christodouleas, J; Delaney, K; Diffenderfer, E; Brown, K

    2014-06-01

    Purpose: Measuring Neutron Activation of Cardiac devices Irradiated during Proton Therapy using Indium Foils Methods: The foils had dimensions of 25mm x 25mm x 1mm. After being activated, the foils were placed in a Canberra Industries well chamber utilizing a NaI(Tl) scintillation detector. The resulting gamma spectrum was acquired and analyzed using Genie 2000 spectroscopy software. One activation foil was placed over the upper, left chest of RANDO where a pacemaker would be. The rest of the foils were placed over the midline of the patient at different distances, providing a spatial distribution over the phantom. Using lasers and BBs to align the patient, 200 MU square fields were delivered to various treatment sites: the brain, the pancreas, and the prostate. Each field was shot at least a day apart, giving more than enough time for activity of the foil to decay (t1=2 = 54.12 min). Results: The net counts (minus background) of the three aforementioned peaks were used for our measurements. These counts were adjusted to account for detector efficiency, relative photon yields from decay, and the natural abundance of 115-In. The average neutron flux for the closed multi-leaf collimator irradiation was measured to be 1.62 x 106 - 0.18 x 106 cm2 s-1. An order of magnitude estimate of the flux for neutrons up to 1 keV from Diffenderfer et al. gives 3 x 106 cm2 s-1 which does agree on the order of magnitude. Conclusion: Lower energy neutrons have higher interaction cross-sections and are more likely to damage pacemakers. The thermal/slow neutron component may be enough to estimate the overall risk. The true test of the applicability of activation foils is whether or not measurements are capable of predicting cardiac device malfunction. For that, additional studies are needed to provide clinical evidence one way or the other.

  14. Improved Fission Neutron Data Base for Active Interrogation of Actinides

    SciTech Connect (OSTI)

    Pozzi, Sara; Czirr, J. Bart; Haight, Robert; Kovash, Michael; Tsvetkov, Pavel

    2013-11-06

    This project will develop an innovative neutron detection system for active interrogation measurements. Many active interrogation methods to detect fissionable material are based on the detection of neutrons from fission induced by fast neutrons or high-energy gamma rays. The energy spectrum of the fission neutrons provides data to identify the fissionable isotopes and materials such as shielding between the fissionable material and the detector. The proposed path for the project is as follows. First, the team will develop new neutron detection systems and algorithms by Monte Carlo simulations and bench-top experiments. Next, They will characterize and calibrate detection systems both with monoenergetic and white neutron sources. Finally, high-fidelity measurements of neutron emission from fissions induced by fast neutrons will be performed. Several existing fission chambers containing U-235, Pu-239, U-238, or Th-232 will be used to measure the neutron-induced fission neutron emission spectra. The challenge for making confident measurements is the detection of neutrons in the energy ranges of 0.01 – 1 MeV and above 8 MeV, regions where the basic data on the neutron energy spectrum emitted from fission is least well known. In addition, improvements in the specificity of neutron detectors are required throughout the complete energy range: they must be able to clearly distinguish neutrons from other radiations, in particular gamma rays and cosmic rays. The team believes that all of these challenges can be addressed successfully with emerging technologies under development by this collaboration. In particular, the collaboration will address the area of fission neutron emission spectra for isotopes of interest in the advanced fuel cycle initiative (AFCI).

  15. Neutron Scattering User Program | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Program SHARE Neutron Scattering Can Benefit Your Research Neutron scattering has applications in almost every technical and scientific field, from biology and chemistry to...

  16. Modeling gated neutron images of THD capsules

    SciTech Connect (OSTI)

    Wilson, Douglas Carl; Grim, Gary P; Tregillis, Ian L; Wilke, Mark D; Morgan, George L; Loomis, Eric N; Wilde, Carl H; Oertel, John A; Fatherley, Valerie E; Clark, David D; Schmitt, Mark J; Merrill, Frank E; Wang, Tai - Sen F; Danly, Christopher R; Batha, Steven H; Patel, M; Sepke, S; Hatarik, R; Fittinghoff, D; Bower, D; Marinak, M; Munro, D; Moran, M; Hilko, R; Frank, M; Buckles, R

    2010-01-01

    Time gating a neutron detector 28m from a NIF implosion can produce images at different energies. The brighter image near 14 MeV reflects the size and symmetry of the capsule 'hot spot'. Scattered neutrons, {approx}9.5-13 MeV, reflect the size and symmetry of colder, denser fuel, but with only {approx}1-7% of the neutrons. The gated detector records both the scattered neutron image, and, to a good approximation, an attenuated copy of the primary image left by scintillator decay. By modeling the imaging system the energy band for the scattered neutron image (10-12 MeV) can be chosen, trading off the decayed primary image and the decrease of scattered image brightness with energy. Modeling light decay from EJ399, BC422, BCF99-55, Xylene, DPAC-30, and Liquid A leads to a preference from BCF99-55 for the first NIF detector, but DPAC 30 and Liquid A would be preferred if incorporated into a system. Measurement of the delayed light from the NIF scintillator using implosions at the Omega laser shows BCF99-55 to be a good choice for down-scattered imaging at 28m.

  17. PHISICS multi-group transport neutronic capabilities for RELAP5

    SciTech Connect (OSTI)

    Epiney, A.; Rabiti, C.; Alfonsi, A.; Wang, Y.; Cogliati, J.; Strydom, G. [Idaho National Laboratory (INL), 2525 N. Fremont Ave., Idaho Falls, ID 83402 (United States)

    2012-07-01

    PHISICS is a neutronic code system currently under development at INL. Its goal is to provide state of the art simulation capability to reactor designers. This paper reports on the effort of coupling this package to the thermal hydraulic system code RELAP5. This will enable full prismatic core and system modeling and the possibility to model coupled (thermal-hydraulics and neutronics) problems with more options for 3D neutron kinetics, compared to the existing diffusion theory neutron kinetics module in RELAP5 (NESTLE). The paper describes the capabilities of the coupling and illustrates them with a set of sample problems. (authors)

  18. Neutron rich nuclei and neutron stars

    E-Print Network [OSTI]

    C. J. Horowitz

    2013-03-01

    The PREX experiment at Jefferson Laboratory measures the neutron radius of 208Pb with parity violating electron scattering in a way that is free from most strong interaction uncertainties. The 208Pb radius has important implications for neutron rich matter and the structure of neutron stars. We present first PREX results, describe future plans, and discuss a follow on measurement of the neutron radius of 48Ca. We review radio and X-ray observations of neutron star masses and radii. These constrain the equation of state (pressure versus density) of neutron rich matter. We present a new energy functional that is simultaneously fit to both nuclear and neutron star properties. In this approach, neutron star masses and radii constrain the energy of neutron matter. This avoids having to rely on model dependent microscopic calculations of neutron matter. The functional is then used to predict the location of the drip lines and the properties of very neutron rich heavy nuclei.

  19. Near and Sub-Barrier Fusion of Neutron-Rich Light Nuclei J. P. Schmidt, T. K. Steinbach, B. B. Wiggins, J. Vadas,

    E-Print Network [OSTI]

    de Souza, Romualdo T.

    environment for density driven fusion of neutron- rich light nuclei. Accreting neutron stars have been of the detector. The temperature of the neutron star crust, however, is too low for 12C fusion to occur. FusionBeam B E Near and Sub-Barrier Fusion of Neutron-Rich Light Nuclei J. P. Schmidt, T. K. Steinbach, B

  20. Coated semiconductor devices for neutron detection

    DOE Patents [OSTI]

    Klann, Raymond T. (Bolingbrook, IL); McGregor, Douglas S. (Whitmore Lake, MI)

    2002-01-01

    A device for detecting neutrons includes a semi-insulated bulk semiconductor substrate having opposed polished surfaces. A blocking Schottky contact comprised of a series of metals such as Ti, Pt, Au, Ge, Pd, and Ni is formed on a first polished surface of the semiconductor substrate, while a low resistivity ("ohmic") contact comprised of metals such as Au, Ge, and Ni is formed on a second, opposed polished surface of the substrate. In one embodiment, n-type low resistivity pinout contacts comprised of an Au/Ge based eutectic alloy or multi-layered Pd/Ge/Ti/Au are also formed on the opposed polished surfaces and in contact with the Schottky and ohmic contacts. Disposed on the Schottky contact is a neutron reactive film, or coating, for detecting neutrons. The coating is comprised of a hydrogen rich polymer, such as a polyolefin or paraffin; lithium or lithium fluoride; or a heavy metal fissionable material. By varying the coating thickness and electrical settings, neutrons at specific energies can be detected. The coated neutron detector is capable of performing real-time neutron radiography in high gamma fields, digital fast neutron radiography, fissile material identification, and basic neutron detection particularly in high radiation fields.

  1. The neutron 'thunder' accompanying the extensive air shower

    E-Print Network [OSTI]

    A. D. Erlykin

    2007-01-22

    Simulations show that neutrons are the most abundant component among extensive air shower hadrons. However, multiple neutrons which appear with long delays in neutron monitors nearby the EAS core ('neutron thunder') are mostly not the neutrons of the shower, but have a secondary origin. The bulk of them is produced by high energy EAS hadrons hitting the monitors. The delays are due to the termalization and diffusion of neutrons in the moderator and reflector of the monitor accompanied by the production of secondary gamma-quanta. This conclusion raises the important problem of the interaction of EAS with the ground, the stuff of the detectors and their environment since they have often hydrogen containing materials like polyethilene in neutron monitors. Such interaction can give an additional contribution to the signal in the EAS detectors. It can be particularly important for the signals from scintillator or water tank detectors at km-long distances from the EAS core where neutrons of the shower become the dominant component after a few mcsec behind the EAS front.

  2. Oscillator detector

    SciTech Connect (OSTI)

    Potter, B.M.

    1980-05-13

    An alien liquid detector employs a monitoring element and an oscillatory electronic circuit for maintaining the temperature of the monitoring element substantially above ambient temperature. The output wave form, eg., frequency of oscillation or wave shape, of the oscillatory circuit depends upon the temperaturedependent electrical characteristic of the monitoring element. A predetermined change in the output waveform allows water to be discriminated from another liquid, eg., oil. Features of the invention employing two thermistors in two oscillatory circuits include positioning one thermistor for contact with water and the other thermistor above the oil-water interface to detect a layer of oil if present. Unique oscillatory circuit arrangements are shown that achieve effective thermistor action with an economy of parts and energizing power. These include an operational amplifier employed in an astable multivibrator circuit, a discrete transistor-powered tank circuit, and use of an integrated circuit chip.

  3. NEUTRON ELECTRIC-DIPOLE MOMENT, ULTRACOLD NEUTRONS

    E-Print Network [OSTI]

    NEUTRON ELECTRIC-DIPOLE MOMENT, ULTRACOLD NEUTRONS AND POLARIZED 3He R. GOLUB~and Steve K REPORTS (Review Section of Physics Letters) 237, No. 1(1994)1--62. PHYSICS REPORTS North-Holland Neutron electric-dipole moment, ultracold neutrons and polarized 3He R. Goluba and Steve K. Lamoreauxb a

  4. A compact stilbene crystal neutron spectrometer for EAST D-D plasma neutron diagnostics

    SciTech Connect (OSTI)

    Zhang Xing; Yuan Xi; Xie Xufei; Chen Zhongjing; Peng Xingyu; Chen Jinxiang; Zhang Guohui; Li Xiangqing; Fan Tieshuan [School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Chengfu Road 201, 100871 Beijing (China); Zhong Guoqiang; Hu Liqun; Wan Baonian [Institute of Plasma Physics, Chinese Academy of Sciences, PO Box 1126, 230031 Hefei, Anhui (China)

    2013-03-15

    A new compact stilbene crystal neutron spectrometer has been investigated and applied in the neutron emission spectroscopy on the EAST tokamak. A new components analysis method is presented to study the anisotropic light output in the stilbene crystal detector. A Geant4 code was developed to simulate the neutron responses in the spectrometer. Based on both the optimal light output function and the fitted pulse height resolution function, a reliable neutron response matrix was obtained by Geant4 simulations and validated by 2.5 MeV and 14 MeV neutron measurements at a 4.5 MV Van de Graaff accelerator. The spectrometer was used to diagnose the ion temperature in plasma discharges with lower hybrid wave injection and ion cyclotron resonance heating on the EAST tokamak.

  5. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, J.L.

    1992-12-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.

  6. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, James L. (Drayton Plains, MI)

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.

  7. Fission meter and neutron detection using poisson distribution comparison

    DOE Patents [OSTI]

    Rowland, Mark S; Snyderman, Neal J

    2014-11-18

    A neutron detector system and method for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. Comparison of the observed neutron count distribution with a Poisson distribution is performed to distinguish fissile material from non-fissile material.

  8. New measurement of neutron capture resonances of 209Bi

    E-Print Network [OSTI]

    C. Domingo-Pardo

    2006-10-26

    The neutron capture cross section of Bi209 has been measured at the CERN n TOF facility by employing the pulse-height-weighting technique. Improvements over previous measurements are mainly because of an optimized detection system, which led to a practically negligible neutron sensitivity. Additional experimental sources of systematic error, such as the electronic threshold in the detectors, summing of gamma-rays, internal electron conversion, and the isomeric state in bismuth, have been taken into account. Gamma-ray absorption effects inside the sample have been corrected by employing a nonpolynomial weighting function. Because Bi209 is the last stable isotope in the reaction path of the stellar s-process, the Maxwellian averaged capture cross section is important for the recycling of the reaction flow by alpha-decays. In the relevant stellar range of thermal energies between kT=5 and 8 keV our new capture rate is about 16% higher than the presently accepted value used for nucleosynthesis calculations. At this low temperature an important part of the heavy Pb-Bi isotopes are supposed to be synthesized by the s-process in the He shells of low mass, thermally pulsing asymptotic giant branch stars. With the improved set of cross sections we obtain an s-process fraction of 19(3)% of the solar bismuth abundance, resulting in an r-process residual of 81(3)%. The present (n,gamma) cross-section measurement is also of relevance for the design of accelerator driven systems based on a liquid metal Pb/Bi spallation target.

  9. Experimental and numerical characterization of the neutron field produced in the n@BTF Frascati photo-neutron source

    E-Print Network [OSTI]

    Bedogni, R.; Buonomo, B.; Esposito, A.; Mazzitelli, G.; Foggetta, L.; Gomez Ros. J.M.; 10.1016/j.nima.2011.08.032

    2011-01-01

    A photo-neutron irradiation facility is going to be established at the Frascati National Laboratories of INFN on the base of the successful results of the n@BTF experiment. The photoneutron source is obtained by an electron or positron pulsed beam, tunable in energy, current and in time structure, impinging on an optimized tungsten target located in a polyethylene-lead shielding assembly. The resulting neutron field, through selectable collimated apertures at different angles, is released into a 100 m2 irradiation room. The neutron beam, characterized by an evaporation spectrum peaked at about 1 MeV, can be used in nuclear physics, calibration of neutron detectors, material

  10. Detector Support Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    browser. Concerns? Hall B Navigation DSG Home Staff Presentations Notes print version Detector Support Group Spotlight Archive Index Rotation test for the SVT detector EPICS...

  11. Enhanced reaction rates in NDP analysis with neutron scattering

    SciTech Connect (OSTI)

    Downing, R. Gregory

    2014-04-15

    Neutron depth profiling (NDP) makes accessible quantitative information on a few isotopic concentration profiles ranging from the surface into the sample a few micrometers. Because the candidate analytes for NDP are few, there is little interference encountered. Furthermore, neutrons have no charge so mixed chemical states in the sample are of no direct concern. There are a few nuclides that exhibit large probabilities for neutron scattering. The effect of neutron scattering on NDP measurements has not previously been evaluated as a basis for either enhancing the reaction rates or as a source of measurement error. Hydrogen is a common element exhibiting large neutron scattering probability found in or around sample volumes being analyzed by NDP. A systematic study was conducted to determine the degree of signal change when neutron scattering occurs during analysis. The relative signal perturbation was evaluated for materials of varied neutron scattering probability, concentration, total mass, and geometry. Signal enhancements up to 50% are observed when the hydrogen density is high and in close proximity to the region of analysis with neutron beams of sub thermal energies. Greater signal enhancements for the same neutron number density are reported for thermal neutron beams. Even adhesive tape used to position the sample produces a measureable signal enhancement. Because of the shallow volume, negligible distortion of the NDP measured profile shape is encountered from neutron scattering.

  12. Solar Neutron Events of October-November 2003

    E-Print Network [OSTI]

    K. Watanabe; M. Gros; P. H. Stoker; K. Kudela; C. Lopate; J. F. Valdes-Galicia; A. Hurtado; O. Musalem; R. Ogasawara; Y. Mizumoto; M. Nakagiri; A. Miyashita; Y. Matsubara; T. Sako; Y. Muraki; T. Sakai; S. Shibata

    2005-09-19

    During the period when the Sun was intensely active on October-November 2003, two remarkable solar neutron events were observed by the ground-based neutron monitors. On October 28, 2003, in association with an X17.2 large flare, solar neutrons were detected with high statistical significance (6.4 sigma) by the neutron monitor at Tsumeb, Namibia. On November 4, 2003, in association with an X28 class flare, relativistic solar neutrons were observed by the neutron monitors at Haleakala in Hawaii and Mexico City, and by the solar neutron telescope at Mauna Kea in Hawaii simultaneously. Clear excesses were observed at the same time by these detectors, with the significance calculated as 7.5 sigma for Haleakala, and 5.2 sigma for Mexico City. The detector onboard the INTEGRAL satellite observed a high flux of hard X-rays and gamma-rays at the same time in these events. By using the time profiles of the gamma-ray lines, we can explain the time profile of the neutron monitor. It appears that neutrons were produced at the same time as the gamma-ray emission.

  13. Pulsed Neutron Measurments With A DT Neutron Generator for an Annular HEU Uranium Metal Casting

    SciTech Connect (OSTI)

    Mihalczo, John T [ORNL; Archer, Daniel E [ORNL; Wright, Michael C [ORNL; Mullens, James Allen [ORNL

    2007-09-01

    Measurements were performed with a single annular, stainless-steel-canned casting of uranium (93.17 wt% 235U) metal ( ~18 kg) to provide data to verify calculational methods for criticality safety. The measurements used a small portable DT generator with an embedded alpha detector to time and directionally tag the neutrons from the generator. The center of the time and directional tagged neutron beam was perpendicular to the axis of the casting. The radiation detectors were 1x1x6 in plastic scintillators encased in 0.635-cm-thick lead shields that were sensitive to neutrons above 1 MeV in energy. The detector lead shields were adjacent to the casting and the target spot of the generator was about 3.8 cm from the casting at the vertical center. The time distribution of the fission induced radiation was measured with respect to the source event by a fast (1GHz) processor. The measurements described in this paper also include time correlation measurements with a time tagged spontaneously fissioning 252Cf neutron source, both on the axis and on the surface of the casting. Measurements with both types of sources are compared. Measurements with the DT generator closely coupled with the HEU provide no more additional information than those with the Cf source closely coupled with the HEU and are complicated by the time and directionally tagged neutrons from the generator scattering between the walls and floor of the measurements room and the casting while still above detection thresholds.

  14. Decay Detector for the Study of Giant Monopole Resonance in Unstable Nuclei 

    E-Print Network [OSTI]

    Button, Jonathan Thomas

    2013-04-19

    of state (EOS) which describes a number of phenomena: collective excitations of nuclei, supernova explosions and radii of neutron stars. In order to study the Isoscalar Giant Monopole Resonance in unstable nuclei, a ?E-?E-E decay detector composed...

  15. Development of a three-dimensional two-fluid code with transient neutronic feedback for LWR applications

    E-Print Network [OSTI]

    Griggs, D. P.

    1981-01-01

    The development of a three-dimensional coupled neutronics/thermalhydraulics code for LWR safety analysis has been initiated. The transient neutronics code QUANDRY has been joined to the two-fluid thermal-hydraulics code ...

  16. Neutron time-of-flight and emission time diagnostics for the National Ignition Facility

    SciTech Connect (OSTI)

    Murphy, T. J.; Jimerson, J. L.; Berggren, R. R.; Faulkner, J. R.; Oertel, J. A.; Walsh, P. J.

    2001-01-01

    Current plans call for a system of current mode neutron detectors for the National Ignition Facility for extending the range of neutron yields below that of the neutron activation system, for ion-temperature measurements over a wide yield range, and for determining the average neutron emission time. The system will need to operate over a yield range of 10{sup 6} for the lowest-yield experiments to 10{sup 19} for high-yield ignited targets. The requirements will be satisfied using several detectors located at different distances from the target. This article presents a conceptual design for the NIF nToF system.

  17. Silicon Photo-Multiplier radiation hardness tests with a beam controlled neutron source

    E-Print Network [OSTI]

    M. Angelone; M. Pillon; R. Faccini; D. Pinci; W. Baldini; R. Calabrese; G. Cibinetto; A. Cotta Ramusino; R. Malaguti; M. Pozzati

    2010-06-08

    We report radiation hardness tests performed at the Frascati Neutron Generator on silicon Photo-Multipliers, semiconductor photon detectors built from a square matrix of avalanche photo-diodes on a silicon substrate. Several samples from different manufacturers have been irradiated integrating up to 7x10^10 1-MeV-equivalent neutrons per cm^2. Detector performances have been recorded during the neutron irradiation and a gradual deterioration of their properties was found to happen already after an integrated fluence of the order of 10^8 1-MeV-equivalent neutrons per cm^2.

  18. 22.54 Neutron Interactions and Applications, Spring 2002

    E-Print Network [OSTI]

    Yip, Sidney

    Comprehensive treatment of neutron interactions in condensed matter at energies from thermal to MeV, focusing on aspects most relevant to radiation therapy, industrial imaging, and materials research applications. Comparative ...

  19. Radioactive targets for neutron-induced cross section measurements

    SciTech Connect (OSTI)

    Kronenberg, A. (Andreas); Bond, E. M. (Evelyn M.); Glover, S. E. (Samuel E.); Rundberg, R. S. (Robert S.); Vieira, D. J. (David J.); Esch, E. I. (Ernst-Ingo); Reifarth, R. (Rene); Ullmann, J. L. (John L.); Haight, Robert C.; Rochmann, D. (Dimitri)

    2004-01-01

    Measurements using radioactive targets are important for the determination of key reaction path ways associated with the synthesis of the elements in nuclear astrophysics (sprocess), advanced fuel cycle initiative (transmutation of radioactive waste), and stockpile stewardship. High precision capture cross-section measurements are needed to interpret observations, predict elemental or isotopical ratios, and unobserved abundances. There are two new detector systems that are presently being commissioned at Los Alamos National Laboratory for very precise measurements of (n,{gamma}) and (n,f) cross-sections using small quantities of radioactive samples. DANCE (Detector for Advanced Neutron-Capture Experiments), a 4 {pi} gamma array made up of 160 BaF{sub 2} detectors, is designed to measure neutron capture cross-sections of unstable nuclei in the low-energy range (thermal to {approx}500 keV). The high granularity and high detection efficiency of DANCE, combined with the high TOF-neutron flux available at the Lujan Center provides a versatile tool for measuring many important cross section data using radioactive and isotopically enriched targets of about 1 milligram. Another powerful instrument is the Lead-slowing down spectrometer (LSDS), which will enable the measurement of neutron-induced fission cross-section of U-235m and other short-lived actinides in a energy range from 1-200 keV with sample sizes down to 10 nanograms. Due to the short half-life of the U-235m isomer (T{sub 1/2} = 26 minutes), the samples must be rapidly and repeatedly extracted from its {sup 239}Pu parent. Since {sup 239}Pu is itself highly fissile, the separation must not only be rapid, but must also be of very high purity (the Pu must be removed from the U with a decontamination factor >10{sup 12}). Once extracted and purified, the {sup 235m}U isomer would be electrodeposited on solar cells as a fission detector and placed within the LSDS for direct (n,f) cross section measurements. The production of radioactive targets of a few milligrams will be described as well as the containment for safe handling of these targets at the Lujan Center at LANSCE. To avoid any contamination, the targets are electrochemically fixed onto thin Ti foils and two foils are placed back to back to contain the radioactive material within. This target sandwich is placed in a cylinder made of aluminum with thin translucent windows made of Kapton. Actinides targets, such as {sup 234,235,236,238}U, {sup 237}Np, and {sup 239}Pu are prepared by electrodeposition or molecular plating techniques. Target thicknesses of 1-2 mg/cm{sup 2} with sizes of 1 cm{sup 2} or more have been made. Other targets will be fabricated from separation of irradiated isotopically enriched targets, such as {sup 155}Eu from {sup 154}Sm,{sup 171}Tm from {sup 170}Er, and {sup 147}Pm from {sup 146}Nd, which has been irradiated in the high flux reactor at ILL, Grenoble. A radioactive sample isotope separator (RSIS) is in the process of being commissioned for the preparation of other radioactive targets. A brief summary of these experiments and the radioactive target preparation technique will be given.

  20. Status Summary of 3He and Neutron Detection Alternatives for Homeland Security

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Ely, James H.

    2010-04-28

    This is a short summary whitepaper on results of our alternatives work: Neutron detection is an important aspect of interdiction of radiological threats for homeland security purposes since plutonium, a material used for nuclear weapons, is a significant source of fission neutrons [Kouzes 2005]. Because of the imminent shortage of 3He, which is used in the most commonly deployed neutron detectors, a replacement technology for neutron detection is required for most detection systems in the very near future [Kouzes 2009a]. For homeland security applications, neutron false alarms from a detector can result in significant impact. This puts a strong requirement on any neutron detection technology not to generate false neutron counts in the presence of a large gamma ray-only source [Kouzes et al. 2008].

  1. Search for neutrons from deuterated palladium subject to high electrical currents

    SciTech Connect (OSTI)

    Taylor, S.F. |; Claytor, T.N.; Tuggle, D.G.; Jones, S.E.

    1994-04-01

    Tritium has been detected evolving from samples of deuteriated palladium wires and powders subject to pulsed high voltage at Los Alamos. They wanted to measure whether these samples were emitting neutrons. The idea of pulsing current through the wires and powders was to drive the deuterium in and out by rapid electrical heating. With promising tritium results in hand, the experiments were prepared at Los Alamos, and then taken to BYU and run in the neutron detector located in a tunnel in Provo canyon under 35 m of rock and dirt overburden. The neutrons detector and sample setup are described. Results including total neutron counts, time distributions, and an indication of the energy distributions are discussed. The results do not provide compelling evidence of neutron production, but are not inconsistent with earlier measurements of neutrons and tritium. Difficulties in explaining the difference in tritium and neutron measurements are also discussed. Plans for further work are presented.

  2. Particle Identification in the NIMROD-ISiS Detector Array

    SciTech Connect (OSTI)

    Wuenschel, S.; Hagel, K.; May, L. W.; Wada, R.; Yennello, S. J.

    2009-03-10

    Interest in the influence of the neutron-to-proton (N/Z) ratio on multifragmenting nuclei has demanded an improvement in the capabilities of multi-detector arrays as well as the companion analysis methods. The particle identification method used in the NIMROD-ISiS 4{pi} array is described. Performance of the detectors and the analysis method are presented for the reaction of {sup 86}Kr+{sup 64}Ni at 35 MeV/u.

  3. Particle Identification in the NIMROD-ISiS Detector Array

    E-Print Network [OSTI]

    S. Wuenschel; K. Hagel; L. W. May; R. Wada; S. J. Yennello

    2009-03-04

    Interest in the influence of the neutron-to-proton (N/Z) ratio on multifragmenting nuclei has demanded an improvement in the capabilities of multi-detector arrays as well as the companion analysis methods. The particle identification method used in the NIMROD-ISiS 4 $\\pi$ array is described. Performance of the detectors and the analysis method are presented for the reaction of 86Kr+64Ni at 35MeV/u.

  4. Composite neutron absorbing coatings for nuclear criticality control

    DOE Patents [OSTI]

    Wright, Richard N.; Swank, W. David; Mizia, Ronald E.

    2005-07-19

    Thermal neutron absorbing composite coating materials and methods of applying such coating materials to spent nuclear fuel storage systems are provided. A composite neutron absorbing coating applied to a substrate surface includes a neutron absorbing layer overlying at least a portion of the substrate surface, and a corrosion resistant top coat layer overlying at least a portion of the neutron absorbing layer. An optional bond coat layer can be formed on the substrate surface prior to forming the neutron absorbing layer. The neutron absorbing layer can include a neutron absorbing material, such as gadolinium oxide or gadolinium phosphate, dispersed in a metal alloy matrix. The coating layers may be formed by a plasma spray process or a high velocity oxygen fuel process.

  5. SPIN-DEPENDENT SCATTERING LENGTHS OF SLOW NEUTRONS WITH NUCLEI BY PSEUDOMAGNETIC MEASUREMENTS

    E-Print Network [OSTI]

    Boyer, Edmond

    L-263 SPIN-DEPENDENT SCATTERING LENGTHS OF SLOW NEUTRONS WITH NUCLEI BY PSEUDOMAGNETIC MEASUREMENTS vu par les noyaux. Abstract. - The spin-dependent scattering length of slow neutrons by the nuclei 23 can be of practical importance in many thermal neutron scattering experiments. A new method, called

  6. Neutron Total Cross-Section Measurements and Resonance Parameter Analysis of Holmium, Thulium, and Erbium

    E-Print Network [OSTI]

    Danon, Yaron

    , resulting in neutron paramagnetic scatter- ing by the atom. This interaction is particularly strongNeutron Total Cross-Section Measurements and Resonance Parameter Analysis of Holmium, Thulium ­ The Rensselaer Polytechnic Institute linear accelerator with the enhanced thermal target was used for neutron

  7. Neutron Interferometry: Lessons in Experimental Quantum Mechanics Helmut Rauch and Samuel A. Werner

    E-Print Network [OSTI]

    Lynn, Jeffrey W.

    Neutron Interferometry: Lessons in Experimental Quantum Mechanics Helmut Rauch and Samuel A. Werner Today, 55, 52 (2002). The copious availability of thermalized neutrons makes them an ideal probe of choice for many fundamental physics investigations. A prime example is the field of neutron

  8. SHARP Neutronics Expanded

    Broader source: Energy.gov [DOE]

    The SHARP neutronics module, PROTEUS, includes neutron and gamma transport solvers and cross-section processing tools as well as the capability for depletion and fuel cycle analysis.

  9. Instruments | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrons and Pressure Diffractometer CG-2 GP-SANS - General-Purpose Small-Angle Neutron Scattering Diffractometer 4A MR - Magnetism Reflectometer CG-3 Bio-SANS -...

  10. What are Neutrons? | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What are Neutrons SHARE What are Neutrons? Visualization of An error occurred. Try watching this video on www.youtube.com, or enable JavaScript if it is disabled in your browser. a...

  11. Micro-machined thermo-conductivity detector

    DOE Patents [OSTI]

    Yu, Conrad (Antioch, CA)

    2003-01-01

    A micro-machined thermal conductivity detector for a portable gas chromatograph. The detector is highly sensitive and has fast response time to enable detection of the small size gas samples in a portable gas chromatograph which are in the order of nanoliters. The high sensitivity and fast response time are achieved through micro-machined devices composed of a nickel wire, for example, on a silicon nitride window formed in a silicon member and about a millimeter square in size. In addition to operating as a thermal conductivity detector, the silicon nitride window with a micro-machined wire therein of the device can be utilized for a fast response heater for PCR applications.

  12. Thermal ghost imaging with averaged speckle patterns

    E-Print Network [OSTI]

    Shapiro, Jeffrey H.

    We present theoretical and experimental results showing that a thermal ghost imaging system can produce images of high quality even when it uses detectors so slow that they respond only to intensity-averaged (that is, ...

  13. Neutron Capture Measurements and Resonance Analysis of Dysprosium Y.R. Kang,1

    E-Print Network [OSTI]

    Danon, Yaron

    for control in nuclear reactor [1]. Dysprosium is also a fission product from the thermal fis- sion of 235 U dysprosium's effect on the neutron population over all energy regions in a nuclear reactor system, where Dysprosium has many uses in the field of nuclear reac- tor system due to a very large thermal neutron absorp

  14. Study of Cosmogenic Neutron Backgrounds at LNGS

    E-Print Network [OSTI]

    Empl, A; Hungerford, E; Mosteiro, P

    2012-01-01

    Cosmic muon interactions are important contributors to backgrounds in underground detectors when searching for rare events. Typically neutrons dominate this background as they are particularly difficult to shield and detect in a veto system. Since actual background data is sparse and not well documented, simulation studies must be used to design shields and predict background rates. This means that validation of any simulation code is necessary to assure reliable results. This work studies the validation of the FLUKA simulation code, and reports the results of a simulation of cosmogenic background for a liquid argon two-phase detector embedded within a water tank and liquid scintillator shielding.

  15. Neutron scattering effects on fusion ion temperature measurements.

    SciTech Connect (OSTI)

    Ziegler, Lee (Bechtel/Nevada, Las Vegas, NV); Starner, Jason R.; Cooper, Gary Wayne; Ruiz, Carlos L.; Franklin, James Kenneth (Ktech Corporation, Albuquerque, NM); Casey, Daniel T.

    2006-06-01

    To support the nuclear fusion program at Sandia National Laboratories (SNL), a consistent and verifiable method to determine fusion ion temperatures needs to be developed. Since the fusion temperature directly affects the width in the spread of neutron energies produced, a measurement of the neutron energy width can yield the fusion temperature. Traditionally, the spread in neutron energies is measured by using time-of-flight to convert a spread in neutron energies at the source to a spread in time at detector. One potential obstacle to using this technique at the Z facility at SNL is the need to shield the neutron detectors from the intense bremsstrahlung produced. The shielding consists of eight inches of lead and the concern is that neutrons will scatter in the lead, artificially broaden the neutron pulse width and lead to an erroneous measurement. To address this issue, experiments were performed at the University of Rochester's Laboratory for Laser Energetics, which demonstrated that a reliable ion temperature measurement can be achieved behind eight inches of lead shielding. To further expand upon this finding, Monte Carlo N-Particle eXtended (MCNPX) was used to simulate the experimental geometric conditions and perform the neutron transport. MCNPX was able to confidently estimate results observed at the University of Rochester.

  16. The new Cold Neutron Chopper Spectrometer at the Spallation Neutron Source -- Design and Performance

    SciTech Connect (OSTI)

    Ehlers, Georg; Podlesnyak, Andrey A.; Niedziela, Jennifer L.; Iverson, Erik B.; Sokol, Paul E.

    2011-01-01

    The design and performance of the new cold neutron chopper spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge are described. CNCS is a direct-geometry inelastic time-of-flight spectrometer, designed essentially to cover the same energy and momentum transfer ranges as IN5 at ILL, LET at ISIS, DCS at NIST, TOFTOF at FRM-II, AMATERAS at J-PARC, PHAROS at LANSCE, and NEAT at HZB, at similar energy resolution. Measured values of key figures such as neutron flux at sample position and energy resolution are compared between measurements and ray tracing Monte Carlo simulations, and good agreement (better than 20% of absolute numbers) has been achieved. The instrument performs very well in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments.

  17. The new cold neutron chopper spectrometer at the Spallation Neutron Source: Design and performance

    SciTech Connect (OSTI)

    Ehlers, G.; Podlesnyak, A. A.; Niedziela, J. L.; Iverson, E. B.; Sokol, P. E.

    2011-08-15

    The design and performance of the new cold neutron chopper spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge are described. CNCS is a direct-geometry inelastic time-of-flight spectrometer, designed essentially to cover the same energy and momentum transfer ranges as IN5 at ILL, LET at ISIS, DCS at NIST, TOFTOF at FRM-II, AMATERAS at J-PARC, PHAROS at LANSCE, and NEAT at HZB, at similar energy resolution. Measured values of key figures such as neutron flux at sample position and energy resolution are compared between measurements and ray tracing Monte Carlo simulations, and good agreement (better than 20% of absolute numbers) has been achieved. The instrument performs very well in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments.

  18. Neutron Transmission, Capture, and Scattering Measurements at the Gaerttner LINAC Center Y. Danon, L. Liu, E.J. Blain, A.M. Daskalakis, B.J. McDermott, K. Ramic, C.R. Wendorff

    E-Print Network [OSTI]

    Danon, Yaron

    Neutron Transmission, Capture, and Scattering Measurements at the Gaerttner LINAC Center Y. Danon . As the energy of the neutrons increases to the keV region neutron resonance scattering becomes dominant compared to capture, and scattered neutrons can penetrate the 10 B4C liner of the NaI capture detector and get

  19. Deuterium density profile determination at JET using a neutron camera and a neutron spectrometer

    SciTech Connect (OSTI)

    Eriksson, J. Castegnetti, G.; Conroy, S.; Ericsson, G.; Hellesen, C.; Giacomelli, L.

    2014-11-15

    In this work we estimate the fuel ion density profile in deuterium plasmas at JET, using the JET neutron camera, the neutron time-of-flight spectrometer TOFOR, and fusion reactivities modeled by the transport code TRANSP. The framework has been tested using synthetic data, which showed that the density profile could be reconstructed with an average accuracy of the order of 10 %. The method has also been applied to neutron measurements from a neutral beam heated JET discharge, which gave n{sub d}/n{sub e} ? 0.6 ± 0.3 in the plasma core and n{sub d}/n{sub e} ? 0.4 ± 0.3 towards the edge. Correction factors for detector efficiencies, neutron attenuation, and back-scattering are not yet included in the analysis; future work will aim at refining the estimated density.

  20. Production of Ultra-Cold-Neutrons in Solid ?-Oxygen

    E-Print Network [OSTI]

    E. Gutsmiedl; A. Frei; F. Boehle; A. Maier; S. Paul; H. Schober; A. Orecchini

    2010-07-30

    Our recent neutron scattering measurements of phonons and magnons in solid \\alpha-oxygen have led us to a new understanding of the production mechanismen of ultra-cold-neutrons (UCN) in this super-thermal converter. The UCN production in solid \\alpha-oxygen is dominated by the excitation of phonons. The contribution of magnons to UCN production becomes only slightly important above E >10 meV and at E >4 meV. Solid \\alpha-oxygen is in comparison to solid deuterium less effcient in the down-scattering of thermal or cold neutrons into the UCN energy regime.

  1. Detection of Fusion Neutrons on the Multimirror Trap GOL-3

    SciTech Connect (OSTI)

    Burdakov, A.V. [Budker Institute of Nuclear Physics (Russian Federation); England, A.C. [Korea Basic Science Institute (Korea, Republic of); Kim, C.S. [Korea Basic Science Institute (Korea, Republic of); Koidan, V.S. [Budker Institute of Nuclear Physics (Russian Federation); Kwon, M. [Korea Basic Science Institute (Korea, Republic of); Postupaev, V.V. [Budker Institute of Nuclear Physics (Russian Federation); Rovenskikh, A.F. [Budker Institute of Nuclear Physics (Russian Federation); Sulyaev, Yu.S. [Budker Institute of Nuclear Physics (Russian Federation)

    2005-01-15

    Recently GOL-3 has been reconfigured to a multimirror trap with improved confinement and high ion temperature. A dense plasma is created with a life time in the millisecond range. BTI neutron bubble detectors, a stilbene scintillation crystal, a BC501A liquid scintillator, and a silver-activation counter have been used for measurements of the neutron emission from GOL-3. The results are in agreement with charge-exchange (CX), spectral broadening of the D{alpha} line, and diamagnetic measurements.

  2. Maximally incompressible neutron star matter

    E-Print Network [OSTI]

    Timothy S. Olson

    2000-12-07

    Relativistic kinetic theory, based on the Grad method of moments as developed by Israel and Stewart, is used to model viscous and thermal dissipation in neutron star matter and determine an upper limit on the maximum mass of neutron stars. In the context of kinetic theory, the equation of state must satisfy a set of constraints in order for the equilibrium states of the fluid to be thermodynamically stable and for perturbations from equilibrium to propagate causally via hyperbolic equations. Application of these constraints to neutron star matter restricts the stiffness of the most incompressible equation of state compatible with causality to be softer than the maximally incompressible equation of state that results from requiring the adiabatic sound speed to not exceed the speed of light. Using three equations of state based on experimental nucleon-nucleon scattering data and properties of light nuclei up to twice normal nuclear energy density, and the kinetic theory maximally incompressible equation of state at higher density, an upper limit on the maximum mass of neutron stars averaging 2.64 solar masses is derived.

  3. Radiation studies for GaAs in the ATLAS Inner Detector

    E-Print Network [OSTI]

    M. Rogalla; Th. Eich; N. Evans; R. Geppert; R. Goeppert; R. Irsigler; J. Ludwig; K. Runge; Th. Schmid

    1997-01-22

    We estimate the hardness factors and the equivalent 1 MeV neutron fluences for hadrons fluences expected at the GaAs positions wheels in the ATLAS Inner Detector. On this basis the degradation of the GaAs particle detectors made from different substrates as a function of years LHC operation is predicted.

  4. A Fluka study of underground cosmogenic neutron production

    SciTech Connect (OSTI)

    Empl, A.; Hungerford, E.V.; Jasim, R.; Mosteiro, P. E-mail: evhunger@central.uh.edu E-mail: mosteiro@gmail.com

    2014-08-01

    Neutrons produced by cosmic muon interactions are important contributors to backgrounds in underground detectors when searching for rare events. Typically such neutrons can dominate the background, as they are particularly difficult to shield and detect. Since actual data is sparse and not well documented, simulation studies must be used to design shields and predict background rates. Thus validation of any simulation code is necessary to assure reliable results. This work compares in detail predictions of the FLUKA simulation code to existing data, and uses this code to report a simulation of cosmogenic backgrounds for typical detectors embedded in a water tank with liquid scintillator shielding.

  5. Neutrostriction in Neutron stars

    E-Print Network [OSTI]

    V. K. Ignatovich

    2006-06-29

    It is demonstrated that not only gravity, but also neutrostriction forces due to optical potential created by coherent elastic neutron-neutron scattering can hold a neutron star together. The latter forces can be stronger than gravitational ones. The effect of these forces on mass, radius and structure of the neutron star is estimated.

  6. Low energy neutron background in deep underground laboratories

    E-Print Network [OSTI]

    Andreas Best; Joachim Gorres; Matthias Junker; Karl-Ludwig Kratz; Matthias Laubenstein; Alexander Long; Stefano Nisi; Karl Smith; Michael Wiescher

    2015-09-02

    The natural neutron background influences the maximum achievable sensitivity in most deep underground nuclear, astroparticle and double-beta decay physics experiments. Reliable neutron flux numbers are an important ingredient in the design of the shielding of new large-scale experiments as well as in the analysis of experimental data. Using a portable setup of He-3 counters we measured the thermal neutron flux at the Kimballton Underground Research Facility, the Soudan Underground Laboratory, on the 4100 ft and the 4850 ft levels of the Sanford Underground Research Facility, at the Waste Isolation Pilot Plant and at the Gran Sasso National Laboratory. Absolute neutron fluxes at these laboratories are presented.

  7. Low energy neutron background in deep underground laboratories

    E-Print Network [OSTI]

    Best, Andreas; Junker, Matthias; Kratz, Karl-Ludwig; Laubenstein, Matthias; Long, Alexander; Nisi, Stefano; Smith, Karl; Wiescher, Michael

    2015-01-01

    The natural neutron background influences the maximum achievable sensitivity in most deep underground nuclear, astroparticle and double-beta decay physics experiments. Reliable neutron flux numbers are an important ingredient in the design of the shielding of new large-scale experiments as well as in the analysis of experimental data. Using a portable setup of He-3 counters we measured the thermal neutron flux at the Kimballton Underground Research Facility, the Soudan Underground Laboratory, on the 4100 ft and the 4850 ft levels of the Sanford Underground Research Facility, at the Waste Isolation Pilot Plant and at the Gran Sasso National Laboratory. Absolute neutron fluxes at these laboratories are presented.

  8. Role of nucleonic Fermi surface depletion in neutron star cooling

    E-Print Network [OSTI]

    Dong, J M; Zhang, H F; Zuo, W

    2015-01-01

    The Fermi surface depletion of beta-stable nuclear matter is calculated to study its effects on several physical properties which determine the neutron star thermal evolution. The neutron and proton Z factors measuring the corresponding Fermi surface depletions, are calculated within the Brueckner-Hartree-Fock approach employing the AV18 two-body force supplemented by a microscopic three body force. Neutrino emissivity, heat capacity and, in particular, neutron 3PF2 superfluidity turn out to be reduced, especially at high baryonic density, to such an extent that the cooling rates of young neutron stars are significantly slowed

  9. Role of nucleonic Fermi surface depletion in neutron star cooling

    E-Print Network [OSTI]

    J. M. Dong; U. Lombardo; H. F. Zhang; W. Zuo

    2015-12-09

    The Fermi surface depletion of beta-stable nuclear matter is calculated to study its effects on several physical properties which determine the neutron star thermal evolution. The neutron and proton Z factors measuring the corresponding Fermi surface depletions, are calculated within the Brueckner-Hartree-Fock approach employing the AV18 two-body force supplemented by a microscopic three body force. Neutrino emissivity, heat capacity and, in particular, neutron 3PF2 superfluidity turn out to be reduced, especially at high baryonic density, to such an extent that the cooling rates of young neutron stars are significantly slowed

  10. Measurement of the neutron-capture cross section of ??Ge and ??Ge below 15 MeV and its relevance to 0??? decay searches of ??Ge

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bhike, Megha; Fallin, B.; Tornow, W.

    2015-02-01

    The neutron radiative-capture cross section of ??Ge was measured between 0.4 and 14.8 MeV using the activation technique. Germanium samples with the isotopic abundance of ~86% ??Ge and ~14% ??Ge used in the 0??? searches by the GERDA and Majorana Collaborations were irradiated with monoenergetic neutrons produced at eleven energies via the łH(p,n)łHe, ˛H(d,n)łHe and łH(d,n)?He reactions. Previously, data existed only at thermal energies and at 14 MeV. As a by-product, capture cross-section data were also obtained for ??Ge at neutron energies below 8 MeV. Indium and gold foils were irradiated simultaneously for neutron fluence determination. High-resolution ?-ray spectroscopy wasmore »used to determine the ?-ray activity of the daughter nuclei of interest. For the ??Ge total capture cross section the present data are in good agreement with the TENDL-2013 model calculations and the ENDF/B-VII.1 evaluations, while for the ??Ge(n,?)??Ge reaction, the present data are about a factor of two larger than predicted. It was found that the ??Ge(n,?)??Ge yield in the High-Purity Germanium (HPGe) detectors used by the GERDA and Majorana Collaborations is only about a factor of two smaller than the ??Ge(n,?)??Ge yield due to the larger cross section of the former reaction.« less

  11. High spatial resolution particle detectors

    DOE Patents [OSTI]

    Boatner, Lynn A.; Mihalczo, John T.

    2012-09-04

    Disclosed below are representative embodiments of methods, apparatus, and systems for detecting particles, such as radiation or charged particles. One exemplary embodiment disclosed herein is particle detector comprising an optical fiber with a first end and second end opposite the first end. The optical fiber of this embodiment further comprises a doped region at the first end and a non-doped region adjacent to the doped region. The doped region of the optical fiber is configured to scintillate upon interaction with a target particle, thereby generating one or more photons that propagate through the optical fiber and to the second end. Embodiments of the disclosed technology can be used in a variety of applications, including associated particle imaging and cold neutron scattering.

  12. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, James L. (Drayton Plains, MI)

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. One layer of each set of bilayers consist of titanium, and the second layer of each set of bilayers consist of an alloy of nickel with carbon interstitially present in the nickel alloy.

  13. A solenoidal electron spectrometer for a precision measurement of the neutron $\\beta$-asymmetry with ultracold neutrons

    E-Print Network [OSTI]

    Plaster, B; Filippone, B W; Harrison, D; Hsiao, J; Ito, T M; Liu, J; Martin, J W; Tipton, B; Yuan, J

    2008-01-01

    We describe an electron spectrometer designed for a precision measurement of the neutron $\\beta$-asymmetry with spin-polarized ultracold neutrons. The spectrometer consists of a 1.0-Tesla solenoidal field with two identical multiwire proportional chamber and plastic scintillator electron detector packages situated within 0.6-Tesla field-expansion regions. Select results from performance studies of the spectrometer with calibration sources are reported.

  14. Ris-M-2720 The Multi-Detector

    E-Print Network [OSTI]

    -detector powder neutron diffracto- meter installed at the DR3 reactor at Risř. The report gives details. Introduction 5 1.1. Principles ofPowder Diffraction 5 1.2. Design Criteria 7 2. Monochromator 9 2.1. Lattice-Up Sequence 31 Risř-M-2720 3 #12;#12;1. Introduction 1.1. Principles of Powder Diffraction The principles

  15. Cumulative fission yields of short-lived isotopes under natural-abundance-boron-carbide-moderated neutron spectrum

    SciTech Connect (OSTI)

    Finn, Erin C.; Metz, Lori A.; Greenwood, Lawrence R.; Pierson, Bruce; Wittman, Richard S.; Friese, Judah I.; Kephart, Rosara F.

    2015-04-09

    The availability of gamma spectroscopy data on samples containing mixed fission products at short times after irradiation is limited. Due to this limitation, data interpretation methods for gamma spectra of mixed fission product samples, where the individual fission products have not been chemically isolated from interferences, are not well-developed. The limitation is particularly pronounced for fast pooled neutron spectra because of the lack of available fast reactors in the United States. Samples containing the actinide isotopes 233, 235, 238U, 237Np, and 239Pu individually were subjected to a 2$ pulse in the Washington State University 1 MW TRIGA reactor. To achieve a fission-energy neutron spectrum, the spectrum was tailored using a natural abundance boron carbide capsule to absorb neutrons in the thermal and epithermal region of the spectrum. Our tailored neutron spectrum is unique to the WSU reactor facility, consisting of a soft fission spectrum that contains some measurable flux in the resonance region. This results in a neutron spectrum at greater than 0.1 keV with an average energy of 70 keV, similar to fast reactor spectra and approaching that of 235U fission. Unique fission product gamma spectra were collected from 4 minutes to 1 week after fission using single-crystal high purity germanium detectors. Cumulative fission product yields measured in the current work generally agree with published fast pooled fission product yield values from ENDF/B-VII, though a bias was noted for 239Pu. The present work contributes to the compilation of energy-resolved fission product yield nuclear data for nuclear forensic purposes.

  16. Neutron-Mirror-Neutron Oscillations in a Trap

    E-Print Network [OSTI]

    B. Kerbikov; O. Lychkovskiy

    2008-06-01

    We calculate the rate of neutron-mirror-neutron oscillations for ultracold neutrons trapped in a storage vessel. Recent experimental bounds on the oscillation time are discussed.

  17. Foil cycling technique for the VESUVIO spectrometer operating in the resonance detector configuration

    SciTech Connect (OSTI)

    Schooneveld, E. M.; Mayers, J.; Rhodes, N. J.; Pietropaolo, A.; Andreani, C.; Senesi, R.; Gorini, G.; Perelli-Cippo, E.; Tardocchi, M.

    2006-09-15

    This article reports a novel experimental technique, namely, the foil cycling technique, developed on the VESUVIO spectrometer (ISIS spallation source) operating in the resonance detector configuration. It is shown that with a proper use of two foils of the same neutron absorbing material it is possible, in a double energy analysis process, to narrow the width of the instrumental resolution of a spectrometer operating in the resonance detector configuration and to achieve an effective subtraction of the neutron and gamma backgrounds. Preliminary experimental results, obtained from deep inelastic neutron scattering measurements on lead, zirconium hydride, and deuterium chloride samples, are presented.

  18. CFD-based design of the ventilation system for the PHENIX detector

    SciTech Connect (OSTI)

    Parietti, L.; Martin, R.A.; Gregory, W.S.

    1996-10-01

    The three-dimensional flow and thermal fields surrounding the large PHENIX sub-atomic particle detector enclosed in the Major Facility Hall are simulated numerically in this study using the CFX finite volume, commercial, computer code. The predicted fields result from the interaction of an imposed downward ventilation system cooling flow and a buoyancy-driven thermal plume rising from the warm detector. An understanding of the thermal irregularities on the surface of the detector and in the flow surrounding is needed to assess the potential for adverse thermal expansion effects in detector subsystems, and to prevent ingestion of electronics cooling air from hot spots. With a computational model of the thermal fields on and surrounding the detector, HVAC engineers can evaluate and improve the ventilation system design prior to the start of construction. This paper summarizes modeling and results obtained for a conceptual MFH ventilation scheme.

  19. A multi-group neutron noise simulator for fast reactors Hoai Nam Tran a,

    E-Print Network [OSTI]

    Demazičre, Christophe

    that the noise measured by ex-core detectors in a sodium-cooled fast reactor (SFR) could be useful for assessingA multi-group neutron noise simulator for fast reactors Hoai Nam Tran a, , Florian Zylbersztejn a 2013 Accepted 12 June 2013 Keywords: Neutron noise Fast reactor Hexagonal geometry ESFR a b s t r a c

  20. Measurement of High-Energy Solar Neutrons with SEDA-FIB onboard the ISS

    E-Print Network [OSTI]

    Muraki, Y; Matsumoto, H; Okudaira, O; Shibata, S; Goka, T; Obara, T; Yamamoto, T

    2013-01-01

    A new type of solar neutron detector (SEDA-FIB) was launched on board the Space Shuttle Endeavor on July 16 2009, and began collecting data at the International Space Station (ISS) on August 25 2009. This paper summarizes four years of observations with the solar neutron detector SEDA-FIB (Space Environment Data Acquisition using the FIBer detector). The solar neutron detector FIB can determine both the energy and arrival direction of solar neutrons. In this paper, we first present the angular distribution of neutron induced protons obtained in Monte Carlo simulations. The results are compared with the experimental results. Then we provide the angular distribution of background neutrons during one full orbit of the ISS (90 minutes). Next, the angular distribution of neutrons during the flare onset time from 20:02 to 20:10 UT on March 7 2011 is presented. It is compared with the distribution when a solar flare is not occurring. Observed solar neutrons possibly originated from the M-class solar flares that occu...

  1. Design and optimization of 6li neutron-capture pulse mode ion chamber 

    E-Print Network [OSTI]

    Chung, Kiwhan

    2009-05-15

    The purpose of this research is to design and optimize the performance of a unique, inexpensive 6Li neutron-capture pulse-mode ion chamber (LiPMIC) for neutron detection that overcomes the fill-gas contamination stemming from outgas of detector...

  2. First Neutron Spectrometry Measurement at the HL-2A Tokamak

    E-Print Network [OSTI]

    Xi, Yuan; Xufei, Xie; Zhongjing, Chen; Xingyu, Peng; Tieshuan, Fan; Jinxiang, Chen; Xiangqing, Li; Guoliang, Yuan; Jinwei, Yang; Qingwei, Yang

    2013-01-01

    A compact neutron spectrometer based on the liquid scintillator is presented for the neutron energy spectrum measurement at the HL-2A tokamak. The spectrometer has been well characterized and a fast digital pulse shape discrimination software has been developed using the charge comparison method. A digitizer data acquisition system with the maximum frequency of 1 MHz can work under the high count rate environment at HL-2A. Specific radiation shielding and magnetic shielding for the spectrometerhas been designed for the neutron spectrum measurement at the HL-2A Tokamak. For the analysis of the pulse height spectrum, dedicated numerical simulation utilizing NUBEAM combining with GENESIS has been made to obtain the neutron energy spectrum, following which the transportation process from the plasma to the detector has been evaluated with Monte Carlo calculations. The distorted neutron energy spectrum has been folded with response matrix of the liquid scintillation spectrometer, and good consistency has been found...

  3. Neutron Optics Optimization for the SNS EQ-SANS Diffractometer

    SciTech Connect (OSTI)

    Zhao, Jinkui [ORNL

    2011-01-01

    The extended Q-range small angle neutron scattering (EQ-SANS) diffractometer at the Spallation Neutron Source has recently been completed. Initial commissioning has shown that it has achieved its high intensity, low background, and wide dynamic range design goals. One of the key components that enable these performances is its neutron optics, which are extensively optimized using analytical and Monte Carlo methods. The EQ-SANS optics consist of a curved multichannel beam bender and sections of straight neutron guides on both ends of the bender. The bender and the guide are made of float glass coated with supermirror multilayers. The function of the optics is to ensure low instrument background by avoiding the direct line of sight of the neutron moderator at downstream locations, while transporting thermal and cold neutrons to the sample with maximum efficiency. In this work, the optimization of the EQ-SANS optics is presented.

  4. NEET Micro-Pocket Fission Detector – Final Project report

    SciTech Connect (OSTI)

    Joy Rempe; Douglas McGregor; Philip Ugorowski; Michael Reichenberger; Takashi Ito

    2014-09-01

    A collaboration between the Idaho National Laboratory (INL), the Kansas State University (KSU), and the French Alternative Energies and Atomic Energy Commission, Commissariat ŕ l'Énergie Atomique et aux Energies Alternatives, (CEA), is fundedby the Nuclear Energy Enabling Technologies (NEET) program to develop and test Micro-Pocket Fission Detectors (MPFDs), which are compact fission chambers capable of simultaneously measuring thermal neutron flux, fast neutron flux and temperature within a single package. When deployed, these sensors will significantly advance flux detection capabilities for irradiation tests in US Material Test Reactors (MTRs). Ultimately, evaluations may lead to a more compact, more accurate, and longer lifetime flux sensor for critical mock-ups, and high performance reactors, allowing several Department of Energy Office of Nuclear Energy (DOE-NE) programs to obtain higher accuracy/higher resolution data from irradiation tests of candidate new fuels and materials. Specifically, deployment of MPFDs will address several challenges faced in irradiations performed at MTRs: • Current fission chamber technologies do not offer the ability to measure fast flux, thermal flux and temperature within a single compact probe; MPFDs offer this option. • MPFD construction is very different than current fission chamber construction; the use of high temperature materials allow MPFDs to be specifically tailored to survive harsh conditions encountered in-core of high performance MTRs. • The higher accuracy, high fidelity data available from the compact MPFD will significantly enhance efforts to validate new high-fidelity reactor physics codes and new multi-scale, multi-physics codes. • MPFDs can be built with variable sensitivities to survive the lifetime of an experiment or fuel assembly in some MTRs, allowing for more efficient and cost effective power monitoring. • The small size of the MPFDs allows multiple sensors to be deployed, offering the potential to accurately measure the flux and temperature profiles in the reactor. This report summarizes the status at the end of year two of this three year project. As documented in this report, all planned accomplishments for developing this unique new, compact, multipurpose sensor have been completed.

  5. Neutron range spectrometer

    DOE Patents [OSTI]

    Manglos, Stephen H. (East Syracuse, NY)

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  6. MPACT Fast Neutron Multiplicity System Prototype Development

    SciTech Connect (OSTI)

    D.L. Chichester; S.A. Pozzi; J.L. Dolan; M.T. Kinlaw; S.J. Thompson; A.C. Kaplan; M. Flaska; A. Enqvist; J.T. Johnson; S.M. Watson

    2013-09-01

    This document serves as both an FY2103 End-of-Year and End-of-Project report on efforts that resulted in the design of a prototype fast neutron multiplicity counter leveraged upon the findings of previous project efforts. The prototype design includes 32 liquid scintillator detectors with cubic volumes 7.62 cm in dimension configured into 4 stacked rings of 8 detectors. Detector signal collection for the system is handled with a pair of Struck Innovative Systeme 16-channel digitizers controlled by in-house developed software with built-in multiplicity analysis algorithms. Initial testing and familiarization of the currently obtained prototype components is underway, however full prototype construction is required for further optimization. Monte Carlo models of the prototype system were performed to estimate die-away and efficiency values. Analysis of these models resulted in the development of a software package capable of determining the effects of nearest-neighbor rejection methods for elimination of detector cross talk. A parameter study was performed using previously developed analytical methods for the estimation of assay mass variance for use as a figure-of-merit for system performance. A software package was developed to automate these calculations and ensure accuracy. The results of the parameter study show that the prototype fast neutron multiplicity counter design is very nearly optimized under the restraints of the parameter space.

  7. Porcelain enamel neutron absorbing material

    DOE Patents [OSTI]

    Iverson, D.C.

    1987-11-20

    A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compound of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved. 2 figs.

  8. Porcelain enamel neutron absorbing material

    DOE Patents [OSTI]

    Iverson, Daniel C. (Aiken, SC)

    1990-01-01

    A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compounds of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved.

  9. The Neutron Imaging System Fielded at the National Ignition Facility

    SciTech Connect (OSTI)

    Merrill, F E; Buckles, R; Clark, D D; Danly, C R; Drury, O B; Dzenitis, J M; Fatherley, V E; Fittinghoff, D N; Gallegos, R; Grim, G P; Guler, N; Loomis, E N; Lutz, S; Malone, R M; Martinson, D D; Mares, D; Morley, D J; Morgan, G L; Oertel, J A; Tregillis, I L; Volegov, P L; Weiss, P B; Wilde, C H

    2012-08-01

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  10. Electromagnetic Radiation Hardness of Diamond Detectors

    E-Print Network [OSTI]

    T. Behnke; M. Doucet; N. Ghodbane; A. Imhof; C. Martinez; W. Zeuner

    2001-08-22

    The behavior of artificially grown CVD diamond films under intense electromagnetic radiation has been studied. The properties of irradiated diamond samples have been investigated using the method of thermally stimulated current and by studying their charge collection properties. Diamonds have been found to remain unaffected after doses of 6.8 MGy of 10 keV photons and 10 MGy of MeV-range photons. This observation makes diamond an attractive detector material for a calorimeter in the very forward region of the proposed TESLA detector.

  11. Nuclear reactor with internal thimble-type delayed neutron detection system

    DOE Patents [OSTI]

    Gross, Kenny C. (Lemont, IL); Poloncsik, John (Downers Grove, IL); Lambert, John D. B. (Wheaton, IL)

    1990-01-01

    This invention teaches improved apparatus for the method of detecting a breach in cladded fuel used in a nuclear reactor. The detector apparatus is located in the primary heat exchanger which conveys part of the reactor coolant past at least three separate delayed-neutron detectors mounted in this heat exchanger. The detectors are spaced apart such that the coolant flow time from the core to each detector is different, and these differences are known. The delayed-neutron activity at the detectors is a function of the delay time after the reaction in the fuel until the coolant carrying the delayed-neutron emitter passes the respective detector. This time delay is broken down into separate components including an isotopic holdup time required for the emitter to move through the fuel from the reaction to the coolant at the breach, and two transit times required for the emitter now in the coolant to flow from the breach to the detector loop and then via the loop to the detector. At least two of these time components are determined during calibrated operation of the reactor. Thereafter during normal reactor operation, repeated comparisons are made by the method of regression approximation of the third time component for the best-fit line correlating measured delayed-neutron activity against activity that is approximated according to specific equations. The equations use these time-delay components and known parameter values of the fuel and of the part and emitting daughter isotopes.

  12. High-energy detector

    DOE Patents [OSTI]

    Bolotnikov, Aleksey E. (South Setauket, NY); Camarda, Giuseppe (Farmingville, NY); Cui, Yonggang (Upton, NY); James, Ralph B. (Ridge, NY)

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  13. Crystal Driven Neutron Source: A New Paradigm for Miniature Neutron Sources

    SciTech Connect (OSTI)

    Tang, V; Morse, J; Meyer, G; Falabella, S; Guethlein, G; Kerr, P; Park, H G; Rusnak, B; Sampayan, S; Schmid, G; Spadaccini, C; Wang, L

    2008-08-08

    Neutron interrogation techniques have specific advantages for detection of hidden, shielded, or buried threats over other detection modalities in that neutrons readily penetrate most materials providing backscattered gammas indicative of the elemental composition of the potential threat. Such techniques have broad application to military and homeland security needs. Present neutron sources and interrogation systems are expensive and relatively bulky, thereby making widespread use of this technique impractical. Development of a compact, high intensity crystal driven neutron source is described. The crystal driven neutron source approach has been previously demonstrated using pyroelectric crystals that generate extremely high voltages when thermal cycled [1-4]. Placement of a sharpened needle on the positively polarized surface of the pyroelectric crystal results in sufficient field intensification to field ionize background deuterium molecules in a test chamber, and subsequently accelerate the ions to energies in excess of {approx}100 keV, sufficient for either D-D or D-T fusion reactions with appropriate target materials. Further increase in ion beam current can be achieved through optimization of crystal thermal ramping, ion source and crystal accelerator configuration. The advantage of such a system is the compact size along with elimination of large, high voltage power supplies. A novel implementation discussed incorporates an independently controlled ion source in order to provide pulsed neutron operation having microsecond pulse width.

  14. 69V. Larsson, C. Demazire / Annals of Nuclear Energy 43 (2012) 6876 thermal hydraulic properties instead of direct manipulation of

    E-Print Network [OSTI]

    Demazičre, Christophe

    2012-01-01

    #12;69V. Larsson, C. Demazičre / Annals of Nuclear Energy 43 (2012) 68­76 thermal hydraulic is to present the coupled calculational scheme with emphasis on the thermal hydraulic model since a brief overview of the neutronic and thermal hydraulic models, without going into detail. 2.1. Neutronics

  15. Neutron producing target for accelerator based neutron source for

    E-Print Network [OSTI]

    Taskaev, Sergey Yur'evich

    247 Neutron producing target for accelerator based neutron source for NCT V. Belov1 , S. Fadeev1, Russia Summary Neutron producing targets for novel accelerator based neutron source [1, 2] are presented Neutron producing target is one of the main elements of proposed accelerator based facility for neutron

  16. Test of In-core Flux Detectors in KNK II

    E-Print Network [OSTI]

    Hoppe, P

    1979-01-01

    The development of in-core detectors for Liquid Metal Fast Breeder Reactors (LMFBRs) is still in an early stage, and little operation experience is available. Therefore self-powered neutron and gamma detectors and neutron sensitive ionization chambers -especially developed for LMFBRs- have been tested in the Fast Sodium Cooled Test Reactor KNK II. Seven flux detectors have been installed in the core of KNK II by means of a special test rig. Five of them failed already within the first week during operation in the reactor. Due to measurements of electrical resistances and capacities, sodium penetrating into the detectors or cables probably seems to be the cause. As tests prior to the installation in the core proved the tightness of all detectors, it is suspected that small cracks have developed in the detector casings or in the outer cable sheaths during their exposure to the hot coolant. Two ionization chambers did not show these faults. However, one of them failed because the saturation current plateau disap...

  17. Progress in development of the neutron profile monitor for the large helical device

    SciTech Connect (OSTI)

    Ogawa, K. Kobuchi, T.; Isobe, M.; Takeiri, Y.; Takada, E.; Uchida, Y.; Ochiai, K.; Tomita, H.; Uritani, A.

    2014-11-15

    The neutron profile monitor stably operated at a high-count-rate for deuterium operations in the Large Helical Device has been developed to enhance the research on the fast-ion confinement. It is composed of a multichannel collimator, scintillation-detectors, and a field programmable gate array circuit. The entire neutron detector system was tested using an accelerator-based neutron generator. This system stably acquires the pulse data without any data loss at high-count-rate conditions up to 8 × 10{sup 5} counts per second.

  18. Measurement of direct neutron capture by neutron-rich sulfur isotopes

    E-Print Network [OSTI]

    H. Beer; C. Coceva; R. Hofinger; P. Mohr; H. Oberhummer; P. V. Sedyshev; Yu. P. Popov

    1996-09-18

    Thermal neutron capture cross sections for $^{34}$S(n,$\\gamma$)$^{35}$S and $^{36}$S(n,$\\gamma$)$^{37}$S have been measured and spectroscopic factors of the final states have been extracted. The calculated direct-capture cross sections reproduce the experimental data.

  19. Low-frequency Vibrational Anomalies in -Lactoglobulin: Contribution of Different Hydrogen Classes Revealed by Inelastic Neutron Scattering

    E-Print Network [OSTI]

    Tuscia, Universitŕ Degli Studi Della

    Revealed by Inelastic Neutron Scattering A. Orecchini, A. Paciaroni, A. R. Bizzarri, and S. Cannistraro -lactoglobulin has been investigated by inelastic neutron scattering, on both dry and D2O-hydrated samples. Both typically accessible energy and momentum transfers, inelastic thermal neutron scattering is probably

  20. BACKSCATTER GUAGE DESCRIPTION FOR INSPECTION OF NEUTRON ABSORBER AND UNIFORMITY

    SciTech Connect (OSTI)

    Dewberry, R.; Gibbs, K.; Couture, A.

    2012-05-23

    This paper describes design, calibration, and testing of a dual He-3 detector neutron backscatter gauge for use in the Savannah River Site Mixed Oxide Fuel project. The gauge is demonstrated to measure boron content and uniformity in concrete slabs used in the facility construction.